WO2004046466A1 - Deposit conveying mechanism and deposit conveying method - Google Patents

Deposit conveying mechanism and deposit conveying method Download PDF

Info

Publication number
WO2004046466A1
WO2004046466A1 PCT/JP2003/007517 JP0307517W WO2004046466A1 WO 2004046466 A1 WO2004046466 A1 WO 2004046466A1 JP 0307517 W JP0307517 W JP 0307517W WO 2004046466 A1 WO2004046466 A1 WO 2004046466A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
suction port
compressed gas
supply unit
Prior art date
Application number
PCT/JP2003/007517
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Tsuchiya
Motoharu Yokomori
Tsutomu Sugiyama
Akihisa Fukumoto
Masato Urakami
Mitsukuni Yoshikawa
Yorikuni Shibuya
Original Assignee
Japan As Represented By Secretary Of Agency Of Chubu Regional Bureau, Ministry Of Land Infrastructure And Transport
Japan As Represented By Director General Of Agency Of Shinshu University
Yoshikawa Kensetsu Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By Secretary Of Agency Of Chubu Regional Bureau, Ministry Of Land Infrastructure And Transport, Japan As Represented By Director General Of Agency Of Shinshu University, Yoshikawa Kensetsu Kabushiki Kaisha filed Critical Japan As Represented By Secretary Of Agency Of Chubu Regional Bureau, Ministry Of Land Infrastructure And Transport
Priority to KR1020047010721A priority Critical patent/KR100574133B1/en
Priority to US10/500,979 priority patent/US20050076545A1/en
Priority to AU2003242358A priority patent/AU2003242358A1/en
Publication of WO2004046466A1 publication Critical patent/WO2004046466A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • E02B3/023Removing sediments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers

Definitions

  • the present invention relates to a deposit transport mechanism and a deposit transport method. '' Background technology
  • the discharge pipe is placed so as to penetrate the dam hole provided at a position lower than the water level of the storage location, and the discharge pipe is positioned at a position lower than the water level of the storage location by the barge floating on the storage location. Hang it to be located,
  • a pulsating flow which is a pulsating suction flow, is obtained by moving the discharge pipe up and down by a lifting device provided on the barge so that the suction port comes and goes in a required cycle with respect to the bottom surface of the water storage location.
  • a plug flow that alternately generates a flow in which sediments are mixed at a high concentration and a flow at a low concentration is obtained.
  • the sediment can be efficiently discharged as a solid-liquid two-phase flow without bringing the sediment into contact with the pipe wall of the discharge pipe in a substantially resistive manner.
  • An object of the present invention is to provide a sediment transport mechanism and a sediment transport method that can be applied to the above-mentioned conventional dredging mechanism and that can more efficiently transport sediments. Disclosure of the invention
  • the present invention has the following configuration to achieve the above object.
  • the sediment transport mechanism comprises: a suction port that is opened to face the bottom surface of the reservoir where the sediment is deposited; a vertical pipe that extends vertically from the suction port; A horizontal tube extending substantially horizontally in the lateral direction from an upper portion of the tube, and opening toward a discharge portion located at a lower position than the reservoir, wherein the horizontal tube is provided at a position lower than the water level of the reservoir; While being arranged so as to penetrate the hole formed in a liquid-tight manner, It is supported in the water in the water storage area at a position below the hydraulic gradient line.
  • the suction port is connected to the water bottom of the water storage area in a required cycle by a lifting device.
  • a transfer pipe that is moved up and down so as to be separated from each other; and a cup-shaped body that is provided at a suction port of the transfer pipe and that has a shape that is opened downward and the suction port is movably inserted in a vertical direction. It is characterized by comprising a steam supply unit for supplying steam to the cup-shaped body, and a compressed gas supply unit for supplying compressed gas to the cup-shaped body.
  • the suction port portion is lowered together with the cup-shaped body, and the suction port portion bites into the water bottom surface, and the suction port portion is rapidly closed, so that the suction port portion side is moved by the inertial force of the fluid in the transport pipe.
  • the pressure of the liquid drops, an expansion wave is generated, and water column separation occurs in the low-concentration part in the carrier pipe from the suction port side in turn with water vapor generated in the low-pressure part of the solid surface.
  • the suction port is raised, the high-concentration portion that has entered the suction port is sucked as a plug, and a small amount of compressed gas is supplied from the compressed gas supply unit into the cup-shaped body, and the compressed gas is supplied from the steam supply unit.
  • a suction port portion opened to face a water bottom surface on which sediment is deposited in a water storage location, a vertical pipe portion extending vertically from the suction port portion, and the vertical pipe portion.
  • a horizontal pipe portion extending substantially horizontally in the lateral direction from an upper portion and opening toward a discharge portion located at a lower position than the water storage location, the horizontal pipe portion being provided at a position lower than the water level of the water storage location; And is supported so as to penetrate through the holes in a liquid-tight manner, and is supported at a position below the hydrodynamic gradient line in the water in the water storage area.
  • a transfer pipe whose mouth is moved up and down so as to contact and separate in a required cycle from the bottom of the water storage area, and a suction pipe provided at the suction port of the transfer pipe, wherein the suction port moves vertically.
  • a force-open shape with a downward-opening shape that enters as much as possible And a suction unit together with the cup-shaped body, using a sediment transport mechanism including a steam supply unit that supplies steam into the cup-shaped body, and a compressed gas supply unit that supplies compressed gas into the cup-shaped body.
  • the suction port By lowering the mouth side, the suction port is cut into the water bottom surface, and the suction port is rapidly closed, whereby the pressure on the suction port side is reduced due to the inertial force of the fluid in the conveying pipe, and the expansion wave is reduced. Water column is sequentially generated from the suction port side in the low-concentration part in the transfer pipe, and then the suction port is raised with respect to the cup-shaped body, and the high-concentration part that has entered the suction port is sucked as a plug.
  • FIG. 1 is an explanatory diagram showing an example of a dredging mechanism at a dam lake
  • Fig. 2 is an explanatory diagram showing the structure of a Miwa dam
  • Fig. 3 is a dam hole for a transport pipe (discharge pipe).
  • FIG. 4 is an explanatory view showing a fixing mechanism in a section
  • FIG. 4 is an explanatory view of a barge
  • FIG. 5 is an explanatory view showing a structure of a cup-shaped body in a suction port portion
  • FIG. Fig. 7 is an explanatory view showing a structure of a double pipe
  • Fig. 7 is an explanatory view of a pressure absorbing section
  • FIG. 8 is an explanatory view showing further details of the pressure absorbing section
  • Fig. 9 is FIG. 10 is a correlation diagram between a pipe loss and a solid fraction
  • FIG. 10 is a cross-sectional view showing an example of a discharge pipe.
  • FIG. 1 is a cross-sectional view showing a dredging mechanism as an example of a sediment transport mechanism. This dredging mechanism is applied to a huge dam lake.
  • Reference numeral 10 denotes a discharge pipe which is a long transport pipe, and a suction port 12 opened opposite to the water bottom (lake bottom 29) of a reservoir 20 such as a dam lake where sediment 22 such as sediment is deposited.
  • a vertical pipe portion 13 extending vertically upward from the suction port portion 12, and a discharge portion such as a bypass tunnel extending horizontally horizontally from the upper portion of the vertical pipe portion 13 and located lower than the water storage location 20.
  • a horizontal pipe section 14 having a discharge port 18 opening to 30 is provided.
  • Figure 2 shows the mechanism of the bypass tunnel at Miwa Dam in Nagano Prefecture.
  • a branch bank 33 and a sand storage dam 34 are provided upstream of the dam bank 31. Sand storage dams 34 and diversion dams 33 block coarse sediment, reduce the amount of solids flowing into the downstream dam lake, and facilitate the removal of sedimented solids after flooding. These coarse sediments are mechanically carried away as before, and are effectively used as concrete materials.
  • a gate (not shown) of the bypass channel (not shown) provided near the branch levee 33 is opened, and fine sediment (about 0.1 mm in diameter) passes through the bypass channel along with the flood along with the flood. Run down to 30 to prevent fine sediment from accumulating on the dam lake. Therefore, very small sediment called Pash Road is mainly deposited on the dam lake.
  • the drained sediment is discharged using the auxiliary tunnel (auxiliary waterway) 32 leading to the bypass tunnel 30.
  • the discharge end of the discharge pipe 10 is guided into the auxiliary tunnel 32 through a dam hole 24.
  • the weir hole 24 is open to the weir 25 of the reservoir 20 so that the discharge pipe 10 passes through a position lower than the water level 21 of the reservoir 20.
  • a horizontal pipe section that is bent at a substantially right angle and extends in a substantially horizontal direction (set so that the side of the dam hole 24 is slightly lower) 14 is a sediment At the time of discharge, it is placed under water and below the hydrodynamic gradient line.
  • the head difference energy causes the water to flow down in the discharge pipe 10 in a state where the water flow is filled (in the case of fresh water).
  • Shimizu is defined as Newtonian fluid when p (average density) ⁇ 1.044 (in case of clay dredging at Lake Miwa dam in Nagano prefecture).
  • a high-concentration fluid The case where 1.5> ⁇ > 1.044 is referred to as a high-concentration fluid, and exhibits Bingham fluid characteristics. Those with high viscosity are particularly called Bingham fluids.
  • the solid phase ratio is 30% or more, p ⁇ 1.5, and the case of clay is called a plastic fluid, and the part (plug) where the solid phase is concentrated intermittently exists. Is called plug flow.
  • a capsule-like clay film may be formed on the surface of the plug, which is called a capsule fluid.
  • Reference numeral 42 denotes a roller-shaped receiving member, which is provided in a plurality in the embankment hole 24 and receives the discharge pipe 10 so as to be able to move smoothly in the axial direction.
  • Reference numeral 50 denotes a seal member, which is formed of, for example, a rubber material in an airbag shape, and into which air is injected.
  • the sealing member 50 is disposed between the dam hole 24 and the discharge pipe 10 (up and down of the discharge pipe 10), and provides a liquid-tight seal between the dam hole 24 and the discharge pipe 10. Seal.
  • the receiving members 42 are provided on both sides of the sealing member 50 on the body 44 of the bank.
  • the sluice plate 52 is a floodgate.
  • the sluice plate 52 is movably disposed in a groove 53 (FIG. 1) provided vertically in the dam 25 (FIG. 1), and is driven up and down by power. ) Can be opened and closed.
  • the gate plate 52 is lowered, and the discharge pipe 10 is sandwiched via the sealing member 50 to seal the dam hole 24 in a liquid-tight manner.
  • 36 is a barge (Fig. 1), and a crane 37 is provided.
  • the crane 37 is used to divide the discharge pipe 10 so that the vertical pipe section 13 is vertical and the horizontal pipe is provided. Part 14 is suspended below the hydraulic gradient. The bent part between the vertical pipe part 13 and the horizontal pipe part 14 is also located in the water. The hanging position of the discharge pipe 10 can be freely changed by the crane 37.
  • an elevating device 38 for vertically moving the vertical pipe portion 13 and therefore the suction port portion 12 is provided on the barge 36.
  • the elevating device is configured, for example, by a crank device so as to move the chain 62 connected to the vertical pipe portion 13 up and down, and discharges the discharge pipe 10 suspended by the crane 37 to the vertical pipe portion. After lifting about 13 m about 13 m, the vertical pipe section 13 is made to fall naturally.
  • the lifting device is not limited to the crank device, and may be any device that can move the vertical pipe portion 13 up and down.
  • the drive unit (not shown) of the elevating device can use a motor cylinder device or the like.
  • the crane 37 is not limited as long as the discharge pipe 10 can be suspended as described above.
  • a support (not shown) may be erected in the dam lake to support the discharge pipe 10 or provide a lifting device on the support. May be.
  • the support for supporting the discharge pipe 10 may be a float (not shown) floating in water. Supply and discharge air into the float so that the height of the discharge pipe 10 can be adjusted.
  • a watertight electric motor (not shown) is attached to the float. The vertical tube section 13 is moved up and down by this electric motor. Electricity will be supplied to the motors via wires (not shown) provided along the air supply pipes (not shown) to the floats to avoid electrical leakage.
  • FIG. 5 is an explanatory diagram showing an example of the suction port 12 in detail.
  • the suction port 12 has a double cylinder structure of an inner cylinder (discharge pipe 10) and a cup-shaped body 60.
  • the upper end of the cup-shaped body 60 is closed by a lid 61 to form a cup, and the lower end of the discharge pipe 10 (hereinafter sometimes referred to as an inner cylinder) moves the lid 61 up and down so as to be liquid-tight. , And penetrates airtightly into the cup-shaped body 60.
  • a connecting member 62 is fixed to a portion of the discharge pipe 10 slightly above the cup state 60, and a chain 63 is connected to the connecting member 62, and the chain 63 is connected to the lifting device.
  • the discharge pipe 10 can be moved up and down.
  • the cup-shaped body 60 is vertically movable relative to the inner cylinder 10 in a liquid-tight state.
  • the lid 61 of the cup-shaped body 6.0 and the connecting member 62 are connected by a coil spring 65, and the cup-shaped body 60 is moved relative to the inner cylinder 10 within the range of expansion and contraction of the coil spring 65. Moving. Therefore, when the inner cylinder 10 is raised above the bottom of the water, the cup-shaped body 60 is suspended from the connector 62 with the coil spring 65 extended.
  • the inside of the cup-shaped body 60 is partitioned by a perforated plate 66, and the inner cylinder 10 movably penetrates the perforated plate 66.
  • a stop 67 is fixed to a portion of the inner cylinder 10 below the perforated plate 66, and a gap between the stopper 67 and the perforated plate 66 from the tire from which the wheel has been removed.
  • a cushion material 68 is inserted.
  • a grating plate (perforated plate) 70 having an upwardly convex semicircular cross section is fixed to the lower end side of the cup-shaped body 60.
  • the lower end of the inner cylinder 10 can move up and down through a hole provided in the center of the grating plate 70.
  • chisels 72 are arranged at equal intervals in the circumferential direction (only one is shown in the figure).
  • the lower end of the chisel 72 is sharply formed so as to pierce the bottom of the water when the inner cylinder 10 and the cup-shaped body 60 fall. Also, a chain for lifting is connected to this chisel 72 as appropriate, so that the chain can be operated from the barge 36.
  • a steam supply unit steam generator: boiler
  • a compressed air supply unit compressor
  • the steam generated in the steam supply section 73 and the compressed air adjusted in the compressed air supply section 74 can be supplied to the upper portion of the cup-shaped body 60 through a flexible double pipe 75.
  • the double pipe 75 includes an outer cylinder 76 and an inner cylinder 77. From one end of the double pipe 75, compressed air and steam are supplied into the double pipe. That is, compressed air is introduced into the outer cylinder 76 from the connection port 78 through the pipe 79, and steam is introduced into the inner cylinder 77 from the connection port 80a through the pipe 81a.
  • the double pipe 75 is a double pipe made of a long, flexible, air-tight material such as rubber at the middle part except both ends, and can reach the bottom of the lake at the reservoir. It has a long length and is bendable.
  • the other end of the double pipe 75 is connected to the lid 61 of the nipple 60, and compressed air and steam are introduced into the nipple 60.
  • compressed air having excellent heat insulating properties is introduced into the outer cylinder 76, and steam is introduced into the inner cylinder 77, so that condensation due to cooling of the steam is prevented as much as possible.
  • carbon dioxide gas may be supplied from the compressed gas supply unit 74 into the cup-shaped body 60 through the double pipe 75. Carbon dioxide gas dissolves well in water at high pressure and foams at low pressure. As a result, it is possible to Dispersed microballoons are created, reducing the frictional resistance of the fluid.
  • the drain pipe 10 is disposed below the hydraulic gradient as described above, so that dredging can be performed due to a head difference.
  • the operations described below and by the phenomena caused by this operation, even heavy sediments such as clay deposits and stones with a minor diameter of about 70% of the pipe cross section are transported. , Emissions can be made more effectively.
  • iron (p 7.4) made of Porto, which settled under normal conditions and did not flow, was also transported and unloaded.
  • the suction port 12 is naturally dropped together with the cup-shaped body 60 by loosening the elevating device 38.
  • the suction port 12 reaches the water bottom in about 3 seconds, and when there is a very fine-grained and compacted hard clay-like sediment such as a posh road, The suction port 12 digs into the clay layer at the bottom about 30 cm in about 0.1 second.
  • the suction port 12 is suddenly blocked, while the water in the discharge pipe 10 still tries to flow due to the inertial force, so that a low pressure portion is generated at the boundary with the high concentration portion.
  • the low-pressure part is generated, the gas dissolved in the water is separated, and at that time, the pressure drops and the water vapor evaporates at the saturated vapor pressure of the water temperature. That is, water column separation occurs. In this case, some cavitation (crushing of air bubbles) also occurs.
  • the external energy due to this waving phenomenon becomes one of the energies for transporting the fluid downstream in the discharge pipe 10 (a pipeline).
  • the horizontal pipe portion 14 is largely wavy, the solid that is going to settle by gravity floats on the bottom of the pipe, thereby producing an effect of transporting the solid to a distant place.
  • the air-locked state means that when a convex part is formed on the horizontal pipe part 14 and air accumulates in this convex part, the flow pressure is absorbed by the expansion and contraction action of the air, and It refers to a state of disappearance.
  • the next generation of expansion waves from the air or carbon dioxide gas will be a source of breaking the surface tension of water, and easily create a water column separation state.
  • the cup-shaped body 60 is raised (the inner cylinder 10 is raised to the required height). Then, the cup-shaped body 60 is also pulled up by the stopper 67.) Since the inside of the cup-shaped body 60 is filled with water vapor and compressed air, buoyancy acts, and the cup-shaped body 60 is easily pulled up and returns to the initial state.
  • the valve is rapidly opened, thereby generating a pressure wave in the discharge pipe 10. This propagates through the discharge pipe 10. Due to the generation of the pressure wave, the gas plug is rapidly compressed, and the water vapor in the gas plug condenses and is taken into the water. Is further compressed and the pressure increases rapidly.
  • the water hammer phenomenon refers to the water hammer phenomenon, which refers to a collision phenomenon in which even water can be compressed and its volume reduced.
  • the fluid flowing through the discharge pipe 10 mixes with the plug (high concentration part) where clay is mixed at a high concentration and at a low concentration.
  • the steam gas plug part is cooled by external water and disappears as it goes downstream, and the upstream part is vacuum-sucked). It becomes.
  • the expansion wave (vacuum wave: expanding wave) and the pressure wave (compression wave) alternately occur in the low-concentration part between the high-concentration part and the high-concentration part. It flows in an oscillating flow state vibrating violently in the discharge pipe 10, and the clay of high concentration flows with little contact with the pipe wall of the discharge pipe 10, that is, flows with low pipe resistance. Even if 10 is long, clay (soil and sand) can be transported well.
  • L (length) ZD (straight It can be seen from this figure that even with a long pipe line with a diameter of about 1000 to 1500, it is possible to discharge sufficiently high concentration of sediment at an average flow velocity of 1.3 m / sec.
  • Figure 9 shows a correlation diagram between pipe loss and true volume concentration (solid fraction). ⁇ indicates the resistance coefficient of the whole system. In addition, in the calculation formula, the coefficient related to the flow becomes several tens, and the solution diverges.
  • the fluid When the fluid is a Newtonian fluid, it flows smoothly at a flow velocity of 3.6 m / sec. In the case of the Bingham fluid, if the operation as in the present embodiment (such as the operation of raising and lowering the vertical pipe portion 13) is not performed (it is assumed that there is no pulsation in the figure), the pipe will soon be blocked and will not flow.
  • the resistance coefficient did not increase so much, and the plastic fluid having a solid fraction of about 30% as well as the Bingham fluid could be discharged and transported.
  • an expansion wave (liquid or gaseous state) and a pressure wave (liquid state) are alternately generated in the low-concentration part between the plug parts generated at intervals in the discharge pipe 10, and the solid state is generated.
  • Flowing in a three-phase state of liquid and gas is as if traveling on a long downhill by gravity, with a number of vehicles connected by a coupler (low concentration part) (high concentration part).
  • the blown compressed air partially dissolves in water, but mostly disperses as small particles (microballoons) in the fluid film between the tube wall of the discharge pipe 10 and the solid, and the fluid It is discharged together with.
  • the pipe resistance of the fluid is further reduced, which contributes to the good discharge of the fluid.
  • carbon dioxide gas is used as the compressed gas, it dissolves in water at high pressures and foams at low pressures, making it easier to create the flow in the coupled oscillator state described above.
  • the supply and cutoff of compressed gas and water vapor from the compressed gas supply section 74 and the water vapor supply section 73 are performed by an electromagnetic valve (not shown).
  • the control is performed so as to be performed in accordance with the timing of lifting and lowering, that is, the timing of driving of the lifting and lowering device 38 constituted by a crank mechanism or the like.
  • a spiral projection is provided on the inner surface of the discharge pipe 10 to form a rivet (the groove and the projection are alternately spirally continuous), so that the ball of the rifle gun is fired while rotating.
  • the rotation of the plug and fluid in the pipeline further reduces the resistance of the plug and drains more smoothly.
  • the cross section of the pipe increases or decreases due to the generation of the expansion wave. This increase or decrease in the cross section of the pipe further enhances the rotation (spin effect). The speed difference increases).
  • reference numeral 80 denotes a float, which is disposed at a bent portion between the vertical pipe portion 13 and the horizontal pipe portion 14 of the discharge pipe 10 and gives buoyancy to the discharge pipe 10. I have.
  • the float 80 is connected to the compressed air supply unit 74 on the barge 36 by a pipe 81 to supply and discharge compressed air.
  • Reference numeral 82 denotes a pressure absorbing section, which communicates with the inside of the discharge pipe 10 to absorb the pressure increase and pressure reduction in the discharge pipe 10 and reduce the above-described destructive force applied to the discharge pipe 10.
  • the pressure absorbing section 82 is provided at an appropriate position of the horizontal pipe section 14 of the discharge pipe 10, and three pressure absorbing sections are connected in the illustrated example.
  • FIG. 8 shows a specific example of the pressure absorbing section 82.
  • the pressure absorbing portion 82 has a structure similar to a car tire.
  • Reference numeral 84 denotes a retaining ring made of a metal such as aluminum or iron, and a discharge pipe 10 is inserted through the retaining ring 84.
  • the holding ring 84 is fixed on the outer periphery of the discharge pipe 10 by appropriate means.
  • the holding ring 84 communicates with the inside of the discharge pipe 10 in a liquid-tight and air-tight manner through a hole 85.
  • Reference numeral 86 denotes an outer tube, which is fitted around the outer periphery of the retaining ring 84 in the same manner as a car tire, and forms an enclosed tube space together with the retaining ring 84.
  • Reference numeral 87 denotes an inner tube, which is disposed inside the outer tube 86.
  • Compressed air and steam are supplied into the outer tube 86 through a valve 88 and a connecting hose 89 provided on the holding ring 86.
  • the outer tube 86 of the three pressure absorbing sections 82 is connected by a connecting hose 89, and the outer tube 86 of the pressure absorbing section 82 at the extreme end has the inside shown in FIG.
  • Compressed air and steam are supplied through a double pipe 75 having the same structure.
  • the double pipe 75 is connected to a compressed air supply section 74 and a steam supply section 73 provided on a barge 90 (FIG. 7) via a connection pipe.
  • Compressed air is supplied to the inner tube 87 via a valve 91 provided on the retaining ring 84, a valve 92 provided on the inner tube 87, a hose connecting these, and a hose 93.
  • the hose 93 is connected to a compressed air supply unit 95 provided on the barge 90.
  • the connection hoses 96 communicate between the inner tubes 87 of the three pressure absorbing portions 82.
  • the pressure absorbing section 82 is configured as described above.
  • the pressure in the inner tube 87 becomes equilibrium with the pressure in the inner space of the outer tube 86, and serves to hold the outer tube 87 so as not to be crushed.In some cases, the inner tube 87 is not provided. May be.
  • the pressure absorbing section 82 By providing the pressure absorbing section 82, even if cavitation or water hammer occurs in the fluid, the pressure change can be absorbed by the pressure absorbing section 82, and the pulsation state required for solid transportation is maintained. And the damage of the discharge pipe 10 can be prevented as much as possible. Since the pressure absorbing portion 82 also functions as a float, the horizontal absorbing portion 14 can be easily disposed at a position below the hydraulic gradient by arranging the horizontal absorbing portion 14 at an appropriate position at an appropriate interval. Can be placed.
  • the pressure absorbing section 82 is not limited to the above configuration.
  • the pressure change in the discharge pipe 10 may be absorbed simply by forming it in a float shape and communicating with the inside of the discharge pipe 10 through a hole or an appropriate pipe.
  • the dredging of sediment deposited on the dam lake has been described as an example, but the present invention is not limited to this. Naturally, it can also be used for dredging in water storage areas such as ponds, lakes and marshes, and in the sea by providing a water level difference (pressure difference) between the suction side and the discharge side.
  • the water is injected into the tank, and then the water is discharged using the same structure as in the above embodiment. It can also be applied to sediment transport mechanisms, such as discharging coal and iron ore to the outside, and transporting the sediment deposited in the reservoir to the outside.
  • an expansion wave (a low-pressure part generated in a liquid or gaseous state: a vacuum wave), a pressure, is applied to a low-concentration part between the plug parts generated at intervals in the transfer pipe.
  • Waves (liquid) are generated alternately, producing a three-phase coupled oscillatory flow of solid 'liquid' gas (including water column separation), as if connected by a coupler (low concentration part).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Treatment Of Sludge (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

A deposit conveying mechanism capable of efficiently conveying deposits. It comprises a suction port (12), a vertical pipe (13), a horizontal pipe (14) extending transversely substantially horizontally, the horizontal pipe (14) being supported in water in a water storage yard at a position below the level of a dynamic water gradient line, a conveying pipe (10) whose suction port (12) is vertically moved toward and away from the water bottom surface of the water storage yard at a required frequency by a lifting device (38) during conveyance of deposits, a bottom-opened cup-shaped body (60) that is installed at the suction port (12) of the conveying pipe (10) and into which the suction port (12) is vertically movably advanced, a water vapor feeder (73) feeding water vapor into the cup-shaped body (60), and a compression gas feeder (74) feeding compressed gas into the cup-shaped body (60).

Description

明 細 書 堆積物搬送機構および堆積物搬送方法 技術分野  Description Sediment transport mechanism and sediment transport method
本発明は堆積物搬送機構および堆積物搬送方法に関する。 ' 背景技術  The present invention relates to a deposit transport mechanism and a deposit transport method. '' Background technology
浚渫機構として日本特許第 3 2 7 7 4 8 9号に示される機構がある。  As a dredging mechanism, there is a mechanism disclosed in Japanese Patent No. 327747489.
この浚渫機構は、  This dredging mechanism
排出管を、 貯水場所の水位よりも低い位置に設けた堰堤孔部を貫通させて配置 すると共に、 該排出管を、 貯水場所に浮かべられた台船により、 貯水場所の水位 よりも低い位置に位置するように吊持し、  The discharge pipe is placed so as to penetrate the dam hole provided at a position lower than the water level of the storage location, and the discharge pipe is positioned at a position lower than the water level of the storage location by the barge floating on the storage location. Hang it to be located,
前記台船に設けられた昇降装置によって、 排出管を、 吸い込み口が貯水場所の 水底面に対して所要のサイクルで接離するように上下動させて、 脈動する吸込流 である脈動流を得ると共に、 堆積物が高い濃度で混合された流れと低い濃度で混 合された流れとを交互に発生させるプラグ流を得るようにしたものである。  A pulsating flow, which is a pulsating suction flow, is obtained by moving the discharge pipe up and down by a lifting device provided on the barge so that the suction port comes and goes in a required cycle with respect to the bottom surface of the water storage location. In addition, a plug flow that alternately generates a flow in which sediments are mixed at a high concentration and a flow at a low concentration is obtained.
この浚渫機構によれば、 堆積物を排出管の管壁に実質的に抵抗となるように接 触させることなく、 固液二相流として効率よく排出することができる。 .  According to this dredging mechanism, the sediment can be efficiently discharged as a solid-liquid two-phase flow without bringing the sediment into contact with the pipe wall of the discharge pipe in a substantially resistive manner. .
本発明は、 上記従来の浚渫機構にも応用でき、 さらに効率よく堆積物を搬送で きる堆積物搬送機構および堆積物搬送方法を提供することを目的とする。 発明の開示  An object of the present invention is to provide a sediment transport mechanism and a sediment transport method that can be applied to the above-mentioned conventional dredging mechanism and that can more efficiently transport sediments. Disclosure of the invention
本発明は上記目的を達成するため次の構成を備える。  The present invention has the following configuration to achieve the above object.
すなわち、 本発明に係る堆積物搬送機構は、 貯水場所における堆積物が堆積し た水底面に対向して開口された吸込口部、 該吸込口部から鉛直方向へ延びる鉛直 管部、 および該鉛直管部上部から横方向にほぼ水平に延び、 貯水場所よりも低位 にある放出部に向けて開口された水平管部を有し、 該水平管部が前記貯水場所の 水位よりも低い位置に設けられた孔部を液密に貫通するように配置されると共に、 貯水場所内の水中に動水勾配線よりも下方となる位置に支持され、 さらに、 堆積 物の搬送時、 昇降装置により、 前記吸込口部が貯水場所の水底面に対して所要の サイクルで接離するように上下動される搬送管と、 前記搬送管の吸込口部に設け られ、 該吸込口部が上下方向に移動可能に進入する、 下方に開放された形状をな すカップ状体と、 該カップ状体内に水蒸気を供給する水蒸気供給部と、 前記カツ プ状体内に圧縮気体を供給する圧縮気体供給部とを具備することを特徴としてい る。 That is, the sediment transport mechanism according to the present invention comprises: a suction port that is opened to face the bottom surface of the reservoir where the sediment is deposited; a vertical pipe that extends vertically from the suction port; A horizontal tube extending substantially horizontally in the lateral direction from an upper portion of the tube, and opening toward a discharge portion located at a lower position than the reservoir, wherein the horizontal tube is provided at a position lower than the water level of the reservoir; While being arranged so as to penetrate the hole formed in a liquid-tight manner, It is supported in the water in the water storage area at a position below the hydraulic gradient line.When the sediment is conveyed, the suction port is connected to the water bottom of the water storage area in a required cycle by a lifting device. A transfer pipe that is moved up and down so as to be separated from each other; and a cup-shaped body that is provided at a suction port of the transfer pipe and that has a shape that is opened downward and the suction port is movably inserted in a vertical direction. It is characterized by comprising a steam supply unit for supplying steam to the cup-shaped body, and a compressed gas supply unit for supplying compressed gas to the cup-shaped body.
そして、 前記カップ状体と共に前記吸込口部側が下降され、 吸込口部が水底面 に食い込んで該吸込口部が急閉塞されることによって、 前記搬送管内の流体の慣 性力により吸込口部側の圧力が低下して膨張波が発生し、 搬送管内の低濃度部に 吸込口部側より順次、 固体表面の低圧部で発生した水蒸気で水柱分離が発生し、 次いで前記カップ状体に対して吸込口部が上昇され、 吸込口に進入した高濃度部 がプラグとして吸引されると共に、 前記圧縮気体供給部から少量の圧縮気体が前 記カップ状体内に供給され、 前記水蒸気供給部から圧縮気体よりも大量の水蒸気 が前記カップ状体内に供給されることによって、 水底の高濃度の堆積物、 カップ 状体内の水、 圧縮気体および水蒸気が吸込口部内に流入して、 高濃度の堆積物か らなるプラグおよび圧縮気体と水蒸気よりなるガスブラグが形成されて前記鉛直 管部を上昇し、 次いで前記カップ状体が上昇され、 前記圧縮気体および水蒸気の 供給が停止されることによって、 ガスプラグ部の水蒸気が凝縮し、 ガスプラグの 体積が減少し、 前記吸込口部が急開され、 これにより吸込口部内に清水が流入さ れ、 吸込口部側の圧力が上昇して圧力波が発生し水柱分離部を凝縮させるサイク ルが繰り返されることによって、 前記搬送管内に、 固 ·液 ·気よりなる連成振動 子状流れを作り出して堆積物を前記放出部に搬出することを特徴としている。 高粘着力のある流体 (ビンガム流体) の場合、 管壁や固体表面に厚い流体膜が 付着し、 流れにくくなるが、 本発明では、 上記構成により、 この流体膜の粘着力 発生構造を、 水柱分離部のキヤビテーションによる激しい振動による剪断力で低 下させ (チキソトロピー効果)、 さらに流体膜中に生じた微小ガス流 (マイクロバ ル一ン) が分散したエマルシヨン流れ (エマルシヨン状の流れ) のキヤビテ一シ ヨンによる局所的高圧力により、 固体と固体を接触させることなく、 固体間に流 体を介在させ、 常に流体膜を流体潤滑状態の動摩擦係数状態に保ち、 高密度、 高 粘着力体積物であっても高効率で搬送することを可能とする。 Then, the suction port portion is lowered together with the cup-shaped body, and the suction port portion bites into the water bottom surface, and the suction port portion is rapidly closed, so that the suction port portion side is moved by the inertial force of the fluid in the transport pipe. The pressure of the liquid drops, an expansion wave is generated, and water column separation occurs in the low-concentration part in the carrier pipe from the suction port side in turn with water vapor generated in the low-pressure part of the solid surface. The suction port is raised, the high-concentration portion that has entered the suction port is sucked as a plug, and a small amount of compressed gas is supplied from the compressed gas supply unit into the cup-shaped body, and the compressed gas is supplied from the steam supply unit. When a larger amount of water vapor is supplied to the cup-shaped body, high-concentration sediment on the bottom of the water, water, compressed gas, and water vapor in the cup-shaped body flow into the suction port, and the high-concentration sediment is removed. Become A lug, a gas plug composed of compressed gas and water vapor is formed, and the vertical pipe portion is raised. Then, the cup-shaped body is raised, and the supply of the compressed gas and water vapor is stopped. The water condenses, the volume of the gas plug decreases, and the suction port is rapidly opened, whereby fresh water flows into the suction port, the pressure on the suction port side increases, a pressure wave is generated, and a water column separation section is formed. By repeating the cycle of condensing the water, a coupled oscillatory flow of solid, liquid, and gas is created in the transport pipe, and the sediment is carried out to the discharge section. In the case of a highly adhesive fluid (Bingham fluid), a thick fluid film adheres to the tube wall or the solid surface, making it difficult to flow. The shear force caused by violent vibration caused by the cavitation of the separation part reduces the thixotropic effect (thixotropic effect). The local high pressure generated by one shot allows the flow between solids without contacting the solids. With the body interposed, the fluid film is always kept in a state of dynamic friction coefficient in a fluid lubricated state, making it possible to transport high-density, high-adhesion volume objects with high efficiency.
また本発明に係る堆積物搬送方法では、 貯水場所における堆積物が堆積した水 底面に対向して開口された吸込口部、該吸込口部から鉛直方向へ延びる鉛直管部、 および該鉛直管部上部から横方向にほぼ水平に延び、 貯水場所よりも低位にある 放出部に向けて開口された水平管部を有し、 該水平管部が前記貯水場所の水位よ りも低い位置に設けられた孔部を液密に貫通するように配置されると共に、 貯水 場所内の水中に動水勾配線よりも下方となる位置に支持され、 さらに、 堆積物の 搬送時、 昇降装置により、 前記吸込口部が貯水場所の水底面に对して所要のサイ クルで接離するように上下動される搬送管と、前記搬送管の吸込口部に設けられ、 該吸込口部が上下方向に移動可能に進入する、 下方に開放された形状をなす力ッ プ状体と、 該カップ状体内に水蒸気を供給する水蒸気供給部と、 前記カップ状体 内に圧縮気体を供給する圧縮気体供給部とを具備する堆積物搬送機構を用い、 前 記カップ状体と共に前記吸込口部側を下降させ、 吸込口部を水底面に食い込ませ て該吸込口部を急閉塞することによって、 前記搬送管内の流体の慣性力により吸 込口部側の圧力を低下させて膨張波を発生させ、 搬送管内の低濃度部に吸込口部 側より順次水柱分離を発生させ、 次いで前記カップ状体に対して吸込口部を上昇 させ、 吸込口に進入した高濃度部をプラグとして吸引させると共に、 前記圧縮気 体供給部から少量の圧縮気体を前記カップ状体内に供給し、 前記水蒸気供給部か ら圧縮気体よりも大量の水蒸気を前記カップ状体内に供給することによって、 水 底の高濃度の堆積物、 カップ状体内の水、 圧縮気体および水蒸気を吸込口部内に 流入させて、 高濃度の堆積物からなるプラグおよびガスプラグを形成して前記鉛 直管部を上昇させ、 次いで前記カップ状体を上昇させ、 前記圧縮気体および水蒸 気の供給を停止することによって、 ガスプラグ部の水蒸気を凝縮させ、 ガスブラ グの体積を減少させ、 前記吸込口部を急開し、 これにより吸込口部内に清水を流 入させ、 吸込口部側の圧力を上昇させて圧力波を発生させ水柱分離部を凝縮させ るサイクルを繰り返すことによって、 前記搬送管内に、 固 ·液 '気よりなる連成 振動子状流れを作り出して堆積物を前記放出部に搬出することを特徴としている。 図面の簡単な説明 Further, in the sediment transport method according to the present invention, there is provided a suction port portion opened to face a water bottom surface on which sediment is deposited in a water storage location, a vertical pipe portion extending vertically from the suction port portion, and the vertical pipe portion. A horizontal pipe portion extending substantially horizontally in the lateral direction from an upper portion and opening toward a discharge portion located at a lower position than the water storage location, the horizontal pipe portion being provided at a position lower than the water level of the water storage location; And is supported so as to penetrate through the holes in a liquid-tight manner, and is supported at a position below the hydrodynamic gradient line in the water in the water storage area. A transfer pipe whose mouth is moved up and down so as to contact and separate in a required cycle from the bottom of the water storage area, and a suction pipe provided at the suction port of the transfer pipe, wherein the suction port moves vertically. A force-open shape with a downward-opening shape that enters as much as possible And a suction unit together with the cup-shaped body, using a sediment transport mechanism including a steam supply unit that supplies steam into the cup-shaped body, and a compressed gas supply unit that supplies compressed gas into the cup-shaped body. By lowering the mouth side, the suction port is cut into the water bottom surface, and the suction port is rapidly closed, whereby the pressure on the suction port side is reduced due to the inertial force of the fluid in the conveying pipe, and the expansion wave is reduced. Water column is sequentially generated from the suction port side in the low-concentration part in the transfer pipe, and then the suction port is raised with respect to the cup-shaped body, and the high-concentration part that has entered the suction port is sucked as a plug. By supplying a small amount of compressed gas into the cup-shaped body from the compressed gas supply unit and supplying a larger amount of steam than the compressed gas from the steam supply unit to the cup-shaped body, High concentration Of water, compressed gas and water vapor in the cup-shaped body into the suction port to form plugs and gas plugs composed of high-concentration sediment, and to raise the vertical pipe, By raising the shape and stopping the supply of the compressed gas and the water vapor, the water vapor in the gas plug portion is condensed, the volume of the gas plug is reduced, and the suction port is rapidly opened, whereby the suction is performed. By repeating the cycle of flowing fresh water into the mouth, increasing the pressure on the suction port side, generating a pressure wave, and condensing the water column separation section, the continuous pipe consisting of solid and liquid It is characterized in that an oscillatory flow is created and the sediment is carried out to the discharge section. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 ダム湖での浚渫機構の例を示す説明図であり、 第 2図は、 美和ダム の構造を示す説明図であり、 第 3図は、 搬送管 (排出管) の堰堤孔部での固定機 構を示す説明図であり、 第 4図は、 台船の説明図であり、 第 5図は、 吸込口部分 におけるカップ状体の構造を示す説明図であり、 第 6図は、 二重パイプの構造を 示す説明図であり、 第 7図は、 圧力吸収部の説明図であり、 第 8図は、 圧力吸収 部のさらに詳細を示す説明図であり、 第 9図は、 管路損失と固相率との相関図で あり、 第 1 0図は、 排出管の一例を示す断面図である。 発明を実施するための最良の形態  Fig. 1 is an explanatory diagram showing an example of a dredging mechanism at a dam lake, Fig. 2 is an explanatory diagram showing the structure of a Miwa dam, and Fig. 3 is a dam hole for a transport pipe (discharge pipe). FIG. 4 is an explanatory view showing a fixing mechanism in a section, FIG. 4 is an explanatory view of a barge, FIG. 5 is an explanatory view showing a structure of a cup-shaped body in a suction port portion, and FIG. Fig. 7 is an explanatory view showing a structure of a double pipe, Fig. 7 is an explanatory view of a pressure absorbing section, Fig. 8 is an explanatory view showing further details of the pressure absorbing section, and Fig. 9 is FIG. 10 is a correlation diagram between a pipe loss and a solid fraction, and FIG. 10 is a cross-sectional view showing an example of a discharge pipe. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。 図 1は、 堆積物搬送機構の一例としての浚渫機構を示す断面図である。 この浚 渫機構は巨大なダム湖に適用した例を示す。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a dredging mechanism as an example of a sediment transport mechanism. This dredging mechanism is applied to a huge dam lake.
1 0は長い搬送管たる排出管であり、 土砂等の堆積物 2 2が堆積したダム湖等 の貯水場所 2 0の水底 (湖底 2 9 ) に対向して開口された吸込口部 1 2と、 その 吸込口部 1 2から鉛直上方に延びる鉛直管部 1 3と、 鉛直管部 1 3上部から横方 向にほぼ水平に延び、 貯水場所 2 0よりも低位にあるバイパストンネル等の放出 部 (放出水路) 3 0に開口する吐出口 1 8を有する水平管部 1 4とを具備する。 図 2は、 長野県にある美和ダムにおけるバイパストンネルの機構を示す。 ダム堤 3 1の上流側に、 分派堤 3 3と貯砂ダム 3 4とを設けてある。 貯砂ダム 3 4と分派堤 3 3では、 粗い土砂を堰き止め、 下流のダム湖に流入する固体量を 低下させ、 かつ沈積した固体を洪水後に取り出すことを容易にする。 これら粗い 土砂は、 これまでのように機械的に運び出され、 コンクリートの材料などに有効 利用される。  Reference numeral 10 denotes a discharge pipe which is a long transport pipe, and a suction port 12 opened opposite to the water bottom (lake bottom 29) of a reservoir 20 such as a dam lake where sediment 22 such as sediment is deposited. A vertical pipe portion 13 extending vertically upward from the suction port portion 12, and a discharge portion such as a bypass tunnel extending horizontally horizontally from the upper portion of the vertical pipe portion 13 and located lower than the water storage location 20. (Discharge Channel) A horizontal pipe section 14 having a discharge port 18 opening to 30 is provided. Figure 2 shows the mechanism of the bypass tunnel at Miwa Dam in Nagano Prefecture. A branch bank 33 and a sand storage dam 34 are provided upstream of the dam bank 31. Sand storage dams 34 and diversion dams 33 block coarse sediment, reduce the amount of solids flowing into the downstream dam lake, and facilitate the removal of sedimented solids after flooding. These coarse sediments are mechanically carried away as before, and are effectively used as concrete materials.
洪水時には、 分派堤 3 3近くに設けたバイパス水路 (図示せず) のゲート (図 示せず) をあけ、 細かい土砂 (直径がおよそ 0 . 1 mm程度) を洪水と共にバイ パス水路を経てバイパストンネル 3 0に流し、 細かい土砂がダム湖に堆積しない ようにする。 したがって、 ダム湖には主としてゥォッシュロードと称する極めて 粒径の小さな堆積物が堆積することになる。 本実施の形態では、 バイパストンネル 3 0に通じる補助トンネル (補助水路) 3 2を利用して、 浚渫した堆積物を排出する。 At the time of the flood, a gate (not shown) of the bypass channel (not shown) provided near the branch levee 33 is opened, and fine sediment (about 0.1 mm in diameter) passes through the bypass channel along with the flood along with the flood. Run down to 30 to prevent fine sediment from accumulating on the dam lake. Therefore, very small sediment called Pash Road is mainly deposited on the dam lake. In the present embodiment, the drained sediment is discharged using the auxiliary tunnel (auxiliary waterway) 32 leading to the bypass tunnel 30.
前記排出管 1 0の排出端側は、 この補助トンネル 3 2内に堰堤孔部 2 4を通じ て導かれる。  The discharge end of the discharge pipe 10 is guided into the auxiliary tunnel 32 through a dam hole 24.
堰堤孔部 2 4は、 貯水場所 2 0の水位 2 1よりも低い位置を排出管 1 0が通る ように、 貯水場所 2 0の堰堤 2 5に開口して設けられている。  The weir hole 24 is open to the weir 25 of the reservoir 20 so that the discharge pipe 10 passes through a position lower than the water level 21 of the reservoir 20.
排出管 1 0の鉛直管部 1 3の上部でほぼ直角に曲げられてほぼ水平方向に延び る水平管部 (堰堤孔部 2 4側が若干低くなるように設定される) 1 4は、 堆積物 の排出時、 水中であって、 動水勾配線よりも下方となる位置を通るように配置さ れる。  At the top of the vertical pipe section 13 of the discharge pipe 10, a horizontal pipe section that is bent at a substantially right angle and extends in a substantially horizontal direction (set so that the side of the dam hole 24 is slightly lower) 14 is a sediment At the time of discharge, it is placed under water and below the hydrodynamic gradient line.
これにより、 水頭差エネルギーによって、 排出管 1 0内を水流が満たされた状 態で流下することとなる (清水の場合)。  As a result, the head difference energy causes the water to flow down in the discharge pipe 10 in a state where the water flow is filled (in the case of fresh water).
清水とは、 p (平均密度) 刼 1 . 0 4 4の場合のニュートン流体とみなされるも のをいう (長野県の美和ダム湖底粘土浚渫の場合)。  Shimizu is defined as Newtonian fluid when p (average density) 刼 1.044 (in case of clay dredging at Lake Miwa dam in Nagano prefecture).
なお、 1 . 5 >ρ> 1 . 0 4 4の場合を高濃度流体といい、 ビンガム流体的特 性を示す。 粘性の高いものを特にビンガム流体という。 また、 固相率 3 0 %以上 の場合には、 p刼 1 . 5となり、 粘土の場合を塑性流体といい、 固体相の集中して いる部分 (プラグ) が間欠的に存在している場合をプラグ流という。 プラグ流の 場合、ブラグの表面にカプセルのような粘土の膜(流体膜)ができる場合があり、 これをカプセル流体という。  The case where 1.5> ρ> 1.044 is referred to as a high-concentration fluid, and exhibits Bingham fluid characteristics. Those with high viscosity are particularly called Bingham fluids. When the solid phase ratio is 30% or more, p 刼 1.5, and the case of clay is called a plastic fluid, and the part (plug) where the solid phase is concentrated intermittently exists. Is called plug flow. In the case of plug flow, a capsule-like clay film (fluid film) may be formed on the surface of the plug, which is called a capsule fluid.
堰堤孔部 2 4では、 水密構造にする必要があるが、 この構造を図 3により説明 する。  It is necessary to use a watertight structure for the embankment 24, and this structure will be described with reference to FIG.
4 2はローラ状の受部材であり、 堰堤孔部 2 4内に複数個配設され、 排出管 1 0を軸線方向に滑らかに移動可能に受けている。  Reference numeral 42 denotes a roller-shaped receiving member, which is provided in a plurality in the embankment hole 24 and receives the discharge pipe 10 so as to be able to move smoothly in the axial direction.
5 0はシール部材であり、 例えばゴム材でエアバック状に形成されていて、 内 部に空気が注入されている。 このシール部材 5 0は、 堰堤孔部 2 4と排出管 1 0 との間 (排出管 1 0の上下) に配設され、 堰堤孔部 2 4と排出管 1 0との間を液 密にシールする。  Reference numeral 50 denotes a seal member, which is formed of, for example, a rubber material in an airbag shape, and into which air is injected. The sealing member 50 is disposed between the dam hole 24 and the discharge pipe 10 (up and down of the discharge pipe 10), and provides a liquid-tight seal between the dam hole 24 and the discharge pipe 10. Seal.
シール部材 5 0内の空気を抜くことで、 排出管 1 0への締め付けが解除され、 排出管 1 0は軸方向に移動可能となる。 By bleeding air from the sealing member 50, the fastening to the discharge pipe 10 is released, The discharge pipe 10 becomes movable in the axial direction.
上記受部材 4 2は、 堰堤の躯体 4 4上に、 シール部材 5 0を挟む両側に配設さ れている。  The receiving members 42 are provided on both sides of the sealing member 50 on the body 44 of the bank.
5 2は水門板である。 水門板 5 2は、 堰堤部 2 5 (図 1 ) に上下方向に設けた 溝部 5 3 (図 1 ) 内に移動可能に配設され、 動力によって上下駆動され、 水門 (堰 堤孔部 2 4 ) を開閉できるようになつている。  52 is a floodgate. The sluice plate 52 is movably disposed in a groove 53 (FIG. 1) provided vertically in the dam 25 (FIG. 1), and is driven up and down by power. ) Can be opened and closed.
水門板 5 2を下降させ、 シール部材 5 0を介して排出管 1 0を挟むことで堰堤 孔部 2 4を液密にシールする。  The gate plate 52 is lowered, and the discharge pipe 10 is sandwiched via the sealing member 50 to seal the dam hole 24 in a liquid-tight manner.
次に、 3 6は台船であり (図 1 )、 クレーン 3 7が配設され、 クレーン 3 7によ つて、 排出管 1 0を鉛直管部 1 3が鉛直となるように、 また水平管部 1 4が動水 勾配よりも下方となるように吊り下げている。 鉛直管部 1 3と水平管部 1 4との 間の曲折部も水中に位置する。 クレーン 3 7によって、 自在に排出管 1 0の吊り 下げ位置を変更することができる。  Next, 36 is a barge (Fig. 1), and a crane 37 is provided. The crane 37 is used to divide the discharge pipe 10 so that the vertical pipe section 13 is vertical and the horizontal pipe is provided. Part 14 is suspended below the hydraulic gradient. The bent part between the vertical pipe part 13 and the horizontal pipe part 14 is also located in the water. The hanging position of the discharge pipe 10 can be freely changed by the crane 37.
また、 図 4に示すように、 台船 3 6上には、 鉛直管部 1 3、 したがって吸込口 部 1 2を上下動させる昇降装置 3 8を備える。 昇降装置は、 鉛直管部 1 3に連結 したチェーン 6 2を上下動させるように、 例えばクランク装置で構成され、 クレ ーン 3 7によって吊り下げられている排出管 1 0を、 その鉛直管部 1 3を約 2 m 程度持ち上げて後、 鉛直管部 1 3を自然落下させるように構成されている。  In addition, as shown in FIG. 4, on the barge 36, an elevating device 38 for vertically moving the vertical pipe portion 13 and therefore the suction port portion 12 is provided. The elevating device is configured, for example, by a crank device so as to move the chain 62 connected to the vertical pipe portion 13 up and down, and discharges the discharge pipe 10 suspended by the crane 37 to the vertical pipe portion. After lifting about 13 m about 13 m, the vertical pipe section 13 is made to fall naturally.
昇降装置はクランク装置に限られず、 鉛直管部 1 3を上下動させ得るものなら ばよい。 昇降装置の駆動部 (図示せず) は、 モ一夕ゃシリンダ装置等を採用でき る。  The lifting device is not limited to the crank device, and may be any device that can move the vertical pipe portion 13 up and down. The drive unit (not shown) of the elevating device can use a motor cylinder device or the like.
また、 クレーン 3 7でなくとも、 排出管 1 0を上記のように吊り下げることが できるものであればよい。  In addition, the crane 37 is not limited as long as the discharge pipe 10 can be suspended as described above.
また、 台船 3 6ではなく、 場合によってはダム湖内に、 支持台 (図示せず) を 立設し、 この支持台により排出管 1 0を支持したり、 支持台上に昇降装置を設け てもよい。  In some cases, instead of the barge 36, a support (not shown) may be erected in the dam lake to support the discharge pipe 10 or provide a lifting device on the support. May be.
この排出管 1 0を支持する支持台としては、水中に浮かぶフロート (図示せず) に構成してもよい。 フロート内にエアーを給排して排出管 1 0の高さ調節ができ るようにする。 また、 この場合に、 フロートに水密の電動モー夕 (図示せず) を 取り付け、 この電動モータにより鉛直管部 1 3を上下動させるようにする。 電動 モー夕への電気の供給は漏電を避けるためにフロートへのエア供給管(図示せず) の中に沿わせて設けた配線 (図示せず) より行うようにする。 The support for supporting the discharge pipe 10 may be a float (not shown) floating in water. Supply and discharge air into the float so that the height of the discharge pipe 10 can be adjusted. In this case, a watertight electric motor (not shown) is attached to the float. The vertical tube section 13 is moved up and down by this electric motor. Electricity will be supplied to the motors via wires (not shown) provided along the air supply pipes (not shown) to the floats to avoid electrical leakage.
次に、 図 5は吸込口 1 2部分の一例を詳細に示す説明図である。  Next, FIG. 5 is an explanatory diagram showing an example of the suction port 12 in detail.
図 5に示されるように、 吸込口部 1 2は内筒 (排出管 1 0 ) とカップ状体 6 0 との二重筒構造となっている。  As shown in FIG. 5, the suction port 12 has a double cylinder structure of an inner cylinder (discharge pipe 10) and a cup-shaped body 60.
カップ状体 6 0は上端側が蓋 6 1によって閉塞されてカップ状をなし、 排出管 1 0の下端部 (以下内筒ということがある) が、 この蓋 6 1を上下動自在に、 液 密、 かつ気密に貫通して、 カップ状体 6 0内に進入している。 カップ状態 6 0の 若干上方となる排出管 1 0の部位に連結具 6 2が固定されていて、 この連結具 6 2にチェーン 6 3が連結され、 チェーン 6 3が上記昇降装置に連繋されることに よって、 排出管 1 0が昇降可能となっている。  The upper end of the cup-shaped body 60 is closed by a lid 61 to form a cup, and the lower end of the discharge pipe 10 (hereinafter sometimes referred to as an inner cylinder) moves the lid 61 up and down so as to be liquid-tight. , And penetrates airtightly into the cup-shaped body 60. A connecting member 62 is fixed to a portion of the discharge pipe 10 slightly above the cup state 60, and a chain 63 is connected to the connecting member 62, and the chain 63 is connected to the lifting device. Thus, the discharge pipe 10 can be moved up and down.
カップ状体 6 0は、 液密状態で、 内筒 1 0に対して相対的に上下動自在になつ ている。 カップ状体 6 .0の蓋 6 1と連結具 6 2との間がコイルスプリング 6 5で 連結され、 このコイルスプリング 6 5の伸縮する範囲でカップ状体 6 0が内筒 1 0に対して移動する。 したがって、 内筒 1 0が水底よりも上方に引き上げられて いるときは、 カップ状体 6 0はコイルスプリング 6 5が延びた状態で連結具 6 2 から吊り下げられた状態となる。  The cup-shaped body 60 is vertically movable relative to the inner cylinder 10 in a liquid-tight state. The lid 61 of the cup-shaped body 6.0 and the connecting member 62 are connected by a coil spring 65, and the cup-shaped body 60 is moved relative to the inner cylinder 10 within the range of expansion and contraction of the coil spring 65. Moving. Therefore, when the inner cylinder 10 is raised above the bottom of the water, the cup-shaped body 60 is suspended from the connector 62 with the coil spring 65 extended.
カップ状体 6 0内は、 孔明き板 6 6によって仕切られ、 この孔明き板 6 6を内 筒 1 0が移動自在に貫通している。  The inside of the cup-shaped body 60 is partitioned by a perforated plate 66, and the inner cylinder 10 movably penetrates the perforated plate 66.
孔明き板 6 6よりも下方の内筒 1 0上の部位にはストツバ 6 7が固定され、 こ のストツパ 6 7と孔明き板 6 6との間には、 ホイ一ルを外したタイヤからなるク ッシヨン材 6 8が介挿されている。 ストッパ 6 7によって、 カップ状体 6 0は、 内筒 1 0上に抜け止めして保持される。  A stop 67 is fixed to a portion of the inner cylinder 10 below the perforated plate 66, and a gap between the stopper 67 and the perforated plate 66 from the tire from which the wheel has been removed. A cushion material 68 is inserted. By the stopper 67, the cup-shaped body 60 is retained on the inner cylinder 10 so as not to come off.
カップ状体 6 0の下端側には、 上に凸の断面半円状をなすグレーチング板 (孔 明き板) 7 0が固定されている。 内筒 1 0の下端側は、 このグレーチング板 7 0 の中央に設けられた孔を貫通して上下動可能となっている。  A grating plate (perforated plate) 70 having an upwardly convex semicircular cross section is fixed to the lower end side of the cup-shaped body 60. The lower end of the inner cylinder 10 can move up and down through a hole provided in the center of the grating plate 70.
カップ状体 6 0の孔明き板 6 6上、 およびダレ一チング板 7 0上には、 適宜重 量調節用の球体が収納されている。 この球体はカップ状体 6 0内で転がり、 粘土 塊を砕き、 スラリー化する作用もする。 粘土塊中に微小ガスが含まれるときは、 この微小ガスが放出され、 後記するマイクロバルーンとして機能する。 On the perforated plate 66 of the cup-shaped body 60 and on the dashing plate 70, spheres for weight adjustment are appropriately stored. This sphere rolls in the cup 60, clay It also works to break up lumps and turn into slurries. When a minute gas is contained in the clay mass, the minute gas is released and functions as a micro balloon described later.
カップ状体 6 0の外周上には、 周方向に等間隔をおいて 3つのチゼル 7 2が配 設されている (図では 1つのみ図示)。  On the outer periphery of the cup-shaped body 60, three chisels 72 are arranged at equal intervals in the circumferential direction (only one is shown in the figure).
チゼル 7 2は、 内筒 1 0、 カップ状体 6 0が落下したとき、 水底面に突き刺さ るように、 下端が先鋭に形成されている。 また、 このチゼル 7 2にも、 適宜引き 上げ用のチェーンが連結され、 台船 3 6上からこのチェーンを操作しうるように なっている。  The lower end of the chisel 72 is sharply formed so as to pierce the bottom of the water when the inner cylinder 10 and the cup-shaped body 60 fall. Also, a chain for lifting is connected to this chisel 72 as appropriate, so that the chain can be operated from the barge 36.
台船 3 6上には、 図 4に示すように、 水蒸気供給部 (水蒸気発生装置:ボイラ ―) 7 3と、 圧縮気体供給部たる圧縮空気供給部 (コンプレッサー) 7 4が配設 されている。  As shown in Fig. 4, on the barge 36, a steam supply unit (steam generator: boiler) 73 and a compressed air supply unit (compressor) 74 serving as a compressed gas supply unit are provided. .
水蒸気供給部 7 3で発生した水蒸気および圧縮空気供給部 7 4で調整された圧 縮空気は、 フレキシブルな二重パイプ 7 5を通じて、 カップ状体 6 0内上部に供 給可能になっている。  The steam generated in the steam supply section 73 and the compressed air adjusted in the compressed air supply section 74 can be supplied to the upper portion of the cup-shaped body 60 through a flexible double pipe 75.
二重パイプ 7 5は、 図 6に示すように、 外筒 7 6と内筒 7 7とからなる。 この 二重パイプ 7 5の一端側から二重パイプ内に圧縮空気と水蒸気とが供給される。 すなわち、 外筒 7 6内には、 接続口 7 8からパイプ 7 9を通じて圧縮空気が導入 され、 内筒 7 7内には接続口 8 0 aからパイプ 8 1 aを通じて水蒸気が導入され る。  As shown in FIG. 6, the double pipe 75 includes an outer cylinder 76 and an inner cylinder 77. From one end of the double pipe 75, compressed air and steam are supplied into the double pipe. That is, compressed air is introduced into the outer cylinder 76 from the connection port 78 through the pipe 79, and steam is introduced into the inner cylinder 77 from the connection port 80a through the pipe 81a.
二重パイプ 7 5は、 両管端を除いた中途部が、 長尺で、 かつフレキシブルな、 ゴム等の気密な素材から形成された二重パイプをなし、 貯水場所の湖底に十分到 達可能な長さを有し、 かつ屈曲可能になっている。  The double pipe 75 is a double pipe made of a long, flexible, air-tight material such as rubber at the middle part except both ends, and can reach the bottom of the lake at the reservoir. It has a long length and is bendable.
二重パイプ 7 5の他端側は、 力ップ状体 6 0の蓋 6 1に連結され、 力ップ状体 6 0内に圧縮空気、 水蒸気が導入されるのである。  The other end of the double pipe 75 is connected to the lid 61 of the nipple 60, and compressed air and steam are introduced into the nipple 60.
なお、 外筒 7 6内には、 断熱性に優れる圧縮空気が導入され、 水蒸気は内筒 7 7内に導入されるので、 水蒸気の冷却による凝結は極力防止される。  In addition, compressed air having excellent heat insulating properties is introduced into the outer cylinder 76, and steam is introduced into the inner cylinder 77, so that condensation due to cooling of the steam is prevented as much as possible.
また、 圧縮気体供給部 7 4からは、 二重パイプ 7 5を通じて炭酸ガスをカップ 状体 6 0内に供給するようにしてもよい。 炭酸ガスは、 高圧状態のときは水によ く溶解し、 低圧になると発泡する。 これによりスラリーからなる流体膜中によく 分散したマイクロバルーンが作り出され、 流体の摩擦抵抗を低減させる。 Further, carbon dioxide gas may be supplied from the compressed gas supply unit 74 into the cup-shaped body 60 through the double pipe 75. Carbon dioxide gas dissolves well in water at high pressure and foams at low pressure. As a result, it is possible to Dispersed microballoons are created, reducing the frictional resistance of the fluid.
次に浚渫作業について説明する。  Next, the dredging work will be described.
浚渫開始前は、 吸込口部 1 2が水底より約 2 mほどの高さとなるように引き上 げておく。排出管 1 0は、動水勾配よりも下方となるように配設されているから、 水 (清水) は、 水頭差 5 . O m以上ならば L ZD = 1 0 0 0でも排出管 1 0内を 満杯になって流下し、 秒速 3 . 6 m以上の十分な流速、 したがって、 十分な慣性 力を有するものとなる。  Before the start of dredging, the suction port 12 should be raised up to about 2 m above the water bottom. Since the discharge pipe 10 is arranged so as to be lower than the hydraulic gradient, the water (fresh water) can be discharged even if L ZD = 1000 if the head difference is 5. O m or more. It will be filled with water and flow down, and will have a sufficient flow velocity of 3.6 m / s or more, and therefore a sufficient inertial force.
本実施の形態で、 基本的には、 排出管 1 0を上記のように動水勾配よりも下方 となるように配設したことにより、 水頭差により浚渫が可能となる。 そして、 以 下に述べる操作を加えることにより、およびこの操作により生じる現象によって、 粘土質の堆積物や、 短径が管断面の 7 0 %程度の石等の重量の大きなものであつ ても搬送、 排出をより効果的に行えるものである。 実際、 普通の状態では沈降し てしまって流れない、 鉄 (p= 7 . 4 ) でできたポルトなども搬送、 搬出された ことが確認ざれた。  In the present embodiment, basically, the drain pipe 10 is disposed below the hydraulic gradient as described above, so that dredging can be performed due to a head difference. By adding the operations described below, and by the phenomena caused by this operation, even heavy sediments such as clay deposits and stones with a minor diameter of about 70% of the pipe cross section are transported. , Emissions can be made more effectively. In fact, it was confirmed that iron (p = 7.4) made of Porto, which settled under normal conditions and did not flow, was also transported and unloaded.
上記のように、 排出管 1 0内に十分な流速の水流が得られてから浚渫を開始す る。  As described above, dredging is started after a sufficient flow of water is obtained in the discharge pipe 10.
すなわち、 まず、 昇降装置 3 8を緩めることによって、 吸込口部 1 2をカップ 状体 6 0と共に自然落下させる。 水底までの距離が 2 mの場合には、 約 3秒で吸 込口部 1 2が水底に到達し、 ゥォッシュロードなどの非常に粒径の細かい、 圧密 された硬い粘土状の堆積物の場合には、 吸込口部 1 2が 0 . 1秒ほどで約 3 0 c m程度水底の粘土層に食い込む。  That is, first, the suction port 12 is naturally dropped together with the cup-shaped body 60 by loosening the elevating device 38. When the distance to the water bottom is 2 m, the suction port 12 reaches the water bottom in about 3 seconds, and when there is a very fine-grained and compacted hard clay-like sediment such as a posh road, The suction port 12 digs into the clay layer at the bottom about 30 cm in about 0.1 second.
これにより、 吸込口部 1 2が急閉塞されることとなり、 一方、 排出管 1 0内の 水は慣性力によってなおも流れようとするから、 高濃度部分との境界部に低圧部 分が生じ、 膨張波となって下流側に伝播する。 この粗密波の伝播速度は、 パイプ ラインを弾性係数が E = 4 G P aの硬質ゴム製とすると、 約 2 0 O m/ s e cと なる。 また、 低圧部分が生じることから、 水中に溶解していた気体が分離し、 と きには、 圧力が降下してその水温の飽和蒸気圧になって水が蒸発する、 水蒸気よ りなる空泡、 すなわち水柱分離が起こる。 この場合キヤビテーシヨン (空泡の潰 れ) も一部に起こる。すなわち空泡(キヤビティ)の発生と潰れが同時に起こる。 水柱分離状態の下流部のところでは、 水蒸気の発生とつぶれが同時に激しく起 こっている。 この水柱分離は、 排出管 1 0内の高濃度部分の直下の下流で順次連 続して起こるのであり、 この水柱分離の下流への伝播速度はほぼ 2 O m/ s e c となる。 この水柱分離の伝播は、 高圧部、 低圧部が交互に発生して伝播すること から、 あたかもロープの端を持ってロープ端を上下に振ることによりロープに口 ープの横波が伝わるように、 水平管部 1 4に、 ロープと同様に、 管の軸線方向と 交差する方向への波打ち現象を発生させる。 この波打ち現象による外部エネルギ 一は、 排出管 1 0 ひ°ィプライン) 内を、 流体を下流に運ぶエネルギーの一つと なる。 また、 このように水平管部 1 4が大きく波打つことによって、 管底に重力 沈降しょうとする固体を浮上させ、 これにより固体を遠方まで搬送する効果も生 じる。 As a result, the suction port 12 is suddenly blocked, while the water in the discharge pipe 10 still tries to flow due to the inertial force, so that a low pressure portion is generated at the boundary with the high concentration portion. However, it propagates downstream as an expansion wave. The propagation speed of this compressional wave is about 20 Om / sec if the pipeline is made of hard rubber with elastic modulus E = 4 GPa. In addition, since the low-pressure part is generated, the gas dissolved in the water is separated, and at that time, the pressure drops and the water vapor evaporates at the saturated vapor pressure of the water temperature. That is, water column separation occurs. In this case, some cavitation (crushing of air bubbles) also occurs. That is, the occurrence and collapse of voids (cavities) occur simultaneously. In the downstream part of the water column separation, the generation and collapse of water vapor occur simultaneously and violently. This separation of the water column occurs successively downstream immediately below the high-concentration portion in the discharge pipe 10, and the downstream propagation speed of the separation of the water column is approximately 2 Om / sec. In this water column separation, the high-pressure part and the low-pressure part are generated alternately and propagated.Thus, as if by holding the end of the rope and swinging the rope end up and down, the transverse wave of the mouth is transmitted to the rope. Similar to the rope, the horizontal pipe section 14 generates a waving phenomenon in a direction intersecting the axial direction of the pipe. The external energy due to this waving phenomenon becomes one of the energies for transporting the fluid downstream in the discharge pipe 10 (a pipeline). In addition, since the horizontal pipe portion 14 is largely wavy, the solid that is going to settle by gravity floats on the bottom of the pipe, thereby producing an effect of transporting the solid to a distant place.
この状態で、 内筒 (カップ状体 6 0内の鉛直管部 1 3の部位) 1. 0をカップ状 体 6 0に対して引き上げつつカップ状体 6 0内に圧縮空気または炭酸ガスを送り 込み、 次いで水蒸気を送り込む。 これにより、 また下流側が負圧になっているこ とと相俟って、 吸込口部 1 2内に食い込んでいた、 粘土が高い濃度で混合された 部分 (高濃度部分、 すなわちプラグ) が内筒 1 0内を急上昇する。 同時に、 カツ プ状体 6 0内のスラリー (場合によっては清水) が内筒 1 0内に入ると共に、 内 筒 1 0内に圧縮空気、次いで水蒸気が入る。これにより、ガスプラグが形成され、 密度差によるエアーリフト状態が作り出されるので、 粘性の高い粘土プラグであ つても、 鉛直管部 1 3内を簡単に上昇するのである。  In this state, compressed air or carbon dioxide gas is fed into the cup-shaped body 60 while pulling up the inner cylinder (the portion of the vertical pipe portion 13 in the cup-shaped body 60) 1.0 with respect to the cup-shaped body 60. And then steam. This, combined with the fact that the downstream side has a negative pressure, also causes a portion of the clay that has been entrapped in the suction port portion 12 to be mixed at a high concentration (a high concentration portion, ie, a plug). Ascends in cylinder 10. At the same time, the slurry (in some cases, fresh water) in the cup-shaped body 60 enters the inner cylinder 10, and compressed air and then steam enter the inner cylinder 10. As a result, a gas plug is formed, and an air lift state is created due to the difference in density, so that even a highly viscous clay plug easily rises in the vertical pipe portion 13.
鉛直管部 1 3を過ぎて水平管部 1 4に流入すると、 水蒸気が凝縮し、 周辺の密 度が大きくなるため、 エアーや炭酸ガスは圧縮され、 小粒となってスラリー中に 分散する。 このようにエアー等が小粒となって分散することによって、 エアー口 ック状態の発生も防止できる。 なお、 エアーロック状態とは、 水平管部 1 4に上 に凸の屈曲部が生じた場合、 この凸部にエアーが溜まると、 流動圧がエア一の膨 張、 収縮作用に吸収され、 流れなくなる状態をいう。  When flowing into the horizontal pipe section 14 after passing through the vertical pipe section 13, the water vapor is condensed and the surrounding density is increased, so that the air and carbon dioxide gas are compressed and dispersed as small particles in the slurry. By dispersing the air or the like as small particles in this manner, the occurrence of an air-open state can be prevented. The air-locked state means that when a convex part is formed on the horizontal pipe part 14 and air accumulates in this convex part, the flow pressure is absorbed by the expansion and contraction action of the air, and It refers to a state of disappearance.
上記エア一や炭酸ガスの小粒が、 次に膨張波が発生すると、 水の表面張力を破 壊する源となり、 簡単に水柱分離状態を作り出すのである。  The next generation of expansion waves from the air or carbon dioxide gas will be a source of breaking the surface tension of water, and easily create a water column separation state.
次いでカップ状体 6 0が引き上げられる (内筒 1 0が所要高さまで引き上げら れるとストツパ 6 7によってカップ状体 6 0も引き上げられる)。カップ状体 6 0 内が水蒸気と圧縮空気で満たされる状態となっているので、 浮力が働き、 カップ 状体 6 0は容易に引き上げられ、 初期の状態に戻る。 Next, the cup-shaped body 60 is raised (the inner cylinder 10 is raised to the required height). Then, the cup-shaped body 60 is also pulled up by the stopper 67.) Since the inside of the cup-shaped body 60 is filled with water vapor and compressed air, buoyancy acts, and the cup-shaped body 60 is easily pulled up and returns to the initial state.
カップ状体 6 0を引き上げた直後に水蒸気と圧縮空気の吹き込みを中断すると、 水蒸気が凝縮して 0 . 5気圧以下の低圧に急激になることから、 1 . 5気圧以上 の吸込口周囲の高圧の清水が急激に流れ込む。すなわち、弁の急開状態となって、 これにより、排出管 1 0内に圧力波が発生する。これが排出管 1 0内を伝播する。 圧力波が発生することによって、 ガスプラグは急激に圧縮されることとなり、 また、 ガスプラグ中の水蒸気が凝結して水に取り込まれることも相俟って、 流体 間に衝突が起こり、 ガスプラグはさらに圧縮され、 急激に圧力が高くなる。 この ときには、 体積の弾性変化を伴う水撃現象が生じると同時に、 プラグとガスブラ グおよび液体との間で、 相対速度差が秒速 1 0 O mにもなる物体間の非弾性衝突 状態が現出され、 排出管 1 0中に、 固 ·液 ·気の三相よりなる、 加速度の急変化 を有する連成振動子状の流れが生じ、 プラグの輸送が効率的になされる。  If the injection of water vapor and compressed air is interrupted immediately after lifting the cup-shaped body 60, the water vapor will condense and suddenly drop to a low pressure of 0.5 atm or less, so the high pressure around the suction port of 1.5 atm or more Of fresh water flows rapidly. That is, the valve is rapidly opened, thereby generating a pressure wave in the discharge pipe 10. This propagates through the discharge pipe 10. Due to the generation of the pressure wave, the gas plug is rapidly compressed, and the water vapor in the gas plug condenses and is taken into the water. Is further compressed and the pressure increases rapidly. At this time, a water hammer phenomenon accompanied by an elastic change in volume occurs, and at the same time, an inelastic collision state between the plug and the gas plug and the liquid appears with a relative velocity difference of 10 Om / sec. Then, a coupled oscillator-like flow having a rapid change in acceleration, which is formed of three phases of solid, liquid, and gas, is generated in the discharge pipe 10, and the plug is efficiently transported.
特に、 慣性流体中の物体に密度差があり、 衝突と表現されるような加速度の急 変 (急発進、 急停止) は物体間に圧力差を発生させ、 鉄塊のようなものの輸送ま で可能にするのである。  In particular, there is a density difference between the objects in the inertial fluid, and a sudden change in acceleration (sudden start, sudden stop), which can be described as a collision, generates a pressure difference between the objects, and the transport of objects such as iron blocks Make it possible.
なお、 水撃現象とはゥォ一ターハンマー現象のことを言い、 水であっても圧縮 され、 体積が小となることを無視できないような衝突現象を言う。  The water hammer phenomenon refers to the water hammer phenomenon, which refers to a collision phenomenon in which even water can be compressed and its volume reduced.
上記の吸込口部 1 2の落下、 上昇サイクルが繰り返されることによって、 排出 管 1 0内を流れる流体は、 粘土が高い濃度で混合しているプラグ部 (高濃度部) と、 低い濃度で混合している部分 (上記清水部分およびガスプラグ部分。 水蒸気 ガスプラグ部分は下流側にいくと外部の水により冷やされて消失し、 上流部を真 空吸引する。) とが交互に発生するプラグ流となる。  By repeating the cycle of dropping and rising of the suction port 12 described above, the fluid flowing through the discharge pipe 10 mixes with the plug (high concentration part) where clay is mixed at a high concentration and at a low concentration. (The fresh water part and the gas plug part described above. The steam gas plug part is cooled by external water and disappears as it goes downstream, and the upstream part is vacuum-sucked). It becomes.
また、上記のように、高濃度部と高濃度部との間の低濃度部に膨張波(真空波: 膨張する波) と圧力波 (粗密波) が交互に生じる状況となって、 流体は排出管 1 0内で激しく振動する振動流状態で流れ、 高い濃度の粘土が、 排出管 1 0の管壁 にほとんど接触することなく、 すなわち、 管路抵抗が低い状態で流れるので、 排 出管 1 0が長くても良好に粘土 (土砂) の運搬がなされる。 L (長さ) ZD (直 径) が、 1000〜1500くらいの長い管路であっても、 平均流速 1. 3m/ s e cで十分良好に高濃度の土砂の排出ができることが確認されたことからもわ かる。 因みに、 水頭差が 5. 0 mで、 Cv='7 vo l %、 p= 1. 1の粘土スラリ 一を L/D=l 00で流したとき、 スラリーの管内壁付着とスラリー自身の粘性 により管閉塞が起こり、 流速が 0となった。 In addition, as described above, the expansion wave (vacuum wave: expanding wave) and the pressure wave (compression wave) alternately occur in the low-concentration part between the high-concentration part and the high-concentration part. It flows in an oscillating flow state vibrating violently in the discharge pipe 10, and the clay of high concentration flows with little contact with the pipe wall of the discharge pipe 10, that is, flows with low pipe resistance. Even if 10 is long, clay (soil and sand) can be transported well. L (length) ZD (straight It can be seen from this figure that even with a long pipe line with a diameter of about 1000 to 1500, it is possible to discharge sufficiently high concentration of sediment at an average flow velocity of 1.3 m / sec. By the way, when a clay slurry with a head difference of 5.0 m, C v = '7 vol% and p = 1.1 was flowed at L / D = 100, the slurry adhered to the inner wall of the pipe and the slurry itself The tube was blocked due to the viscosity, and the flow velocity became zero.
なお、 流体が排出管 10内で激しく振動しつつ流れる状況は、 排出管 10の一 部を透明にして観察した結果、 各所の水柱分離長さが 50 cmにも達し、 その負 圧により数秒間の逆流現象が生じ、 次に上流部からの圧力回復により水柱分離が 消失し、 長さが O cmになるとき、 秒速 10 Omにも及ぶ急加速された流体が下 流部に衝突する。 このように管内を激しく振動しながら流下することが確認され た。  In addition, as for the situation where the fluid flows while vibrating violently in the discharge pipe 10, as a result of observing a part of the discharge pipe 10 and observing it, the water column separation length at each place reached 50 cm, and due to the negative pressure, the negative pressure caused several seconds. When the water column separation disappears due to the pressure recovery from the upstream part and the length becomes O cm, the rapidly accelerated fluid as high as 10 Om / sec collides with the downstream part. In this way, it was confirmed that the fluid flowed down while vibrating vigorously in the pipe.
図 9に管路損失と真体積濃度 (固相率) との相関図を示す。 λ はシステム全体 の抵抗係数を示す。 なお、 計算式上、 流動に関する係数が数十個になり、 解が発 散するため、実用上問題のない λにまとめた。図 9は、排出管に、直径 15 cm、 長さ 1 5 Omのものを用いて、水頭差 5. 0111、動水勾配 1 = 0. 033で、種々 の固相率の流体の'搬送 (浚渫) を行った結果を示すものである。  Figure 9 shows a correlation diagram between pipe loss and true volume concentration (solid fraction). λ indicates the resistance coefficient of the whole system. In addition, in the calculation formula, the coefficient related to the flow becomes several tens, and the solution diverges. Fig. 9 shows the use of a discharge pipe with a diameter of 15 cm and a length of 15 Om, with a head difference of 5.0111 and a hydraulic gradient of 1 = 0.033. Dredging).
流体がニュートン流体の場合には、 流速 3. 6m/s e cで支障なく流れる。 ビンガム流体の場合には、 本実施の形態のような操作 (鉛直管部 13の昇降操 作等) を行わない (図で脈動無し条件としている) と、 まもなく管閉塞が生じ、 流れなくなる。  When the fluid is a Newtonian fluid, it flows smoothly at a flow velocity of 3.6 m / sec. In the case of the Bingham fluid, if the operation as in the present embodiment (such as the operation of raising and lowering the vertical pipe portion 13) is not performed (it is assumed that there is no pulsation in the figure), the pipe will soon be blocked and will not flow.
本実施の形態の上記操作を行うことによって、 抵抗係数はそれ程増大せず、 ビ ンガム流体はもとより、 固相率が 30%程度の塑性流体であっても、 排出、 搬送 することができた。  By performing the above operation of the present embodiment, the resistance coefficient did not increase so much, and the plastic fluid having a solid fraction of about 30% as well as the Bingham fluid could be discharged and transported.
上記のように、 排出管 10内に間隔をおいて発生しているプラグ部間の低濃度 部に、 膨張波(液状あるいは気体状)、圧力波 (液状) が交互に発生して、 固 '液 · 気 (水柱分離を含む) の三相状態で流れることは、 あたかも、 長い下り坂を重力 で降下中の、 連結器 (低濃度部) で連結された多数車輛の貨車 (高濃度部) が機 関車により坂の途中で急発進、 急停車されるときの状況と似ており、 多数の連結 器の延び、 縮みの働きによって、 少ないエネルギーで、 発進あるいは停車できる のと同様に、 少ないエネルギー、 すなわち坂の勾配による重力の水平分力と小さ な慣性力のシナジー効果(相乗効果)で、高濃度、高粘性流体が排出管 1 0内を、 沈降、堆積することなく平均 1 . 3 m/ s e cの低速で排出口へ流れるのである。 管の摩耗量は、 流速の 2乗に比例する実測値から判断しても、 システム全体の 耐久性が数倍向上していることは明らかである。 As described above, an expansion wave (liquid or gaseous state) and a pressure wave (liquid state) are alternately generated in the low-concentration part between the plug parts generated at intervals in the discharge pipe 10, and the solid state is generated. Flowing in a three-phase state of liquid and gas (including water column separation) is as if traveling on a long downhill by gravity, with a number of vehicles connected by a coupler (low concentration part) (high concentration part). This is similar to a situation where a locomotive suddenly starts and stops halfway down a hill with an engine vehicle.With the extension and contraction of many couplers, the vehicle can start or stop with little energy As with the above, a high concentration, high viscosity fluid settles and accumulates in the discharge pipe 10 due to the synergy effect (synergistic effect) of the small energy, that is, the horizontal component force of gravity and the small inertia force due to the slope of the slope. It flows to the outlet at a low speed of 1.3 m / sec without an average. Judging from the measured value that is proportional to the square of the flow velocity, it is clear that the durability of the entire system has improved several times.
また、 上記のように、 水蒸気は凝結して水中に取り込まれる。 一方吹き込まれ た圧縮空気は、 一部は水中に溶解するが、 大部分は排出管 1 0の管壁と固体との 間の流体膜中に小粒子 (マイクロバルーン) となって分散し、 流体と共に排出さ れる。 このように空気が排出管 1 0の管壁に付着する流体膜中に分散することに よって、 ますます流体の管路抵抗を減じ、 流体が良好に排出される一因となる。 圧縮気体として炭酸ガスを用いると、 高圧のときは水に溶解し、 低圧のときは発 泡するので、 上記の連成振動子状態の流れをより作りやすくなる。  Also, as described above, water vapor condenses and is taken into the water. On the other hand, the blown compressed air partially dissolves in water, but mostly disperses as small particles (microballoons) in the fluid film between the tube wall of the discharge pipe 10 and the solid, and the fluid It is discharged together with. By dispersing the air in the fluid film adhering to the pipe wall of the discharge pipe 10 in this way, the pipe resistance of the fluid is further reduced, which contributes to the good discharge of the fluid. When carbon dioxide gas is used as the compressed gas, it dissolves in water at high pressures and foams at low pressures, making it easier to create the flow in the coupled oscillator state described above.
このようにして、 固相率が 3 0 %程度の高濃度ゥォッシュロードが圧密された 硬くて、 かつ非常に粘性の高い堆積物であっても良好に排出できる。  In this way, high-concentration posh roads having a solid fraction of about 30% can be satisfactorily discharged even from hardened and very viscous sediments.
なお、 圧縮気体供給部 7 4、 水蒸気供給部 7 3から、 圧縮気体および水蒸気を 供給あるいは遮断するのは図示しない電磁バルブによって行い、 この電磁バルブ の開閉のタイミングは、 上記吸込口部 1 2の昇降のタイミング、 すなわち、 クラ ンク機構等によって構成される前記昇降装置 3 8の駆動のタイミングに合わせて 行われるよう制御される。  The supply and cutoff of compressed gas and water vapor from the compressed gas supply section 74 and the water vapor supply section 73 are performed by an electromagnetic valve (not shown). The control is performed so as to be performed in accordance with the timing of lifting and lowering, that is, the timing of driving of the lifting and lowering device 38 constituted by a crank mechanism or the like.
また図示しないが、 排出管 1 0の内面にスパイラル状の突起を設け、 リブレツ トを形成することによって(溝部と突起が交互に螺旋状に連続する)、 ライフル銃 の玉が回転しながら発射されてより抵抗が少なくなるのと同様にして、 パイプラ イン内のプラグおよび流体が回転することによってブラグの抵抗がさらに減少し、 堆積物がよりスムーズに排出される。 また、 膨張波発生によって、 管断面が増減 するが、 この管断面増減が上記の回転を一層高める (スピン効果) ことになる (管 断面減少により、ブラグの回転速度が増し、流体膜間の剪断速度差が大きくなる)。 ところで、 上記のように、 流体中にキヤビテーシヨンや水撃現象が生じ、 排出 管 1 0に作用する破壊力が大きくなる。 これによる排出管 1 0の損傷を防止し、 システムの耐久性を高めるための機構の一例を図 7および図 8により説明する。 まず、 基本的には、 排出管 1 0に作用する破壊力を排出管 1 0自らによって吸 収できるように、 排出管 1 0には、 有機物質で弾性係数 Eが、 E = 4 G P a程度 のゴム等の弾力性の大きい材料のものを用いるとよい。 Although not shown, a spiral projection is provided on the inner surface of the discharge pipe 10 to form a rivet (the groove and the projection are alternately spirally continuous), so that the ball of the rifle gun is fired while rotating. In the same way that the drag is less, the rotation of the plug and fluid in the pipeline further reduces the resistance of the plug and drains more smoothly. In addition, the cross section of the pipe increases or decreases due to the generation of the expansion wave. This increase or decrease in the cross section of the pipe further enhances the rotation (spin effect). The speed difference increases). By the way, as described above, cavitation and water hammer occur in the fluid, and the destructive force acting on the discharge pipe 10 increases. An example of a mechanism for preventing damage to the discharge pipe 10 and improving the durability of the system will be described with reference to FIGS. 7 and 8. FIG. First, the discharge pipe 10 is basically made of an organic substance and has an elastic modulus E of about E = 4 GPa so that the destructive force acting on the discharge pipe 10 can be absorbed by the discharge pipe 10 itself. It is preferable to use a material having high elasticity such as rubber.
なお、 管径が 1 0 0 c m以上となる大径の排出管 1 0を使用する場合には、 鉄 板で補強した断面台形状のゴム板を鉄板側を外側にしてスパイラル状に巻いて接 合したフレキシブルなパイプ構造に形成したものを用いるとよい (図 1 0参照)。 図 7で、 8 0はフロートであり、 排出管 1 0の鉛直管部 1 3と水平管部 1 4と の間の屈曲部に位置して配置され、 排出管 1 0に浮力を付与している。 フロート 8 0は、 パイプ 8 1により、 台船 3 6上の前記圧縮空気供給部 7 4に接続され、 圧縮空気の給排がなされる。  When using a large-diameter discharge pipe 10 with a pipe diameter of 100 cm or more, a rubber plate with a trapezoidal cross section reinforced with an iron plate is spirally wound with the iron plate side facing out. It is recommended to use a flexible pipe structure that is combined (see Fig. 10). In FIG. 7, reference numeral 80 denotes a float, which is disposed at a bent portion between the vertical pipe portion 13 and the horizontal pipe portion 14 of the discharge pipe 10 and gives buoyancy to the discharge pipe 10. I have. The float 80 is connected to the compressed air supply unit 74 on the barge 36 by a pipe 81 to supply and discharge compressed air.
8 2は圧力吸収部であり、 排出管 1 0内と連通し、 排出管 1 0内の増圧、 減圧 を吸収し、 排出管 1 0に加わる上記破壊力を軽減するようになっている。 圧力吸 収部 8 2は、 排出管 1 0の水平管部 1 4の適宜箇所に設けられるものであり、 図 示の例では 3基連結されている。  Reference numeral 82 denotes a pressure absorbing section, which communicates with the inside of the discharge pipe 10 to absorb the pressure increase and pressure reduction in the discharge pipe 10 and reduce the above-described destructive force applied to the discharge pipe 10. The pressure absorbing section 82 is provided at an appropriate position of the horizontal pipe section 14 of the discharge pipe 10, and three pressure absorbing sections are connected in the illustrated example.
図 8は圧力吸収部 8 2の具体例を示す。  FIG. 8 shows a specific example of the pressure absorbing section 82.
この例では、 圧力吸収部 8 2は車のタイヤに類似した構造を用いている。  In this example, the pressure absorbing portion 82 has a structure similar to a car tire.
8 4はアルミニウム、 鉄等の金属からなる保持リングであり、 この保^^リング 8 4内を排出管 1 0が挿通している。 この保持リング 8 4は適宜手段により排出 管 1 0外周上に固定されている。 また保持リング 8 4は、 孔 8 5を通じて、 排出 管 1 0内と液密、 気密に連通している。  Reference numeral 84 denotes a retaining ring made of a metal such as aluminum or iron, and a discharge pipe 10 is inserted through the retaining ring 84. The holding ring 84 is fixed on the outer periphery of the discharge pipe 10 by appropriate means. The holding ring 84 communicates with the inside of the discharge pipe 10 in a liquid-tight and air-tight manner through a hole 85.
8 6は外チューブであり、 車のタイヤと同じように、 保持リング 8 4外周に嵌 め込まれて、 保持リング 8 4と共に、 密閉したチューブ空間を構成する。 8 7は 内チューブであり、 外チューブ 8 6内に配設されている。  Reference numeral 86 denotes an outer tube, which is fitted around the outer periphery of the retaining ring 84 in the same manner as a car tire, and forms an enclosed tube space together with the retaining ring 84. Reference numeral 87 denotes an inner tube, which is disposed inside the outer tube 86.
外チューブ 8 6内には、 保持リング 8 6に設けたバルブ 8 8、 連結ホース 8 9 を通じて圧縮空気および水蒸気が供給される。 3基の圧力吸収部 8 2の外チュー ブ 8 6間は連結ホース 8 9によって連通され、 最端部の圧力吸収部 8 2の外チュ —ブ 8 6内には、 図 6に示すのと同じ構造の二重パイプ 7 5を通じて圧縮空気お よび水蒸気が供給される。 二重パイプ 7 5は、 台船 9 0 (図 7 ) 上に設けられた 圧縮空気供給部 7 4および水蒸気供給部 7 3に接続パイプを介して接続される。 内チューブ 8 7には、 保持リング 8 4に設けたバルブ 9 1、 内チューブ 8 7に 設けたバルブ 9 2、 これらを連結するホース、 さらにはホース 9 3を介して圧縮 空気が供給される。 ホース 9 3は、 台船 9 0上に設けた圧縮空気供給部 9 5に接 続される。 また 3基の圧力吸収部 8 2の内チューブ 8 7間は、 連結ホース 9 6に よって連通されている。 Compressed air and steam are supplied into the outer tube 86 through a valve 88 and a connecting hose 89 provided on the holding ring 86. The outer tube 86 of the three pressure absorbing sections 82 is connected by a connecting hose 89, and the outer tube 86 of the pressure absorbing section 82 at the extreme end has the inside shown in FIG. Compressed air and steam are supplied through a double pipe 75 having the same structure. The double pipe 75 is connected to a compressed air supply section 74 and a steam supply section 73 provided on a barge 90 (FIG. 7) via a connection pipe. Compressed air is supplied to the inner tube 87 via a valve 91 provided on the retaining ring 84, a valve 92 provided on the inner tube 87, a hose connecting these, and a hose 93. The hose 93 is connected to a compressed air supply unit 95 provided on the barge 90. The connection hoses 96 communicate between the inner tubes 87 of the three pressure absorbing portions 82.
圧力吸収部 8 2は上記のように構成されている。  The pressure absorbing section 82 is configured as described above.
内チューブ 8 7内の圧力は、 外チューブ 8 6内空間の圧力と平衡状態となり、 外チューブ 8 7を潰れないように保持する役目をするが、 場合によっては内チュ —ブ 8 7は設けなくともよい。  The pressure in the inner tube 87 becomes equilibrium with the pressure in the inner space of the outer tube 86, and serves to hold the outer tube 87 so as not to be crushed.In some cases, the inner tube 87 is not provided. May be.
排出管 1 0内に膨張波が発生し、 圧力が低下した場合には、 外チューブ 8 6内 から孔 8 5を通じて圧縮空気および水蒸気が排出管 1 0内に流入し、 これにより 排出管 1 0の急な変形が防止される。 また、 排出管 1 0内を比較的大きな石 9 7 等が流れる場合には、 排出管 1 0内に供給される水蒸気が潰れて圧力低下するこ とにより、 石 9 7の流れ方向側に低圧の水柱分離部 9 8が形成されやすくなり、 前記固 ·液 ·気の三相よりなる連成振動子状の流れが生じるのを助長し、 プラグ や石等の輸送がさらに効率的になされる。  When an expansion wave is generated in the discharge pipe 10 and the pressure is reduced, the compressed air and steam flow from the outer tube 86 through the hole 85 into the discharge pipe 10, whereby the discharge pipe 10 Is prevented from being suddenly deformed. When relatively large stones 97 flow through the discharge pipe 10, the steam supplied into the discharge pipe 10 is crushed and the pressure drops, so that a low pressure is applied to the flow direction side of the stone 97. The water column separation part 98 is easily formed, which facilitates the generation of a coupled oscillator-like flow of the three phases of solid, liquid, and gas, and the transport of plugs, stones, etc. is made more efficient. .
排出管 1 0内に圧力波が発生し、 圧力が上昇した場合には、 外チューブ 8 6内 に水が流入し、 排出管 1 0内の圧力の突発的な上昇を吸収することから排出管 1 0の急激な変形を防止できる。  When a pressure wave is generated in the discharge pipe 10 and the pressure rises, water flows into the outer tube 86 and absorbs a sudden rise in the pressure in the discharge pipe 10, so the discharge pipe 10 can be prevented from sudden deformation.
このように、 圧力吸収部 8 2を設けることにより、 流体中にキヤビテ一シヨン や水撃現象が生じても、 圧力吸収部 8 2により圧力変化を吸収でき、 固体輸送に 必要な脈動状態を保つことができ、 かつ排出管 1 0の損傷を極力防止できる。 上記圧力吸収部 8 2は、 フロートの役目もするので、 水平管部 1 4の適所に適 宜間隔をおいて配設することで、 水平管部 1 4を動水勾配以下の所に容易に配置 できるようになる。  In this way, by providing the pressure absorbing section 82, even if cavitation or water hammer occurs in the fluid, the pressure change can be absorbed by the pressure absorbing section 82, and the pulsation state required for solid transportation is maintained. And the damage of the discharge pipe 10 can be prevented as much as possible. Since the pressure absorbing portion 82 also functions as a float, the horizontal absorbing portion 14 can be easily disposed at a position below the hydraulic gradient by arranging the horizontal absorbing portion 14 at an appropriate position at an appropriate interval. Can be placed.
なお、 圧力吸収部 8 2は上記構成には限定されない。 例えば、 単にフロート状 に形成し、 排出管 1 0内と孔もしくは適宜パイプを介して連通して、 排出管 1 0 内の圧力変化を吸収するようにしてもよい。  The pressure absorbing section 82 is not limited to the above configuration. For example, the pressure change in the discharge pipe 10 may be absorbed simply by forming it in a float shape and communicating with the inside of the discharge pipe 10 through a hole or an appropriate pipe.
ダム湖等における浚渫の場合、 大洪水時には、 ダム湖内にも 3 mZ s e c以上 の急激な水流が発生し、 排出管 1 0にも極めて大きな力が作用し、 排出管 1 0が 大きなダメージを受けるおそれがある。 In case of dredging in dam lake, etc., at the time of flood, more than 3 mZ sec in dam lake As a result, a very large force acts on the discharge pipe 10, and the discharge pipe 10 may be seriously damaged.
このような大洪水の場合には、 排出管 1 0全体を湖底に沈めるようにするとよ い。  In the case of such a flood, the entire discharge pipe 10 should be submerged at the bottom of the lake.
そのためには、 台船 3 6からの吊りのワイヤーなどを緩め、 また二重パイプ 7 5やパイプ 8 1、 9 3などを緩め、 さらには、 フロート 8 0や圧力吸収部 8 2内 の気体を排出して、 排出管 1 0を湖底に沈めるようにする。 湖底は水流の流速が 小さくなるため、 排出管 1 0へのダメージを小さくすることができる。  To do so, loosen the wires suspended from the barge 36, loosen the double pipes 75, the pipes 81, 93, etc., and further remove the gas in the float 80 and the pressure absorbing section 82. Discharge so that the discharge pipe 10 sinks to the bottom of the lake. Since the flow velocity of the water flow at the lake bottom is small, damage to the discharge pipe 10 can be reduced.
上記実施の形態では、 ダム湖に堆積した堆積物の浚渫を例に説明したが、 これ に限られるものではない。 池や湖沼等の貯水場所や海における浚渫にも吸入側と 排出側に水位差 (圧力差) を付けることにより当然利用できる。  In the above embodiment, the dredging of sediment deposited on the dam lake has been described as an example, but the present invention is not limited to this. Naturally, it can also be used for dredging in water storage areas such as ponds, lakes and marshes, and in the sea by providing a water level difference (pressure difference) between the suction side and the discharge side.
あるいは、 タン力一内の積み荷である例えば石炭や鉄鉱石をタン力一内から排 出する場合にも、 タン力一内に水を注入した後、 上記実施の形態と同様の構造で もって水流と共に石炭や鉄鉱石を外部に排出するなど、 貯水場所内に堆積した堆 積物を外部に搬送する、 堆積物の搬送機構にも応用しうるものである。  Alternatively, in the case of discharging cargo, such as coal and iron ore, in the tank, the water is injected into the tank, and then the water is discharged using the same structure as in the above embodiment. It can also be applied to sediment transport mechanisms, such as discharging coal and iron ore to the outside, and transporting the sediment deposited in the reservoir to the outside.
また、 p= 7 . 4の鉄塊を浚渫した事実より、 パイプライン内の急な圧力差に よる急な加速度の変化を与える上記の機構は、 深海の有用物質の採取やメタンハ ィドレ一ドの採取機構としても応用しうる。  In addition, based on the fact that iron blocks with p = 7.4 were dredged, the above mechanism that provided a sudden change in acceleration due to a sudden pressure difference in the pipeline was not enough to collect useful substances from the deep sea and to reduce methane hydride. It can also be applied as a sampling mechanism.
また、 固、 液、 気の連成振動子状流れが生じることから、 原油の長距離輸送に も好適である。  In addition, since a coupled oscillatory flow of solid, liquid, and gas occurs, it is suitable for long-distance transportation of crude oil.
特に、 パイプラインの吸込口での弁の急閉、 急開によるパイプライン内の急な 圧力の変化は心臓の脈動にも通じ、 吸込口での膨張波の発生機構は、 人工心臓の 血液中の赤血球や血小板の輸送に応用でき、 その際、 赤血球の変形能や血小板の 凝集能の活性化 (刺激) にも寄与する。  In particular, sudden changes in pressure in the pipeline due to sudden closing and sudden opening of valves at the suction port of the pipeline also lead to heart pulsation, and the mechanism of the generation of expansion waves at the suction port is due to It can be applied to the transport of red blood cells and platelets, and at that time it also contributes to the activation (stimulation) of red blood cell deformability and platelet aggregation.
以上本発明につき好適な実施例を挙げて種々説明したが、 本発明はこの実施例 に限定されるものではなく、 発明の精神を逸脱しない範囲内で多くの改変を施し 得るのはもちろんである。 発明の効果 本発明によれば、 上述したように、 搬送管内に間隔をおいて発生しているブラ グ部間の低濃度部に、 膨張波 (液状あるいは気体状に発生する低圧部:真空波)、 圧力波 (液状) が交互に発生して、 固 '液 '気 (水柱分離を含む) の三相よりな る連成振動子状の流れが生じ、 あたかも、 連結器 (低濃度部) で連結された貨車 (高濃度部) が機関車により急発進、 急停車されるときの状況と似ており、 パネ でできた連結器の延び、 縮みの働きによって、 少ないエネルギーで、 発進あるい は停車できるのと同様に、少ないエネルギー、すなわち小さな慣性力であっても、 重力 (水頭差;圧力差) との相乗効果で、 高濃度、 高粘土の流体が搬送管内を長 距離流れるという効果を奏する。 Although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to these embodiments, and it is needless to say that many modifications can be made without departing from the spirit of the invention. . The invention's effect According to the present invention, as described above, an expansion wave (a low-pressure part generated in a liquid or gaseous state: a vacuum wave), a pressure, is applied to a low-concentration part between the plug parts generated at intervals in the transfer pipe. Waves (liquid) are generated alternately, producing a three-phase coupled oscillatory flow of solid 'liquid' gas (including water column separation), as if connected by a coupler (low concentration part). It is similar to the situation when a freight car (high concentration part) is suddenly started and stopped by a locomotive, and it is possible to start or stop with little energy due to the extension and contraction of the coupler made of panel. As with, even with small energy, that is, a small inertial force, the synergistic effect with gravity (head difference; pressure difference) has the effect that the fluid of high concentration and high clay flows through the transport pipe for a long distance.

Claims

1 . 貯水場所における堆積物が堆積した水底面に対向して開口された吸込口部、 該吸込口部から鉛直方向へ延びる鉛直管部、 および該鉛直管部上部から横方向に ほぼ水平に延び、 貯水場所よりも低位にある放出部に向けて開口された水平管部 を有し、 該水平管部が前記貯水場所の水位よりも低い位置に設けられた孔部を液 密に貫通するように配置される一 】と共に、 貯水場所内の水中に動水勾配線よりも下 方となる位置に支持され、 さらに、 堆積物の搬送時、 昇降装置により、 前記吸込 口部が貯水場所の水底面に対して所要のサイクルで接離するように上下動される 1. A suction opening that is opened to face the bottom surface of the reservoir where the sediment is deposited, a vertical pipe that extends vertically from the suction opening, and extends substantially horizontally horizontally from an upper portion of the vertical pipe. A horizontal pipe portion opened toward the discharge portion located lower than the water storage location, and the horizontal pipe portion liquid-tightly penetrates a hole provided at a position lower than the water level of the water storage location. In addition, the suction port is supported by the lifting device when the sediment is conveyed. It is moved up and down so that it contacts and separates from the bottom surface in the required cycle
^の  ^
搬送管と、 A transport tube,
前記搬送管の吸込口部に設けられ、 該吸込口部が上下方向に移動可能に進入す 囲  The suction pipe is provided at a suction port of the transfer pipe, and the suction port movably enters in a vertical direction.
る、 下方に開放された形状をなすカップ状体と、 A cup-shaped body having a shape opened downward,
該カップ状体内に水蒸気を供給する水蒸気供給部と、  A steam supply unit for supplying steam to the cup-shaped body,
前記力ップ状体内に圧縮気体を供給する圧縮気体供給部とを具備することを特 徵とする堆積物搬送機構。  A sediment transport mechanism comprising: a compressed gas supply unit that supplies a compressed gas into the forceps body.
2 . 前記力ップ状体と共に前記吸込口部側が下降され、 吸込口部が水底面に食 い込んで該吸込口部が急閉塞されることによって、 前記搬送管内の流体の慣性力 により吸込口部側の圧力が低下して膨張波が発生し、 搬送管内の低濃度部に吸込 口部側より順次水柱分離が発生し、  2. The suction port side is lowered together with the force-up body, the suction port bites into the water bottom surface, and the suction port is rapidly closed, so that the suction in the transport pipe is caused by the inertial force of the fluid. The pressure at the mouth decreases and an expansion wave is generated, and water column separation occurs in the low-concentration part of the transfer pipe from the suction mouth side sequentially.
次いで前記カップ状体に対して吸込口部が上昇され、 吸込口に進入した高濃度 部がプラグとして吸引されると共に、 前記圧縮気体供給部から少量の圧縮気体が 前記力ップ状体内に供給され、 前記水蒸気供給部から圧縮気体よりも大量の水蒸 気が前記カップ状体内に供給されることによって、 水底の高濃度の堆積物、 カツ プ状体内の水、 圧縮気体および水蒸気が吸込口部内に流入して、 高濃度の堆積物 からなるブラグぉよびガスブラグが形成されて前記鉛直管部を上昇し、  Next, the suction port is raised with respect to the cup-shaped body, the high-concentration part that has entered the suction port is sucked as a plug, and a small amount of compressed gas is supplied from the compressed gas supply unit into the force-up body. When a larger amount of water vapor than the compressed gas is supplied from the water vapor supply section into the cup-shaped body, high-density sediment on the water bottom, water in the cup-shaped body, compressed gas, and water vapor are sucked into the suction port. And flows into the inside of the pipe to form a plug and a gas plug consisting of a high concentration of sediment, so as to ascend the vertical pipe,
次いで前記力ップ状体が上昇され、 前記圧縮気体および水蒸気の供給が停止さ れることによって、ガスブラグ部の水蒸気が凝縮し、ガスブラグの体積が減少し、 前記吸込口部が急開され、 これにより吸込口部内に清水が流入され、 吸込口部側 の圧力が上昇して圧力波が発生し水柱分離部を凝縮させるサイクルが繰り返され ることによって、 前記搬送管内に、 固 ·液 ·気よりなる連成振動子状流れを作り 出して堆積物を前記放出部に搬出することを特徴とする請求の範囲 1記載の堆積 物搬送機構。 Next, the power-up body is raised, and the supply of the compressed gas and the water vapor is stopped, so that the water vapor in the gas plug section condenses, the volume of the gas plug decreases, and the suction port section is rapidly opened. As a result, fresh water flows into the suction port, the pressure on the suction port side rises, a pressure wave is generated, and the cycle of condensing the water column separation section is repeated. 2. The sediment transport mechanism according to claim 1, wherein a coupled oscillator-like flow of solid, liquid, and gas is generated in the transport pipe to discharge the sediment to the discharge part. .
3 . 前記圧縮気体供給部が、 圧縮空気もしくは炭酸ガスを供給することを特徴 とする請求の範囲 1記載の堆積物搬送機構。  3. The deposit transport mechanism according to claim 1, wherein the compressed gas supply unit supplies compressed air or carbon dioxide gas.
4 . 前記圧縮気体供給部が、 圧縮空気もしくは炭酸ガスを供給することを特徴 とする請求の範囲 2記載の堆積物搬送機構。  4. The deposit transport mechanism according to claim 2, wherein the compressed gas supply unit supplies compressed air or carbon dioxide gas.
5 . 前記貯水場所に浮かべられる台船を有し、 該台船に、 前記搬送管を支持す る吊持装置と、 該搬送管を、 前記吸込口部が水底面に対して所要のサイクルで接 離するように上下動させる昇降装置と、 前記水蒸気供給部と、 前記圧縮気体供給 部が配置されていることを特徴とする請求の範囲 1記載の堆積物搬送機構。 5. There is a barge floating in the water storage area, and the barge is provided with a suspension device for supporting the transport pipe, and the transport pipe is connected to the water bottom at a required cycle with respect to the water bottom. 2. The deposit transport mechanism according to claim 1, further comprising an elevating device that moves up and down so as to come and go, the water vapor supply unit, and the compressed gas supply unit.
6 . 前記貯水場所に浮かべられる台船を有し、 該台船に、 前記搬送管を支持す る吊持装置と、 該搬送管を、 前記吸込口部が水底面に対して所要のサイクルで接 離するように上下動させる昇降装置と、 前記水蒸気供給部と、 前記圧縮気体供給 部が配置されていることを特徴とする請求の範囲 2記載の堆積物搬送機構。6. It has a barge floating in the water storage area, and the barge has a suspension device for supporting the transport pipe, and the transport pipe is connected to the water pipe at a required cycle with respect to the bottom of the water. 3. The deposit transport mechanism according to claim 2, wherein an elevating device that moves up and down so as to come and go, the steam supply unit, and the compressed gas supply unit are arranged.
7 . 前記貯水場所に浮かべられる台船を有し、 該台船に、 前記搬送管を支持す る吊持装置と、 該搬送管を、 前記吸込口部が水底面に対して所要のサイクルで接 離するように上下動させる昇降装置と、 前記水蒸気供給部と、 前記圧縮気体供給 部が配置されていることを特徴とする請求の範囲 3記載の堆積物搬送機構。7. It has a barge floating on the water storage area, and the barge has a suspension device for supporting the transport pipe, and the transport pipe is connected to the water base at a required cycle with respect to the water bottom. 4. The deposit transport mechanism according to claim 3, wherein an elevating device that moves up and down so as to come and go, the water vapor supply unit, and the compressed gas supply unit are arranged.
8 . 前記貯水場所に浮かべられる台船を有し、 該台船に、 前記搬送管を支持す る吊持装置と、 該搬送管を、 前記吸込口部が水底面に対して所要のサイクルで接 離するように上下動させる昇降装置と、 前記水蒸気供給部と、 前記圧縮気体供給 部が配置されていることを特徴とする請求の範囲 4記載の堆積物搬送機構。8. There is a barge floating in the water storage area, and the barge is provided with a suspension device for supporting the transport pipe, and the transport pipe is connected to the water base at a required cycle with respect to the water bottom. 5. The deposit transport mechanism according to claim 4, wherein an elevating device that moves up and down so as to come and go, the steam supply unit, and the compressed gas supply unit are arranged.
9 . 前記搬送管内と連通して設けられ、 搬送管内の圧力の増減を吸収する圧力 吸収部を設けたことを特徴とする請求の範囲 1記載の堆積物搬送機構。 9. The deposit transport mechanism according to claim 1, further comprising a pressure absorbing section provided in communication with the inside of the transport pipe to absorb an increase or decrease in pressure in the transport pipe.
1 0 . 前記搬送管内と連通して設けられ、 搬送管内の圧力の増減を吸収する圧 力吸収部を設けたことを特徴とする請求の範囲 2記載の堆積物搬送機構。  10. The deposit transport mechanism according to claim 2, further comprising a pressure absorbing section provided in communication with the inside of the transport pipe and configured to absorb an increase or decrease in pressure in the transport pipe.
1 1 . 前記搬送管内と連通して設けられ、 搬送管内の圧力の増減を吸収する圧 力吸収部を設けたことを特徴とする請求の範囲 5記載の堆積物搬送機構。 11. The sediment transfer mechanism according to claim 5, further comprising a pressure absorbing portion provided in communication with the inside of the transfer tube and configured to absorb an increase or decrease in pressure in the transfer tube.
1 2 . 貯水場所における堆積物が堆積した水底面に対向して開口された吸込口 部、 該吸込口部から鉛直方向へ延びる鉛直管部、 および該鉛直管部上部から横方 向にほぼ水平に延び、 貯水場所よりも低位にある放出部に向けて開口された水平 管部を有し、 該水平管部が前記貯水場所の水位よりも低い位置に設けられた孔部 を液密に貫通するように配置されると共に、 貯水場所内の水中に動水勾配線より も下方となる位置に支持され、 さらに、 堆積物の搬送時、 昇降装置により、 前記 吸込口部が貯水場所の水底面に対して所要のサイクルで接離するように上下動さ れる搬送管と、 前記搬送管の吸込口部に設けられ、 該吸込口部が上下方向に移動 可能に進入する、 下方に開放された形状をなすカップ状体と、 該カップ状体内に 水蒸気を供給する水蒸気供給部と、 前記力ップ状体内に圧縮気体を供給する圧縮 気体供給部とを具備する堆積物搬送機構を用い、 1 2. Suction port opened opposite to the water bottom where sediments are deposited in the water storage area, a vertical pipe section extending vertically from the suction port section, and almost horizontally horizontally from the top of the vertical pipe section And has a horizontal pipe part opened toward the discharge part located lower than the water storage place, and the horizontal pipe part penetrates a hole provided at a position lower than the water level of the water storage place in a liquid-tight manner. And is supported at a position below the hydrodynamic gradient line in the water in the water storage area. A transfer pipe which is moved up and down so as to come in contact with and separate from the transfer pipe in a required cycle; and A cup-shaped body having a shape, and water vapor in the cup-shaped body. Using a deposit transport mechanism including a steam supply unit for supplying, and a compressed gas supply unit for supplying a compressed gas into the forceps body,
前記カップ状体と共に前記吸込口部側を下降させ、 吸込口部を水底面に食い込 ませて該吸込口部を急閉塞することによって、 前記搬送管内の流体の慣性力によ り吸込口部側の圧力を低下させて膨張波を発生させ、 搬送管内の低濃度部に吸込 口部側より順次水柱分離を発生させ、  The suction port is lowered by lowering the suction port side together with the cup-shaped body, and the suction port is bitten into the water bottom surface to rapidly close the suction port. The pressure on the pressure side is reduced to generate an expansion wave, and water column separation is generated sequentially from the suction port side in the low concentration part in the transport pipe,
次いで前記カップ状体に対して吸込口部を上昇させ、 吸込口に進入した高濃度 部をプラグとして吸引させると共に、 前記圧縮気体供給部から少量の圧縮気体を 前記カップ状体内に供給し、 前記水蒸気供給部から圧縮気体よりも大量の水蒸気 を前記カップ状体内に供給することによって、 水底の高濃度の堆積物、 カップ状 体内の水、 圧縮気体および水蒸気を吸込口部内に流入させて、 高濃度の堆積物か らなるプラグおよびガスプラグを形成して前記鉛直管部を上昇させ、  Next, the suction port is raised with respect to the cup-shaped body, and the high-concentration part that has entered the suction port is sucked as a plug, and a small amount of compressed gas is supplied from the compressed gas supply unit into the cup-shaped body. By supplying a larger amount of steam than the compressed gas from the steam supply unit to the cup-shaped body, a high concentration of sediment at the bottom of the water, water in the cup-shaped body, compressed gas, and steam are caused to flow into the suction port, Forming a plug and a gas plug made of sediment of high concentration to raise the vertical pipe portion,
次いで前記力ップ状体を上昇させ、 前記圧縮気体および水蒸気の供給を停止す ることによって、 ガスプラグ部の水蒸気を凝縮させ、 ガスプラグの体積を減少さ せ、 前記吸込口部を急開し、 これにより吸込口部内に清水を流入させ、 吸込口部 側の圧力を上昇させて圧力波を発生させ水柱分離部を凝縮させるサイクルを繰り 返すことによって、 前記搬送管内に、 固 *液 '気よりなる連成振動子状流れを作 り出して堆積物を前記放出部に搬出することを特徴とする堆積物搬送方法。 Next, the power-up body is raised, and the supply of the compressed gas and the water vapor is stopped, thereby condensing the water vapor in the gas plug portion, reducing the volume of the gas plug, and rapidly opening the suction port. Thus, fresh water flows into the suction port, and the cycle of raising the pressure on the suction port side to generate a pressure wave and condensing the water column separation section is repeated, so that the solid * liquid A method for transporting sediments, characterized by generating a coupled oscillatory flow of air and discharging the sediments to the discharge section.
1 3 . 前記圧縮気体供給部から、 圧縮空気もしくは炭酸ガスを前記力ップ状体 内に供給することを特徴とする請求の範囲 1 2記載の堆積物搬送方法。 13. The deposit transport method according to claim 12, wherein compressed air or carbon dioxide gas is supplied from the compressed gas supply unit into the forceps body.
1 4 . 前記堆積物搬送機構が、 貯水場所に浮かべられる台船を有し、 該台船に、 前記搬送管を支持する吊持装置と、 該搬送管を、 前記吸込口部が水底面に対して 所要のサイクルで接離するように上下動させる昇降装置と、前記水蒸気供給部と、 前記圧縮気体供給部が配置されていることを特徴とする請求の範囲 1 3記載の堆 積物搬送方法。 14. The sediment transport mechanism has a barge floating on a water storage location, the barge has a suspension device supporting the transport pipe, and the transport pipe is provided with a suction port at a water bottom. 14. The deposit conveyance according to claim 13, wherein an elevating device that moves up and down so as to come and go in a required cycle, the steam supply unit, and the compressed gas supply unit are arranged. Method.
1 5 . 前記堆積物搬送機構が、 前記搬送管内と連通して設けられるとともに、 搬 送管内の圧力の増減を吸収する圧力吸収部を有することを特徴とする請求の範囲 1 3記載の堆積物搬送方法。  15. The deposit according to claim 13, wherein the deposit transport mechanism is provided in communication with the inside of the transport pipe, and has a pressure absorbing unit that absorbs an increase or a decrease in pressure in the transport pipe. Transport method.
1 6 . 前記堆積物搬送機構が、 前記搬送管内と連通して設けられるとともに、 搬 送管内の圧力の増減を吸収する圧力吸収部を有することを特徴とする請求の範囲 1 4記載の堆積物搬送方法。  16. The deposit according to claim 14, wherein the deposit transport mechanism is provided in communication with the inside of the transport pipe, and has a pressure absorption unit that absorbs an increase or decrease in pressure in the transport pipe. 16. Transport method.
PCT/JP2003/007517 2002-11-18 2003-06-12 Deposit conveying mechanism and deposit conveying method WO2004046466A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047010721A KR100574133B1 (en) 2002-11-18 2003-06-12 Deposit conveying mechanism and deposit conveying method
US10/500,979 US20050076545A1 (en) 2002-11-18 2003-06-12 Deposit conveying mechanism and deposit conveying method
AU2003242358A AU2003242358A1 (en) 2002-11-18 2003-06-12 Deposit conveying mechanism and deposit conveying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002334274A JP3694503B2 (en) 2002-11-18 2002-11-18 Deposit transport mechanism and deposit transport method
JP2002-334274 2002-11-18

Publications (1)

Publication Number Publication Date
WO2004046466A1 true WO2004046466A1 (en) 2004-06-03

Family

ID=32321723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007517 WO2004046466A1 (en) 2002-11-18 2003-06-12 Deposit conveying mechanism and deposit conveying method

Country Status (8)

Country Link
US (1) US20050076545A1 (en)
JP (1) JP3694503B2 (en)
KR (1) KR100574133B1 (en)
CN (1) CN1259487C (en)
AU (1) AU2003242358A1 (en)
TW (1) TW200413607A (en)
WO (1) WO2004046466A1 (en)
ZA (1) ZA200405168B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875461B2 (en) * 2006-11-06 2012-02-15 株式会社小島組 Dredge equipment
KR100702655B1 (en) * 2007-03-09 2007-04-09 이원규 I display earth and sand sludge dredging discharge chapter in the sewage box which possessed an oil pressure-type dual transportation screw
JP5614654B2 (en) * 2011-06-08 2014-10-29 清水建設株式会社 Drainage method for dam sedimentation
CN103484892A (en) * 2012-06-12 2014-01-01 贵阳铝镁设计研究院有限公司 Ladle aluminum suction mouth for three-layer-liquid refined aluminum tank
TW201831758A (en) * 2017-02-17 2018-09-01 黃國彰 Reservoir sectional decompression dredging apparatus including a connecting pipe, an upper extending pipe, a water blocking gate and a dredging control unit
FR3081893B1 (en) * 2018-06-02 2020-05-08 Kindh SEDIMENTARY TRANSIT DEVICE FOR HYDRAULIC WORK

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627427U (en) * 1985-06-26 1987-01-17
JPH01315514A (en) * 1988-01-22 1989-12-20 Senji Oigawa Dredging method for dam and device thereof
JPH05321293A (en) * 1992-05-21 1993-12-07 Kikuo Hashimoto Sludge exhausting device and dredging system using it
JPH11324008A (en) * 1998-05-18 1999-11-26 Jdc Corp Removing method for sediment in dam
WO2001042568A1 (en) * 1999-12-09 2001-06-14 Japan As Represented By Director General Of Agency Of Shinshu University System and method for discharging deposit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753303A (en) * 1970-11-10 1973-08-21 Klein Schanzlin & Becker Ag Apparatus for hydraulically raising ore and other materials
US4296970A (en) * 1980-02-15 1981-10-27 Hodges Everett L Hydraulic mining tool apparatus
US4807373A (en) * 1987-05-08 1989-02-28 Sloan Pump Company, Inc. Loop circuit dredging apparatus
US4854058A (en) * 1987-05-08 1989-08-08 Sloan Pump Company, Inc. Dredging apparatus having a diver-operated hand-held dredge head for quasi-closed loop system
US4839061A (en) * 1988-06-13 1989-06-13 Manchak Frank Method and apparatus for treatment of hazardous material spills
US5083386A (en) * 1989-06-06 1992-01-28 Albert H. Sloan Apparatus and method for forming a crater in material beneath a body of water
US5428908A (en) * 1993-03-09 1995-07-04 Kerfoot; William B. Apparatus and method for subsidence deepening
US5487228A (en) * 1994-03-16 1996-01-30 Brooklyn Union Gas Material transfer apparatus and method
US5598647A (en) * 1994-03-16 1997-02-04 Brooklyn Union Gas Material transfer apparatus and method
KR100448650B1 (en) * 2000-12-18 2004-09-13 이종경 A removal system of deposit in rivers used an inhaler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627427U (en) * 1985-06-26 1987-01-17
JPH01315514A (en) * 1988-01-22 1989-12-20 Senji Oigawa Dredging method for dam and device thereof
JPH05321293A (en) * 1992-05-21 1993-12-07 Kikuo Hashimoto Sludge exhausting device and dredging system using it
JPH11324008A (en) * 1998-05-18 1999-11-26 Jdc Corp Removing method for sediment in dam
WO2001042568A1 (en) * 1999-12-09 2001-06-14 Japan As Represented By Director General Of Agency Of Shinshu University System and method for discharging deposit

Also Published As

Publication number Publication date
KR100574133B1 (en) 2006-04-26
JP3694503B2 (en) 2005-09-14
KR20040101995A (en) 2004-12-03
AU2003242358A8 (en) 2004-06-15
ZA200405168B (en) 2006-05-31
JP2004169337A (en) 2004-06-17
US20050076545A1 (en) 2005-04-14
TW200413607A (en) 2004-08-01
CN1602379A (en) 2005-03-30
AU2003242358A1 (en) 2004-06-15
CN1259487C (en) 2006-06-14

Similar Documents

Publication Publication Date Title
CN103857922B (en) Bubble hoisting system and bubble lifting method
US6817120B2 (en) Deposit discharge system and method of discharging deposit
US3431879A (en) Method and apparatus for offshore anchoring
AU2012247461B2 (en) Device for extracting solid material on the bed of a body of water, and associated method
JP2004107931A (en) Construction method for preventing ground liquefaction due to earthquake, and facility used in the construction method
JPH0463970A (en) Energy obtaining method from compressed air obtained by submerging heavy and available material into deep water
US3967393A (en) Underwater solids collecting apparatus
WO1998020208A1 (en) Dredging method and dredging apparatus
JP3694503B2 (en) Deposit transport mechanism and deposit transport method
Clennell et al. Movement and accumulation of methane in marine sediments: Relation to gas hydrate systems
US20070227049A1 (en) System and method for dewatering an area
JP2007002437A (en) Transportation system of dredged sediment
RU2053366C1 (en) Method for mining of iron-manganese concretions from ocean bottom and device for its embodiment
AU649951B2 (en) Serpent sediment-sluicing system
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
Kerr A Self-Burying Anchor of Considerable Holdinq Power
CN216994781U (en) Flexible underwater oil storage bag device
RU2059048C1 (en) Facility for extraction of lake ooze
JP2006169880A (en) Suction recovery method for deposit on bottom section by using low-temperature air and low-temperature air-lift pump device
JPH0431513A (en) Dredging method of earth and device thereof
BRPI0509689B1 (en) process for mining sand or gravel from a sand or gravel deposit at the bottom of a body of water
JP2021036105A (en) Lift system of solid material or liquid material, lift method, resource recovery system and resource recovery method
US3924414A (en) Pile for use in offshore areas having a shifting layer of mud
Kessener Roman Water Transport: Problems in Operating Pressurized Pipeline Systems
NZ617710B2 (en) Device for extracting solid material on the bed of a body of water, and associated method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20038007150

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10500979

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047010721

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase