WO2004025746A2 - Verfahren zur behandlung einer photovoltaisch aktiven schicht und photovoltaisches element auf organischer basis - Google Patents

Verfahren zur behandlung einer photovoltaisch aktiven schicht und photovoltaisches element auf organischer basis Download PDF

Info

Publication number
WO2004025746A2
WO2004025746A2 PCT/DE2003/002929 DE0302929W WO2004025746A2 WO 2004025746 A2 WO2004025746 A2 WO 2004025746A2 DE 0302929 W DE0302929 W DE 0302929W WO 2004025746 A2 WO2004025746 A2 WO 2004025746A2
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
photovoltaically active
solvent
photovoltaic
mixture
Prior art date
Application number
PCT/DE2003/002929
Other languages
English (en)
French (fr)
Other versions
WO2004025746A3 (de
Inventor
Christoph Brabec
Pavel Schilinsky
Christoph Waldauf
Original Assignee
Konarka Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31983901&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004025746(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Konarka Technologies, Inc. filed Critical Konarka Technologies, Inc.
Priority to DE50306270T priority Critical patent/DE50306270D1/de
Priority to JP2004535001A priority patent/JP2005538555A/ja
Priority to EP03750316A priority patent/EP1535323B1/de
Priority to US10/524,964 priority patent/US7306968B2/en
Publication of WO2004025746A2 publication Critical patent/WO2004025746A2/de
Publication of WO2004025746A3 publication Critical patent/WO2004025746A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to an organic-based photovoltaic element, in particular a solar cell with a photovoltaically active layer that absorbs in the blue region.
  • organic solar cells based on polyalkylthiophene are also known.
  • a typical cell structure of this photovoltaic element comprises the following layers: an anode, for example made of ITO (indium tin oxide), and a perforated layer made of a copolymer such as a mixture of PEDOT with PSS as the anion.
  • anode for example made of ITO (indium tin oxide)
  • a perforated layer made of a copolymer such as a mixture of PEDOT with PSS as the anion.
  • P3AT.PCBM poly-3-hexylthiophene in a mixture with PhenylC 6 ⁇ -
  • ButoxyMethoxy which is the photovoltaically active layer.
  • the cathode layer is then still on this, for example made of a metal such as aluminum or a Ca / Ag alloy.
  • the individual layers can differ, in particular both the electrodes and the acceptor (PCBM) can be made of a different material.
  • PCBM acceptor
  • CN-PPVs cyano-substituted PPVs
  • any number of additions to the polythiophene are conceivable.
  • the object of the invention is to provide a method by which the absorption maximum of a photovoltaically active layer can be shifted into the longer-wave region and / or an improvement in efficiency (eg by increasing the short-circuit current) can be achieved.
  • the invention relates to a method for treating a photovoltaically active layer with a solvent and / or by tempering, characterized in that the photovoltaically active layer comes into contact with solvent molecules and / or is heated.
  • the invention also relates to a photovoltaic element with a photovoltaically active layer which contains a mixture of polyalkylthiophene which absorbs in the deep red region.
  • the photovoltaically active layer is preferably a polyalkylthiophene which is present in a mixture with an additive such as a fullerene, in particular a methanofullerene.
  • an additive such as a fullerene, in particular a methanofullerene.
  • Other possible additives instead of the fullerene would be e.g. B. inorganic nanoparticles based on CdTe (cadmium tellurium), CdS (cadmium sulfide), polymers with a high electron affinity such as.
  • the photovoltaically active layer is exposed to a solvent vapor at room temperature. This can be done, for example, by passing (holding) the photovoltaically active layer over a vessel with solvent and / or by medium vapor is passed over the photovoltaically active layer.
  • the photovoltaically active layer is exposed to the solvent vapor only for a very short time, that is to say less than a minute or, for example, only in the seconds or milliseconds range.
  • the photovoltaically active layer is annealed at a temperature of at least 70 ° C., preferably approximately 80 ° C. or higher.
  • the progress of the tempering can be followed by increasing the short-circuit current. Other combinations of temperature and time are conceivable, the process is considered complete as soon as the photovoltaic parameters no longer improve.
  • the tempering can be carried out by introducing the photovoltaically active layer into a drying oven or onto a hotplate or the like. Treatment with solvent can also take place simultaneously with the tempering.
  • Aromatic solvents such as xylene, toluene or the like can be used as solvents or halogen-containing solvents such as chloroform or the like.
  • the choice of the suitable solvent depends on the mixture of the material forming the photovoltaically active layer.
  • the effect of the solvent is, for example, that the solvent xylene, toluene, butanone and / or chloroform and / or another solvent or any mixture of these solvents at least partially dissolves and / or softens the polyalkyl thiophene.
  • the photovoltaically active layer is produced in a conventional manner; according to the prior art, a varnished film is formed, for example, from a P3AT (poly-3-alkyl-thiophene) / PCBM (phenylC ⁇ iButoxymethoxy) solution or by conventional printing processes (screen printing, Fle - xo printing ...) applied.
  • P3AT poly-3-alkyl-thiophene
  • PCBM phenylC ⁇ iButoxymethoxy
  • Figure 1 shows the observation of the effect of solvent vapors on the absorption of chloroform-coated P3AT films with and without fullerenes on glass: the triangles show a pure P3AT film on glass, the full squares a P3AT / PCBM film. It can be clearly observed that this film lacks the absorption contribution typical of the P3AT in the wavelength range around 550 nm. After the film has been exposed to chloroform vapor (open diamonds), its absorption behavior changes and the absorption characteristics typical of the P3AT can be observed again.
  • Figure 2 Change in short-circuit current Isc (full squares) and efficiency (full circles) with the temperature at which the layer was annealed.
  • the sample structure: ITO / PEDOT / P3HT: PCBM / Ca / Ag
  • the electrical characteristics were measured in each case at room temperature under illumination with 70 mW / cm 2 white light from a xenon lamp. It can be seen that from a temperature of> 80 ° C the short-circuit current and thus the efficiency begins to increase.
  • Figure 3 Current / voltage (I / V) - characteristic of temperature-treated cells, once before (full circles) and after (full squares) the treatment with solvent vapor.
  • the increase in the short-circuit current (Isc) and the efficiency reflects the red shift in the absorption behavior (as shown in FIG. 1) of the cell.
  • the absorption maximum of P3ATs is shifted by more than 100 nm into the blue spectral range. postponed. This increases the spectral mismatch of the solar cell to the solar spectrum.
  • the invention solves the following problems: a.) Shifting the absorption of the P3AT / fullerene film back into the red spectral range by solvent annealing and b.) Increasing the efficiency of the solar cell by temperature annealing.
  • Annealing is the treatment of a photovoltaically active layer in the context of this invention to achieve the object, that is to say to red shift the absorption maximum of the layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung betrifft ein photovoltaisches Element auf organischer Basis, insbesondere eine Solarzelle mit einer photovoltaisch aktiven Schicht, deren Absorptionsmaximum in den längerwelligen Bereich verschoben und/oder die Effizienz der Schicht erhöht wird.

Description

Beschreibung
Verfahren zur Behandlung einer photovoltaisch aktiven Schicht und photovoltaisches Element auf organischer Basis
Die Erfindung betrifft ein photovoltaisches Element auf organischer Basis, insbesondere eine Solarzelle mit einer im blauen Bereich absorbierenden photovoltaisch aktiven Schicht.
Bekannt sind Solarzellen auf organischer Basis aus der
US 5,331,183 von 1994 und durch zahlreiche Veröffentlichungen seitdem.
Insbesondere sind auch organische Solarzellen auf Polyal- kylthiophenbasis (P3AT) bekannt. Ein typischer Zellaufbau dieses photovoltaischen Elements umfasst folgende Schichten: Eine Anode, beispielsweise aus ITO (Indium tin Oxide) darauf eine Lochleitschicht aus einem Copolymer wie einem Gemisch aus PEDOT mit PSS als Anion. Darauf liegt eine Schicht aus P3AT.PCBM, (Poly-3-hexylthiophen im Gemisch mit PhenylC6ι-
ButoxyMethoxy) die die photovoltaisch aktive Schicht ist. Auf dieser befindet sich dann noch die Kathodenschicht, beispielsweise aus einem Metall wie Aluminium oder einer Ca/Ag- Legierung. Die einzelnen Schichten können jedoch abweichen, insbesondere können sowohl die Elektroden als auch der Akzeptor (PCBM) aus anderem Material sein. Beispielsweise wurden Cyano substituierte PPVs (CN-PPVs) schon als Akzeptor verwendet, es sind jedoch beliebig viele Zusätze zu dem Poly- thiophen denkbar.
Es besteht der Bedarf, die Absorptionsmaxima der photovoltaisch aktiven Schicht in Längerwellige zu verschieben, weil unter anderem auch das Vermischen des Polythiophens mit dem Fulleren zu einer Blauverschiebung des Absorptionsmaximums führt. Dadurch wird der Mismatch, also die Diskrepanz des Absorptionsmaximums zu der Hauptemission des Sonnenlichts größer. Aufgabe der Erfindung ist es, ein Verfahren anzugeben, durch das das Absorptionsmaximum einer photovoltaisch aktiven Schicht in den längerwelligen Bereich verschoben und/oder ei- ne Verbesserung der Effizienz (z. B. durch Erhöhung des Kurz- schluss-Stroms) erreicht werden kann. Insbesondere ist es Aufgabe der vorliegenden Erfindung ein Verfahren anzugeben, durch das das Absorptionsmaximum einer, ein Poly (alkyl) thio- phen im Gemisch mit einem Fulleren enthaltenden, photovol- taisch aktiven Schicht ins Längerwellige verschoben werden kann.
Gegenstand der Erfindung ist ein Verfahren zur Behandlung einer photovoltaisch aktiven Schicht mit einem Lösungsmittel und/oder durch Tempern, dadurch gekennzeichnet, dass die photovoltaisch aktive Schicht mit Lösungsmittelmolekülen in Berührung kommt und/oder erwärmt wird. Außerdem ist Gegenstand der Erfindung ein photovoltaisches Element mit einer photovoltaisch aktiven Schicht, die ein Polyalkylthiophen im Ge- misch enthält, das im tiefroten Bereich absorbiert.
Die photovoltaisch aktive Schicht ist bevorzugt ein Polyalkylthiophen, das im Gemisch mit einem Additiv wie einem Fulleren, insbesondere einem Methanofulleren vorliegt. Weitere möglich Additive anstatt des Fullerenes wären z. B. inorganische Nanoteilchen auf Basis CdTe (Cadmium-Tellur) , CdS (Cad- mium-Sulfid) , Polymere mit einer hohen Elektronenaffinität wie z. B. Cyano- substituierte PPVs (CN-PPVs) oder kleine Moleküle mit einer hohen Elektronenaffinität, wie z. B Tetra- Cyano-Quinon (TCNQ) oder Tetra Cyano-Anthracen-Quinon (TCAQ) .
Nach einer Ausführungsform der Erfindung wird die photovoltaisch aktive Schicht einem Lösungsmitteldampf bei Raumtemperatur ausgesetzt. Dies kann beispielsweise dadurch erfolgen, dass die photovoltaisch aktive Schicht über ein(em) Gefäß mit Lösungsmittel geführt (gehalten) wird und/oder dass Lösungs- mitteldampf über die photovoltaisch aktive Schicht geleitet wird.
Nach einer Ausführungsform wird die photovoltaisch aktive Schicht dem Lösungsmitteldampf nur sehr kurz, das heißt weniger als eine Minute oder beispielsweise nur im Sekunden oder Millisekundenbereich ausgesetzt.
Nach einer Ausführungsform der Erfindung wird die photovol- taisch aktive Schicht bei einer Temperatur von zumindest 70°C bevorzugt ca. 80°C oder höher getempert. Der Fortschritt der Temperung kann durch die Erhöhung des Kurzschluss-Stromes mitverfolgt werden. Andere Kombinationen aus Temperatur und Zeit sind vorstellbar, der Prozess gilt als abgeschlossen so- bald sich die photovoltaischen Parameter nicht mehr weiter verbessern. Die Temperung kann durch Einbringen der photovoltaisch aktiven Schicht in einen Trockenofen oder auf eine Hotplate oder ähnliches erfolgen. Gleichzeitig mit der Temperung kann auch die Behandlung mit Lösungsmittel erfolgen.
Als Lösungsmittel können beispielsweise aromatische Lösungsmittel wie Xylol, Toluol, oder ähnliches eingesetzt werden oder halogenhaltige Lösungsmittel wie Chloroform oder ähnliches. Die Wahl des geeigneten Lösungsmittel hängt vom Gemisch des die photovoltaisch aktive Schicht bildenden Materials ab. Die Wirkung des Lösungsmittels besteht beispielsweise darin, dass das Lösungsmittel Xylol, Toluol, Butanon und/oder Chloroform und/oder ein weiteres Lösungsmittel oder ein beliebiges Gemisch dieser Lösungsmittel das Poly-alkyl-Thiophen zu- mindest teilweise anlöst und/oder weich macht.
Die Herstellung der photovoltaisch aktiven Schicht erfolgt in herkömmlicher Weise, nach dem Stand der Technik wird beispielsweise aus einer P3AT (Poly-3-alkyl-Thiophen) /PCBM (PhenylCδiButoxymethoxy) Lösung ein lackgeschleuderter Film gebildet oder durch gängige Druckverfahren (Siebdruck, Fle- xodruck... ) appliziert. Im folgenden wird die Figur noch anhand dreier Graphiken, die Versuchsergebnisse wiedergeben, näher erläutert:
Figur 1 zeigt die Beobachtung der Auswirkung von Lösungsmitteldämpfen auf die Absorption von aus Chloroform lackgeschleuderten P3AT Filmen mit und ohne Fullerene auf Glas : Die Dreiecke zeigen einen reinen P3AT Film auf Glas, die vollen Quadrate einen P3AT/PCBM Film. Es ist deutlich zu beo- bachten, dass diesem Film der für das P3AT typische Absorptionsbeitrag im Wellenlängenbereich um 550 nm fehlt. Nachdem der Film Chloroformdampf ausgesetzt wurde (offene Rauten) , ändert sich sein Absorptionsverhalten und die für das P3AT typischen Absorptionscharakteristika sind wieder zu beobach- ten.
Figur 2: Änderung des Kurzschluss-Stromes Isc (volle Quadrate) und der Effizienz (volle Kreise) mit der Temperatur, bei der die Schicht getempert wurde. Die Probe (Aufbau: ITO/PEDOT/P3HT:PCBM/Ca/Ag) wurde jeweils 20 Minuten getempert, die elektrischen Charakteristika (Isc und Effizienz) wurden jeweils bei Raumtemperatur unter Beleuchtung mit 70 mW/cm2 Weißlicht von einer Xenonlampe gemessen. Man kann erkennen, dass ab einer Temperatur von > 80 ° C der Kurz- schluss-Strom und dadurch auch die Effizienz zu steigen beginnt .
Figur 3: Strom/Spannungs (I/V) - Kennlinie von temperaturbehandelten Zellen, einmal vor (volle Kreise) und nach (volle Quadrate) der Behandlung mit Lösungsmitteldampf. Die Erhöhung des Kurschluss-Stroms (Isc) und der Effizienz spiegelt die Rotverschiebung des Absorptionsverhaltens (wie in Figur 1 dargestellt) der Zelle wieder.
Durch das Vermischen von P3ATs, im speziellen von Polyhe- xylthiophene mit Fullerenen wird das Absorptionsmaximum des P3ATs um mehr als 100 nm in den blauen Spektralbereich ver- schoben. Dadurch wird der spektrale Mismatch der Solarzelle zum Sonnenspektrum größer. Die Erfindung löst folgende Probleme: a.) Rückverschiebung der Absorption des P3AT/Fullerene Films in den roten Spektralbereich durch Lösungsmittelannealing und b.) Erhöhung der Effizienz der Solarzelle durch Temperatur- annealing.
Als „Annealing wird die Behandlung einer photovoltaisch aktiven Schicht im Rahmen dieser Erfindung zur Lösung der Aufgabe, also zur Rotverschiebung des Absorptionsmaximums der Schicht, bezeichnet.

Claims

Patentansprüche
1. Verfahren zur Behandlung einer photovoltaisch aktiven Schicht mit einem Lösungsmittel und/oder durch Tempern, dadurch gekennzeichnet, dass die photovoltaisch aktive Schicht mit Lösungsmittelmolekülen in Berührung kommt und/oder erwärmt wird.
2. Verfahren nach Anspruch 1, bei dem die photovoltaisch ak- tive Schicht ein Polyalkylthiophen ist, das im Gemisch mit einem Additiv wie einem Fulleren, insbesondere einem Methanofulleren vorliegt.
3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem die photovoltaisch aktive Schicht einem Lösungsmitteldampf ausgesetzt wird.
4. Verfahren nach Anspruch 3, bei dem die photovoltaisch aktive Schicht dem Lösungsmitteldampf bei Raumtemperatur ausgesetzt wird.
5. Verfahren nach einem der vorstehenden Ansprüche, bei dem / die photovoltaisch aktive Schicht dem Lösungsmitteldampf nicht länger als eine Minute ausgesetzt wird.
6. Verfahren nach einem der vorstehenden Ansprüche, bei dem das Lösungsmittel Xylol, Toluol, Butanon und/oder Chloroform und/oder ein weiteres Lösungsmittel und/oder ein beliebiges Gemisch dieser Lösungsmittel das Poly-alkyl- Thiophen zumindest teilweise anlöst oder weich macht.
7. Verfahren nach einem der vorstehenden Ansprüche, bei dem die photovoltaisch aktive Schicht bei einer Temperatur von zumindest 70 °c getempert wird.
Photovoltaisches Element mit einer photovoltaisch aktiven Schicht, die ein Polyalkylthiophen im Gemisch enthält, wobei die photovoltaische Schicht ein Absorptionsmaximum im tiefroten Bereich hat.
PCT/DE2003/002929 2002-09-05 2003-09-03 Verfahren zur behandlung einer photovoltaisch aktiven schicht und photovoltaisches element auf organischer basis WO2004025746A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50306270T DE50306270D1 (de) 2002-09-05 2003-09-03 Verfahren zur behandlung einer photovoltaisch aktiven schicht und photovoltaisches element auf organischer basis
JP2004535001A JP2005538555A (ja) 2002-09-05 2003-09-03 光起電活性層および有機性光起電素子の処理方法
EP03750316A EP1535323B1 (de) 2002-09-05 2003-09-03 Verfahren zur behandlung einer photovoltaisch aktiven schicht und photovoltaisches element auf organischer basis
US10/524,964 US7306968B2 (en) 2002-09-05 2003-09-03 Method for treating a photovoltaic active layer and organic photovoltaic element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10241205 2002-09-05
DE10241205.7 2002-09-05

Publications (2)

Publication Number Publication Date
WO2004025746A2 true WO2004025746A2 (de) 2004-03-25
WO2004025746A3 WO2004025746A3 (de) 2004-09-16

Family

ID=31983901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002929 WO2004025746A2 (de) 2002-09-05 2003-09-03 Verfahren zur behandlung einer photovoltaisch aktiven schicht und photovoltaisches element auf organischer basis

Country Status (6)

Country Link
US (1) US7306968B2 (de)
EP (1) EP1535323B1 (de)
JP (2) JP2005538555A (de)
CN (1) CN1682362A (de)
DE (1) DE50306270D1 (de)
WO (1) WO2004025746A2 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036756A2 (en) * 2004-09-24 2006-04-06 Plextronics, Inc. Heteroatomic regioregular poly(3-substitutedthiophenes) in photovoltaic cells
WO2006101814A2 (en) 2005-03-21 2006-09-28 Konarka Technologies, Inc. Polymer photovoltaic cell
WO2006110429A2 (en) * 2005-04-07 2006-10-19 The Regents Of The University Of California Highly efficient polymer solar cell by polymer self-organization
WO2006134090A1 (de) * 2005-06-16 2006-12-21 Siemens Aktiengesellschaft Organischer zeilendetektor und verfahren zu seiner herstellung
JP2006351721A (ja) * 2005-06-14 2006-12-28 Matsushita Electric Works Ltd 積層型有機太陽電池及びその製造方法
WO2007016403A2 (en) * 2005-08-01 2007-02-08 Plextronics, Inc. Latent doping of conducting polymers
JP2007115849A (ja) * 2005-10-19 2007-05-10 Matsushita Electric Works Ltd 積層型有機太陽電池
WO2007100600A2 (en) * 2006-02-24 2007-09-07 Plextronics, Inc. High performance polymer photovoltaics
WO2008018030A3 (en) * 2006-08-08 2008-05-02 Stefano Segato Multilayer photovoltaic device and process for its preparation and application
US7834352B2 (en) * 2004-10-27 2010-11-16 Samsung Electronics Co., Ltd. Method of fabricating thin film transistor
WO2011015993A2 (en) * 2009-08-07 2011-02-10 Fabio Cappelli Multilayer photovoltaic composition and method of application
WO2011127186A1 (en) * 2010-04-08 2011-10-13 The Regents Of The University Of Michigan Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130717A2 (en) * 2005-06-02 2006-12-07 The Regents Of The University Of California Effective organic solar cells based on triplet materials
WO2007134616A1 (en) * 2006-05-19 2007-11-29 Interuniversitair Microelektronica Centrum Vzw Method for the production of a layer of organic material
US9112447B2 (en) * 2006-11-03 2015-08-18 Solera Laboratories, Inc. Nano power cell and method of use
US8319092B1 (en) 2006-11-03 2012-11-27 Solera Laboratories, Inc. Nano power cell and method of use
US7906724B2 (en) * 2007-07-31 2011-03-15 Agency For Science, Technology And Research N-type conjugated materials based on 2-vinyl-4,5-dicyanoimidazoles and their use in organic photovoltaics
TWI380490B (en) * 2009-05-05 2012-12-21 Univ Nat Chiao Tung Organic photosensitive photoelectric device
US20110048488A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device and method of making the same
US20110048489A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device for high heat flux applications and method of making the same
US20120216868A1 (en) * 2009-10-30 2012-08-30 Takahiro Seike Manufacturing method of organic photovoltaic cell
CN102623642B (zh) * 2012-03-22 2014-04-16 中国科学院长春应用化学研究所 聚合物太阳能电池的制备方法
JP6382781B2 (ja) * 2015-09-15 2018-08-29 株式会社東芝 半導体素子の製造方法および製造装置
CN110518120B (zh) * 2018-05-22 2021-04-06 中国科学院化学研究所 一种固体添加剂及其在有机太阳能电池中的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691273B2 (ja) * 1986-06-02 1994-11-14 工業技術院長 光起電力素子の製造方法
JPH0716021B2 (ja) * 1988-09-16 1995-02-22 松下電器産業株式会社 光起電力装置及びその製造方法
JPH05152594A (ja) * 1991-10-01 1993-06-18 Ricoh Co Ltd 光起電力素子
JPH0774377A (ja) * 1993-08-31 1995-03-17 Kawamura Inst Of Chem Res 光電変換素子
JP3627311B2 (ja) * 1995-09-07 2005-03-09 住友電気工業株式会社 光電流増倍素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARIAS, A. C. ET AL: "Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing" APPLIED PHYSICS LETTERS , 80(10), 1695-1697 CODEN: APPLAB; ISSN: 0003-6951, 11. M{rz 2002 (2002-03-11), XP001104270 *
DATABASE CHEMABS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 24. Juni 2002 (2002-06-24), CAMAIONI, NADIA ET AL: "Solar cells based on poly(3-alkyl) thiophenes and [60Üfullerene: a comparative study" XP002286364 gefunden im STN Database accession no. 2002:470013 & JOURNAL OF MATERIALS CHEMISTRY , 12(7), 2065-2070 CODEN: JMACEP; ISSN: 0959-9428, 21. Juni 2002 (2002-06-21), *
HUYNH, WENDY ET AL: "Efficient nanorod and polymer photovoltaics from thermal treatment" PROCEEDINGS - ELECTROCHEMICAL SOCIETY , 2001-10(PHOTOVOLTAICS FOR THE 21ST CENTURY II), 195-198 CODEN: PESODO; ISSN: 0161-6374, 2001, XP001182311 10-2001 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036756A3 (en) * 2004-09-24 2006-11-02 Plextronics Inc Heteroatomic regioregular poly(3-substitutedthiophenes) in photovoltaic cells
WO2006036756A2 (en) * 2004-09-24 2006-04-06 Plextronics, Inc. Heteroatomic regioregular poly(3-substitutedthiophenes) in photovoltaic cells
US7790979B2 (en) 2004-09-24 2010-09-07 Plextronics, Inc. Heteroatomic regioregular poly(3-substitutedthiophenes) for photovoltaic cells
US7834352B2 (en) * 2004-10-27 2010-11-16 Samsung Electronics Co., Ltd. Method of fabricating thin film transistor
EP1861881A2 (de) * 2005-03-21 2007-12-05 Konarka Technologies, Inc. Photovoltaische polymerzelle
WO2006101814A2 (en) 2005-03-21 2006-09-28 Konarka Technologies, Inc. Polymer photovoltaic cell
US7825326B2 (en) 2005-03-21 2010-11-02 Konarka Technologies, Inc. Polymer photovoltaic cell
EP1861881A4 (de) * 2005-03-21 2010-08-18 Konarka Technologies Inc Photovoltaische polymerzelle
WO2006110429A2 (en) * 2005-04-07 2006-10-19 The Regents Of The University Of California Highly efficient polymer solar cell by polymer self-organization
WO2006110429A3 (en) * 2005-04-07 2007-02-15 Univ California Highly efficient polymer solar cell by polymer self-organization
JP2006351721A (ja) * 2005-06-14 2006-12-28 Matsushita Electric Works Ltd 積層型有機太陽電池及びその製造方法
WO2006134090A1 (de) * 2005-06-16 2006-12-21 Siemens Aktiengesellschaft Organischer zeilendetektor und verfahren zu seiner herstellung
WO2007016403A3 (en) * 2005-08-01 2007-08-09 Plextronics Inc Latent doping of conducting polymers
WO2007016403A2 (en) * 2005-08-01 2007-02-08 Plextronics, Inc. Latent doping of conducting polymers
US7888427B2 (en) 2005-08-01 2011-02-15 Plextronics, Inc. Latent doping of conducting polymers
JP2007115849A (ja) * 2005-10-19 2007-05-10 Matsushita Electric Works Ltd 積層型有機太陽電池
WO2007100600A3 (en) * 2006-02-24 2007-10-18 Plextronics Inc High performance polymer photovoltaics
WO2007100600A2 (en) * 2006-02-24 2007-09-07 Plextronics, Inc. High performance polymer photovoltaics
WO2008018030A3 (en) * 2006-08-08 2008-05-02 Stefano Segato Multilayer photovoltaic device and process for its preparation and application
WO2011015993A2 (en) * 2009-08-07 2011-02-10 Fabio Cappelli Multilayer photovoltaic composition and method of application
WO2011015993A3 (en) * 2009-08-07 2011-08-04 Solargenius S.R.L. Multilayer photovoltaic composition and method of application
WO2011127186A1 (en) * 2010-04-08 2011-10-13 The Regents Of The University Of Michigan Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes
US9768402B2 (en) 2010-04-08 2017-09-19 University Of Southern California Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

Also Published As

Publication number Publication date
JP2011135095A (ja) 2011-07-07
EP1535323B1 (de) 2007-01-10
JP5415468B2 (ja) 2014-02-12
EP1535323A2 (de) 2005-06-01
US20060105491A1 (en) 2006-05-18
DE50306270D1 (de) 2007-02-22
CN1682362A (zh) 2005-10-12
JP2005538555A (ja) 2005-12-15
WO2004025746A3 (de) 2004-09-16
US7306968B2 (en) 2007-12-11

Similar Documents

Publication Publication Date Title
EP1535323B1 (de) Verfahren zur behandlung einer photovoltaisch aktiven schicht und photovoltaisches element auf organischer basis
Wang et al. Efficient inverted planar perovskite solar cells using ultraviolet/ozone‐treated NiOx as the hole transport layer
Dong et al. Pseudohalide‐induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells
Li et al. Graphdiyne‐based bulk heterojunction for efficient and moisture‐stable planar perovskite solar cells
EP1444740B1 (de) Verfahren zur trocknung von schichten organischer hableiter, leiter oder farbfilter mittels ir und/oder nir-strahlung
EP2168181B1 (de) Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
EP1565947B1 (de) Photovoltaisches bauelement und herstellungsverfahren dazu
Xie et al. Self‐organized fullerene interfacial layer for efficient and low‐temperature processed planar perovskite solar cells with high UV‐light stability
Jiang et al. In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell
Chiang et al. Origins of the s-shape characteristic in J–V curve of inverted-type perovskite solar cells
WO2005024971A1 (de) Elektronische vorrichtungen enthaltend einen organischen leiter und halbleiter und dazwischen eine pufferschicht aus einem vernetzten polymer
DE102006059369A1 (de) Fotoelement
DE102013106639A1 (de) Organisches, halbleitendes Bauelement
Zheng et al. Improved phase stability of CsPbI2Br perovskite by released microstrain toward highly efficient and stable solar cells
DE112011104040T5 (de) Lochinjektionsschichten
DE102006006412A1 (de) Elektronisches Bauteil, Verfahren zu dessen Herstellung und dessen Verwendung
Lin et al. Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells
DE112014003470T5 (de) Organische elektronische Vorrichtungen mit mehreren lösungsverarbeiteten Schichten
He et al. High-performance inverted perovskite solar cells using 4-diaminomethylbenzoic as a passivant
Zhao et al. Field‐effect control in hole transport layer composed of Li: NiO/NiO for highly efficient inverted planar perovskite solar cells
Zhi et al. Dissolution and recrystallization of perovskite induced by N-methyl-2-pyrrolidone in a closed steam annealing method
DE102009038633B4 (de) Photoaktives Bauelement mit organischen Doppel- bzw. Mehrfachmischschichten
Das et al. One‐step solution‐processed formamidinium lead tribromide formation for better reproducible planar perovskite solar cells
Li et al. Azo‐Initiator‐Induced Cascade Defect Passivation for Efficient and Stable Planar Perovskite Solar Cells
DE112010004173T5 (de) Organische photovoltaische Zelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003750316

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004535001

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038211599

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003750316

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006105491

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10524964

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10524964

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003750316

Country of ref document: EP