WO2004022642A1 - Cyclodextrinpartikel - Google Patents

Cyclodextrinpartikel Download PDF

Info

Publication number
WO2004022642A1
WO2004022642A1 PCT/EP2003/009713 EP0309713W WO2004022642A1 WO 2004022642 A1 WO2004022642 A1 WO 2004022642A1 EP 0309713 W EP0309713 W EP 0309713W WO 2004022642 A1 WO2004022642 A1 WO 2004022642A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
oil
cellulose
methyl
fluidized bed
Prior art date
Application number
PCT/EP2003/009713
Other languages
English (en)
French (fr)
Inventor
Birgit Schleifenbaum
Sven Siegel
Original Assignee
Symrise Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symrise Gmbh & Co. Kg filed Critical Symrise Gmbh & Co. Kg
Priority to EP03793785A priority Critical patent/EP1537174A1/de
Priority to AU2003264145A priority patent/AU2003264145A1/en
Priority to US10/476,828 priority patent/US7348035B2/en
Publication of WO2004022642A1 publication Critical patent/WO2004022642A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L23/00Soups; Sauces; Preparation or treatment thereof
    • A23L23/10Soup concentrates, e.g. powders or cakes
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/40Products characterised by the type, form or use
    • A21D13/45Wafers
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • A23G4/20Composite products, e.g. centre-filled, multi-layer, laminated
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/72Encapsulation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/75Fixation, conservation, or encapsulation of flavouring agents the flavouring agents being bound to a host by chemical, electrical or like forces, e.g. use of precursors
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/738Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers

Definitions

  • the present invention relates to aroma and / or fragrance-containing cyclodextrin particles containing cellulose ethers with a particle size in the range from 50 to 1000 ⁇ m, products containing these particles, a process for their preparation and their use in foods, pharmaceutical products and consumer articles.
  • Cyclodextrins are oligomers of anhydroglucose building blocks that have alpha-1,4
  • Bonds are linked to a ring-shaped molecule.
  • alpha (6 building blocks) beta (7 building blocks) and gamma (8 building blocks) cyclodextrins. These are usually made from starch by enzymatic processes.
  • the circular structure of the cyclodextrins enables inclusion complexes to be formed at the molecular level.
  • geometry e.g., the geometry and the geometry of the cyclodextrins.
  • the inclusion compounds can be more or less completely formed from the polarity of the flavoring substances.
  • Flavorings are mostly volatile compounds that have high loss rates during storage or processing, for example in the food industry, due to evaporation or oxidation. In cyclodextrin complexes, flavorings can be protected against these losses.
  • Aroma substances and odoriferous substances or aromas and odoriferous substance mixtures are generally volatile, mostly liquid substances or complex mixtures of these substances. It is customary to encapsulate these substances or mixtures of substances by spray drying, in which, however, only relatively fine and irregularly structured particles are obtained.
  • cyclodextrins include the mixing of cyclodextrin solutions, suspensions or pastes (usually in water) and the flavoring and / or fragrance substances. Depending on the polarity of the aroma and / or fragrance, a two-phase mixture is usually created. Increased shear forces are therefore used to accelerate the process, for example by stirring or kneading. This stage is usually followed by a drying step, such as spray, freeze or fluidized bed drying.
  • EP-A 392 608 describes a method for producing powdery cyclodextrin complexes whose particle size is less than 12, preferably less than 5 ⁇ m. Processes such as spray drying and freeze drying are used.
  • the disadvantage here is the small particle size for the application. Finely divided cyclodextrin complexes are very difficult to disperse in water, which reduces the solubility rate. In addition, when small (typically ⁇ 10 ⁇ m) cyclodextrin particles are used in dry mixtures, which mainly contain components with a particle size between 50 to 500 ⁇ m, there is a risk of segregation.
  • the cyclodextrin complex particles have particle sizes of at least 50 ⁇ m.
  • some of the aroma and / or fragrance substances remain on the particle surface. This so-called surface oil leads to a reduction in the oxidation stability and further reduces the pourability. The lowest possible proportion of surface oil is desirable.
  • DE-A 31 05 666 describes a process in which particles with a particle size of 500 to 1000 ⁇ m are produced with the aid of the addition of binders to cyclodextrin complex mixtures in a kneader with subsequent drying and grinding.
  • a disadvantage of such a kneading process is a high proportion of surface oil in the finished granulate.
  • the use of several process steps is disadvantageous from the point of view of the production costs.
  • EP-A 1 064 856 describes particles containing carbohydrates and / or polyhydroxy compounds with sizes in the range from 100 to 400 ⁇ m.
  • the multi-stage process for the production of these particles described there comprises, in addition to spray drying, further stages. In one of these stages, the smaller particles formed in the process are returned so that they grow into the particle size range mentioned by agglomeration. Disadvantages of these particles are their low abrasion stability and their surface oil content.
  • the object of the present invention was to provide aroma and / or fragrance-containing cyclodextrin particles with a size of at least 50 ⁇ m, which remedy the above-mentioned disadvantages of the prior art and the simplest possible method for producing such particles. A narrow particle size distribution would also be advantageous.
  • the present invention therefore relates to aroma and / or fragrance-containing cyclodextrin particles with a particle size in the range from 50 to 1000 ⁇ m containing a cellulose ether obtainable by a one-stage fluidized bed process a spray mixture, the gas inlet temperature being 80 to 180 ° C and the gas outlet temperature 40 to 95 ° C
  • Another object of the present invention is a method for producing cyclodextrin particles, characterized in that an aqueous spray mixture which contains at least one cyclodextrin, at least one aroma and / or fragrance and at least one cellulose ether is introduced into a single-stage fluidized bed device.
  • the invention further relates to products containing the cyclodextrin particles according to the invention and the use of the cyclodextrin particles according to the invention in foods, pharmaceutical products and commodities.
  • Known ner granulation processes can be used to produce the particles from the spray mixture.
  • the processes which are suitable according to the invention are in one stage, i.e. the spray mixture is fed to a single apparatus and the production is ended when the apparatus leaves the apparatus and the finished cyclodextrin particles are present.
  • the one-stage process does not produce an intermediate product.
  • the particles can be produced by continuous fluidized bed spray granulation, for example according to EP-A 163 836, or by discontinuous fluidized bed spray granulation, for example according to EP-A 70 719.
  • a method as described in WO-A 97/16078 for the production of flavor granules in a conventional discontinuously operated fluid bed rotor granulator can also be used.
  • the method is preferably carried out continuously.
  • a continuous process is better suited for industrial production and has short dwell times. With the same material throughput, the bed content is lower in the continuous methods of fluidized bed spray granulation than in the discounted nuclear process. Instead of letting the total amount of all particle nuclei grow up at the same time, only a small amount of the particle nuclei is sprayed in the continuous fluidized bed spray granulation and is discharged immediately after reaching the desired particle size, for example via a sifter.
  • the encapsulated aroma and / or fragrance-containing cyclodextrin particles produced according to the invention have a small particle size distribution; in addition, the particles (granules) of the desired size can be removed in a targeted manner.
  • the fluidized bed has a low bed height. This is preferably 3 to 50 cm, particularly preferably 5 to 20 cm.
  • Continuous fluidized bed spray granulation creates free-flowing, low-dust, granular particles from a spray mixture.
  • the basic processes of germ generation, drying, shaping and selective discharge of the particles, which have reached the desired particle size, take place simultaneously in a granulating apparatus.
  • Variants have been realized. A distinction must be made in particular between the variant with external nucleation, in which germs from external classifiers, grinding plants or other solid storage are dosed into the bed, and variants with internal nucleation.
  • classifiers are preferably used for the discharge of the particles, as described, for example, in EP-A 332 031. With the classifiers it is achieved that only the coarse particles can leave the fluidized bed. The remaining particles remain in the fluidized bed until they have reached the desired particle size.
  • an aqueous spray mixture is first prepared.
  • this spray mixture contains at least one cyclodextrin, flavoring and / or fragrance substances and at least one cellulose ether.
  • the particles according to the invention are produced from this spray mixture in one process step in a fluidized bed apparatus with particle sizes of greater than or equal to 50 ⁇ m.
  • Particles according to the invention have a particle size of 50 ⁇ m to 1000 ⁇ m. Particles with a particle size of 70 ⁇ m to 500 ⁇ m are preferred, particularly preferably from 100 to 300 ⁇ m.
  • the information on particle sizes relate to the particle diameter and are taken from the distribution sum curves. These distribution sum curves represent the dependence of the distribution sum Q3 (x) on the particle diameter x.
  • the distribution sum Q 3 (x) is the normalized total quantity of all particles with a diameter less than or equal to x.
  • the index 3 indicates that 'the type of the measured quantity is the volume (Ulimanns Encyklopadie der Technische Chemie, Volume 2, Maschinenstechnik I, 4th edition, Verlag Chemie, Weinheim, 1972, p. 24 -34).
  • Particle size determination via volume distribution can be done by laser diffraction
  • Suitable cyclodextrins are alpha, beta, gamma and substituted cyclodextrins. Alpha, beta, gamma cyclodextrin or mixtures thereof are advantageous, beta cyclodextrin is preferred. In a preferred embodiment, the cyclodextrin portion of the spray mixture consists only of beta-cyclodextrin.
  • the cyclodextrin content in the spray mixture is advantageously 5 to 50% by weight, preferably 10 to 40% by weight, particularly preferably 15 to 30%
  • the water content in the spray mixture is advantageously 40 to 95% by weight, preferably 50 to 90% by weight, particularly preferably 60 to 80% by weight.
  • the proportion of the aroma and / or fragrance substances in the spray mixture is advantageously from 0.0005 to 15% by weight, preferably from 0.1 to 10% by weight, particularly preferably from 0.25 to 5% by weight.
  • the spray mixture contains binders in the form of cellulose ethers as granulation aids.
  • the cellulose ether is preferably selected from the group comprising methyl cellulose, ethyl cellulose, propyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, carboxymethyl hydroxyethyl cellulose and ethyl hydroxyethyl cellulose, carboxymethyl cellulose (CMC) is particularly preferred.
  • a content of cellulose ether in the spray mixture is preferably from 0.1 to 6% by weight, particularly preferably from 0.2 to 2% by weight.
  • the dried particles preferably contain between 0.5 to 10% by weight, particularly preferably between 2 to 4.5% by weight, of cellulose ether.
  • Cellulose ethers with a viscosity of 15 to 200,000 mPas are advantageous, preferably those with a viscosity of 1,000 to 50,000 mPas, particularly preferably those with a viscosity of 5,000 to 15,000 mPas.
  • the viscosity data relate to a 2% strength by weight solution in water at 20 ° C.
  • a cone and plate system with a diameter of 40 mm and a cone angle of 4 ° was used as the measuring system.
  • the shear rate was 1 s "1 , the temperature was 20 ° C.
  • the viscosity can be determined, for example, with the rheometer CVO 120 (Bohlin Instruments GmbH, Pforzheim).
  • the aroma and / or fragrance content in the finished cyclodextrin particle is 0.01 to 30% by weight, preferably 1 to 15% by weight and particularly preferably 5 10 '% by weight.
  • flavorings and / or fragrances which can be part of the cyclodextrin particles according to the invention can be found, for example, in S. Arctander, Perfume and Flavor Chemicals, Vol. I and LI, Montclair, NJ, 1969, Dverlag or K. Bauer, D. Garbe and H. Surburg, Common Fragrance and Flavor Materials, 4 th Ed., Wiley-VCH, Weinheim 2001.
  • extracts from natural raw materials such as essential oils
  • Amyrisöl Angelica seed oil; Angelica root oil; anise oil; Valerian oil; Basil oil; Baummoos -Absolue; Bay oil; Mugwort oil; Benzoeresin; Bergamot oil; beeswax
  • Fennel oil Pine needle oil; galbanum; Galbanumresin; geranium; Grapefruit oil;
  • guaiac wood gurjun balsam
  • gurjun balsam oil Helichrysum absolute; Helichrysum oil; Ginger oil; Iris root absolute; Orris root oil; Jasmine absolute; calamus; Chamomile oil blue; Roman chamomile oil; Carrot seed oil; Kaskarillaöl; Pine needle oil;
  • Lavandin absolute Lavandin oil; Lavender absolute; Lavender oil; Lemongrass oil; Loving stick oil; Distilled lime oil; Lime oil pressed; linaloe; Litsea cubeba oil;
  • Olibanum absolute olibanum
  • Opopanaxöl Orange blossom absolute
  • Orange oil
  • Palmarosa oil palmarosa oil; patchouli oil; perilla oil; Peruvian balsam oil; Parsley leaf oil;
  • Parsley seed oil Parsley seed oil; Petitgrain oil; Peppermint oil; Pepper oil; chilli; pine oil; Poleyöl; Rose absolute; Rosewood oil; Rose oil; Rosemary oil; Dalmatian sage oil; Sage oil spanish; sandalwood; Celery seed oil; spike lavender oil; star anise; Styraxöl; tagetes; Pine needle oil; Tea-tree oil; turpentine; Thyme oil; Tolu; Tonka absolute; Tuberose absolute; Vanilla extract; Violet leaf absolute; verbena; vetiver; Juniper berry oil; Wine yeast oil; Wormwood oil; Wintergreen oil; ylang oil; hyssop oil; Civet absolute; cinnamon leaf; cinnamon bark oil; and fractions thereof, or ingredients isolated therefrom;
  • fragrances from the group of hydrocarbons such as B. 3-carene; ⁇ -pinene; beta-pinene; ⁇ -terpinene; ⁇ -terpinene; p-cymene; bisabolene; camphene; caryophyllene; cedrene; farnesene; limonene; longifolene; myrcene; ocimene; valencene; (E, Z) -l, 3,5-undecatriene;
  • the aliphatic ketones and their oximes such as e.g. 2-heptanone; 2-octanone; 3-octanone; 2-nonanone; 5-methyl-3-heptanone; 5-methyl-3-heptanone oxime; 2,4,4,7-
  • Tetramethyl-6-octen-3-one Tetramethyl-6-octen-3-one; the aliphatic sulfur-containing compounds such as 3-methylthiohexanol; 3-Methylthiohexylacetat; 3-mercaptohexanol; 3-mercapto-hexyl acetate; 3-mercaptohexyl butyrate; 3-acetylthiohexyl acetate; l-menthene-8-thiol; aliphatic nitriles such as 2-nonenenitrile; 2-Tridecenklaitril; 2, 12-tridecadienonitrile; 3,7-dimethyl-2,6-octadienklanklanitrile;
  • aliphatic carboxylic acids and their esters such as e.g. (E) - and (Z) -3-hexenyl formate; ethylacetoacetate; isoamyl; hexyl acetate; 3,5,5-trimethylhexyl acetate; 3-methyl-2-butenyl acetate; (E) -2-hexenyl acetate; (E) - and (Z) -3-hexenyl acetate; Octyl acetate; 3-octyl acetate; l-octen-3-yl acetate; ethyl butyrate; Butyl butyrate,; Isoamylbutyrate; hexyl butyrate; (E) - and (Z) -3-hexenyl isobutyrate; hexyl crotonate; Ethyl isovalate; Ethyl 2-methylpentanoate; ethylhexan
  • acyclic terpene alcohols e.g. citronellol; geraniol; nerol; linalool; Lavadulol; nerolidol; farnesol; tetrahydrolinalool; tetrahydrogeraniol;
  • acyclic terpene aldehydes and ketones such as e.g. geranial; neral; citronellal; 7-hydroxy-3, 7-dimethyloctanal; 7-methoxy-3, 7-dimethyloctanal; 2,6,10-trimethyl-9-undecenal; geranyl acetone; as well as the dimethyl and diethyl acetals of geranial, neral, 7-hydroxy-3,7-dimethyloctanal;
  • cyclic terpene alcohols such as menthol; isopulegol; alpha-terpineol; Terpinenol-4; Menthane-8-ol; Menthane-1-ol; Menthane-7-ol; borneol; soborneol; Linoline oxide; monopoly; cedrol; ambrinol; vetiver; guaiol; as well as their formates, acetates, propionates, isobutyrates, butyrates, isovalerianates, pentanoates, hexanoates, crotonates, tiglinates, 3-methyl-2-butenoates; cyclic terpene aldehydes and ketones such as menthone; menthone; 8-mer captomenthan-3-one; carvone; camphor; fenchon; alpha-ionone; beta-ionone; alpha-n-methyl ionone; beta-n-methylionone; alpha-is
  • cyclic alcohols such as e.g. 4-tert.-butylcyclohexanol; 3,3,5-trimethylcyclohexanol; 3-isocamphylcyclohexanol; 2,6,9-trimethyl-Z2, Z5, E9-cyclododecatrien-l-ol; 2-isobutyl-4-methyl tetrahydro-2H-pyran-4-ol;
  • cycloahphatic alcohols such as e.g. alpha, 3,3-trimethylcyclohexylmethanol
  • cyclic and cycloahphatic ethers such as e.g. cineol; cedryl methyl ether; cyclododecyl; (Ethoxymethoxy) cyclododecane; alpha-Cedrenepoxid; 3a, 6,6,9a-tetramethyl-dodecahydronaphtho [2, l-b] furan; 3a-ethyl-6,6,9a-trimethyl-dodecahydronaphtho [2, l-b] furan; 1,5,9-trimethyl-13-oxabicyclo [10.1.0] trideca-4,8-diene; rose oxide; 2- (2,4-dimethyl-3-cyclohexen-l-yl) -5-methyl-5- (l-methylpropyl) -1,3-dioxane;
  • cyclic ketones such as 4-tert-butylcyclohexanone; 2,2,5-trimethyl-5-pentylcyclopentanone; 2-heptylcyclopentanone; 2-pentylcyclopentanone; 2-hydroxy-3- methyl-2-cyclopenten-1-one; 3-methyl-cis-2-penten-1-yl-2-cyclopenten-1-one;
  • cycloaliphatic aldehydes such as e.g. 2,4-dimethyl-3-cyclohexene carbaldehyde; 2
  • cycloaliphatic ketones such as. B. l- (3,3-Dimethylcyclohexyl) -4-penten-l-one; 1 - (5,5-dimethyl-1-cyclohexen- 1 -yl) -4-penten-l -one; 2,3,8,8-tetramethyl-l, 2,3,4,5,6,7,8-octahydro-2-naphthalenyl methyl ketone; Methyl 2,6,10-trimethyl-2,5,9-cyclododecatrienyl ketone; tert-butyl (2,4-dimethyl-3-cyclohexen-l-yl) ketone;
  • esters of cyclic alcohols such as e.g. 2-tert-butylcyclohexyl acetate; 4-tert butyl cyclohexyl acetate; 2-tert-pentylcyclohexyl acetate; 4-tert-pentylcyclohexyl acetate; Deca- hydro-2-naphthylacetate; 3-pentyltetrahydro-2H-pyran-4-ylacetate; Decahydro-2,5,5,8a-tetramethyl-2-naphthylacetate; 4,7-methano-3a, 4,5,6,7,7a-hexahydro-5, or
  • 6-indenyl acetate 4,7-methano-3a, 4,5,6,7,7a-hexahydro-5, or 6-indenylpropionate; 4,7-methano-3a, 4,5,6,7,7a-hexahydro-5, or 6-indenyl isobutyrate; 4,7-methanooctahydro-5 or 6-indenyl acetate;
  • ester of cycloaliphatic carboxylic acids such as. B. allyl-3-cyclohexylpropionate;
  • aromatic hydrocarbons such.
  • ester of arahmic alcohols and aliphatic carboxylic acids such as; benzyl acetate; benzylpropionate; benzyl isobutyrate; Benzylisovalerianat;
  • aromatic and arahatic carboxylic acids and their esters such as e.g. Benzoic acid; phenylacetic acid; methylbenzoate; ethyl benzoate; hexyl benzoate; Benzyl benzoate; methyl phenylacetate; ethyl phenylacetate; geranyl phenylacetate; Phenylethylphenyl acetate; Methylcmnmat; ethylcinnamate; Benzyl; Phenylethylcinnamat; cinnamyl cinnamate; allyl phenoxyacetate; methyl salicylate; isoamyl; Hexyl salicylate; cyclohexyl; Cis-3-hexenyl salicylate; benzyl; Phenylethyl salicylate; Methyl-2,4-dihydroxy-3,6-dimethylbenzoate; Ethyl 3-phenylg
  • the nitrogenous aromatic compounds such as e.g. 2,4,6-trinitro-l, 3-dimethyl-5-tert-butylbenzene; 3,5-dinitro-2,6-dimethyl-4-tert.-butylacetophenone; Cinnamic acid nitrile; 5-phenyl-3-methyl-2-penten Aciditril; 5-phenyl-3-methylpentanoic acid nitrile; methyl anthranilate; Methyl N-methylanthranilate; See bases of methyl anthranilate with 7-hydroxy-3,7-dimethyloctanal, 2-methyl-3- (4-tert-butylphenyl) propanal or 2,4-dimethyl-3-cyclohexenecarbaldehyde; 6-Isopropyl; 6-isobutylquinoline; 6-sec-butylquinoline; indole; skatol; 2-methoxy-3-isopropy ⁇ pyrazm; 2-isobutyl-3
  • phenols, phenyl ethers and phenyl esters such as, for example, estragole; anethole; eugenol; Eugenylmethylether; isoeugenol; Isoeugenylmethylether; thymol; carvacrol; Diphenyl ether; beta-naphthyl methyl ether; beta-Naphthylethylether; beta-naphthyl isobutyl ether; 1,4-dimethoxybenzene; Eugenylacetat; 2-methoxy-4-methyl phenol; 2-ethoxy-5- (l-propenyl) phenol; p-Kresylphenylacetat; the heterocyclic compounds such as 2,5-dimethyl-4-hydroxy-2H-furan-3-one; 2-ethyl-4-hydroxy-5-methyl-2H-furan-3-one; 3-hydroxy-2-methyl-4H-pyran-4-one; 2-ethyl-3-hydroxy-4H
  • lactones such as 1,4-octanolide; 3-methyl-1,4-octanolide; 1,4-nonanolide; 1,4-
  • flavorings that can be part of the cyclodextrin particles are in addition to all of the above.
  • Benzyl acetate, methyl salicylate organic ahphatic acids (saturated and unsaturated) e.g. Butyric acid, acetic acid, caproic acid; organic aromatic acids; ahphatic alcohols (saturated and unsaturated) e.g. Ethanol, propylene glycol, octenol, 3-ocetenol, cis-3-hexenol; cyclic alcohols e.g. Menthol; aromatic alcohols e.g. benzyl alcohol; ahphatic aldehydes (saturated and unsaturated) e.g. Acetaldehyde, nonadienal; aromatic aldehydes e.g.
  • benzaldehyde Ketones e.g. Menton; cyclic ethers e.g. 4-hydroxy-5-methyliuranon; aromatic ethers e.g. p-methoxybenzaldehyde, guaiacol; Phenol ethers e.g. Methoxyvinylphenol; Acetals e.g. acetaldehyde; Lactones e.g. gamma-decalactone; Terpenes e.g. Lime, linalool, terpinene, terpineol, citral (geranial and neral); sulfur-containing compounds e.g.
  • the cyclodextrin particles according to the invention are particularly suitable for encapsulating very odor-intensive, highly volatile, easily oxidizable, difficult to dose manageable and / or irritating substances.
  • acetaldehyde, allyl isothiocyanate, limonene, cis-3-hexenol, citral, methylethylpyrazine or also methylthiol may be mentioned, for example.
  • the cyclodextrin particles according to the invention can also contain nutritionally active substances or mixtures of substances (nutraceuticals).
  • nutritionally active substances include panthenol, pantothenic acid, essential fatty acids, vitamin A and derivatives, carotenes, vitamin C (ascorbic acid), vitamin E (tocopherol) and derivatives, vitamins of the B and D series such as vitamin B 6 (nicotinamide), Vitamin Bj, Vitamin D ls Vitamin D 3 , Vitamin F, folic acid, biotin, amino acids,
  • Plant extracts such as B. arnica, aloe, beard lichen, ivy, nettle, ginseng, henna, chamomile, marigold, rosemary, sage, horsetail or thyme.
  • Oils such as apricot kernel oil, avocado oil, babassu oil, cottonseed oil, borage oil, safflower oil,
  • Peanut oil gamma-oryzanol, rose hip seed oil, hemp oil, hazelnut oil, currant seed oil, jojoba oil, cherry seed oil, salmon oil, linseed oil, corn oil, macadamia nut oil, almond oil, evening primrose oil, mink oil, olive oil, pecan oil, peach seed oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil, rice oil Safflower oil, sesame oil, soybean oil, sunflower oil, tea tree oil, grape seed oil or wheat germ oil.
  • cyclodextrin particles according to the invention can also contain further substances, such as, for example, emulsifiers, dyes, antioxidants, stabilizers, UV filters, vitamins and other ingredients customary in the food, personal care, pharmaceutical or fragrance industry.
  • the spray mixture can be prepared, for example, as set out in EP-A 1 084 625 or as described below.
  • a complex of cyclodextrin and the flavor is formed.
  • the cyclodextrin and aroma must be at least partially dissolved.
  • Water with a temperature of 10 ° C. to 90 ° C., preferably from 40 ° C. to 70 ° C., particularly preferably between 50 to 60 ° C. is used as the solvent.
  • temperatures of 15 to 30 ° C are preferred.
  • shear forces are introduced according to the invention.
  • the shear forces can be introduced, for example, by stirring or dispersing, for which purpose rotor-stator dispersing tools or high-pressure homogenizers are suitable.
  • the batch is advantageously allowed to rest for 0.2 to 24 hours with cooling to 4 to 25 ° C., preferably 8 to 16 hours with cooling to 4 to 7 ° C.
  • the resting time is preferably reduced to 15 to 30 minutes at 4 to 7 ° C.
  • the cellulose ether can be added to the spray mixture at any time. This can be before the complex formation, during the complex formation, after the complex formation but before the cold storage, during the cold storage or after the cold storage. It is also possible to mix the cellulose ether with the cyclodextrin powder and only then add the water. The total amount of the cellulose ether can also be divided into several portions, ie portioned, and added at any time.
  • the ingredients can be added in any order during the production of the spray mixture.
  • cyclodextrin and cellulose ether can be mixed, then water added and stirred or dispersed intensively. Subsequently, flavoring and / or fragrance substances are added and the mixture is intensively stirred or dispersed and stored cool.
  • An alternative order includes the intensive mixing of water, cellulose ether and flavoring and / or fragrance substances as well as the subsequent addition and the
  • cyclodextrin can be added to water and stirred vigorously.
  • the aroma is added and dispersed.
  • the cellulose ether is added and distributed by stirring or dispersing.
  • the granulation is preferably carried out in a granulating apparatus as described in EP-A 163 836.
  • the temperature of the spray mixture is chosen such that the aroma or fragrance cyclodextrin complex does not decompose.
  • the temperature is usually between 5 and 70 ° C, preferably between 10 and 40 ° C and particularly preferably between 20 and 30 ° C.
  • the gas inlet and gas outlet temperatures of the fluidizing gas must be adapted to the respective spray mixture.
  • the gas inlet temperatures are 80 to 180 ° C, preferably 100 to 140 ° C and particularly preferably between 120 and 130 ° C.
  • the gas outlet temperatures are 40 to 95 ° C, preferably 45 to 70 ° C, particularly preferably 50 to 60 ° C.
  • the cyclodextrin particles according to the invention can be used in a large number of products.
  • sweets such as lozenges, chewing gum, refreshment tablets, compressed foods, hard caramels, confectionery and chocolate, baked goods such as cakes, waffles and cookies, snacks, instant meals and other histant products (soups,
  • Sauces, beverage powders and granules, tea bags, seasonings can be used.
  • the cyclodextrin particles are particularly suitable for heated, superheated, kept warm, sterilized or pasteurized foods, such as catering meals, fried foods, chips, flavored breadcrumbs, ready meals, microwave dishes and canned fruit and vegetables.
  • Pharmaceutical products can be, for example, lozenges, throat or cough drops, pharmaceutical powders or granules.
  • Commodities can be, for example, personal care products, household products, tobacco products (e.g. cigarettes), cosmetic products, washing and cleaning agents, room fresheners, textiles or odor-absorbing agents (e.g. cat litter).
  • Personal care products can include oral care products such as toothpastes,
  • Tooth gels, tooth creams, dental care chewing gums and mouthwashes are examples of Tooth gels, tooth creams, dental care chewing gums and mouthwashes.
  • retention indication in% by weight is understood to mean the weight-related ratio of the amount of flavoring and / or fragrance substances in the finished particle to the amount of flavoring and / or fragrance substances used in the spray mixture.
  • beta-cyclodextrin (beta-cyclodextrin Kieptose ®, Fa. Roquette) 431 g d-limonene
  • CMC carboxymethyl cellulose
  • the water was warmed to 25 ° C, the cyclodextrin was added and the mixture was mixed for 3 minutes with an Ultra Turrax T50 DPX.
  • the d-limonene is added and the mixture is dispersed for a further 15 min.
  • the carboxymethyl cellulose was added and homogenized using the Ultra Turrax T50 DPX. The batch was then left for a further 15 hours at 20 ° C. and was then fed to the fluidized bed granulation apparatus.
  • the spray mixture described above was granulated in a granulating apparatus of the type described in EP-A 163 836 (with the following features: diameter of inflow base: 225 mm, spray nozzle: two-substance nozzle; classifying discharge: zigzag classifier; filter: internal bag filter).
  • the temperature of the mixture was 35 ° C. Air was blown in at a rate of 60 kg / h to fluidize the bed contents.
  • the inlet temperature of the fluidizing gas was 120 ° C.
  • the temperature of the exit gas was 55 ° C. Air was supplied as a sight gas in an amount of 1.5 kg / h at a temperature of 34 ° C.
  • the granulation performance was approx. 420 g / h.
  • a free-flowing granulate with an average particle size of 131.7 ⁇ m and a bulk density of 470 g / 1 was obtained.
  • the granules had a smooth surface and a spherical, largely spherical geometry. Due to the constant pressure loss of the filter and the constant bed content, steady-state conditions with regard to the granulation process can be assumed.
  • the water was heated to 50 ° C., the cyclodextrin was added and the mixture was mixed for 3 minutes with an Ultra Turrax T50 DPX. The d-limonene was added and the mixture was dispersed for a further 15 min.
  • the carboxymethyl cellulose was added and homogenized using the Ultra Turrax mixer.
  • the batch was then left at 6 ° C. for a further 15 hours and (storage) was then fed to the fluidized bed granulation apparatus from Example 1.
  • the entry temperature of the fluidizing gas was 125 ° C.
  • the temperature of the exit gas was 49 ° C.
  • the granulation performance was approx. 570 g / h.
  • a free-flowing granulate with an average particle size of 165.8 ⁇ m and a bulk density of 460 g / 1 was obtained.
  • the cyclodextrin particles had a smooth surface and a spherical, largely spherical geometry.
  • CMC carboxymethyl cellulose
  • the water was heated to 50 ° C., the cyclodextrin was added and the mixture was mixed for 3 minutes with an Ultra Turrax T50 DPX. After the addition of the peppermint aroma, the batch was mixed for a further 15 min with the Ultra Turrax T50 DPX. CMC was added and resolved with the Ultra Turrax.
  • compositions of spray mixtures relate to quantities used in grams.
  • Table 1 shows the advantages with regard to oxidation stability, flowability and redispersibility of the particles produced in accordance with the invention over particles which were produced according to the prior art.
  • the better oxidation stability is due to the low proportion of surface oil.
  • the pourability was determined in accordance with DTN ISO 4324.
  • An angle of repose ⁇ 30 ° means very good flowability, an angle of repose between 30 ° and 40 ° means free flowability and pour angle> 45 ° mean poor flowability (see also Uhlemann, M Kunststoffl: fluidized bed spray granulation, Springer-Verlag Berlin, 2000, p. 169).
  • the sensitivity to oxidation was determined after storage times of one day or 180
  • the redispersibility was examined as follows: In a beaker, 20 ml of water (20 ° C) of the respective particle, and 200 mg were added and stirred with a magnetic stirrer for 1 minute at 200 min "1 The evaluation was made on a..
  • Example 16 Peppermint-flavored chewing gum
  • a chewing gum (B) 2% by weight of peppermint flavor-cyclodextrin articles from Example 3 (corresponding to 0.18% by weight flavor) and 1.12% by weight of peppermint flavor were incorporated in liquid form.
  • a chewing gum (A) was produced which contained 1.30% by weight of peppermint flavor in liquid form.
  • Sensory time-intensity studies with a trained group of testers (12 people) showed a significantly higher taste intensity for chewing gum (B) with peppermint flavor particles. After 15 minutes, the flavor intensity of the sample containing the peppermint aroma cyclodextrin articles was twice as high.
  • A chewing gum with liquid peppermint flavor
  • Peppermint flavor intensity was rated on a scale from 0 (no peppermint flavor) to 10 (very strong peppermint flavor).
  • Example 17 Waffle
  • the limonene cyclodextrin articles from Example 2 were placed at 1.2% by weight (corresponding to 0.1% by weight of flavor) in a waffle batter consisting of flour, water, sugar, lecithin, salt and peanut oil. Waffles were baked at a temperature of 200 ° C for 1 minute. For comparison, liquid limonene with the same concentration was incorporated into a dough of the same composition. The sensory evaluation of fresh goods (1 day old) showed a higher aroma intensity in the waffles with limonene cyclodextrin articles. The sensory evaluation could be confirmed analytically, as shown in Table 2.
  • the sensory evaluation of the aroma intensity of the lime note and the off-flavor was carried out after 4 months of storage at 20 ° C. on a scale from 0 (imperceptible) to 5 (very strong).
  • cis-3-hexenol-cyclodextrin particles which were produced analogously to Example 1, were added to a powder mixture comprising salt, starch, spice powder, fat powder and dried vegetables.
  • the set particle size of 100 to 200 ⁇ m gives the following advantages during the mixing process: dust-free, low risk of segregation, good pourability.

Abstract

Die vorliegende Erfindung betrifft aroma- und/oder riechstoffhaltige Cyclodextrinpartikel enthaltend Celluloseether mit einer Partikelgrösse im Bereich von 50 bis 1000 µm, Produkte enthaltend diese Partikel, ein Verfahren zu deren Herstellung sowie deren Verwendung in Lebensmitteln, pharmazeutischen Produkten und Bedarfsgegenständen.

Description

Cyclodextrinpartikel
Die vorliegende Erfindung betrifft aroma- und/oder riechstoffhaltige Cyclodextrin- partikel enthaltend Celluloseether mit einer Partikelgröße im Bereich von 50 bis 1000 μm, Produkte enthaltend diese Partikel, ein Verfahren zu deren Herstellung sowie deren Verwendung in Lebensmitteln, pharmazeutischen Produkten und Bedarfsgegenständen.
Cyclodextrine sind Oligomere von Anhydroglucosebausteinen, die über alpha-1,4
Bindungen zu einem ringförmigen Molekül verknüpft sind. Je nach Anzahl der Bausteine unterscheidet man alpha- (6 Bausteine), beta- (7 Bausteine) und gamma-(8 Bausteine) Cyclodextrine. Diese werden üblicherweise durch enzymatische Verfahren aus Stärke hergestellt. Die ringförmige Struktur der Cyclodextrine ermöglicht die Bildung von Einschlusskomplexen auf molekularer Ebene. Je nach Geometrie und
Polarität der Aromastoffe lassen sich die Einschlussverbindungen mehr oder weniger vollständig bilden.
Aromastoffe sind meist flüchtige Verbindungen, die während Lagerung oder auch Verarbeitungsprozessen beispielsweise in der Lebensmittelindustrie hohe Verlustraten aufweisen, bedingt durch Verdampfen oder Oxidation. In Cyclodextrin-Kom- plexen können Aromastoffe vor diesen Verlusten geschützt werden.
Bei Aromastoffen und Riechstoffen bzw. Aromen und Riechstoffmischungen handelt es sich in der Regel um flüchtige, meist flüssige Stoffe bzw. um komplexe Mischungen dieser Stoffe. Üblich ist die Einkapselung dieser Stoffe bzw. Stoffgemische über Sprühtrocknung, bei der jedoch nur verhältnismäßig feine und unregelmäßig strukturierte Partikel erhalten werden.
Zur Herstellung von Einschlussverbindungen von Aroma- und/oder Riechstoffen mit
Cyclodextrinen sind mehrere Methoden bekannt. Diese Methoden beinhalten die Vermischung von Cyclodextrinlösungen, -Suspensionen, oder -pasten (üblicherweise in Wasser) und den Aroma- und/oder Riechstoffen. In Abhängigkeit von der Polarität der Aroma- und/oder Riechstoffe entsteht dabei meist ein Zweiphasengemisch. Zur Beschleunigung des Verfahrens wendet man deshalb erhöhte Scherkräfte an, z.B. durch Rühren oder Kneten. Dieser Stufe schließt sich meist ein Trocknungsschritt an, wie beispielsweise eine Sprüh-, Gefrier-, oder Wirbelschichttrocknung.
Nach dem bekannten Stand der Technik entstehen bei der Trocknung durch Versprühen wässriger Aroma-Cyclodextrinkomplexe ohne weitere Zusätze sehr feine Partikel.
EP-A 392 608 beschreibt eine Methode zur Herstellung von pulverigen Cyclo- dextrinkomplexen, deren Partikelgröße unter 12, bevorzugt unter 5 μm liegt. Dabei werden Prozesse wie beispielsweise Sprühtrocknung und Gefriertrocknung verwendet.
Nachteilig ist hierbei für die Anwendung die geringe Partikelgröße. Feinteilige Cyclodextrinkomplexe lassen sich nur sehr schwer in Wasser dispergieren, die Lös- lichkeitsgeschwindigkeit ist dadurch verringert. Außerdem ist bei Einsatz von kleinen (typischerweise <10 μm) Cyclodextrinpartikeln, in Trockenmischungen, die hauptsächlich Bestandteile mit einer Partikelgröße zwischen 50 bis 500 μm enthalten, die Gefahr einer Entmischung gegeben.
Zusätzlich ist bei kleinen Partikelgrößen nachteilig, dass oft die Rieselfähigkeit herabgesetzt ist und es leicht zu Staubentwicklungen kommt.
Aus diesen Gründen ist es von Vorteil, wenn die Cyclodextrinkomplexpartikel Par- tikelgrößen von mindestens 50 μm aufweisen. Bei der Sprühtrocknung verbleibt ein Teil der Aroma- und/oder Riechstoffe auf der Partikeloberfläche. Dieses sogenannte Oberflächenöl führt zur Herabsetzung der Oxidationsstabilität und vermindert die Rieselfähigkeit noch weiter. Wünschenswert ist ein möglichst geringer Anteil Oberflächenöl.
DE-A 31 05 666 beschreibt ein Verfahren, bei dem mit Hilfe des Zusatzes von Bindemitteln zu Cyclodextrinkomplexmischungen in einem Kneter mit anschließender Trocknung und Vermahlung Partikel mit einer Partikelgröße von 500 bis 1000 μm erzeugt werden.
Nachteilig an einem solchen Knetprozess ist ein hoher Anteil an Oberflächenöl des fertigen Granulates. Zudem ist aus Sicht der Fertigungskosten die Anwendung von mehreren Verfahrensschritten (Kneten, Trocknen, Mahlen, Sieben) nachteilig.
In EP-A 1 064 856 sind Partikel enthaltend Kohlenhydrate und/oder Polyhydroxy- verbindungen mit Größen im Bereich 100 bis 400 μm beschrieben. Das dort dargelegte mehrstufige Verfahren zur Herstellung dieser Partikel umfasst neben einer Sprühtrocknung weitere Stufen. Bei einer dieser Stufen erfolgt die Rückführung der im Verfahren gebildeten kleineren Partikel, so dass diese durch Agglomeration in den genannten Partikelgrößenbereich wachsen. Nachteilig an diesen Partikeln ist- ihre geringe Abriebstabilität und ihr Oberflächenölgehalt.
Die Aufgabe der vorliegenden Erfindung bestand darin, aroma- und/oder riechstoff- haltige Cyclodextrinpartikel mit einer Größe von mindestens 50 μm bereitzustellen, die den oben genannten Nachteilen des Standes der Technik abhelfen und ein möglichst einfaches Verfahren zur Herstellung solcher Partikel. Eine enge Partikelgrößenverteilung wäre zudem vorteilhaft.
Gegenstand der vorliegenden Erfindung sind daher aroma- und/oder riechstoffhaltige Cyclodextrinpartikel mit einer Partikelgröße im Bereich von 50 bis 1000 μm enthaltend einen Celluloseether erhältlich durch ein einstufiges Wirbelschichtverfahren aus einer Sprülimischung, wobei die Gas-Eintrittstemperatur bei 80 bis 180°C und die Gas- Austrittstemperatur bei 40 bis 95 °C liegt
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstel- lung von Cyclodextrinpartikeln dadurch gekennzeichnet, dass in eine einstufige Wirbelschichtvorrichtung eine wässrige Sprühmischung eingebracht wird, die mindestens ein Cyclodextrin, mindestens ein Aroma- und/oder Riechstoff und mindestens einen Celluloseether enthält.
Weiter betrifft die Erfindung Produkte enthaltend die erfmdungsgemäßen Cyclodextrinpartikel sowie die Verwendung der erfindungsgemäßen Cyclodextrinpartikel in Lebensmitteln, pharmazeutischen Produkten und Bedarfsgegenständen.
Zur Herstellung der Partikel aus der Sprühmischung können an sich bekannte Ner- fahren zur Granulation verwendet werden. Die erfindungsgemäß geeigneten Verfahren sind einstufig, d.h., dass die Sprühmischung einer einzigen Apparatur zugeführt wird und beim Verlassen der Apparatur die Herstellung beendet ist und die fertigen Cyclodextrinpartikel vorliegen. Bei dem einstufigen Verfahren entsteht, im Gegensatz zu mehrstufigen Verfahren, kein Zwischenprodukt.
Die Partikel können durch kontinuierliche Wirbelschichtsprühgranulation, beispielsweise nach EP-A 163 836 oder durch diskontinuierliche Wirbelschichtsprühgranulation, beispielsweise nach EP-A 70 719, hergestellt werden. Auch ein Verfahren, wie in der WO-A 97/16078 zur Herstellung von Aromengranulaten in einem konven- tionellen diskontinuierlich betriebenen Fließbettrotorgranulator beschrieben, kann anwendet werden.
Vorzugsweise wird das Verfahren kontinuierlich ausgeführt. Ein kontinuierliches Verfahren ist besser für eine industrielle Produktion geeignet und weist kurze Ver- weilzeiten auf. Bei gleichem Materialdurchsatz ist der Bettinhalt bei den kontinuierlichen Verfahren der Wirbelschichtsprühgranulation niedriger als bei den diskonti- nuierlichen Verfahren. Statt die Gesamtmenge aller Partikelkeime gleichzeitig aufwachsen zu lassen, wird bei der kontinuierlichen Wirbelschichtsprühgranulatiön nur eine kleine Menge der Partikelkeime besprüht und nach Erreichen der gewünschten Partikelgröße sofort, beispielsweise über einen Sichter, ausgetragen. Die erfmdungs- gemäß hergestellten eingekapselten aroma- und/oder riechstoffhaltigen Cyclodextrinpartikel weisen eine geringe Partikelgrößenverteilung auf; außerdem können gezielt die Partikel (Granulate) der gewünschten Größe entnommen werden.
Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass das Wirbelbett eine geringe Betthöhe hat. Vorzugsweise beträgt diese 3 bis 50 cm, insbesondere bevorzugt 5 bis 20 cm.
Durch kontinuierliche Wirbelschichtsprühgranulation entstehen aus einer Sprühmischung freifließende, staubarme, körnige Partikel. Dabei erfolgen im Idealfall die Grundvorgänge Keimerzeugung, Trocknen, Formgebung und selektives Austragen der Partikel, welche die Wunschpartikelgröße erreicht haben, simultan in einer Granulierapparatur.
Das Grundprinzip der kontinuierlichen Wirbelschichtsprühgranulation (Chemie- Ingenieur-Technik, 62. Jahrgang (1990), Seiten 822 bis 834) ist in zahlreichen
Varianten realisiert worden. Zu unterscheiden sind insbesondere die Variante mit externer Keimbildung, bei denen Keime aus externen Sichtern, Mahlanlagen oder sonstigen Feststoffspeichern in das Bett dosiert werden, sowie Varianten mit interner Keimbildung.
Im Rahmen der vorliegenden Erfindung sind Verfahren mit interner Keimzufuhr bevorzugt. Ein solches ist z.B. in EP-A 163 836 beschrieben. Diese Granulierapparatur verfügt weiterhin über einen selbstregelnden Mechanismus zur Partikelgrößenregelung und weist daher eine minimale Verweilzeit auf. Die Sprülimischung kann von unten, von der Seite, aber auch von oben in die Wirbelschicht gesprüht werden. Für die Abtrennung von mitgerissenen Feststoffen aus der Abluft sind zahlreiche Varianten möglich, die sich durch das Abscheideverfahren (z.B. Zyklon oder Filter) oder durch den Ort der Abtrennung (innerhalb oder außer- halb der Granulierapparatur) unterscheiden.
Schließlich werden für das Austragen der Partikel vorzugsweise Sichter verwendet, wie beispielsweise in EP-A 332 031 beschrieben. Mit den Sichtern wird erreicht, dass nur die groben Partikel die Wirbelschicht verlassen können. Die übrigen Partikel bleiben solange in der Wirbelschicht zurück, bis auch sie die Wunschpartikelgröße erreicht haben.
Zur Herstellung der erfindungsgemäßen Partikel wird zuerst eine wässrige Sprülimischung hergestellt. Diese Sprühmischung enthält neben Wasser mindestens ein Cyclodextrin, Aroma- und/oder Riechstoffe sowie mindestens einen Celluloseether.
Aus dieser Sprühmischung werden die erfmdungsgemäßen Partikel in einem Verfahrensschritt in einer Wirbelschichtapparatur mit Partikelgrößen von größer oder gleich 50 μm erzeugt.
Erfindungsgemäße Partikel haben eine Partikelgröße von 50 μm bis 1000 μm. Bevorzugt sind Partikel mit einer Partikelgröße von 70 μm bis 500 μm, besonders bevorzugt von 100 bis 300 μm.
Die Angaben zu Partikelgrößen beziehen sich auf den Partikeldurchmesser und sind aus Verteilungssummenkurven entnommen. Diese Verteilungssummenkurven stellen die Abhängigkeit der Verteilungssumme Q3 (x) von dem Partikeldurchmesser x dar. Die Verteilungssumme Q3 (x) ist die normierte Gesamtmenge aller Partikel mit einem Durchmesser kleiner oder gleich x. Die Partikelgröße x 50,3 ist diejenige Par- tikelgröße, bei der die Verteilungssumme Q3 (x) = 0,5 beträgt. Falls nicht anders gekennzeichnet, beziehen sich die Angaben zur Partikelgröße im vorliegenden Text auf die Partikelgröße x 50j3. Der Index 3 gibt an, dass' die Art der gemessenen Menge das Volumen ist (Ulimanns Encyklopädie der technischen Chemie, Band 2, Verfahrenstechnik I, 4. Auflage, Verlag Chemie, Weinheim, 1972, S. 24-34).
Die Partikelgrößenbestimmung über Volumenverteilung kann mittels Laserbeugung
(z.B. mit dem Master Sizer® MSS Longbench der Firma Malvern Instruments Ltd., Malvern, UK) erfolgen.
Geeignete Cyclodextrine sind alpha-, beta-, gamma- sowie substituierte Cyclo- dextrine. Vorteilhaft sind alpha-, beta-, gamma-Cyclodextrin oder deren Gemische, bevorzugt ist beta-Cyclodextrin. In einer bevorzugten Ausführungsform besteht der Cyclodextrinanteil der Sprühmischung nur aus beta-Cyclodextrin.
Der Cyclodextrinanteil in der Sprühmischung liegt vorteilhafterweise bei 5 bis 50 Gew.-%, bevorzugt bei 10 bis 40 Gew.-%, besonders bevorzugt bei 15 bis 30
Gew.-%.
Der Wasseranteil in der in der Sprühmischung liegt vorteilhafterweise bei 40 bis 95 Gew.-%, bevorzugt bei 50 bis 90 Gew.-%, besonders bevorzugt bei 60 bis 80 Gew.-%.
Der Anteil der Aroma- und/oder Riechstoffe in der Sprühmischung liegt vorteilhafterweise bei 0,0005 bis 15 Gew.-%, bevorzugt bei 0,1 bis 10 Gew.-%, besonders bevorzugt bei 0,25 bis 5 Gew.-%.
Als Granulierhilfsmittel enthält die Sprühmischung Bindemittel in Form von Cellu- loseethern. Der Celluloseether wird bevorzugt gewählt aus der Gruppe umfassend Methylcellulose, Ethylcellulose, Propylcellulose, Hydroxyethylcellulose, Hydroxy- propylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose, Carboxy- methylhydroxyethylcellulose und Ethylhydroxyethylcellulose, besonders bevorzugt ist Carboxymethylcellulose (CMC). Bevorzugt ist ein Gehalt an Celluloseethem in der Sprühmischung von 0,1 bis 6 Gew.-%, besonders bevorzugt von 0,2 bis 2 Gew.-%. Die getrockneten Partikel enthalten bevorzugt zwischen 0,5 bis 10 Gew.-%, besonders bevorzugt zwischen 2 bis 4,5 Gew.-% an Celluloseethem.
Vorteilhaft sind Celluloseether mit einer Viskosität von 15 bis 200 000 mPas, bevorzugt solche mit einer Viskosität von 1 000 bis 50 000 mPas, besonders bevorzugt solche mit einer Viskosität von 5 000 bis 15 000 mPas. Die Viskositätsangaben beziehen sich auf eine 2 gew.-%ige Lösung in Wasser bei 20°C.
Als Messsystem diente ein Kegel-Platte-System mit einem Durchmesser von 40 mm und einem Kegelwinkel von 4°. Die Scherrate betrug 1 s"1, die Temperatur lag bei 20°C. Die Viskosität kann z.B. mit dem Rheometer CVO 120 (Fa. Bohlin Instru- ments GmbH, Pforzheim) bestimmt werden.
Nach dem erfindungsgemäßen Verfahren beträgt der Aroma- und/oder Riechstoff- Anteil im fertigen Cyclodextrinpartikel 0,01 bis 30 Gew.-%, bevorzugt von 1 bis 15 Gew.-% und besonders bevorzugt von 5 10' Gew.-%.
Methoden zur Bestimmung der Beladung und des Oberflächenöls sind aus der Literatur bekannt. Im vorliegenden Falle wurde die Bestimmung des Gehaltes an Aro a- und/oder Riechstoffen in den fertigen Cyclodextrinpartikeln zur Ermittlung der Beladung und des Oberflächenöls analog zu J. Agric. Food Chem. 1998, 46, 1494-1499 durchgeführt. Die dort beschriebenen Methoden wurden lediglich im Hinblick auf die in der Extraktion verwendeten Lösungsmittel abgewandelt. Anstatt n-Hexan wurde zur Bestimmung der Beladung Ethylacetat und zur Bestimmung des Oberflächenöl- anteils anstatt n-Hexan ein 2:1 Gemisch (Volumenanteile) von n-Pentan und Diethyl- ether verwendet. Beladung und Oberflächenölanteil werden in Gew.-% angegeben. Beispiele für Aroma- und/oder Riechstoffe, die Bestandteil der erfindungsgemäßen Cyclodextrinpartikel sein können, finden sich z.B. in S. Arctander, Perfume and Flavor Chemicals, Vol. I und LI, Montclair, N. J., 1969, Selbstverlag oder K. Bauer, D. Garbe und H. Surburg, Common Fragrance and Flavor Materials, 4th Ed., Wiley- VCH, Weinheim 2001.
Im einzelnen seien genannt: Extrakte aus natürlichen Rohstoffen wie Etherische Öle,
Concretes, Absolues, Resine, Resinoide, Balsame, Tinkturen wie z. B. Ambratinktur;
Amyrisöl; Angelicasamenöl; Angelicawurzelöl; Anisöl; Baldrianöl; Basilikumöl; Baummoos -Absolue; Bayöl; Beifußöl; Benzoeresin; Bergamotteöl; Bienenwachs-
Absolue; Birkenteeröl; Bittermandelöl; Bohnenkrautöl; Buccoblätteröl; Cabreuvaöl;
Cadeöl; Calmusöl; Campheröl; Canangaöl; Cardamomenöl; Cascarillaöl; Cassiaöl;
Cassie-Absolue; Castoreum-absolue; Cedernblätteröl; Cedernholzöl; Cistusöl; Citro- nellöl; Citronenöl; Copaivabalsam; Copaivabalsamöl; Corianderöl; Costuswurzelöl; Cuminöl; Cypressenöl; Davanaöl; Dillkrautöl; Dillsamenöl; Eau de brouts-Absolue;
Eichenmoos-Absolue; Elemiöl; Estragonöl; Eucalyptus-citriodora-Öl; Eucalyptusöl;
Fenchelöl; Fichtennadelöl; Galbanumöl; Galbanumresin; Geraniumöl; Grapefruitöl;
Guajakholzöl; Gurjunbalsam; Gurjunbalsamöl; Helichrysum- Absolue; Helichrysum- öl; Ingweröl; Iriswurzel-Absolue; Iriswurzelöl; Jasmin-Absolue; Kalmusöl; Kamillenöl blau; Kamillenöl römisch; Karottensamenöl; Kaskarillaöl; Kiefernadelöl;
Krauseminzöl; Kümmelöl; Labdanumöl; Labdanum-Absolue; Labdanumresin;
Lavandin-Absolue; Lavandinöl ; Lavendel-Absolue; Lavendelöl; Lemongrasöl; Lieb- stocköl; Limetteöl destilliert; Limetteöl gepreßt; Linaloeöl; Litsea-cubeba-Öl;
Lorbeerblätteröl; Macisöl; Majoranöl; Mandarinenöl; Massoirindenöl; Mimosa- Absolue; Moschuskörneröl; Moschustinktur; Muskateller-Salbei-Öl; Muskatnußöl
Myrrhen- Absolue; Myrrhenöl; Myrtenöl; Nelkenblätteröl; Nelkenblütenöl; Neroliöl:
Olibanum-Absolue; Olibanumöl; Opopanaxöl; Orangenblüten-Absolue; Orangenöl;
Origanumöl; Palmarosaöl; Patchouliöl; Perillaöl; Perubalsamöl; Petersilienblätteröl;
Petersiliensamenöl; Petitgrainöl; Pfefferminzöl; Pfefferöl; Pimentöl; Pineöl; Poleyöl; Rosen-Absolue; Rosenholzöl; Rosenöl; Rosmarinöl; Salbeiöl dalmatinisch; Salbeiöl spanisch; Sandelholzöl; Selleriesamenöl; Spiklavendelöl; Sternanisöl; Styraxöl; Tagetesöl; Tannennadelöl; Tea-tree-Öl; Terpentinöl; Thymianöl; Tolubalsam; Tonka- Absolue; Tuberosen-Absolue; Vanilleextrakt; Veilchenblätter-Absolue; Verbenaöl; Vetiveröl; Wacholderbeeröl; Weinhefenöl; Wermutöl; Wintergrünöl; Ylangöl; Ysopöl; Zibet-Absolue; Zimtblätteröl; Zimtrindenöl; sowie Fraktionen davon, bzw. daraus isolierten Inhaltsstoffen;
Einzel-Riechstoffe aus der Gruppe der Kohlenwasserstoffe, wie z. B. 3-Caren; α- Pinen; ß-Pinen; α-Terpinen; γ-Terpinen; p-Cymol; Bisabolen; Camphen; Caryophyllen; Cedren; Farnesen; Limonen; Longifolen; Myrcen; Ocimen; Valencen; (E,Z)-l,3,5-Undecatrien;
der aliphatischen Alkohole wie z. B. Hexanol; Octanol; 3-Octanol; 2,6-Dimethyl- heptanol; 2-Methylheptanol, 2-Methyloctanol; (E)-2-Hexenol; (E)- und (Z)-3-Hexe- nol; l-Octen-3-ol; Gemisch von 3,4,5,6,6-Pentamethyl-3/4-hepten-2-ol und 3,5,6,6- Tetramethyl-4-methyleneheptan-2-ol; (E,Z)-2,6-Nonadienol; 3,7-Dimethyl-7-meth- oxyoctan-2-ol; 9-Decenol; 10-Undecenol; 4-Methyl-3-decen-5-ol; der aliphatischen Aldehyde und deren l,4-Dioxacycloalken-2-one wie z. B. Hexanal; Heptanal; Octa- nal; Nonanal; Decanal; Undecanal; Dodecanal; Tridecanal; 2-Methyloctanal; 2-Methylnonanal; (E)-2-Hexenal; (Z)-4-Heptenal; 2,6-Dimethyl-5-heptenal; 10-Undecenal; (E)-4-Decenal; 2-Dodecenal; 2,6,10-Trimethyl-5,9-undecadienal;
Heptanaldiethylacetal; l,l-Dimethoxy-2,2,5-trimethyl-4-hexen; Citronellyloxyacetal- dehyd;
der aliphatischen Ketone und deren Oxime wie z.B. 2-Heptanon; 2-Octanon; 3-Octanon; 2-Nonanon; 5-Methyl-3-heptanon ; 5-Methyl-3-heptanonoxim; 2,4,4,7-
Tetramethyl-6-octen-3-on; der aliphatischen schwefelhaltigen Verbindungen wie z.B. 3-Methylthiohexanol; 3-Methylthiohexylacetat; 3-Mercaptohexanol; 3-Mercapto- hexylacetat; 3-Mercaptohexylbutyrat; 3-Acetylthiohexylacetat; l-Menthen-8-thiol; der aliphatischen Nitrile wie z.B. 2-Nonensäurenitril; 2-Tridecensäurenitril; 2, 12-Tridecadiensäurenitril; 3,7-Dimethyl-2,6-octadiensäurenitril; 3,7-Dimethyl-6- octensäurenitril;
der aliphatischen Carbonsäuren und deren Ester wie z.B. (E)- und (Z)-3-Hexenylfor- miat; Ethylacetoacetat; Isoamylacetat; Hexylacetat; 3,5,5-Trimethylhexylacetat; 3- Methyl-2-butenylacetat; (E)-2-Hexenylacetat; (E)- und (Z)-3-Hexenylacetat; Octyl- acetat; 3-Octylacetat; l-Octen-3-ylacetat; Ethylbutyrat; Butylbutyrat, ; Isoamylbuty- rat; Hexylbutyrat; (E)- und (Z)-3-Hexenylisobutyrat; Hexylcrotonat; Ethylisovale- rianat; Ethyl-2-methylpentanoat; Ethylhexanoat; AUylhexanoat; Ethylheptanoat;
Allylheptanoat; Ethyloctanoat; Ethyl-(E,Z)-2,4-decadienoat; 'Methyl-2-octinat; Methyl-2-noninat; Allyl-2-isoamyloxyacetat; Methyl-3,7-dimethyl-2,6-octadienoat;
der acyclischen Terpenalkohole wie z.B. Citronellol; Geraniol; Nerol; Linalool; Lavadulol; Nerolidol; Farnesol; Tetrahydrolinalool; Tetrahydrogeraniol;
2,6-Dimethyl-7-octen-2-ol; 2,6-Dimethyloctan-2-ol; 2-Methyl-6-methylen-7-octen-2- ol; 2,6-Dimethyl-5,7-octadien-2-ol; 2,6-Dimethyl-3,5-octadien-2-ol; 3,7-Dimethyl- 4,6-octadien-3-ol; 3,7-Dimethyl-l,5,7-octatrien-3-ol 2,6-Dimethyl-2,5,7-octatrien-l- ol; sowie deren Formiate, Acetate, Propionate, Isobutyrate, Butyrate, Isovalerianate, Pentanoate, Hexanoate, Crotonate, Tiglinate, 3-Methyl-2-butenoate;
der acyclischen Terpenaldehyde und -ketone wie z.B. Geranial; Neral; Citronellal; 7-Hydroxy-3 ,7-dimethyloctanal; 7-Methoxy-3 ,7-dimethyloctanal; 2,6,10-Trimethyl- 9-undecenal; Geranylaceton; sowie die Dimethyl- und Diethylacetale von Geranial, Neral, 7-Hydroxy-3,7-dimethyloctanal;
der cyclischen Terpenalkohole wie z.B. Menthol; Isopulegol; alpha-Terpineol; Ter- pinenol-4; Menthan-8-ol; Menthan-1-ol; Menthan-7-ol; Borneol; Isoborneol; Lina- looloxid; Nopol; Cedrol; Ambrinol; Vetiveröl; Guajol; sowie deren Formiate, Ace- täte, Propionate, Isobutyrate, Butyrate, Isovalerianate, Pentanoate, Hexanoate, Crotonate, Tiglinate, 3-Methyl-2-butenoate; der cyclischen Terpenaldehyde und -ketone wie z.B. Menthon; Isomenthon; 8-Mer- captomenthan-3-on; Carvon; Campher; Fenchon; alpha-Ionon; beta-Ionon; alpha-n- Methylionon; beta-n-Methylionon; alpha-Isomethylionon; beta-Isomethylionon; alpha-Iron; alpha-Damascon; beta-Damascon; beta-Damascenon; delta-Damascon; gamma-Damascon; 1 -(2,4,4-Trimethyl-2-cyclohexen- 1 -yl)-2-buten- 1 -on; l,3,4,6,7,8a-Hexahydro-l,l,5,5-tetramethyl-2H-2,4a-methanonaphthalen-8(5H)-on; Nootkaton; Dihydronootkaton; alpha-Sinensal; beta-Sinensal; Acetyliertes Cedern- holzöl (Methylcedrylketon);
der cyclischen Alkohole wie z.B. 4-tert.-Butylcyclohexanol; 3,3,5-Trimethylcyclo- hexanol; 3-Isocamphylcyclohexanol; 2,6,9-Trimethyl-Z2,Z5,E9-cyclododecatrien-l- ol; 2-Isobutyl-4-methyltetrahydro-2H-pyran-4-ol;
der cycloahphatischen Alkohole wie z.B. alpha,3,3-Trimethylcyclohexylmethanol;
2-Methyl-4-(2,2,3-trimethyl-3-cyclopent-l-yl)butanol; 2-Methyl-4-(2,2,3-trimethyl-3- cyclopent- 1 -yl)-2-buten- 1 -ol; 2-Ethyl-4-(2,2,3-trimethyl-3-cycloρent-l -yl)-2-buten- 1 - ol; 3-Methyl-5-(2,2,3-trimethyl-3-cyclopent-l -yl)-pentan-2-ol; 3-Methyl-5-(2,2,3- trimethyl-3-cyclopent-l-yl)-4-penten-2-ol; 3,3-Dimethyl-5-(2,2,3-trimethyl-3-cyclo- ρent-l-yl)-4-penten-2-ol; l-(2,2,6-Trimethylcyclohexyι)pentan-3-ol; l-(2,2,6-Trime- thylcyclohexyl)hexan-3-ol;
der cyclischen und cycloahphatischen Ether wie z.B. Cineol; Cedrylmethylether; Cyclododecylmethylether; (Ethoxymethoxy)cyclododecan; alpha-Cedrenepoxid; 3a,6,6,9a-Tetramethyldodecahydronaphtho[2,l-b]furan; 3a-Ethyl-6,6,9a-trimethyl- dodecahydronaphtho[2,l-b]furan; l,5,9-Trimethyl-13-oxabicyclo[10.1.0]trideca-4,8- dien; Rosenoxid; 2-(2,4-Dimethyl-3-cyclohexen-l-yl)-5-methyl-5-(l-methylpropyl)- 1,3-dioxan;
der cyclischen Ketone wie z.B. 4-tert.-Butylcyclohexanon; 2,2,5-Trimethyl-5-pentyl- cyclopentanon; 2-Heptylcyclopentanon; 2-Pentylcyclopentanon; 2-Hydroxy-3- methyl-2-cyclopenten- 1 -on; 3-Methyl-cis-2-penten- 1 -yl-2-cyclopenten- 1 -on;
3-Methyl-2-pentyl-2-cyclopenten- 1 -on; 3-Methyl-4-cyclopentadecenon; 3-Methyl-5- cyclopentadecenon; 3-Methylcyclopentadecanon; 4-(l-Ethoxyvinyl)-3, 3,5,5 -tetra- methylcyclohexanon; 4-tert.-Pentylcyclohexanon; 5-Cyclohexadecen-l-on; - 6,7- Dihydro-1 , 1 ,2,3 ,3-pentamethyl-4(5H)-indanon; 5-Cyclohexadecen- 1 -on;
8-Cyclohexadecen-l-on; 9-Cycloheptadecen-l-on; Cyclopentadecanon;
der cycloaliphatischen Aldehyde wie z.B. 2,4-Dimethyl-3-cyclohexencarbaldehyd; 2-
Methyl-4-(2,2,6-trimethyl-cyclohexen-l-yl)-2-butenal; 4-(4-Hydroxy-4-methylpen- tyl)-3-cyclohexencarbaldehyd; 4-(4-Methyl-3-penten-l-yl)-3-cyclohexencarbaldehyd;
der cycloaliphatischen Ketone wie z. B. l-(3,3-Dimethylcyclohexyl)-4-penten-l-on; 1 -(5,5-Dimethyl- 1 -cyclohexen- 1 -yl)-4-penten-l -on; 2,3 ,8,8-Tetramethyl- l,2,3,4,5,6,7,8-octahydro-2-naphtalenylmethylketon; Methyl-2,6,10-trimethyl-2,5,9- cyclododecatrienylketon; tert.-Butyl-(2,4-dimethyl-3-cyclohexen-l-yl)keton;
der Ester cyclischer Alkohole wie z.B. 2-tert-Butylcyclohexylacetat; 4-tert Butyl- cyclohexylacetat; 2-tert-Pentylcyclohexylacetat; 4-tert-Pentylcyclohexylacetat; Deca- hydro-2-naphthylacetat; 3 -Pentyltetrahydro-2H-pyran-4-ylacetat; Decahydro- 2,5,5,8a-tetramethyl-2-naphthylacetat; 4,7-Methano-3a,4,5,6,7,7a-hexahydro-5, bzw.
6-indenylacetat; 4,7-Methano-3a,4,5,6,7,7a-hexahydro-5, bzw. 6-indenylpropionat; 4,7-Methano-3a,4,5,6,7,7a-hexahydro-5, bzw. 6-indenylisobutyrat; 4,7-Methanoocta- hydro-5, bzw. 6-indenylacetat;
der Ester cycloaliphatischer Carbonsäuren wie z. B. Allyl-3-cyclohexylpropionat;
Allylcyclohexyloxyacetat; Methyldihydrojasmonat; Methyljasmonat; Methyl-2- hexyl-3-oxocyclopentancarboxylat; Ethyl-2-ethyl-6,6-dimethyl-2-cyclohexencarb- oxylat; Ethyl-2,3,6,6-tetramethyl-2-cyclohexencarboxylat; Ethyl-2-methyl-l,3-dioxo- lan-2-acetat;
der aromatischen Kohlenwasserstoffe wie z. B. Styrol und Diphenylmethan; der arahphatischen Alkohole wie z.B. Benzylalkohol; 1-Phenylethylalkohol; 2-Phenylethylalkohol; 3-Phenylpropanol; 2-Phenylpropanol; 2-Phenoxyethanol; 2,2-Dimethyl-3-phenylpropanol; 2,2-Dimethyl-3-(3-methylphenyl)propanol; 1,1-Di- methyl-2-phenylethylalkohol; l,l-Dimethyl-3-phenylpropanol; l-Ethyl-l-methyl-3- phenylpropanol; 2-Methyl-5-phenylpentanol; 3-Methyl-5-phenylpentanol; 3-Phenyl- 2-propen-l-ol; 4-Methoxybenzylalkohol; l-(4-Isopropylphenyl)ethanol;
der Ester von arahphatischen Alkoholen und aliphatischen Carbonsäuren wie z.B.; Benzylacetat; Benzylpropionat; Benzylisobutyrat; Benzylisovalerianat;
2-Phenylethylacetat; 2-Phenylethylpropionat; 2-Phenylethylisobutyrat; 2-Phenyl- ethylisovalerianat; 1-Phenylethylacetat; alpha-Trichlormethylbenzylacetat; alpha,al- pha-Dimethylphenylethylacetat; alpha,alpha-Dimethylphenylethylbutyrat; Cinnamyl- acetat; 2-Phenoxyethylisobutyrat; 4-Methoxybenzylacetat; der arahphatischen Ether wie z.B. 2-Phenylethylmethylether; 2-Phenylethylisoamylether; 2-Phenylethyl-l- ethoxyethylether; Phenylacetaldehyddimethylacetal; Phenylacetaldehyddiethylacetal; Hydratropaaldehyddimethylacetal; Phenylacetaldehydglycerinacetal; 2,4,6-Trimethyl- 4-phenyl- 1 ,3-dioxane; 4,4a,5,9b-Tetrahydroindeno[ 1 ,2-d]-m-dioxin; 4,4a,5,9b-Tetra- hydro-2,4-dimethylindeno[l,2-d]-m-dioxin;
der aromatischen und arahphatischen Aldehyde wie z. B. Benzaldehyd; Phenylace- taldehyd; 3-Phenylpropanal; Hydratropaaldehyd; 4-Methylbenzaldehyd; 4-Me- thylphenylacetaldehyd; 3 -(4-Ethylphenyl)-2,2-dimethylpropanal; 2-Methyl-3 -(4- isopropylphenyl)propanal; 2-Methyl-3-(4-tert.-butylphenyl)propanal; 3-(4-tert.-Butyl- phenyl)propanal; Zimtaldehyd; alpha-Butylzimtaldehyd; alpha-Amylzimtaldehyd; alpha-Hexylzimtaldehyd; 3-Methyl-5-phenylpentanal; 4-Methoxybenzaldehyd; 4- Hydroxy-3 -methoxybenzaldehyd; 4-Hydroxy-3 -ethoxybenzaldehyd; 3 ,4-Methylen- dioxybenzaldehyd; 3 ,4-Dimethoxybenzaldehyd; 2-Methyl-3-(4-methoxyphenyl)pro- panal; 2-Methyl-3 -(4-methylendioxyphenyl)propanal; der aromatischen und arahphatischen Ketone wie z.B. Acetophenon; 4-Methylace- tophenon; 4-Methoxyacetophenon; 4-tert.-Butyl-2,6-dimethylacetophenon; 4-Phenyl- 2-butanon; 4-(4-Hydroxyphenyl)-2-butanon; l-(2-Naphthalenyl)ethanon; Benzophe- non; 1,1,2,3 ,3,6-Hexamethyl-5-indanylmethylketon; 6-tert.-Butyl- 1 , 1 -dimethyl-4-in- danylmethylketon; 1 -[2,3-dihydro- 1 , 1 ,2,6-tetramethyl-3-(l -methylethyl)- lH-5-inde- nyl]ethanon; 5',6',7',8£-Tetrahydro-3',5',5',6',8',8'-hexamethyl-2-acetonaphthon;
der aromatischen und arahphatischen Carbonsäuren und deren Ester wie z.B. Ben- zoesäure; Phenylessigsäure; Methylbenzoat; Ethylbenzoat; Hexylbenzoat; Benzyl- benzoat; Methylphenylacetat; Ethylphenylacetat; Geranylphenylacetat; Phenylethyl- phenylacetat; Methylcmnmat; Ethylcinnamat; Benzylcinnamat; Phenylethylcinnamat; Cinnamylcinnamat; Allylphenoxyacetat; Methylsalicylat; Isoamylsalicylat; Hexyl- salicylat; Cyclohexylsalicylat; Cis-3-Hexenylsalicylat; Benzylsalicylat; Phenylethyl- salicylat; Methyl-2,4-dihydroxy-3,6-dimethylbenzoat; Ethyl-3-phenylglycidat; Ethyl- 3-methyl-3-phenylglycidat;
der stickstoffhaltigen aromatischen Verbindungen wie z.B. 2,4,6-Trinitro-l,3-dime- thyl-5-tert.-butylbenzol; 3,5-Dinitro-2,6-dimethyl-4-tert.-butylacetophenon; Zimt- säurenitril; 5-Phenyl-3-methyl-2-pentensäurenitril; 5-Phenyl-3-methylpentansäure- nitril; Methylanthranilat; Methy-N-methylanthranilat; Schiff sehe Basen von Methyl- anthranilat mit 7-Hydroxy-3,7-dimethyloctanal, 2-Methyl-3-(4-tert.-butylphe- nyl)propanal oder 2,4-Dimethyl-3-cyclohexencarbaldehyd; 6-Isopropylchinolin; 6- Isobutylchinolin; 6-sec-Butylchinolin; Indol; Skatol; 2-Methoxy-3-isopropyιpyrazm; 2-Isobutyl-3 -methoxypyrazin;
der Phenole, Phenylether und Phenylester wie z.B. Estragol; Anethol; Eugenol; Eugenylmethylether; Isoeugenol; Isoeugenylmethylether; Thymol; Carvacrol; Diphe- nylether; beta-Naphthylmethylether; beta-Naphthylethylether; beta-Naphthylisobu- tylether; 1,4-Dimethoxybenzol; Eugenylacetat; 2-Methoxy-4-methylphenol; 2-Eth- oxy-5-(l-propenyl)phenol; p-Kresylphenylacetat; der heterocyclischen Verbindungen wie z.B. 2,5-Dimethyl-4-hydroxy-2H-furan-3-on; 2-Ethyl-4-hydroxy-5-methyl-2H-furan-3-on; 3-Hydroxy-2-methyl-4H-pyran-4-on; 2-Ethyl-3-hydroxy-4H-pyran-4-on;
der Lactone wie z.B. 1,4-Octanolid; 3 -Methyl- 1,4-octanolid; 1,4-Nonanolid; 1,4-
Decanolid; 8-Decen-l,4-olid; 1,4-Undecanolid; 1,4-Dodecanolid; 1,5-Decanolid; 1,5-Dodecanolid; 1,15-Pentadecanolid; eis- und trans-ll-Pentadecen-l,15-olid; cis- und trans-12-Pentadecen-l,15-olid; 1,16-Hexadecanolid; 9-Hexadecen-l,16-olid; 10-Oxa-l,16-hexadecanolid; 1 l-Oxa-l,16-hexadecanolid; 12-Oxa-l,16-hexade- canolid; Ethylen-l,12-dodecandioat; Ethylen-l,13-tridecandioat; Cumarin;
2,3-Dihydrocumarin; Octahydrocumarin.
Beispiele für Aromastoffe, die Bestandteil der Cyclodextrinpartikel sein können, sind neben allen o.g. Stoffen vor allem folgende Stoffklassen: Ahphatische Ester (gesättigt und ungesättigt) z.B. Ethylbutyrat, Allylcapronat; aromatische Ester z.B.
Benzylacetat, Methylsalicylat; organische ahphatische Säuren (gesättigt und ungesättigt) z.B. Buttersäure, Essigsäure, Capronsäure; organische aromatische Säuren; ahphatische Alkohole (gesättigt und ungesättigt) z . Ethanol, Propylenglykol, Octe- nol, 3-Ocetenol, cis-3-Hexenol; cyclische Alkohole z.B. Menthol; aromatische Alko- hole z.B. Benzylalkohol; ahphatische Aldehyde (gesättigt und ungesättigt) z.B. Ace- taldehyd, Nonadienal; aromatische Aldehyde z.B. Benzaldehyd; Ketone z.B. Men- thon; cyclische Ether z.B. 4-Hydroxy-5-methyliuranon; aromatische Ether z.B. p- Methoxybenzaldehyd, Guajacol; Phenolether z.B. Methoxyvinylphenol; Acetale z.B. Acetaldehyddiethylacetal; Lactone z.B. gamma-Decalacton; Terpene z.B. Limonen, Linalool, Terpinen, Terpineol, Citral (Geranial und Neral); schwefelhaltige Verbindungen z.B. Dimethylsulfid, Methylthiol, Ethylthiol, Allylisothiocyanat, Methyl- furanthiol, Difurfuryldisulfid oder Pyrazine z.B. Methyipyrazin, Acetylpyrazin.
Die erfmdungsgemäßen Cyclodextrinpartikel eignen sich auf Grund des sehr gerin- gen Anteils an Oberflächenöl in besonderem Maße zur Einkapselung von sehr geruchsintensiven, leicht flüchtigen, leicht oxidierbaren, schwer dosierbaren, schwer handhabbaren und/oder reizenden Stoffen. In diesem Zusammenliang seien beispielsweise Acetaldehyd, Allylisothiocyanat, Limonen, cis-3-Hexenol, Citral, Methylethylpyrazin oder auch Methylthiol genannt.
Die erfindungsgemäßen Cyclodextrinpartikel können darüber hinaus ernährungsphysiologisch wirksame Stoffe oder Stoffgemische enthalten (Nutraceuticals). Es seien beispielsweise genannt Panthenol, Pantothensäure, essentielle Fettsäuren, Vitamin A und Derivate, Carotine, Vitamin C (Ascorbinsäure), Vitamin E (Tocophe- rol) und Derivate, Vitamine der B- und D-Reihe wie Vitamin B6 (Nicotinamid), Vitamin Bj , Vitamin Dls Vitamin D3, Vitamin F, Folsäure, Biotin, Aminosäuren,
Verbindungen der Elemente Magnesium, Silicium, Phosphor, Galcium, Mangan, Eisen oder Kupfer, Coenzym Q10, ungesättigte Fettsäuren, ω -3 -Fettsäuren, mehrfach ungesättigte Fettsäuren, γ-Linolensäure, Ölsäure, Eicosapentaensäure, Docosa- hexaensäure und deren Derivate, Bisabolol, Chloramphenicol, Coffein, Capsaicin, Prostaglandine, Thymol, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z. B. Nachtkerzenöl, Borretschöl oder Johannisbeerkernöl, Fischöle, Lebertran, Ceramide und Ceramid-ähnliche Verbindungen. Pflanzenextrakte wie z. B. Arnika, Aloe, Bartflechte, Efeu, Brennessel, Ginseng, Henna, Kamille, Ringelblume, Rosmarin, Salbei, Schachtelhalm oder Thymian. Öle wie Aprikosenkernöl, Avocadoöl, Babassuöl, Baumwollsamenöl, Borretschöl, Distelöl,
Erdnussöl, Gamma-Oryzanol, Hagebuttenkernöl, Hanföl, Haselnussöl, Johannisbeer- samenöl, Jojobaöl, Kirschkernöl, Lachsöl, Leinöl, Maiskeimöl, Makadamianussöl, Mandelöl, Nachtkerzenöl, Nerzöl, Olivenöl, Pekannussöl, Pfirsichkernöl, Pistazien- kernöl, Rapsöl, Reiskeimöl, Rizinusöl, Safloröl, Sesamöl, Sojaöl, Sonnenblumennöl, Teebaumöl, Traubenkernöl oder Weizenkeimöl.
Es ist selbstverständlich möglich, dass die erfmdungsgemäßen Cyclodextrinpartikel noch weitere Stoffe, wie z.B. Emulgatoren, Farbstoffe, Antioxidantien, Stabilisatoren, UV-Filter, Vitamine und andere in der Lebensmittel-, Körperpflege-, Pharma- oder Riechstoffindustrie üblichen Inhaltsstoffe enthalten können. Die Herstellung der Sprühmischung kann beispielsweise erfolgen wie in EP-A 1 084 625 dargelegt oder wie im Folgenden beschrieben.
Zuerst wird ein Komplex aus Cyclodextrin und dem Aromastoff geformt. Dazu müssen Cyclodextrin und Aroma zumindest teilweise in Lösung gebracht werden. Als Lösungsmittel wird hierbei Wasser mit einer Temperatur von 10°C bis 90°C, bevorzugt von 40°C bis 70°C, besonders bevorzugt zwischen 50 bis 60°C eingesetzt. Bei Aromastoffen mit besonders niedrigem Siedepunkt oder hoher Temperaturempfindlichkeit werden Temperaturen von 15 bis 30°C bevorzugt.
In Abhängigkeit der Polarität der Aroma- und/oder Riechstoffe entsteht dabei meist ein 2- Phasengemisch. Zur Beschleunigung des Verfahrens werden erfindungsgemäß Scherkräfte eingebracht. Das Einbringen der Scherkräfte kann beispielsweise durch Rühren bzw. Dispergieren erfolgen, wozu sich unter anderem Rotor-Stator- Disper- gierwerkzeuge oder Hochdruck-Homogenisatoren eignen.
Die Verschiebung des Gleichgewichtes in Richtung des Aroma- und/oder Riechstoff- Cyclodextrinkomplexes erfordert Zeit. Erfindungsgemäß lässt man den Ansatz nach dem Einwirken der Scherkräfte vorteilhafterweise 0,2 bis 24 Stunden unter Abküh- lung auf 4 bis 25°C, bevorzugt 8 bis 16 Stunden unter Abkühlung auf 4 bis 7°C, ruhen.
Bei empfindlichen Aroma- und/oder Riechstoffen wird die Ruhezeit bevorzugt auf 15 bis 30 min bei 4 bis 7 °C verkürzt.
Der Zusatz des Celluloseethers zur Sprühmischung kann zu jedem beliebigen Zeitpunkt erfolgen. Dies kann vor der Komplexbildung, während der Komplexbildung, nach der Komplexbildung aber vor der Kühllagerung, während der Kühllagerung oder nach der Kühllagerung sein. Es ist auch möglich, den Celluloseether mit dem Cyclodextrinpulver zu mischen und erst dann das Wasser hinzuzufügen. Die Gesamtmenge des Celluloseethers kann auch in mehrere Teilmengen aufgeteilt, d.h. portioniert, werden und zu beliebigen Zeitpunkten hinzugefügt werden.
Bei der Herstellung der Sprühmischung kann der Zusatz der Einsatzstoffe in belie- biger Reihenfolge erfolgen. Beispielsweise können Cyclodextrin und Celluloseether gemischt, anschließend Wasser hinzugefügt und intensiv gerührt bzw. dispergiert werden. Anschließend werden Aroma-/ und oder Riechstoffe hinzugefügt und die Mischung intensiv gerührt bzw. dispergiert und kühl gelagert. Eine alternative Reihenfolge beinhaltet erst das intensive Mischen von Wasser, Celluloseether und Aroma-/ und oder Riechstoffen sowie die anschließende Zugabe und die
Dispergierung von Cyclodextrin. In einer weiteren beispielhaften Variante kann Cyclodextrin in Wasser gegeben und intensiv gerührt werden. Das Aroma wird hinzugefügt und dispergiert. Nach der folgenden Kühllagerung wird der Celluloseether hinzugefügt und durch Rühren bzw. Dispergieren verteilt.
Die Granulation erfolgt bevorzugt in einer Granulierapparatur wie in EP-A 163 836 beschrieben. Die Temperatur der Sprühmischung wird derart gewählt, dass sich der Aroma- bzw. Riechstoff-Cyclodextrinkomplex nicht zersetzt. Die Temperatur liegt üblicherweise zwischen 5 und 70°C, bevorzugt zwischen 10 und 40°C und besonders bevorzugt zwischen 20 und 30°C.
Als Fluidisiergas können beispielsweise Luft, Stickstoff, Argon oder auch Kohlendioxid verwendet werden, bevorzugt sind Luft und Stickstoff. Die Gas-Eintritts- und Gas- Austrittstemperaturen des Fluidisiergases sind der jeweiligen Sprühmischung anzupassen. Die Gas-Eintrittstemperaturen liegen bei 80 bis 180°C, bevorzugt bei 100 bis 140°C und besonders bevorzugt zwischen 120 und 130°C. Die Gas-Austrittstemperaturen liegen bei 40 bis 95 °C, bevorzugt bei 45 bis 70°C, besonders bevorzugt bei 50 bis 60°C. Die erfindungsgemäßen Cyclodextrinpartikel können in einer Vielzahl von Produkten eingesetzt werden. In Nahrungs- und Genussmitteln können diese beispielsweise in Süßwaren wie z.B. Lutschbonbons, Kaugummis, Erfrischungsdragees, Komprimate, Hartkaramellen, Konfekt und Schokolade, Backwaren wie Kuchen, Waffeln und Kekse, Snacks, Instant-Mahlzeiten sowie anderen histant-Produkten (Suppen,
Saucen, Getränkepulver und -granulate, Teebeutel, Würzmischungen) eingesetzt werden. Die Cyclodextrinpartikel eignen sich besonders für erhitzte, hocherhitzte, warmgehaltene, sterilisierte oder pasteurisierte Lebensmittel, wie beispielsweise Cateringessen, frittierte Lebensmittel, Chips, aromatisierte Panaden, Fertiggerichte, Mikrowellengerichte sowie Obst- und Gemüsekonserven.
Pharmazeutische Produkte können beispielsweise Lutschtabletten, Hals- oder Hustenbonbons, pharmazeutische Pulver oder Granulate sein.
Bedarfsgegenstände können beispielsweise Körperpflegeprodukte, Haushaltsprodukte, Tabakwaren (z.B. Zigaretten), Kosmetikprodukte, Wasch- und Reinigungsmittel, Raumerfrischer, Textilien oder geruchsabsorbierende Mittel (z.B. Katzenstreu) sein.
Körperpflegeprodukte können beispielsweise Mundpflegeprodukte wie Zahnpasten,
Zahngele, Zahncremes, Zahnpflegekaugummis und Mundwässer sein.
Folgende Beispiele erläutern die Erfindung:
Sofern nicht anders angegeben beziehen sich alle Angaben auf das Gewicht.
Unter Retention (Angabe in Gew.-%) wird im vorliegenden Fall das gewichtsbezogene Verhältnis der Menge an Aroma- und/oder Riechstoffen im fertigen Partikel zu der in die Sprühmischung eingesetzten Menge an Aroma- und/oder Riechstoffen ver- standen. Beispiele
Beispiel 1: Limonen- Cyclodextrinpartikel
Rezeptur:
13143 g Trinkwasser
4000 g beta-Cyclodextrin (Kieptose® beta-Cyclodextrin, Fa. Roquette) 431 g d-Limonen
133 g Carboxymethylcellulose (CMC) (Walocel CRT 10000 GA der Firma Wolff Walsrode); Viskosität der 2 %igen Lösung bei 20°C, 1 s"1 : 10000 mPas
Das Wasser wurde auf 25°C erwärmt, das Cyclodextrin hinzugefügt und der Ansatz für 3 Minuten mit einem Ultra Turrax T50 DPX gemischt. Das d-Limonen wird hinzugefügt und der Ansatz weitere 15 min dispergiert.
Nachdem die Mischung 6 Stunden bei 6°C gelagert, wurde, wurde die Carboxymethylcellulose hinzugefügt und mit Hilfe des Ultra Turrax T50 DPX homogenisiert. Danach ruhte der Ansatz für weitere 15 Stunden bei 20°C und wurde anschließend der Wirbelschichtgranulationsapparatur zugeführt.
In einer Granulierapparatur des in EP-A 163 836 beschriebenen Typs (mit den folgenden Merkmalen: Durchmesser Anströmboden: 225 mm, Sprühdüse: Zweistoffdüse; Sichtender Austrag: Zick-Zack-Sichter; Filter: internes Schlauchfilter) wurde die oben beschrieben Sprühmischung granuliert. Die Temperatur der Mischung lag bei 35°C. Zur Fluidisierung des Bettinhaltes wurde Luft in einer Menge von 60 kg/h eingeblasen. Die Eintrittstemperatur des Fluidisiergases lag bei 120°C. Die Temperatur des Austrittsgases lag bei 55°C. Als Sichtgas wurde Luft in einer Menge von 1,5 kg/h mit einer Temperatur von 34°C zugeführt. Die Granulierleistung betrug ca. 420 g/h. Es wurde ein frei fließendes Granulat mit einer mittleren Partikelgröße von 131,7 μm und einer Schüttdichte von 470 g/1 erhalten. Die Granulate wiesen eine glatte Oberfläche und eine sphärische, weitgehend kugelförmige Geometrie auf. Aufgrund des konstanten Druckverlustes des Filters und des ebenfalls konstant bleibenden Bettinhalts ist von stationären Bedingungen hinsichtlich des Granulationsprozesses auszugehen.
- Beladung : 7,7 %
Retention : 79,2 % Oberflächenöl : 0,03 %
Partikelgrößenverteilung (mittels Laserbeugung; Gerät: Malvern Master Sizer®MSS Longbench) : Q3 (x) = 0,l: x = 75 μm
Q3 (x) = 0,5: x= 132 μm . Q3 (x) = 0,9: x= 196 μm Schüttdichte : 470 g/1
Beispiel 2: Limonen-Partikel 2
6385 g Trinkwasser 2000 g beta-Cyclodextrin 215,5 g d-Limonen 78 g Carboxymethylcellulose (CMC), Tylose® C 6000 Gl von Firma Clariant
Viskosität der 2 %igen Lösung bei 20°C, 1 s"1 mPas: 6000mPas
Das Wasser wurde auf 50°C erwärmt, das Cyclodextrin hinzugefügt und der Ansatz für 3 Minuten mit einem Ultra Turrax T50 DPX gemischt. Das d-Limonen wurde hinzugefügt und der Ansatz weitere 15 min dispergiert.
Nachdem die Mischung 30 Minuten bei 20°C gelagert, wurde, wurde die Carboxymethylcellulose hinzugefügt und mit Hilfe des Ultra Turrax-Mischers homogenisiert.
Danach ruhte der Ansatz für weitere 15 Stunden bei 6°C und (Lagerung) wurde anschließend der Wirbelschichtgranulationsapparatur aus Beispiel 1 zugeführt. Die Eintrittstemperatur des Fluidisiergases lag bei 125°C. Die Temperatur des Austrittsgases lag bei 49°C. Die Granulierleistung betrug ca. 570 g/h. Es wurde ein frei fließendes Granulat mit einer mittlere Partikelgröße von 165,8 μm und einer Schüttdichte von 460 g/1 erhalten. Die Cyclodextrinpartikel wiesen eine glatte Oberfläche und eine sphärische, weitgehend kugelförmige Geometrie auf.
Beladung : 8,4 % Retention : 86,4 % Oberflächenöl : 0,04 % - Partikelgrößenverteilung (Laserbeugung) :
I
Q3 (x) - 0,l: x = 89 μm '
Q3 (x) = 0,5: x= 166 μm Q3 (x) = 0,9; x= 272 μm Schüttdichte : 460 g/1
Beispiel 3: Pfefferminzaroma-Partikel
6385 g Trinkwasser 2000 g beta-Cyclodextrin 215,5 g Pfefferminzaroma
62 g Carboxymethylcellulose (CMC), (Walocel CRT 10000 GA der Firma Wolff Walsrode); Viskosität der 2 %igen Lösung bei 20°C, 1 s"1: 10000 mPas
Das Wasser wurde auf 50°C erwärmt, das Cyclodextrin hinzugefügt und der Ansatz für 3 Minuten mit einem Ultra Turrax T50 DPX gemischt. Nach Zugabe des Pfefferminzaromas wurde der Ansatz weitere 15 min mit dem Ultra Turrax T50 DPX durchmischt. CMC wurde hinzugefügt und mit dem Ultra Turrax aufgelöst.
Die Lagerung und weitere Herstellung erfolgt analog zu Beispiel 2, die Granulier- leistung lag bei 600 g/h. Es wurde ein frei fließendes Granulat erhalten. Beladung : 8,8 % Retention : 87 %
Partikelgrößenverteilung (mittels Laserbeugung; Gerät: Malvern Master Sizer®MSS Longbench) : Q3 (x) = 0,l: x = 103 μm
Q3 (x) = 0,5: x= 182 μm
Q3 (x) = 0,9: x = 296 μm
Oberflächenöl : 0,03 % - Schüttdichte : 400 g/1
Beispiel 4: Rindaroma-Partikel
6385 g Trinkwasser 2000 g beta-Cyclodextrin
200 g Rindfleischaroma
95 g Methylcellulose (MC), Methocel® A4M FG, Dow Chemical Company Viskosität der 2 %igen Lösung bei 20°C, 1 s"1 mPas: 4000mPas
Nach Zugabe des Cyclodextrins in Wasser (10°C) wurde der Ansatz für 3 Minuten mit einem Ultra Turrax T50 DPX gemischt. Das Rindfleischaroma wurde hinzugefügt und der Ansatz weitere 40 Minuten dispergiert. Nachdem die Mischung 30 Minuten bei 20°C ruhte, wurde die Methylcellulose hinzugefügt und mit dem Ultra Turrax-Mischer homogenisiert.
Die Lagerung und weitere Herstellung erfolgte analog zu Beispiel 1. Beispiele 5-14
Zusammensetzungen von Sprühmischungen, die Angaben beziehen sich auf Einsatzmengen in Gramm.
Figure imgf000026_0001
Beispiel 15: Vergleich
In Tabelle 1 werden die Vorteile hinsichtlich Oxidatiόnsstabilität, Rieselfähigkeit und Redispergierbarkeit der erfinduήgsgemäß hergestellten Partikel gegenüber Partikeln, die nach dem Stand der Technik hergestellt wurden, deutlich. Die bessere Oxi- dationsstabilität ist durch den geringen Anteil an Oberflächenöl bedingt.
Tabelle 1:
Figure imgf000027_0001
Die Rieselfälligkeit wurde gemäß DTN ISO 4324 bestimmt. Ein Schüttwinkel <30° bedeutet eine sehr gute Fließfähigkeit, ein Schüttwinkel zwischen 30° und 40° bedeutet eine freie Fließ fähigkeit und Schüttwinkel >45° bedeuten eine schlechte Fließfähigkeit (siehe auch Uhlemann, Möhrl: Wirbelschichtsprühgranulation, Springer- Verlag Berlin, 2000, S. 169).
Die Oxidationsempfindlichkeit wurde nach Lagerzeiten von einem Tag bzw. 180
Tagen (Lagerungstemperatur 20°C) bewertet. Jeweils 100 g Proben wurden in eine 250 ml Plastikflasche gefüllt und dicht mit einem Deckel verschlossen. Nach der jeweiligen Lagerzeit wurden die Flaschen geöffhet und geruchlich bewertet. Die Bewertung erfolgte auf einer Skala von 0 (kein Oxidationsgeruch) bis 5 (starker Oxi- dationsgeruch). Nach einem Tag waren alle Partikel der Tabelle 1 noch in geruchlich einwandfreiem Zustand.
Die Redispergierbarkeit wurde folgendermaßen überprüft: In ein Becherglas wurden 20 ml Wasser (20°C) und 200 mg des jeweiligen Partikels gegeben und mit einem Magnetrührer 1 Minute bei 200 min"1 gerührt. . Die Bewertung erfolgte auf einer
Skala von 0 (sehr schlechte Redispergierbarkeit) bis 5 (vollständige Redispergierbarkeit). Sehr schlechte Redispergierbarkeit lag vor, wenn nach dem Rühren nicht alle Partikel mit Wasser benetzt waren, sich große Agglomerate gebildet hatten und/oder nach einer Standzeit von 1 Minute viele Partikel auf den Boden gesunken waren.
Beispiel 16: Kaugummi mit Pfefferminzgeschmack
In ein Kaugummi (B) wurden 2 Gew.-% an Pfefferminzaroma-Cyclodextrinartikeln aus Beispiel 3 (entsprechend 0,18 Gew.-% Aroma) und 1,12 Gew.-% Pfefferminz- aroma in flüssiger Form eingearbeitet. Zum Vergleich wurde ein Kaugummi (A) hergestellt, das 1,30 Gew.-% Pfefferminzaroma in flüssiger Form enthielt. Sensorische Zeit-Intensitäts-Studien mit einer geschulten Prüfergruppe (12 Personen) zeigten insgesamt eine signifikant höhere Geschmacksintensität bei Kaugummi (B) mit Pfefferminzaroma-Partikeln. Nach 15 Minuten war bei der die Pfefferminz- aroma-Cyclodextrinartikel enthaltenden Probe die Aromaintensität doppelt so hoch.
Figure imgf000029_0001
10 15
Figure imgf000029_0002
X = Kaudauer in Minuten
Y = Pfefferminzaroma-Intensität
A = Kaugummi mit flüssigen Pfefferminzaroma
B = Kaugummi mit flüssigen Pfefferminzaroma + Pfefferminzaroma-Partikel
Die Pfefferminzaroma-Intensität wurde auf eine Skala von 0 (kein Pfefferminzaroma) bis 10 (sehr starkes Pfefferminzaroma) bewertet. Beispiel 17 : Waffel
Die Limonen-Cyclodextrinartikel aus Beispiel 2 wurden zu 1,2 Gew.-% (entsprechend 0,1 Gew.-% Aroma) in einen Waffelteig bestehend aus Mehl, Wasser, Zucker, Lecithin, Salz und Erdnussöl gegeben. Es wurden Waffeln bei einer Temperatur von 200°C für 1 Minute ausgebacken. Zum Vergleich wurde flüssiges Limonen mit gleicher Konzentration in einen Teig derselben Zusammensetzung eingearbeitet. Die sensorische Evaluierung frischer Ware (1 Tag alt) ergab eine höhere Aromaintensität bei den Waffeln mit Limonen-Cyclodextrinartikeln. Analytisch konnte die sensorische Bewertung bestätigt werden, wie in Tabelle 2 gezeigt.
Tabelle 2:
Figure imgf000030_0001
Die sensorische Bewertung der Aromaintensität der Limonen-Note und des Off-Fla- vors erfolgte nach 4-monatiger Lagerung bei 20°C, auf einer Skala von 0 (nicht wahrnehmbar) bis 5 (sehr stark).
Unter Retention (Angabe in %) wird im vorliegenden Fall das gewichtsbezogene
Verhältnis der Menge an Limonen in der Waffel zu der eingesetzten Menge Limonen verstanden.
Beispiel 18: Instantsuppe
Zu einer Pulvermischung enthaltend Salz, Stärke, Gewürzpulver, Fettpulver und getrocknetes Gemüse wurden zur Unterstützung der frischen Grünnote cis-3-Hexe- nol-Cyclodextrinpartikel, die analog zu Beispiel 1 hergestellt wurden, zugegeben.
Durch die eingestellte Partikelgröße von 100 bis 200 μm sind folgende Vorteile während des Mischverfahrens gegeben: Staubfreiheit, geringe Gefahr der Entmischung, gute Rieselfähigkeit.
Während der Lagerurig ist cis-3-Hexenol irh Cyclodextrinkomplex vor Oxidation gut geschützt, insbesondere auf Grund des geringen Anteils an Oberflächenöl der
Partikel nach erfindungsgemäßer Herstellung.
Beim Aufgießen der Instant-Suppenmischung mit 80°C heißem Wasser löst sich der Komplex innerhalb von wenigen Sekunden auf.

Claims

Patentansprüche
1. Aroma- und/oder riechstoffhaltige Cyclodextrinpartikel mit einer Partikelgröße im Bereich von 50 bis 1000 μm enthaltend einen Celluloseether erhält- lieh durch ein einstufiges Wirbelschichtverfahren aus einer Sprühmischung, wobei die Gas-Eintrittstemperatur bei 80 bis 180°C und die" Gas- Austrittstemperatur bei 40 bis 95 °C liegt
2. Cyclodextrinpartikel nach Anspruch 1, dadurch gekennzeichnet, dass diese mindestens einen Celluloseether aus der Gruppe umfassend Methylcellulose,
Ethylcellulose, Ethylhydroxyethylcellulose, Propylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxy- methylhydroxyethylcellulose und Carboxymethylcellulose enthalten.
3. Cyclodextrinpartikel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass diese Carboxymethylcellulose enthalten.
4. Cyclodextrinpartikel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Partikelgröße im Bereich 100 bis 300 μm liegt.
5. Cyclodextrinpartikel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Wirbelschichtverfahren eine Wirbelschichtsprühgranulation ist.
6. Cyclodextrinpartikel nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass diese als Cyclodextrin alpha-, beta- oder gamma-Cyclo- dextrin, bevorzugt beta-Cyclodextrin, enthalten.
7. Cyclodextrinpartikel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Aroma- und/oder Riechstoffanteil bei 0,01 bis 30
Gew.-% liegt.
8. Verfahren zur Herstellung von Cyclodextrinpartikeln nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in die einstufige Wirbelschichtvorrichtung eine wässrige Sprühmischung eingebracht wird, die min- destens ein Cyclodextrin, mindestens einen Aroma- und/oder Riechstoff und mindestens einen Celluloseether enthält.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Wirbelschichtvorrichtung eine, bevorzugt kontinuierlich betriebene, Wirbelschichtsprüh- granulationsanlage ist.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Keimerzeugung in der Wirbelschichtvorrichtung erfolgt.
11. Verfahren nach mindestens einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die wässrige Sprühmischung 40 - 95 Gew.-% Wasser, 5 bis 50 Gew.-% Cyclodextrin, 0,0005 bis 15 Gew.-% Aroma- und oder Riechstoffe sowie 0,1 bis 6 Gew.-% Celluloseether enthält.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die wässrige
Sprülimischung 60 bis 80 Gew.-% Wasser, 15 bis 30 Gew.-% Cyclodextrin, 0,25 bis 5 Gew.-% Aroma- und oder Riechstoffe sowie 0,2 bis 2 Gew.-% Celluloseether enthält.
13. Aroma- und/oder riechstoffhaltige Cyclodextrinpartikel mit einer Partikelgröße im Bereich von 50 bis 1000 μm enthaltend Carboxymethylcellulose.
14. Verwendung von Cyclodextrinpartikeln gemäß einem der Ansprüche 1 bis 7 in Lebensmitteln, pharmazeutischen Produkten, und Bedarfsgegenständen.
PCT/EP2003/009713 2002-09-04 2003-09-02 Cyclodextrinpartikel WO2004022642A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03793785A EP1537174A1 (de) 2002-09-04 2003-09-02 Cyclodextrinpartikel
AU2003264145A AU2003264145A1 (en) 2002-09-04 2003-09-02 Cyclodextrin particle
US10/476,828 US7348035B2 (en) 2002-09-04 2003-09-02 Cyclodextrin particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10240698A DE10240698A1 (de) 2002-09-04 2002-09-04 Cyclodextrinpartikel
DE10240698.7 2002-09-04

Publications (1)

Publication Number Publication Date
WO2004022642A1 true WO2004022642A1 (de) 2004-03-18

Family

ID=31724288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/009713 WO2004022642A1 (de) 2002-09-04 2003-09-02 Cyclodextrinpartikel

Country Status (6)

Country Link
US (1) US7348035B2 (de)
EP (1) EP1537174A1 (de)
CN (1) CN1329440C (de)
AU (1) AU2003264145A1 (de)
DE (1) DE10240698A1 (de)
WO (1) WO2004022642A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005026002A1 (de) * 2005-06-03 2006-12-14 Beiersdorf Ag Kosmetische Zubereitungen mit einem Gehalt an einem wässrigen Anisfruchtextrakt und einem oder mehreren polymeren Verdickungsmitteln, gewählt aus der Gruppe der Cellulosederivate
EP1955601A1 (de) 2007-01-25 2008-08-13 Symrise GmbH & Co. KG Verwendung von Propenylphenylglycosiden zur Verstärkung süßer sensorischer Eindrücke
EP1977655A1 (de) 2007-03-29 2008-10-08 Symrise GmbH & Co. KG Aromakompositionen von Alkamiden mit Hesperetin und/oder 4-Hydroxydihydrochalkonen und deren Salzen zur Verstärkung süßer sensorischer Eindrücke
EP2027136A1 (de) * 2006-06-13 2009-02-25 Cargill, Incorporated Grossteilige cyclodextrin-einschlusskomplexe und verfahren zu deren herstellung
EP2368442A2 (de) 2005-07-27 2011-09-28 Symrise AG Verwendung von Hesperetin zur Verstärkung von süßem Geschmack
WO2013124773A1 (en) * 2012-02-23 2013-08-29 Bostik S.A. Dispenser packaging for viscous liquid comprising large particles
WO2015144485A1 (de) * 2014-03-28 2015-10-01 Henkel Ag & Co. Kgaa Olfaktorische verstärker

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191384A1 (en) * 2004-02-06 2005-09-01 Bretl Neil A. Hunter's breath masking flavor for use in chewing gum and the like
JP2007534693A (ja) 2004-04-23 2007-11-29 サイデックス・インコーポレイテッド スルホアルキルエーテルシクロデキストリンを含有するdpi製剤
US9044049B2 (en) 2005-04-29 2015-06-02 Philip Morris Usa Inc. Tobacco pouch product
JP5004947B2 (ja) 2005-04-29 2012-08-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム タバコポーチ製品
US7629331B2 (en) * 2005-10-26 2009-12-08 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions and methods of preparation thereof
PT2335707E (pt) 2005-10-26 2015-09-10 Cydex Pharmaceuticals Inc Composições de éter sulfoalquílico de ciclodextrina e métodos para a sua preparação
CN102327617B (zh) * 2005-10-26 2014-08-20 锡德克斯药物公司 磺基烷基醚环糊精组合物和其制备方法
US8685478B2 (en) 2005-11-21 2014-04-01 Philip Morris Usa Inc. Flavor pouch
US8616221B2 (en) 2007-02-28 2013-12-31 Philip Morris Usa Inc. Oral pouch product with flavored wrapper
US9888712B2 (en) 2007-06-08 2018-02-13 Philip Morris Usa Inc. Oral pouch products including a liner and tobacco beads
US8950408B2 (en) 2007-07-16 2015-02-10 Philip Morris Usa Inc. Oral pouch product having soft edge
US8424541B2 (en) 2007-07-16 2013-04-23 Philip Morris Usa Inc. Tobacco-free oral flavor delivery pouch product
US8124147B2 (en) * 2007-07-16 2012-02-28 Philip Morris Usa Inc. Oral pouch products with immobilized flavorant particles
WO2009010878A2 (en) 2007-07-16 2009-01-22 Philip Morris Products S.A. Method of flavor encapsulation of oral pouch products through the use of a drum coater
MY151367A (en) * 2008-06-25 2014-05-15 Japan Tobacco Inc Smoking article
US8377215B2 (en) 2008-12-18 2013-02-19 Philip Morris Usa Inc. Moist botanical pouch processing
US8863755B2 (en) 2009-02-27 2014-10-21 Philip Morris Usa Inc. Controlled flavor release tobacco pouch products and methods of making
US8747562B2 (en) 2009-10-09 2014-06-10 Philip Morris Usa Inc. Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release
CN102266123A (zh) * 2010-06-07 2011-12-07 湖北中烟工业有限责任公司 选择性降低烟气酚类化合物的β-环糊精复合颗粒及应用
US8939388B1 (en) 2010-09-27 2015-01-27 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
US9332776B1 (en) 2010-09-27 2016-05-10 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
US8609158B2 (en) * 2011-07-11 2013-12-17 Diane Elizabeth Brooks Diane's manna
CN102805425A (zh) * 2012-08-30 2012-12-05 江苏中烟工业有限责任公司 β-胡萝卜素/β-环糊精包合物在降低卷烟烟气中酚类化合物释放量中的应用
BR102013007969A2 (pt) * 2013-04-03 2014-11-11 Isp Do Brasil Ltda Composições cosméticas e uso de ciclodextrina
CN104886528B (zh) * 2015-05-25 2017-07-28 昆明理工大学 一种牛肝菌肉味香粉及其制备方法
GB201514384D0 (en) 2015-08-13 2015-09-30 Roombiotic Gmbh Antimicrobial compositions and uses of antimicrobial pyrazine compounds
US10155234B1 (en) 2017-08-04 2018-12-18 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
CA3071115C (en) 2017-08-04 2022-06-21 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US9861945B1 (en) 2017-08-04 2018-01-09 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US9993787B1 (en) 2017-08-04 2018-06-12 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10486173B2 (en) 2017-08-04 2019-11-26 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10569244B2 (en) 2018-04-28 2020-02-25 ZoomEssence, Inc. Low temperature spray drying of carrier-free compositions
CN113347958A (zh) * 2018-12-05 2021-09-03 罗盖特公司 包含呈粒径分布状环糊精的化妆品组合物
FR3089420B1 (fr) * 2018-12-05 2021-01-22 Roquette Freres Compositions cosmétiques comprenant une cyclodextrine de taille sélectionnée, et utilisation de ladite cyclodextrine en cosmétique
JP6975831B2 (ja) * 2019-10-10 2021-12-01 三栄源エフ・エフ・アイ株式会社 香気保留性向上用組成物、及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105666A1 (de) * 1980-02-18 1982-01-07 Chinoin Gyógyszer és Vegyészeti Termékek Gyára RT, 1045 Budapest Praeparate zur aromatisierung von tee sowie verfahren zur aromatisierung von tee
JPS58172311A (ja) * 1982-04-02 1983-10-11 Kodama Kk 持続性製剤及びその製法
EP0163836A1 (de) * 1984-04-07 1985-12-11 Bayer Ag Verfahren und Vorrichtung zur Herstellung von Granulaten
EP0392608A2 (de) * 1989-04-12 1990-10-17 The Procter & Gamble Company Festes Verbraucherprodukt, welches feinteilige Cyclodextrin-Komplexe enthält
JPH07165616A (ja) * 1993-12-09 1995-06-27 Hisamitsu Pharmaceut Co Inc シクロデキストリンの複合組成物及び複合化法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102564A (en) 1989-04-12 1992-04-07 The Procter & Gamble Company Treatment of fabric with perfume/cyclodextrin complexes
CN1073711A (zh) * 1991-12-27 1993-06-30 昆明五华香料厂 微囊赋香剂及其制备方法与用途
CN1188143A (zh) * 1997-01-13 1998-07-22 浙江高创科技发展有限公司 洗涤用的香料颗粒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105666A1 (de) * 1980-02-18 1982-01-07 Chinoin Gyógyszer és Vegyészeti Termékek Gyára RT, 1045 Budapest Praeparate zur aromatisierung von tee sowie verfahren zur aromatisierung von tee
JPS58172311A (ja) * 1982-04-02 1983-10-11 Kodama Kk 持続性製剤及びその製法
EP0163836A1 (de) * 1984-04-07 1985-12-11 Bayer Ag Verfahren und Vorrichtung zur Herstellung von Granulaten
EP0392608A2 (de) * 1989-04-12 1990-10-17 The Procter & Gamble Company Festes Verbraucherprodukt, welches feinteilige Cyclodextrin-Komplexe enthält
JPH07165616A (ja) * 1993-12-09 1995-06-27 Hisamitsu Pharmaceut Co Inc シクロデキストリンの複合組成物及び複合化法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; "Formation of inclusion compounds of drugs with cyclodextrin in presence of water-soluble polymers to improve solubility and stability", XP002262258, retrieved from STN Database accession no. 123:179388 *
DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO,US; "Sustained-release pharmaceuticals containing ethyl cellulose, glycerides and cyclodextrin", XP002262259, retrieved from STN Database accession no. 100:12689 *
DATABASE WPI Week 198346, Derwent World Patents Index; AN 1983-818128 *
DATABASE WPI Week 199534, Derwent World Patents Index; AN 1995-261219 *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 09 31 October 1995 (1995-10-31) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005026002A1 (de) * 2005-06-03 2006-12-14 Beiersdorf Ag Kosmetische Zubereitungen mit einem Gehalt an einem wässrigen Anisfruchtextrakt und einem oder mehreren polymeren Verdickungsmitteln, gewählt aus der Gruppe der Cellulosederivate
EP2368442A2 (de) 2005-07-27 2011-09-28 Symrise AG Verwendung von Hesperetin zur Verstärkung von süßem Geschmack
EP2027136A1 (de) * 2006-06-13 2009-02-25 Cargill, Incorporated Grossteilige cyclodextrin-einschlusskomplexe und verfahren zu deren herstellung
EP2027136A4 (de) * 2006-06-13 2011-08-03 Cargill Inc Grossteilige cyclodextrin-einschlusskomplexe und verfahren zu deren herstellung
EP1955601A1 (de) 2007-01-25 2008-08-13 Symrise GmbH & Co. KG Verwendung von Propenylphenylglycosiden zur Verstärkung süßer sensorischer Eindrücke
EP1977655A1 (de) 2007-03-29 2008-10-08 Symrise GmbH & Co. KG Aromakompositionen von Alkamiden mit Hesperetin und/oder 4-Hydroxydihydrochalkonen und deren Salzen zur Verstärkung süßer sensorischer Eindrücke
WO2013124773A1 (en) * 2012-02-23 2013-08-29 Bostik S.A. Dispenser packaging for viscous liquid comprising large particles
US9327894B2 (en) 2012-02-23 2016-05-03 Bostik S.A. Dispenser packaging for viscous liquid comprising large particles
WO2015144485A1 (de) * 2014-03-28 2015-10-01 Henkel Ag & Co. Kgaa Olfaktorische verstärker

Also Published As

Publication number Publication date
CN1678674A (zh) 2005-10-05
CN1329440C (zh) 2007-08-01
US7348035B2 (en) 2008-03-25
EP1537174A1 (de) 2005-06-08
US20040234479A1 (en) 2004-11-25
AU2003264145A1 (en) 2004-03-29
DE10240698A1 (de) 2004-03-18

Similar Documents

Publication Publication Date Title
WO2004022642A1 (de) Cyclodextrinpartikel
EP1501375B1 (de) Aromapartikel
EP1847181B1 (de) Neue Verwendungen von Nonenolid
EP2689835B1 (de) Duftölverkapselung
DE60313515T2 (de) Mischung mit wintergrün-geruch und geschmack
DE10046469B4 (de) Mehrphasenseifen
EP1399125B1 (de) Pflegemittel, enthaltend matrixpartikel mit einer parfümkomponente und einer waschaktiven komponente
EP3634368B1 (de) Pulver enthaltend kristalle mit darin eingeschlossenen inhaltsstoffen
EP1847588B1 (de) Neue Verwendungen von 4-Methyl-5-hydroxy-hexansäurelacton
EP3873658A1 (de) Verfahren zur herstellung von mikropartikeln, die mit einem aktivstoff beladen sind
EP2446751B1 (de) Hitzestabile Aromapartikel mit hohem Impact
EP2966158A1 (de) Isomerenmischungen von ungesättigten makrocyclischen Moschusverbindungen
EP2316408B1 (de) Ethanolfreie Parfümölmikroemulsion
JP7420935B2 (ja) 着色粒子
EP1442106B1 (de) Gemische zur verwendung als moschusriechstoff
EP2966159B1 (de) Mischungen mit angereichten E-Isomeren von ungesättigten makrocyclischen Moschusverbindungen
KR20060086444A (ko) 윈터그린의 향과 풍미를 가진 혼합물
DE10152990A1 (de) Gemische zur Verwendung als Moschusriechstoff

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10476828

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003793785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038210657

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003793785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP