WO2004036216A1 - Method of measuring interactions between sugar chains and sugar chain-binding protein and utilization thereof - Google Patents

Method of measuring interactions between sugar chains and sugar chain-binding protein and utilization thereof Download PDF

Info

Publication number
WO2004036216A1
WO2004036216A1 PCT/JP2003/013239 JP0313239W WO2004036216A1 WO 2004036216 A1 WO2004036216 A1 WO 2004036216A1 JP 0313239 W JP0313239 W JP 0313239W WO 2004036216 A1 WO2004036216 A1 WO 2004036216A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
sugar
chain
binding protein
lectin
Prior art date
Application number
PCT/JP2003/013239
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuaki Kakehi
Kazuki Nakajima
Mitsuhiro Kinoshita
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2004544967A priority Critical patent/JPWO2004036216A1/en
Publication of WO2004036216A1 publication Critical patent/WO2004036216A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to a method for measuring the interaction between a sugar chain and a ⁇ chain-binding protein, and a method for using the same.
  • the present invention relates to a clinical diagnosis such as a genetic disease or cancer diagnosis based on a sugar chain abnormality, and a sugar chain.
  • Method for measuring the overall action of sugar-chain-glycoprotein binding proteins that can be applied to the development of new drugs targeting glycan-binding proteins, and screening of sugar chains and glycolytic binding proteins using the same
  • the present invention relates to a method, a measuring reagent used in the measuring method, and a measuring kit. Background art
  • sugar chain-related enzymes which are expressed by being controlled by genes, such as glycosyltransferases and sugar hydrolases, involved in the biosynthesis of sugar chains. Therefore, delicate regulation of sugar chain functions, that is, measurement of delicate changes in the interaction between glycosides and glycan-binding proteins, cannot be elucidated only by studies at the gene level.
  • the sugar chains bound to glycoproteins consist of a mixture of a plurality of complex sugar chains.
  • the sugar chains bound to glycoproteins consist of a mixture of a plurality of complex sugar chains.
  • a glycosylation mixture is used as a library, and a disease or a genetic abnormality involving a carbohydrate-binding protein present in a living body. It is expected to be able to measure
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to reliably measure the interaction of a sugar chain-single-chain binding protein, and to use it for drug development such as development of a new drug.
  • a screening method suitably used in the test industry and the reagent industry such as industry and clinical tests, and a measurement reagent and a measurement kit suitably used in the pharmaceutical industry, the test industry and the reagent industry. It is in. Disclosure of the invention
  • the present inventors have proposed a sugar chain-tan for which a measurement method has not been established until now.
  • the method of measuring the interaction between proteins was studied diligently.
  • the interaction between glycans and glycans-binding proteins can be performed simultaneously, with high sensitivity and specificity.
  • a new measurement method that can be measured has been found.
  • the method for measuring the interaction between a sugar chain and a sugar chain-binding protein comprises the steps of separating a mixture of one or more sugar chains, It is characterized in that the interaction between a sugar chain and a sugar chain-binding protein is measured based on a comparison with a separation result of a reaction mixture obtained by reacting the protein with a chain-binding protein. -In the measurement method of the present invention, the reaction mixture obtained by reacting the sugar chain mixture with the sugar chain binding protein is separated.
  • the interaction between the sugar chain and the sugar chain-binding protein increases, and the sugar chain-to-sugar chain binding property increases.
  • the measurement method of the present invention utilizes such a difference in the separation results to measure the interaction between the ⁇ -glycan-binding protein. That is, the measurement method of the present invention can simultaneously measure the interaction between the sugar chain and the sugar chain-binding protein while separating the sugar chain and the bran-binding protein. As described above, the measurement method of the present invention measures the interaction by comparing the separation result of only the ⁇ chain with the separation result of the mixture obtained by reacting the sugar chain with the sugar chain-binding protein.
  • the interaction can be measured simultaneously even for a complex mixture of multiple sugar chains.
  • the interaction between each sugar chain in the sugar chain mixture and the sugar chain binding protein, or between the sugar chain binding protein and each sugar chain in the sugar chain mixture, the interaction between the sugar chain and the sugar chain-binding protein is highly sensitive. This allows quick and easy simultaneous measurement.
  • the measuring method of the present invention can be applied to, for example, the following screening method.
  • the method for screening a sugar chain of the present invention is a method for screening a sugar chain using the above-described measurement method of the present invention.
  • a glycosylation reaction step in which a protein is reacted with one or more kinds of sugar chain mixtures that are not known to bind to the sugar chain-binding protein ', a separation result of only the sugar chain mixture, and the sugar chain reaction
  • a sugar chain determination step of determining whether or not the sugar chain binding to the sugar chain binding protein is present in the sugar chain mixture based on a comparison with the separation result of the reaction mixture obtained in the step. It is a feature.
  • the method for screening a sugar chain-binding protein according to the present invention is a method for screening a sugar chain-binding protein using the above-described measurement method according to the present invention, wherein one or more types of sugars having a clear structure are included.
  • Chain mixture and specific sugar chain A sugar chain-binding protein reaction step in which one or more sugar chain-binding proteins are unknown to be recognized by the above, the separation result of only the sugar chain, and the sugar chain-binding protein reaction step
  • the separation result of only the ⁇ chain mixture is compared with the separation result of the reaction mixture after the completion of the sugar chain determination step or the sugar chain binding protein determination step. If there is a difference, the presence or absence of a sugar chain that binds to the sugar chain-binding protein present in the sugar chain mixture, and the specificity of the sugar chain present in a complex sugar chain-binding protein, for example, a biologically-derived protein mixture It is possible to determine the presence or absence of a sugar chain-binding protein that is specifically recognized. In this way, screening of sugar chains and screening of sugar chain-binding proteins can be performed.
  • the presence or absence of a sugar chain or a sugar chain binding protein is determined based on a difference in electrophoresis time by capillary electrophoresis. Good to do Good.
  • the accuracy and reliability of the screening method of the present invention can be further improved, and further, automatic measurement can be performed.
  • the sugar chains of the sugar chain mixture may be labeled.
  • sugar chains, sugar chain-binding proteins, and sugar chain-sugar chain-binding protein complexes can be more easily separated.
  • the method may include a step of removing the sialic acid residue.
  • the interaction between the ⁇ chain and the sugar chain-binding protein may be further strengthened.
  • sugar chains, sugar chain-binding proteins, and sugar chain-sugar chain-binding proteins can be more accurately separated. That is, the reliability of the determination in the sugar chain determination step and the sugar chain binding protein determination step is further improved.
  • the above-mentioned one or more kinds of sugar chain-binding proteins whose sugar chains specifically recognized or a mixture of one or more kinds of sugar chains whose structure is clear are added to a support. It may be fixed.
  • the one or more sugar chain-binding proteins whose sugar chains specifically recognized or the mixture of one or more sugar chains whose structure is apparent are, for example,
  • It may be a microchip, microarray, or macroarray fixed at high density to a substrate. This allows large-scale screening to be performed simultaneously. Further, if reagents and media used for separation, such as gel media for electrophoresis, are simultaneously fixed to the substrate, the time required for screening is further reduced.
  • reagents and media used for separation such as gel media for electrophoresis, are simultaneously fixed to the substrate, the time required for screening is further reduced.
  • novel sugar chains and novel sugar chain-binding proteins obtained by the above screening method are also included.
  • the sugar chain determination step and the sugar chain binding protein determination step are, in other words, a step of classifying a sugar chain or a sugar chain binding protein (a sugar chain classification step and a sugar chain binding protein classification step). It is. Therefore, the screening method of the present invention can be said to be a method for classifying, discriminating, selecting, confirming, or detecting a sugar chain or a sugar chain-binding protein.
  • the reagent for measuring the interaction between a sugar chain and a sugar chain-binding protein according to the present invention is a measuring reagent used in the above-described measuring method of the present invention, wherein one or more types of sugar chains specifically recognized are clearly identified. It is characterized by containing a sugar-binding protein or a mixture of one or more sugar chains whose structure is apparent.
  • the measuring reagent of the present invention similarly to the effect of the above-described measuring method, even in the case of a complex mixture of a plurality of sugar chains, the interaction of the sugar chain-single sugar chain binding protein can be simultaneously measured.
  • Possible measurement methods can be provided as measurement reagents.
  • the above-mentioned measuring method can be easily implemented, and the measuring method can be simplified. Therefore, measurement time can be reduced.
  • the measurement kit of the present invention is characterized by containing the reagent for measuring the interaction between the sugar chain and the sugar chain-binding protein of the present invention.
  • a measurement method that can simultaneously measure the interaction between a sugar chain and a sugar chain-binding protein can be provided as a measurement kit. Furthermore, the above-mentioned measuring method can be easily implemented, and the measuring method can be simplified. Therefore, measurement time can be reduced.
  • the “sugar chain-binding protein” can be arbitrarily and variously selected from, for example, 100 or more known sugar chain-binding proteins. It is preferable to use the six lectins used in Examples described later. That is, Tachinata bean lectin (ConA: Concanavalin A), wheat germ lectin: wheat germ agglutinin, tulip lectin (TGA: T.
  • gesneriana agglutinin RSL: Rizopus stronipher lectin
  • RSL Rizopus stronipher lectin
  • nicotine collectin SSA: Samb.ucus sieboldiana lectin
  • nuenshi lecten MAM: Maackia anraurensis lectin
  • lectin set Among these naturally occurring lectins, remarkable differences in electrophoresis results are observed due to specific binding to sugar chains. For this reason, the lectin set is particularly suitable for comprehensively analyzing most sugar chains contained in various organisms.
  • the six sugar chain binding proteins used in the examples were used. It is preferred to use at least one. Further, in order to further improve the determination accuracy in the sugar chain determination step, it is preferable to analyze a plurality of combinations of the separation results obtained by the above six sugar chain binding proteins. As a result, the accuracy of sugar chain determination is remarkably improved, A chain detection rate of 95% or more can be secured.
  • the “sugar chain mixture” can be arbitrarily and widely selected from more than 1000 kinds of known ⁇ chains. It is preferable to use a five-sugar-chain mixture library derived from a glycoprotein, which is used in Examples described later. Specifically, ⁇ 1 acidic glycoprotein (AGP: a 1-acid glycoprotein), fetuin, 'vomucoid, ovomucoid), immunoglobulin G (IgG), and thyroglobulin It is preferred to use a mixture of sugar chains derived from,.
  • the above-mentioned sugar chain library shows a remarkable difference in the electrophoresis results by specifically binding to the sugar chain-binding protein among many sugar chains. Therefore, the above-mentioned sugar chain library is particularly suitable for the analysis of naturally occurring sugar chain binding proteins.
  • the glycolytic mixture derived from glycoprotein can be easily obtained by, for example, appropriate enzyme treatment.
  • sugar chain mixture library By using the above-mentioned sugar chain mixture library and the sugar chain binding protein, not only the presence or absence of sugar chain and bran chain binding protein but also the structures of sugar chains and sugar chain binding proteins whose structures are unknown are known. Clarification and classification are also possible. Moreover, naturally occurring sugar chains or sugar chain binding proteins The quality can be easily analyzed with high throughput.
  • FIGS. 1 (a) to 1 (c) show the results of electrophoresis of glycans derived from a1 acidic glycoprotein with and without lectin addition in Example 1.
  • FIG. 1 shows the results of electrophoresis without the addition of lectin.
  • FIG. 1 (b) is a schematic diagram of a sugar chain derived from an acidic glycoprotein
  • FIG. 1 (c) is a diagram showing three types of lectins
  • FIG. 4 is a diagram showing the results of electrophoresis when WGA, ConA, and TGA) were added.
  • FIG. 2 is a diagram showing a structure of a sugar chain derived from ⁇ 1 acidic glycoprotein used in Example 1.
  • FIGS. 3 (a) to 3 (c) show the results of electrophoresis of fetuin-derived sugar chains with and without lectin addition in Example 2, and FIG. Fig. 3 (b) is a schematic diagram of a sugar chain derived from fetuin, and Fig. 3 (c) is a diagram showing the results of electrophoresis when no lectin was used.
  • FIG. 4 shows the results of electrophoresis when TGA) was added.
  • FIG. 4 is a diagram showing a structure of a sugar chain derived from fetuin used in Example 2.
  • FIGS. 5 (a) to 5 (c) show the results of electrophoresis of ovomucoid-derived heavy chain in Example 3 with and without the addition of lectin.
  • FIG. 5 (a) is a diagram showing the results of electrophoresis when no lectin was added
  • FIG. 5 (b) is a schematic diagram of ovomucoide-derived sugar chains
  • FIG. 5 (c) is a diagram showing three types of lectins
  • FIG. 4 is a view showing the results of electrophoresis when PHA—E 4 , WGA, and Con A) were added.
  • FIG. 6 is a diagram showing the structure of a sugar chain derived from ovomucoid used in Example 3.
  • FIG. 7 is a diagram showing the results of electrophoresis when lectin (WGA) was added to the sugar chain mixture in Example 4 while changing the concentration.
  • Figure 8 is a result of (t 7 - - 1 [P] - 1 and the relationship is a graph flop Lock bets.
  • FIGS. 9 (a) to 9 (b) are diagrams showing the results of Example 5, and FIG. 9 (a) is a schematic diagram of a sugar chain derived from Psi IgG, and FIG. 9 (b) FIG. 3 is a view showing the results of electrophoresis with and without the addition of a crude viscous extract to sugar chains derived from Psi IgG.
  • FIG. 10 is a diagram showing high-throughput functional classification of glycoprotein-derived sugar chains based on the results of each example.
  • FIG. 11 is a diagram showing the concentration of lectin used in each Example.
  • FIGS. 12 (a) to 12 (c) show the results of electrophoresis of fetuin-derived sugar chains with and without the addition of lectin in Example 6, and FIG. 12 (a) shows the results.
  • Fig. 12 (b) is a schematic diagram of a sugar chain derived from fetuin
  • Fig. 12 (c) is a diagram showing the results of electrophoresis without the addition of lectin. , MAM, SSA) are shown.
  • FIG. 13 is a diagram showing the structure of a phtophin-derived sugar chain used in Example 6. It is.
  • FIGS. 14 (a) to 14 (b) show the results of Example 7.
  • FIG. 14 (a) shows the presence or absence of the addition of lectin (RSL) to the sugar chain derived from Psi IgG.
  • FIG. 14 (b) is a schematic diagram of a sugar chain derived from Psi IgG.
  • FIG. 15 is a diagram showing the results of Example 8, and is a schematic diagram of the results of electrophoresis of a sugar chain derived from porcine thyroglobulin with and without the addition of lectin (RSL) and a sugar chain derived from porcine tigrogopenin. .
  • FIG. 16 is a diagram showing a structure of a glycan derived from butyroglobulin used in Example 8.
  • FIGS. 17 (a) to 17 (b) show the results of Example 9.
  • FIG. 17 (a) shows the results of the addition of lectin (AAL) to the sugar chain derived from ⁇ 1 acidic glycoprotein. It is a figure which shows the result of the electrophoresis with or without
  • FIG. 17 (b) is a schematic diagram of a 1-acid glycoprotein.
  • FIG. 18 is a diagram showing a structure of a sugar chain derived from ⁇ 1 acidic glycoprotein used in Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 (a) to 18 One embodiment of the present invention will be described below with reference to FIGS. 1 (a) to 18. Note that the present invention is not limited to this.
  • the screening method of the present invention comprises: (1) a method for screening a sugar chain; and (2) a method for screening a sugar chain-binding protein on a large scale using a method for measuring the interaction between a sugar chain and a protein.
  • This is a method that enables simultaneous screening. Both screening methods are similar in that both are based on the interaction of glycans-monosaccharide-binding proteins. However, the only difference is whether the target of screening is a sugar chain or a sugar chain-binding protein.
  • the method for screening a sugar chain in the above (1) includes a sugar chain-binding protein whose specificity for a sugar chain is known, and a ⁇ chain specifically recognized by the sugar chain-binding protein.
  • the sugar chain reaction step in which a sample containing a possible sugar chain mixture is combined, and the separation results of the sugar chain mixture alone and the reaction mixture after the sugar chain reaction step are compared.
  • a sugar chain determination step of determining the presence or absence of a sugar chain that binds to the chain-binding protein.
  • the method for screening a sugar chain-binding protein of the above (2) is characterized in that a sugar chain library obtained from an arbitrary oligosaccharide mixture or a sugar protein having a known sugar chain composition is used as a sugar chain library.
  • a sugar chain-binding protein reaction step of combining a sample obtained from cells, tissues, and the like, which may contain sugar chain-binding proteins, with this library, By comparing the results of separation of only the glycan mixture with the separation of the reaction mixture after the glycan-binding protein reaction step, the presence or absence of glycan-binding proteins that bind to a glycan library is determined.
  • a binding protein determination step is characterized in that a sugar chain library obtained from an arbitrary oligosaccharide mixture or a sugar protein having a known sugar chain composition.
  • the “sugar chain-binding protein” specifically recognizes a specific sugar chain And a protein that binds.
  • Typical examples of specific sugar chains with known specificity include lectins and sugar chain antibodies.
  • the “arbitrary oligosaccharide mixture” is not particularly limited, but may be, for example, a mixture of double-stranded, triple-stranded, and quadruple oligosaccharides, and hyal sulfonic acid. ⁇ ⁇ Glycosamino-dalican-derived oligosaccharide mixtures obtained by digestion of glycosamino-glycans such as chondroitin sulfate can be mentioned.
  • the “mixture of sugar chains prepared from glycoproteins” is not particularly limited, but includes, for example, double-stranded, triple-stranded, quadruple-chain, and Lewis X-type sugar chains.
  • a sugar chain mixture prepared by treating a1 acidic glycoprotein consisting of the above mixture with an appropriate glycosidase treatment or the like.
  • the origin of the sugar chains, sugar chain-binding proteins and oligosaccharides is not particularly limited, and may be prepared from animals, plants, microorganisms and the like according to the purpose.
  • the conditions for performing the sugar chain reaction step and the sugar chain binding protein reaction step are such that the sugar chain and the sugar chain binding protein can sufficiently react with each other to form a sugar chain-single sugar chain binding protein complex. If there is, there is no particular limitation.
  • the sugar chain reaction step was carried out in an example in which the interaction of the sugar chain of the ⁇ 1 acidic glycoprotein described later was measured (see FIGS. 1 (a) to 1 (c)). As shown in), first, the sugar chains of ⁇ 1 acidic glycoprotein are analyzed in the absence of lectin. Then, wheat germ 7
  • Analysis of the glycan mixture obtained from the target glycan-binding protein was performed in a fused silica capillary or a surface-modified silica capillary filled with a buffer containing lectin (WGA), or in a microchip.
  • the analysis is performed using a buffer solution containing lectin (Tonata) derived lectin (C on A) and tulip derived lectin (TGA).
  • the analysis was performed using the lectin concentrations shown in Fig. 1 (c), but the analysis is not limited to these concentrations, and may be changed as appropriate depending on the combination of sugar chains or the type of lectin used. do it. Generally, it can be used in a wide range from nanomolar (nM) to millimolar (mM) concentrations.
  • the type of glycolytic protein ⁇ lectin known to have specificity for a sugar chain used in the present invention is not particularly limited. It is also desirable to use a plurality of types of lectins in any combination. That is, in the sugar chain determination step, it is preferable to determine a combination of a plurality of separation results when lectin is added. For example, the separation results obtained when wheat germ lectin (WG A), tuliplectin (TGA), and tatita bean lectin (Concanapalin A (C on A)) are added may be combined. Thus, by combining the separation results obtained when a plurality of lectins are added, the composition, structure, function, and the like of the sugar chain in the sugar chain mixture can be divided in more detail.
  • a sugar chain mixture serving as a sample for analyzing whether or not it reacts with such a lectin may be prepared by a conventionally known method.
  • a sample obtained by extracting a glycoprotein of interest after separation by affinity chromatography or separation by gel electrophoresis may be used.
  • those in which sugar chains are separated from the extracted glycoprotein by glycosidase treatment or the like may be used.
  • the screening method (1) for example, it is possible to comprehensively screen the change in the sugar chain composition ratio due to the change in the physiological state. Therefore, it is possible to easily analyze changes in the structure of the sugar chain of the ⁇ protein in a disease and changes in the composition of each sugar chain of the sugar chain mixture over time. In addition, it is possible to classify sugar chains by function, which is useful for analyzing a wide variety of physiological activities and functions such as glycoproteins and proteasomes, which are products of post-translational modification by sugar chains.
  • the sugar chain-binding protein reaction step may include sugar chain-binding protein such as blood, cell extract, or microorganism-derived extract.
  • sugar chain-binding protein such as blood, cell extract, or microorganism-derived extract.
  • the glucose solution mixture containing a buffer solution containing blood, a cell extract, or a microorganism-derived extract, and a buffer solution containing no such solution is used. Separation of Each Oligosaccharide Mixture 9
  • the electrophoresis buffer contains a lectin (RSL) derived from Rhizopus spp.
  • the following processing may be performed.
  • the presence or absence of a sugar chain or a sugar chain-binding protein is determined based on a difference in electrophoresis time by capillary electrophoresis. It is preferable.
  • Capillary electrophoresis has extremely high separation accuracy among various types of electrophoresis.
  • the reason for this is that capillary electrophoresis performs electrophoresis in very fine stone, glass, or synthetic capillary tubes.
  • the diameter of the capillary is 1 to several hundreds / cm.
  • heat is dissipated, so that a voltage approximately 10 times higher than that of other electrophoresis methods can be applied.
  • the sample can be separated in a short time.
  • band spreading due to diffusion is small, and extremely good separation is possible.
  • capillary electrophoresis like HPLC, allows for automated measurements. Therefore, capillary electrophoresis is particularly suitable for automating the present invention.
  • the accuracy and reliability of the screening method of the present invention can be further improved, and furthermore, automatic measurement is possible. Become.
  • the sugar chains can be easily obtained by comparing the chatters obtained as a result of the capillary electrophoresis. And the presence or absence of sugar chain binding protein becomes clear. Moreover, by comparing the charts, it is possible to clarify the unknown sugar chains and the sugar chains recognized by the sugar chain-binding protein.
  • a step of removing the sialic acid residue when the sugar chain or the sugar chain binding protein contains a sialic acid residue is included. Is also good. — In other words, a step of converting the sugar chain or sugar chain-binding protein into an ash mouth sugar chain or an asharoprotein may be included. Some sugar chains and sugar chain-binding proteins are stably present by containing sialic acid. By removing this sialic acid, the properties of sugar chains and sugar chain-binding proteins may be significantly changed. Therefore, the present invention also includes a step of removing a sialic acid residue of a sugar chain or a sugar chain-binding protein, thereby providing a sugar chain-sugar chain binding protein.
  • Protein interactions may be even more robust. Thereby, sugar chains, sugar chain-binding proteins, and sugar chain-single sugar chain-binding proteins can be separated with higher accuracy. That is, the reliability of the determination in the sugar chain determination step and the sugar chain binding protein determination step is further improved.
  • the method can be applied to the development of a drug targeting such an acyloglycoprotein receptor. .
  • the sugar chain of the sugar chain mixture may be labeled.
  • the method of labeling is not particularly limited, and may be set as appropriate depending on the separation method.
  • a fluorescent substance, an enzyme, a radioisotope, a luminescent substance, an ultraviolet absorbing substance, a spin labeling agent, etc. may be bound to a sugar chain and then separated.
  • labeling substances conventionally known reagents can be used.
  • the proteins are fluorescently labeled with APTS (9-aminovirene-1,4,6 trisulfonate).
  • an aminobenzene derivative such as 2-aminobenzoic acid and a 2′-aminopyridine amide nononaphthalene derivative may be used. it can.
  • a derivative of a labeled sugar chain can be used, for example, in a fluorescence detection device. It can be easily detected with high sensitivity using a laser beam excitation laser detector. That is, if a method is used in which a sugar chain is labeled to form a derivative and electrophoresis and laser-induced fluorescence (LIF) are combined, a sugar chain, a sugar chain-binding protein, a sugar chain-sugar chain-binding protein can be obtained. The protein complex can be separated and detected more easily.
  • LIF laser-induced fluorescence
  • the above-mentioned one or more glycemic-binding proteins or the mixture of one or more glycans having a clear structure are immobilized on a support. Is also good.
  • the one or more sugar chain-binding proteins or the sugar chain mixture of which the sugar chain specifically recognizing is clearly identified are, for example, immobilized on the substrate at a high density.
  • the screening method of the present invention has been described above.
  • a sugar chain with a sugar chain specifically recognized is known.
  • a protein or a sugar chain mixture having a known structure may be used.
  • it is more preferably prepared as a measurement reagent that improves the reactivity between the sugar chain mixture and the glycolytic protein.
  • the measurement reagent of the present invention can easily measure the interaction between sugar chains and sugar chain-binding proteins, it can be used in the field of analyzing the physiological activities and functions of sugar chains and sugar chain-binding proteins. It can be used as a reagent for basic research. It is also useful in the development of foods, pharmaceuticals, and diagnostics in the field of chain engineering.
  • the measurement reagent of the present invention further includes a reagent for easily reacting the ⁇ ⁇ chain and the ⁇ chain binding protein; a reagent for improving the accuracy and reliability of the separation; and a reagent for measurement. It may contain a reagent or the like for improving the convenience and preservability of the product.
  • AAL hilocha wantake lectin
  • mushroom lectin which has specificity for galactose
  • lentil lectin that shows specificity for the terminal part of glycans
  • saffron lectin that shows specificity for core pentasaccharide
  • SSA dinitro lectin
  • MAM innugen lectin
  • rhizopsuka lectin Lectins that have been used, known lectins whose sugar chains are clearly recognized, and the like can be used.
  • a mixture of sugar chains obtained by enzymatic degradation of a double-stranded sugar chain that can be obtained in large quantities can be used as a library '.
  • the origin of the sugar chain binding protein and the sugar chain library is not particularly limited.
  • the measurement reagent may be combined with another drug, a reagent for separation, a medium for separation, or the like to provide a kit for measuring the interaction between a glycoprotein and a sugar chain-binding protein. Very preferred.
  • the measuring method of the present invention can be easily carried out simply by obtaining a sample containing a sugar chain or a sugar-binding protein whose function is unknown. Can be applied. As a result, the time required for the measurement method of the present invention can be significantly reduced, and more samples can be measured in a short time.
  • a microphone mouth chip may be used.
  • the present invention provides a sugar chain binding that specifically recognizes a sugar chain. It is characterized by simultaneous separation of a mixture of sugar chains having a complex structure and structural analysis of each sugar chain by using an amphoteric protein.
  • the present invention is characterized in that a natural sugar chain-binding protein that specifically binds to the sugar chain mixture is analyzed using the sugar chain mixture. Further, the present invention is characterized in that a naturally-occurring sugar chain-binding protein or sugar chain is simply and easily subjected to high-throughput analysis.
  • the present invention can provide a method of classifying sugar chains by function and screening a sugar chain mixture by measuring the interaction of sugar chain-single sugar chain binding proteins. This makes it possible to measure changes in sugar chains on the cell surface and sugar chains of glycoproteins present in body fluids extremely simply and accurately. Therefore, it is expected that this method will lead to the discovery of clinical test methods using changes in sugar chains as indicators and changes in glucose levels in cell surface membrane components as indicators. In addition, if changes in sugar chains during a disease state are used as indicators, and changes in sugar chains are tracked over time under the conditions of the addition of a drug candidate compound, it is a very important method for developing new drugs. Become.
  • the present invention can be extended to the analysis of ⁇ proteins that specifically bind to sugar minerals present in blood, cells, and the like using the sugar chain measurement method.
  • ⁇ proteins that specifically bind to sugar minerals present in blood, cells, and the like using the sugar chain measurement method.
  • an unknown sugar chain that specifically binds to a sugar chain in a library by using a sugar chain mixture of glycoproteins with a known composition or an arbitrary mixture of oligosaccharides as a library Binding proteins can be easily found.
  • sugar chain-binding proteins that recognize these sugar chains. According to the simple screening method for sugar chain-binding proteins of the present invention, more detailed analysis of functions and functions of such sugar chain-binding proteins can be performed.
  • the present invention is a technique required next to genome-based protein analysis, and is a technique relating to sugar chain engineering, in which it is difficult to finely adjust the biosynthesis directly by controlling genes.
  • the combination of the library and lectin of the sugar chain used in the present invention is not limited to the examples of the present invention, but can be separated and phased in a solution using some basic combinations! : Reflects subtle differences in glycans by combining the unique method of simultaneous measurement of action with the simultaneous interaction measurement method using a microphone-mouth chip with multiple analysis circuits. The observed sugar-monosaccharide-binding protein interaction can be observed.
  • the measurement of the interaction between a sugar chain and a sugar chain-binding protein using the lectin of the present invention makes it possible to diagnose a genetic disease, cancer or inflammation based on a sugar chain abnormality, which has not been known until now.
  • the sugar chain library it is possible to accurately track changes in the amount and composition ratio of sugar chain binding proteins related to the cell surface, blood, intercellular tissues, and the like.
  • each analysis can be performed even if the analysis of a standard sample is included. Within minutes, rapid separation and classification of glycans is completed within at most 3 hours.
  • sugar chains are purified from a sugar chain mixture, and each of the purified sugar chains is linked to a sugar chain binding protein. The interaction with the protein was measured. Therefore, there was a problem that it was impossible to measure the interaction of the difficult-to-purify bran chains, or that a measurement period of every month was required.
  • the present invention can also be applied as follows.
  • the present invention is a technique devised as a result of long-term basic research to overcome such a problem, and is based on the use of the above-mentioned sugar chain-binding protein library and ⁇ chain library. It can be used for analysis and classification of almost all sugar chains present in living organisms, and for confirming the binding between sugar chain-binding proteins and ⁇ chains.
  • the affinity of the interaction between sugar chains and sugar-binding proteins ranges from mM to nM
  • the weak affinity between sugar chains and sugar chain-binding proteins is important for subtle functional regulation of living organisms.
  • the interaction between the sugar chain and the sugar chain-binding protein can be widely supported from a strong affinity to a weak affinity.
  • even a mixture of sugar chains having a weak affinity and a strong affinity has an advantage that the interaction between individual sugar chains and a sugar chain-binding protein can be analyzed simultaneously as a mixture.
  • microarrays In these fields, the application of microarrays is also expected, but using the above-mentioned sugar chain library and glycolytic binding protein library (lectin library-1) makes it impossible to track microarray technology. Because it can respond to subtle changes, more precise analysis is possible.
  • sugar chains and sugar chain-binding proteins to be arranged on the microarray can be used as effective means for selecting an appropriate set of sugar chain-binding proteins and sugar chains by using the present invention. Also.
  • fluorescence excited by laser is detected by capillary electrophoresis in the presence of different concentrations of sugar chain-binding proteins.
  • the technology provided in this way can simultaneously detect (1) to (3).
  • kinetic data eg, binding constant of each chain.
  • it is useful for elucidating biological phenomena expressing sugar chain changes on the cell surface. It is also particularly important in evaluating genetically modified biological agents. This is because products obtained from different cell lines or different culture conditions can sometimes contain a wide variety of sugar chains.
  • the detection method that combines electrophoresis and laser excitation fluorescence (LIF) is a powerful method for analyzing sugar chains in glycoprotein samples with ultra-high sensitivity.
  • Reagents for fluorescently labeling sugar chains in a sample include those used for derivatization and analysis of reducing sugars used for capillary electrophoresis with LIF detection, for example, 8-aminovinylene 1.1.
  • APTS Trisulfonate
  • the glycans to be analyzed should be categorized according to their function. ⁇ For example, the interaction between a protein capable of binding to a glycoconjugate and a sugar chain is considerably promoted by the binding constant to a specific protein. The reason is that sugar chains are mediators of the transmission of biological information.
  • the present inventors analyzed AGP sugar chains after separating AGP molecular species based on the sugar chain components by affinity column chromatography using lectin as a stationary phase. Furthermore, it was clarified that each fraction showed a characteristic amount of sugar chains generated. To analyze the interaction between glycans and lectins, Three
  • a method has been developed. Most of them are based on the interaction between one protein and one sugar chain. For example, plasmon ringing, fluorescence polarization, and time-resolved fluorometry.
  • the affinity chromatography is a FAC ZMS which combines an immobilized lectin column and an MS connected thereto (Kasai K., et al., J. Chromatogr. Biomed. Appl., 1986, 376, 33-47.) D This is applied to the interaction between glycosides and monosaccharide-binding proteins. According to this FACZ MS, the respective binding constants existing as a mixture can be calculated.
  • FA CZM S uses an affinity column with immobilized lectin.
  • a sample containing a mixture of sugar chains is continuously injected into the column.
  • Components with low affinity for immobilization or lectins elute earlier, and components with higher affinity elute later.
  • the dissociation constant (K d ) of the glycan composition in the mixture can be detected simultaneously.
  • affinity chromatography is a method of determining the interaction of a sample with "immobilized” receptor molecules. However, it may be necessary to determine the interaction in "solution” state.
  • Capillary affinity electrophoresis can measure the interaction between molecules of sugar chains and proteins in solution when the electrophoretic mobility differs between sugar chains and lectins.
  • CAE Capillary affinity electrophoresis
  • this method shows kinetic studies on the binding reaction using one type of oligosaccharide and lectin. Simultaneous determination of the binding constant of a mixture of simple oligosaccharides to lectins by capillary electrophoresis has been reported (Taga A, et al., J.
  • the present invention proposes a method for high-throughput functional classification of a complex mixture of sugar chains.
  • the mixture or sugar chain is fluorescently labeled in advance.
  • analysis is performed by capillary electrophoresis.
  • the present inventor has succeeded in classifying sugar chains based on the migration mode of each sugar chain.
  • the 'firefly-light labeling reagent is proposed labeled child and power s using Rereru having a charge (Shimura., Et al, Anal . Biochem., 1995, 227, 186-194.).
  • the charge of the labeled sugar chain is the driving force for the migration of sugar chains that bind to proteins or sugar chains that do not.
  • the reducing end of the sugar chain is modified by reductive amination using APTS as shown in the following chemical formula.
  • APS-labeled glycoprotein samples such as monosaccharides and oligosaccharides and chemically modified capillaries shows good separation ability.
  • the negative charge of the aminovirene residue by the sulfonic acid is suitable for studying binding reactions.
  • lectins classified as C on A mannose, G 1 c NA WGA classification of c, TGA classification of complex type sugar chains, Baisekuti ring G lc NA c residues classified into PHA-E 4 of fucose RSL and AAL were selected for the classification of glycoconjugates, and SSA and MAM were selected for the classification of carbohydrate chains.
  • Combinations of lectins at different concentrations provide efficient and sensitive ⁇ 1 acidic glycoproteins, fetuin, ovomucoid, stomach IgG, porcine thyroglobulin, and glycans of ⁇ 1 acidic glycoprotein from cancer patients Enabled classification.
  • the samples used were ⁇ 1 acidic glycoprotein and fetuin (both manufactured by Shimadzu Aldrich Tsuchi Japan).
  • Chicken egg white ovomucoid was purified from female egg white according to the method described in Waheed A, Biochem. J., 1972, 128, 49p.
  • Konkanapari down A (C on A), wheat germ lectin (WGA), PHA- E 4 was used those made of Seikagaku Corporation.
  • Kito oligosaccharide N-Acetyl darcosamine oligosaccharide; G1cNAc oligomers was also used from Seikagaku Corporation.
  • Tuliplectin was isolated and purified according to the method described in Oda Y., et al., Eur. J. Biochem., 1987, 165, 297-302-.
  • Peptide-1 N4- (acetyl) 3-D-dalcosaminol) Asparagine amidase was from Roche Molecular Biochemistry.
  • the high-purity APTS used was manufactured by Beckman-Coulter (Fulleton, CA). All other samples and reagents were of commercial grade or HPLC grade. Purified water was used for all aqueous solutions.
  • a glycoprotein (1 mg) as a sample was dissolved in a 2 O mM phosphate buffer (pH 7.0, 0 ⁇ L).
  • N-glycosidase F (5 mU, 5 ⁇ ) was added, and the solution was incubated overnight at 37 ° C. The solution was maintained in a boiling bath for 5 minutes and centrifuged at 1000 O'g for 10 minutes. Next, the supernatant containing oligosaccharide was evaporated to dryness using a centrifugal vacuum evaporator.
  • the obtained residue was dissolved in a 2 M aqueous acetic acid solution (50 L), and the mixture was maintained at 80 ° C for 3 hours to remove sialic acid from the oligosaccharide. The residue is then washed with 10OmM? The mixture was dissolved in a 15% aqueous acetic acid solution (5 // L) containing D3, and a freshly prepared THF solution (5 ⁇ L) of 1M sodium cyanoborohydride was added to the mixture. The mixture contains mineral oil (100 ⁇ L, nD1.67, d0.8).
  • Capillary affinity electrophoresis was performed on a P / ACE MDQ glycoprotein system (Beckraan Coulter) equipped with a system to detect fluorescence excited by an argon laser. Detection was performed using an argon laser with a fluorescence wavelength of 520 nm and an excitation wavelength of 488 nm.
  • a capillary with an inner wall coated with e-CAPN-CHO (effective length: 10 cm (length: 30 cm); 50 ⁇ m (Beckman Coulter)) Using.
  • the same size cabillary (GL Science Co., Ltd.) coated with dimethinopolysiloxane (DB-1) can also be used. Separation was performed at 25 ° C at all times during the operation, and injection was performed by the pressurized method (0.5 psi). The data obtained was analyzed on Windows 2000® using standard 32 Karat software.
  • the electrophoresis solution used was 100 mM Tris acetate buffer (pH 7.4). Prior to capillary affinity electrophoresis, sugar chains labeled with APTS were labeled by capillary electrophoresis at an applied voltage of 10 kV as described above. analyzed. Subsequently, the above electrophoresis running solution containing the lectin at the concentration shown in FIG. 11 was injected into the cavities. Prior to analysis, the cells were washed for 1 min with the buffer for kinetics. Next, the cells were washed with the same buffer containing lectin for 1 minute. The lab can process the same solution in a 96-well plate, thus automatically performing a series of binding reactions.
  • AGP fetuin
  • chicken egg white vomucoid were used as glycoproteins.
  • the sugar chains of AGP are two-, three-, and four-chain oligosaccharides. Some of the three- and four-stranded oligosaccharides are replaced by fucose (FIGS. 1 (b) and 2).
  • Fetuin contains double- and triple-stranded oligosaccharides.
  • oligosaccharide of the triplet a part of the G a1 -j31-4-G1cNAc branch is changed to Gal- ⁇ 1-3-G1cNAc (Fig. 3 (b) and Figure 4).
  • Egg ovomucoid contains a fairly complex mixture of oligosaccharides. Some of the oligosaccharides have been replaced with bisecting GlcNAc residues. Obomuco 'A typical oligosaccharide found in Eid is shown in Figure 6'. Oligosaccharides with a small molecular size (01) having an N-glycan structure as a core are also found in chicken egg white ovomucoid.
  • lectins that specifically recognize and bind to the following sugar chains were used. That is, (1) a lectin that specifically recognizes high mannose-type oligosaccharides, (2) a lectin that specifically recognizes N-acetylglucosamine (GlcNAc) or its oligomer. 3) Galactose ( Lectin recognizing G a1) or lactosamine G a1 ⁇ 1-4 / 3G1c ⁇ A c (4) Lectin recognizing sialic acid (5) Lectin recognizing fucose.
  • the lectin is stable and binds to a specific sugar chain with high specificity.
  • ConA, WGA, TGA, PHA-E4, SSA, MAM, RSL, and AAL which show sugar chain specificity were selected as lectins. These lectins are relatively stable during analysis and are suitable for pre-analytical storage.
  • a1 acidic glycoprotein contains double-chain, triple-chain, and 4-chain sugar chains as shown in FIG. 1 (b) and FIG. Furthermore, among the three- and four-chain sugar chains, there are sugar chains containing a fucose residue in the non-reducing terminal G a1 ⁇ 1-4 G 1 c NA c residue. .
  • the mobility of the mixture of asia mouth-glucose obtained from AGP was examined. The result is shown in Fig. 1 (c).
  • Double glycans were observed at the earliest transit time (5.2 minutes).
  • the three-chain ( ⁇ ⁇ ) and four-chain IMV) sugar chains were observed at 6.2 minutes and 7.- 2 minutes, respectively.
  • the peaks observed at 6.5 minutes and 7.5 minutes are the three-chain sugar chain ( ⁇ ) and the four-chain sugar chain (AV), both of which have a fucose residue added (Fig. 1 ( a))).
  • Tulip bulbs contain two types of lectins, one of which binds to yeast. Another type of lectin (TGA) specifically binds to mouse erythrocytes, and this binding is specifically inhibited by swine tyroglobulin. Addition of TGA was interesting—results in the transfer of oligosaccharides from AGP. 'Three-glycans (All and ⁇ )' showed high specificity for this lectin (TGA). 2 [On the 11th floor, the group of All and ⁇ moved to 7.0 minutes. In the 12 / ⁇ TGA, All and ⁇ eluted as a single broad peak and were observed the latest (about 9.3 minutes). On the other hand, the affinity between TGA and double- and quadruplex sugar chains was weak.
  • Example 2 Classification of sugar chains derived from Futuin-1 (when sialic acid residues were removed) As shown in FIG. 4, fetuin contains one type of double-chain sugar chain (AI) and two types of three-chain sugar chain (All and FII). One of the three glycans (FII) contains a G a1 ⁇ 1-3G1cNAc branch. In this example, as shown in FIG. 4, a mixture of ⁇ chains from which sialic acid residues had been removed was used.
  • the main three-chain ⁇ chain (All) was observed slightly later (about 8.9 minutes) in the 12 M WGA than in the absence of WGA. No delay in the transit time of the other three-chain sugar chain (FII) having the G a1 ⁇ 1-3G1cNAc branch was observed, but was observed at 7.5 minutes. With the / M WGA, All and FII could be completely separated.
  • TGA strongly recognizes the sugar chain of triplet.
  • TGA showed different affinities for All and FII.
  • FII sugar chain
  • FII containing the G a 131-3G 1 c NA c partial chain
  • a delay in the migration time was observed.
  • the transfer order of All and FII was reversed.
  • the difference in affinity between All and FII is remarkable, and the three glycans can be completely separated.
  • Ovomucoid derived from chicken egg white has five sugar chain binding sites and constitutes 20 to 25% of glycoproteins. More than 20 sugar chains have been reported in chicken egg white ovomucoid, and a bisexual G1cNAc residue is also present.
  • Figure 6 shows typical oligosaccharides found in Ovomucoid. The separation of this oligosaccharide is shown in Fig. 5 (a) and Fig. 5 (c).
  • sugar chains could not be identified due to the complexity of the sugar chains. However, it was confirmed that the sugar chain exhibited a different movement mode based on the structural characteristics of the sugar chain due to the presence of the lectin.
  • the stoichiometry of the coupling reaction must be determined.
  • the interaction between WGA and an APSTS-derivatized GlcNAc oligomer is shown. This model was chosen because the kinetics and mechanism of this lectin binding have been well studied.
  • the G1cNAc oligosaccharides showed interesting changes in transit time in the presence of various concentrations of WGA—.
  • Trisaccharides (3 in Fig. 7, and so on) showed weak affinity for WGII even at a high concentration of 3 ⁇ M WGA.
  • the tetrasaccharide (4) is 0.8 3 ⁇ 4 1 of 0
  • Trisaccharide, tetrasaccharide and pentasaccharide showed concentration and good linearity of the WG A, coupling constants, respectively, 0. 5 6 X 1 0 6 M- 1 - 5 6 X 1 0 6 M ⁇ 1 2 5 4 X 10 6 M— 1 .
  • the results obtained by the present invention are similar to those described in Daro T., et al., Chem. Rev., 2002, 102, 387-429. Asensio JL, Chemistry & Biology 2000, 7, 529-543, also reports a chitin-binding motif of WGA that binds polyvalently to the G1cNAc oligomer.
  • the glycan mixture was analyzed using lectin as the glycan-binding protein, and the glycan mixture was analyzed and classified.
  • a glycan of Lisopus genus was used as a sugar chain, and a crude glycan extracted from a liposome of the genus Lysopus was extracted with a buffer solution for electrophoresis.
  • the reaction mixture reacted with the extract was examined for fluctuations in electrophoresis time.
  • Add R S L Rostronipher lectin
  • FIG. 9 (a) shows a schematic diagram of a sugar chain derived from a mouse IgG.
  • the electrophoresis time of the sugar chain containing the crude mold extract is significantly slower than the swimming time without it, as shown in Fig. 9 (b). .
  • a sugar chain-binding protein which specifically exists in the crude mold extract and specifically binds to glycan derived from P. IgG was confirmed.
  • a sugar chain mixture having a known structure the presence or absence of a sugar chain-binding protein in a sample can be confirmed. This method leads to the discovery of novel sugar-chain-binding proteins and the development of new drugs using them.
  • the fetuin of this example is composed of one double-stranded sugar chain (SAI) and three triple-stranded sugar chains (SFI, SFII and SFII). ⁇ S Fill).
  • SAI single-stranded sugar chain
  • SFI, SFII and SFII triple-stranded sugar chains
  • SFI and SFII contain NeuAca2-6Gal
  • SFIII has 3 ⁇ 11. Includes 2-30 & 1.
  • SFIII contains Ga1 ⁇ 1-3G1cNAc, and the other contains Ga1 ⁇ 1-4G1cNAc.
  • TGA strongly recognizes three-chain sugar chains, and has different affinities between SFI and SFII and SFIII. Indicated. That is, the sugar chain (SFII) containing the G a1 1-3G 1cNAc branch chain exhibited a delay in the migration time. In the 12 ⁇ TGA, the order of movement between SFIII, SFI and SFII was reversed. At 12 ⁇ of TGA, the difference in affinity between All and FII was remarkable, and each three-chain sugar chain could be completely separated. (2) Addition of MAM
  • SSA recognizes ⁇ 2,6 sialyl lactosamine more strongly, and ⁇ recognizes 0: 2,3 sialyl lactosamine more strongly. Subtle differences could be distinguished.
  • a sugar chain with a known structure derived from Psi IgG was used as a sugar chain library, and lip scabilelectin (RSL) was added, as shown in FIG. 14 (b).
  • IgG derived from Psi contains a sugar chain having a fucose (indicated by ⁇ in FIG. 14 (b)) at the end of the fluorescent substance (1-1 V).
  • the addition of RSL markedly increased the migration time of these fucose-linked rice bran (fucosylated sugar chains) (I to EV) depending on the amount added. It was confirmed that it was late. That is, in this example, fucose-linked sugar chains could be detected efficiently.
  • glycans derived from butyroglobulin contain double-stranded (TI) and small amounts of triple-stranded (TI) sugar chains, and high-mannose-type sugar chains (HM).
  • TI double-stranded
  • TI triple-stranded
  • HM high-mannose-type sugar chains
  • the double- and triple-chain sugar chains are fucose-linked sugar chains in which fucose has been added to the terminal G1cNAc.
  • a sugar chain derived from butyroglobulin was used as a sugar chain library, and TGA and ConA were added.
  • TGA fucose-linked sugar chains
  • putatyroglobulin is a useful library monosaccharide containing a hymannose monosaccharide and a complex oligosaccharide.
  • the sugar chains of AGP are glycoproteins whose sugar chains change with physiological changes such as canceration and inflammation.
  • changes in fucosylated sugar chains (AIII, AV, AVI) associated with canceration have attracted attention in recent years.
  • the sugar chain analysis of AGP derived from a cancer patient and the effect of adding a fucose recognition lectin were examined.
  • FIG. 17 (a) normal AGP glycans were found at 5.0 minutes (AI), 5.7 minutes (AII), 5.9 minutes (AIII), 6.5 minutes (AIV), and 6.7 minutes (AV).
  • AVI a peak
  • AAL Aleuria aurantia lectin
  • Fig. 17 (a) a fucose-recognition lectin
  • AAL Aleuria aurantia lectin
  • Fig. 17 (a) a fucose-recognition lectin
  • a decrease (disappearance) in the peak intensity of the fucose-linked bran chain (fucosylated sugar chain) was confirmed. Due to the specificity of AAL, this fucose-linked sugar chain is It is a fucosylated sugar chain having an antigen.
  • high-throughput function classification of glycoprotein-derived sugar chains is possible. More specifically, in Kakumi ⁇ to jar good of the above, to classify the sugar chain, eight types of lectins, ie, C on A, WGA, P HA- E 4, T GA, RSL, AA L, SSA and MAM were selected. The characteristics of these lectins are shown below.
  • ConA recognizes a double-stranded sugar chain. High mannose and hybrid oligosaccharides are also recognized by ConA.
  • WGA affects the translocation time of double, triple and quadruple bran chains. That is, in the presence of WGA, the order of movement of the three- and four-chain sugar chains to which fucose residues have been added and the order of movement of the respective sugar chains that do not contain fucose residues change.
  • TGA is very useful for discriminating triple glycans. As shown in FIG. 3 (c), the triple sugar chain is specifically recognized by TGA.
  • P HA_ E 4 is Remind as in FIG. 5 (a) ⁇ FIG 5 (c), can be applied to the recognition of the sugar chain having Baisekute queuing G 1 c NA c residues.
  • the inventors succeeded in identifying an oligosaccharide having a bisexual GlcNAc residue from a complex mixture of oligosaccharides derived from chicken egg white ovomucode.
  • RSL and AAL show specificity for fucose
  • SSA and MAM show specificity for sialic acid
  • sugar chains classified into the above four types C on A, WGA, T GA, and PHA-E 4
  • lectins showed binding to sugar chains in two different ways. That is, in the binding between C on A in ovomucoid and the core pentasaccharide (OI in FIGS. 5 (a) to 5 (c)), disappearance of the peak was observed. Other In this case, the binding between the lectin and the sugar chain resulted in a slower translocation time. To date, the reasons for these different binding modes have not been elucidated. In addition, although kinetic studies are needed, the kinetics of binding should be considered.
  • the affinity constant (K a) at which the ⁇ chain binds to the lectin can be determined simultaneously. This is because, as shown in FIG. 7, it is not necessary to measure the concentration of a fluorescently labeled ligand (for example, a sugar chain), unlike the binding between chito-oligosaccharide and protein. Therefore, the method of the present invention is very useful for the kinetic measurement of a complex mixture of sugar chains from a biological sample, whose concentration is difficult to determine.
  • sugar chains were successfully classified using a combination of selected lectins at a predetermined concentration.
  • the total analysis time required for one sugar chain sample is within 4 hours.
  • the total amount of lectin and glycan samples used in the study of WGA and AGP was 20 // g (500 pm01) and 2 ⁇ g (50 pmol), respectively.
  • the main feature is to identify the characteristics of the sugar chain skeleton.
  • the present invention can be applied to a method utilizing the characteristics of a sugar chain containing sialic acid.
  • the technology of the present invention is based on electrophoresis of a known and / or unknown glycan library using a solubilized solution, gel or sol of a known or unknown protein as a medium. Based on the difference in the electrophoresis of the sugar chain-single sugar chain binding protein complex formed below, we classify the sugar chains and analyze the interaction between the ⁇ chain and the protein.
  • the sugar chain library and the electrophoresis medium can be provided as a kit, and the electrophoresis gel medium can be provided in the form of a microchip or the like.
  • the sugar chain after translation of the protein It is very useful in elucidating modifications. It is also useful for studying the pathology of glycoprotein diseases due to sugar chain deficiency.
  • By characterizing sugar chains on the cell surface using the present invention it can be useful for molecular-level pathological analysis.
  • the method for measuring the interaction between a sugar chain and a ⁇ chain-binding protein comprises the step of reacting the separation result of one or more sugar chain mixtures with the sugar chain mixture and the sugar chain-binding protein.
  • This is a method for measuring the interaction between a sugar chain and a sugar chain-binding protein based on comparison with the separation result of the reaction mixture. Therefore, for example, a mixture of a plurality of sugar chains can be used as a library to measure subtle changes in the use of sugar chains, sugar chain bonds, and the properties of proteins.
  • a plurality of known sugar chain-binding proteins for example, lectins
  • the binding reaction with a complex mixture of sugar chains can be efficiently and simultaneously measured.

Abstract

A method of measuring interactions between sugar chains and a sugar chain-binding protein which comprises comparing the result of separating a mixture of one or more sugar chains and the result of separating a reaction mixture of the above mixture with a sugar chain-binding protein to thereby measure the interactions between the sugar chains and the sugar chain-binding protein which have never been established so far. According to this method, interactions between sugar chains and a protein can be exhaustively measured simultaneously even in a complicated sugar chain mixture.

Description

糖鎖ー糖鎮結合性タ パク質の相互作用の測定方法おょぴその利用 技術分野 Method for measuring the interaction between sugar chains and glycolytic proteins and its use
本発明は、 糖鎖ー耱鎖結合性タンパク質の相互作用の測定方法、 およ びその利用方法に関するもので明あり 、 例えば、 糖鎖異常に基づく遺伝病 やガン診断などの臨床診断や、 糖鎖田結合性タンパク質を標的と した新規 医薬品の開発に応用し得る、 糖鎖一糖鎖書結合性タンパク質の相亙作用の 測定方法、 およびそれを用いた糖鎖および糖鎮結合性タンパク質のスク リーユング方法、 当該測定方法に用いる測定試薬、 並びに測定キッ トに 関するものである。 背景技術  The present invention relates to a method for measuring the interaction between a sugar chain and a 耱 chain-binding protein, and a method for using the same. For example, the present invention relates to a clinical diagnosis such as a genetic disease or cancer diagnosis based on a sugar chain abnormality, and a sugar chain. Method for measuring the overall action of sugar-chain-glycoprotein binding proteins that can be applied to the development of new drugs targeting glycan-binding proteins, and screening of sugar chains and glycolytic binding proteins using the same The present invention relates to a method, a measuring reagent used in the measuring method, and a measuring kit. Background art
タンパク質は翻訳後、 ゴルジ体において、 糖鎖による修飾を受ける。 糖鎖によるタンパク質の修飾は、 加齢、 生理的条件の変化、 外的刺激な どの要因によ り、 多彩な変化が生じる。 糖鎖は、 細胞間の情報伝達ある いは恒常性維持などの細胞間ネッ トワークの秩序維持に重要な役割を果 たしている。 このため、 糖鎖は、 「細胞の顔」 とみなされる場合がある 糖鎖の役割で最も大きな問題となるのが、 糖鎖が遺伝子で制御された 糖転移酵素、 糖代謝酵素などの酵素群によって、 2次的に生産されるこ とである。 このため、 糖転移酵素や糖代謝酵素などの酵素群の一義的な 働きだけでは解明できない不均一性を有する。 この不均一性を有するた めに糖鎖が多彩な生理活性を示す。 したがって、 耱鎖の生理機能を解明 するためには、 糖鎖をその機能に基づいて分類する必要がある。 After translation, proteins are modified in the Golgi by sugar chains. Modification of proteins by sugar chains produces various changes due to factors such as aging, changes in physiological conditions, and external stimuli. Sugar chains play an important role in maintaining the order of intercellular networks, such as the transmission of information between cells or the maintenance of homeostasis. For this reason, glycans are sometimes regarded as the “face of cells.” The biggest problem in the role of glycans is that enzymes such as glycosyltransferases and sugar metabolizing enzymes whose sugar chains are controlled by genes Is produced secondarily. For this reason, it has heterogeneity that cannot be elucidated only by the unique function of enzymes such as glycosyltransferases and sugar metabolizing enzymes. Having this non-uniformity Sugar chains exhibit a variety of biological activities. Therefore, in order to elucidate the physiological functions of 耱 chains, it is necessary to classify sugar chains based on their functions.
このよ うに、 糖鎖の果たす機能については、 遺伝子レベルで、 その生 合成あるいは代謝酵素を突き止めていく ことが重要である。 この分野に おける研究は、 日本が世界をリー ドして進んでいる。 しかし、 前述のよ うに糖鎖の不均一性は、 遣伝子に支配されて発現する糖鎖関連酵素群、 すなわち、 糖転移酵素や糖加水分解酵素などが糖鎖の生合成に関与する 。 このため、 糖鎖の微妙な機能調節、 すなわち糖鎮ー糖鎖結合性タンパ ク質間の相互作用の微妙な変化の測定は、 遺伝子レベルでの研究のみで は解明することができない。  Thus, it is important to identify the functions of sugar chains at the genetic level to determine their biosynthesis or metabolic enzymes. Japan is leading the world in research in this area. However, as described above, the heterogeneity of sugar chains is caused by the sugar chain-related enzymes, which are expressed by being controlled by genes, such as glycosyltransferases and sugar hydrolases, involved in the biosynthesis of sugar chains. Therefore, delicate regulation of sugar chain functions, that is, measurement of delicate changes in the interaction between glycosides and glycan-binding proteins, cannot be elucidated only by studies at the gene level.
これまでに、 1種類の糖鎖結合性タンパク質と 1種類の糖鎖との間の 相互作用、 または 1種類の糠鎖と 1種類のタンパク質との間の相互作用 を測定する方法が、 多数開発されている。 しかし、 この方法では、 適用 範囲が非常に限られ、 ましてや、 糖鎖と糖鎖結合性タンパク質との混合 物における糖鎖—糖鎖結合性タンパク質の相互作用を測定することはで きない。  To date, numerous methods have been developed to measure the interaction between one type of sugar-binding protein and one type of sugar chain, or the interaction between one type of bran chain and one type of protein. Have been. However, this method has a very limited application range, and even more, it is impossible to measure the interaction between a sugar chain and a sugar chain-binding protein in a mixture of a sugar chain and a sugar chain-binding protein.
したがって、 複数の'糖鎖を含む複雑な糖鎖の混合物にも対応可能な、 糖鎖ータンパク質間の相互作用を網羅的に解析するための効率的なスク リーニング方法が切望されている。 しかし、 耱鎖の不均一性のゆえに、 糖鎖ータンパク質間の相互作用を網羅的に解析することは非常に困難で ある。  Therefore, there is a strong need for an efficient screening method capable of comprehensively analyzing the interaction between sugar chains and proteins, which can handle a complex mixture of sugar chains containing a plurality of sugar chains. However, it is very difficult to comprehensively analyze the interaction between sugar chains and proteins due to the heterogeneity of 耱 chains.
そこで、 糖鎖ゃタンパク質の混合物における糖鎖一糖鎖結合性タンパ ク質の相互作用を測定する方法が開発されれば、 混合物であってもその 相互作用を測定することが可能となる。 しかしながら、 現在では、 ァフ ィ -ティークロマ トグラフィ一と質量分析とを利用した、 糖鎖混合物と タンパク質との相互作用の一斉測定方法のみが報告されているに過ぎな い (Schriemer D. , et al, Angew. Chem. Int. Ed. , 1998, 37, 3383 - 3387. ) 。 この方法は、 1種類のタンパク質と複数の糖鎖混合物との結 合反応を測定するものである。 すなわち、 1種類の糖鎖結合性タンパク 質と、 糖鎮混合物との糖鎖タンパク質間相互作用を測定するものである また、 糖タンパク質の分別測定方法も開示されている (例えば 「日本 国公開特許公報 「特開平 7— 1 9 1 0 2 7号公報」 」 ( 1 9 9 5年 7月 2 8 日公開) ) 。 この方法は、 タンパク質構造は同一であるが糖鎖構造 が異なる糖タンパク質を、 特定の糖鎖構造を認識するレクチンを用いて 測定するものである。 具体的には、 抗体を用いて、 レクチンと結合した 耱タンパク質と、 レクチンと結合せず抗体と結合した糖タンパク質とを 分別する方法である。 Therefore, if a method for measuring the interaction between a sugar chain and a sugar chain-binding protein in a mixture of a sugar chain and a protein is developed, the interaction can be measured even in a mixture. However, at present, Only a simultaneous method for measuring the interaction between a sugar chain mixture and a protein using tea chromatography and mass spectrometry has been reported (Schriemer D., et al, Angew. Chem. Int. Ed., 1998, 37, 3383-3387.). This method measures the binding reaction between one type of protein and a mixture of a plurality of sugar chains. In other words, it measures the interaction between one kind of sugar chain-binding protein and a sugar chain protein and a glycoprotein mixture, and also discloses a method for differentially measuring glycoproteins. Gazette JP-A-7-191027 (published on July 28, 1995)). In this method, glycoproteins having the same protein structure but different sugar chain structures are measured using a lectin that recognizes a specific sugar chain structure. Specifically, a method is used in which an antibody is used to separate a 耱 protein bound to lectin from a glycoprotein bound to the antibody without binding to lectin.
し力 し、 Schriemer D. , et al, Angew. Chem. Int. Ed. , 1998, 37, 3383-3387.の方法は、 同一分子量で結合様式の異なる糖鎖に対応する ことができないという、 重大な'問題点を有している。 - ' さらに、 この方法は、 基本的に糖鎖結合性タンパク質を結合した固定 相を使用するァフィ二ティーク ロマ トグラフィ一による手法を採用して いる。 このため、 この方法は、 ターゲッ トを絞ったタンパク質と糖鎖と の相互作用を解析するには有効である。 しかし、 この方法は、 例えば、 細胞や組織の粗成分を試料と して糖鎖ータンパク質間相互作用を測定す ることはできないという問題点を有している。 加えて、 ァフィ二ティー クロマ トグラフィ一用の担体調製などの煩雑な操作が必要となる。 また、 表面プラズモン分析を利用した、 糖鎮一タンパク質間相互作用 のスク リーニング方法についても多く の研究がなされている。 しかし、 大規模なスク リ一ニング方法という観点からは、 チップへの固定化ゃコ ス トの面から見て、 現状では実用化が困難である。 However, the method of Schriemer D., et al, Angew. Chem. Int. Ed., 1998, 37, 3383-3387. Has a serious problem that sugar chains with different molecular weight and different binding modes cannot be accommodated. 'Have problems. -'Furthermore, this method basically employs an affinity chromatography method using a stationary phase to which a sugar chain-binding protein is bound. Therefore, this method is effective for analyzing the interaction between a targeted protein and a sugar chain. However, this method has a problem that, for example, it is not possible to measure a sugar chain-protein interaction using a crude component of a cell or tissue as a sample. In addition, complicated operations such as preparation of a carrier for affinity chromatography are required. In addition, many studies have been made on a screening method for the interaction between glycoproteins using surface plasmon analysis. However, from the viewpoint of a large-scale screening method, it is difficult at present to commercialize it from the viewpoint of immobilization to a chip and cost.
また、 日本国公開特許公報 「特開平 7— 1 9 1 0 2 7号公報」 に記载 の方法では、 糖タンパク質に結合している糖鎖は、 複数の複雑な糖鎖の 混合物からなるため、 耱鎖の微妙な変化を一斉に、 しかも、 網羅的に測 定することができないという問題点を有している。  Further, in the method described in Japanese Patent Application Laid-Open Publication No. 7-191207, the sugar chains bound to glycoproteins consist of a mixture of a plurality of complex sugar chains. However, there is a problem that subtle changes in the chain cannot be measured all at once and exhaustively.
このように、 グライコミクスを目指して精力的な研究が続けられてい るが、 糖鎖一タンパク質間の相互作用の一斉解析および大規模スク リー ニング方法は、 未だ開発されていないのが現状である。  Thus, vigorous research is ongoing for glycomics, but the simultaneous analysis of the interactions between sugar chains and proteins and large-scale screening methods have not yet been developed. .
したがって、 も し、 このよ うな方法が開発されれば、 例えば、 糖鎮混 合物をライブラ リ一と して用い、 生体中に存在する糖鎖結合性タンパク 質の関与する疾病や遺伝的異常を測定することが可能になると予想され る。  Therefore, if such a method is developed, for example, a glycosylation mixture is used as a library, and a disease or a genetic abnormality involving a carbohydrate-binding protein present in a living body. It is expected to be able to measure
本発明は、 上記の課題に鑑みてなされたものであって、 その目的は、 糖鎖一耱鎖結合性タンパク質の相互作用を確 '実に測定でき、 それを用い て、 新薬の開発などの医薬品産業、 および臨床検査等の検査産業や試薬 産業で好適に用いられるスク リーニング方法、 および上記医薬品産業、 および検査産業や試薬産業に好適に用いられる測定用試薬および測定キ ッ トを提供するこ とにある。 発明の開示  The present invention has been made in view of the above-mentioned problems, and its purpose is to reliably measure the interaction of a sugar chain-single-chain binding protein, and to use it for drug development such as development of a new drug. To provide a screening method suitably used in the test industry and the reagent industry such as industry and clinical tests, and a measurement reagent and a measurement kit suitably used in the pharmaceutical industry, the test industry and the reagent industry. It is in. Disclosure of the invention
本発明者等は、 これまで測定方法が確立されていなかった糖鎖—タン パク質間相互作用の測定方法について鋭意検討した。 その結果、 複数の 耱鎖結合性タンパク質を組み合わせることによ り、 複雑な糖鎖の混合物 であっても、 糖鎖一糖鎖結合性タンパク質の相互作用を一斉に、 高感度 、 かつ特異的に測定できる新たな測定方法を見出した。 The present inventors have proposed a sugar chain-tan for which a measurement method has not been established until now. The method of measuring the interaction between proteins was studied diligently. As a result, by combining a plurality of 耱 -chain-binding proteins, even in the case of a complex mixture of glycans, the interaction between glycans and glycans-binding proteins can be performed simultaneously, with high sensitivity and specificity. A new measurement method that can be measured has been found.
よ り詳細には、 糠タンパク質やグリ コサミ ノグリカンから得られた糖 鎖の混合物と、 各種のレクチンあるいは糖鎖結合性タンパク質との相互 作用を一斉測定する方法について鋭意に検討した結果、 レクチンあるい は糖鎖結合性タンパク質を含む緩衝溶液中で蛍光標織した糖鎖の混合物 を電気泳動的な手段により分離することにより、 従来知られていなかつ たレクチンあるいは糖鎖結合性タンパク質の微妙な糖鎖認識能の相違を 明確に測定できることを見出した。 このような知見に基づき、 本発明を 完成させるに至った。  More specifically, as a result of diligent studies on methods for simultaneously measuring the interaction between a mixture of sugar chains obtained from bran protein and glycosaminoglycan, and various lectins or sugar chain-binding proteins, lectin or By separating a mixture of fluorescently labeled sugar chains in a buffer solution containing sugar chain-binding proteins by electrophoretic means, the subtle sugar chains of lectins or sugar chain-binding proteins that have not been known before We found that differences in cognitive ability could be clearly measured. Based on such knowledge, the present invention has been completed.
すなわち、 本発明にかかる糖鎖一糖鎖結合性タンパク質の相互作用の 測定方法は、 上記の課題を解決するために、 1種以上の糖鎖混合物の分 離結果と、 当該糠鎖混合物と糖鎖結合性タンパク質とを反応させた反応 混合物の分離結果との比較に基づき、 糖鎖一糖鎖結合性タンパク質の相 互作用を測定することを特徴と している。 - 上記本発明の測定方法では、 糖鎖混合物と糖鎖結合性タンパク質とを 反応させた反応混合物を分離している。 ここで、 糖鎖混合物の中に糖鎖 結合性タンパク質が特異的に認識する糖鎖が存在すれば、 糖鎖一糖鎖結 合性タンパク質の相互作用が大きくなり 、 糖鎖一糖鎖結合性タンパク質 の複合体が形成される。 このため、 複合体が形成されれば、 糖鎖のみの 分離結果とは異なる挙動を示す。 一方、 複合体が形成されていなければ 、 糖鎖のみの分離結果と同様の分離結果が得られる。 本発明の測定方法は、 このような分離結果の差を利用して、 耱鎖ー糖 鎖結合性タ ンパク質の相互作用を測定している。 すなわち、 本発明の測 定方法は、 糖鎖、 糠鎮結合性タンパク質の分離と同時に、 糖鎖一糖鎖結 合性タンパク質の相互作用の測定を行う ことができる。 このように、 本 発明の測定方法は、 耱鎖のみの分離結果と、 糖鎖と糖鎖結合性タンパク 質とを反応させた混合物の分離結果とを比較することによ り、 相互作用 を測定するので、 複雑な複数の糖鎖混合物であっても、 一斉に相互作用 を測定することができる。 すなわち、 糖鎖混合物中の各糖鎖と糖鎖結合 性タンパク質、 または、 糖鎖結合性タンパク質と糖鎖混合物中の各糖鎖 間の糖鎖一糖鎖結合性タンパク質の相互作用を、 高感度で、 迅速かつ簡 便に一斉測定することができる。 That is, the method for measuring the interaction between a sugar chain and a sugar chain-binding protein according to the present invention comprises the steps of separating a mixture of one or more sugar chains, It is characterized in that the interaction between a sugar chain and a sugar chain-binding protein is measured based on a comparison with a separation result of a reaction mixture obtained by reacting the protein with a chain-binding protein. -In the measurement method of the present invention, the reaction mixture obtained by reacting the sugar chain mixture with the sugar chain binding protein is separated. Here, if a sugar chain that is specifically recognized by the sugar chain-binding protein is present in the sugar chain mixture, the interaction between the sugar chain and the sugar chain-binding protein increases, and the sugar chain-to-sugar chain binding property increases. A complex of proteins is formed. For this reason, if a complex is formed, it will behave differently from the result of separation of only sugar chains. On the other hand, if no complex is formed, a separation result similar to that of only the sugar chain is obtained. The measurement method of the present invention utilizes such a difference in the separation results to measure the interaction between the 耱 -glycan-binding protein. That is, the measurement method of the present invention can simultaneously measure the interaction between the sugar chain and the sugar chain-binding protein while separating the sugar chain and the bran-binding protein. As described above, the measurement method of the present invention measures the interaction by comparing the separation result of only the 耱 chain with the separation result of the mixture obtained by reacting the sugar chain with the sugar chain-binding protein. Therefore, the interaction can be measured simultaneously even for a complex mixture of multiple sugar chains. In other words, the interaction between each sugar chain in the sugar chain mixture and the sugar chain binding protein, or between the sugar chain binding protein and each sugar chain in the sugar chain mixture, the interaction between the sugar chain and the sugar chain-binding protein is highly sensitive. This allows quick and easy simultaneous measurement.
上記本発明の測定方法は、 例えば、 以下に示すスク リーニング方法に 適用可能である。  The measuring method of the present invention can be applied to, for example, the following screening method.
すなわち、 本発明の糖鎖のスク リ ーニング方法は、 上記本発明の測定 方法を用いる糖鎖のスク リーニング方法であって、 特異的に認識する糖 鎖が明らかな 1種以上の糖鎖結合性タンパク質と、 当該糖鎖結合性タン パク質'と結合することが不明の 1種以上の糖鎖混合物とを反応させる糖 鎮反応工程と、 上記糖鎖混合物のみの分離結果と、 上記糖鎖反応工程に よって得られた反応混合物の分離結果との比較に基づき、 上記糖鎖混合 物中に、 上記糖鎖結合性タンパク質と結合する糖鎖の有無を判定する糖 鎖判定工程とを含むことを特徴と している。  That is, the method for screening a sugar chain of the present invention is a method for screening a sugar chain using the above-described measurement method of the present invention. A glycosylation reaction step in which a protein is reacted with one or more kinds of sugar chain mixtures that are not known to bind to the sugar chain-binding protein ', a separation result of only the sugar chain mixture, and the sugar chain reaction A sugar chain determination step of determining whether or not the sugar chain binding to the sugar chain binding protein is present in the sugar chain mixture based on a comparison with the separation result of the reaction mixture obtained in the step. It is a feature.
また、 本発明の糖鎖結合性タンパク質のスク リ ーニング方法は、 上記 本発明の測定方法を用いる糖鎖結合性タンパク質のスク リ一二ング方法 であって、 構造の明らかな 1種以上の糖鎖混合物と、 当該糖鎖を特異的 に認識することが不明の 1種以上の糖鎖結合性タンパク質とを反応させ る糖鎖結合性タンパク質反応工程と、 上記糖鎖のみの分離結果と、 上記 糖鎖結合性タンパク質反応工程によつて得られた反応混合物の分離結果 との比較に基づき、 上記糖鎮結合性タンパク質中に、 上記糖鎖を特異的 に認識する糖鎖結合性タンパク質の有無を判定する糖鎖結合性タンパク 質判定工程とを含むことを特徴と している。 The method for screening a sugar chain-binding protein according to the present invention is a method for screening a sugar chain-binding protein using the above-described measurement method according to the present invention, wherein one or more types of sugars having a clear structure are included. Chain mixture and specific sugar chain A sugar chain-binding protein reaction step in which one or more sugar chain-binding proteins are unknown to be recognized by the above, the separation result of only the sugar chain, and the sugar chain-binding protein reaction step A sugar chain-binding protein determining step for determining the presence or absence of a sugar chain-binding protein that specifically recognizes the sugar chain in the sugar-binding protein based on a comparison with the separation result of the obtained reaction mixture It is characterized by including.
本発明のスク リ一二ング方法によれば、 耱鎖混合物のみの分離結果と 、 糖鎖判定工程または糖鎖結合性タンパク質判定工程終了後の反応混合 物の分離結果を比較し、 分離結果に相違があれば、 糖鎖混合物中に存在 する糖鎖結合性タンパク質と結合する糖鎖の有無や、 複雑な糖鎖結合性 タンパク質中、 例えば、 生体由来のタンパク質混合物中に存在する糖鎮 を特異的に認識する糖鎖結合性タンパク質の有無を判定することができ る。 このよ うにして、 糖鎖のスク リーニングおよび糖鎖結合性タンパク 質のスク リーニングを行うことができる。 また、 分離結果の解析により 、 糖鎖および糖鎖結合性タンパク質の有無の判定に加えて、 その耱鎖の 構造および糖鎖結合性タンパク質が認識する糖鎖の構造を明らかにする ことができる-。 - - 本発明のスク リ一二ング方法によれば、 新規糖鎖結合性タンパク質や 糖鎮結合性タンパク質が特異的に認識する新規糖鎖を得ることができる 可能性がある。 これらは、 新薬の開発や、 病態の解析に非常に有用であ る。  According to the screening method of the present invention, the separation result of only the 耱 chain mixture is compared with the separation result of the reaction mixture after the completion of the sugar chain determination step or the sugar chain binding protein determination step. If there is a difference, the presence or absence of a sugar chain that binds to the sugar chain-binding protein present in the sugar chain mixture, and the specificity of the sugar chain present in a complex sugar chain-binding protein, for example, a biologically-derived protein mixture It is possible to determine the presence or absence of a sugar chain-binding protein that is specifically recognized. In this way, screening of sugar chains and screening of sugar chain-binding proteins can be performed. In addition, by analyzing the separation results, it is possible to determine not only the presence of the sugar chain and the sugar chain-binding protein, but also to clarify the structure of the 耱 chain and the structure of the sugar chain recognized by the sugar chain-binding protein. . According to the screening method of the present invention, there is a possibility that a novel sugar chain specifically recognized by a novel sugar chain-binding protein or a sugar-binding protein can be obtained. These are very useful for the development of new drugs and the analysis of disease states.
本発明のスク リ 一ニング方法において、 上記耱鎖判定工程または糖鎖 結合性タンパク質判定工程は、 キヤビラ リ一電気泳動による泳動時間の 差によつて糖鎖または糖鎖結合性タンパク質の有無を判定することが好 ましい。 In the screening method of the present invention, in the 耱 chain determination step or the sugar chain binding protein determination step, the presence or absence of a sugar chain or a sugar chain binding protein is determined based on a difference in electrophoresis time by capillary electrophoresis. Good to do Good.
キヤビラ リ一電気泳動による分離を行う ことによ り、 本発明のスク リ ニング方法の精度や信頼性をよ り一層向上させるこ とができ、 その上 、 自動測定も可能となる„  By performing separation by capillary electrophoresis, the accuracy and reliability of the screening method of the present invention can be further improved, and further, automatic measurement can be performed.
本発明のス ク リーニング方法において、 上記糖鎖混合物の糖鎖は、 標 識されていてもよレ、。  In the screening method of the present invention, the sugar chains of the sugar chain mixture may be labeled.
これによ り、 糖鎖、 糖鎖結合性タ ンパク質、 糖鎖一糖鎖結合性タンパ ク質複合体を一層容易に分離するこ とができる。  As a result, sugar chains, sugar chain-binding proteins, and sugar chain-sugar chain-binding protein complexes can be more easily separated.
本発明のス ク リーニング方法において、 上記糖鎖または糖鎖結合性タ ンパク質がシアル酸残基を含む場合に、 当該シアル酸残基を除去するェ 程を含んでいてもよい。  In the screening method of the present invention, when the sugar chain or the sugar chain-binding protein contains a sialic acid residue, the method may include a step of removing the sialic acid residue.
糖鎖または糖鎖結合性タンパク質のシアル酸残基を除去することによ り、 耱鎖ー糖鎖結合性タンパク質の相互作用が、 よ り一層強固なものと なる場合がある。 これにより 、 糖鎖、 糖鎖結合性タンパク質、 および糖 鎮ー糖鎖結合性タンパク質を一層精度よく分離することができる。 すな わち、 糖鎖判定工程および糖鎖結合性タンパク質判定工程における、 判 定の信頼性が一層向上する。  By removing the sialic acid residue of the sugar chain or the sugar chain-binding protein, the interaction between the 耱 chain and the sugar chain-binding protein may be further strengthened. Thereby, sugar chains, sugar chain-binding proteins, and sugar chain-sugar chain-binding proteins can be more accurately separated. That is, the reliability of the determination in the sugar chain determination step and the sugar chain binding protein determination step is further improved.
本発明のス ク リ一二ング方法において、 上記特異的に認識する糖鎖が 明らかな 1種以上の糖鎖結合性タンパク質または構造の明らかな 1種以 上の糖鎖混合物が、 支持体に固定されていてもよい。  In the screening method of the present invention, the above-mentioned one or more kinds of sugar chain-binding proteins whose sugar chains specifically recognized or a mixture of one or more kinds of sugar chains whose structure is clear are added to a support. It may be fixed.
換言すれば、 上記特異的に認識する糖鎖が明らかな 1種以上の糖鎖結 合性タンパク質または構造の明らかな 1種以上の糖鎖混合物は、 例えば In other words, the one or more sugar chain-binding proteins whose sugar chains specifically recognized or the mixture of one or more sugar chains whose structure is apparent are, for example,
、 基板に高密度に固定された、 マイ クロチップ、 マイクロアレイ、 マク ロアレイ となっていてもよい。 これによ り、 大規模なスク リーニングを同時に行う ことができる。 ま た、 例えば、 電気泳動のゲル媒体など、 分離に用いる試薬や媒体を同時 に基板に固定すれば、 さらにスク リ一二ングに要する時間が短縮される なお、 本発明には、 上記本発明のスク リ ーニング方法によって得られ た、 新規糖鎖および新規糖鎖結合性タンパク質も含まれる。 It may be a microchip, microarray, or macroarray fixed at high density to a substrate. This allows large-scale screening to be performed simultaneously. Further, if reagents and media used for separation, such as gel media for electrophoresis, are simultaneously fixed to the substrate, the time required for screening is further reduced. The novel sugar chains and novel sugar chain-binding proteins obtained by the above screening method are also included.
また、 上記糖鎖判定工程および糖鎖結合性タンパク質判定工程は、 換 言すれば、 糖鎮または糖鎖結合性タンパク質の分類を行う工程 (糖鎖分 類工程および糖鎖結合性タンパク質分類工程) である。 したがって、 本 発明のスク リ ^"ニング方法は、 糖鎖または糖鎖結合性タ ンパク質の分類 方法、 判別方法、 選別方法、 確認方法、 または検出方法という こと もで きる。  In addition, the sugar chain determination step and the sugar chain binding protein determination step are, in other words, a step of classifying a sugar chain or a sugar chain binding protein (a sugar chain classification step and a sugar chain binding protein classification step). It is. Therefore, the screening method of the present invention can be said to be a method for classifying, discriminating, selecting, confirming, or detecting a sugar chain or a sugar chain-binding protein.
本発明の糖鎖一糖鎖結合性タンパク質の相互作用の測定用試薬は、 上 記本発明の測定方法に用いる測定用試薬であって、 特異的に認識する糖 鎖が明らかな 1種以上の糖鎖結合性タンパク質または構造の明らかな 1 種以上の糖鎖混合物を含んでいることを特徴と している。  The reagent for measuring the interaction between a sugar chain and a sugar chain-binding protein according to the present invention is a measuring reagent used in the above-described measuring method of the present invention, wherein one or more types of sugar chains specifically recognized are clearly identified. It is characterized by containing a sugar-binding protein or a mixture of one or more sugar chains whose structure is apparent.
本発明の測定試薬によれば、 上記測定方法による効果と同様に、 複 '雑 な複数の糖鎖混合物であっても、 一斉に糖鎖一糖鎖結合性タンパク質の 相互作用を測定することができる測定方法を測定用試薬と して提供でき る。 さ らに、 上記測定方法を容易に実施することができ、 しかも測定方 法を簡素化できる。 それゆえ、 測定時間の短縮が図れる。  According to the measuring reagent of the present invention, similarly to the effect of the above-described measuring method, even in the case of a complex mixture of a plurality of sugar chains, the interaction of the sugar chain-single sugar chain binding protein can be simultaneously measured. Possible measurement methods can be provided as measurement reagents. Furthermore, the above-mentioned measuring method can be easily implemented, and the measuring method can be simplified. Therefore, measurement time can be reduced.
また、 本発明の測定キッ トは、 上記本発明の糖鎖一糖鎖結合性タンパ ク質の相互作用の測定用試薬を含んでいることを特徴と している。  Further, the measurement kit of the present invention is characterized by containing the reagent for measuring the interaction between the sugar chain and the sugar chain-binding protein of the present invention.
本発明の測定キッ トによれば、 上記本発明の測定方法による効果と同 0 According to the measuring kit of the present invention, the same effects as the above-described measuring method of the present invention are obtained. 0
様に、 一斉に糖鎖一糖鎖結合性タンパク質の相互作用を測定することが できる測定方法を、 測定キシ トと して提供できる。 さ らに、 上記測定方 法を容易に実施することができ、 しかも測定方法を簡素化できる。 それ ゆえ、 測定時間の短縮が図れる。 As described above, a measurement method that can simultaneously measure the interaction between a sugar chain and a sugar chain-binding protein can be provided as a measurement kit. Furthermore, the above-mentioned measuring method can be easily implemented, and the measuring method can be simplified. Therefore, measurement time can be reduced.
上記 「糖鎖結合性タンパク質」 は、 例えば、 既知の 1 0 0種類以上の 糖鎖結合性タンパク質から、 任意かつ多種多様に選択して用いることが できる。 後述する実施例で使用した 6つのレクチンを用いることが好ま しい。 すなわち、 タチナタ豆レクチン (ConA : Concanavalin A) 、 小 麦胚芽レク チン : wheat germ agglutinin) チューリ ップレクチ ン (TGA : T. gesneriana agglutinin) , リ ゾプス カ ビ レク チン(RSL : Rizopus stronipher lectin) 、 二 ホ ン ニ ヮ 卜 コ レ ク チ ン (SSA : Samb.ucus sieboldiana lectin)、 づ ヌェンシユ レクテン (MAM : Maackia anraurensis lectin)を用いることが好ま しく 、 これらのレクチンを複数 組み合わせた糖鎖結合性タンパク質ライブラ リー (レクチンセッ ト) を 用いることがよ り好ましい。 これらのレクチンは、 天然に存在するレク チンの中でも、 糖鎖に特異的に結合することによって、 泳動結果に顕著 な相違が認められる。 このため、…上記レクチンセッ トは、'各種生物中に 含まれるほとんどの糖鎖を網羅的に解析するために特に適している。 相互作用測定の省力化、 および、 糖鎖の検出率の向上、 並びに、 泳動 チャー トによる糖鎖解析の簡便性を図るためには、 実施例で用いた 6つ の糖鎖結合性タンパク質のうち、 少なく とも 1つを用いることが好まし い。 さ らに、 糖鎖判定工程の判定精度をより向上するためには、 上記 6 つの糖鎖結合性タンパク質による分離結果を、 複数組み合わせて、 解析 することが好ましい。 これによ り 、 糖鎖の判定精度が著しく高まり、 糖 鎖の検出率 9 5 %以上を確保するこ とができる。 The “sugar chain-binding protein” can be arbitrarily and variously selected from, for example, 100 or more known sugar chain-binding proteins. It is preferable to use the six lectins used in Examples described later. That is, Tachinata bean lectin (ConA: Concanavalin A), wheat germ lectin: wheat germ agglutinin, tulip lectin (TGA: T. gesneriana agglutinin), RSL: Rizopus stronipher lectin, RSL It is preferable to use nicotine collectin (SSA: Samb.ucus sieboldiana lectin) and nuenshi lecten (MAM: Maackia anraurensis lectin), and a sugar chain-binding protein library obtained by combining a plurality of these lectins. It is more preferable to use (lectin set). Among these naturally occurring lectins, remarkable differences in electrophoresis results are observed due to specific binding to sugar chains. For this reason, the lectin set is particularly suitable for comprehensively analyzing most sugar chains contained in various organisms. In order to reduce the labor of the interaction measurement, improve the sugar chain detection rate, and to simplify the sugar chain analysis using the electrophoretic chart, the six sugar chain binding proteins used in the examples were used. It is preferred to use at least one. Further, in order to further improve the determination accuracy in the sugar chain determination step, it is preferable to analyze a plurality of combinations of the separation results obtained by the above six sugar chain binding proteins. As a result, the accuracy of sugar chain determination is remarkably improved, A chain detection rate of 95% or more can be secured.
一方、 上記 「糖鎖混合物」 は、 既知の 1 0 0 0種以上の耱鎖から、 任 意かつ多種多様に選択して用いることができる。 後述する実施例で使用 した、 糖タンパク質に由来する、 5つの糖鎖混合物ライブラ リ ーを用い る こ とが好ま しい。 具体的には、 α 1酸性糖タンパク質 (AGP : a 1- acid glycoprotein) 、 フェツ ン (f etuin)、 'ボムコィ ト 、ovomucoid)、 ィムノグロブリ ン G (IgG : immunoglobulin G) , およびチログロブリ ン (thyroglobulin) , 由来の糖鎖混合物を用いることが好ましい。 上記糖 鎖ライブラ リ一は、 多く の糖鎖の中でも、 糖鎖結合性タンパク質と特異 的に結合することによって、 泳動結果に顕著な相違が認められる。 その ため、 上記糖鎖ライブラ リ一は、 天然に存在する糖鎖結合性タンパク質 の解析に特に適している。 なお、 糖タンパク質に由来する糖鎮混合物は、 例えば、 適当な酵素処理によって、 容易に得られる。  On the other hand, the “sugar chain mixture” can be arbitrarily and widely selected from more than 1000 kinds of known 耱 chains. It is preferable to use a five-sugar-chain mixture library derived from a glycoprotein, which is used in Examples described later. Specifically, α1 acidic glycoprotein (AGP: a 1-acid glycoprotein), fetuin, 'vomucoid, ovomucoid), immunoglobulin G (IgG), and thyroglobulin It is preferred to use a mixture of sugar chains derived from,. The above-mentioned sugar chain library shows a remarkable difference in the electrophoresis results by specifically binding to the sugar chain-binding protein among many sugar chains. Therefore, the above-mentioned sugar chain library is particularly suitable for the analysis of naturally occurring sugar chain binding proteins. In addition, the glycolytic mixture derived from glycoprotein can be easily obtained by, for example, appropriate enzyme treatment.
解析測定の省力化、 および、 検出率の向上を図るためには、 上記 5つ の糖鎖混合物ライプラ リーのう ち、 少なく とも 1つを用いるこ とが好ま しい。 さらに、 糖鎖結合性タンパク質判定工程の判定精度をよ り 向上す るためには、 上記 5つの糖鎮混合物ライブラ による分離結果を'、 複 数組み合わせて、 解析することが好ま しい。 これによ り、 糖鎖結合性タ ンパク質の判定精度が著しく高ま り、 糖鎖結合性タンパク質の検出率 9 5 %以上を確保することができる。  In order to save labor in analytical measurement and improve the detection rate, it is preferable to use at least one of the above five sugar chain mixture libraries. Further, in order to further improve the determination accuracy in the sugar chain-binding protein determination step, it is preferable to analyze a combination of two or more of the separation results obtained by the above five sugar mixture mixture libraries. As a result, the accuracy of determination of sugar chain-binding proteins is significantly increased, and a sugar chain-binding protein detection rate of 95% or more can be ensured.
上記糖鎖混合物ライブラリ一およぴ糖鎖結合性タンパク質を用いるこ とによって、 糖鎖および糠鎖結合性タ ンパク質の有無だけでなく 、 構造 が不明な糖鎖および糖鎖結合性タンパク質の構造解明や、 分類を行う こ とも可能である。 しかも、 天然に存在する糖鎖または糖鎖結合性タ ンパ ク質を簡便に、 ハイスループッ トで解析することが可能である。 By using the above-mentioned sugar chain mixture library and the sugar chain binding protein, not only the presence or absence of sugar chain and bran chain binding protein but also the structures of sugar chains and sugar chain binding proteins whose structures are unknown are known. Clarification and classification are also possible. Moreover, naturally occurring sugar chains or sugar chain binding proteins The quality can be easily analyzed with high throughput.
本発明のさ らに他の目的、 特徴、 および優れた点は、 以下に示す記載 によって十分わかるであろう。 また、 本発明の利益は、 添付図面を参照 した次の説明で明白になるであろう。 図面の簡単な説明  Still other objects, features, and strengths of the present invention will be made clear by the description below. Also, the advantages of the present invention will become apparent in the following description with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a ) 〜図 1 ( c ) は、 実施例 1における a 1酸性糖タンパク質 由来の糖鎖のレクチン添加の有無による電気泳動の結果を示した図であ り、 図 1 ( a ) はレクチンを添加しない場合の電気泳動の結果を示した 図であり、 図 1 ( b ) はひ 1酸性糖タンパク質由来の糖鎖の模式図であ り 、 図 1 ( c ) は 3種のレクチン (WGA、 C o n A、 T GA) を添加 した場合の電気泳動の結果を示した図である。  FIGS. 1 (a) to 1 (c) show the results of electrophoresis of glycans derived from a1 acidic glycoprotein with and without lectin addition in Example 1. FIG. 1 shows the results of electrophoresis without the addition of lectin. FIG. 1 (b) is a schematic diagram of a sugar chain derived from an acidic glycoprotein, and FIG. 1 (c) is a diagram showing three types of lectins ( FIG. 4 is a diagram showing the results of electrophoresis when WGA, ConA, and TGA) were added.
図 2は、 実施例 1 で用いた α 1酸性糖タンパク質由来の糖鎖の構造を 示した図である。  FIG. 2 is a diagram showing a structure of a sugar chain derived from α1 acidic glycoprotein used in Example 1.
図 3 ( a ) 〜図 3 ( c ) 〖ま、 実施例 2におけるフェツイ ン由来の糖鎖 のレクチン添加の有無による電気泳動の結果を示した図であり、 図 3 ( a ) はレクヂンを添加しない場合の電気泳動-の結果を示した図であり、 図 3 ( b ) はフェツイ ン由来の糖鎖の模式図であり、 図 3 ( c ) は 3種 のレクチン (WG A、 C o n A、 T GA) を添加した場合の電気泳動の 結果を示した図である。  FIGS. 3 (a) to 3 (c) show the results of electrophoresis of fetuin-derived sugar chains with and without lectin addition in Example 2, and FIG. Fig. 3 (b) is a schematic diagram of a sugar chain derived from fetuin, and Fig. 3 (c) is a diagram showing the results of electrophoresis when no lectin was used. FIG. 4 shows the results of electrophoresis when TGA) was added.
図 4は、 実施例 2で用いたフエツイン由来の糖鎖の構造を示した図で ある。  FIG. 4 is a diagram showing a structure of a sugar chain derived from fetuin used in Example 2.
図 5 ( a ) 〜図 5 ( c ) は、 実施例 3におけるオボムコイ ド由来の耱 鎖のレクチン添加の有無による電気泳動の結果を示した図であり、 図 5 3 FIGS. 5 (a) to 5 (c) show the results of electrophoresis of ovomucoid-derived heavy chain in Example 3 with and without the addition of lectin. Three
( a ) はレクチンを添加しない場合の電気泳動の結果を示した図であり 、 図 5 ( b ) はオボムコイ ド由来の糖鎖の模式図であり、 図 5 ( c ) は 3種のレクチン ( P HA— E 4、 WGA、 C o n A) を添加した場合の 電気泳動の結果を示した図である。 (a) is a diagram showing the results of electrophoresis when no lectin was added, FIG. 5 (b) is a schematic diagram of ovomucoide-derived sugar chains, and FIG. 5 (c) is a diagram showing three types of lectins ( FIG. 4 is a view showing the results of electrophoresis when PHA—E 4 , WGA, and Con A) were added.
図 6は、 実施例 3で用いたオボムコィ ド由来の糖鎖の構造を示した図 である。  FIG. 6 is a diagram showing the structure of a sugar chain derived from ovomucoid used in Example 3.
図 7は、 実施例 4における糖鎖混合物に濃度を変化させてレクチン ( WG A) を添加した場合の電気泳動の結果を示した図である。  FIG. 7 is a diagram showing the results of electrophoresis when lectin (WGA) was added to the sugar chain mixture in Example 4 while changing the concentration.
図 8は、 図 7の結果における ( t — — 1 と [P ]— 1 との関係をプ ロ ッ ト したグラフである。 Figure 8 is a result of (t 7 - - 1 [P] - 1 and the relationship is a graph flop Lock bets.
図 9 ( a ) 〜図 9 ( b ) は、 実施例 5の結果を示す図であり、 図 9 ( a ) はゥシ I g G由来の糖鎖の模式図であり、 図 9 ( b ) はゥシ I g G 由来の糖鎖に粗力ビ抽出液の添加の有無による電気泳動の結果を示す図 である。  FIGS. 9 (a) to 9 (b) are diagrams showing the results of Example 5, and FIG. 9 (a) is a schematic diagram of a sugar chain derived from Psi IgG, and FIG. 9 (b) FIG. 3 is a view showing the results of electrophoresis with and without the addition of a crude viscous extract to sugar chains derived from Psi IgG.
図 1 0は、 各実施例の結果に基づいた、 糖タンパク質由来の糖鎖のハ イ スループッ ト機能分類を示した図である。  FIG. 10 is a diagram showing high-throughput functional classification of glycoprotein-derived sugar chains based on the results of each example.
図 1 1 は、 各実施例で用いたレクチンの濃度を示した図である。■ 図 1 2 ( a ) 〜図 1 2 ( c ) は、 実施例 6におけるフェツイ ン由来の 糖鎖のレクチン添加の有無による電気泳動の結果を示した図であり、 図 1 2 ( a ) はレクチンを添加しない場合の電気泳動の結果を示した図で あり、 図 1 2 ( b ) はフェツイ ン由来の糖鎖の模式図であり、 図 1 2 ( c ) は 3種のレクチン (T GA、 MAM, S S A) を添加した場合の電 気泳動の結果を示した図である。  FIG. 11 is a diagram showing the concentration of lectin used in each Example. ■ FIGS. 12 (a) to 12 (c) show the results of electrophoresis of fetuin-derived sugar chains with and without the addition of lectin in Example 6, and FIG. 12 (a) shows the results. Fig. 12 (b) is a schematic diagram of a sugar chain derived from fetuin, and Fig. 12 (c) is a diagram showing the results of electrophoresis without the addition of lectin. , MAM, SSA) are shown.
図 1 3は、 実施例 6で用いたフヱツイ ン由来の糖鎖の構造を示した図 である。 FIG. 13 is a diagram showing the structure of a phtophin-derived sugar chain used in Example 6. It is.
図 1 4 ( a ) 〜図 1 4 ( b ) は、 実施例 7の結果を示す図であり、 図 1 4 ( a ) はゥシ I g G由来の糖鎖のレクチン (R S L) 添加の有無に よる電気泳動の結果を示す図であり、 図 1 4 ( b ) はゥシ I g G由来の 糖鎖の模式図である。  FIGS. 14 (a) to 14 (b) show the results of Example 7. FIG. 14 (a) shows the presence or absence of the addition of lectin (RSL) to the sugar chain derived from Psi IgG. FIG. 14 (b) is a schematic diagram of a sugar chain derived from Psi IgG.
図 1 5は、 実施例 8の結果を示す図であり、 ブタチログロブリ ン由来 の糖鎖の、 レクチン (R S L) 添加の有無による電気泳動の結果および ブタチログ口プリ ン由来の糖鎖の模式図である。  FIG. 15 is a diagram showing the results of Example 8, and is a schematic diagram of the results of electrophoresis of a sugar chain derived from porcine thyroglobulin with and without the addition of lectin (RSL) and a sugar chain derived from porcine tigrogopenin. .
図 1 6は、 実施例 8で用いたブタチログロブリ ン由来の糖鎖の構造を 示した図である。  FIG. 16 is a diagram showing a structure of a glycan derived from butyroglobulin used in Example 8.
図 1 7 ( a ) 〜図 1 7 ( b ) は、 実施例 9の結果を示す図であり、 図 1 7 ( a ) は α 1酸性糖タンパク質由来の糖鎖の、 レクチン (AAL) 添加の有無による電気泳動の結果を示す図であり、 図 1 7 ( b ) はひ 1 酸性糖タンパク質の模式図である。 FIGS. 17 (a) to 17 (b) show the results of Example 9. FIG. 17 (a) shows the results of the addition of lectin (AAL) to the sugar chain derived from α1 acidic glycoprotein. It is a figure which shows the result of the electrophoresis with or without, and FIG. 17 (b) is a schematic diagram of a 1-acid glycoprotein.
図 1 8は、 実施例 9で用いた α 1酸性糖タンパク質由来の糖鎖の構造 を示した図である。 発明を実施するための最良の形態 FIG. 18 is a diagram showing a structure of a sugar chain derived from α1 acidic glycoprotein used in Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の一形態について、 図 1 ( a ) ないし図 1 8に基づいて 説明すれば以下の通りである。 なお、 本発明はこれに限定されるもので はない。  One embodiment of the present invention will be described below with reference to FIGS. 1 (a) to 18. Note that the present invention is not limited to this.
本実施形態では、 本発明の糖鎖一糖鎖結合性タンパク質の相互作用の 測定方法を利用する一例と して、 当該測定方法を用いたスク リーニング 方法について説明する。 本発明のスク リーニング方法は、 ( 1 ) 糖鎖のスク リーニング方法、 ( 2 ) 糖鎖結合性タンパク質のスク リ ーニング方法を、 糖鎖一タンパク 質間相互作用の測定方法を用いて大規模に、 しかも一斉にスク リーニン グすることを可能とする方法である。 両者のスク リーニング方法は、 い ずれも糖鎖一糖鎮結合性タンパク質の相互作用に基づいている点では同 様である。 しかし、 スク リーニングの対象とするものが、 糖鎖であるか 糖鎖結合性タンパク質であるかのみの違いである。 In the present embodiment, as an example of using the method for measuring the interaction between a sugar chain and a sugar chain-binding protein of the present invention, a screening method using the measurement method will be described. The screening method of the present invention comprises: (1) a method for screening a sugar chain; and (2) a method for screening a sugar chain-binding protein on a large scale using a method for measuring the interaction between a sugar chain and a protein. This is a method that enables simultaneous screening. Both screening methods are similar in that both are based on the interaction of glycans-monosaccharide-binding proteins. However, the only difference is whether the target of screening is a sugar chain or a sugar chain-binding protein.
すなわち、 上記 ( 1 ) の糖鎖のスク リ ーニング方法は、 糖鎖に対する 特異性が知られている糖鎖結合性タンパク質と当該糖鎖結合性タンパク 質が特異的に認識する耱鎖が含まれる可能性のある糖鎖混合物を含む試 料とを組み合わせる糖鎖反応工程と、 当該糖鎖混合物のみの分離結果と 糖鎖反応工程後の反応混合物の分離結果とを比較することによ り、 糖鎖 結合性タンパク質と結合する糖鎖の有無を判定する糖鎖判定工程とを含 んでいる。  That is, the method for screening a sugar chain in the above (1) includes a sugar chain-binding protein whose specificity for a sugar chain is known, and a 耱 chain specifically recognized by the sugar chain-binding protein. The sugar chain reaction step in which a sample containing a possible sugar chain mixture is combined, and the separation results of the sugar chain mixture alone and the reaction mixture after the sugar chain reaction step are compared. A sugar chain determination step of determining the presence or absence of a sugar chain that binds to the chain-binding protein.
また、 上記 ( 2 ) の糖鎖結合性タンパク質のスク リ ーニング方法は、 任意のオリ ゴ糖混合物または糖鎖の組成が知られている糖タンパク質か ら得られる糖鎖混合物を糖鎖ライブラ リ一と して、 このライブラ リ」ど 、 細胞や組織などから得られた糖鎖結合性タンパク質が含まれる可能性 のある試料とを組み合わせる糖鎖結合性タンパク質反応工程と、 この耱 鎖ライブラ リ一の糖鎖混合物のみの分離結果と糖鎖結合性タンパク質反 応工程後の反応混合物の分離とを比較'することにより、 糖鎖ライブラ リ 一と結合する糖鎖結合性タンパク質の有無を判定する糖鎖結合性タンパ ク質判定工程とを含んでいる。  Further, the method for screening a sugar chain-binding protein of the above (2) is characterized in that a sugar chain library obtained from an arbitrary oligosaccharide mixture or a sugar protein having a known sugar chain composition is used as a sugar chain library. As a result, a sugar chain-binding protein reaction step of combining a sample obtained from cells, tissues, and the like, which may contain sugar chain-binding proteins, with this library, By comparing the results of separation of only the glycan mixture with the separation of the reaction mixture after the glycan-binding protein reaction step, the presence or absence of glycan-binding proteins that bind to a glycan library is determined. A binding protein determination step.
ここで上記 「糖鎖結合性タンパク質」 は、 特定の糖鎖を特異的に認識 し、 結合するタンパク質である。 そして、 特定の糖鎖に対する特異性が 知られている代表的な例と しては、 レクチン、 または糖鎖抗体などが挙 げられる。 Here, the “sugar chain-binding protein” specifically recognizes a specific sugar chain And a protein that binds. Typical examples of specific sugar chains with known specificity include lectins and sugar chain antibodies.
また、 上記 「任意のオリ ゴ糖混合物」 と しては、 特に限定されるもの ではないが、 例えば、 2本鎖、 3本鎖、 4本鎮オリ ゴ糖の混合物、 ヒ ア ル口ン酸ゃコン ドロイチン硫酸などのグリ コサミ ノ グリ力ン類の消化に よ り得られる、 グリ コサミ ノダリカン由来のオリ ゴ糖混合物を挙げるこ とができる。  The “arbitrary oligosaccharide mixture” is not particularly limited, but may be, for example, a mixture of double-stranded, triple-stranded, and quadruple oligosaccharides, and hyal sulfonic acid.オ リ Glycosamino-dalican-derived oligosaccharide mixtures obtained by digestion of glycosamino-glycans such as chondroitin sulfate can be mentioned.
また、 上記 「糖タンパク質から調製される糖鎖の混合物」 と しては、 特に限定されるものではないが、 例えば、 2本鎖、 3本鎖、 4本鎖およ びルイス X型糖鎖の混合物からなる a 1酸性糖タンパク質を、 適当なグ リ コシダ一ゼ処理などによつて調製される糖鎖混合物を挙げることがで きる。  The “mixture of sugar chains prepared from glycoproteins” is not particularly limited, but includes, for example, double-stranded, triple-stranded, quadruple-chain, and Lewis X-type sugar chains. A sugar chain mixture prepared by treating a1 acidic glycoprotein consisting of the above mixture with an appropriate glycosidase treatment or the like.
上記糖鎖、 糖鎖結合性タンパク質、 オリ ゴ糖の由来は、 特に限定され るものではなく 、 目的に応じて、 動物、 植物、 微生物などから調製すれ ばよい。  The origin of the sugar chains, sugar chain-binding proteins and oligosaccharides is not particularly limited, and may be prepared from animals, plants, microorganisms and the like according to the purpose.
上記糖鎖反応工程および糖鎖結合性タンパク質反応工程を行う条件は 、 糖鎖と糖鎖結合性タンパク質とが十分に反応し、 糖鎖一糖鎖結合性タ ンパク質複合体を形成できる条件であれば、 特に限定されるものではな い。  The conditions for performing the sugar chain reaction step and the sugar chain binding protein reaction step are such that the sugar chain and the sugar chain binding protein can sufficiently react with each other to form a sugar chain-single sugar chain binding protein complex. If there is, there is no particular limitation.
例えば、 上記 ( 1 ) のスク リーニング方法の場合、 糖鎖反応工程は、 後述する α 1酸性糖タンパク質の糖鎖の相互作用を測定した実施例 (図 1 ( a ) 〜図 1 ( c ) 参照) にも示すよ うに、 最初にレクチンが存在し ない条件で α 1酸性糖タンパク質の糖鎖を分析する。 続いて、 小麦胚芽 7 For example, in the case of the screening method of the above (1), the sugar chain reaction step was carried out in an example in which the interaction of the sugar chain of the α1 acidic glycoprotein described later was measured (see FIGS. 1 (a) to 1 (c)). As shown in), first, the sugar chains of α1 acidic glycoprotein are analyzed in the absence of lectin. Then, wheat germ 7
レクチン (WGA) を添加した緩衝液を充填した溶融シリ カ毛細管や表 面修飾シリ カ毛細管中、 あるいはマイク ロチップ中で目的の糖鎖結合性 タンパク質から得られた糖鎖混合物の分析を行い、 引き続き、 タチナタ 豆由来のレクチン (C o n A) 、 そして、 チューリ ップ由来のレクチン (T GA) を添加した緩衝液で分析を行う。 こ こでは、 図 1 ( c ) に示 したレクチン濃度を用いて分析を行っているが、 これらの濃度に限定さ れるものではなく、 糖鎖の組み合わせ、 あるいは使用するレクチンの種 類によって適宜変更すればよい。 通常、 ナノモル濃度 (n M) 〜ミ リモ ル濃度 (mM) 濃度のレベルまで広い範囲で使用することができる。 Analysis of the glycan mixture obtained from the target glycan-binding protein was performed in a fused silica capillary or a surface-modified silica capillary filled with a buffer containing lectin (WGA), or in a microchip. The analysis is performed using a buffer solution containing lectin (Tonata) derived lectin (C on A) and tulip derived lectin (TGA). Here, the analysis was performed using the lectin concentrations shown in Fig. 1 (c), but the analysis is not limited to these concentrations, and may be changed as appropriate depending on the combination of sugar chains or the type of lectin used. do it. Generally, it can be used in a wide range from nanomolar (nM) to millimolar (mM) concentrations.
このよ うな糖鎖反応工程の終了後、 糖鎖混合物にレクチンを添加した 場合の分離結果と、 添加しない場合の分離結果とを比較することによ り 、 個々の糖鎖と糖鎮結合性タンパク質との相互作用の有無を耱鎮判定ェ 程によ り判定することができる。 さ らに、 不明であった糖鎖および糖鎖 結合性タンパク質が認識する糖鎖を明らかにすることもできる。  After the completion of such a sugar chain reaction step, the separation results obtained when lectin was added to the sugar chain mixture and the separation results obtained when no lectin was added were compared, so that the individual sugar chains and the glycolytic proteins were compared. It is possible to determine the presence or absence of the interaction with the water by the rejection determination process. Furthermore, it is also possible to clarify the sugar chains recognized by unknown sugar chains and sugar chain-binding proteins.
なお、 本発明において使用する糖鎖に対する特異性が知られている糖 鎮結合性タンパク質ゃレクチンの種類は、 特に限定されるものではない 。 また、 複数の種類のレクチンを任意に組み合わせて使用することが ·望 ましい。 すなわち、 糖鎖判定工程では、 レクチンを添加した場合の分離 結果を、 複数組み合わせて判定するこ とが好ましい。 例えば、 小麦胚芽 レクチン (WG A) 、 チューリ ップレクチン ( T G A) 、 タチタナ豆レ クチン (コンカナパリ ン A (C o n A) ) などを添加した場合の分離結 果を組み合わせてもよい。 このよ うに、 複数のレクチンを添加した場合 の分離結果を組み合わせれば、 糖鎖混合物中の糖鎖の組成、 構造、 およ び機能などをより詳細に分額することができる。 なお、 上記のレクチン に限定されるものではなく 、 種々の レクチンを用いるこ とができ る。 また、 このよ うなレクチンと反応するかどうかを分析する試料となる 糖鎖混合物は、 従来公知の方法によって調製すればよい。 例えば、 ァフ ィニティ一クロマ トグラフィ一による分離、 ゲル電気泳動によ り分離後 、 目的とする糖タンパク質を抽出したものを試料と してもよい。 また、 抽出した糖タンパク質をグリ コシダーゼ処理などにより、 糖鎖を分離し たものを使用してもよい。 The type of glycolytic protein ゃ lectin known to have specificity for a sugar chain used in the present invention is not particularly limited. It is also desirable to use a plurality of types of lectins in any combination. That is, in the sugar chain determination step, it is preferable to determine a combination of a plurality of separation results when lectin is added. For example, the separation results obtained when wheat germ lectin (WG A), tuliplectin (TGA), and tatita bean lectin (Concanapalin A (C on A)) are added may be combined. Thus, by combining the separation results obtained when a plurality of lectins are added, the composition, structure, function, and the like of the sugar chain in the sugar chain mixture can be divided in more detail. The above lectin The present invention is not limited to this, and various lectins can be used. A sugar chain mixture serving as a sample for analyzing whether or not it reacts with such a lectin may be prepared by a conventionally known method. For example, a sample obtained by extracting a glycoprotein of interest after separation by affinity chromatography or separation by gel electrophoresis may be used. In addition, those in which sugar chains are separated from the extracted glycoprotein by glycosidase treatment or the like may be used.
このよ うに、 上記 ( 1 ) のスク リーニング方法によれば、 例えば、 生 理的状態の変化に伴う糖鎖組成比の変化を網羅的にスク リ一二ングする ことができる。 したがって、 疾病における耱タンパク質の糖鎖の構造変 化、 および経時的な糖鎖混合物の各糖鎖の組成変化を簡単に分析できる 。 また、 糖鎖による翻訳後修飾の産物である糖タンパク質やプロテーォ ームなどの多種多様な生理活性や機能の解析に有用な、 機能による糖鎖 の分類を行う こ と もできる。  As described above, according to the screening method (1), for example, it is possible to comprehensively screen the change in the sugar chain composition ratio due to the change in the physiological state. Therefore, it is possible to easily analyze changes in the structure of the sugar chain of the 耱 protein in a disease and changes in the composition of each sugar chain of the sugar chain mixture over time. In addition, it is possible to classify sugar chains by function, which is useful for analyzing a wide variety of physiological activities and functions such as glycoproteins and proteasomes, which are products of post-translational modification by sugar chains.
一方、 上記 ( 2 ) のスク リ ーニング方法の場合、 糖鎖結合性タンパク 質反応工程は、 例えば、 血液、 細胞抽出液、 または微生物由来の抽出液 など、 糖鎖結合性ダンパク質を含む可能性のある緩衝溶液を充填した溶 融シリ カ毛細管や表面修飾シリ カ毛細管中、 または、 マイクロチップ中 で蛍光標識された任意のオリ ゴ糖混合物、 または、 糖鎖の組成 (構造) が明らかになつている糖タンパク質から調製された糖鎖の混合物を、 キ ャピラ リーに導入して分離を行う。  On the other hand, in the case of the above screening method (2), the sugar chain-binding protein reaction step may include sugar chain-binding protein such as blood, cell extract, or microorganism-derived extract. The composition (structure) of any oligosaccharide mixture or sugar chain fluorescently labeled in a fused silica capillary or surface-modified silica capillary filled with a buffer solution or in a microchip A mixture of sugar chains prepared from the existing glycoproteins is introduced into a capillary for separation.
そして、 前述の ( 1 ) のスク リ ーニング方法と同様に、 血液や細胞抽 出液あるいは微生物由来の抽出液などを含む緩衝液溶液と、 それらを含 まない緩衝液溶液とにおける糖鎮混合物中の各オリ ゴ糖混合物の分離挙 9 In the same manner as in the above-mentioned screening method (1), the glucose solution mixture containing a buffer solution containing blood, a cell extract, or a microorganism-derived extract, and a buffer solution containing no such solution is used. Separation of Each Oligosaccharide Mixture 9
動を比較することによ り、 ある特定の糖鎖と結合する糖鎖結合性タンパ ク質の存在を容易に判定することができる。 By comparing the movements, it is possible to easily determine the presence of a sugar chain-binding protein that binds to a specific sugar chain.
例えば、 後述の実施例に示すよ うに、 リ ソプス属のカビを粉砕し、 キ ャビラ リ一電気泳動用緩衝液で抽出した抽出液を泳動用緩衝液と し、 ゥ シィムノグロブリ ン ( I g G ) 中に存在する糖鎖をライブラ リ一と して 、 糖鎮ー糖鎖結合性タンパク質の相互作用を測定することができる (図 9 ( b ) 参照) 。 なお、 上記泳動用緩衝液には、 リ ソプス属の力ビに由 来する レクチン (R S L ) が含まれる。  For example, as shown in the examples below, molds of the genus Lysopus are crushed, and an extract obtained by extraction with a buffer for electrophoresis is used as a buffer for electrophoresis, and ゥ Simnoglobulin (IgG) The interaction between the sugar chain and the sugar chain-binding protein can be measured using the sugar chain present therein as a library (see FIG. 9 (b)). The electrophoresis buffer contains a lectin (RSL) derived from Rhizopus spp.
本発明のスク リーニング方法において、 以下に示すよ うな処理を行つ てもよい。  In the screening method of the present invention, the following processing may be performed.
本発明のスク リ一二ング方法において、 上記糖鎖判定工程または糖鎖 結合性タンパク質判定工程は、 キヤビラ リ一電気泳動による泳動時間の 差によって糖鎖または糖鎮結合性タンパク質の有無を判定することが好 ましい。  In the screening method of the present invention, in the sugar chain determination step or the sugar chain binding protein determination step, the presence or absence of a sugar chain or a sugar chain-binding protein is determined based on a difference in electrophoresis time by capillary electrophoresis. It is preferable.
キヤビラ リ一電気泳動は、 各種電気泳動の中でも極めて分離精度がよ レ、。 その理由は、 キヤピラ リー電気泳動は、 電気泳動を非常に細かい石 英、 ガラス、 または合成樹脂の毛細管で行う。 通常、 その毛細管の內径 は、 1〜数百/ ζ ιηである。 毛細管を用いれば、 熱が放散するので、 他の 電気泳動法より も約 1 0倍の電圧を印加することができる。 これにより 、 短時間で試料を分離することができる。 さ らに、 短時間で分離す の で、 拡散によるバン ドの広がりが小さく、 極めてよい分離が可能である  Capillary electrophoresis has extremely high separation accuracy among various types of electrophoresis. The reason for this is that capillary electrophoresis performs electrophoresis in very fine stone, glass, or synthetic capillary tubes. Usually, the diameter of the capillary is 1 to several hundreds / cm. When a capillary tube is used, heat is dissipated, so that a voltage approximately 10 times higher than that of other electrophoresis methods can be applied. Thus, the sample can be separated in a short time. Furthermore, since separation is performed in a short time, band spreading due to diffusion is small, and extremely good separation is possible.
さ らに、 少量の糖鎖混合物または糖鎮結合性タンパク質を含む試料で あっても、 精度よく分離することができる。 このため、 たとえ、 測定す る試料が少量であっても、 試料中の測定対象物の有無 (すなわち、 試料 中の糖鎮ゃ糖鎖結合性タンパク質の有無) を精度よく判定するこ とがで きる。 Furthermore, even a sample containing a small amount of a sugar chain mixture or a glycolytic protein can be separated with high accuracy. For this reason, even if Even if the amount of the sample is small, the presence or absence of the target substance in the sample (that is, the presence or absence of the sugar-binding sugar chain-binding protein in the sample) can be accurately determined.
その上、 キヤ ピラリー電気泳動は、 H P L C と同様に自動測定が可能 である。 それゆえ、 キヤピラリー電気泳動は、 本発明を自動化する上で 、 特に適している。 このように、 キヤピラ リー電気泳動による分離を行 う ことによ り、 本発明のスク リ一二ング方法の精度や信頼性をよ り一層 向上させることができ、 その上、 自動測定も可能となる。  In addition, capillary electrophoresis, like HPLC, allows for automated measurements. Therefore, capillary electrophoresis is particularly suitable for automating the present invention. Thus, by performing separation by capillary electrophoresis, the accuracy and reliability of the screening method of the present invention can be further improved, and furthermore, automatic measurement is possible. Become.
上記泳動時間の差によ り判定する以外にも、 例えば、 後述の実施例に 示すよ うに、 キヤビラリ一電気泳動の結果得られたチヤ一トを比較する ことによつても、 簡便に糖鎖および糖鎖結合性タンパク質の有無が明ら かになる。 しかも、 チャー トを比較することによって、 不明であった糖 鎖および糖鎖結合性タンパク質が認識する糖鎖を明らかにすることもで きる。  In addition to the determination based on the difference in the electrophoresis time, for example, as shown in the Examples below, the sugar chains can be easily obtained by comparing the chatters obtained as a result of the capillary electrophoresis. And the presence or absence of sugar chain binding protein becomes clear. Moreover, by comparing the charts, it is possible to clarify the unknown sugar chains and the sugar chains recognized by the sugar chain-binding protein.
上記糖鎖反応工程および糖鎖結合性タンパク質反応工程の前に、 上記 糖鎖または糖鎖結合性タンパク質がシアル酸残基を含む場合に、 当該シ アル酸残基が除去する工程を含んでいてもよい。 — ··· 換言すれば、 上記糖鎖または糖鎖結合性タンパク質を、 ァシァ口糖鎖 またはァシァロ耱タンパク質にする工程を含んでいてもよいという こと もできる。 糖鎖や糖鎖結合性タンパク質の中には、 シアル酸を含むこ と により安定に存在するものもある。 そして、 このシアル酸を除去するこ とによ り、 糖鎖や糖鎖結合性タンパク質の性質が大きく変化することも ある。 したがって、 本発明においても、 糖鎖または糖鎖結合性タンパク 質のシアル酸残基を除去する工程を含むことにより、 糖鎖一糖鎖結合性 タンパク質の相互作用が、 よ り一層強固なものとなる場合がある。 これ により、 糖鎖、 糖鎖結合性タンパク質、 および糖鎖一糖鎖結合性タンパ ク質を一層精度よく分離するこ とができる。 すなわち、 糖鎖判定工程お よび糖鎖結合性タンパク質判定工程における、 判定の信頼性が一層向上 する。 Before the sugar chain reaction step and the sugar chain binding protein reaction step, a step of removing the sialic acid residue when the sugar chain or the sugar chain binding protein contains a sialic acid residue is included. Is also good. — In other words, a step of converting the sugar chain or sugar chain-binding protein into an ash mouth sugar chain or an asharoprotein may be included. Some sugar chains and sugar chain-binding proteins are stably present by containing sialic acid. By removing this sialic acid, the properties of sugar chains and sugar chain-binding proteins may be significantly changed. Therefore, the present invention also includes a step of removing a sialic acid residue of a sugar chain or a sugar chain-binding protein, thereby providing a sugar chain-sugar chain binding protein. Protein interactions may be even more robust. Thereby, sugar chains, sugar chain-binding proteins, and sugar chain-single sugar chain-binding proteins can be separated with higher accuracy. That is, the reliability of the determination in the sugar chain determination step and the sugar chain binding protein determination step is further improved.
また、 例えば、 肝臓実質性細胞表面には、 ァシァ口糖タンパク質を特 異的に認識して細胞内に取り込む (エン ドサイ ト一シス) 受容体が存在 する。 このため、 本発明の糖鎖一糖鎖結合性タンパク質の相互作用の測 定方法を用いるこ とによ り、 このよ うなァシァロ糖タンパク質受容体を 標的とする薬剤の開発に応用するこ ともできる。  In addition, for example, on the surface of the parenchymal cell of the liver, there is a receptor that specifically recognizes and incorporates asia oral glycoprotein into the cell (endocytosis). Therefore, by using the method for measuring the interaction between a sugar chain and a sugar chain-binding protein of the present invention, the method can be applied to the development of a drug targeting such an acyloglycoprotein receptor. .
本発明のスク リ ーニング方法において、 上記糖鎖混合物の糖鎖は、 標 識されていてもよい。 · 標識の方法と しては、 特に限定されるものではなく 、 分離方法によつ て適宜設定すればよい。 例えば、 蛍光物質、 酵素類、 放射性同位元素、 発光性物質、 紫外吸収物質、 スピンラベル化剤、 などを糖鎖に結合させ た後分離すればよい。 これらの標識物質は、 従来公知の試薬を使用する ことができる。 例えば、 後述の実施例では、 瑭鎮を A P T S ( 9—アミ ノ ビレン一 1 、 4、 6 ト リスルフォネート) によつて蛍光標識している 。 これによ り 、 糖鎖、 糖鎖結合性タ ンパク質、 糖鎖一糖鎖結合性タンパ ク質複合体を一層容易に分離するこ とができる。 なお、 糖鎖の蛍光標識 試薬と しては、 A P T Sの他にも 2—アミ ノ安息香酸などのアミ ノベン ゼン誘導体、 2 _ア ミ ノ ビリ ジンゃァミ ノナフタ レン誘導体なども使用 することができる。  In the screening method of the present invention, the sugar chain of the sugar chain mixture may be labeled. · The method of labeling is not particularly limited, and may be set as appropriate depending on the separation method. For example, a fluorescent substance, an enzyme, a radioisotope, a luminescent substance, an ultraviolet absorbing substance, a spin labeling agent, etc. may be bound to a sugar chain and then separated. For these labeling substances, conventionally known reagents can be used. For example, in the examples described below, the proteins are fluorescently labeled with APTS (9-aminovirene-1,4,6 trisulfonate). As a result, sugar chains, sugar chain-binding proteins, and sugar chain-sugar chain-binding protein complexes can be more easily separated. As a fluorescent labeling reagent for a sugar chain, in addition to APTS, an aminobenzene derivative such as 2-aminobenzoic acid and a 2′-aminopyridine amide nononaphthalene derivative may be used. it can.
このよ う に、 標識された糖鎖の誘導体は、 例えば、 蛍光検出装置と し てヘリ ゥムーカ ドミ ゥム レ一ザ一励起蛍光検出器などを使用して容易に 高感度で検出できる。 すなわち、 糖鎖を標識して誘導体と し、 電気泳動 と レーザー励起蛍光法 (L I F ) とを組み合わせた方法を用いれば、 糖 鎖、 糖鎖結合性タ ンパク質、 糖鎖—糖鎖結合性タ ンパク質複合体を一層 容易に分離検出するこ とができる。 Thus, a derivative of a labeled sugar chain can be used, for example, in a fluorescence detection device. It can be easily detected with high sensitivity using a laser beam excitation laser detector. That is, if a method is used in which a sugar chain is labeled to form a derivative and electrophoresis and laser-induced fluorescence (LIF) are combined, a sugar chain, a sugar chain-binding protein, a sugar chain-sugar chain-binding protein can be obtained. The protein complex can be separated and detected more easily.
本発明のスク リーニング方法において、 上記特異的に認識する糖鎖が 明らかな 1種以上の糖鎮結合性タンパク質または構造の明らかな 1種以 上の糖鎖混合物が、 支持体に固定されていてもよい。 換言すれば、 上記 特異的に認識する糖鎖が明らかな 1種以上の糖鎖結合性タンパク質また は構造の明らかな 1種以上の糖鎖混合物は、 例えば、 基板に高密度に固 定された、 マイク ロチップ、 マイク ロアレイ、 マク ロアレイ となってい てもよい。 これによ り、 非常に多く の試料を同時に、 しかも短時間でス ク リーニングすることができる。  In the screening method of the present invention, the above-mentioned one or more glycemic-binding proteins or the mixture of one or more glycans having a clear structure are immobilized on a support. Is also good. In other words, the one or more sugar chain-binding proteins or the sugar chain mixture of which the sugar chain specifically recognizing is clearly identified are, for example, immobilized on the substrate at a high density. , A microchip, a microarray, or a macroarray. This makes it possible to screen a very large number of samples simultaneously and in a short time.
以上、 本発明のスク リ ーニング方法について説明したが、 本発明の糖 鎖—糖鎖結合性タンパク質の相互作用の測定方法においては、 例えば、 特異的に認識する糖鎖が既知の糖鎖結合性タンパク質や構造既知の糖鎖 混合物が用いられればよい。 しかし、 実用上、 例えば、 当該糖鎖混合物 と糖鎮結合性タンパク質との反応性が向上するよ うな測定用試薬として 調製されていることがより好ましい。  The screening method of the present invention has been described above. However, in the method for measuring the interaction between a sugar chain and a sugar chain-binding protein according to the present invention, for example, a sugar chain with a sugar chain specifically recognized is known. A protein or a sugar chain mixture having a known structure may be used. However, practically, for example, it is more preferably prepared as a measurement reagent that improves the reactivity between the sugar chain mixture and the glycolytic protein.
また、 本発明の測定用試薬は、 糖鎖—糖鎖結合性タ ンパク質の相互作 用を容易に測定できるので、 糖鎖や糖鎖結合性タンパク質の生理活性お よび機能解析の分野における、 基礎研究用試薬と して利用できる。 さら に、 耱鎖工学分野の食料 · 医薬品 · 診断薬の開発においても有用である なお、 本発明の測定試薬には、 さらに、 耱鎖と耱鎖結合性タンパク質 とが反応しやすくするための試薬 ; 分離の精度や信頼性を向上させるた めの試薬 ; 測定用試薬と しての利便性や保存性を向上させるための試薬 などを含むものであってもよい。 In addition, since the measurement reagent of the present invention can easily measure the interaction between sugar chains and sugar chain-binding proteins, it can be used in the field of analyzing the physiological activities and functions of sugar chains and sugar chain-binding proteins. It can be used as a reagent for basic research. It is also useful in the development of foods, pharmaceuticals, and diagnostics in the field of chain engineering. In addition, the measurement reagent of the present invention further includes a reagent for easily reacting the 反 応 chain and the 耱 chain binding protein; a reagent for improving the accuracy and reliability of the separation; and a reagent for measurement. It may contain a reagent or the like for improving the convenience and preservability of the product.
例えば、 糖鎖の分離を向上させるための糖鎖結合性タンパク質と して 、 フコースに対して特異性を示すヒィ ロチャ ワンタケレクチン (A A L ) 、 ガラク トースに対して特異性を示すマッシュルームレクチン、 オリ ゴ糖鎖の末端部分に対して特異性を示すレンチルレクチン、 コア 5糖に 対する特異性を示すサフランレクチン、 二ホンニヮ トコレクチン ( S S A ) 、 ィヌェンジユ レクチン ( M A M ) 、 リ ゾプスカ ビレクチンなど多 く の市販されているレクチン、 認識する糖鎖が明らかな公知のレクチン などを使用するこ とができる。  For example, as sugar chain-binding proteins for improving the separation of sugar chains, hilocha wantake lectin (AAL), which has specificity for fucose, mushroom lectin, which has specificity for galactose, and There are many commercial products such as lentil lectin that shows specificity for the terminal part of glycans, saffron lectin that shows specificity for core pentasaccharide, dinitro lectin (SSA), innugen lectin (MAM), and rhizopsuka lectin. Lectins that have been used, known lectins whose sugar chains are clearly recognized, and the like can be used.
また、 糖鎖結合性タンパク質の発見用の糖鎖ライブラリーと しては、 後述の実施例で使用した α 1酸性糖タンパク質、 フェツイ ン、 鶏卵白ォ ボムコイ ド、 I g G、 チログロブリ ンの他にも、 例えば、 大量に入手で きる 2本鎖糖鎖の都分酵素分解によって得られる糖鎖の混合物などをラ イブラ リーと して使用することもできる'。  Examples of the sugar chain library for the discovery of sugar chain binding proteins include α1 acidic glycoprotein, fetuin, chicken egg white ovomucoid, IgG, and thyroglobulin used in Examples described later. In addition, for example, a mixture of sugar chains obtained by enzymatic degradation of a double-stranded sugar chain that can be obtained in large quantities can be used as a library '.
なお、 上記糖鎖結合性タンパク質およぴ糖鎖ライブラリ一の由来は、 特に限定されるものではない。  The origin of the sugar chain binding protein and the sugar chain library is not particularly limited.
また、 本発明では、 上記測定用試薬を他の薬剤、 分離のための試薬、 分離のための媒体などと組み合わせて、 糖鎮ー糖鎖結合性タンパク質の 相互作用の測定キッ トとすることが非常に好ましい。  In the present invention, the measurement reagent may be combined with another drug, a reagent for separation, a medium for separation, or the like to provide a kit for measuring the interaction between a glycoprotein and a sugar chain-binding protein. Very preferred.
本発明の測定試薬をキッ ト化しておけば、 機能が未知の糖鎖や糖鎖結 合性タンパク質を含む試料を得るだけで、 本発明の測定方法を容易に実 施することができる。 これによ り 、 本発明の測定方法に要する時間を大 幅に短縮するこ とができ、 短時間でよ り多く の試料の測定を行う ことが できる。 If the measuring reagent of the present invention is kitted, the measuring method of the present invention can be easily carried out simply by obtaining a sample containing a sugar chain or a sugar-binding protein whose function is unknown. Can be applied. As a result, the time required for the measurement method of the present invention can be significantly reduced, and more samples can be measured in a short time.
さらに多く の細胞試料や組織試料中の糖鎖ータンパク質間相互作用を 一斉に、 かつ網羅的に測定するには、 例えば、 複数の測定結果を高速度 処理するための分析回路を有する装置の利用や、 マイク口チップ化を利 用すればよい。  To simultaneously and comprehensively measure the interaction between sugar chains and proteins in many cell and tissue samples, for example, use an instrument with an analysis circuit to process multiple measurement results at high speed Alternatively, a microphone mouth chip may be used.
例えば、 スライ ドグラス程度の大きさの基板に、 1 0本〜 2 0本の溝 (幅 5 0 / m、 深さ 5 0 z m、 長さ 5 c m ) のチップを備えたシステム によ り 、 同時に 1 0〜 2 0個の未知試料を解析するこ とができる。 さら に、 複数の分析回路を備えることにより 、 この装置の大規模化のみでは なく、 高速分析も可能となる。 加えて、 相互作用解析間のデータのバイ ァスを減少させることができ、 分析の信頼性を向上させることができる 以上のよ うに、 本発明は、 糖鎖を特異的に認識する糖鎖結合性タンパ ク質を用いて、 構造が複雑な糖鎖の混合物の分離と、 各糖鎖の構造解析 とを同時に行う こ とを特徴'と じてい ·· 。···また、 本発明は、 糖鎖混合物を 用いて、 その糖鎖混合物に特異的に結合する天然の糖鎖結合性タンパク 質を解析することを特徴と している。 また、 本発明は、 天然に存在する 糖鎖結合性タンパク質または糖鎖を、 簡便に、 しかもハイスループッ ト 解析することを特徴としている。  For example, a system with 10 to 20 grooves (width 50 / m, depth 50 zm, length 5 cm) on a substrate about the size of a slide glass, 10 to 20 unknown samples can be analyzed. Further, by providing a plurality of analysis circuits, not only the scale of this apparatus can be increased but also high-speed analysis can be performed. In addition, the bias of data during the interaction analysis can be reduced, and the reliability of the analysis can be improved. As described above, the present invention provides a sugar chain binding that specifically recognizes a sugar chain. It is characterized by simultaneous separation of a mixture of sugar chains having a complex structure and structural analysis of each sugar chain by using an amphoteric protein. ··· Also, the present invention is characterized in that a natural sugar chain-binding protein that specifically binds to the sugar chain mixture is analyzed using the sugar chain mixture. Further, the present invention is characterized in that a naturally-occurring sugar chain-binding protein or sugar chain is simply and easily subjected to high-throughput analysis.
したがって、 従来のよ うに、 オリ ゴ耱のよ うな単純な糖を分析するも のとは全く異なる。 また、 糖鎖に特異性を示さない、 単なる糖タンパク 質を用いて分析するものとも異なる。 本発明の利点を挙げれば、 以下のとおりである。 Therefore, it is completely different from conventional analysis of simple sugars such as oligos. It is also different from the analysis using a simple glycoprotein that does not show specificity for sugar chains. The advantages of the present invention are as follows.
1 . 本発明は、 糖鎖一糖鎖結合性タンパク質の相互作用の測定によ り 、 糖鎖を機能によって分類し、 糖鎮混合物をスク リ ーニングする方法を 提供できる。 これにより、 細胞表面の糖鎖の変化や体液中に存在する糖 タンパク質の糖鎖の変化を、 極めて簡便かつ精度よく測定することがで きる。 したがって、 糖鎖の変化を指標とする臨床検査法や細胞表面膜成 分中の糖鎮変化を指標とする病態マーカーの発見につながるものと期待 される。 また、 病態時の糖鎖の変化を指標と して、 医薬品候補化合物を 添加した条件で、 糖鎖の変化を経時的に追跡すれば、 新規医薬品を開発 する上で、 非常に重要な方法となる。  1. The present invention can provide a method of classifying sugar chains by function and screening a sugar chain mixture by measuring the interaction of sugar chain-single sugar chain binding proteins. This makes it possible to measure changes in sugar chains on the cell surface and sugar chains of glycoproteins present in body fluids extremely simply and accurately. Therefore, it is expected that this method will lead to the discovery of clinical test methods using changes in sugar chains as indicators and changes in glucose levels in cell surface membrane components as indicators. In addition, if changes in sugar chains during a disease state are used as indicators, and changes in sugar chains are tracked over time under the conditions of the addition of a drug candidate compound, it is a very important method for developing new drugs. Become.
2 . さらに、 本発明は、 糖鎖の測定法を利用して血液や細胞等に存在 する糖鑛に特異的に結合する耱タンパク質の分析にも拡張することがで きる。 例えば、 組成の明らかな糖タンパク質の糖鎖混合物、 あるいは任 意のオリ ゴ糖混合物をライブラ リーと して使用することにより、 ライプ ラ リ一中の糖鎖と特異的に結合する未知の糖鎖結合性タンパク質を容易 に見出すことができる。  2. In addition, the present invention can be extended to the analysis of 耱 proteins that specifically bind to sugar minerals present in blood, cells, and the like using the sugar chain measurement method. For example, an unknown sugar chain that specifically binds to a sugar chain in a library by using a sugar chain mixture of glycoproteins with a known composition or an arbitrary mixture of oligosaccharides as a library Binding proteins can be easily found.
ところで、 炎症マーカ一、 ガン浸潤における複合糖質の関与など、 糖 鎖が関与する様々な現象が報告されている。 しかし、 これらの糖鎖を認 識する糖鎖結合性タンパク質については未解明な部分が多い。 本発明の 糖鎖結合性タンパク質の簡便なスク リーニング方法によれば、 このよ う な糖鎖結合性タンパク質のよ り詳細な作用や機能の解析を行う ことがで きる。  By the way, various phenomena involving glycans have been reported, such as inflammatory markers and the involvement of glycoconjugates in cancer invasion. However, there are many unclear parts of sugar chain-binding proteins that recognize these sugar chains. According to the simple screening method for sugar chain-binding proteins of the present invention, more detailed analysis of functions and functions of such sugar chain-binding proteins can be performed.
なお、 現在多く の生物ゲノムの解析が進行し、 ゲノムに基づいたタン パク質の解析が国家的プロジヱク ト と して進行中であり、 新薬の開発の 国際的な競争が進行中である。 At present, the analysis of many biological genomes is in progress, and the analysis of proteins based on the genome is ongoing as a national project. International competition is underway.
本発明は、 ゲノムに基づいたタンパク質解析の次に必要と される技術 であり 、 遺伝子の制御によ りその生合成を直接微妙に調整するこ とが困 難な糖鎖工学に関する技術である。 本発明で使用される糖鎖のラィブラ リ ー、 レクチンの組み合わせは、 本発明の実施例にと どまるものではな く 、 基本的ないく つかの組み合わせを用いて、 溶液内で分離と相!:作用 との測定を同時に行う という独創的な方式を取ることによ り、 多数の分 析回路を有するマイク口チップによる一斉相互作用測定法と組み合わせ て、 糖鎖の微妙な違いを正確に反映した糖鎖一糖鎖結合性タンパク質相 互作用を観察するこ とができる。  The present invention is a technique required next to genome-based protein analysis, and is a technique relating to sugar chain engineering, in which it is difficult to finely adjust the biosynthesis directly by controlling genes. The combination of the library and lectin of the sugar chain used in the present invention is not limited to the examples of the present invention, but can be separated and phased in a solution using some basic combinations! : Reflects subtle differences in glycans by combining the unique method of simultaneous measurement of action with the simultaneous interaction measurement method using a microphone-mouth chip with multiple analysis circuits. The observed sugar-monosaccharide-binding protein interaction can be observed.
本発明のレクチンを組み合わせる糖鎖—糖鎖結合性タンパク質間相互 作用測定により、 これまで知られていなかった糖鎖異常に基づく遺伝病 や癌診断、 あるいは炎症診断が可能となる。 また、 糖鎖ライブラ リーを 使用するこ とによ り、 細胞表面や血液、 細胞間組織などに関連する糖鎖 結合性タンパク質の量、 組成比の変化を正確に追跡するこ とができる。  The measurement of the interaction between a sugar chain and a sugar chain-binding protein using the lectin of the present invention makes it possible to diagnose a genetic disease, cancer or inflammation based on a sugar chain abnormality, which has not been known until now. In addition, by using the sugar chain library, it is possible to accurately track changes in the amount and composition ratio of sugar chain binding proteins related to the cell surface, blood, intercellular tissues, and the like.
以上のように、 本発明によれば、 ( a ) 糖鎖結合性タンパク質ライブ ラ リーを用いた糖鎖の迅速 '分離 ' 分類、 または、 糖鎖ライブラリーを用 いた糖鎖結合性タンパク質の迅速分離 ' 分類、 ( b ) 糖鎖ライブラ リー を用いる糖鎖結合性タンパク質の確認同定に利用でき る。  As described above, according to the present invention, (a) rapid “separation” classification of sugar chains using a sugar chain binding protein library, or rapid sorting of sugar chain binding proteins using a sugar chain library (B) Can be used for confirmation and identification of sugar chain-binding proteins using the sugar chain library.
すなわち、 ( 1 ) キヤビラ リ一電気泳動装置を用いて、 上記糖鎖結合 性タンパク質ライプラ リー (例えば、 レクチンライブラ リー) を用いる ことによ り、 標準試料の分析を含めても、 各分析が 10分以内で完了する ので、 長く とも 3時間以内で糖鎖の迅速分離 · 分類が完了する。 従来は 、 糖鎖混合物から糖鎖を精製し、 精製された各糖鎖と糖鎖結合性タ ンパ ク質との相互作用を測定していた。 それゆえ、 精製の困難な糠鎖につい ては相互作用の測定が不可能であったり、 月単位の測定期間が必要と さ れるといった問題があった。 That is, (1) by using the above-mentioned sugar chain-binding protein library (for example, lectin library) using a capillary electrophoresis apparatus, each analysis can be performed even if the analysis of a standard sample is included. Within minutes, rapid separation and classification of glycans is completed within at most 3 hours. Conventionally, sugar chains are purified from a sugar chain mixture, and each of the purified sugar chains is linked to a sugar chain binding protein. The interaction with the protein was measured. Therefore, there was a problem that it was impossible to measure the interaction of the difficult-to-purify bran chains, or that a measurement period of every month was required.
これに対し、 本発明によれば、 1 ) 糖鎖の精製の必要がない、 2 ) 標 準糖鎖の分析を含めても各分析が 10分以内で完了するので、 すべてのレ クチンのセッ トを使っても 3時間以内で分析が完了する。 従って、 従来 技術と比べて 100倍以上の効率化が可能となった。  On the other hand, according to the present invention, 1) there is no need to purify the glycan, and 2) each analysis is completed within 10 minutes including the analysis of the standard glycan. The analysis can be completed within 3 hours using the software. Therefore, efficiency can be improved 100 times or more compared with the conventional technology.
( 2 ) 多流路キヤビラ リ一電気泳動あるいは多流路マイクロチップ電 気泳動装置を用いて、 糖鎖結合性タンパク質ライブラ リー (Con A, WGA 、 TGA, PHA- E4, RSL, AAL, SSA,および MAM) が含まれる緩衝液を電気泳動用 緩衝液と して、 未知糖鎖試料を分析することにより、 未知糖鎖試料と標 準糖鎖ライブラ リ一の糠鎖との泳動挙動の比較により、 生体成分中の未 知糖鎖あるいはその混合物を、 容易に、 しかも秒単位で決定できるよ う になる。 (2) multichannel Kiyabira using Li one electrophoresis or multichannel microchip electrophoresis apparatus, the sugar chain binding protein library (Con A, WGA, TGA, PHA- E 4, RSL, AAL, SSA , And MAM) as a buffer for electrophoresis, and analyzing the unknown glycan sample to compare the migration behavior of the unknown glycan sample with the standard glycan library. This makes it possible to easily determine an unknown sugar chain or a mixture thereof in a biological component in a unit of seconds.
( 3 ) 多流路キヤピラリー電気泳動あるいは多流路マイクロチップ電 気泳動装置を用いて、 標準糖鎖ライブラリー (AGP、 Fe tuin, Ovomuco i d , IgG およびチログロブリ ン) を用いて、 植物や動物などに由来する糖 鎖結合性タンパク質、 あるいは、 植物や動物からの抽出液中に含まれる 糖鎖結合性タンパク質の糖鎖結合特異性を容易に決定できる。  (3) Plants, animals, etc., using standard sugar chain libraries (AGP, Fetuin, Ovomucoid, IgG, and Tyroglobulin) using multi-channel capillary electrophoresis or multi-channel microchip electrophoresis. It is possible to easily determine the sugar chain binding specificity of a sugar chain binding protein derived from or a sugar chain binding protein contained in an extract from a plant or animal.
本発明は、 以下のよ うに応用することも可能である。  The present invention can also be applied as follows.
( 1 ) 未知糖鎖および糖鎖結合性タ ンパク質の発見  (1) Discovery of unknown sugar chains and sugar-binding proteins
現在、 多く のペンチヤ一企業がマイ ク ロアレイ技術を利用して糖鎖チ ップゃレクチンチップの開発を行い、 未知試料中の糖鎖や糖鎖結合性タ ンパク質を解析するための技術の開発に挑戦している。 この技術は、 糖 鎖ならびに糖鎖結合性タンパク質が関与する疾病の解析、 あるいは、 そ の疾病の新規治療薬の開発に必須の技術である。 しかし、 チップ上に固 定化する糖鎖は、 化学合成が極めて困難である。 このため、 可能性のあ るすべての糖鎖の合成、 あるいは、 生体試料から必要な糖鎖を精製し準 備するのは、 膨大なコス トと労力を要するため、 事実上不可能である。 また、 現在までに報告されている、 活性が類似したレクチンを分類して チップ上に並べることも、 糠鎖に対する微妙な相互作用をアレイ上で区 別することが困難であることが予測される。 本発明は、 このよ うな問題 を克服するために、 長期にわたる基礎的な研究の結果考案された技術で あり、 上記の糖鎖結合性タンパク質ライプラ リーと耱鎖ライブラリーと を利用することによ り、 生体中に存在するほぼすベての糖鎖の分析 · 分 類、 並びに糖鎖結合性タンパク質と耱鎖との結合性確認に利用できる。 At present, many pliers are using microarray technology to develop glycan chips and lectin chips, and have developed technologies for analyzing glycans and glycan-binding proteins in unknown samples. Challenge to development. This technology uses sugar This technology is indispensable for analyzing diseases involving chains and sugar chain-binding proteins, or for developing new therapeutic agents for those diseases. However, sugar chains immobilized on a chip are extremely difficult to chemically synthesize. For this reason, it is virtually impossible to synthesize all possible sugar chains or to purify and prepare the necessary sugar chains from biological samples because of the enormous cost and labor required. In addition, it is expected that it is difficult to classify lectins with similar activities reported to date and arrange them on a chip, and to distinguish subtle interactions with bran chains on an array. . The present invention is a technique devised as a result of long-term basic research to overcome such a problem, and is based on the use of the above-mentioned sugar chain-binding protein library and 耱 chain library. It can be used for analysis and classification of almost all sugar chains present in living organisms, and for confirming the binding between sugar chain-binding proteins and 耱 chains.
( 2 ) 糖鎖と糖鎖結合性タンパク質間の相互作用解析の反応速度論解 析への応用  (2) Application of interaction analysis between sugar chains and sugar-binding proteins to kinetic analysis
糖鎖と糖鎖結合性タンパク質間の相互作用の親和性は mM〜nMにわたり The affinity of the interaction between sugar chains and sugar-binding proteins ranges from mM to nM
、 極めて広範囲に及ぶ。 特に、 糖鎖と糖鎖結合性タンパク質の弱い親和 性は、 生体の微妙な機能調節に重要である。 本発明では、' 糖鎖と糖鎖結 合性タンパク質間の相互作用について、 強い親和性から弱い親和性に至 るまで広く対応できる。 特に、 弱い親和性と強い親和性を持つ糖鎖の混 合物であっても、 混合物のまま、 個々の糖鎖と糖鎖結合性タンパク質と の相互作用を一斉解析できる利点を有する。 , Very extensive. In particular, the weak affinity between sugar chains and sugar chain-binding proteins is important for subtle functional regulation of living organisms. In the present invention, the interaction between the sugar chain and the sugar chain-binding protein can be widely supported from a strong affinity to a weak affinity. In particular, even a mixture of sugar chains having a weak affinity and a strong affinity has an advantage that the interaction between individual sugar chains and a sugar chain-binding protein can be analyzed simultaneously as a mixture.
さらに、 親和性の異なる未知の糖鎖結合性タンパク質の混合物の場合 も、 上記糖鎖ライブラリ一を標準糖鎖混合物と して使用することによ り 、 混合物のまま、 個々の耱鎖結合性タンパク質の特性を確認することが でき る。 Furthermore, in the case of a mixture of unknown sugar chain-binding proteins having different affinities, the use of one of the above sugar chain libraries as a standard sugar chain mixture allows the individual 耱 -chain binding proteins to remain as a mixture. Can confirm the characteristics of it can.
( 3 )■糖鎖チップゃレクチンチップ開発のための糖鎖ゃレクチン選択 のための手段  (3) Sugar chain chips ゃ Sugar chains for lectin chip development 手段 Means for lectin selection
例えば、 糖鎖関連遺伝子異常による糖鎖異常に基づく遺伝子疾患の早 期発見や 0- 157などの食中毒菌毒素の検出やインフルエンザウイルス検 出などの病原体検出、 あるいは生体組織移植による適合性検討のための 血液型 (糖鎖特異的) 抗原検出のための糖鎖結合性タンパク質や抗体検 出などへの適用が期待される。  For example, early detection of genetic disorders based on sugar chain abnormalities due to sugar chain-related gene abnormalities, detection of food poisoning bacterial toxins such as 0-157, detection of pathogens such as influenza virus detection, and compatibility evaluation by living tissue transplantation Blood type (sugar chain specific) It is expected to be applied to the detection of carbohydrate-binding proteins and antibodies for antigen detection.
これらの分野は、 マイ ク ロアレイの適用も期待される分野であるが、 上記糖鎖ライブラ リーと糖鎮結合性タンパク質ライブラ リー (レクチン ライブラリ一) を用いることによ り、 マイクロアレイ技術で追跡できな い微妙な変化にも対応できるため、 よ り精密な解析が可能となる。  In these fields, the application of microarrays is also expected, but using the above-mentioned sugar chain library and glycolytic binding protein library (lectin library-1) makes it impossible to track microarray technology. Because it can respond to subtle changes, more precise analysis is possible.
なお、 マイクロアレイ上に配置する糖鎖ならびに糖鎖結合性タンパク 質は、 本発明を利用することによ り、 適切な糖鎖結合性タンパク質や糖 鎖のセッ トを選択するための有力な手段にもなる。  The sugar chains and sugar chain-binding proteins to be arranged on the microarray can be used as effective means for selecting an appropriate set of sugar chain-binding proteins and sugar chains by using the present invention. Also.
本発明は上述した実施形態に限定されるものではなく 、 請求の範囲に 示した範囲で種々の変更が可能であり、 異なる実施形態にそれぞれ開示' された技術的手段を適宜組み合わせて得られる実施形態についても本発 明の技術的範囲に含まれる。  The present invention is not limited to the above-described embodiments, but can be variously modified within the scope shown in the claims, and can be implemented by appropriately combining technical means disclosed in different embodiments. The form is also included in the technical scope of the present invention.
〔実施例〕  〔Example〕
以下の実施例では、 異なる濃度の糖鎖結合性タンパク質存在下、 キヤ ビラリ一電気泳動によってレーザー励起された蛍光を検出する。 このよ うにして提供する技術は、 ( 1 ) 〜 ( 3 ) を同時に検出できる。 ( 1 ) 種々の糖鎖、 ( 2 ) 特異的なタンパク質に対する糖鎖部分の結合特異性 、 ( 3 ) 力イネティ ックデータ (例えば、 それぞれの耱鎖の結合定数な ど) 。 この結果、 例えば、 細胞表面で糖鎖変化を表現する生物学的現象 を解明するために有用である。 また、 遺伝子組換えされた生物学的薬剤 を評価する上で特に重要である。 なぜなら、 異なる細胞株または異なる 培養条件によって得られた製品は、 時々、 多種多様の糖鎖を含んでいる 場合があるからである。 キヤピラ リー電気泳動、 2次元、 3次元のク ロ マ トグラフ技術、 スラブゲル形式での糖鎖電気泳動などを含む新しい技 術の開発が、 オリ ゴ糖分析では増加している。 電気泳動と レーザー励起 蛍光法 (L I F ) とを組み合わせた検出方法は、 糖タンパク質試料中の 糖鎖を超高感度で解析するために有力な方法である。 試料中の糖鎖を蛍 光標識するための試薬と しては、 L I F検出でのキヤビラ リ一電気泳動 に用いる還元糖の誘導体化および分析に用いられる、 例えば、 8—アミ ノ ビレン一 1 . 3 . 6 — ト リ スルフォネ一 ト (A P T S ) を用いた。 こ れにより 、 キヤビラリ一電気泳動によって単離される a 1酸性糖タンパ ク質 (A G P ) 由来の糖鎮分析に好適な分析方法を提供するこ とができ る (実施例 1 ) 。 In the following examples, fluorescence excited by laser is detected by capillary electrophoresis in the presence of different concentrations of sugar chain-binding proteins. The technology provided in this way can simultaneously detect (1) to (3). (1) Various sugar chains, (2) Specificity of sugar chain binding to specific proteins (3) Force kinetic data (eg, binding constant of each chain). As a result, for example, it is useful for elucidating biological phenomena expressing sugar chain changes on the cell surface. It is also particularly important in evaluating genetically modified biological agents. This is because products obtained from different cell lines or different culture conditions can sometimes contain a wide variety of sugar chains. The development of new technologies, including capillary electrophoresis, two- and three-dimensional chromatographic techniques, and slab-gel-type glycan electrophoresis, is increasing in oligosaccharide analysis. The detection method that combines electrophoresis and laser excitation fluorescence (LIF) is a powerful method for analyzing sugar chains in glycoprotein samples with ultra-high sensitivity. Reagents for fluorescently labeling sugar chains in a sample include those used for derivatization and analysis of reducing sugars used for capillary electrophoresis with LIF detection, for example, 8-aminovinylene 1.1. 3.6 — Trisulfonate (APTS) was used. As a result, it is possible to provide an analysis method suitable for analysis of a glycoprotein derived from a1 acidic glycoprotein (AGP) isolated by capillary electrophoresis (Example 1).
分析されるべき糖鎖は'、 +その機能—によ ·て分類するべきである。 ·例え ば、 特異的なタンパク質への結合定数によって、 複合糖質に結合可能な タンパク質と糖鎖との相互作用は、 かなり促進される。 その理由は、 糖 鎖が生物情報の伝達のメデイエ一タ一であるためである。 本発明者は、 固定相にレクチンを用いたァフィ二ティーカラムク ロマ ト グラフィ一に よる糖鎖成分に基づいて A G P分子種の分離後、 A G Pの糖鎖を分析し た。 さらに、 その各フラクショ ンが、 糖鎖の特徴的な発生量を示すこと を明らかにした。 糖鎖と レクチンとの相互作用を分析するために、 多く 3 The glycans to be analyzed should be categorized according to their function. · For example, the interaction between a protein capable of binding to a glycoconjugate and a sugar chain is considerably promoted by the binding constant to a specific protein. The reason is that sugar chains are mediators of the transmission of biological information. The present inventors analyzed AGP sugar chains after separating AGP molecular species based on the sugar chain components by affinity column chromatography using lectin as a stationary phase. Furthermore, it was clarified that each fraction showed a characteristic amount of sugar chains generated. To analyze the interaction between glycans and lectins, Three
の方法が開発されている。 それらのほとんどが、 1つのタンパク質と、 1つの糖鎖との相互作用に基づいたものである。 例えば、 プラズモン 鳴、 蛍光偏光、 時間分解蛍光光度法である。 A method has been developed. Most of them are based on the interaction between one protein and one sugar chain. For example, plasmon ringing, fluorescence polarization, and time-resolved fluorometry.
しかしながら、 糖タンパク質は、 たいてい、 糖鎖の複雑な混合物であ る。 また、 糖鎖の生物学的役割を正確に解明するために、 各糖鎖の結合 様式を同時に評価することが要求される。 前記のァフイエティークロマ トグラフィ一は、 従来は、 固定化されたレクチンカラムと、 MS とを接 続したものを組み合わせた F A C ZM Sであった (Kasai K. , et al. , J. Chromatogr. Biomed. Appl. , 1986, 376, 33-47. ) D これを、 糖鎮 一糖鎖結合性タンパク質相互作用に適用したものである。 この F ACZ M Sによれば、 混合物と して存在するそれぞれの結合定数を算出できる 。 F A CZM Sでは、 固定化レクチンを備えたァフィ二ティーカラムを 使用する。 糖鎖の混合物を含んでいる試料は、 そのカラムに継続的に注 入される。 そして、 固定かレクチンとの親和性が弱い成分は、 よ り早く 溶出し、 親和性が強い成分は、 よ り遅く溶出する。 エレク トロスプレイ 質量分析による溶出液をモニタ リ ングすることによって、 混合物中の糖 鎖組成の解離定—数 (Kd) を同時に ·検出-できる。 しかしながら、 前記の ァフィ二ティークロマ トグラフィーは、 検体と "固定化された" 受容体 分子との相互作用を判定する方法である。 ところが、 "溶液" 状態での 相互作用の判定が必要になる場合がある。 However, glycoproteins are often complex mixtures of sugar chains. In addition, in order to accurately elucidate the biological role of sugar chains, it is necessary to evaluate the binding mode of each sugar chain simultaneously. Conventionally, the affinity chromatography is a FAC ZMS which combines an immobilized lectin column and an MS connected thereto (Kasai K., et al., J. Chromatogr. Biomed. Appl., 1986, 376, 33-47.) D This is applied to the interaction between glycosides and monosaccharide-binding proteins. According to this FACZ MS, the respective binding constants existing as a mixture can be calculated. FA CZM S uses an affinity column with immobilized lectin. A sample containing a mixture of sugar chains is continuously injected into the column. Components with low affinity for immobilization or lectins elute earlier, and components with higher affinity elute later. By monitoring the eluate by electrospray mass spectrometry, the dissociation constant (K d ) of the glycan composition in the mixture can be detected simultaneously. However, affinity chromatography is a method of determining the interaction of a sample with "immobilized" receptor molecules. However, it may be necessary to determine the interaction in "solution" state.
キヤビラ リーアフィニティー電気泳動 (CAE) は、 電気泳動度が、 糖鎖と レクチンとで異なる場合に、 溶液状態で糖鎖とタンパク質との分 子間の相互作用の測定が可能である。 例えば、 分子間相互作用の感度の よい装置と して、 キヤビラ リーアフィニティ一電気泳動が開示されてい る (Shimura K. , et al. , Anal. Biochem. , 1997. 251, 1-46. ) 。 さ ら に、 この方法では、 1種類のオリ ゴ糖と、 レクチンとを用いた結合反応 における反応速度研究も示している。 また、 キヤピラ リ ー電気泳動によ つてレクチンに対する単純なオリ ゴ糖の混合物の結合定数の同時決定が 報告されてレヽる (Taga A, et al. , J. Chromatogr. A., 1999, 837, 22 1-229. ) 。 この方法では、 8—ァ ミ ノナフタ レン一 1 , 3 , 6 ト リ スル フォネー トまたは 1一フエニル 3—メチル 5—ピラゾロンで標識された 、 代表的な 2糖類と、 イソマルトオリ ゴ糖 (例えばひ 1 . 6—ダルコ一 スのオリ ゴマー) とがモデルとなっている。 また、 C o n Aをモデルレ クチンと して用い、 リボヌクレア一ゼ Bおよびフエツイ ン由来のオリ ゴ 糖を用いた相互作用の検討も行われている (Hong M. , J. Chromatogr. B., 2001, 752, 207-216, ) 。 Capillary affinity electrophoresis (CAE) can measure the interaction between molecules of sugar chains and proteins in solution when the electrophoretic mobility differs between sugar chains and lectins. For example, as a sensitive device for intermolecular interaction, it has been disclosed that the capillary affinity affinity electrophoresis is used. (Shimura K., et al., Anal. Biochem., 1997. 251, 1-46.). In addition, this method also shows kinetic studies on the binding reaction using one type of oligosaccharide and lectin. Simultaneous determination of the binding constant of a mixture of simple oligosaccharides to lectins by capillary electrophoresis has been reported (Taga A, et al., J. Chromatogr. A., 1999, 837, 22 1-229.). In this method, a representative disaccharide, labeled with 8-aminononaphthalene 1,3,6 trisulfonate or 1-phenyl 3-methyl 5-pyrazolone, and an isomaltoligosaccharide (eg, 6—Dalco's Oligomer) is the model. In addition, interaction with ribonuclease B and oligosaccharides derived from fetuin has been studied using ConA as a model lectin (Hong M., J. Chromatogr. B., 2001). , 752, 207-216,).
本発明では、 糖鎖の複雑な混合物のハイスループッ ト機能分類の方法 を提案する。 混合物または糖鎖は予め蛍光標識されている。 そして選択 された複数のレクチンセッ トの存在下、 キヤビラ リー電気泳動によって 分析する。 本発明者は、 糖鎖を、 各糖鎖の泳動様式に基づいて分類する ことに成功した。 また'、 電荷を有する蛍 ·光標識試薬を用いて標識するこ と力 s提案されてレヽる (Shimura . , et al, Anal. Biochem. , 1995, 227 , 186-194. ) 。 この提案では、 標識された糖鎖の電荷が、 タンパク質と 結合する糖鎖、 または、 結合しない糖鎖の泳動のための駆動力となる。 本発明では、 糖鎖の還元末端が下記の化学式に示すように、 A P T Sを 用いた還元的ァミ ノ化によつて修飾されている。 The present invention proposes a method for high-throughput functional classification of a complex mixture of sugar chains. The mixture or sugar chain is fluorescently labeled in advance. Then, in the presence of multiple selected lectin sets, analysis is performed by capillary electrophoresis. The present inventor has succeeded in classifying sugar chains based on the migration mode of each sugar chain. The 'firefly-light labeling reagent is proposed labeled child and power s using Rereru having a charge (Shimura., Et al, Anal . Biochem., 1995, 227, 186-194.). In this proposal, the charge of the labeled sugar chain is the driving force for the migration of sugar chains that bind to proteins or sugar chains that do not. In the present invention, the reducing end of the sugar chain is modified by reductive amination using APTS as shown in the following chemical formula.
Figure imgf000034_0001
Figure imgf000034_0001
A P T S標識された糖タンパク質試料である単糖およびオリ ゴ糖およ び化学修飾されたキヤピラ リーを用いることにより、 よい分離能を示す 。 アミ ノ ビレン残基のスルホン酸によるマイナスの電荷は、 結合反応の 研究においては適している。  The use of APS-labeled glycoprotein samples such as monosaccharides and oligosaccharides and chemically modified capillaries shows good separation ability. The negative charge of the aminovirene residue by the sulfonic acid is suitable for studying binding reactions.
レクチンと して、 マンノースの分類に C o n A、 G 1 c NA cの分類 に WGA、 複合型の糖鎖の分類に T G A、 バイセクティ ング G l c N A c残基の分類に P H A— E 4、 フコース結合型糖鎮の分類に R S Lおよ び AA L、 シァロ糖鎖の分類に S S Aおよび MAMを選択した。 異なる 濃度のレクチンの組み合わせは、 効率的かつ高感度での α 1酸性糖タン パク質、 フェツイ ン、 オボムコイ ド、 ゥシ I g G、 ブタチログロブリ ン 、 癌患者由来の α 1酸性糖タンパクの糖鎖の分類を可能にした。 As a lectin, classified as C on A mannose, G 1 c NA WGA classification of c, TGA classification of complex type sugar chains, Baisekuti ring G lc NA c residues classified into PHA-E 4 of fucose RSL and AAL were selected for the classification of glycoconjugates, and SSA and MAM were selected for the classification of carbohydrate chains. Combinations of lectins at different concentrations provide efficient and sensitive α1 acidic glycoproteins, fetuin, ovomucoid, stomach IgG, porcine thyroglobulin, and glycans of α1 acidic glycoprotein from cancer patients Enabled classification.
〔使用物質〕  (Substances used)
試料は、 α 1酸性糖タンパク質とフェツインを使用した (いずれもシ ダマアルドリ ツチジャパン社製) 。 鶏卵白オボムコィ ドは、 Waheed A, Biochem. J., 1972, 128, 49p.に記載の方法に従って、 雌卵白から精製 した。 コンカナパリ ン A (C o n A) 、 小麦胚芽レクチン (WGA) 、 P H A— E 4は生化学工業株式会社製のものを使用 した。 キ トオリ ゴ糖 ( N—ァセチルダルコサミ ンのオリ ゴマ一 ; G 1 c N A cオリ ゴマー) の混合物も生化学工業社製のものを使用した。 チューリ ップレクチン ( T GA) は、 Oda Y. , et al. , Eur. J. Biochem. , 1987, 165, 297 - 302 -に記載の方法に従って単離 ' 精製した。 ペプチド一 N 4— (ァセチル ]3— Dダルコサミ ニル) ァスパラギンア ミ ダーゼ ( N—グリ コシダーゼ F ) は、 ロシュ分子生物化学社製のものを使用した。 高純度の A P T S は、 Beckman— Coulter (Fulleton, CA) 社製のものを使用した。 他の全 ての試料および試薬は、 市販の特級または HPLCグレー ドのものを使用し た。 全ての水溶液は、 精製水を使用した。 The samples used were α1 acidic glycoprotein and fetuin (both manufactured by Shimadzu Aldrich Tsuchi Japan). Chicken egg white ovomucoid was purified from female egg white according to the method described in Waheed A, Biochem. J., 1972, 128, 49p. Konkanapari down A (C on A), wheat germ lectin (WGA), PHA- E 4 was used those made of Seikagaku Corporation. Kito oligosaccharide (N-Acetyl darcosamine oligosaccharide; G1cNAc oligomers) Was also used from Seikagaku Corporation. Tuliplectin (TGA) was isolated and purified according to the method described in Oda Y., et al., Eur. J. Biochem., 1987, 165, 297-302-. Peptide-1 N4- (acetyl) 3-D-dalcosaminol) Asparagine amidase (N-glycosidase F) was from Roche Molecular Biochemistry. The high-purity APTS used was manufactured by Beckman-Coulter (Fulleton, CA). All other samples and reagents were of commercial grade or HPLC grade. Purified water was used for all aqueous solutions.
〔糖タンパク質試料からの糖鎖の分離 (N-グリ コシダ一ゼ Fによる消 化) ]  [Separation of sugar chains from glycoprotein samples (consumption by N-glycosidase F)]
糖タンパク質試料から糖鎖を分離した手順は、 Kakehi K, et al. , An al. Chem. , 2001, 73, 2640- 2647.および Ma S. , et al. , Anal. Chera. , Procedures for separating sugar chains from glycoprotein samples are described in Kakehi K, et al., An al. Chem., 2001, 73, 2640-2647. And Ma S., et al., Anal. Chera.,
1999, 71, 5185-5192. と類似の方法によって行った。 すなわち、 まず 、 試料となる糖タンパク質 ( 1 m g ) を 2 O mMのリ ン酸緩衝液 (pH7.0 、 0 ^ L) に溶解した。 次に、 N—グリ コシダーゼ F ( 5 mU、 5μ Ι) を 加えた後、 溶液を 3 7 °Cで終夜インキュベー ト した。 その溶液を、 沸縢 浴で 5分間維持し、 1 0分間 1 0 0 0 O'gで遠心分離した。 次に、' ォリ ゴ糖を含む上澄液を遠心真空エバポレーターで蒸発乾固した。 得られた 残渣を 2 M酢酸水溶液 ( 5 0 L) に溶解し、 混合物を 8 0 °Cで 3時間維 持し、 オリ ゴ糖からシアル酸を除去した。 続いて残渣を、 1 0 O mMの ?丁 3を含む 1 5 %酢酸水溶液 (5// L) に溶解、 その混合物に新たに 調製した 1 M水素化シァノホウ素ナト リ ウムの TH F溶液 ( 5 ^ L ) を 加えた。 なお、 混合物には、 鉱油 ( 1 0 0 μ L、 n D 1. 67, d 0 . 81999, 71, 5185-5192. That is, first, a glycoprotein (1 mg) as a sample was dissolved in a 2 O mM phosphate buffer (pH 7.0, 0 ^ L). Next, N-glycosidase F (5 mU, 5 μΙ) was added, and the solution was incubated overnight at 37 ° C. The solution was maintained in a boiling bath for 5 minutes and centrifuged at 1000 O'g for 10 minutes. Next, the supernatant containing oligosaccharide was evaporated to dryness using a centrifugal vacuum evaporator. The obtained residue was dissolved in a 2 M aqueous acetic acid solution (50 L), and the mixture was maintained at 80 ° C for 3 hours to remove sialic acid from the oligosaccharide. The residue is then washed with 10OmM? The mixture was dissolved in a 15% aqueous acetic acid solution (5 // L) containing D3, and a freshly prepared THF solution (5 ^ L) of 1M sodium cyanoborohydride was added to the mixture. The mixture contains mineral oil (100 μL, nD1.67, d0.8).
3 8、 アルドリ ッチ社製) を加え、 反応溶媒の蒸発を防いだ。 この溶液 の蒸発を防ぐ手順は、 収量を一定にする上で重要となる。 この混合物を38, Aldrich) was added to prevent evaporation of the reaction solvent. This solution Procedures to prevent evaporation are important for consistent yields. This mixture
9 0分間 5 5 °Cに保ち、 水 ( 2 0 0 / L ) を加え、 黄色がかった蛍光を 示す水層を回収した。 回収した水層を水で平衡化した Sephadex G25 ( 内径 l c m、 長さ 5 0 c m) に注入し、 早く溶出した蛍光画分を回収し 、 蒸発乾固した。 残渣を水 ( 1 0 0 /i L) に溶解し、 その一部 The mixture was kept at 55 ° C for 90 minutes, water (200 / L) was added, and the aqueous layer showing yellowish fluorescence was collected. The collected aqueous layer was injected into Sephadex G25 (inner diameter lcm, length 50 cm) equilibrated with water, and the fluorescent fraction eluted earlier was collected and evaporated to dryness. Dissolve the residue in water (100 / iL)
) をキヤビラ リ一ァフイエティー電気泳動に用いた。 反応混合物から AP TS除去は、 一 2 0 °Cで糖鎖誘導体を安定に保存する上で必要となる。  ) Was used for cavities in the library. The removal of APTS from the reaction mixture is required for stable storage of the sugar chain derivative at 120 ° C.
〔キヤビラ リ一電気泳動〕  [Capillary electrophoresis]
キヤビラリ.一ァフィ二ティ一電気泳動は、 アルゴン一レーザーによ り 励起された蛍光を検出するシステムを備えた P/ACE MDQ糖タンパク質シ ステム (Beckraan Coulter) を用いて行った。 検出は、 蛍光波長 5 2 0 n m、 励起波長 4 8 8 n mのアルゴンー レ一ザ一を用いて行った。  Capillary affinity electrophoresis was performed on a P / ACE MDQ glycoprotein system (Beckraan Coulter) equipped with a system to detect fluorescence excited by an argon laser. Detection was performed using an argon laser with a fluorescence wavelength of 520 nm and an excitation wavelength of 488 nm.
糖鎖混合物と糖鎮結合性タンパク質との分離には、 e — C A P N - C H Oにより内壁が被覆されたキヤピラ リー (有効長 1 0 c m (全長 3 0 c m) . 5 0 μ (Beckman Coulter) ) を用いた。 ジメチノレポリ シロキサン (DB- 1) で被覆された同じサイズのキヤ ビラ リ 一 (GLサイエ ンス株式会社製) も使用可能である ·。 分離は、 作業中常時 2 5'°Cで行つ い、 注入は、 加圧法 (0.5p. s. i) で行った。 得られたデータを Windows 2000 (登録商標) 上で標準の 3 2 Karat ソフ トウェアーを用いて分析し た。  For separation of the glycan mixture from the glycolytic protein, a capillary with an inner wall coated with e-CAPN-CHO (effective length: 10 cm (length: 30 cm); 50 μm (Beckman Coulter)) Using. The same size cabillary (GL Science Co., Ltd.) coated with dimethinopolysiloxane (DB-1) can also be used. Separation was performed at 25 ° C at all times during the operation, and injection was performed by the pressurized method (0.5 psi). The data obtained was analyzed on Windows 2000® using standard 32 Karat software.
〔キヤ ビラ リーアフィニティ一電気泳動〕  [Capillary leaf affinity electrophoresis]
泳動液は、 lOOmMの ト リスアセテート緩衝液 ( p H7.4) を用いた。 キ ャピラ リーアフィ二ティ一電気泳動を行う前に APTSで蛍光標識した糖鎖 を前述のよ うにしてキヤビラリ一電気泳動により、 印加電圧 1 0 k Vで 分析した。 続いて、 図 1 1に示される濃度のレクチンを含んだ上記泳動 液をキヤビラ リ一に注入した。 分析する前に、 キヤビラ リ一泳動用緩衝 液で 1分間洗浄した。 次に、 レクチンを含んだ同じ緩衝液で 1分間洗浄 した。 この実験装置は、 同じ溶液を 9 6— wellプレートで処理できるの で、 一連の結合反応を自動的に実行できる。 The electrophoresis solution used was 100 mM Tris acetate buffer (pH 7.4). Prior to capillary affinity electrophoresis, sugar chains labeled with APTS were labeled by capillary electrophoresis at an applied voltage of 10 kV as described above. analyzed. Subsequently, the above electrophoresis running solution containing the lectin at the concentration shown in FIG. 11 was injected into the cavities. Prior to analysis, the cells were washed for 1 min with the buffer for kinetics. Next, the cells were washed with the same buffer containing lectin for 1 minute. The lab can process the same solution in a 96-well plate, thus automatically performing a series of binding reactions.
〔耱タンパク質の選択〕  [耱 Selection of protein]
各実施例では、 糖タンパク質と して、 AG P、 フェツイン、 鶏卵白ォ ボムコィ ドを使用した。  In each example, AGP, fetuin, and chicken egg white vomucoid were used as glycoproteins.
AG Pの糖鎖は、 2本鎖、 3本鎖、 4本鎖のオリ ゴ糖である。 そして 、 3本鎖、 4本鎖のオリ ゴ糖のいくつかは、 フコースに置換されている (図 1 ( b ) および図 2 ) 。  The sugar chains of AGP are two-, three-, and four-chain oligosaccharides. Some of the three- and four-stranded oligosaccharides are replaced by fucose (FIGS. 1 (b) and 2).
フェツインは、 2本鎖、 3本鎖のオリ ゴ糖を含んでいる。 3本鎮のォ リ ゴ糖では、 G a 1 - j31- 4 - G 1 c NA c分枝鎮の一部が G a l — β 1 - 3 - G 1 c NA c に変わっている (図 3 ( b ) および図 4 ) 。  Fetuin contains double- and triple-stranded oligosaccharides. In the oligosaccharide of the triplet, a part of the G a1 -j31-4-G1cNAc branch is changed to Gal-β1-3-G1cNAc (Fig. 3 (b) and Figure 4).
鶏卵オボムコィ ドは、 かなり複雑なォリ ゴ糖の混合物を含んでいる。 そのオリ ゴ糖のいくつかは、 バイセクティ ング G l c N A c残基で置換 されている。 オボムコ 'イ ドに見られる代表的なオリ ゴ糖を、 図 6に示す' 。 N—グリカ ン構造をコアとする分子サイズの小さいオリ ゴ糖 (01) も 、 鶏卵白オボムコィ ドに見出される。  Egg ovomucoid contains a fairly complex mixture of oligosaccharides. Some of the oligosaccharides have been replaced with bisecting GlcNAc residues. Obomuco 'A typical oligosaccharide found in Eid is shown in Figure 6'. Oligosaccharides with a small molecular size (01) having an N-glycan structure as a core are also found in chicken egg white ovomucoid.
〔レクチンの選択〕  [Lectin selection]
本実施例においては、 以下に示す糖鎖を特異的に認識し、 結合する レ クチンを用いた。 すなわち、 ( 1 ) 高マンノ ース型オリ ゴ糖を特異的に 認識するレクチン ( 2 ) N—ァセチルグルコサミ ン (G l c NA c ) ま たはそのオリ ゴマーを特異的に認識するレクチン ( 3 ) ガラク トース ( G a 1 ) またはラク トサミ ン G a 1 β 1-4/3G 1 c Ν A c を認識するレ クチン ( 4 ) シアル酸を認識する レクチン ( 5 ) フコ一スを認識する レ クチン。 レクチンは安定で、 しかも特定の糖鎖と高特異的に結合するも のが好ましい。 このため、 レクチンと して、 糖鎖特異性を示す C o n A 、 WG A、 T G A、 P H A - E 4 , S S A、 MAM、 R S L、 A A Lを 選択した。 これらのレクチンは、 分析する間比較的安定で、 分析前の保 存に適している。 In this example, lectins that specifically recognize and bind to the following sugar chains were used. That is, (1) a lectin that specifically recognizes high mannose-type oligosaccharides, (2) a lectin that specifically recognizes N-acetylglucosamine (GlcNAc) or its oligomer. 3) Galactose ( Lectin recognizing G a1) or lactosamine G a1 β 1-4 / 3G1cΝA c (4) Lectin recognizing sialic acid (5) Lectin recognizing fucose. Preferably, the lectin is stable and binds to a specific sugar chain with high specificity. For this reason, ConA, WGA, TGA, PHA-E4, SSA, MAM, RSL, and AAL which show sugar chain specificity were selected as lectins. These lectins are relatively stable during analysis and are suitable for pre-analytical storage.
各実施例の結果を以下に示す。  The results of each example are shown below.
〔実施例 1〕 α 1酸性糖タンパク質由来の糖鎖の分類  [Example 1] Classification of sugar chains derived from α1 acidic glycoprotein
a 1酸性糖タンパク質 (A G P ) は、 図 1 ( b ) および図 2に示すよ うに、 2本鎖、 3本鎖、 4本鎖の糖鎖を含んでいる。 さ らに、 3本鎖、 4本鎖の糖鎖の中には、 非還元末端の G a 1 β 1-4G 1 c N A c残基に 、 フコース残基を含んでいる糖鎖も存在する。 本実施例では、 A G Pか ら得られたァシァ口—糖鎮の混合物の移動度を検討した。 その結果を図 1 ( c ) に示す。  a1 acidic glycoprotein (AGP) contains double-chain, triple-chain, and 4-chain sugar chains as shown in FIG. 1 (b) and FIG. Furthermore, among the three- and four-chain sugar chains, there are sugar chains containing a fucose residue in the non-reducing terminal G a1 β 1-4 G 1 c NA c residue. . In this example, the mobility of the mixture of asia mouth-glucose obtained from AGP was examined. The result is shown in Fig. 1 (c).
2本鎖の糖鎖 (AI) は、 最も早い移動時間に観察された (5. 2分) 。 3本鎖 (·ΑΙΙ)· 4本鎮 IMV) の糖鎖'は、 それぞれ 6.2分と 7.- 2分に観察さ れた。 6.5分と 7.5分とに観察されたピークは 3本鎖の糖鎖 (ΑΙΙΙ) およ び 4本鎖の糖鎖 (AV) であり、 いずれもフコース残基が付加している ( 図 1 ( a ) ) 。  Double glycans (AI) were observed at the earliest transit time (5.2 minutes). The three-chain (· ΑΙΙ) and four-chain IMV) sugar chains were observed at 6.2 minutes and 7.- 2 minutes, respectively. The peaks observed at 6.5 minutes and 7.5 minutes are the three-chain sugar chain (ΑΙΙΙ) and the four-chain sugar chain (AV), both of which have a fucose residue added (Fig. 1 ( a))).
( 1 ) WG Aの添加  (1) Addition of WG A
泳動液に WG Aを添加すると、 興味深い移動を示した。 6 μ MのW G A濃度では、 ΑΠと ΑΠΙとが単一のピーク と して 8.2分に、 さ らに AIVと A Vとが 9.2分に単一のピーク と して観察された。 1 2 μ Μの WG Aでは、 A IIと AIII、 および AIVと AVの移動順序が逆転した。 これらのデータは、 フコース残基が 3本鎖および 4本鎖の糖鎖の分枝に付加するこ とによ り 、 WG Aとの結合が減少したことを示している。 Addition of WGA to the electrophoresis solution showed interesting migration. At a WGA concentration of 6 μM, ΑΠ and ΑΠΙ were observed as a single peak at 8.2 minutes, and AIV and AV were observed as a single peak at 9.2 minutes. 1 For 2 μΜ WG A, A The order of movement between II and AIII and between AIV and AV has been reversed. These data indicate that the addition of fucose residues to the tri- and quadruplex carbohydrate branches reduced WGA binding.
( 2 ) C o n Aの添加  (2) Addition of ConA
C 0 n Aを泳動液に添加すると、 2本鎖の糖鎖のピーク強度が変化し た。 レクチン非存在下で 5.2分に観察された 2本鎖の糖鎖 (AI) のピー ク強度は、 0.2μ Μの C o n Aよ り も髙濃度 の C o n Aで、 大 き く減少した。 一方、 C o n Aは、 これらの濃度では 3本鎖および 4本 鎖の糖鎖には明らかに親和性を示さなかった。 これらの結果は、 Kakehi K, et al. , Anal. Chem. , 2001, 73, 2640— 2647.【こ記載のデータ ίこ類 似している。  When C0nA was added to the electrophoresis running solution, the peak intensity of the double-stranded sugar chain changed. The peak intensity of the double-stranded sugar chain (AI) observed at 5.2 min in the absence of lectin was significantly reduced at low concentrations of ConA than at 0.2 μM of ConA. On the other hand, Con A had no apparent affinity for triple- and quadruplex sugar chains at these concentrations. These results are similar to those of Kakehi K, et al., Anal. Chem., 2001, 73, 2640-2647.
( 3 ) T G Αの添加  (3) Addition of T G Α
チューリ ップの球根は、 2種類のレクチンを含み、 その 1つは、 ィー ス ト菌に結合する。 もう 1種類のレクチン (T GA) は、 マウスの赤血 球に特異的に結合し、 この結合は、 豚チログロブリ ンによって特異的に 阻害される。 T G Aを添加すると、 AG P由来のオリ ゴ糖の移動におい て、 興味深い—結果を示した。' 3本鎖の—糖鎖 (Allおよび ΑΊΙΙ) 'が、 この レクチン (T GA) に対して高い特異性を示した。 2 [11の丁 0 では 、 Allと ΑΙΠとのグループが、 7.0分に移動した。 1 2 /ι Μの T GAでは 、 Allと ΑΠΙとがブロー ドな単一ピーク と して溶出し、 最も遅く (約 9.3 分) に観察された。 これに対して、 TG Aと 2本鎖および 4本鎖の糖鎖 との親和性は弱いものであった。  Tulip bulbs contain two types of lectins, one of which binds to yeast. Another type of lectin (TGA) specifically binds to mouse erythrocytes, and this binding is specifically inhibited by swine tyroglobulin. Addition of TGA was interesting—results in the transfer of oligosaccharides from AGP. 'Three-glycans (All and ΑΊΙΙ)' showed high specificity for this lectin (TGA). 2 [On the 11th floor, the group of All and ΑΙΠ moved to 7.0 minutes. In the 12 / ιΜ TGA, All and ΑΠΙ eluted as a single broad peak and were observed the latest (about 9.3 minutes). On the other hand, the affinity between TGA and double- and quadruplex sugar chains was weak.
〔実施例 2〕 フユツイ ン由来の糖鎖の分類一 1 (シアル酸残基を除去 した場合) フェツイ ンは、 図 4に示すよ うに、 1種類の 2本鎖糖鎖 (AI) と、 2 種類の 3本鎖糖鎖 (Allおよび FII) とを含んでいる。 3本鎖の糖鎖のう ちの 1つ (FII) は、 G a 1 β 1-3G 1 c NA c分枝鎖を含んでいる。 本 実施例では、 図 4に示すよ うに、 シアル酸残基を除去した耱鎖の混合物 を使用した。 [Example 2] Classification of sugar chains derived from Futuin-1 (when sialic acid residues were removed) As shown in FIG. 4, fetuin contains one type of double-chain sugar chain (AI) and two types of three-chain sugar chain (All and FII). One of the three glycans (FII) contains a G a1 β 1-3G1cNAc branch. In this example, as shown in FIG. 4, a mixture of 耱 chains from which sialic acid residues had been removed was used.
( 1 ) WG Aの添加  (1) Addition of WG A
主要な 3本鎮の耱鎖 (All) は、 1 2 Mの WG Aでは WG A非存在下 よ り も少し遅く (約 8.9分) 観察された。 も う一方の G a 1 β 1-3G 1 c N A c分枝鎖を有する 3本鎖の糖鎖 (FII〉 の移動時間の遅延は観察さ れず、 7.5分に観察された。 この結果、 12/ Mの WGAでは、 Allと FIIと を完全に分離できた。  The main three-chain 耱 chain (All) was observed slightly later (about 8.9 minutes) in the 12 M WGA than in the absence of WGA. No delay in the transit time of the other three-chain sugar chain (FII) having the G a1 β1-3G1cNAc branch was observed, but was observed at 7.5 minutes. With the / M WGA, All and FII could be completely separated.
( 2 ) C o n Aの添加  (2) Addition of ConA
実施例 1 と同様に、 本実施例においても、 C o n Aの添加によ り、 2 本鎖 (A I ) のピーク強度が、 減少した。 すなわち、 レクチン非存在下 で 5. 2分に観察された 2本鎖の糖鎖 (A I ) のピーク強度は、 0. 2 μ Μの C o n Aより も、 よ り高濃度の 3. Ο μ Μの場合に、 次第に減少 した。 ' ' '  As in Example 1, also in this example, the addition of Con A reduced the peak intensity of the double-stranded (A I). In other words, the peak intensity of the double-stranded sugar chain (AI) observed in 5.2 min in the absence of lectin was higher than that of 0.2 μM ConA at 3. In case of Μ, it gradually decreased. '' '
( 3 ) T G Αの添加  (3) Addition of T G Α
実施例 1 (AG Pの実施例) に示したように、 T G Aは 3本鎮の糖鎖 を強く認識する。 興味深いことに、 T GAは、 Allと FIIとで異なる親和 性を示した。 G a 1 131-3G 1 c N A c分技鎖を含む糖鎖 (FII) は、 移 動時間の遅延が観察された。 2 μ Mおよび 1 2 μ Mの T G Aでは、 Allと F IIとの移動順序が逆転した。 1 2 Mの丁 G Aでは、 Allと FIIに対する 親和性の違いが顕著に現われ、 それぞれの 3本鎖の糖鎖を完全に分離で きた。 As shown in Example 1 (Example of AGP), TGA strongly recognizes the sugar chain of triplet. Interestingly, TGA showed different affinities for All and FII. For the sugar chain (FII) containing the G a 131-3G 1 c NA c partial chain, a delay in the migration time was observed. At 2 μM and 12 μM TGA, the transfer order of All and FII was reversed. In the 12M D-GA, the difference in affinity between All and FII is remarkable, and the three glycans can be completely separated. Came.
〔実施例 3〕 鶏卵白オボムコィ ド由来の耱鎖の分類  [Example 3] Classification of 耱 chain derived from chicken egg white ovomucoid
鷄卵白由来のオボムコイ ドは、 5箇所の糖鎖結合部位を有し、 糖タン パク質の 2 0〜 2 5 %を構成している。 鶏卵白オボムコィ ドには、 2 0 以上の糖鎖が報告されており、 バイセクティ ング G 1 c N A c残基も存 在する。 図 6に、 オボムコィ ドに見られる代表的なオリ ゴ糖を示す。 ま た、 このオリ ゴ糖の分離を図 5 ( a ) および図 5 ( c ) に示す。  Ovomucoid derived from chicken egg white has five sugar chain binding sites and constitutes 20 to 25% of glycoproteins. More than 20 sugar chains have been reported in chicken egg white ovomucoid, and a bisexual G1cNAc residue is also present. Figure 6 shows typical oligosaccharides found in Ovomucoid. The separation of this oligosaccharide is shown in Fig. 5 (a) and Fig. 5 (c).
すべての糖鎖を確認することができなかったが、 これらの糖鎖の分類 は、 本発明を評価する上で良いモデルとなる。 レクチン非存在下では、 いくつものプロ ドなピークが 4分〜 8分にかけて観察されている。 最 初に観察された小さなピークは、 コア 5糖 (01) によるものであり、 バ イセクティ ング G l c NA c残基を含んでいない。  Although all sugar chains could not be confirmed, the classification of these sugar chains is a good model for evaluating the present invention. In the absence of lectin, several prod peaks are observed from 4 to 8 minutes. The first small peak observed is due to the core pentasaccharide (01) and does not contain the bisecting GlcNAc residue.
( 1 ) P H A— E 4の添加 (1) PHA- the addition of E 4
P H A— E 4を添加するこ とによ り、 オリ ゴ糖類の移動に様々な効果 を示すこ とが示された。 0. の P HA— E 4では、 いく つかのグ ループのピークが遅れて観察された。 バイセクティング G l c NA c残 基を含んでいないオリ ゴ糖のピークは、 レクチンの非存在下と同様の結 果を与えた。 これに対して、 バイセクティング G l c NA c残基を含ん でいるオリ ゴ糖の移動時間は、 広範囲に渡って遅延しており、 遅い移動 時間に観察された ( 6 μ Mの P H A— E 4における約 7〜 8分のブロー ドのピーク参照) PHA- Ri by the E 4 to the child added, and the child that shows a variety of effects on the movement of oligo saccharides was shown. In P HA-E 4 of 0.5, the peak of the go mounds group was delayed observation. The oligosaccharide peak without the bisecting GlcNAc residue gave similar results as in the absence of lectin. In contrast, bisecting G lc NA c residues include Dale travel time oligosaccharide is delayed over a wide range, were observed to slow moving time (of 6 μ M PHA- E 4 (See about 7-8 minute broad peak at
( 2 ) W G Aの添加  (2) Addition of WGA
WGAを使用して、 糖鎖の移動の影響について試験した。 コア 5糖 ( 01、 最初のピーク) のピークの移動時間は、 いずれの濃度の WGAでも 変化しなかった。 その他のピークは、 WG Aの濃度の上昇に伴い次第に 遅く観察された。 The effect of sugar chain migration was tested using WGA. The transit time for the core pentasaccharide (01, first peak) peaks at any concentration of WGA Did not change. Other peaks were observed progressively later with increasing concentrations of WGA.
( 3 ) C o n A  (3) ConA
C o n Aを含む泳動液での観察結果は、 図 5 ( c ) に示されるように 、 P HA— E 4と WGAとで観察された結果を支持している。 低濃度の C o n Aでさえ、 コア 5糖 (01) に対応するピークが消失している。 こ れらの結果は、 露出したマンノース残基を含むオリ ゴ糖は、 よ り早い時 間に観察され、 C o n A存在下では消失することを示している。 Observations in electrophoresis solution containing C on A, as shown in FIG. 5 (c), supporting the results observed with the P HA-E 4 and WGA. Even at low concentrations of C on A, the peak corresponding to the core pentasaccharide (01) has disappeared. These results indicate that oligosaccharides containing exposed mannose residues are observed earlier and disappear in the presence of ConA.
オボムコィ ドでは糖鎖が複雑であるため、 糖鎖を同定するこ とができ なかった。 しかしながら、 糖鎖が、 レクチンの存在によ り、 当該糖鎖の 構造の特徴に基づいて、 異なる移動様式を示すことが確認された  In Ovomucoid, sugar chains could not be identified due to the complexity of the sugar chains. However, it was confirmed that the sugar chain exhibited a different movement mode based on the structural characteristics of the sugar chain due to the presence of the lectin.
〔実施例 4〕 WGAと G l c NA cオリ ゴマーとの相互作用  [Example 4] Interaction between WGA and GlcNAc oligomer
糖鎖とタンパク質との結合では、 結合反応の化学量を決定する必要が ある。 モデルと して、 WGAと、 A P T S誘導体化した G l c NA cォ リ ゴマーとの相互作用を示す。 このモデルを選択したのは、 このレクチ ンの結合の反応速度とメ カニズムがよく研究されているからである。 図 7に示すよ うに、 G 1 c N A cオリ-ゴマ一は様々な濃度の WG A—存在下 で興味深い移動時間の変化を示した。  For glycan-protein binding, the stoichiometry of the coupling reaction must be determined. As a model, the interaction between WGA and an APSTS-derivatized GlcNAc oligomer is shown. This model was chosen because the kinetics and mechanism of this lectin binding have been well studied. As shown in FIG. 7, the G1cNAc oligosaccharides showed interesting changes in transit time in the presence of various concentrations of WGA—.
3糖 (図 7の 3、 以下同様) は 3 μ Μの高濃度の WGAでさえ、 WG Αに対して弱い親和性しか示さなかった。 4糖 ( 4 ) は、 0.8 ¾1の 0 Trisaccharides (3 in Fig. 7, and so on) showed weak affinity for WGII even at a high concentration of 3 μM WGA. The tetrasaccharide (4) is 0.8 ¾ 1 of 0
A非存在下で、 WG A非存在下で観察された速度よ り も、 遅い速度で移 動し始めた。 5糖 ( 5 ) は、 0.2 Mの WG A存在下で遅い速度で移動し 始めた。 高濃度の WG Aでは、 移動速度が 4糖よ り も明らかに小さく な つている。 5糖より も分子量の大きなオリ ゴ耱類も、 よく似た傾向を示 し、 移動速度が明らかに減少した。 これらのデータは、 より高分子量の オリ ゴマーが WGAに対して強い親和性を示すことを意味している。 前 述した観察結果と同様の結果が、 画 R、 超遠心分析、 等温滴定マイ ク ロ 熱量測定を用いて報告されている。 In the absence of A, it began to move at a slower rate than was observed in the absence of WG A. The pentasaccharide (5) began to move at a slow speed in the presence of 0.2 M WGA. At higher concentrations of WGA, the migration rate is clearly lower than that of tetrasaccharide. Oligos with a higher molecular weight than pentasaccharide show a similar tendency And the speed of movement was clearly reduced. These data indicate that higher molecular weight oligomers show strong affinity for WGA. Results similar to those described above have been reported using image R, ultracentrifugation analysis, and isothermal titration microcalorimetry.
少数の 2糖類をモデルと し、 レクチンに対するオリ ゴ糖の結合定数の 算出方法が報告されている (Taga A, et al. , J. Chromatogr. A. , 199 9, 837, 221-229. ) 。 すなわち、 以下の ( 1 ) 式によ り算出するもので ある。  A method for calculating the binding constant of oligosaccharides to lectins has been reported using a small number of disaccharides as models (Taga A, et al., J. Chromatogr. A., 1999, 837, 221-229.) . That is, it is calculated by the following equation (1).
1 t2 1 1 1 . 1 ) t-ti ― t-, t2-t-, Ka [P] ta-t! ここで、 tは、 タンパク質 (この場合 WGA) 存在下でのリガンド ( この場合、 G l c NA cオリ ゴマーの APTS誘導体) の移動時間であり ; 1 丄は、 タンパク質非存在下でのリガン ドの移動速度、 t 2は、 移動時 間 [ t ]と タンパク質濃度 [P] との関係が一定に達するタンパク質濃度 でのリガンドの移動時間に近似される。 それゆえ、 上記式 ( 1 ) は、 式 ( 2 ) とみなすこ とができる'。 '
Figure imgf000043_0001
[P]一 + B ( 2 )
1 t 2 11 1 1. 1) t-ti-t-, t 2- t-, Ka [P] ta-t! Where t is a ligand in the presence of a protein (WGA in this case). , moved there at the time of G lc NA c cage APTS derivatives Goma); 1丄the moving speed of the ligand at the protein absence, t 2 during when the mobile [t] and the protein concentration [P] and Is approximated to the translocation time of the ligand at a protein concentration that reaches a constant. Therefore, the above equation (1) can be regarded as equation (2) '. '
Figure imgf000043_0001
[P] One + B ( 2 )
ここで、 Aと Bは定数である。 その結果、 ( t — t j — 1と [P ]— 1 との関係をプロ ッ トすることによ り、 容易に結合定数 (K a ) を得るこ とができた。 ここで、 式 ( 1 ) および式 ( 2 ) に示されるよ うに、 リガ ン ド (例えば、 A P T S—オリ ゴ糖) の濃度を決定する必要はない。 こ れは生物試料由来の糖鎖の複雑な混合物の化学量論結合を研究する上で 非常に重要である。 なぜなら、 それぞれの糖鎖の正確な濃度を決定する ことは困難であるためである。 図 7に示したデータを用いて、 ( t 一 t ,) — 1 と [P〕— 1 との関係をプロ ン ト した。 その結果を図 8に示す。 Where A and B are constants. As a result, by plotting the relationship between (t — tj — 1 and [P] — 1 , we could easily obtain the coupling constant (K a). ) And equation (2), it is not necessary to determine the concentration of the ligand (eg, APTS-oligosaccharide). It is very important for studying the stoichiometric binding of complex mixtures of glycans from biological samples. This is because it is difficult to determine the exact concentration of each sugar chain. Using the data shown in Fig. 7, the relationship between (t-t,)- 1 and [P] -1 was plotted. Fig. 8 shows the results.
3糖、 4糖および 5糖は、 WG Aの濃度とよい直線性を示し、 結合定 数は、 それぞれ、 0. 5 6 X 1 06M— 1 - 5 6 X 1 0 6 M~ 1 2. 5 4 X 1 06 M— 1であった。 本発明によって得られた結果は、 Daro T. , et al. , Chem. Rev. , 2002, 102, 387 - 429.に記載の結果と類似してい る。 また、 Asensio J. L. , Chemistry & Biology 2000, 7, 529 - 543.に は G 1 c N A cオリ ゴマーに多価で結合する WGAのキチン結合モチー フも報告されている。 Trisaccharide, tetrasaccharide and pentasaccharide showed concentration and good linearity of the WG A, coupling constants, respectively, 0. 5 6 X 1 0 6 M- 1 - 5 6 X 1 0 6 M ~ 1 2 5 4 X 10 6 M— 1 . The results obtained by the present invention are similar to those described in Daro T., et al., Chem. Rev., 2002, 102, 387-429. Asensio JL, Chemistry & Biology 2000, 7, 529-543, also reports a chitin-binding motif of WGA that binds polyvalently to the G1cNAc oligomer.
〔実施例 5〕 カビ抽出液中の糖鎖結合性タンパク質と、 ゥシ I g G由 来の糖鎖ライプラ リーとの相互作用の解析一 1 [Example 5] Analysis of the interaction between the sugar chain-binding protein in the mold extract and the sugar chain library derived from P. IgG
実施例 1〜4では、 糖鎖結合性タンパク質と してレクチンを用いて、 糖鎖混合物を分析し、 その分類を行った。 本実施例では、 ゥシ I g G由 来の構造既知の耱鎖を糖鎖ライプラ リ一と し、 リ ソプス属の力ビを粉碎 しキヤビラ リ一電気泳動用緩衝液で抽出した粗力ビ抽出液と反応させた 反応混合物について、 泳動時間の変動について検討した。 この粗カビ抽 出液に fま、 R S L (リ ゾプスカ ビレクチン Rizopus stronipher lectin In Examples 1 to 4, the glycan mixture was analyzed using lectin as the glycan-binding protein, and the glycan mixture was analyzed and classified. In the present example, a glycan of Lisopus genus was used as a sugar chain, and a crude glycan extracted from a liposome of the genus Lysopus was extracted with a buffer solution for electrophoresis. The reaction mixture reacted with the extract was examined for fluctuations in electrophoresis time. Add R S L (Rizopus stronipher lectin) to the crude mold extract.
) が含まれている。 なお、 図 9 ( a ) には、 ゥシ I g G由来の糖鎖の槟 式図が示される。 キヤピラ リー電気泳動の結果、 図 9 ( b ) に示すよ う に、 粗カビ抽出液を含んだ糖鎖の泳動時間は、 それを含まない場合の泳 動時間よ り も顕著に遅くなつている。 これは、 ゥシ I g G由来の糖鎖と 粗力ビ抽出液中に存在する糖鎖結合性タンパク質との相互作用によるも のである。 つま り、 粗カビ抽出液中に存在する、 ゥシ I g G由来の糖鎮 と特異的に結合する糖鎖結合性タンパク質が確認できた。 このよ う に構 造既知の糖鎖混合物を用いれば、 試料中の糖鎖結合性タンパク質の有無 を確認できる。 この方法は、 新規糖鎖結合性タンパク質の発見や、 それ を用いた新規医薬品の開発につながる。 ) It is included. In addition, FIG. 9 (a) shows a schematic diagram of a sugar chain derived from a mouse IgG. As shown in Fig. 9 (b), the electrophoresis time of the sugar chain containing the crude mold extract is significantly slower than the swimming time without it, as shown in Fig. 9 (b). . This is due to the sugar chains from This is due to the interaction with the sugar chain-binding protein present in the crude extract. In other words, a sugar chain-binding protein which specifically exists in the crude mold extract and specifically binds to glycan derived from P. IgG was confirmed. By using a sugar chain mixture having a known structure, the presence or absence of a sugar chain-binding protein in a sample can be confirmed. This method leads to the discovery of novel sugar-chain-binding proteins and the development of new drugs using them.
〔実施例 6〕 フェツイ ン由来の糖鎮の分類一 2 (シアル酸残基を除去 しない場合。 )  [Example 6] Class 1 of sugar chain derived from fetuin 1 (when sialic acid residue is not removed)
本実施例では、 図 1 3に示すよ うに、 シアル酸残基を除去しない糖鎖 の混合物を使用した。  In this example, as shown in FIG. 13, a mixture of sugar chains from which sialic acid residues were not removed was used.
本実施例のフェツイ ンは、 図 1 2 ( b ) および図 1 3に示すよ うに、 1つの 2本鎖の糖鎖 (SAI) と、 3つの 3本鎖の糖鎖 (SFI, SFIIおよぴ S Fill) とを含んでいる。 3本鎖の糖鎖のう ち、 SFIおよび SFIIは、 N e u A c a 2-6G a 1 を含んでおり、 SFIIIは、 3^ ^ 11 。 ひ 2—30 & 1 を を含んでいる。 また、 SFIIIは、 G a 1 β 1-3G 1 c N A c を含んでおり 、 それ以外は G a 1 β 1-4G 1 c N A c を含んでいる。  As shown in FIGS. 12 (b) and 13, the fetuin of this example is composed of one double-stranded sugar chain (SAI) and three triple-stranded sugar chains (SFI, SFII and SFII).ぴ S Fill). Of the three-chain sugar chains, SFI and SFII contain NeuAca2-6Gal, and SFIII has 3 ^^ 11. Includes 2-30 & 1. SFIII contains Ga1β1-3G1cNAc, and the other contains Ga1β1-4G1cNAc.
( 1 ) T-G Aの添カロ ■ · +■  (1) Caroline with T-G A ■ · + ■
実施例 2 (シアル酸残基を有さないフユツイ ンの実施例) に示したよ うに、 T G Aは 3本鎖の糖鎖を強く認識すると と もに、 SFIおよび SFII と SFIIIとで異なる親和性を示した。 すなわち、 G a 1 1-3G 1 c N A c分枝鎖を含む糖鎖 (SFII) は、 移動時間の遅延が観察された。 1 2 μ Μの T G Aでは、 SFIIIと SFIおよび SFIIとの移動順序が逆転した。 1 2 μ Μの T G Aでは、 Allと FIIに対する親和性の違いが顕著に現われ、 そ れぞれの 3本鎖の糖鎮を完全に分離できた。 ( 2 ) MAMの添加 As shown in Example 2 (Example of futuin having no sialic acid residue), TGA strongly recognizes three-chain sugar chains, and has different affinities between SFI and SFII and SFIII. Indicated. That is, the sugar chain (SFII) containing the G a1 1-3G 1cNAc branch chain exhibited a delay in the migration time. In the 12 μΜ TGA, the order of movement between SFIII, SFI and SFII was reversed. At 12 μΜ of TGA, the difference in affinity between All and FII was remarkable, and each three-chain sugar chain could be completely separated. (2) Addition of MAM
MAM (ィ ヌェンジユ レクチン Maackia anraurensis lectin) を泳動 液に添加すると、 シアル酸残基を有するすべての糖鎖 (SAI, SFI, SFII, S Fill) のピーク強度が変化した。 ピーク強度は、 M AMの添加濃度が高 レ、ほど大きく減少した。 なお、 図示しないが、 シアル酸残基を有さない 糖鎖に MAMを添加しても、 ピーク強度の変化は認められなかった。  When MAM (Maackia anraurensis lectin) was added to the electrophoresis running solution, the peak intensities of all sugar chains containing sialic acid residues (SAI, SFI, SFII, S Fill) changed. The peak intensity decreased significantly as the concentration of added MAM increased. Although not shown, no change in peak intensity was observed even when MAM was added to a sugar chain having no sialic acid residue.
( 3 ) S S Aの添加  (3) Addition of SSA
S S A (二ホンニヮ ト コ レクチン Sambucus sieboldiana lectin) を 泳動液に添加すると、 シアル酸残基を有するすべての糖鎖 (SAI,SFI,SF II, SFIII) のピーク強度が変化した。 ピーク強度は、 S S Aの添加濃度 が高いほど大きく減少した。 また、 S S A3.0μ Mを添加した場合、 移 動時間の遅延が観察された。  Addition of S S A (Sambucus sieboldiana lectin) to the electrophoresis solution changed the peak intensities of all sugar chains (SAI, SFI, SFII, SFIII) containing sialic acid residues. The peak intensity decreased significantly as the concentration of SSA was increased. In addition, when 3.0 μM of SSA was added, a delay in the transfer time was observed.
し力 し、 S S Aは α 2, 6 シァリルラク トサミ ンをよ り強く認識し、 ΜΑΜは 0: 2 , 3 シァリルラク トサミ ンをよ り強く認識するので、 両者 を組み合わせることによ り、 シアル酸結合の微妙な差を区別することが できた。  SSA recognizes α2,6 sialyl lactosamine more strongly, and ΜΑΜ recognizes 0: 2,3 sialyl lactosamine more strongly. Subtle differences could be distinguished.
このよ う に、 本実施例では、 α 2- 3および α 2-6結合したジァル酸残基 を含有するフェツイ ンを、 ΜΑΜおよび S S Αを組み合わせて使用する ことにより、 上記シアル酸残基を含む耱鎖を効率よく 区別することがで きた。 具体的には、 S S Aの添加によ り シァロ糖鎖の存在を確認し、 M AMの添加により、 α 2-3およびひ 2- 6結合のシァ口糖鎖を区別すること ができた。 さ らに、 T G Aの添加によ り、 G a l |S l- 3G l c NA c ま たは G a 1 β 1-4G 1 c NA c を有する 3本鎮糖鎖の区別の精度を向上 することができた。 〔実施例 7〕 カビ抽出液中の糖鎖結合性タンパク質と、 ゥシ I g G由 来の糖鎖ライブラリーとの相互作用の解析一 2 Ni will this Yo, in the present embodiment, the Fetsui emissions containing alpha 2-3 and alpha 2-6 linked Jiaru acid residue, by using a combination of ΜΑΜ and SS Alpha, the sialic acid residues It was possible to efficiently distinguish the containing 耱 chains. Specifically, the addition of SSA confirmed the presence of caroglycans, and the addition of MAM made it possible to discriminate between α2-3 and m2-6 linked shea sugar chains. Furthermore, by adding TGA, the accuracy of discriminating three glycosides having Gal | Sl-3GlcNAc or Galβl-4G1cNAc can be improved. Was completed. [Example 7] Analysis of interaction between sugar chain-binding protein in mold extract and sugar chain library derived from P. IgG
本実施例では、 実施例 5 と同様に、 ゥシ I g G由來の構造既知の糖鎖 を糖鎮ライブラ リ とし、 リ ップスカビレクチン ( R S L ) を添加した 図 1 4 ( b ) に示すよ う に、 ゥシ由来の I gGは、 蛍光物質側の末端に フ コ一ス (図 1 4 ( b ) では▲で表示) を持つ糖鎖を含んでいる (1〜1 V) 。 図 1 4 ( a ) に示すよ うに、 RSLの添加によ り、 添加量に応じて、 これらのフコース結合型糠鎮 (フ コシル化糖鎖) (I〜: EV) の泳動時間 が顕著に遅れるこ とが確認できた。 すなわち、 本実施例では、 フコース 結合型糖鎖を効率よく検出することができた。  In this example, as in Example 5, a sugar chain with a known structure derived from Psi IgG was used as a sugar chain library, and lip scabilelectin (RSL) was added, as shown in FIG. 14 (b). As described above, IgG derived from Psi contains a sugar chain having a fucose (indicated by ▲ in FIG. 14 (b)) at the end of the fluorescent substance (1-1 V). As shown in Fig. 14 (a), the addition of RSL markedly increased the migration time of these fucose-linked rice bran (fucosylated sugar chains) (I to EV) depending on the amount added. It was confirmed that it was late. That is, in this example, fucose-linked sugar chains could be detected efficiently.
〔実施例 8〕 プタチログロブリ ン糖鎖の分類  [Example 8] Classification of puttyroglobulin sugar chain
ブタチログロブリ ン由来の糖鎖は、 図 1 5および図 1 6に示すよ うに、 2本鎖 (TI) および少量の 3本鎖 (TI) 糖鎖、 並びにハイ マンノース型 糖鎖 (HM) を含んでいる、 ユニークな糖タンパク質である。 また、 2本 鎖および 3本鎖の糖鎖は、 末端の G 1 c N A c にフコースが付加した、 フ コ一ス結合型糖鎖である。 - '·'— 本実施例では、 ブタチログロブリ ン由来の糖鎖を糖鎖ライブラ リーと し、 T G Aおよび C o n Aを添加した。  As shown in Figures 15 and 16, glycans derived from butyroglobulin contain double-stranded (TI) and small amounts of triple-stranded (TI) sugar chains, and high-mannose-type sugar chains (HM). A unique glycoprotein. The double- and triple-chain sugar chains are fucose-linked sugar chains in which fucose has been added to the terminal G1cNAc. -'·'-In this example, a sugar chain derived from butyroglobulin was used as a sugar chain library, and TGA and ConA were added.
図 1 5に示すよ うに、 T G Aの添加によ り、 添加量に応じて、 これら フコース結合型糖鎖 (TIおよび TI I) の泳動時間が顕著に遅れるこ とが 確認できた。 なお、 5分前後に見られるハイ マンノース型糖鎮 (HM) は 、 T G Aを添加しても、 泳動時間は全く変化しなかった。  As shown in FIG. 15, it was confirmed that the addition of TGA markedly delayed the migration time of these fucose-linked sugar chains (TI and TII) depending on the amount of addition. The electrophoresis time of high mannose glycoside (HM), which was observed around 5 minutes, did not change at all even when TGA was added.
なお、 図示しないが、 T G Aの代わりに C o n Aを添加した場合、 ハ ィマンノース型糖鎖 (HM) のピークは、 実施例 3 と同様に、 完全に消失 した。 これによ り 、 C o n Aの添加によ り、 ハイマンノース型糖鎖を確 認するこ とができた。 このよ うに、 プタチログロブリ ンは、 ハイマンノ 一ス型糖鎖と複合型糖鎖とを含む有用なライブラ リ一糖鎖である。 Although not shown, when Con A was added instead of TGA, c As in Example 3, the peak of the immannose-type sugar chain (HM) completely disappeared. As a result, a high mannose-type sugar chain could be confirmed by adding ConA. Thus, putatyroglobulin is a useful library monosaccharide containing a hymannose monosaccharide and a complex oligosaccharide.
〔実施例 9〕 癌患者由来の AG Pに含まれる糖鎖構造解析  [Example 9] Analysis of sugar chain structure contained in AGP derived from cancer patient
AG Pの糖鎖は、 癌化や炎症などの生理変化に伴って、 タンパク質中 の糖鎖が変化する糖タンパク質である。 A G P分子上には 5箇所の N結 合型糖鎖の修飾部位が存在し、 図 1 7 ( b ) および図 1 8に示すよ うに、 糖鎖 AI〜AVIの耱鎖の存在が明らかにされている。 特に、 癌化に伴うフ コシル化糖鎖 (AIII, AV, AVI) の変化は、 近年注目 されている。 本実施 例では、 癌患者由来 AGPの糖鎖分析およびフコース認識レクチンの添加 効果を検討した。  The sugar chains of AGP are glycoproteins whose sugar chains change with physiological changes such as canceration and inflammation. There are five N-linked sugar chain modification sites on the AGP molecule, and as shown in Fig. 17 (b) and Fig. 18, the presence of the glycans AI to AVI has been clarified. ing. In particular, changes in fucosylated sugar chains (AIII, AV, AVI) associated with canceration have attracted attention in recent years. In this example, the sugar chain analysis of AGP derived from a cancer patient and the effect of adding a fucose recognition lectin were examined.
図 1 7 ( a ) に示すよ うに、 正常の AGP の糖鎖は、 5.0 分(AI)、 5.7 分(AII)、 5.9 分(AIII)、 6.5 分(AIV)、 6.7 分(AV)に五種の糖鎖ピーク と して観察されている (図 1 7 ( a ) 最下段のチヤ一ト) D —方、 癌患 者由来の AG Pでは、 癌化に伴い、 フコシル化糖鎖(AIII, AV)の増加が 観察されている (図 1 7 ( a ) 中央のチャー ト) 。 さ らに'、 癌患者由来 AGP では正常 AGP で見られなかった※印のピーク (AVI) の存在が観察 された。 As shown in Fig. 17 (a), normal AGP glycans were found at 5.0 minutes (AI), 5.7 minutes (AII), 5.9 minutes (AIII), 6.5 minutes (AIV), and 6.7 minutes (AV). (Fig. 17 (a), lowermost chart) D—On the other hand, in cancer-derived AGPs, fucosylated sugar chains (AIII , AV) is observed (Fig. 17 (a), center chart). In addition, in the AGP derived from cancer patients, the presence of a peak (AVI), which was not seen in the normal AGP, was observed.
次に、 癌患者由来の AG Pに、 フコース認識レクチンであるヒイロチ ャワンタケレクチン (AAL:Aleuria aurantia lectin) を添カロするこ と によ り (図 1 7 ( a ) 最上段のチャート) 、 特徴的な変化と して、 フコ ース結合型糠鎖 (フコシル化糖鎮) のピーク強度減少 (消失) が確認さ れた。 なお、 AA Lの特異性から、 このフコース結合型糖鎖はルイスェ ックス抗原を有するフコシル化糖鎖である。 Next, the ACP derived from a cancer patient was spiked with AAL: Aleuria aurantia lectin (AAL), a fucose-recognition lectin (Fig. 17 (a), top chart). As a characteristic change, a decrease (disappearance) in the peak intensity of the fucose-linked bran chain (fucosylated sugar chain) was confirmed. Due to the specificity of AAL, this fucose-linked sugar chain is It is a fucosylated sugar chain having an antigen.
本発明によれば、 図 1 0に示すよ うに、 糖タンパク質由来の糖鎖のハ イ スループッ ト機能分類が可能である。 具体的には、 以上のよ うに各実 施例において、 糖鎖を分類するのに、 8種類のレクチン、 すなわち、 C o n A、 WGA、 P HA— E 4、 T GA、 R S L, AA L、 S S A、 M AMを選択した。 以下にこれらのレクチンの特徴を示す。 According to the present invention, as shown in FIG. 10, high-throughput function classification of glycoprotein-derived sugar chains is possible. More specifically, in Kakumi施例to jar good of the above, to classify the sugar chain, eight types of lectins, ie, C on A, WGA, P HA- E 4, T GA, RSL, AA L, SSA and MAM were selected. The characteristics of these lectins are shown below.
C o n Aは、 2本鎖の糖鎖を認識する。 また、 高マンノース、 および ハイプリ ッ ド型のオリ ゴ糖も C o n Aによつて認識される。  ConA recognizes a double-stranded sugar chain. High mannose and hybrid oligosaccharides are also recognized by ConA.
WGAは、 2本鎖、 3本鎖、 4本鎖の糠鎖の移動時間に影響を及ぼす 。 すなわち、 WG A存在下では、 フ コース残基が付加した 3本鎖および 4本鎖の糖鎖の移動順序と、 フ コース残基を含まないそれぞれの糖鎖の 移動順序とが変化する。  WGA affects the translocation time of double, triple and quadruple bran chains. That is, in the presence of WGA, the order of movement of the three- and four-chain sugar chains to which fucose residues have been added and the order of movement of the respective sugar chains that do not contain fucose residues change.
T GAは、 3本鎖の糖鎖を識別するのに非常に有用である。 図 3 ( c ) に示すように、 3本鎖の糖鎖は、 T G Aにより特異的に認識される。  TGA is very useful for discriminating triple glycans. As shown in FIG. 3 (c), the triple sugar chain is specifically recognized by TGA.
P HA_ E 4は、 図 5 ( a ) 〜図 5 ( c ) に示すよ う に、 バイセクテ イング G 1 c N A c残基を有する糖鎖の認識に適用できる。 例えば、 鶏 卵白オボムコ- Γド由来の複雑なォリ ゴ糖の混合物中からバイセクティ '·ン グ G l c NA c残基を有するオリ ゴ糖を識別することに成功した。 P HA_ E 4 is Remind as in FIG. 5 (a) ~ FIG 5 (c), can be applied to the recognition of the sugar chain having Baisekute queuing G 1 c NA c residues. For example, the inventors succeeded in identifying an oligosaccharide having a bisexual GlcNAc residue from a complex mixture of oligosaccharides derived from chicken egg white ovomucode.
R S Lおよび AA Lはフコースに特異性を示し、 S S Aおよび MAM はシアル酸に対して特異性を示し、 上記 4種類 (C o n A、 WGA、 T GA、 P H A - E 4) で分類された糖鎖を、 さ らに厳密に区別する。 上記の実施例では、 レクチンは、 2つの異なる様式で糖鎖との結合を 示した。 すなわち、 オボムコイ ド中の C o n Aとコア 5糖 (図 5 ( a ) 〜図 5 ( c ) の O I ) との結合では、 ピークの消失が見られた。 その他 の場合では、 レクチンと糖鎖との結合は、 移動時間が遅延するという結 果であった。 今のところ、 このよ うに結合様式が異なって観察されたこ とについての理由は解明されていない。 さらに、 反応速度論的研究が必 要であるけれども、 結合における反応速度は考慮するべきである。 RSL and AAL show specificity for fucose, SSA and MAM show specificity for sialic acid, and sugar chains classified into the above four types (C on A, WGA, T GA, and PHA-E 4 ) Are more strictly distinguished. In the above examples, lectins showed binding to sugar chains in two different ways. That is, in the binding between C on A in ovomucoid and the core pentasaccharide (OI in FIGS. 5 (a) to 5 (c)), disappearance of the peak was observed. Other In this case, the binding between the lectin and the sugar chain resulted in a slower translocation time. To date, the reasons for these different binding modes have not been elucidated. In addition, although kinetic studies are needed, the kinetics of binding should be considered.
本発明の方法は、 耱鎖と レクチンとが結合する親和定数 (K a ) を一 斉に決定することができる。 その理由と して、 図 7に示すように、 キ ト オリ ゴ糖とタンパク質間の結合のよ うに、 蛍光標識リガン ド (例えば、 糖鎖) の濃度を測定する必要がないからである。 それゆえ、 本発明の方 法は、 濃度を決定するこ とが困難な、 生物試料由来の糖鎖の複雑な混合 物の速度論的測定に、 非常に有用である。  According to the method of the present invention, the affinity constant (K a) at which the 耱 chain binds to the lectin can be determined simultaneously. This is because, as shown in FIG. 7, it is not necessary to measure the concentration of a fluorescently labeled ligand (for example, a sugar chain), unlike the binding between chito-oligosaccharide and protein. Therefore, the method of the present invention is very useful for the kinetic measurement of a complex mixture of sugar chains from a biological sample, whose concentration is difficult to determine.
上記実施例に示したよ うに、 所定の濃度における選択したレクチンの 組み合わせを用いて、 糖鎖の分類に成功した。 1つの糖鎖試料に要する 全分析時間は、 4時間以内である。 W G Aと A G P との研究に用いたレ クチンと糖鎖試料の全量は、 それぞれ 2 0 // g ( 5 0 0 p m 0 1 ) 、 2 μ g ( 5 0 p m o l ) である。  As shown in the above example, sugar chains were successfully classified using a combination of selected lectins at a predetermined concentration. The total analysis time required for one sugar chain sample is within 4 hours. The total amount of lectin and glycan samples used in the study of WGA and AGP was 20 // g (500 pm01) and 2 μg (50 pmol), respectively.
本発明では、 糖鎖骨格の特徴を識別することが中心であるが、 シアル 酸を含む糖鎮の特徴を利用した方法に応用可能である。 - 以上のよ うに、 本発明の技術は、 既知および または未知の糖鎖ライ ブラ リーを、 既知または未知のタンパク質の可溶化溶液、 ゲル、 または ゾルを媒体と して用いる電気泳動にかけ、 その泳動下で形成される糖鎖 一糖鎖結合性タンパク質複合体の電気泳動の相違に基づき、 糖鎖の分類、 および瑭鎖とタンパク質との相互作用の解析を行う。 糖鎖ライブラリ一 と電気泳動媒体とはキッ トで、 また電気泳動ゲル媒体はマイクロチップ などの形で提供し得る。 これにより、 タンパク質の翻訳後の糖鎖による 修飾を解明する上で非常に有用である。 さ らに、 糖鎖欠損による糖タ ン パク質疾患の病態の研究にも役立つ。 本発明を用いた細胞表面での糖鎖 を特徴づけることによ り、 分子レベルの病態解析にも役立てることがで きる。 In the present invention, the main feature is to identify the characteristics of the sugar chain skeleton. However, the present invention can be applied to a method utilizing the characteristics of a sugar chain containing sialic acid. -As described above, the technology of the present invention is based on electrophoresis of a known and / or unknown glycan library using a solubilized solution, gel or sol of a known or unknown protein as a medium. Based on the difference in the electrophoresis of the sugar chain-single sugar chain binding protein complex formed below, we classify the sugar chains and analyze the interaction between the 瑭 chain and the protein. The sugar chain library and the electrophoresis medium can be provided as a kit, and the electrophoresis gel medium can be provided in the form of a microchip or the like. As a result, the sugar chain after translation of the protein It is very useful in elucidating modifications. It is also useful for studying the pathology of glycoprotein diseases due to sugar chain deficiency. By characterizing sugar chains on the cell surface using the present invention, it can be useful for molecular-level pathological analysis.
尚、 発明を実施するための最良の形態の項においてなした具体的な実 施態様または実施例は、 あくまでも、 本発明の技術内容を明らかにする ものであって、 そのよ うな具体例にのみ限定して狭義に解釈されるべき ものではなく、 本発明の精神と次に記載する特許請求の範囲内で、 いろ いろと変更して実施することができるものである。 産業上の利用の可能性  It should be noted that the specific embodiments or examples made in the section of the best mode for carrying out the invention only clarify the technical contents of the present invention, and are limited to only such specific examples. It should not be construed as limiting in a narrow sense, but can be implemented with various modifications within the spirit of the present invention and the claims described below. Industrial potential
以上のよ うに、 本発明の糖鎖ー耱鎖結合性タンパク質の相互作用の測 定方法は、 1種以上の糖鎖混合物の分離結果と、 当該糖鎖混合物と糖鎖 結合性タンパク質とを反応させた反応混合物の分離結果との比較に基づ き、 糖鎖一糖鎖結合性タンパク質の相互作用を測定する方法である。 それゆえ、 例えば、 複数の糖鎖の混合物をライブラ リ一と して糖鎮ー 糖鎖結合 ··性—タ— 'ンパク質の-相互乍用の微妙な変化を測定することができる。 さ らに、 既知の複数の糖鎖結合性タンパク質 (例えばレクチン類) を組 み合わせることにより、 複雑な糖鎖の混合物との結合反応を効率よく一 斉測定できる。  As described above, the method for measuring the interaction between a sugar chain and a 耱 chain-binding protein according to the present invention comprises the step of reacting the separation result of one or more sugar chain mixtures with the sugar chain mixture and the sugar chain-binding protein. This is a method for measuring the interaction between a sugar chain and a sugar chain-binding protein based on comparison with the separation result of the reaction mixture. Therefore, for example, a mixture of a plurality of sugar chains can be used as a library to measure subtle changes in the use of sugar chains, sugar chain bonds, and the properties of proteins. Furthermore, by combining a plurality of known sugar chain-binding proteins (for example, lectins), the binding reaction with a complex mixture of sugar chains can be efficiently and simultaneously measured.

Claims

請 求 の 範 囲 The scope of the claims
1 . 1種以上の糖鎖混合物の分離結果と、 当該糖鎖混合物と糖鎖結合性 タンパク質とを反応させた反応混合物の分離結果との比較に基づき、 糖 鎖一糖鎖結合性タンパク質の相互作用を測定することを特徵とする糠鎖 ー耱鎖結合性タンパク質の相互作用の測定方法。 1. Based on a comparison between the separation result of one or more sugar chain mixtures and the separation result of the reaction mixture obtained by reacting the sugar chain mixture with the sugar chain-binding protein, the interaction between the sugar chain-sugar chain-binding protein is determined. A method for measuring the interaction of a bran-chain-binding protein, which is characterized by measuring the action.
2 . 上記 1種以上の耱鎖混合物の電気泳動結果と、 上記反応混合物の電 気泳動結果とを比較するこ とを特徴とする請求の範囲 1 に記載の糖鎖一 糖鎖結合性タンパク質の相互作用の測定方法。  2. The sugar chain-sugar chain binding protein according to claim 1, wherein the result of electrophoresis of the one or more kinds of 耱 -chain mixture is compared with the result of electrophoresis of the reaction mixture. How to measure the interaction.
3 . 上記糖鎖混合物は、 ひ 1酸性糖タンパク質、 フェツイン、 オボムコ イ ド、 ィムノ グロブリ ン、 およびチログロブリ ンの少なく と も 1 όに由 来する糖鎮混合物であることを特徴とする請求の範囲 1 または 2に記載 の糖鎖一糖鎖結合性タンパク質の相互作用の測定方法。 3. The sugar chain mixture is a sugar chain mixture derived from at least 1% of acidic glycoprotein, fetuin, ovomucoid, imnoglobulin, and thyroglobulin. 3. The method for measuring the interaction between a sugar chain and a sugar chain-binding protein according to 1 or 2.
4 . 上記糖鎖結合性タンパク質は、 タチナタ豆レクチン、 小麦胚芽レク チン、 チュ一リ ップレクチン、 リ ゾプスカ ビレクチン、 二ホンニヮ トコ レクチン、 ィヌェンジユ レクチン、 ヒィ ロチャワンタケレクチン、 ィヌ ェンジュレクチンかち選択される ' 1以'上の糖鎖結合性タンパク質である ことを特徴とする請求の範囲 1 、 2、 または 3に記載の糖鎖一糖鎖結合 性タンパク質の相互作用の測定方法。  4. The sugar chain-binding protein is selected from the group consisting of Tatinata bean lectin, wheat germ lectin, tulip lectin, Rhizopusca lectin, Nihon nito lectin, Inenjiyu lectin, Hilochawantake lectin, and Ingenju lectin. 4. The method for measuring an interaction between a sugar chain and a sugar chain-binding protein according to claim 1, 2, or 3, wherein the method is a sugar chain-binding protein described above.
5 . 請求の範囲 1 〜 4のいずれか 1項に記載の糖鎖一糠鎖結合性タンパ ク質の相互作用の測定方法を用いる糖鎖のスク リ ーニング方法であって 特異的に認識する糖鎖が明らかな 1種以上の糖鎖結合性タンパク質と 、 当該糖鎖結合性タンパク質と結合することが不明の 1種以上の糖鎮混 合物とを反応させる糖鎖反応工程と、 5. A method for screening a sugar chain using the method for measuring the interaction between a sugar chain and a bran chain-binding protein according to any one of claims 1 to 4, wherein the sugar is specifically recognized. One or more types of sugar-binding proteins whose chains are apparent and one or more types of glycosides that are not known to bind to the relevant sugar-binding proteins A sugar chain reaction step of reacting with the compound,
上記耱鎖混合物のみの分離結果と、 上記糖鎮反応工程によって得られ た反応混合物の分離結果との比較に基づき、 上記耱鎮混合物中に、 上記 糖鎮結合性タンパク質と結合する糖鎖の有無を判定する耱鎖判定工程と を含むことを特徴とする糖鎖のスク リ一ニング方法。  Based on a comparison between the separation result of only the 耱 chain mixture and the separation result of the reaction mixture obtained in the saccharide reaction step, presence or absence of a sugar chain that binds to the glycan binding protein in the 耱 mixture. A sugar chain screening step, comprising: determining a sugar chain.
6 . 請求の範囲 1 〜 4のいずれか 1項に記載の糖鎖一糖鎖結合性タンパ ク質の相互作用の測定方法を用いる糖鎖のスク リ一二ング方法であって 構造の明らかな 1種以上の糖鎖混合物と、 当該糖鎖を特異的に認識す ることが不明の 1種以上の糖鎖結合性タンパク質とを反応させる糖鎖結 合性タンパク質反応工程と、  6. A method for screening a sugar chain using the method for measuring the interaction between a sugar chain and a sugar chain-binding protein according to any one of claims 1 to 4, wherein the structure is apparent. A sugar chain binding protein reaction step of reacting one or more sugar chain mixtures with one or more sugar chain binding proteins that are not known to specifically recognize the sugar chain;
上記糖鎖混合物のみの分離結果と、 上記糖鎖結合性タンパク質反応ェ 程によつて得られた反応混合物の分離結果との比較に基づき、 上記糖鎖 結合性タンパク質中に、 上記糖鎖を特異的に認、識する糖鎮結合性タンパ ク質の有無を判定する糖鎖結合性タンパク質判定工程とを含むことを特 徵とする糖鎖結合性タンパク質のスク リ一二ング方法。  Based on a comparison between the separation result of only the above-mentioned sugar chain mixture and the separation result of the reaction mixture obtained by the above-mentioned sugar chain-binding protein reaction step, the above-mentioned sugar chain is specific to the above-mentioned sugar chain-binding protein. And a sugar chain-binding protein determining step of determining the presence or absence of a sugar-binding protein to be recognized and recognized.
7 . 上記特異的に認識する糖鎖が明らかな 1·種以上の糖鎖結合性タンパ ク質は、 タチナタ豆レクチン、 小麦胚芽レクチン、 チューリ ップレクチ ン、 リ ゾプスカ ビレクチン、 二ホンニヮ ト コ レクチン、 ィヌェンジユレ クチン、 ヒィ ロチャワンタケレクチン、 ィヌェンジユ レクチンから選択 されることを特徴とする請求の範囲 5に記載のスク リ一二ング方法。  7. One or more types of sugar-binding proteins whose sugar chains are specifically recognized are as follows: Pinus lectin, Wheat germ lectin, Tulip lectin, Rhizopusca lectin, Nihonnitoko lectin, Innujyuure 6. The screening method according to claim 5, wherein the method is selected from Kuching, Hilochawantake lectin, and Innujyu lectin.
8 . 上記構造の明らかな 1種以上の糖鎖混合物は、 ひ 1酸性糖タンパク 質、 フェツイ ン、 オボムコイ ド、 ィ ムノ グロブリ ン、 およびチロ グロブ リ ンの少なく とも 1つに由来する糖鎖混合物であることを特徴とする請 求の範囲 6に記载のスク リーニング方法。 8. A mixture of one or more glycans having the above-mentioned structure is a mixture of glycans derived from at least one of the following: acidic glycoprotein, fetuin, ovomucoid, imnoglobulin, and thyroglobulin. A contract characterized by being Screening method described in claim 6.
9 - 上記糖鎖判定工程または糖鎖結合性タンパク質判定工程は、 キヤピ ラ リ一電気泳動による泳動時間の差によつて糖鎖または糖鎖結合性タン パク質の有無を判定することを特徴とする請求の範囲 5〜 8のいずれか 1項に記載のスク リ ーニング方法。  9-The sugar chain-determining step or the sugar-chain-binding protein determining step is characterized in that the presence or absence of a sugar chain or a sugar-chain-binding protein is determined based on a difference in electrophoresis time by capillary electrophoresis. The screening method according to any one of claims 5 to 8, wherein
1 0 . 上記糖鎖混合物の糖鎖は、 標識されていることを特徴とする請求 の範囲 5 〜 9のいずれか 1項に記載のスク リ ーニング方法。  10. The screening method according to any one of claims 5 to 9, wherein the sugar chain of the sugar chain mixture is labeled.
1 1 . 上記糖鎖または糖鎮結合性タンパク質がシアル酸残基を含む場合 に、 当該シアル酸残基が除去する工程をさ らに含んでいることを特徴と する請求の範囲 5〜 1 0のいずれか 1項に記載のスク リーユング方法。 11. The method according to claim 5, wherein when the sugar chain or the sugar-binding protein contains a sialic acid residue, the method further comprises a step of removing the sialic acid residue. The screen-jung method according to any one of the above.
1 2 . 上記特異的に認識する糖鎖が明らかな 1種以上の糖鎖結合性タン パク質または構造の明らかな 1種以上の糖鎖混合物が、 支持体に固定さ れていることを特徵とする請求の範囲 5〜 1 1のいずれか 1項に記載の スク リーニング方法。 1 2. It is characterized that one or more sugar chain-binding proteins whose sugar chains specifically recognized above or a mixture of one or more sugar chains whose structure is apparent are fixed to a support. The screening method according to any one of claims 5 to 11, wherein
1 3 . 上記糖鎖判定工程または糖鎖結合性タ ンパク質判定工程では、 キ ャピラ リー電気泳動、 または、 マイ クロチップ電気泳動による泳動結果 の比較に基づいて、 糠鎮また'は糖鎖結合性ダンパク質を判定特―徴とする 請求の範囲 5 〜 1 2のいずれか 1項に IB載のスク リーニング方法。  1 3. In the sugar chain determination step or sugar chain binding protein determination step, based on comparison of the results of electrophoresis by capillary electrophoresis or microchip electrophoresis, bran sugar or The screening method according to any one of claims 5 to 12, wherein the quality is determined based on damping quality.
1 4 . 請求の範囲 1 〜 4のいずれか 1項に記載の糖鎖一糖鎖結合性タン パク質の相互作用の測定方法、 または、 請求の範囲 5〜 1 3のいずれか 1項に記载のスク リーニング方法に用いる試薬であつて、  14. The method for measuring the interaction between a sugar chain and a sugar chain-binding protein according to any one of claims 1 to 4, or the method according to any one of claims 5 to 13. The reagent used in the screening method of 载,
特異的に認識する糖鎖が明らかな 1種以上の耱鎖結合性タンパク質ま たは構造の明らかな 1種以上の糖鎖混合物を含んでいることを特徴とす る試薬。 A reagent characterized in that it contains one or more types of 耱 -chain binding proteins whose sugar chains specifically recognized or a mixture of one or more types of sugar chains whose structures are apparent.
1 5 . 上記特異的に認識する糖鎖が明らかな 1種以上の糖鎖結合性タ ン パク質は、 タチナタ豆レクチン、 小麦胚芽レクチン、 チューリ ップレク チン、 リ ゾプスカ ビレクチン、 二ホンニヮ ト コ レクチン、 ィヌェンジュ レクチン、 ヒ ィ ロチャワ ンタケレクチン、 ィヌェンジユ レクチンから選 択されることを特徴とする請求の範囲 1 4に記載の試薬。 1 5. The one or more sugar-chain-binding proteins whose sugar chains that are specifically recognized are clear, such as cinnamon bean lectin, wheat germ lectin, tulip lectin, rhizopska lectin, diphthonic lectin, 15. The reagent according to claim 14, wherein the reagent is selected from Inulinju lectin, Hirochawantake lectin, and Innugenju lectin.
1 6 . 上記構造の明らかな 1種以上の糖鎖混合物は、 ひ 1酸性糖タンパ ク質、 フェツイ ン、 オボムコイ ド、 ィムノ グロブリ ン、 およびチロ グロ プリ ンの少なく と も 1つに由来する糖鎖混合物であるこ とを特徵とする 請求の範囲 1 4または 1 5に記載の試薬。  1 6. The mixture of one or more sugar chains having the above-mentioned structures is composed of sugars derived from at least one of acidic glycoproteins, fetuin, ovomucoid, imnoglobulin, and thyroglobulin. 16. The reagent according to claim 14, wherein the reagent is a chain mixture.
1 7 . 糖鎖一糖鎖結合性タンパク質の相互作用測定、 または、 糖鎖ある いは糖鎖結合性タンパク質のスク リ ーニング用のキッ トであって、 請求の範囲 1 4、 1 5または 1 6に記載の試薬を含んでいるこ とを特 徴とするキッ ト。  17. A kit for measuring the interaction of sugar chain-glycan binding proteins or for screening sugar chains or sugar chain-binding proteins, and which is claimed in claims 14, 15 or 1. A kit characterized by containing the reagent according to 6.
PCT/JP2003/013239 2002-10-18 2003-10-16 Method of measuring interactions between sugar chains and sugar chain-binding protein and utilization thereof WO2004036216A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004544967A JPWO2004036216A1 (en) 2002-10-18 2003-10-16 Method for measuring interaction between sugar chain-sugar chain binding protein and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002305086 2002-10-18
JP2002-305086 2002-10-18

Publications (1)

Publication Number Publication Date
WO2004036216A1 true WO2004036216A1 (en) 2004-04-29

Family

ID=32105154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013239 WO2004036216A1 (en) 2002-10-18 2003-10-16 Method of measuring interactions between sugar chains and sugar chain-binding protein and utilization thereof

Country Status (2)

Country Link
JP (1) JPWO2004036216A1 (en)
WO (1) WO2004036216A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036577A (en) * 2007-07-31 2009-02-19 Institute Of Physical & Chemical Research Sugar chain analysis method
JP2017203762A (en) * 2016-05-09 2017-11-16 グリコボンド・アクチボラゲットGlycobond Ab Novel binding assay
WO2018233618A1 (en) * 2017-06-20 2018-12-27 江苏先思达生物科技有限公司 Method for establishing serum glycoprotein glycome profile model of liver cirrhosis
JP2019148564A (en) * 2018-02-28 2019-09-05 学校法人近畿大学 Sugar chain analysis method, sugar chain analysis system, sugar chain analysis program, and sugar chain analysis kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253396A (en) * 1986-04-16 1987-11-05 アンステイテユ−・メリウ− Affinity chromatography material and purification of proteinantigen of bordetella bacteria using said material
JPH10267931A (en) * 1997-03-27 1998-10-09 Takara Shuzo Co Ltd Measuring method of mutual reaction between sugar and target material
WO2000068688A1 (en) * 1999-05-06 2000-11-16 Glycodata Ltd. Polysaccharide structure and sequence determination
JP2002500358A (en) * 1997-12-24 2002-01-08 セテク コーポレイション Capillary electrophoresis to detect ligands that bind to the target and determine their relative affinities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253396A (en) * 1986-04-16 1987-11-05 アンステイテユ−・メリウ− Affinity chromatography material and purification of proteinantigen of bordetella bacteria using said material
JPH10267931A (en) * 1997-03-27 1998-10-09 Takara Shuzo Co Ltd Measuring method of mutual reaction between sugar and target material
JP2002500358A (en) * 1997-12-24 2002-01-08 セテク コーポレイション Capillary electrophoresis to detect ligands that bind to the target and determine their relative affinities
WO2000068688A1 (en) * 1999-05-06 2000-11-16 Glycodata Ltd. Polysaccharide structure and sequence determination

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KINOSHITA ET AL.: "Capillary DNA sequencer o mochiiru to-tanpaku-shitsu tosa no cho biryo bunseki", DAI 21 KAI PROCEEDINGS OF THE SYMPOSIUM ON CAPILLARY ELECTROPHORESIS KOEN YOSHISHU, 12 December 2001 (2001-12-12), pages 95 - 96, XP002983864 *
NAKAJIMA ET AL.: "Capillary denki eidoho o shiyo suru tosa kongobutsu-tanpaku-shitsu kan sogo sayo no issei kaiseki", DAI 23 KAI THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH NENKAI YOSHISHU, 25 July 2002 (2002-07-25), pages 97, XP002983863 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036577A (en) * 2007-07-31 2009-02-19 Institute Of Physical & Chemical Research Sugar chain analysis method
JP2017203762A (en) * 2016-05-09 2017-11-16 グリコボンド・アクチボラゲットGlycobond Ab Novel binding assay
WO2018233618A1 (en) * 2017-06-20 2018-12-27 江苏先思达生物科技有限公司 Method for establishing serum glycoprotein glycome profile model of liver cirrhosis
JP2019148564A (en) * 2018-02-28 2019-09-05 学校法人近畿大学 Sugar chain analysis method, sugar chain analysis system, sugar chain analysis program, and sugar chain analysis kit
US11371997B2 (en) 2018-02-28 2022-06-28 Shimadzu Corporation Glycan analysis method, glycan analysis system, program for glycan analysis, and kit for glycan analysis
JP2022186876A (en) * 2018-02-28 2022-12-15 学校法人近畿大学 Sugar chain analysis method, sugar chain analysis system, sugar chain analysis program, and sugar chain analysis kit
JP7469780B2 (en) 2018-02-28 2024-04-17 学校法人近畿大学 Glycosylation method, glycosylation system, glycosylation program, and glycosylation kit

Also Published As

Publication number Publication date
JPWO2004036216A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US10317393B2 (en) Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells
Safina Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: A comparison with conventional analytical techniques. A critical review
Hendrickson et al. Analytical application of lectins
JP5552421B2 (en) Characterization of N-glycans using exoglycosidases
Horlacher et al. Carbohydrate arrays as tools for research and diagnostics
Laurent et al. Glycoarrays—tools for determining protein–carbohydrate interactions and glycoenzyme specificity
JP4988889B2 (en) Polysaccharide structure and sequencing
EP1910838B1 (en) Uses of cancer specific glycans
JP5116837B2 (en) MS method for evaluating glycans
WO2008128222A1 (en) Analysis of phosphorylated glycans, glycopeptides or glycoproteins by imac
CA2588260A1 (en) Glycan analysis using deuterated glucose
Smith et al. History and future of shotgun glycomics
Grün et al. One-step biotinylation procedure for carbohydrates to study carbohydrate–protein interactions
Wu et al. Lectins and ELLSA as powerful tools for glycoconjugate recognition analyses
JP2002544485A5 (en)
Yue et al. Microarrays in glycoproteomics research
WO2001040796A2 (en) Glycoarrays on the surface of biochips
US20120208214A1 (en) Rapid saccharide biomarker assay
Yamamoto et al. Measurement of the carbohydrate-binding specificity of lectins by a multiplexed bead-based flow cytometric assay
WO2004036216A1 (en) Method of measuring interactions between sugar chains and sugar chain-binding protein and utilization thereof
Brooks Lectin Histochemistry: Historical perspectives, state of the art, and future directions
JP2004506874A (en) Methods and compositions for analyzing carbohydrate polymers
Petrović et al. Lectin and Liquid Chromatography-Based Methods for Immunoglobulin (G) Glycosylation Analysis
Huang et al. Using the glycoarray technology in biology and medicine
da Silva Lectins as Biorecognition Elements in Biosensors for Clinical Applications in Cancer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004544967

Country of ref document: JP

122 Ep: pct application non-entry in european phase