WO2004038773A1 - Extreme ultraviolet light exposure system and vacuum chamber - Google Patents

Extreme ultraviolet light exposure system and vacuum chamber Download PDF

Info

Publication number
WO2004038773A1
WO2004038773A1 PCT/JP2003/013515 JP0313515W WO2004038773A1 WO 2004038773 A1 WO2004038773 A1 WO 2004038773A1 JP 0313515 W JP0313515 W JP 0313515W WO 2004038773 A1 WO2004038773 A1 WO 2004038773A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
ultra
projection
illumination
short
Prior art date
Application number
PCT/JP2003/013515
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiko Murakami
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2004546452A priority Critical patent/JPWO2004038773A1/en
Priority to AU2003277515A priority patent/AU2003277515A1/en
Publication of WO2004038773A1 publication Critical patent/WO2004038773A1/en
Priority to US11/111,558 priority patent/US7417708B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the present invention relates to an ultra-short ultraviolet (EUV: light having a wavelength of 45 nm to 30 nm) exposure apparatus and a vacuum chamber provided with the exposure apparatus.
  • EUV ultra-short ultraviolet
  • a circuit pattern formed on a mask surface as an object surface is projected and transferred onto a substrate such as a wafer via an imaging optical system.
  • a resist is applied to the substrate, and the resist is exposed by exposing, and a resist pattern is obtained.
  • the resolution w of the exposure apparatus is mainly determined by the exposure wavelength and the numerical aperture NA of the imaging optical system, and is expressed by the following equation.
  • the exposure equipment used in semiconductor manufacturing mainly uses i-line with a wavelength of 365 nm, and has a numerical aperture of about 0.5 and a resolution of 0.5 zm. Since it is difficult to increase the numerical aperture in optical design, it is necessary to shorten the wavelength of the exposure light in order to further improve the resolution in the future.
  • An example of the exposure light having a wavelength shorter than the i-line is an excimer laser. The wavelength is 248 nm for a KrF excimer laser and 193 nm for an ArF excimer laser.
  • the Ki 'F excimer laser has a resolution of 0.25 ⁇ m and the Ar F excimer laser has a resolution of 0.18 / m.
  • the use of short ultra-short ultraviolet light (hereinafter sometimes referred to as “EUV light”) can provide, for example, a resolution of 0.1 m or less at a wavelength of 13 nm.
  • a conventional exposure apparatus mainly includes a light source, an illumination optical system, and a projection imaging optical system.
  • the projection imaging optical system is composed of a plurality of lenses or reflecting mirrors, and forms an image of a pattern on a mask on a wafer.
  • FIG. 5 is a schematic diagram of an ultra-short ultraviolet projection exposure apparatus. 1 indicates the point where EUV light is generated. Although the light source is not shown, various types of ultra-short ultraviolet (EUV) light sources such as a laser plasma light source and a discharge plasma light source can be used.
  • EUV ultra-short ultraviolet
  • the EUV light emitted from the EUV light generation point 1 is condensed by the condensing mirror 3 and guided to the mask 19 by the reflecting mirrors 4 to 12 for illumination. It is preferable to use an optical system that forms a secondary light source for the illumination optical system including the illumination reflection mirrors 4 to 12, and in this example, the fly-eye reflection mirror 5, 6 are located.
  • the EUV light reflected by the mask 19 is guided onto the wafer 20 by the reflection mirrors 13 to 18 for projection, and the image of the mask 19 is projected and formed on the wafer 20.
  • a multilayer optical film for example, a film in which Mo and Si are alternately laminated
  • the mask 19 is illuminated with ultra-short ultraviolet rays so as to have an annular visual field. Exposure of a desired area (for example, an area for one semiconductor chip) by synchronously moving the mask 19 and the wafer 20 at a speed corresponding to the reduction magnification (for example, 1/4) of the projection optical system I'm going to do it.
  • FIG. 4 shows the configuration of a conventional exposure apparatus using light.
  • the light emitted from the light source 101 passes through the illumination system 102 to illuminate the mask 103.
  • the light beam transmitted through the mask 103 forms an image of the pattern of the mask 103 on the wafer 105 by the projection system 104.
  • the illumination system 102 and the projection system 104 are each unitized, and a mask stage (not shown) on which the mask 103 is mounted is arranged between them.
  • a mask stage (not shown) on which the mask 103 is mounted is arranged between them.
  • each mirror must be arranged so that the light beam entering the mirror and the light beam reflected by the mirror do not overlap because of the reflection optical system.
  • the last mirror (closest to the first mask) 12 of the illumination system must be placed close to the projection system because the angle of incidence of the light beam on the mask 19 must be close to vertical. .
  • Each reflection mirror is positioned relative to each other by being mechanically held by a lens barrel (barrel unit).
  • a lens barrel barrel unit
  • mechanical interference occurs between the projection system lens barrel and the illumination system mirror 12.
  • the arrangement must be very limited.
  • optical performance had to be sacrificed to some extent. Disclosure of the invention
  • the present invention has been made in view of the above-described conventional problems, and has been made in consideration of an ultra-short ultraviolet exposure capable of optimally disposing an optical system from an illumination system to a projection system without causing mechanical interference. It is intended to provide an apparatus and a vacuum chamber.
  • a first invention for achieving the above object is a light source that emits ultra-short ultraviolet light, a plurality of illumination mirrors that guide the ultra-short ultraviolet light emitted from the light source to a mask, and an ultra-short ultraviolet light that is reflected by the mask
  • An ultra-short ultraviolet ray exposure apparatus comprising a projection system lens barrel to be housed.
  • the freedom of arrangement of the illumination reflecting mirror is increased, and The optical performance of the device can be improved.
  • a second invention for achieving the above object is the first invention, wherein the illumination reflection mirror housed in the projection system lens barrel is the mask most in the optical path between the light source and the mask. It is characterized by including a near reflecting mirror.
  • the mirror closest to the mask is likely to cause mechanical interference with the projection system barrel.
  • the mirror is housed in the projection system barrel to eliminate mechanical interference with the projection system barrel.
  • a third invention for achieving the above object is the second invention,
  • the reflecting mirror for illumination closest to the mask is characterized in that the end face on the mask side is shaped so as not to block the ultra-short ultraviolet rays reflected by the mask.
  • the reflecting mirror Due to the thickness of the mirror, if the reflecting mirror is moved closer to the projection system, it may block the light beam reflected from the mask. Therefore, by setting the shape of the illumination reflecting mirror closest to the mask to a shape that does not block the light beam, the degree of freedom of mirror arrangement can be increased.
  • a fourth invention for achieving the above object is the third invention, wherein the shape that does not block the extremely short ultraviolet rays is a wedge shape.
  • a fifth invention for achieving the above object is any one of the second invention to the fourth invention, wherein the reflecting mirror for illumination closest to the mask is configured such that a reflected light beam from the mask passes therethrough. This is characterized in that a portion other than the end surface is fixed by being held.
  • the term “other than the end face through which the reflected light beam from the mask passes” refers to either of the two side faces of the mirror and the end face opposite to the mask side, and the reflecting mirror for illumination includes, for example, three points. Fixed at.
  • the shape of the mirror is not limited to a rectangle, and various shapes such as a circle can be used.
  • the holding member may block the light beam. However, if the mirror is held at a part other than the end face on the mask side, the light beam does not have to be blocked.
  • a sixth invention for achieving the above object is any one of the first invention to the fifth invention, wherein all of the plurality of reflection mirrors for projection are arranged in the projection system barrel. It is characterized by the following.
  • the entire projection system can be treated as one unit. Therefore, this projection system lens barrel
  • the entire projection system can be handled as a unit, which facilitates assembly.
  • a cooling system and a positioning system for the reflecting mirror into the projection system unit, it is possible to measure the performance of the apparatus under the same apparatus conditions as during exposure.
  • a seventh invention for achieving the above object is any one of the first invention to the sixth invention, characterized by having at least a vacuum chamber for housing the projection system lens barrel. Things.
  • the projection system lens barrel be disposed in a vacuum chamber.
  • the vacuum chamber may surround the entire exposure apparatus, or a plurality of vacuum units may be provided so that various units constituting the exposure apparatus may be provided independently or several units may be provided. Is enclosed by a vacuum chamber (there may be a plurality).
  • An eighth invention for achieving the above object is any one of the first invention to the seventh invention, wherein the projection reflecting mirror adjusts a position and a posture of the projection system barrel. It is characterized by being arranged as possible.
  • the projection system barrel be capable of adjusting the position and posture (angle, rotation, etc.) of the reflecting mirror in order to satisfy the specifications required for the device. Therefore, it is important that the position and orientation of the reflection mirror be adjustable. In addition, it is also preferable to arrange the actuator to adjust the position and posture.
  • a ninth invention for achieving the above object is a true invention having an exposure apparatus inside.
  • a low temperature caused by adiabatic expansion causes local thermal shrinkage inside the lens barrel mechanism system, which results in deformation of the mirror and misalignment, which degrades the characteristics of the optical system.
  • FIG. 1 is a configuration diagram of an EUV exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of an EUV exposure apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing details of an illumination system mirror immediately before a mask in the EUV exposure apparatus according to the embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a conventional light exposure apparatus.
  • FIG. 5 is a layout diagram of an optical system of the EUV exposure apparatus.
  • FIG. 6 is a view showing a vacuum exhaust system of a vacuum chamber of the EUV exposure apparatus main body.
  • FIG. 1 is a schematic diagram showing a configuration of an extreme ultraviolet (EUV) exposure apparatus according to a first embodiment of the present invention.
  • EUV extreme ultraviolet
  • the mirrors 4, 5, and 6 constituting the illumination system are unitized by being mechanically held in one illumination system barrel unit 21 by holding means (not shown).
  • the lighting system mirror 7 is configured to be held alone.
  • the illumination system mirrors 8 to 11 are unitized by being mechanically held in a single illumination system barrel unit 22 by holding means (not shown). Instead of using a single unit for the illumination system, the illumination system units 21 and 22 and the mirror 7 that is held individually are used for positioning the mirrors for each unit. This is for facilitating the optical adjustment.
  • the relative positions of the illumination units 21 and 22 and the mirror 17 are determined by being mechanically held by an optical system holding frame (not shown).
  • the optics holding frame is fixed to the main frame of the device and attached to the floor via an anti-vibration device (Active Vibration Isolating System: AVIS).
  • the optical system holding frame is made hard to transmit vibrations of the floor and the vacuum exhaust system, so that the optical system holding frame is externally or vacuum exhausted to the vacuum chambers of the illumination system barrel units 21 and 22 and the like. Vibration is difficult to transmit from the system.
  • the projection system mirrors 13 to 18 are mechanically held by a projection system barrel (unit) 23 by holding means (not shown).
  • the lens barrel unit 23 The mirror 112, which is part of the lighting system, is also mechanically held.
  • the illumination mirror 12 is held in the projection lens unit 23 together with the projection mirrors 13 to 18, so that the illumination mirror 12 becomes the lens unit 2. No mechanical interference with 3. Therefore, the degree of freedom in the arrangement and shape of the illumination system mirrors 1 and 2 is increased.
  • the projection optical system, the illumination optical system, the mask, and the wafer are all arranged in one vacuum chamber 100, but the projection optical system, the illumination optical system, the mask, and the wafer Etc., each may have its own vacuum chamber.
  • the projection optical system, the illumination optical system, the mask, and the wafer Etc. each may have its own vacuum chamber.
  • Various arrangements conventionally used are possible, but at least it is preferable to arrange the projection system unit in a vacuum (reduced pressure) chamber to prevent attenuation of EUV light.
  • each mirror can be determined by, for example, USP 6,147,818 or the method disclosed in an unpublished US patent application (Application No. 10 / 603,732) as it is or by appropriately modifying the method of the present invention. It can be incorporated in the embodiment.
  • cooling method various methods conventionally used, such as a method using radiation from a mirror and a cooling method using a gas or a liquid, can be applied.
  • the projection system barrel unit 23 is mounted on the EUV exposure apparatus main body together with the illumination system mirror 7, the illumination system units 21 and 22, and the like. After that, the position and posture of each illumination unit are adjusted so that the illumination light is incident on a predetermined position of the mask 19 at a predetermined incident angle.
  • FIG. 2 is a schematic diagram showing a configuration of an EUV exposure apparatus according to a second embodiment of the present invention.
  • the basic configuration of the optical system is the same as the conventional one shown in FIG. Therefore, the same components as those shown in FIG. 5 are denoted by the same reference numerals, and description of the operation and the like is omitted.
  • the difference between the EUV exposure apparatus shown in FIG. 1 and the EUV exposure apparatus shown in FIG. 2 is that, in the apparatus shown in FIG. 1, the mirrors 8, 9, and 10 held by the illumination system unit 22 are used. , 11 are the points that are held in the projection system barrel unit 24 in FIG.
  • the rest of the configuration is the same as that shown in FIG.
  • the reflection mirror 12 which is a mirror of the illumination system is arranged in the projection system barrel unit 23.
  • the reflecting mirror 12 and the mirrors 8, 9, 10 and 11 that are the preceding mirrors are close to each other, these mirrors cause mechanical interference with the projection system barrel. there is a possibility.
  • these mirrors 8, 9, 10 and 11 are also arranged in the projection system barrel.
  • the projection optical system needs to measure various optical characteristics such as wavefront aberration.
  • the embodiment shown in FIG. 2 can respond to such a request. Note that, in this embodiment as well, the mirrors 8 to 12 do not affect the wavefront measurement for measuring the performance of the projection optical system, as in the embodiment shown in FIG. It is.
  • the embodiment shown in FIG. 1 is more preferable.
  • FIGS. 3A and 3B are views for explaining the details of the mirror 12 in the first and second embodiments of the present invention.
  • FIG. 3A is a perspective view, and FIG. is there.
  • the mirror 12 must be arranged so as not to block the light beam reflected by the mask 19.
  • the end face on the mask 19 side is formed in a wedge-shaped cross section as shown in the figure.
  • the holding mechanism of the mirror 12 blocks the light beam when the end face on the mask 19 side is held, so that it is necessary to hold the mirror at a portion other than the end face on the mask side.
  • both sides of the mirror 12 are held by the holding mechanism 26.
  • the holding mechanism 26 is arranged so as not to block the effective area 27 of the mirror 12.
  • the mirror 12 itself and the holding mechanism 26 protrude into the region 28 (the hatched portion in the figure) through which the light beam reflected by the mask passes. Therefore, they can be arranged so that they do not block the light flux.
  • the mirror 12 covers the effective area 27, various shapes such as a rectangle and a circle can be used. Although the effective area is circular in FIG. 3A, various shapes can be adopted depending on the shape of the illumination beam and the like.
  • the EUV exposure apparatus main body is housed in a vacuum chamber.
  • Figure 6 shows the configuration of the exhaust system.
  • the vacuum chamber 201 all the components shown in FIG. 1 are arranged. Of course, it is not always necessary to arrange everything in one vacuum chamber.For example, it is possible to arrange the light source section in another vacuum chamber, or to arrange the light source section and the illumination optical system in another vacuum chamber. It is.
  • a vacuum exhaust pump 204 is connected to the vacuum chamber 201 via a main valve 202.
  • a bypass valve 203 is provided in parallel with the main valve 202.
  • the bypass valve 203 is a valve whose flow rate can be adjusted and the exhaust speed can be adjusted.
  • a barrier pull orifice valve whose opening can be arbitrarily set remotely is used.
  • the vacuum chamber 201 is provided with a vacuum gauge 205. Monitoring of the degree of vacuum with the vacuum gauge 205, closing of the main valve 202 and the bypass valve 203, setting of the flow rate of the bypass valve 203, and monitoring of the operation state of the vacuum exhaust pump 204 are not shown. This is performed by the exhaust control device.
  • the relationship between the degree of vacuum and the exhaust speed can be arbitrarily set by the exhaust control device.
  • such a problem can be prevented by optimizing the relationship between the degree of vacuum and the pumping speed.
  • the optimization work does not need to be repeated once it has been decided, but only at the optimized exhaust speed.
  • the evacuation speed is determined by the capacity of the vacuum pump and the degree of vacuum at that time. Therefore, when no means for controlling the pumping speed is provided, the degree of vacuum changes, so that the pumping speed is initially high and then decreases as the vacuum level increases. In other words, in order to eliminate the above-mentioned problem, the capacity of the pump must be set so that the initial pumping speed is equal to or lower than the predetermined speed. However, the evacuation rate decreases as the degree of vacuum increases, so that the time required for the device to reach the required degree of vacuum increases.
  • the pumping speed that changes according to the degree of vacuum can be kept high within a range that does not cause the above-described problem, so that the pumping time can be relatively shortened.
  • dust is likely to soar, so it is possible to exhaust as slowly as possible, and if the pressure drops a little (to the extent that garbage does not soar), it is possible to exhaust quickly.
  • a low dew point is set from the cylinder 209 in order to prevent water molecules and the like from adsorbing to the inner wall of the chamber. Dry nitrogen is introduced.
  • the cylinder 209 is connected to the vacuum chamber 201 via a valve 208 and a bypass valve section 207 provided in parallel with the valve 209.
  • a flow rate control device 206 mass mouth controller
  • Opening / closing of the valve 208 and the bypass valve 207 and setting of the flow rate of the flow control device 206 are performed by an exhaust control device (not shown).
  • the leak rate is determined by controlling the flow rate of dry nitrogen introduced from the cylinder 209 into the chamber 201. Prevent garbage soaring In order to stop the leak, it is possible to reduce the total leak time without causing the above-mentioned problems by slowly leaking at first and then increasing the flow rate when the pressure rises to some extent.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An extreme ultraviolet light exposure system is characterized by comprising a light source for emitting an extreme ultraviolet light, a plurality of illumination reflective mirrors which guide the extreme ultraviolet light emitted from the light source to a mask, a plurality of projection reflective mirrors which guide the extreme ultraviolet light reflected by the mask to a sensitive substrate, thereby projecting and forming an image of the mask on the sensitive substrate, and a projection system lens-barrel for housing at least one of the projection reflective mirrors and at least one of the illumination reflective mirrors. With this structure, the optical system from the illumination system to the projection system can be optimally arranged without causing mechanical interference.

Description

明 細 書 極短紫外線露光装置及び真空チャンバ 技術分野  Description Ultra-short UV exposure equipment and vacuum chamber
本発明は極短紫外線 (EUV : 波長 45nm〜30nm の光) 露光装置及び 露光装置を備えた真空チャンバに関するものである。 背景技術  The present invention relates to an ultra-short ultraviolet (EUV: light having a wavelength of 45 nm to 30 nm) exposure apparatus and a vacuum chamber provided with the exposure apparatus. Background art
半導体製造用の露光装置においては、 物体面としてのマスク面上に形 成された回路パターンを、 結像光学系を介してウェハ等の基板上に投影 転写する。 基板にはレジス 卜が塗布されており、 露光することによって レジス トが感光し、 レジス トパターンが得られる。  In an exposure apparatus for manufacturing semiconductors, a circuit pattern formed on a mask surface as an object surface is projected and transferred onto a substrate such as a wafer via an imaging optical system. A resist is applied to the substrate, and the resist is exposed by exposing, and a resist pattern is obtained.
露光装置の解像度 wは、 主に露光波長えと結像光学系の開口数 N Aで 決まり、 次式で表される。  The resolution w of the exposure apparatus is mainly determined by the exposure wavelength and the numerical aperture NA of the imaging optical system, and is expressed by the following equation.
w = k Λ / Ν A k :定数 w = k Λ / Ν A k: constant
従って、 解像度を向上させるためには、 波長を短くするか、 開口数を 大きくすることが必要となる。 現在、 半導体の製造に用いられている露 光装置は主に波長 365 n mの i線を使用しており、 開口数約 0.5 で 0.5 z mの解像度が得られている。 開口数を大きくすることは、 光学設計上 困難であることから、 今後、 解像度を更に向上させるためには、 露光光 の短波長化が必要となる。 i線より短波長の露光光としては、 例えばェ キシマレーザーがあげられ、 その波長は Kr Fエキシマレーザ一で 248 n m、 Ar Fエキシマレ一ザ一で 193 n mであるため、 開口数を 0.5 とし た場合、 Ki' Fエキシマレ一ザ一では 0.25〃m、 Ar Fエキシマレ一ザ一 では 0.18 / mの解像度が得られる。 そして、 露光光としてさらに波長の 短い極短紫外線光 (以下、 「EUV光」 と称することがある。) を用いる と、 例えば波長 13nmで 0.1 m以下の解像度が得られる。 Therefore, in order to improve the resolution, it is necessary to shorten the wavelength or increase the numerical aperture. Currently, the exposure equipment used in semiconductor manufacturing mainly uses i-line with a wavelength of 365 nm, and has a numerical aperture of about 0.5 and a resolution of 0.5 zm. Since it is difficult to increase the numerical aperture in optical design, it is necessary to shorten the wavelength of the exposure light in order to further improve the resolution in the future. An example of the exposure light having a wavelength shorter than the i-line is an excimer laser.The wavelength is 248 nm for a KrF excimer laser and 193 nm for an ArF excimer laser. In this case, the Ki 'F excimer laser has a resolution of 0.25〃m and the Ar F excimer laser has a resolution of 0.18 / m. And, as the exposure light, The use of short ultra-short ultraviolet light (hereinafter sometimes referred to as “EUV light”) can provide, for example, a resolution of 0.1 m or less at a wavelength of 13 nm.
従来の露光装置は、 主に光源と照明光学系と投影結像光学系で構成さ れる。 投影結像光学系は複数のレンズあるいは反射鏡等で構成され、 マ スク上のパターンをウェハ上に結像するようになつている。  A conventional exposure apparatus mainly includes a light source, an illumination optical system, and a projection imaging optical system. The projection imaging optical system is composed of a plurality of lenses or reflecting mirrors, and forms an image of a pattern on a mask on a wafer.
一方、 より高い解像度を得るために、 EUV用の投影光学系を設計し ようとすると、 視野が小さくなつてしまい、 所望の領域を一括で露光で きなくなってしまう。 そこで、 露光の際に、 マスクとウェハを走査する ことにより、小さな視野の投影光学系で 20mm角以上の半導体チップを 露光する方法が採用されている。 このようにすることで、 極短紫外線投 影露光装置でも、 所望の露光領域を露光することができる。 例えば、 波 長 13n mの E UV光で露光する場合、投影光学系の露光視野を輪帯状に することで、 高い解像度を得ることができる。  On the other hand, if an attempt is made to design a projection optical system for EUV in order to obtain a higher resolution, the field of view becomes smaller, and it becomes impossible to expose a desired area at once. Therefore, a method of exposing a semiconductor chip of 20 mm square or more with a projection optical system having a small visual field by scanning a mask and a wafer at the time of exposure has been adopted. By doing so, a desired exposure area can be exposed even with an ultra-short ultraviolet ray projection exposure apparatus. For example, when exposing with EUV light having a wavelength of 13 nm, high resolution can be obtained by making the exposure visual field of the projection optical system annular.
極短紫外線投影露光装置の概略図を図 5に示す。 1は E U V光が発生 する点を示す。 光源は不図示であるが、 レーザープラズマ光源、 放電プ ラズマ光源等各種の極短紫外線 (EUV) 光源を用いることができる。 E UV光発生点 1から放射された E UV光は集光ミラー 3で集光され、 照明用反射ミラー 4 ~ 1 2によりマスク 1 9へ導かれる。 照明用反射ミ ラー 4〜 1 2を含む照明光学系には、 2次光源を形成する光学系を用い ることが好ましく、 このような 2次光源として、 本例ではフライアイ反 射ミラー 5、 6が配置されている。 マスク 1 9で反射した E U V光は投 影用反射ミラ一 13〜 1 8によりウェハ 20上に導かれ、 マスク 1 9の 像をウェハ 20上に投影結像させる。 各反射ミラー 4〜 1 8及びマスク 1 9には E UV光の反射率を高めるために多層光学膜 (例えば Moと Si を交互に積層させたもの) が形成されている。 マスク 1 9には輪帯状の 視野を有するように極短紫外線が照明される。 マスク 1 9 とウェハ 2 0を、 投影光学系の縮小倍率 (例えば 1 / 4 ) に応じた速度で同期して移動させることにより、 所望の領域 (例えば、 半導体チップ 1個分の領域) を露光するようになつている。 FIG. 5 is a schematic diagram of an ultra-short ultraviolet projection exposure apparatus. 1 indicates the point where EUV light is generated. Although the light source is not shown, various types of ultra-short ultraviolet (EUV) light sources such as a laser plasma light source and a discharge plasma light source can be used. The EUV light emitted from the EUV light generation point 1 is condensed by the condensing mirror 3 and guided to the mask 19 by the reflecting mirrors 4 to 12 for illumination. It is preferable to use an optical system that forms a secondary light source for the illumination optical system including the illumination reflection mirrors 4 to 12, and in this example, the fly-eye reflection mirror 5, 6 are located. The EUV light reflected by the mask 19 is guided onto the wafer 20 by the reflection mirrors 13 to 18 for projection, and the image of the mask 19 is projected and formed on the wafer 20. On each of the reflection mirrors 4 to 18 and the mask 19, a multilayer optical film (for example, a film in which Mo and Si are alternately laminated) is formed in order to increase the reflectance of EUV light. The mask 19 is illuminated with ultra-short ultraviolet rays so as to have an annular visual field. Exposure of a desired area (for example, an area for one semiconductor chip) by synchronously moving the mask 19 and the wafer 20 at a speed corresponding to the reduction magnification (for example, 1/4) of the projection optical system I'm going to do it.
このような、 極短紫外線投影光学系を初めとする極短紫外線光学系に おいては、 透明な硝材が得られないため、 E U V露光装置は全て反射光 学系 (多層膜による直入射および全反射による斜入射) で構成される。 従来の光を用いた露光装置は主として屈折光学系を使用していた。 図 4に従来の光を用いた露光装置の構成を示す。光源 1 0 1から出た光は、 照明系 1 0 2を通りマスク 1 0 3を照明する。 マスク 1 0 3を透過した 光束は投影系 1 0 4により、 マスク 1 0 3のパターンをウェハ 1 0 5上 に結像する。 照明系 1 0 2および投影系 1 0 4はそれそれュニッ ト化さ れ、 その間にマスク 1 0 3を搭載するマスクステージ (不図示) が配置 される。 屈折光学系を使用した光学系では、 光は常に前方へ進行するの で、 このように必要なュニッ トを順次配置することが容易であった。 これに対して、 図 5に示すような E U V露光装置では、 反射光学系で あるために、 ミラーへ入射する光束とミラーで反射した光束が重ならな いように各ミラーを配置しなければならない。特に、照明系の最後の(一 番マスクに近い) ミラー 1 2は、 マスク 1 9への光線の入射角を垂直に 近づける必要があるため、 投影系と近接した位置に配置しなければなら ない。  In such an ultra-short ultraviolet optical system such as an ultra-short ultraviolet projection optical system, since a transparent glass material cannot be obtained, all EUV exposure apparatuses use a reflection optical system (direct incidence by a multilayer film and total incidence). (Oblique incidence due to reflection). Conventional light exposure apparatuses mainly use a refractive optical system. FIG. 4 shows the configuration of a conventional exposure apparatus using light. The light emitted from the light source 101 passes through the illumination system 102 to illuminate the mask 103. The light beam transmitted through the mask 103 forms an image of the pattern of the mask 103 on the wafer 105 by the projection system 104. The illumination system 102 and the projection system 104 are each unitized, and a mask stage (not shown) on which the mask 103 is mounted is arranged between them. In an optical system using a refractive optical system, since light always travels forward, it was easy to sequentially arrange necessary units in this way. On the other hand, in an EUV exposure apparatus as shown in Fig. 5, each mirror must be arranged so that the light beam entering the mirror and the light beam reflected by the mirror do not overlap because of the reflection optical system. . In particular, the last mirror (closest to the first mask) 12 of the illumination system must be placed close to the projection system because the angle of incidence of the light beam on the mask 19 must be close to vertical. .
各反射ミラ一は鏡筒 (鏡筒ュニッ ト) に機械的に保持されることによ り相対的な位置決めが行われる。 しかしながら、 6枚の投影系ミラー 1 3 〜 1 8を鏡筒に保持させた場合、 この投影系用の鏡筒と照明系用のミ ラー 1 2 とが機械的干渉を起こす可能性があるため、配置が困難であり、 配置が可能である場合でも、 非常に限られた配置にせざるをえないとい う問題点があった。また、機械的干渉を避けるような配置を行った場合、 光学性能をある程度犠牲にしなければならないという問題があった。 発明の開示 Each reflection mirror is positioned relative to each other by being mechanically held by a lens barrel (barrel unit). However, when the six projection system mirrors 13 to 18 are held by the lens barrel, there is a possibility that mechanical interference occurs between the projection system lens barrel and the illumination system mirror 12. However, there is a problem that even if the arrangement is difficult and the arrangement is possible, the arrangement must be very limited. Also, if you arrange to avoid mechanical interference, There was a problem that optical performance had to be sacrificed to some extent. Disclosure of the invention
本発明は、 上記のような従来の問題点に鑑みてなされたものであり、 機械的干渉を生じることなく照明系から投影系までの光学系を最適に配 置することのできる極短紫外線露光装置及び真空チャンバを提供するこ とを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and has been made in consideration of an ultra-short ultraviolet exposure capable of optimally disposing an optical system from an illumination system to a projection system without causing mechanical interference. It is intended to provide an apparatus and a vacuum chamber.
前記目的を達成するための第 1の発明は、 極短紫外線を射出する光源 と、 前記光源から射出した極短紫外線をマスクへ導く複数の照明用反射 ミラーと、 前記マスクで反射する極短紫外線を感応基板上に導き、 マス クの像を感応基板上へ投影結像させる複数の投影用反射ミラーと、 前記 投影用反射ミラーの少なく とも一つと、 前記照明用反射ミラーの少なく とも一つを収納する投影系鏡筒とを有することを特徴とする極短紫外線 露光装置である。  A first invention for achieving the above object is a light source that emits ultra-short ultraviolet light, a plurality of illumination mirrors that guide the ultra-short ultraviolet light emitted from the light source to a mask, and an ultra-short ultraviolet light that is reflected by the mask A plurality of projection reflecting mirrors for projecting a mask image onto the sensing substrate to form an image of the mask on the sensing substrate; at least one of the projection reflecting mirrors; and at least one of the illumination reflecting mirrors. An ultra-short ultraviolet ray exposure apparatus comprising a projection system lens barrel to be housed.
本発明においては、 投影系鏡筒と機械的な干渉を生じる可能性のある 照明用反射ミラーを投影系鏡筒内に保持することにより、 照明用反射ミ ラーの配置自由性が高くなり、 露光装置の光学性能を高くすることが可 能となる。  In the present invention, by maintaining the illumination reflecting mirror, which may cause mechanical interference with the projection system barrel, in the projection system barrel, the freedom of arrangement of the illumination reflecting mirror is increased, and The optical performance of the device can be improved.
前記目的を達成するための第 2の発明は、 前記第 1の発明であって、 前記投影系鏡筒に収納される照明用反射ミラーが、 前記光源とマスクと の間の光路で最もマスクに近い反射ミラーを含むことを特徴とするもの である。  A second invention for achieving the above object is the first invention, wherein the illumination reflection mirror housed in the projection system lens barrel is the mask most in the optical path between the light source and the mask. It is characterized by including a near reflecting mirror.
マスクに最も近いミラーは投影系鏡筒と機械的な干渉を生じやすい。. このため、 本発明においては、 この対策として、 このミラ一を投影系鏡 筒内に収納するようにして、投影系鏡筒と機械的な干渉を無く している。 前記目的を達成するための第 3の発明は、 前記第 2の発明であって、 前記マスクに最も近い照明用反射ミラーは、 そのマスク側の端面が前記 マスクで反射する極短紫外線を遮らない形状とされていることを特徴と するものである。 The mirror closest to the mask is likely to cause mechanical interference with the projection system barrel. For this reason, in the present invention, as a countermeasure, the mirror is housed in the projection system barrel to eliminate mechanical interference with the projection system barrel. A third invention for achieving the above object is the second invention, The reflecting mirror for illumination closest to the mask is characterized in that the end face on the mask side is shaped so as not to block the ultra-short ultraviolet rays reflected by the mask.
ミラーが厚みを有するため、 反射ミラ一を投影系に近づけると、 マス クから反射する光束を遮る可能性がある。 従って、 マスクに最も近い照 明用反射ミラーの形状を、 光束を遮らない形状にすることにより、 ミラ —の配置自由度を高くすることができる。  Due to the thickness of the mirror, if the reflecting mirror is moved closer to the projection system, it may block the light beam reflected from the mask. Therefore, by setting the shape of the illumination reflecting mirror closest to the mask to a shape that does not block the light beam, the degree of freedom of mirror arrangement can be increased.
前記目的を達成するための第 4の発明は、 前記第 3の発明であって、 前記極短紫外線を遮らない形状が楔形であることを特徴とするものであ る。  A fourth invention for achieving the above object is the third invention, wherein the shape that does not block the extremely short ultraviolet rays is a wedge shape.
前記目的を達成するための第 5の発明は、 前記第 2の発明から第 4の 発明のいずれかであって、 前記マスクに最も近い照明用反射ミラーは、 ' 前記マスクからの反射光束が通過する端面以外の部分が保持されること により固定されていることを特徴とするものである。  A fifth invention for achieving the above object is any one of the second invention to the fourth invention, wherein the reflecting mirror for illumination closest to the mask is configured such that a reflected light beam from the mask passes therethrough. This is characterized in that a portion other than the end surface is fixed by being held.
マスクからの反射光束が通過する端面以外とはミラーの両側面及びマ スク側と反対側の端面のいずれかの部分のことであり、 照明用反射ミラ 一は、 これらの部分において、 例えば 3点で固定される。 尚、 ミラーの 形状は矩形に限らず、 円形等種々の形状のものを用いることが可能であ る。マスク側の端面を保持すると、保持部材が光束を遮る可能性がある。 しかし、 マスク側の端面以外の部分でミラ一を保持すれば、 光束を遮ら ないで済む。  The term “other than the end face through which the reflected light beam from the mask passes” refers to either of the two side faces of the mirror and the end face opposite to the mask side, and the reflecting mirror for illumination includes, for example, three points. Fixed at. The shape of the mirror is not limited to a rectangle, and various shapes such as a circle can be used. When the end face on the mask side is held, the holding member may block the light beam. However, if the mirror is held at a part other than the end face on the mask side, the light beam does not have to be blocked.
前記目的を達成するための第 6の発明は、 前記第 1の発明から第 5の 発明のいずれかであって、 前記投影系鏡筒に前記複数の投影用反射ミラ 一の全てが配置されることを特徴とするものである。  A sixth invention for achieving the above object is any one of the first invention to the fifth invention, wherein all of the plurality of reflection mirrors for projection are arranged in the projection system barrel. It is characterized by the following.
単一の投影系鏡筒に全てのミラーが配置されることにより、 投影系全 体を一つのユニッ トとして扱うことができる。 よって、 この投影系鏡筒 を、 例えば、 波面収差測定装置に配置して、 所望の性能を満足するよう に調整し、 その後、 露光装置に投影系ユニッ トを配置することが容易と なる。 また、 露光装置の組み立ての際にも投影系全体をユニッ トとして 扱うことができるため、 組み立てが容易になる。 さらに、 反射ミラーの 冷却システムや位置決めシステムを投影系ュニッ トに組み込んでおくこ とにより、 露光時と同じ装置条件で装置の性能を測定することも可能と なる。 By arranging all mirrors in a single projection system lens barrel, the entire projection system can be treated as one unit. Therefore, this projection system lens barrel For example, it is easy to arrange the projection system unit in the exposure apparatus by arranging the projection system unit in the wavefront aberration measurement apparatus so as to satisfy the desired performance. Also, when assembling the exposure apparatus, the entire projection system can be handled as a unit, which facilitates assembly. In addition, by incorporating a cooling system and a positioning system for the reflecting mirror into the projection system unit, it is possible to measure the performance of the apparatus under the same apparatus conditions as during exposure.
前記目的を達成するための第 7の発明は、 前記第 1の発明から第 6の 発明のいずれかであって、 少なく とも前記投影系鏡筒を収納する真空チ ヤンバを有することを特徴とするものである。  A seventh invention for achieving the above object is any one of the first invention to the sixth invention, characterized by having at least a vacuum chamber for housing the projection system lens barrel. Things.
極短紫外線は大気中ではその強度が大きく減衰するため、 少なく とも 投影系鏡筒は真空チャンバ内に配置されることが好ましい。 真空チャン バは、 露光装置全体を囲うものであっても構わないし、 露光装置を構成 する各種ュニッ トが独立あるいは数個ずつ入るように複数設けることも 可能であるが、 少なく とも投影系鏡筒を真空チャンバ (複数であること もあり得る) で囲うようにすることが好ましい。  Since the intensity of ultra-short ultraviolet rays is greatly attenuated in the atmosphere, it is preferable that at least the projection system lens barrel be disposed in a vacuum chamber. The vacuum chamber may surround the entire exposure apparatus, or a plurality of vacuum units may be provided so that various units constituting the exposure apparatus may be provided independently or several units may be provided. Is enclosed by a vacuum chamber (there may be a plurality).
前記目的を達成するための第 8の発明は、 前記第 1の発明から第 7の 発明のいずれかであって、前記投影用反射ミラーが、前記投影系鏡筒に、 その位置及び姿勢を調整可能に配置されていることを特徴とするもので ある。  An eighth invention for achieving the above object is any one of the first invention to the seventh invention, wherein the projection reflecting mirror adjusts a position and a posture of the projection system barrel. It is characterized by being arranged as possible.
投影系鏡筒は、 装置に要求される仕様を満たすために、 反射ミラーの 位置や姿勢(角度、 回転等) を調整可能とすることが好ましい。 よって、 反射ミラーの位置や姿勢が調整可能に配置されることは重要である。尚、 位置、 姿勢を調整するために、 ァクチユエ一夕を配置することも好まし い。  It is preferable that the projection system barrel be capable of adjusting the position and posture (angle, rotation, etc.) of the reflecting mirror in order to satisfy the specifications required for the device. Therefore, it is important that the position and orientation of the reflection mirror be adjustable. In addition, it is also preferable to arrange the actuator to adjust the position and posture.
前記目的を達成するための第 9の発明は、 内部に露光装置を備える真 空チャンバであって、 排気速度、 及びリーク速度の少なく とも一方が可 変とされていることを特徴とする真空チャンバである。 A ninth invention for achieving the above object is a true invention having an exposure apparatus inside. An empty chamber, wherein at least one of the pumping speed and the leak speed is variable.
真空チャンバの排気速度又はリーク速度が高すぎると、  If the evacuation rate or leak rate of the vacuum chamber is too high,
①ゴミが舞い上がって光学素子等に付着する (特にマスクに付着するゴ ミは致命的な影響を与える。)。  (1) Dust rises and adheres to optical elements, etc. (Especially, dust adhering to a mask has a fatal effect.)
②鏡筒機構内部に局所的な圧力差が生じ、 それにより ミラーの変形、 位 置ズレ等を生じて、 光学系の特性が劣化する。  (2) A local pressure difference is generated inside the lens barrel mechanism, which causes deformation of the mirror and misalignment of the mirror, deteriorating the characteristics of the optical system.
③断熱膨張による温度低卞により鏡筒機構系内部に局所的な熱収縮が生 じ、 それにより ミラーの変形、 位置ズレ等を生じて、 光学系の特性が劣 化する。  (3) A low temperature caused by adiabatic expansion causes local thermal shrinkage inside the lens barrel mechanism system, which results in deformation of the mirror and misalignment, which degrades the characteristics of the optical system.
などの問題を生じる恐れがある。 しかし、 排気速度、 リーク速度は真空 度に応じて変化してしまうため、 最高速度のみを最適化すると、 排気時 間或いはリーク時間が長くなつてしまう。 これに対して、 本発明におい ては、 排気速度及びリーク速度を真空度に応じて制御することができる ので、 排気時間、 リーク時間を短くすることができ、 装置のスループッ トを高めることができる。 図面の簡単な説明 There is a possibility that such a problem may occur. However, since the pumping speed and the leak speed change according to the degree of vacuum, optimizing only the maximum speed increases the pumping time or the leak time. On the other hand, in the present invention, since the exhaust speed and the leak speed can be controlled according to the degree of vacuum, the exhaust time and the leak time can be shortened, and the throughput of the device can be increased. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第一の実施の形態である EUV露光装置の構成図で ある。  FIG. 1 is a configuration diagram of an EUV exposure apparatus according to a first embodiment of the present invention.
図 2は、 本発明の第二の実施の形態である EUV露光装置の構成図で ある。  FIG. 2 is a configuration diagram of an EUV exposure apparatus according to a second embodiment of the present invention.
図 3は、 本発明の実施の形態である EUV露光装置におけるマスク直 前の照明系ミラーの詳細を示す図である。  FIG. 3 is a diagram showing details of an illumination system mirror immediately before a mask in the EUV exposure apparatus according to the embodiment of the present invention.
図 4は、 従来の光露光装置の構成図である。  FIG. 4 is a configuration diagram of a conventional light exposure apparatus.
図 5は、 EUV露光装置の光学系の配置図である。 図 6は、 EUV露光装置本体真空チャンバの真空排気系を示す図である < 発明を実施するための最良の形態 FIG. 5 is a layout diagram of an optical system of the EUV exposure apparatus. FIG. 6 is a view showing a vacuum exhaust system of a vacuum chamber of the EUV exposure apparatus main body.
以下、 本発明の実施の形態の例を、 図を用いて説明する。 図 1は本発 明の第一の実施の形態である極短紫外線 (EUV) 露光装置の構成を示す 概要図である。 本構成における光学系の基本構成は、 図 5に示したもの と同一である。 よって、 図 5に示された構成要素と同じ構成要素には、 同じ符号を付して、 その作用等の説明を省略する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of an extreme ultraviolet (EUV) exposure apparatus according to a first embodiment of the present invention. The basic configuration of the optical system in this configuration is the same as that shown in FIG. Therefore, the same components as those shown in FIG. 5 are denoted by the same reference numerals, and description of the operation and the like is omitted.
照明系を構成するミラー 4、 5、 6は、 一つの照明系鏡筒ユニッ ト 2 1内に、 不図示の保持手段により機械的に保持されることにより、 ュニ ッ ト化されている。照明系ミラ一 7は単体で保持する構造とされている。 照明系ミラー 8〜 1 1は、 一つの照明系鏡筒ュニッ ト 2 2内に不図示の 保持手段により機械的に保持されることにより、ュニッ ト化されている。 照明系鏡筒を一つのユニッ トとせずに、 照明系鏡筒ユニッ ト 2 1、 2 2及び単体保持のミラー 7としたのは各ュニッ ト毎にミラーの位置決め をしておくことにより、全体の光学調整を容易にするためである。なお、 照明系ュニッ ト 2 1 , 2 2及びミラ一 7は不図示の光学系保持フレーム に機械的に保持されることにより、 相対的な位置関係が決まる。 光学系 保持フ レームは装置のメイ ンフ レームに固定され除振装置 (Active Vibration Isolating System: AVIS) を介して床に取り付けられる。  The mirrors 4, 5, and 6 constituting the illumination system are unitized by being mechanically held in one illumination system barrel unit 21 by holding means (not shown). The lighting system mirror 7 is configured to be held alone. The illumination system mirrors 8 to 11 are unitized by being mechanically held in a single illumination system barrel unit 22 by holding means (not shown). Instead of using a single unit for the illumination system, the illumination system units 21 and 22 and the mirror 7 that is held individually are used for positioning the mirrors for each unit. This is for facilitating the optical adjustment. The relative positions of the illumination units 21 and 22 and the mirror 17 are determined by being mechanically held by an optical system holding frame (not shown). The optics holding frame is fixed to the main frame of the device and attached to the floor via an anti-vibration device (Active Vibration Isolating System: AVIS).
このような構成により、 光学系保持フレームは、 床や真空排気系の振 動が伝わりにくいようにされているため、 照明系鏡筒ユニッ ト 2 1、 2 2等の真空チャンバに、 外部又は真空排気系から振動が伝わりにく くな る。  With such a configuration, the optical system holding frame is made hard to transmit vibrations of the floor and the vacuum exhaust system, so that the optical system holding frame is externally or vacuum exhausted to the vacuum chambers of the illumination system barrel units 21 and 22 and the like. Vibration is difficult to transmit from the system.
投影系ミラー 1 3〜1 8は投影系鏡筒 (ュニッ ト) 2 3に不図示の保 持手段により機械的に保持されている。 更に、 鏡筒ユニッ ト 2 3には、 照明系の一部であるミラ一 1 2も機械的に保持されている。 このように 投影系鏡筒ュニッ ト 2 3内に、 投影系ミラー 1 3〜 1 8 と共に照明系ミ ラー 1 2を保持する構成としているので、 照明系ミラー 1 2が鏡筒ュニ ヅ ト 2 3と機械的な干渉を起こさない。 よって、 照明系ミラ一 1 2の配 置や形状の自由度が大きくなる。 The projection system mirrors 13 to 18 are mechanically held by a projection system barrel (unit) 23 by holding means (not shown). In addition, the lens barrel unit 23 The mirror 112, which is part of the lighting system, is also mechanically held. As described above, the illumination mirror 12 is held in the projection lens unit 23 together with the projection mirrors 13 to 18, so that the illumination mirror 12 becomes the lens unit 2. No mechanical interference with 3. Therefore, the degree of freedom in the arrangement and shape of the illumination system mirrors 1 and 2 is increased.
特に、 投影系鏡筒ュニッ ト 2 3の厚さを強度上の理由等から厚く しな ければならない場合には、 図 5に示す従来例では鏡筒に切り欠きを設け る等の措置をしなければ照明系ミラー 1 2を配置できなくなる可能性も ある。 しかしこれは、 通常、 円筒形状である鏡筒に、 切り欠きを設ける ことにより強度が低下して光学特性が不安定になる等の理由から好まし くない。 これに対して、 本構成では鏡筒ュニヅ ト 2 3内にミラー 1 2を 配置しているため、 このような問題が生じない。  In particular, when it is necessary to increase the thickness of the projection system unit tub 23 for reasons such as strength, in the conventional example shown in FIG. 5, measures such as providing a cutout in the tube are taken. Otherwise, there is a possibility that the illumination system mirror 12 cannot be arranged. However, this is not preferred because the provision of a notch in a cylindrical lens barrel reduces the strength and makes the optical characteristics unstable. On the other hand, in the present configuration, such a problem does not occur because the mirror 12 is disposed in the lens barrel unit 23.
図 1に示す装置においては、 投影光学系、 照明光学系、 マスク、 ゥェ 八の全てを一つの真空チャンバ 1 0 0内に配置しているが、投影光学系、 照明光学系、 マスク、 ウェハ等の各々にそれそれ独立の真空チャンバを 配置してもよい。 また、 従来から用いられている各種配置が可能である が、 少なく とも、 投影系鏡筒ュニッ トは真空 (減圧) チャンバ内に配置 し、 E U V光の減衰を防ぐことが好ましい。  In the apparatus shown in FIG. 1, the projection optical system, the illumination optical system, the mask, and the wafer are all arranged in one vacuum chamber 100, but the projection optical system, the illumination optical system, the mask, and the wafer Etc., each may have its own vacuum chamber. Various arrangements conventionally used are possible, but at least it is preferable to arrange the projection system unit in a vacuum (reduced pressure) chamber to prevent attenuation of EUV light.
なお、 各ミラ一の位置、 調整は、 例えば、 USP6, 147,818 や、 未公開 の米国特許出願(出願番号 10/603, 732)に開示された方法を、そのまま、 又は適宜変形して本発明の実施の形態に取り入れることができる。  The position and adjustment of each mirror can be determined by, for example, USP 6,147,818 or the method disclosed in an unpublished US patent application (Application No. 10 / 603,732) as it is or by appropriately modifying the method of the present invention. It can be incorporated in the embodiment.
冷却法については、 ミラ一からの輻射を利用する方法や、 ガス又は液 体を用いた冷却法等従来から用いられている各種の方法を適用可能であ る。  As the cooling method, various methods conventionally used, such as a method using radiation from a mirror and a cooling method using a gas or a liquid, can be applied.
投影系鏡筒ュニッ ト 2 3を露光装置に組み込む際には、組み込み前に、 投影系鏡筒ュニッ ト 2 3が所望の性能を満足しているかどうか確認する 必要がある。 例えば、 波面計測を行いながらミラー 1 3〜 1 8の位置、 姿勢の調整を行う。 このような波面計測時に、 ミラー 1 2は、 投影系鏡 筒ュニッ ト 2 3に取り付けてあっても測定に悪影響や不都合をもたらさ ないので、 組み立て調整に関しては従来と同じ手法により行うことがで きる。 投影系鏡筒ュニッ ト 2 3は、 調整終了後、 照明系ミラー 7、 照明 系ユニッ ト 2 1 , 2 2等とともに EUV露光装置本体に搭載される。 そ の後、 マスク 1 9の所定の位置に所定の入射角度で照明光が入射するよ うに各照明ュニッ トの位置 ·姿勢を調整する。 When incorporating the projection system unit 23 into the exposure system, confirm that the projection system unit 23 satisfies the desired performance before assembling. There is a need. For example, the position and orientation of the mirrors 13 to 18 are adjusted while measuring the wavefront. At the time of such wavefront measurement, the mirror 12 does not cause any adverse effect or inconvenience on the measurement even if it is attached to the projection system unit 23, so the assembly adjustment can be performed by the same method as before. . After the adjustment, the projection system barrel unit 23 is mounted on the EUV exposure apparatus main body together with the illumination system mirror 7, the illumination system units 21 and 22, and the like. After that, the position and posture of each illumination unit are adjusted so that the illumination light is incident on a predetermined position of the mask 19 at a predetermined incident angle.
図 2は本発明の第二の実施の形態である EUV露光装置の構成を示す 概要図である。 この実施の形態においても、 光学系の基本構成は図 5に 示した従来のものと同一である。 よって、 図 5に示された構成要素と同 じ構成要素には、 同じ符号を付して、 その作用等の説明を省略する。 図 1に示した EUV露光装置と図 2に示した EUV露光装置の異なる点は、 図 1に示したものにおいては照明系鏡筒ュニッ ト 2 2に保持されていた ミラー 8 , 9 , 1 0 , 1 1が、 図 2に示したものでは、 投影系鏡筒ュニ ッ ト 2 4内に保持されている点である。 その他の構成は図 1に示したも のと同じであるため、 説明を省略する。  FIG. 2 is a schematic diagram showing a configuration of an EUV exposure apparatus according to a second embodiment of the present invention. Also in this embodiment, the basic configuration of the optical system is the same as the conventional one shown in FIG. Therefore, the same components as those shown in FIG. 5 are denoted by the same reference numerals, and description of the operation and the like is omitted. The difference between the EUV exposure apparatus shown in FIG. 1 and the EUV exposure apparatus shown in FIG. 2 is that, in the apparatus shown in FIG. 1, the mirrors 8, 9, and 10 held by the illumination system unit 22 are used. , 11 are the points that are held in the projection system barrel unit 24 in FIG. The rest of the configuration is the same as that shown in FIG.
前述したように反射ミラー 1 2を投影系に近づける必要性があるため、 図 1に示した例では投影系鏡筒ュニッ ト 2 3内に照明系のミラーである 反射ミラー 1 2を配置した。 しかし、 反射ミラー 1 2 とその前段の反射 ミラーであるミラー 8 , 9, 1 0 , 1 1が近接している場合には、 これ らのミラーと投影系鏡筒とが機械的な干渉を起こす可能性がある。  As described above, since it is necessary to bring the reflection mirror 12 closer to the projection system, in the example shown in FIG. 1, the reflection mirror 12 which is a mirror of the illumination system is arranged in the projection system barrel unit 23. However, when the reflecting mirror 12 and the mirrors 8, 9, 10 and 11 that are the preceding mirrors are close to each other, these mirrors cause mechanical interference with the projection system barrel. there is a possibility.
従って、 このような場合には、 これらのミラー 8, 9 , 1 0 , 1 1 も 投影系鏡筒内に配置することが好ましい。 なお、 投影光学系は上述のよ うに、 波面収差等各種光学特性を測定する必要がある。 図 2に示した実 施の形態は、 このような要請に対応することができるものである。 尚、 本実施の形態においても、 投影光学系の性能を測定するための波 面計測等に、 ミラ一 8〜 1 2が影響を及ぼさないのは、 図 1に示した実 施の形態と同様である。 Therefore, in such a case, it is preferable that these mirrors 8, 9, 10 and 11 are also arranged in the projection system barrel. As described above, the projection optical system needs to measure various optical characteristics such as wavefront aberration. The embodiment shown in FIG. 2 can respond to such a request. Note that, in this embodiment as well, the mirrors 8 to 12 do not affect the wavefront measurement for measuring the performance of the projection optical system, as in the embodiment shown in FIG. It is.
一方、 投影系ュニッ 卜に照明系のミラーを配置しすぎると光学特性を 測定する装置に投影系ュニッ トを配置することが困難になる。 従って、 投影系鏡筒ュニッ トに配置される照明系ミラーの数はできる限り少なく して、 投影系ュニッ トを小さくすることが好ましい。 この点からは図 1 に示した実施の形態の方が好ましい。  On the other hand, if the mirror of the illumination system is arranged too much in the projection system unit, it will be difficult to arrange the projection system unit in a device for measuring optical characteristics. Therefore, it is preferable to reduce the number of illumination system mirrors arranged in the projection system barrel unit as much as possible to reduce the size of the projection system unit. From this point, the embodiment shown in FIG. 1 is more preferable.
図 3は、 本発明の第一および第二の実施の形態におけるミラー 1 2の 詳細を説明するための図であり、 ( a ) は斜視図、 (b ) は光束との関係 を示す図である。  FIGS. 3A and 3B are views for explaining the details of the mirror 12 in the first and second embodiments of the present invention. FIG. 3A is a perspective view, and FIG. is there.
ミラー 1 2はマスク 1 9で反射した光束を遮らないように配置しなけ ればならない。 そのために、 マスク 1 9側の端面を図のような楔形の断 面形状としている。  The mirror 12 must be arranged so as not to block the light beam reflected by the mask 19. For this purpose, the end face on the mask 19 side is formed in a wedge-shaped cross section as shown in the figure.
また、 ミラ一 1 2の保持機構は、 マスク 1 9側の端面を保持すると光 束を遮ることになるため、 マスク側端面以外の部分で保持させる必要が ある。 本実施の形態ではミラー 1 2の両側面を保持機構 2 6で保持する 構成としている。 保持機構 2 6は、 ミラ一 1 2の有効領域 2 7を遮らな いように配置されている。  In addition, the holding mechanism of the mirror 12 blocks the light beam when the end face on the mask 19 side is held, so that it is necessary to hold the mirror at a portion other than the end face on the mask side. In this embodiment, both sides of the mirror 12 are held by the holding mechanism 26. The holding mechanism 26 is arranged so as not to block the effective area 27 of the mirror 12.
その結果、 図 3 ( b ) に示すように、 マスクで反射した光束の通過す る領域 2 8 (図中ハヅチングの部分) には、 ミラ一 1 2 自体も、 その保 持機構 2 6 もはみ出すことがなく、 従って、 これらが光束を遮蔽しない ように配置することができる。 ミラー 1 2は、 有効領域 2 7をカバーす るものであれば、 その形状は矩形、 円形等色々な形状のものを用いるこ とが可能である。 尚、 図 3 ( a ) では有効領域を円形にしているが、 照 明ビームの形状等によつて色々な形状をとることができる。 EUV露光装置本体は真空チャンバ内に収納されている。その排気系の 構成を図 6に示す。 As a result, as shown in FIG. 3 (b), the mirror 12 itself and the holding mechanism 26 protrude into the region 28 (the hatched portion in the figure) through which the light beam reflected by the mask passes. Therefore, they can be arranged so that they do not block the light flux. As long as the mirror 12 covers the effective area 27, various shapes such as a rectangle and a circle can be used. Although the effective area is circular in FIG. 3A, various shapes can be adopted depending on the shape of the illumination beam and the like. The EUV exposure apparatus main body is housed in a vacuum chamber. Figure 6 shows the configuration of the exhaust system.
この真空チャンバ 2 0 1内には、 図 1に示す全ての構成要素が配置さ れる。 勿論、 全てを一つの真空チャンバ内に配置する必要は必ずしも無 く、 例えば、 光源部を別の真空チャンバに配置したり、 光源部と照明光 学系を別の真空チャンバに配置することも可能である。  In the vacuum chamber 201, all the components shown in FIG. 1 are arranged. Of course, it is not always necessary to arrange everything in one vacuum chamber.For example, it is possible to arrange the light source section in another vacuum chamber, or to arrange the light source section and the illumination optical system in another vacuum chamber. It is.
真空チヤンバ 2 0 1にはメインバルブ 2 0 2を介して真空排気ポンプ 2 0 4が接続されている。 メインバルブ 2 0 2 と並列にバイパスバルブ 2 0 3が設けられている。 このバイパスバルブ 2 0 3は、 流量可変で排 気速度を調整することのできるバルブであり、 ここでは開度をリモート で任意に設定できるバリアプルオリフィスバルブを用いている。 真空チ ヤンバ 2 0 1には真空計 2 0 5が設けられている。 真空計 2 0 5による 真空度の監視、メインバルブ 2 0 2およびバイパスバルブ 2 0 3の閧閉、 バイパスバルブ 2 0 3の流量設定、 真空排気ポンプ 2 0 4の運転状態の 監視は不図示の排気制御装置によって行われる。  A vacuum exhaust pump 204 is connected to the vacuum chamber 201 via a main valve 202. A bypass valve 203 is provided in parallel with the main valve 202. The bypass valve 203 is a valve whose flow rate can be adjusted and the exhaust speed can be adjusted. Here, a barrier pull orifice valve whose opening can be arbitrarily set remotely is used. The vacuum chamber 201 is provided with a vacuum gauge 205. Monitoring of the degree of vacuum with the vacuum gauge 205, closing of the main valve 202 and the bypass valve 203, setting of the flow rate of the bypass valve 203, and monitoring of the operation state of the vacuum exhaust pump 204 are not shown. This is performed by the exhaust control device.
真空チャンバ 2 0 1内を大気圧から真空状態にする際に、 排気制御装 置により、 真空度と排気速度の関係を任意に設定することができる。 急速に排気すると、  When the inside of the vacuum chamber 201 is changed from the atmospheric pressure to a vacuum state, the relationship between the degree of vacuum and the exhaust speed can be arbitrarily set by the exhaust control device. When exhausting rapidly,
①ゴミが舞い上がって光学素子等に付着する (特にマスクに付着するゴ ミは致命的な影響を与える。)。  (1) Dust rises and adheres to optical elements, etc. (Especially, dust adhering to a mask has a fatal effect.)
②鏡筒機構内部に局所的な圧力差が生じ、 それにより ミラーの変形、 位 置ズレ等を生じて、 光学系の特性が劣化する。  (2) A local pressure difference is generated inside the lens barrel mechanism, which causes deformation of the mirror and misalignment of the mirror, deteriorating the characteristics of the optical system.
③断熱膨張による温度低下により鏡筒機構系内部に局所的な熱収縮が生 じ、 それにより ミラ一の変形、 位置ズレ等を生じて、 光学系の特性が劣 化する。  (3) Due to the temperature drop due to adiabatic expansion, local heat shrinkage occurs inside the lens barrel mechanism system, which causes deformation of the mirror, misalignment, etc., and degrades the characteristics of the optical system.
などの問題を生じる恐れがある。 本実施の形態では、真空度と排気速度の関係を最適化することにより、 このような問題を防止することができる。 最適化作業は一度決めれば繰 り返す必要はなく、 最適化された排気速度で排気を行えばよい。 排気速 度は真空ポンプの容量とその時の真空度によって決まる。 従って、 排気 速度を制御するための手段を設けない場合には、 真空度が変化していく ので、 排気速度は、 最初が速く、 真空度が高くなるにつれ遅くなつてい く。 つまり、 上述の問題を無くすためには、 ポンプの容量を最初の排気 速度が所定速度以下となるようにしなければならない。 しかし、 真空度 が高くなるにつれ排気速度が遅くなるので、 これでは装置が要求される 真空度に達するまでの時間が長くなる。 There is a possibility that such a problem may occur. In the present embodiment, such a problem can be prevented by optimizing the relationship between the degree of vacuum and the pumping speed. The optimization work does not need to be repeated once it has been decided, but only at the optimized exhaust speed. The evacuation speed is determined by the capacity of the vacuum pump and the degree of vacuum at that time. Therefore, when no means for controlling the pumping speed is provided, the degree of vacuum changes, so that the pumping speed is initially high and then decreases as the vacuum level increases. In other words, in order to eliminate the above-mentioned problem, the capacity of the pump must be set so that the initial pumping speed is equal to or lower than the predetermined speed. However, the evacuation rate decreases as the degree of vacuum increases, so that the time required for the device to reach the required degree of vacuum increases.
これに対して本実施の形態では、 真空度に応じて変化する排気速度を 上述の問題が無い範囲で高く しつづけられるため、 排気時間を相対的に 短くすることが可能となる。 つまり、 大気化から排気開始した直後はゴ ミが舞い上がりやすいので極力ゆつく り と排気し、 少し圧力が下がれば (ゴミが舞い上がらない程度に) 早く排気することが可能となる。  On the other hand, in the present embodiment, the pumping speed that changes according to the degree of vacuum can be kept high within a range that does not cause the above-described problem, so that the pumping time can be relatively shortened. In other words, immediately after the start of evacuation from the atmosphere, dust is likely to soar, so it is possible to exhaust as slowly as possible, and if the pressure drops a little (to the extent that garbage does not soar), it is possible to exhaust quickly.
また、 真空チャンバ 2 0 1の内部を真空から大気圧に戻す (リークす る) 際には、 チャンバ内壁に水分子等が吸着するのを防く、ためにボンべ 2 0 9から露点の低い乾燥窒素を導入する。 ボンべ 2 0 9はバルブ 2 0 8および、 これと並列に設けられたバイパスバルブ部 2 0 7を介して真 空チヤンバ 2 0 1 と接続されている。バイパスバルブ 2 0 7の系統には、 流量制御装置 2 0 6 (マスフ口一コントローラ) が設けられている。 バルブ 2 0 8、 バイパスバルブ 2 0 7の開閉、 流量制御装置 2 0 6の 流量設定は不図示の排気制御装置によって行われる。  When the inside of the vacuum chamber 201 is returned from vacuum to atmospheric pressure (leakage), a low dew point is set from the cylinder 209 in order to prevent water molecules and the like from adsorbing to the inner wall of the chamber. Dry nitrogen is introduced. The cylinder 209 is connected to the vacuum chamber 201 via a valve 208 and a bypass valve section 207 provided in parallel with the valve 209. In the system of the bypass valve 207, a flow rate control device 206 (mass mouth controller) is provided. Opening / closing of the valve 208 and the bypass valve 207 and setting of the flow rate of the flow control device 206 are performed by an exhaust control device (not shown).
真空から急速に大気圧に戻すと、 やはり、 上述の①、 ②の問題が生じ る恐れがある。 リーク速度はボンべ 2 0 9からチャンバ 2 0 1へ導入す る乾燥窒素の流量を制御することにより決まる。 ゴミの舞い上がりを防 止するため、 最初はゆつく りとリークして、 ある程度圧力が高くなった ら流量を増やすことにより、 上述の問題を生じさせずに全体のリーク時 間を短縮することが可能となる。 If the pressure is quickly returned from the vacuum to the atmospheric pressure, the problems (1) and (2) may still occur. The leak rate is determined by controlling the flow rate of dry nitrogen introduced from the cylinder 209 into the chamber 201. Prevent garbage soaring In order to stop the leak, it is possible to reduce the total leak time without causing the above-mentioned problems by slowly leaking at first and then increasing the flow rate when the pressure rises to some extent.

Claims

請 求 の 範 囲 The scope of the claims
1 . 極短紫外線を射出する光源と、 前記光源から射出した極短紫外線を マスクへ導く複数の照明用反射ミラーと、 前記マスクで反射する極短紫 外線を感応基板上に導き、 マスクの像を感応基板上へ投影結像させる複 数の投影用反射ミラーと、 前記投影用反射ミラ一の少なく とも一つと、 前記照明用反射ミラーの少なく とも一つを収納する投影系鏡筒とを有す ることを特徴とする極短紫外線露光装置。 1. A light source that emits ultra-short ultraviolet light, a plurality of illumination reflecting mirrors that guide the ultra-short ultraviolet light emitted from the light source to the mask, and an ultra-short ultraviolet ray that is reflected by the mask is guided onto a sensitive substrate to form an image of the mask. A plurality of reflecting mirrors for projection for projecting an image on a sensitive substrate, at least one reflecting mirror for projection, and a projection system column housing at least one reflecting mirror for illumination. An ultra-short UV exposure apparatus characterized by the following:
2 . 前記投影系鏡筒に収納される照明用反射ミラーが、 前記光源とマス クとの間の光路で最もマスクに近い反射ミラーを含むことを特徴とする 請求の範囲第 1項に記載の極短紫外線露光装置。  2. The illumination reflection mirror housed in the projection system lens barrel includes a reflection mirror closest to a mask in an optical path between the light source and the mask. Ultra-short UV exposure equipment.
3 . 前記マスクに最も近い照明用反射ミラーは、 そのマスク側の端面が 前記マスクで反射する極短紫外線を遮らない形状とされていることを特 徴とする請求の範囲第 2項に記載の極短紫外線露光装置。  3. The illumination reflecting mirror closest to the mask, wherein the end surface on the mask side is shaped so as not to block the ultra-short ultraviolet light reflected by the mask. Ultra-short UV exposure equipment.
4 . 前記極短紫外線を遮らない形状が楔形であることを特徴とする請求 の範囲第 3項に記載の極短紫外線露光装置。  4. The ultra-short ultraviolet ray exposure apparatus according to claim 3, wherein the shape that does not block the ultra-short ultraviolet ray is a wedge shape.
5 . 前記マスクに最も近い照明用反射ミラーは、 前記マスクからの反射 光束が通過する端面以外の部分が保持されることにより固定されている ことを特徴とする請求の範囲第 2項に記載の極短紫外線露光装置。  5. The illumination reflection mirror closest to the mask is fixed by holding a portion other than an end face through which a reflected light beam from the mask passes. Ultra-short UV exposure equipment.
6 . 投影系鏡筒に前記複数の投影用反射ミラーの全てが配置されること を特徴とする請求の範囲第 1項に記載の極短紫外線露光装置。 6. The ultrashort ultraviolet exposure apparatus according to claim 1, wherein all of the plurality of projection reflecting mirrors are arranged in a projection system barrel.
7 . 少なく とも前記投影系鏡筒を収納する真空チャンバを有することを 特徴とする請求の範囲第 1項に記載の極短紫外線露光装置。  7. The ultra-short ultraviolet ray exposure apparatus according to claim 1, further comprising a vacuum chamber accommodating at least the projection system lens barrel.
8 . 前記投影用反射ミラーが、 前記投影系鏡筒に、 その位置及び姿勢を 調整可能に配置されていることを特徴とする請求の範囲第 1項に記載の 極短紫外線露光装置。 8. The ultra-short ultraviolet ray exposure apparatus according to claim 1, wherein the projection reflecting mirror is arranged in the projection system barrel so that its position and orientation can be adjusted.
9 . 内部に露光装置を備える真空チャンバであって、 排気速度、 及びリ ーク速度の少なく とも一方が可変とされていることを特徴とする真空チ ヤンバ。 9. A vacuum chamber having an exposure apparatus therein, wherein at least one of a pumping speed and a leak speed is variable.
PCT/JP2003/013515 2002-10-25 2003-10-23 Extreme ultraviolet light exposure system and vacuum chamber WO2004038773A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004546452A JPWO2004038773A1 (en) 2002-10-25 2003-10-23 Ultra-short UV exposure apparatus and vacuum chamber
AU2003277515A AU2003277515A1 (en) 2002-10-25 2003-10-23 Extreme ultraviolet light exposure system and vacuum chamber
US11/111,558 US7417708B2 (en) 2002-10-25 2005-04-20 Extreme ultraviolet exposure apparatus and vacuum chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002311741 2002-10-25
JP2002/311741 2002-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/111,558 Continuation-In-Part US7417708B2 (en) 2002-10-25 2005-04-20 Extreme ultraviolet exposure apparatus and vacuum chamber

Publications (1)

Publication Number Publication Date
WO2004038773A1 true WO2004038773A1 (en) 2004-05-06

Family

ID=32171096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013515 WO2004038773A1 (en) 2002-10-25 2003-10-23 Extreme ultraviolet light exposure system and vacuum chamber

Country Status (3)

Country Link
JP (1) JPWO2004038773A1 (en)
AU (1) AU2003277515A1 (en)
WO (1) WO2004038773A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054544A1 (en) * 2004-11-17 2006-05-26 Nikon Corporation Lighting apparatus, exposure apparatus and micro device manufacturing method
WO2006082738A1 (en) * 2005-02-03 2006-08-10 Nikon Corporation Optical integrator, illumination optical device, exposure device, and exposure method
CN100452295C (en) * 2004-09-22 2009-01-14 尼康股份有限公司 Lighting apparatus, exposure apparatus and maicrodevice manufacturing method
CN109143768A (en) * 2018-09-13 2019-01-04 杭州行开科技有限公司 A kind of naked eye 3D display system suitable for laser projection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120101A1 (en) * 1983-03-23 1984-10-03 ALFER aluminium-fertigbau GmbH Back square
EP0985976A2 (en) * 1998-09-08 2000-03-15 Nikon Corporation Illumination apparatus, projection exposure apparatus and projection exposure method
EP1039510A1 (en) * 1997-11-14 2000-09-27 Nikon Corporation Exposure apparatus and method of manufacturing the same, and exposure method
EP1061561A1 (en) * 1998-03-02 2000-12-20 Nikon Corporation Method and apparatus for exposure, method of manufacture of exposure tool, device, and method of manufacture of device
US6172825B1 (en) * 1998-09-22 2001-01-09 Nikon Corporation Catoptric reduction projection optical system and projection exposure apparatus and method using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120101A1 (en) * 1983-03-23 1984-10-03 ALFER aluminium-fertigbau GmbH Back square
EP1039510A1 (en) * 1997-11-14 2000-09-27 Nikon Corporation Exposure apparatus and method of manufacturing the same, and exposure method
EP1061561A1 (en) * 1998-03-02 2000-12-20 Nikon Corporation Method and apparatus for exposure, method of manufacture of exposure tool, device, and method of manufacture of device
EP0985976A2 (en) * 1998-09-08 2000-03-15 Nikon Corporation Illumination apparatus, projection exposure apparatus and projection exposure method
US6172825B1 (en) * 1998-09-22 2001-01-09 Nikon Corporation Catoptric reduction projection optical system and projection exposure apparatus and method using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452295C (en) * 2004-09-22 2009-01-14 尼康股份有限公司 Lighting apparatus, exposure apparatus and maicrodevice manufacturing method
WO2006054544A1 (en) * 2004-11-17 2006-05-26 Nikon Corporation Lighting apparatus, exposure apparatus and micro device manufacturing method
JPWO2006054544A1 (en) * 2004-11-17 2008-05-29 株式会社ニコン Illumination apparatus, exposure apparatus, and microdevice manufacturing method
US7446856B2 (en) 2004-11-17 2008-11-04 Nikon Corporation Illumination systems, exposure apparatus, and microdevice-manufacturing methods using same
JP4844398B2 (en) * 2004-11-17 2011-12-28 株式会社ニコン Illumination apparatus, exposure apparatus, and microdevice manufacturing method
KR101119576B1 (en) 2004-11-17 2012-03-16 가부시키가이샤 니콘 Lighting apparatus, exposure apparatus and micro device manufacturing method
WO2006082738A1 (en) * 2005-02-03 2006-08-10 Nikon Corporation Optical integrator, illumination optical device, exposure device, and exposure method
US7471456B2 (en) 2005-02-03 2008-12-30 Nikon Corporation Optical integrator, illumination optical device, exposure device, and exposure method
CN109143768A (en) * 2018-09-13 2019-01-04 杭州行开科技有限公司 A kind of naked eye 3D display system suitable for laser projection

Also Published As

Publication number Publication date
JPWO2004038773A1 (en) 2006-02-23
AU2003277515A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US7423724B2 (en) Exposure apparatus and device manufacturing method
JP5785419B2 (en) Method of cooling an optical element, lithographic apparatus, and method of manufacturing a device
KR101497595B1 (en) Lithographic apparatus and device manufacturing method
US7719661B2 (en) Illumination optical apparatus, exposure apparatus, and method for producing device
US7417708B2 (en) Extreme ultraviolet exposure apparatus and vacuum chamber
JP4378357B2 (en) Exposure apparatus, pressure control method thereof, and device manufacturing method
JP2005101537A (en) Lithography and method of manufacturing device using same
JP2004064076A (en) Deformable mirror structure,its control method and exposure device
JP2006135286A (en) Lithographic apparatus and device manufacturing method
US7050152B2 (en) Exposure apparatus
JP2005203754A (en) Lithography apparatus and device manufacturing method
US20090141257A1 (en) Illumination optical apparatus, exposure apparatus, and method for producing device
JP2005117048A (en) Lithography equipment and device manufacturing method
JP2005129898A (en) Aligner and device manufacturing method
JP2004303808A (en) Aligner, exposure method, and film structure
US20080299493A1 (en) Substrate processing apparatus and method of manufacturing device
US7170579B2 (en) Light source unit, exposure apparatus, and device manufacturing method
WO1999018604A1 (en) Projection exposure method and apparatus
JP2000133588A (en) Aligner, manufacture thereof and exposing method
WO2004038773A1 (en) Extreme ultraviolet light exposure system and vacuum chamber
US6798495B2 (en) Exposure apparatus, exposure method and device production method
WO2005024921A1 (en) Exposure apparatus and device producing method
WO2004051716A1 (en) Exposure system, exposure method, and device fabricating method
JPH11195583A (en) Aligner
JP4366098B2 (en) Projection exposure apparatus and method, and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004546452

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11111558

Country of ref document: US

122 Ep: pct application non-entry in european phase