WO2004034118A1 - 撮像レンズ - Google Patents

撮像レンズ Download PDF

Info

Publication number
WO2004034118A1
WO2004034118A1 PCT/JP2003/012735 JP0312735W WO2004034118A1 WO 2004034118 A1 WO2004034118 A1 WO 2004034118A1 JP 0312735 W JP0312735 W JP 0312735W WO 2004034118 A1 WO2004034118 A1 WO 2004034118A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
imaging
imaging lens
group
Prior art date
Application number
PCT/JP2003/012735
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Adachi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/495,753 priority Critical patent/US7068447B2/en
Publication of WO2004034118A1 publication Critical patent/WO2004034118A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to an imaging lens, and more particularly, to an imaging lens having at least three groups and variable optical magnification.
  • small-sized information devices that are portable and are used for so-called mopile applications are characterized by their characteristics, and the imaging lens and image sensor can be made smaller even while the imaging unit maintains high imaging performance. It is hoped that the optical zoom and optical zoom will be installed.
  • a digital camera or a portable wireless telephone device having a built-in camera, a so-called mobile phone is required to have an imaging lens having an optical zoom function. It is required that the length on the optical axis up to the light receiving surface of the image sensor, that is, the overall length be shortened, and that the image sensor have higher resolution as the image sensor becomes smaller.
  • one of the constituent lens groups is moved on the optical axis in order to make the optical magnification variable.
  • one of the constituent lens groups is moved on the optical axis in order to make the optical magnification variable.
  • two The second lens group moves on the optical axis as a variable power lens.
  • an imaging lens having an optical zoom function used for information equipment includes negative, positive, and positive light paths in order from the object side as described in Japanese Patent Application Laid-Open No. 2002-525278.
  • the imaging lens described in Japanese Patent Application Publication No. 2002-55 27878 has a too long overall length when used in a built-in information device, and the first lens group is not movable during zooming. Due to the movement, it was difficult to reduce the cost due to the complexity of the mechanism design. In such an imaging lens, since the lens group disposed closest to the object moves, it is necessary to extend the lens frame from the device due to zooming, and in this case, the device may be dropped due to impact or contact with another object. May be damaged.
  • an object of the present invention is to provide a novel imaging lens which can solve the problems of the conventional technology as described above.
  • Another object of the present invention is to provide a small-sized imaging lens which is suitable for use in small-sized information equipment, is bright, has good optical aberrations, and has good resolution.
  • the imaging lens according to the present invention proposed to achieve the above-described object has a variable optical magnification that forms an object image by emitting light incident from the object side from the image plane side.
  • a first lens group consisting of a negative meniscus lens fixedly arranged in the process of performing magnification, and having a positive power along the optical axis in the process of performing magnification.
  • a second lens group that moves and moves from the image side to the object side from the wide-angle end to the telephoto end, and a third lens group that has negative power and moves along the optical axis in the process of performing zooming.
  • a first lens group, a second lens group, and a third lens group are arranged in this order from the object side to the image side, and are disposed between the first lens group and the second lens group or the second lens group.
  • the imaging lens according to the present invention is composed of lenses arranged in the order of negative, positive, and negative power.
  • the diaphragm moves on the optical axis together with the variable power lens, so that the optical aberration Can be formed into a bright object image whose satisfactorily corrected.
  • FIG. 2 is a side view for explaining the zoom lens, and is a diagram for explaining a state when the variable power lens is located between the wide-angle end and the telephoto end.
  • FIG. 3 is a side view for explaining the zoom lens, and is a view for explaining a state when the variable power lens is located at the telephoto end.
  • FIG. 4 is an aberration diagram of the zoom lens, and shows a result of measuring spherical aberration when the variable power lens is located at the wide angle end. .
  • FIG. 5 is an aberration diagram of the zoom lens, and shows a result of measuring astigmatism when the variable power lens is located at the wide angle end.
  • FIG. 6 is an aberration diagram of the zoom lens, and shows a result of measuring distortion when the variable power lens is positioned between the wide-angle end and the telephoto end shown in FIG.
  • Fig. 7 is an aberration diagram of the zoom lens. It is a figure showing the result of having measured spherical aberration at the time of being located between ends.
  • FIG. 8 is an aberration diagram of the zoom lens, and shows a result of measuring astigmatism when the variable power lens is located between the wide-angle end and the telephoto end shown in FIG.
  • FIG. 9 is an aberration diagram of the zoom lens, and shows a result of measuring distortion when the variable power lens is positioned between the wide-angle end and the telephoto end shown in FIG.
  • FIG. 10 is an aberration diagram of the zoom lens, and shows a result of measuring spherical aberration when the variable power lens is located at the telephoto end.
  • FIG. 11 is an aberration diagram of the zoom lens, and is a diagram illustrating a result of measuring astigmatism when the variable power lens is located at the telephoto end.
  • FIG. 12 is an aberration diagram of the zoom lens, and shows a result of measuring distortion when the variable power lens is located at the telephoto end shown in FIG.
  • FIG. 13 is a side view for explaining another zoom lens to which the present invention is applied, and is a view for explaining a state when the variable power lens is located at the wide angle end.
  • FIG. 14 is a side view for explaining the zoom lens, and is a view for explaining a state where the variable power lens is located between the wide-angle end and the telephoto end.
  • FIG. 15 is a side view for explaining the zoom lens, and is a view for explaining a state when the variable power lens is located at the telephoto end.
  • FIG. 16 is an aberration diagram of the zoom lens, and shows a result of measuring spherical aberration when the variable power lens is located at the wide angle end.
  • FIG. 17 is an aberration diagram of the zoom lens, and shows a result of measuring astigmatism when the variable power lens is located at the wide angle end.
  • FIG. 18 is an aberration diagram of the zoom lens, and shows a result of measuring distortion when the variable power lens is located between the wide-angle end and the telephoto end shown in FIG.
  • FIG. 19 is an aberration diagram of the zoom lens, and is a diagram illustrating a result of measuring spherical aberration when the zoom lens is positioned between the wide-angle end and the telephoto end illustrated in FIG.
  • FIG. 20 is an aberration diagram of the zoom lens, and is a diagram illustrating a result of measuring astigmatism when the variable power lens is positioned between the wide-angle end and the telephoto end illustrated in FIG.
  • FIG. 21 is an aberration diagram of the zoom lens, and is a diagram illustrating a result of measuring distortion when the variable power lens is positioned between the wide-angle end and the telephoto end illustrated in FIG. 200 hired 2735
  • Fig. 22 is an aberration diagram of the zoom lens, and shows a result of measuring spherical aberration when the variable power lens is located at the telephoto end.
  • FIG. 23 is an aberration diagram of the zoom lens, and is a diagram illustrating a result of measuring astigmatism when the variable power lens is located at the telephoto end.
  • FIG. 24 is an aberration diagram of the zoom lens, and is a diagram illustrating a measurement result of distortion when the variable power lens is positioned at the telephoto end illustrated in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 24 an imaging lens to which the present invention is applied will be described with reference to some examples.
  • An imaging lens to which the present invention is applied is a zoom lens in which a lens group arranged closest to the object side is fixed, and is used in small information devices, particularly digital cameras and portable information devices using small image sensors. Provided and used.
  • the imaging lens to which the present invention is applied is a small zoom lens having three lens units and a short overall lens length.
  • FIGS. 1 to 3 an example of the imaging lens 1 shown in FIGS. 1 to 3 will be described.
  • the imaging lens 1 includes, in order from the object side, a first lens group 11 having a negative power, an aperture 12, and a second lens group 1 having a positive power. 3 and a third lens group 14 having negative power.
  • the imaging lens 1 transmits the light incident from the first lens group 11 through an aperture 12, a second lens group 13, and a third lens group 14 in order, and passes through a filter 15, which will be described later, to the image side.
  • the light is focused on the imaging surface 16 of the imaging device provided in the camera.
  • the imaging element is, for example, a CCD, and can convert light collected by the imaging lens 1 into an electric signal and output the electric signal.
  • the first lens group 11 includes a lens L1 having a negative power and a meniscus shape with the convex surface facing the object side.
  • the diaphragm 12 is fixed to the object side of the third lens group 13 so as to move on the optical axis integrally with the second lens group 13.
  • the second lens group 13 includes a lens L2 having convex surfaces on both sides, and a meniscus lens L3 having negative power and having a convex surface on the image surface side. And the meniscus lens L3 are joined to form a cemented lens.
  • the third lens group 14 includes a lens L4 having negative power. ''
  • the imaging lens 1 configured as above transmits the light incident from the object to the first lens group 11, the aperture 12, the second lens group 13, and the third lens group 14 sequentially. Then, an object image is formed on the light receiving surface of the image sensor 16 via the filter 15.
  • the imaging lens 1 configured as described above can change the optical magnification by moving the second lens group 13 on the optical axis. Specifically, when the optical magnification of the imaging lens 1 is reduced, that is, when the focal length f is reduced, as shown in FIG. 1, the second lens group 13 moves to the image plane side integrally with the diaphragm 12 as shown in FIG. . 'Here, in the imaging lens 1, when the optical magnification is the lowest, the focal length f is set to 2.5 mm, and the position of the second lens group 13 at this time is described as the wide-angle end. I do. ⁇
  • the second lens group 13 moves to the object side integrally with the diaphragm 12 as shown in FIG.
  • the focal length is set to 7.0 mm.
  • the position of the second lens group 13 at this time is referred to as a telephoto end.
  • the optical magnification is between the states shown in FIGS. 1 and 3 above, that is, when the focal length: f is between 2.5 mm and 7.0 mm
  • the second lens unit 13 moves between the wide-angle end and the telephoto end together with the stop 12.
  • the focal length is set to 4.0 mm.
  • the filter 15 is provided as a substitute for a low-pass filter or a lead glass of an image sensor.
  • a low-pass filter or lead glass of the imaging device is provided between the third lens group 14 and the light receiving surface 16 of the imaging device. Be placed. 3012735
  • a filter 15 made of a glass material equivalent to BK7 (trade name) manufactured by OHARA is positioned close to the focus surface.
  • BK7 trade name
  • the effects of the mouth-to-pass filter and the lead glass of the image sensor 16 were taken into account.
  • t is the highest optical magnification, that is, the focal length when the second lens group 13 is at the telephoto end on the optical axis
  • 5 V is the second lens group.
  • denote the distance from the object-side surface of the lens L 1 of the first lens unit 11 to the Gaussian image point
  • Z denote the zoom ratio f tZfw from the lowest optical magnification to the highest optical magnification. It is configured so as to satisfy the conditions of Expressions (1) to (5) shown below.
  • equation (1) defines the total length of the imaging lens 1. If the value shown in the equation (1) exceeds the upper limit of 1.4, the overall length of the imaging lens 1 increases, and it is difficult to reduce the size of the product. If the value shown in the equation (1) is below the lower limit of 0.7, the radius of curvature of each lens constituting the imaging lens 1 becomes too small, making it difficult to correct optical aberrations and to make lens processing difficult. This is undesirable because it makes the lens expensive.
  • the imaging lens 1 to which the present invention is applied satisfies the condition of the above-described expression (1), the overall length can be reduced, so that it can be easily incorporated into a small-sized information device, and the constituent lens Since the radius of curvature can be reduced to some extent, optical aberrations can be corrected well and workability can be easily reduced. Can be obtained.
  • equation (2) defines the focal length f 2 of the second lens group 13.
  • the focal length f2 of the second lens group 13 becomes short, and the power of the second lens group 13 becomes too strong.
  • under-correction of spherical aberration generated in the second lens group 13 at the wide-angle end on the optical axis cannot be corrected by another lens.
  • the focal length f 2 of the second lens group 13 becomes longer, and the imaging lens 1 moves on the optical axis required for zooming.
  • the volume increases and the overall length of the lens increases, making it difficult to incorporate it into small information devices.
  • the imaging lens 1 to which the present invention is applied satisfies the condition of the above-described formula (2), it can be easily incorporated into a small product, and the spherical aberration generated in the second lens group 13 can be sufficiently reduced. Can be corrected. ⁇ ⁇
  • equation (3) defines the difference between the Fabry numbers of the lenses L2 and L3 that constitute the second lens group 13. If the difference between the Fabry numbers shown in Expression (3) is 15 or less, it becomes difficult for the imaging lens 1 to properly correct axial chromatic aberration.
  • the imaging lens 1 to which the present invention is applied satisfies the condition of the above equation (3), the difference between the Fabie numbers of the lenses L 2 and L 3 constituting the second lens group 13 is 15 or more. By doing so, it is possible to satisfactorily correct axial chromatic aberration.
  • equation (4) defines the condition of f1; the focal length of the first lens group 11;
  • a zoom lens of the type in which a lens unit having negative power precedes such as the present invention
  • the focal length f 1 of the first lens unit 11 becomes short, and the power of the image-side surface of the first lens unit 11 becomes smaller.
  • the imaging lens 1 has a surface power for the first lens group 11. Can be reduced to a desirable shape for aberration correction.
  • the second lens group 13 and the third lens group 14 must have a large magnification, and the amount of movement of the second lens group 13 must be large in order to secure a desired zoom ratio. It becomes large, and miniaturization cannot be achieved.
  • the imaging lens 1 to which the present invention is applied satisfies the condition of the above-described expression (4), the optical aberration is favorably corrected while giving a strong power to the image-side surface of the first lens group 11. Since the overall length of the lens is not increased, it can be easily incorporated into a small information device.
  • equation (5) defines the condition of the magnification M3 of the third lens group 14.
  • the imaging lens 1 increases the magnification M3 of the third lens group 14, thereby increasing the focal length of the first lens group 11.
  • the magnification M 3 of the third lens group 14 becomes smaller, and the focal length of the first lens group 11 becomes smaller.
  • the focal length f2 of the second lens group 13 must be shortened, and aberration variation due to zooming increases, making it difficult to correct aberrations.
  • the focal length f1 of the first lens group 11 is in an appropriate range, and thereby the negative distortion is favorably reduced. Correction is possible, and the focal length f2 of the second lens group 13 is also within an appropriate range, and aberration fluctuation due to zooming can be reduced, so that aberration correction can be performed well.
  • the aperture 12 is arranged on the object side of the second lens group 13, the position of the exit pupil can be lengthened, and the position of the entrance pupil can be increased. Close to the object side. Thereby, in the imaging lens 1, the position of the off-axis ray passing through the first lens group 11 becomes low, so that the diameter of the front lens can be reduced. Here, it is necessary to make the off-axis ray incident on the imaging element at a shallow angle to the imaging lens in order to avoid shading. Also, the first lens group 1
  • the aperture 12 is disposed on the object side of the second lens group 13 and moves along the optical axis integrally with the second lens group 13, thereby solving the above-described problem. Is done.
  • the second lens group 13 is a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side.
  • the imaging lens 1 can satisfactorily correct the spherical aberration over the entire zoom range.
  • the lens L2 and the lens L3 of the second lens group 13 are configured independently, the spherical aberration will be excessively under, and it will be difficult for other lens groups to correct it.
  • axial chromatic aberration is favorably corrected by providing a difference in the Faby number between the lens L2 and the lens L3 before and after bonding.
  • the third lens group 14 is constituted by the lens L4 having negative power, the back focus can be shortened.
  • this optical system is locally configured as a telephoto type, which is effective in shortening the overall length of the lens. It is.
  • “L ij is the i-th lens counted from the object side
  • “ S i ” is the i-th surface counted from the object side
  • “ ri ” is the radius of curvature of the surface S i
  • “ di ” Is the surface distance between the i-th surface and the (i + 1) -th surface counted from the object side
  • "ni” is the refractive index at the d-line (wavelength 587.6 nm) of the i-th lens Li
  • “N FL” is the refractive index of the filter 15 at the d-line
  • “li i” is the number of the i-th lens L i at the d-line
  • “li; FL” is the filter at the d-line of the filter 15. The power shall be indicated.
  • the aspherical surface takes the X axis as the coordinates in the direction of the optical axis, the height in the direction perpendicular to the optical axis is Y, the conic constant is ⁇ , the radius of curvature is R, the fourth, sixth, eighth, and tenth order
  • a, b, c, and d be the aspheric coefficients of, respectively, which is expressed by the following equation (6).
  • the first surface S1, the second surface S2, the fourth surface S4, the sixth surface S6, the seventh surface S7, and the eighth surface S8 are each constituted by an aspheric surface. Have been.
  • the imaging lens 1 may perform correction of focus by moving an object point, so-called focusing, in any lens group, or may configure a machine as a pan focus.
  • the focal distance: f changes from 2.5 mm to 7.0 mm.
  • the F-number changes from 2.94 to 5.2, and the half angle of view ⁇ is 33.4 ° to 13.4. 3. Changes up to 3 °.
  • Table 1 shows each parameter of the imaging lens 1.
  • FIGS. 7 to 9 show spherical aberration diagrams of the imaging lens 1 when the second lens group 13 is located between the wide-angle end and the telephoto end, that is, when the focal length f is 4.0 mm. Aberration diagrams and distortion diagrams are shown.
  • FIGS. 10 to 12 show the spherical aberration diagram, astigmatism diagram, and distortion of the imaging lens 1 when the second lens group 13 is located at the telephoto end, that is, when the focal length f is 7.0 mm. Each aberration diagram is shown.
  • the solid line shows the values at the d-line and the dashed line shows the values at the g-line, and in the astigmatism diagrams shown in FIGS. 5, 7, and 9, The solid line shows the value on the sagittal image plane, and the broken line shows the value on the meridional image plane.
  • each optical aberration is satisfactorily corrected.
  • the imaging lens 2 of the second embodiment has a variable optical magnification as the second lens group 13 moves on the optical axis, similarly to the imaging lens 1 of the first embodiment described above.
  • FIG. 15 shows the state of the imaging lens 2 when the zoom lens is in the state of FIG. 14.
  • FIG. 14 shows the state of the imaging lens 2 when the second lens group 13 is located between the wide-angle end and the telephoto end.
  • the first surface Sl, the second surface S2, the fourth surface S4, the sixth surface S6, and the eighth surface S8 of each lens are each formed by an aspheric surface.
  • the imaging lens 2 may perform focus correction by moving an object point, so-called focusing, in any lens group, or may configure a machine as a pan focus.
  • the focal length f of the imaging lens 2 changes from 2.2 mm to 4.4 mm as the second lens group 13 moves from the wide-angle end to the telephoto end.
  • the F-number changes from 2.88 to 39, and the half angle of view ⁇ is 36.9 ° to 20. It changes up to 6 ° '.
  • Table 2 below shows the numerical values of the imaging lens 2.
  • the optical characteristics of the imaging lens 2 having the above parameters are shown in FIG. 16 to FIG.
  • FIGS. 16 to 18 show the spherical aberration diagram, the astigmatism diagram and the astigmatism diagram of the imaging lens 2 when the second lens group 13 is located at the wide-angle end, that is, when the focal point distance f is 2.2 mm. Each distortion diagram is shown.
  • FIGS. 19 to 21 show spherical aberration diagrams of the imaging lens 2 when the second lens group 13 is located between the wide-angle end and the telephoto end, that is, when the focal length f is 3.1 mm.
  • the astigmatism diagram and the distortion diagram are shown respectively.
  • FIGS. 22 to 24 show the spherical aberration diagram, astigmatism diagram, and distortion of the imaging lens 2 when the second lens group 13 is located at the telephoto end, that is, when the focal length f is 4.4 mm.
  • the aberration diagrams are respectively shown.
  • the solid line shows the values at the d-line and the broken line shows the values at the g-line, respectively, and Fig. 17, Fig. 20 and Fig.
  • the solid line shows the value on the sagittal image plane, and the broken line shows the value on the meridional image plane.
  • each optical aberration is satisfactorily corrected.
  • Table 3 shows a comparison between the above-described first embodiment and the second embodiment.
  • the total length of the imaging lenses 1 and 2 is reduced while having four lenses.
  • the optical lens is an image pickup lens which can correct a small image pickup device because each optical aberration is well corrected and has a high resolution.
  • the total length of imaging lenses 1 and 2 are 9.5 mm and mm9 mm, respectively, even though they are 3x and 2x optical zoom.
  • the imaging lenses 1 and 2 are suitable to be used as imaging lenses of small information devices used for mopile applications such as digital cameras and mobile phones.
  • the present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications, substitutions, or equivalents thereof may be made without departing from the gist of the present invention. it can. -Industrial applicability
  • the imaging lens according to the present invention can be a compact zoom lens while favorably correcting various aberrations while reducing the number of lenses to four.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本発明は、物体側から順に、負のパワーを持つ第1レンズ群(11)と、絞り(12)と、正のパワーを持つ第2レンズ群(13)と、負のパワーを持つ第3レンズ群(14)とからなり撮像レンズ(1)である。この撮像レンズは、変倍中、第1レンズ群(11)が固定され、第2レンズ群(13)が絞り(12)と一体に光軸上を移動し、第3レンズ群(14)が変倍による像点の移動を補正するため光軸上を移動する。

Description

撮像レンズ 技術分野 本発明は、 撮像レンズに関し、 特に、 少なくとも 3群構成で光学倍率が可変と された撮像レンズに関する。
本出願は、 日本国において 2 0 02年 1 0月 8日に出願された日本特許出願番 号 2 002— 2 9 52 9 2を基礎として優先権を主張するものであり、 この出願 は参照することにより、 本出願に援用される。 背景技術 従来、 撮像レンズから入射された光束を電気信号に変換して出力する撮像素子 として、 C一 MO S (Com leientary Metal Oxide Semiconductor) や C CD (C harge Coupled Device) 等の光電変換素子を用いた撮像部を備えた様々な情報機 器が広く用いられている。
これら情報機器のうちで携帯して使用する、 いわゆるモパイル用途に特化した 小型の情報機器においては、 その用途の特徴から、 撮像部が高い撮像性能を維持 したまま撮像レンズや撮像素子を更に小型化することや光学ズームを搭載するこ とが望まれている。 例えば、 デジタルカメラやカメラを内蔵した携帯型の無線電 話装置、 いわゆる携帯電話において、 光学ズーム機能を持つ撮像レンズを備える ことが求められ、 その撮像レンズは、 最も物体側に配置されるレンズ面から撮像 素子の受光面までの光軸上での長さ、 すなわち全長を短くし、 撮像素子の小型化 に伴って高い解像力を有することが要求されている。
上述したような光学ズーム機能を有する撮像レンズは、 光学倍率を可変とする ため、 構成レンズ群中いずれかのレンズ群を光軸上で移動させている。 例えば、 3群構成のレンズを有する撮像レンズでは、 変倍を行う過程において光路順に 2 番目のレンズ群が変倍レンズとして光軸上を移動するようになっている。
上述したよう情報機器に使用される光学ズーム機能を有する撮像レンズとして は、 特開 2 0 0 2— 5 5 2 7 8号公報に記載されるような物体側から光路順に負、 正、 正の順にパワー配置されたレンズ群を有する 3群構成の光学ズーム機能を有 する撮像レンズがある。
また、 上述したよう情報機器に使用される撮像レンズとしては、 特開 2 0 0 2
- 7 2 0 9 5号公報に記載されるような物体側から光路順に負、 正、 正、 正の順 にパワー配置されたレンズ群を有する 4群構成の光学ズーム機能を有する撮像レ ンズがある。
ところで、 特閧 2 0 0 2 - 5 5 2 7 8号公報に記載された撮像レンズでは、 情 報機器に内蔵して使用する場合に全長が大き過ぎ、 変倍中に 1番目のレンズ群が 移動するため、 機構設計上複雑化し低コスト化をすることが困難であった。 この ような撮像レンズでは、 最も物体側に配置されるレンズ群が移動するため、 ズー · ミングによってレンズ枠を機器から繰り出す必要性が生じ、 この場合、 落下衝撃 や他の物体との接触により機器が破損するおそれがある。
また、 特鬨 2 0 0 2— 7 2 0 9 5号公報に記載された撮像レンズでは、 最も物 体側に配置されるレンズ群を固定した形で変倍が行われている点では耐衝撃性の . 面で好ましいものの、 最終レンズ群を正レンズで構成しているため、 バヅクフォ ―力スの短縮化が困難で、 小型化には不向きである。 発明の開示 本発明の目的は、 上述したような従来の技術が有する問題点を解消することが できる新規な撮像レンズを提供することにある。
本発明の他の目的は、 小型の情報機器に用いるのに好適な、 明るく、 光学収差 が良好に補正され、 良好な解像力を有する小型の撮像レンズを提供することにあ る。
上述した目的を達成するために提案される本発明に係る撮像レンズは、 物体側 から入射した光を像面側から出射して物体像を結像する、 光学倍率が可変とされ た撮像レンズであって、 変倍を行う過程において固定して配置される負のメニス カスレンズからなる第 1レンズ群と、 正のパワーを有し、 変倍を行う過程におい て光軸に沿って移動し、 広角端から望遠端に亘つて像側から物体側に移動する第 2レンズ群と、 負のパワーを有し、 変倍を行う過程において光軸に沿って移動す る第 3レンズ群とを有し、 物体側から像側に向かって順に、 第 1レンズ群、 第 2 レンズ群、 第 3レンズ群が配置され、 第 1 レンズ群と第 2レンズ群との間又は第 2レンズ群と第 3レンズ群との間に設けられ、 第 2レンズ群と一体に移動する絞 りとを備える。
本発明に係る撮像レンズは、 負、 正、 負の順にパワー配置されたレンズにより 構成され、 光学倍率を可変するとき、 絞りが変倍レンズと一体に光軸上を移動す るので、 光学収差が良好に補正された明るい物体像を結像することができる。 本発明の更に他の目的、 本発明によって得られる具体的な利点は、 以下におい て図面を参照して説明される実施の形態の説明から一層明らかにされるであろう。 図面の簡単な説明 図 1は、 本発明を適用したズ一ムレンズを説明するた:めの側面図であり、 変倍 レンズが広角端に位置するときの状態を説明する図である。 ' ·
図 2は、 ズームレンズを説明するための側面図であり、 変倍レンズが広角端と 望遠端との間に位置するときの状態を説明する図である。
図 3は、 ズームレンズを説明するための側面図であり、 変倍レンズが望遠端に 位置するときの状態を説明する図である。
図 4は、 ズームレンズの収差図であり、 変倍レンズが広角端に位置するときの 球面収差を測定した結果を示す図である。 .
図 5は、 ズームレンズの収差図であり、 変倍レンズが広角端に位置するときの 非点収差を測定した結果を示す図である。
図 6は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望遠 端との間に位置するときの歪曲収差を測定した結果を示す図である。
図 7は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望遠 端との間に位置するときの球面収差を測定した結果を示す図である。
図 8は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望遠 端との間に位置するときの非点収差を測定した結果を示す図である。
図 9は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望遠 端との間に位置するときの歪曲収差を測定した結果を示す図である。
図 1 0は、 ズームレンズの収差図であり、 変倍レンズが望遠端に位置するとき の球面収差を測定した結果を示す図である。
図 1 1は、 ズームレンズの収差図であり、 変倍レンズが望遠端に位置するとき の非点収差を測定した結果を示す図である。
図 1 2 .は、 ズ一ムレンズの収差図であり、 変倍レンズが図 2に示す望遠端に位 置するときの歪曲収差を測定した結果を示す図である。
図 1 3は.、 本発明を適用した他のズームレンズを説明するための側面図であり、 変倍レンズが広角端に位置するときの状態を説明する図である。
図 1 4は、 ズ一ムレンズを説明するための側面図であり、 変倍レンズが広角端 と望遠端との間に位置するときの状態を説明する図である。
図 1 5は、 ズームレンズを説明するための側面図であり、 変倍レンズが望遠端 に位置するときの状態を説明する図である。
図 1 6は、 ズームレンズの収差図であり、 変倍レンズが広角端に位置するとき の球面収差を測定した結果を示す図である。
図 1 7は、 ズームレンズの収差図であり、 変倍レンズが広角端に位置するとき の非点収差を測定した結果を示す図である。
図 1 8は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望 遠端との間に位置するときの歪曲収差を測定した結果を示す図である。
図 1 9は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望 遠端との間に位置するときの球面収差を測定した結果を示す図である。
図 2 0は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望 遠端との間に位置するときの非点収差を測定した結果を示す図である。
図 2 1は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す広角端と望 遠端との間に位置するときの歪曲収差を測定した結果を示す図である。 200雇 2735
5 図 2 2は、 ズ一ムレンズの収差図であり、 変倍レンズが望遠端に位置するとき の球面収差を測定した結果を示す図である。
図 2 3は、 ズームレンズの収差図であり、 変倍レンズが望遠端に位置するとき の非点収差を測定した結果を示す図である。
図 2 4は、 ズームレンズの収差図であり、 変倍レンズが図 2に示す望遠端に位 置するときの歪曲収差を測定した結果を示す図である。 発明を実施するための最良の形態 以下、 本発明が適用された撮像レンズを、 いくつかの実施例を参照して説明す る。
本発明を適用した撮像レンズは、 最も物体側に配置されるレンズ群を固定した ズ一ムレンズであり、 小型の情報機器、 特に、 小型の撮像素子を用いたデジタル カメラや携帯型の情報機器に備えられて用いられる。 また、 本発明を適用した撮 像レンズは、 レンズ構成を 3群とした、 レンズの全長が短い小型のズームレンズ である。
く第 1の実施例 >
以下では、 第 1の実施例として、 図 1乃至図 3に示す撮像レンズ 1の例を挙げ て説明する。
この撮像レンズ 1は、 図 1乃至図 3に示すように、 物体側から順に、 負のパヮ 一を有する第 1レンズ群 1 1と、 絞り 1 2と、 正のパワーを有する第 2レンズ群 1 3と、 負のパワーを有する第 3レンズ群 1 4とを有する。
撮像レンズ 1は、 第 1レンズ群 1 1から入射した光を、 絞り 1 2、 第 2レンズ 群 1 3及び第 3レンズ群 1 4を順に透過させ、 後述するフィルタ 1 5を介して、 像側に配設された撮像素子の撮像面 1 6に集光する。 ここで、 撮像素子は、 例え ば、 C C Dであり、 撮像レンズ 1により集光された光を電気信号に変換して出力 することができる。
具体的に、 第 1レンズ群 1 1は、 物体側に凸面を向けたメニスカス形状とされ た負のパワーを有するレンズ L 1からなる。 絞り 1 2は、 第 2レンズ群 1 3と一体に光軸上を移動するように第 3レンズ群 1 3の物体側に固定されている。
第 2レンズ群 1 3は、 両面が凸形状とされたレンズ L 2と、 像面側の面が凸形 状とされた負のパワーを有するメニスカスレンズ L 3とを有しており、 レンズ 2とメニスカスレンズ L 3とが接合されて接合レンズとして形成している。
第 3レンズ群 1 4は、 負のパワーを有するレンズ L 4からなる。 ' 以上のように構成された撮像レンズ 1は、 物体から入射してきた光を第 1 ·レン' ズ郡 1 1、 絞り 1 2、 第 2レンズ群 1 3、 第 3レンズ群 1 4まで順次透過させて フィルタ 1 5を介して撮像素子 1 6の受光面に物体像を結像させる。
以上のように構成された撮像レンズ 1は、 第 2レンズ群 1 3が光軸上を移動す ることで光学倍率を可変とすることができる。 具体的に、 撮像レンズ 1は、 光学 倍率を下げる場合、 すなわち焦点距離 f を短くする場合、 図 1に示すように、 第 2レンズ群 1 3が絞り 1 2と一体に像面側に移動する。 'ここで、 撮像レンズ 1で は、 最も光学倍率を低く した場合、 その焦点距離 f が 2 . 5 m mとされ、 以下で は、 このときの第 2レンズ群 1 3の位置を広角端と記述する。 ·
次に、 撮像レンズ 1は、 光学倍率を上げる場合、 すなわち焦点距離 f を長くす る場合、 図 3に示すように、 第 2レンズ群 1 3が絞り 1 2と一体に物体側に移動 する。 ここで、 撮像レンズ 1では、 最も光学倍率を高く した場合、 その焦点距離 : が 7 . O mmとされ、 以下では、 このときの第 2レンズ群 1 3の位置を望遠端 と記述する。
次に、 撮像レンズ 1は、 光学倍率が上記図 1及び図 3に示す状態の間である場 合、 すなわち焦点距離: f が 2 . 5 m m〜 7 . O m mの間にある場合、 図 2に示す ように、 第 2レンズ群 1 3が絞り 1 2と一体に広角端と望遠端の間を移動する。 ここで、 図 2に示す撮像レンズ 1では、 光学倍率を上記図 1及び図 3に示す状態 の間である場合の例として、 焦点距離: が 4 . O m mとされている。
ここで、 フィル夕 1 5は、 ローパスフィル夕や撮像素子のリヅドガラス等の代 用として配設されたものである。 すなわち、 撮像レンズ 1が小型の情報機器など に組み込まれて実際に使用されるときには、 第 3レンズ群 1 4と撮像素子の受光 面 1 6との間にローパスフィル夕や撮像素子のリヅドガラスなどが配置される。 3012735
7 そこで、 本実施例では、 撮像レンズ 1の設計時において、 オハラ社製 BK 7 (商品名) 相当の硝材からなるフィル夕 1 5をピン ト面の直近に位置させた状態 にすることによって、 口一パスフィル夕や撮像素子 1 6のリ ヅ ドガラスなどによ る影響を考慮するようにした。
上述したように構成された撮像レンズ 1は、 : tを最も高い光学倍率、 すなわ ち第 2レンズ群 1 3が光軸上の望遠端にあるときの焦点距離、 5 Vを第 2レンズ 群 1 3中に用いられるレンズ L 2とレンズ L 3とのァヅべ数の差、 f 1を第 1レ ンズ群 1 1の焦点距離、 : f 2を第 2レンズ群 1 3の焦点距離、 f wを最.も低い光 学倍率、 すなわち第 2レンズ群 1 3が光軸上の広角端にあるときの焦点距離、 M 3を第 3レンズ群 1 4の光学倍率、 !^ を第丄 レンズ群 1 1が有するレンズ L 1 の物体側の面からガウス像点までの距離、 Zを最も低い光学倍率から最も高い光 学倍率にかけてのズーム比 f tZfwを表すとして、 以下に示す式 ( 1 ) 乃至式 (5 ) の各条件を満足するように構成されている。
0. 7≤ T T/Z/f w≤ 1. 4 · · · ( 1 )
0. 05≤f 2/f ≤ 3.6 · · · (2)
1 5≤ d V · · · (3)
0. 8≤ | f l/f w | ≤ 1 0. 3 · · · (4)
1. 3≤M3≤ 4. 3 · · · (5)
以下に、 上述した式 ( 1 ) 乃至式 (5) に示す条件について説明する。
まず、 式 ( 1 ) は、 撮像レンズ 1の全長を規定している。 この式 ( 1 ) に示す 値が上限 1. 4を超えると、 撮像レンズ 1の全長が大きくなり、 製品の小型化が 難しくなる。 また、 この式 (1 ) に示す値が下限 0. 7を下回ると、 撮像レンズ 1を構成するレンズ各々の曲率半径が小さくなりすぎ、 光学収差を補正すること が難しくなるとともにレンズの加工が難しくなり、 コストの高いレンズになるた め望ましくない。
本発明を適用した撮像レンズ 1は、 上述した式 ( 1 ) の条件を満たすことから、 全長を小さくすることができるため、 小型の情報機器に組み込むことが容易とな り、 且つ構成するレンズの曲率半径をある程度ゆるくできることから、 光学収差 を良好に補正することができるとともに加工性も容易となり、 低コストなレンズ を得ることができる。
次に、 式 ( 2 ) は、 第 2 レンズ群 1 3の焦点距離 f 2を規定している。 撮像レ ンズ 1は、 式 (2 ) に示す値が下限値 0 . 0 5を下回ると、 第 2レンズ群 1 3の 焦点距離 f 2が短くなり第 2レンズ群 1 3のパワーが強くなりすぎ、 特に光軸上 の広角端において第 2レンズ群 1 3で発生する球面収差のアンダー化を他のレン ズで補正することが出来なくなる。 また、 撮像レンズ 1は、 式 (2 ) に示す値が 上限値 3 · 6を越えると、 第 2レンズ群 1 3の焦点距離 f 2が長くなり、 変倍に 必要とする光軸上の移動量が大きくなりレンズの全長が大きくなってしまい、 小 型の情報機器に組み込むことが難しくなる。
本発明を適用した撮像レンズ 1は、 上述した式 ( 2 ) の条件を満たすことから、 小型の製品に組み込むことが容易となり、 且つ第 2レンズ群 1 3で発生する球面 収差のアンダー化を良好に補正することができる。 · ·
次に、 式 (3 ) は、 第 2 レンズ群 1 3を構成するレンズ L 2及びレンズ L 3の ァヅべ数の差を規定するものである。 撮像レンズ 1は、 式 (3 ) に示すァヅべ数 の差が 1 5以下であると軸上の色収差を良好に補正することが難しくなる。
本発明を適用した撮像レンズ 1は、 上述した式 (3 ) の条件を満たすことから、 第 2レンズ群 1 3を構成するレンズ L 2及びレンズ L 3 のァヅベ数の差を 1 5以 上とすることで、 軸上の色収差を良好に補正することができる。
次に、 式 (4 ) は、 第 1 レンズ群 1 1の焦点距離; f 1の条件を規定するもので ある。 ここで、 本発明のような負のパワーを有するレンズ群が先行するタイプの ズームレンズでは、 比較的強いパワーを先行するレンズ群に持たせる必要がある。 設計上最も物体側に配置される面は、 軸外光線が最も高い位置を通過するため、 軸外入射光線を強く曲げないようにして、 光線高さが小さくなる像面側の面に強 い負のパワーを持たせることが望ましい。 撮像レンズ 1は、 式 (4 ) に示す下限 値 0 . 8を下回ると、 第 1 レンズ群 1 1の焦点距離 f 1が短くなり、 第 1レンズ 群 1 1の像面側の面のパワーが強くなり過ぎ、 非球面を持ってしても諸収差を補 正することが困難となる。 また、 撮像レンズ 1は、 式 (4 ) に示す上限値 1 0 . 3を越えて第 1レンズ群 1 1の焦点距離 f 1が長くなると、 第 1レンズ群 1 1に とっては面のパワーを弱めることができるため収差補正の上で好ましい形状にな るものの、 その結果第 2 レンズ群 1 3及び第 3レンズ群 1 4に大きな倍率を持た せなくてはならず、 所望の変倍比を確保するために第 2 レンズ群 1 3の移動量が 大きくなり、 小型化を達成することが出来なくなる。
本発明を適用した撮像レンズ 1は、 上述した式 (4 ) の条件を満たすことから、 第 1 レンズ群 1 1の像面側の面に強いパヮ一を与えながらも、 光学収差を良好に 補正することができ、 レンズの全長を大きくすることがないため、 小型の情報機 器に組み込むことが容易となる。
次に、 式 ( 5 ) は、 第 3 レンズ群 1 4の倍率 M 3の条件を規定するものである。 撮像レンズ 1は、 式 ( 5 ) に示す値が上限値 4 . 3を超えると、 第 3 レンズ群 1 4の倍率 M 3が大きくなり、 これにより第 1 レンズ群 1 1の焦点距離: 1が短く なることで、 負の歪曲収差が大きくなりこの歪曲収差の補正が困難となる。 また、 撮像レンズ 1は、 式 ( 5 ) に示す値が下限値 1 . 3を下回ると、 第 3 レンズ群 1 4の倍率 M 3が小さ くなり、 これにより第 1 レンズ群 1 1の焦点距離 f 1が長く なることで、 第 2 レンズ群 1 3の焦点距離 f 2を短く しなくてはならず、 変倍に よる収差変動が大きくなり収差補正が困難となる。
本発明を適用した撮像レンズ 1は、 上述した式 ( 5 ) の条件を満たすことから、 第 1 レンズ群 1 1の焦点距離: f 1が適切な範囲となり、 これにより負の歪曲収差 を良好に補正することができ、 また第 2 レンズ群 1 3の焦点距離 f 2も適切な範 囲となり、 変倍による収差変動を低減することができるので収差補正が良好に行 えている。
ここで、 本発明を適用した撮像レンズ 1では、 絞り 1 2を第 2 レンズ群 1 3の 物体側に配置しているため射出瞳位置を長くすることが可能となるとともに、 入 射瞳位置が物体側に近くなる。 これにより撮像レンズ 1では、 軸外光線の第 1 レ ンズ群 1 1 を通過する位置が低くなるため前玉の径を小さくすることができる。 ここで、 撮像用途のレンズには、 シェーディングを避けるため、 軸外光線の撮 像素子への入射角度を浅い角度で入射させる必要がある。 また、 第 1 レンズ群 1
1は、 構成レンズ中で最も光線が高い所を通過するため、 絞りの位置が本発明の 実施例にある位置よりも像側に入ると、 軸外光線の第 1 レンズ群 1 1への入射位 置が高くなるためにレンズの体積が增大してしまうので好ましくない。 本発明を適用した撮像レンズ 1では、 絞り 1 2が第 2 レンズ群 1 3の物体側に 配置され、 第 2 レンズ群 1 3と一体に光軸上を移動することから、 上述した問題 が解決される。
本発明を適用した撮像レンズ 1では、 第 2 レンズ群 1 3を両凸レンズと像側に 凸面を向けた負のメニスカスレンズとの接合レンズとしている。 これにより、 撮 像レンズ 1は、 変倍全域に渡る球面収差を良好に補正することができる。 例えば、 第 2 レンズ群 1 3のレンズ L 2 とレンズ L 3とを独立に構成した場合は、 球面収 差が過剰にアンダーとなり他のレンズ群ではそれを補正することは困難となる。 また、 撮像レンズ 1では、 貼り合せ前後のレンズ L 2 とレンズ L 3とのァヅベ数 に差をもたせることで軸上色収差を良好に補正している。
本発明を適用した撮像レンズ 1は、 第 3 レンズ群 1 4を負のパワーを有するレ ンズ L 4で構成しているため、 バックフォーカスを短くすることができる.。 また、 全体で正のパワーを有する変倍レンズ 1 3と負のパワーを有する補正レンズ 1 4 との関係により、 この光学系が局部的にはテレフオ トタイプの構成となりレンズ 全長の短縮化に効果的である。
ここで、 撮像レンズ 1における、 各レンズのパラメータを示す。
なお、 以下の説明において、 「L i j は物体側から数えて i番目のレンズ、 「S i」 は物体側から数えて i番目の面、 「r i」 は面 S iの曲率半径、 「d i」 は物体側から数えて i番目の面と i + 1番目の面との間の面間隔、 「n i」 は第 iレンズ L iの d線 (波長 5 8 7 . 6 n m ) での屈折率、 「n F L」 はフィル 夕 1 5の d線における屈折率、 「リ i」 は第 iレンズ L iの d線におけるァヅべ 数、 「リ ; F L」 はフィルタ 1 5の d線におけるァヅべ数を示すものとする。
また、 非球面は、 座標として光軸方向に X軸を取り、 光軸と垂直方向の高さを Y、 円錐定数を Κ、 曲率半径を R、 4次、 6次、 8次及び 1 0次の非球面係数を それそれ a、 b、 c及び dとすると、 以下の式 ( 6 ) で表される。
( 6 )
Figure imgf000011_0001
P T/JP2003/012735
11 上述した撮像レンズ 1は、 第 1面 S 1、 第 2面 S 2、 第 4面 S 4、 第 6面 S 6、 第 7面 S 7、 第 8面 S 8がそれそれ非球面によって構成されている。 なお、 撮像 レンズ 1は、 物点の移動によるピン トの補正、 いわゆるフォーカシングをどのレ ンズ群で行ってもよいし、 パンフォーカスとして機械を構成してもよい。
撮像レンズ 1は、 第 2レンズ群 1 3が広角端から望遠端に移動することで、 焦 点距離: f が 2. 5 mmから 7. 0 mmまで変化する。 また、 撮像レンズ 1は、 第 2レンズ群 1 3が広角端から望遠端に移動することで、 Fナンパが 2. 94〜5. 2まで変化し、 半画角 ωが 33. 4 ° 〜 1 3. 3 ° まで変化する。
ここで、 以下の表 1に撮像レンズ 1の各パラメ一夕を示す。
表 1
Figure imgf000013_0002
Figure imgf000013_0001
以上のようなパラメ一夕を有する撮像レンズ 1の光学特性を、 図 4乃至図 1 2 に示す。
図 4乃至図 6は、 第 2レンズ群 1 3が広角端に位置するとき、 すなわち焦点距 離 f が 2 . 5 mmの状態における撮像レンズ 1の球面収差図、 非点収差図、 歪曲 収差図をそれぞれ示す。
図 7乃至図 9は、 第 2レンズ群 1 3が広角端と望遠端との中間に位置するとき、 すなわち焦点距離 f が 4 . 0 mmの状態における撮像レンズ 1の球面収差図、 非' 点収差図、 歪曲収差図をそれそれ示す。
図 1 0乃至図 1 2は、 第 2レンズ群 1 3が望遠端に位置するとき、 すなわち焦 点距離 f が 7 . 0 mmの状態における撮像レンズ 1の球面収差図、 非点収差図、 歪曲収差図をそれそれ示す。
なお、 図 4、 図 6及び図 8に示す球面収差図において、 実線は d線、 破線は g 線での値をそれそれ示し、 図 5、 図 7及び図 9に示す非点収差図において、 実線 はサジタル像面における値、 破線はメリディォナル像面における値をそれぞれ示 す。
以上のような図 4乃至図 1 2に示すように、 本発明を適用した撮像レンズ 1で は、 各光学収差が良好に補正されていることがわかる。
く第 2の実施例 >
次に、 本発明に係る撮像レンズの第 2の実施例を図 1 3乃至図 1 5を参照して 説明する。
なお、 以下の説明で、 上述した第 1の実施例の撮像レンズ 1と共通する部分に は共通の符号を付して詳細な説明は省略し、 各レンズ構成のパラメ一夕の違いに ついてのみ説明する。
第 2の実施例の撮像レンズ 2は、 上述した第 1の実施例の撮像レンズ 1と同様 に、 第 2レンズ群 1 3が光軸上を移動することで光学倍率が可変とされている。 ここで、 上述した図 4乃至図 6と同様に、 この撮像レンズ 2が備える第 2レンズ 群 1 3の位置が、 広角端にあるときの撮像レンズ 2の状態を図 1 3に示し、 望遠 端にあるときの撮像レンズ 2の状態を図 1 5に示し、 第 2レンズ群 1 3が広角端 と望遠端との間に位置するときの撮像レンズ 2の状態を図 1 4に示す。 本例の撮像レンズ 2は、 各レンズの第 1面 S l、 第 2面 S 2、 第 4面 S 4、 第 6面 S 6及び第 8面 S 8がそれそれ非球面によって構成されている。 なお、 撮像 レンズ 2は、 物点の移動によるピントの補正、 いわゆるフォーカシングをどのレ ンズ群で行ってもよいし、 パンフォーカスとして機械を構成してもよい。
この撮像レンズ 2は、 第 2レンズ群 1 3が広角端から望遠端に移動することで、 焦点距離 f が 2. 2mmから 4. 4mmまで変化する。 また、 撮像レンズ 1は、 第 2レンズ群 1 3が広角端から望遠端に移動することで、 Fナンパが 2.8 8〜 3 9まで変化し、 半画角 ωが 36. 9 ° 〜2 0. 6 °' まで変化する。
以下に示す表 2に撮像レンズ 2の各数値を示す。
Figure imgf000016_0001
d1=*1 d2=*2 d3=*3 d4=fb ml m3 広角端 fw=2.2 2 0.5 0.5 1.41 -0.52 1.87 中間 fm=3.1 1.33 0.58 1.09 1.41 一 0.67 2.05 望遠端 ft=4.4 0.71 0.87 1.42 1.41 -0.9 2.16
また、 以上のようなパラメ一タを有する撮像レンズ 2の光学特性について、 図 1 6乃至図 24に示す。
図 1 6乃至図 1 8は、 第 2レンズ群 1 3が広角端に位置するとき、 すなわち焦' 点距離 f が 2. 2 mmの状態における撮像レンズ 2の球面収差図、 非点収差図、 歪曲収差図をそれそれ示す。
図 1 9乃至図 2 1は、 第 2レンズ群 1 3が広角端と望遠端との中間に位置する とき、 すなわち焦点距離 f が 3. 1 mmの状態における撮像レンズ 2の球面収差 図、 非点収差図、 歪曲収差図をそれそれ示す。
図 2 2乃至図 2 4は、 第 2レンズ群 1 3が望遠端に位置するとき、 すなわち焦 点距離 f が 4. 4 mmの状態における撮像レンズ 2の球面収差図、 非点収差図、 歪曲収差図をそれぞれ示す。
なお、 図 1 6、 図 1 9及び図 2 2に示す球面収差図において、 実線は d線、 破 線は g線での値をそれそれ示し、 図 1 7、 図 2 0及び図 2 3に示す非点収差図に おいて、 実線はサジタル像面における値、 破線はメリディォナル像面における値 をそれそれ示す。
以上のような図 1 6乃至図 24に示すように、 本発明を適用した撮像レンズ 2 では、 各光学収差が良好に補正されていることがわかる。
ここで、 上述した第 1の実施例と第 2の実施例との比較を以下の表 3に示す。 表 3 第 1の実施例 第 2の実施例
T T/Z/f w 1.27 1.8
f 2/f 七 0.278 0.36
6V 17.1 17
1 f 1 /f w 1 1.15 1.03
M 3 2.01 2.77 1.87 2.16 表 3と、 図 4乃至図 1 2及び図 1 6乃至図 2 4に示す各光学収差とからも明ら かなように、 撮像レンズ 1及び 2はレンズ構成が 4枚でありながら、 全長が短縮 され、 各光学収差が良好に補正され、 高い解像力を有するため小型撮像素子に対 応することができる撮像レンズであることが明らかである。 ちなみに、 撮像レン ズ 1及び 2の全長は光学 3倍、 2倍ズームでありながらそれそれ 9 · 5 m mと Ί · 9 m mである。 更に、 第 1 レンズ群 1 1が変倍中に固定であるためレンズ機構の 構成が簡素で堅牢性に富み、 また移動するレンズ群が少ないため低コストで小型 のズームレンズとなっている。 したがって、 撮像レンズ 1及び 2は、 デジ夕ルカ メラ、 携帯電話などのモパイル用途に用いられる小型の情報機器の撮像レンズと して使用するのに好適なものである。
なお、 本発明は、 図面を参照して説明した上述の実施例に限定されるものでは なく、 本発明の趣旨を逸脱することなく、 '様々な変更、 置換又はその同等のもの を行うことができる。 - 産業上の利用可能性 本発明に係る撮像レンズは、 レンズ枚数を 4枚と少数としながら諸収差を良好 に補正しつつ、 コンパクトなズームレンズとすることができる。

Claims

18 請求の範囲
1 . 物体側から入射した光を像面側から出射して物体像を結像する、 光学倍率が 可変とされた撮像レンズであって、 .
変倍を行う過程において固定して配置される負のメニスカスレンズからなる第 1 レンズ群と、
正のパワーを有.し、 変倍を行う過程において光軸に沿って移動し、 広角端から 望遠端に直って像側から物体側に移動する第 2レンズ群と、
負のパワーを有し、 変倍を行う過程において光軸に沿って移動する第 3レンズ 群とを有し、
物体側から像側に向かって順に、 上記第 1 レンズ群、 上記第 2 レンズ群、 上記 第 3 レンズ群が配置され、
上記第 1 レンズ群と上記第 2レンズ群との間又は上記第 2レンズ群と上記第 3 レンズ群との間に設けられ、 上記第 2レンズ群と一体に移動する絞りとを備える 撮像レンズ。
2 . 上記第 1レンズ群は、 物体側の面及び像側の面のうち少なくとも一方の面が 非球面とされている.請求の範囲第 1項記載の撮像レンズ。
3 . 上記第 2レンズ群は、 物体側の面及び像側の面のうち少なくとも一方の面が 非球面とされている請求の範囲第 1項記載の撮像レンズ。
4 . 上記第 2レンズ群は、 正のパワーを有するレンズと負のパワーを有するレン ズとを有し、 全体で正のパワーを形成する接合レンズからなる請求の範囲第 1項 記載の撮像レンズ。
5 . 上記第 3レンズ群は、 少なくとも像側の面が非球面とされている請求の範囲 第 1項記載の撮像レンズ。
6 . 上記絞りは、 上記第 1レンズ群と上記第 2レンズ群との間に設けられている 請求の範囲第 1項記載の撮像レンズ。
PCT/JP2003/012735 2002-10-08 2003-10-03 撮像レンズ WO2004034118A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/495,753 US7068447B2 (en) 2002-10-08 2003-10-03 Imaging lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-295292 2002-10-08
JP2002295292A JP4048904B2 (ja) 2002-10-08 2002-10-08 撮像レンズ

Publications (1)

Publication Number Publication Date
WO2004034118A1 true WO2004034118A1 (ja) 2004-04-22

Family

ID=32089207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012735 WO2004034118A1 (ja) 2002-10-08 2003-10-03 撮像レンズ

Country Status (5)

Country Link
US (1) US7068447B2 (ja)
JP (1) JP4048904B2 (ja)
KR (1) KR101018313B1 (ja)
CN (1) CN100417968C (ja)
WO (1) WO2004034118A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609313B2 (en) * 2004-05-27 2009-10-27 Konica Minolta Opto, Inc. Image pick-up lens, image pick-up unit and mobile terminal
JP2006003544A (ja) * 2004-06-16 2006-01-05 Olympus Corp 変倍光学系及びそれを用いた電子機器
JP2006003548A (ja) * 2004-06-16 2006-01-05 Olympus Corp 変倍光学系及びそれを用いた電子機器
JP2006003546A (ja) * 2004-06-16 2006-01-05 Olympus Corp 変倍光学系及びそれを用いた電子機器
JP2006003545A (ja) * 2004-06-16 2006-01-05 Olympus Corp 変倍光学系及びそれを用いた電子機器
JP2006003547A (ja) * 2004-06-16 2006-01-05 Olympus Corp 変倍光学系及びそれを用いた電子機器
US7248418B2 (en) 2004-09-30 2007-07-24 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the same
US7046453B1 (en) * 2005-03-07 2006-05-16 Nucam Corporation Stepwise variable zoom lens system
JP4794915B2 (ja) 2005-06-09 2011-10-19 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP4819447B2 (ja) * 2005-09-02 2011-11-24 キヤノン株式会社 光学系及びそれを有する撮像装置
KR100712373B1 (ko) * 2005-11-22 2007-05-02 송순향 비구면을 이용한 감시카메라용 광학계
CN101389994B (zh) * 2006-02-03 2010-12-15 罗姆股份有限公司 广角透镜、使用它的光学装置和广角透镜的制造方法
JP5050700B2 (ja) * 2007-07-17 2012-10-17 コニカミノルタアドバンストレイヤー株式会社 変倍光学系、撮像装置およびデジタル機器
JP6632311B2 (ja) * 2015-10-14 2020-01-22 キヤノン株式会社 光学系及びそれを有する撮像装置
CN106405782A (zh) * 2016-12-16 2017-02-15 福建福光天瞳光学有限公司 大靶面高精度光学无热化测温镜头及调节方法
CN112305736B (zh) * 2019-07-31 2022-05-17 Oppo广东移动通信有限公司 变焦镜头、相机模组及电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021048A1 (en) * 1991-05-20 1992-11-26 Eastman Kodak Company A zoom lens
JPH05323190A (ja) * 1992-05-18 1993-12-07 Fuji Photo Optical Co Ltd 小型ズームレンズ
JPH07120678A (ja) * 1993-10-26 1995-05-12 Olympus Optical Co Ltd 3群ズームレンズのフォーカシング方式
WO1996019749A1 (en) * 1994-12-19 1996-06-27 Benopcon, Inc. Variable power lens systems for producing small images
US6052234A (en) * 1996-04-16 2000-04-18 Minolta Co., Ltd. Viewfinder optical system
JP2000330024A (ja) * 1999-05-20 2000-11-30 Asahi Optical Co Ltd 内視鏡対物変倍光学系

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850312A (en) * 1993-10-22 1998-12-15 Olympus Optical Co., Ltd. Three-unit zoom lens
JP3365835B2 (ja) * 1993-10-22 2003-01-14 オリンパス光学工業株式会社 コンパクトな3群ズームレンズ
JP3310854B2 (ja) * 1996-03-04 2002-08-05 富士写真光機株式会社 ワイドズームレンズ
JPH10333034A (ja) * 1997-06-03 1998-12-18 Olympus Optical Co Ltd 光学系
JPH1195098A (ja) * 1997-09-16 1999-04-09 Nitto Kogaku Kk 投写用ズームレンズおよびプロジェクタ装置
JP2000298236A (ja) * 1999-02-10 2000-10-24 Nikon Corp 可変焦点距離レンズ系
JP2001124989A (ja) * 1999-10-25 2001-05-11 Minolta Co Ltd ズームレンズ
US7002755B2 (en) * 2001-11-26 2006-02-21 Olympus Corporation Zoom lens, and electronic imaging system using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021048A1 (en) * 1991-05-20 1992-11-26 Eastman Kodak Company A zoom lens
JPH05323190A (ja) * 1992-05-18 1993-12-07 Fuji Photo Optical Co Ltd 小型ズームレンズ
JPH07120678A (ja) * 1993-10-26 1995-05-12 Olympus Optical Co Ltd 3群ズームレンズのフォーカシング方式
WO1996019749A1 (en) * 1994-12-19 1996-06-27 Benopcon, Inc. Variable power lens systems for producing small images
US6052234A (en) * 1996-04-16 2000-04-18 Minolta Co., Ltd. Viewfinder optical system
JP2000330024A (ja) * 1999-05-20 2000-11-30 Asahi Optical Co Ltd 内視鏡対物変倍光学系

Also Published As

Publication number Publication date
CN1685268A (zh) 2005-10-19
CN100417968C (zh) 2008-09-10
KR101018313B1 (ko) 2011-03-04
KR20050049425A (ko) 2005-05-25
JP2004133058A (ja) 2004-04-30
JP4048904B2 (ja) 2008-02-20
US7068447B2 (en) 2006-06-27
US20040263995A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
JP4728321B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5101262B2 (ja) ズームレンズ、撮像装置および携帯情報端末装置
JP4591780B2 (ja) 可変焦点距離レンズ系及び撮像装置
CN100451719C (zh) 变焦透镜和图像拍摄设备
JP5429612B2 (ja) ズームレンズ、情報装置および撮像装置
US8085478B2 (en) Zoom lens system and image pickup apparatus including the same
JP2007072263A (ja) 変倍光学系
JP2002082284A (ja) 撮像レンズ装置
JP2008257022A (ja) ズームレンズ
CN107290844B (zh) 变焦透镜和使用变焦透镜的图像拾取装置
JP4827454B2 (ja) ズームレンズおよびそれを有する撮像装置
JP2009037125A (ja) 3群ズームレンズ及びそれを備えた撮像装置
EP2555035A2 (en) Zoom lens and information device incorporating the same
JP4917922B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5009051B2 (ja) 3群ズームレンズ及びそれを備えた撮像装置
JP4048904B2 (ja) 撮像レンズ
JP2007212636A (ja) ズームレンズ系、撮像装置及びカメラ
JP2005326743A (ja) ズームレンズおよび撮影機能を有する情報装置
US8873161B2 (en) Zoom lens, camera apparatus, information device and mobile information terminal apparatus
JP4708734B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5345042B2 (ja) ズームレンズ
US7760440B2 (en) Zoom lens
KR101880633B1 (ko) 줌 렌즈 및 이를 구비한 촬영 장치
JP4870527B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP4960713B2 (ja) ズームレンズ系、撮像装置及びカメラ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 10495753

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047008499

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A00263

Country of ref document: CN