CN1682362A - 处理光电活性层和有机基光电元件 - Google Patents

处理光电活性层和有机基光电元件 Download PDF

Info

Publication number
CN1682362A
CN1682362A CN03821159.9A CN03821159A CN1682362A CN 1682362 A CN1682362 A CN 1682362A CN 03821159 A CN03821159 A CN 03821159A CN 1682362 A CN1682362 A CN 1682362A
Authority
CN
China
Prior art keywords
active layer
solvent
photoelectric
photoelectric active
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN03821159.9A
Other languages
English (en)
Inventor
克里斯托夫·布拉贝克
帕维尔·希林斯基
克里斯托夫·瓦尔道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konarka Technologies Inc
Original Assignee
Konarka Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31983901&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1682362(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Konarka Technologies Inc filed Critical Konarka Technologies Inc
Publication of CN1682362A publication Critical patent/CN1682362A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及有机基光电元件,特别是包括光电活性层的太阳能电池,其中活性层的最大吸收可移动到较长波的区域和/或可增加其效率。

Description

处理光电活性层和有机基光电元件
本发明涉及有机基光电元件,特别是包括在蓝色光区域吸收的光电活性层的太阳能电池。
已知有机基太阳能电池来自1994年的美国专利5,331,183和随后大量的出版物。
特别熟知的是以聚烷基噻吩(P3AT)为基础的有机太阳能电池。这种光电元件典型的电池结构包括如下的薄层:阳极,复合层,例如ITO(铟锡氧化物),共聚物的空穴-导电层盖在上面,如PEDOT与作为阴离子的PSS的混合物。顶部是一层P3AT:PCBM[聚(3-己基噻吩)与苯基C61-丁氧基甲氧基的混合],该层是光电活性层。在其之上是阴极层,例如,包含金属如铝或Ca/Ag合金。然而,单独层可以不同于这一方式;特别是电极和接受器(PCBM)均可以由另外的材料制造。例如,已经使用氰基取代的PPVs(CN PPVs)作为接受器;但是可预期聚噻吩中有任意的多种添加物。
需要将光电活性层的最大吸收转移到更长的波段,一则因为聚噻吩与富勒烯混合引起最大吸收的蓝色偏移。这增加了不匹配性,即,最大吸收和阳光的峰发射之间的差异。
本发明的目的是提供一种方法,按照这一方法光电活性层的最大吸收可被转移到更长的波段区域和/或改进它的效率(例如,通过增加短路电流)。特别地,本发明的目的是提供一种方法,由此方法含聚(烷基)噻吩与富勒烯的混合物的光电活性层的最大吸收可被转移到更长的波段。
本发明涉及一种用溶剂和/或通过退火来处理光电活性层的方法,其特征在于光电活性层与溶剂分子接触和/或对其加热。本发明还涉及一种光电活性元件,其包括在混合物中含聚烷基噻吩的光电活性层,且该光电活性元件在深红色区域吸收。
光电活性层优选聚烷基噻吩,其与添加剂以混合物的形式存在,所述添加剂如富勒烯,尤其是亚甲基富勒烯。例如,代替富勒烯的其它添加剂可为基于如下物质的无机纳米粒子:碲化镉(CdTe);硫化镉(CdS);具有高亲电子能力的聚合物,如,氰基取代的PPVs(CNPPVs);或具有高亲电子能力的小分子,如,四氰基醌(TCNQ)或四氰基蒽醌二甲烷(TCAQ)。
在本发明的一实施例中,在室温下光电活性层暴露于溶剂蒸气。例如,这可通过使光电活性层经过(保持)含有溶剂的容器上部和/或将溶剂蒸气传导到光电活性层上来实现。
在一个实施例中,光电活性层仅短暂地暴露于溶剂蒸气,即,少于一分钟,或例如仅在秒或豪秒的范围内。
在本发明的一个实施例中,在至少70℃的温度下,优选约80℃或更高的温度下,使光电活性层退火。可用短路电流的增加来监测退火的进程。也可考虑其它温度和时间的组合;当光电参数一停止增加就可认为完成了这一过程。可通过将光电活性层放置在干燥炉中或放在热板上或类似物上进行退火。退火同时也可进行溶剂处理。
使用的溶剂例如可以是芳香族溶剂,如二甲苯、甲苯或类似物;或含卤素的溶剂如氯仿或类似物。根据形成光电活性层材料的混合物选择适当溶剂。溶剂的影响在于,例如,溶剂二甲苯、甲苯、丁酮和/或氯仿和/或其它溶剂或所述溶剂的任意混合物至少部分蚀刻和/或软化聚烷基噻吩。
用常规方式制备光电活性层;按照现有技术,例如,由P3AT[聚(3-烷基噻吩)]/PCBM(苯基C61-丁氧基甲氧基)溶液形成旋涂薄膜或由标准的印刷方法进行(丝网印刷法,苯胺印刷(术)等)。
在下面反映实验结果的三幅图的基础上,对这些图作更详细的描述。
图1表示在玻璃上有和没有富勒稀的条件下,溶剂蒸气对用氯仿旋涂的P3AT膜吸收的影响,三角形表示在玻璃上的纯P3AT膜,实心矩形表示P3AT/PCBM膜。图中清楚表明在P3AT的典型吸收约550nm波长范围,该薄膜缺少吸收贡献。一旦该膜暴露于氯仿蒸气(空心菱形),其对P3AT的典型吸收特征再次明显。
图2表示短路电流Isc(实心矩形)和效率(实心圆圈)随该层退火温度的变化。每个样品(结构:ITO/PEDOT/P3HT:PCBM/Ca/Ag)退火20分钟,并室温时在70mW/cm2氙气灯白光的照射下测量其电学特征(Isc和效率)。可以看到,在温度大于80℃时短路电流开始增加,因而效率也开始增加。
图3表示在溶剂蒸气处理之前(实心圆圈)或之后(实线矩形),经过一次温度处理后电池的电流/电压(I/V)特征。短路电流(Isc)和效率的增加反映了电池吸收性能的红移(见图1说明)。
P3ATs,尤其是聚己基噻吩与富勒烯混合引起P3AT的最大吸收偏移高于100nm进入蓝色光谱区域。这增加了太阳能电池和太阳光谱之间的光谱不匹配。该发明解决了如下问题:
a)通过溶剂退火,使P3AT/富勒烯薄膜吸收偏移回红色光谱区域,和
b)由温度退火增加太阳能电池的效率。
在本发明的上下文中,“退火”表示为了达到目的而进行的光电活性层处理,即引起该层最大吸收的红移。

Claims (8)

1、一种用溶剂和/或由退火处理光电活性层的方法,特征在于所说的光电活性层与溶剂分子接触和/或被加热。
2、按照权利要求1中的方法,其中所述的光电活性层是与添加剂以混合物形式存在的聚烷基噻吩,其中添加剂例如,富勒烯,尤其是亚甲基富勒烯。
3、按照权利要求1和2中任一项的方法,其中将所述的光电活性层置于溶剂蒸气中。
4、按照权利要求3中的方法,其中在室温下将所述光电活性层置于所述溶剂蒸气中。
5、按照上述任一项权利要求的方法,其中将所述的光电活性层置于所述溶剂蒸气中不超过一分钟。
6、按照上述任一项权利要求的方法,其中所述的溶剂是二甲苯、甲苯、丁酮和/或氯仿和/或另外的溶剂和/或所述溶剂的任意混合物,其至少部分蚀刻和/或软化所述的聚烷基噻吩。
7、按照上述任一项权利要求的方法,其中在温度至少70℃下退火处理所述的光电活性层。
8、一种包括光电活性层的光电元件,所说的光电活性层包括混合物中的聚烷基噻吩,其中该光电层在深红区有最大吸收。
CN03821159.9A 2002-09-05 2003-09-03 处理光电活性层和有机基光电元件 Pending CN1682362A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10241205 2002-09-05
DE10241205.7 2002-09-05

Publications (1)

Publication Number Publication Date
CN1682362A true CN1682362A (zh) 2005-10-12

Family

ID=31983901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03821159.9A Pending CN1682362A (zh) 2002-09-05 2003-09-03 处理光电活性层和有机基光电元件

Country Status (6)

Country Link
US (1) US7306968B2 (zh)
EP (1) EP1535323B1 (zh)
JP (2) JP2005538555A (zh)
CN (1) CN1682362A (zh)
DE (1) DE50306270D1 (zh)
WO (1) WO2004025746A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623642A (zh) * 2012-03-22 2012-08-01 中国科学院长春应用化学研究所 聚合物太阳能电池的制备方法
CN102939673A (zh) * 2010-04-08 2013-02-20 密歇根大学董事会 通过热和溶剂蒸汽退火法制备的增强的体异质结器件
CN110518120A (zh) * 2018-05-22 2019-11-29 中国科学院化学研究所 一种固体添加剂及其在有机太阳能电池中的应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1805825B1 (en) * 2004-09-24 2011-08-24 Plextronics, Inc. Heteroatomic regioregular poly(3-substituted thiophenes) in photovoltaic cells
KR101102133B1 (ko) * 2004-10-27 2012-01-02 삼성전자주식회사 박막 트랜지스터의 제조방법 및 그 방법에 의해서 제조되는 박막 트랜지스터를 포함하는 표시소자
EP1861881B1 (en) * 2005-03-21 2017-09-06 Merck Patent GmbH Polymer photovoltaic cell
CN101176218A (zh) * 2005-04-07 2008-05-07 加利福尼亚大学董事会 聚合物自组织的高效聚合物太阳能电池
WO2006130717A2 (en) * 2005-06-02 2006-12-07 The Regents Of The University Of California Effective organic solar cells based on triplet materials
JP4991126B2 (ja) * 2005-06-14 2012-08-01 パナソニック株式会社 積層型有機太陽電池及びその製造方法
EP1891690A1 (de) * 2005-06-16 2008-02-27 Siemens Aktiengesellschaft Organischer zeilendetektor und verfahren zu seiner herstellung
US7888427B2 (en) 2005-08-01 2011-02-15 Plextronics, Inc. Latent doping of conducting polymers
JP5118296B2 (ja) * 2005-10-19 2013-01-16 パナソニック株式会社 積層型有機太陽電池
KR20080108475A (ko) * 2006-02-24 2008-12-15 플렉스트로닉스, 인크 고성능 중합체 광전지
WO2007134616A1 (en) * 2006-05-19 2007-11-29 Interuniversitair Microelektronica Centrum Vzw Method for the production of a layer of organic material
SM200600027B (it) * 2006-08-08 2008-02-13 Stefano Segato Preparazione fotovoltaica multistrato per la generazione di energia elettrica nonché' metodo di realizzazione ed applicazione
US8319092B1 (en) 2006-11-03 2012-11-27 Solera Laboratories, Inc. Nano power cell and method of use
US9112447B2 (en) * 2006-11-03 2015-08-18 Solera Laboratories, Inc. Nano power cell and method of use
US7906724B2 (en) * 2007-07-31 2011-03-15 Agency For Science, Technology And Research N-type conjugated materials based on 2-vinyl-4,5-dicyanoimidazoles and their use in organic photovoltaics
TWI380490B (en) * 2009-05-05 2012-12-21 Univ Nat Chiao Tung Organic photosensitive photoelectric device
SM200900070B (it) * 2009-08-07 2012-03-05 Antonio Maroscia Composizione fotovoltaica multistrato e metodo di realizzazione
US20110048488A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device and method of making the same
US20110048489A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device for high heat flux applications and method of making the same
CN102576806A (zh) * 2009-10-30 2012-07-11 住友化学株式会社 有机光电转换元件的制造方法
JP6382781B2 (ja) * 2015-09-15 2018-08-29 株式会社東芝 半導体素子の製造方法および製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691273B2 (ja) * 1986-06-02 1994-11-14 工業技術院長 光起電力素子の製造方法
JPH0716021B2 (ja) * 1988-09-16 1995-02-22 松下電器産業株式会社 光起電力装置及びその製造方法
JPH05152594A (ja) * 1991-10-01 1993-06-18 Ricoh Co Ltd 光起電力素子
JPH0774377A (ja) * 1993-08-31 1995-03-17 Kawamura Inst Of Chem Res 光電変換素子
JP3627311B2 (ja) * 1995-09-07 2005-03-09 住友電気工業株式会社 光電流増倍素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939673A (zh) * 2010-04-08 2013-02-20 密歇根大学董事会 通过热和溶剂蒸汽退火法制备的增强的体异质结器件
CN102623642A (zh) * 2012-03-22 2012-08-01 中国科学院长春应用化学研究所 聚合物太阳能电池的制备方法
CN102623642B (zh) * 2012-03-22 2014-04-16 中国科学院长春应用化学研究所 聚合物太阳能电池的制备方法
CN110518120A (zh) * 2018-05-22 2019-11-29 中国科学院化学研究所 一种固体添加剂及其在有机太阳能电池中的应用
CN110518120B (zh) * 2018-05-22 2021-04-06 中国科学院化学研究所 一种固体添加剂及其在有机太阳能电池中的应用

Also Published As

Publication number Publication date
WO2004025746A2 (de) 2004-03-25
US7306968B2 (en) 2007-12-11
EP1535323A2 (de) 2005-06-01
US20060105491A1 (en) 2006-05-18
DE50306270D1 (de) 2007-02-22
WO2004025746A3 (de) 2004-09-16
EP1535323B1 (de) 2007-01-10
JP2005538555A (ja) 2005-12-15
JP5415468B2 (ja) 2014-02-12
JP2011135095A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
CN1682362A (zh) 处理光电活性层和有机基光电元件
Dong et al. A green anti‐solvent process for high performance carbon‐based CsPbI2Br all‐inorganic perovskite solar cell
Casaluci et al. A simple approach for the fabrication of perovskite solar cells in air
Jiang et al. In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell
Liu et al. Reduced open-circuit voltage loss for highly efficient low-bandgap perovskite solar cells via suppression of silver diffusion
Behrouznejad et al. Effective Carbon Composite Electrode for Low‐Cost Perovskite Solar Cell with Inorganic CuIn0. 75Ga0. 25S2 Hole Transport Material
Lin et al. Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells
Galatopoulos et al. Long Thermal Stability of Inverted Perovskite Photovoltaics Incorporating Fullerene‐Based Diffusion Blocking Layer
Elsenety et al. Boosting perovskite nanomorphology and charge transport properties via a functional D–π-A organic layer at the absorber/hole transporter interface
Chen et al. Multilayer Cascade Charge Transport Layer for High‐Performance Inverted Mesoscopic All‐Inorganic and Hybrid Wide‐Bandgap Perovskite Solar Cells
KR101819954B1 (ko) 페로브스카이트 광흡수층의 제조방법 및 이에 의해 제조된 광흡수층을 포함하는 태양전지
Wang et al. Organic/inorganic hybrid solar cells based on SnS/SnO nanocrystals and MDMO-PPV
Gets et al. Light-emitting perovskite solar cell with segregation enhanced self doping
Cao et al. Efficient Perovskite Solar Cells with a Novel Aggregation‐Induced Emission Molecule as Hole‐Transport Material
Huan et al. A Dopant‐Free Zwitterionic Conjugated Polyelectrolyte as a Hole‐Transporting and Interfacial Material for Perovskite Solar Cells
Lojpur et al. Efficient and novel Sb2S3 based solar cells with chitosan/poly (ethylene glycol)/electrolyte blend
Zheng et al. Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%
KR101794988B1 (ko) 페로브스카이트 광흡수층 제조방법 및 이를 적용한 태양전지 제조방법
CN113471361B (zh) 一种铜铟硒量子点修饰钙钛矿薄膜及其制备方法和应用
Chen et al. Refining Perovskite Heterojunctions for Effective Light‐Emitting Solar Cells
Hu et al. Thermal‐Induced Cerium‐Doped Perovskite Solar Cells with a Fill Factor Exceeding 81%
Yamashita et al. Characteristics of heterojunction diode of C60/tetratiafulvalane (TTF)
Wu et al. Understanding the efficiency enhancement of perovskite solar cells with NaGdF4: Er3+/Yb3+ nanorods
Huang et al. Efficient and stable hybrid conjugated polymer/perovskite quantum dot solar cells
CN115101679B (zh) 一种提高有机光电薄膜热稳定性的方法及其在光伏电池中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication