WO2004018688A1 - VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN - Google Patents

VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN Download PDF

Info

Publication number
WO2004018688A1
WO2004018688A1 PCT/EP2003/009101 EP0309101W WO2004018688A1 WO 2004018688 A1 WO2004018688 A1 WO 2004018688A1 EP 0309101 W EP0309101 W EP 0309101W WO 2004018688 A1 WO2004018688 A1 WO 2004018688A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclase
plant
hydroxylase
sequence
expression
Prior art date
Application number
PCT/EP2003/009101
Other languages
English (en)
French (fr)
Inventor
Martin Klebsattel
Matt Sauer
Ralf Flachmann
Christel Renate Schopfer
Original Assignee
Sungene Gmbh & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002138980 external-priority patent/DE10238980A1/de
Priority claimed from DE10238979A external-priority patent/DE10238979A1/de
Priority claimed from DE2002158971 external-priority patent/DE10258971A1/de
Application filed by Sungene Gmbh & Co. Kgaa filed Critical Sungene Gmbh & Co. Kgaa
Priority to AU2003258622A priority Critical patent/AU2003258622A1/en
Priority to US10/524,971 priority patent/US20060059584A1/en
Priority to EP03792344A priority patent/EP1532256A1/de
Publication of WO2004018688A1 publication Critical patent/WO2004018688A1/de
Priority to EP04741347A priority patent/EP1658377A1/de
Priority to JP2006523556A priority patent/JP2007502605A/ja
Priority to PCT/EP2004/008623 priority patent/WO2005019467A1/de
Priority to MXPA06001620A priority patent/MXPA06001620A/es
Priority to PCT/EP2004/008625 priority patent/WO2005019461A2/de
Priority to US10/569,064 priority patent/US20080060096A1/en
Priority to CA002535972A priority patent/CA2535972A1/en
Priority to PCT/EP2004/008624 priority patent/WO2005019460A2/de
Priority to EP04763696A priority patent/EP1658372A2/de
Priority to US10/568,741 priority patent/US20060162020A1/en
Priority to AU2004267196A priority patent/AU2004267196A1/en
Priority to US10/569,022 priority patent/US20060194274A1/en
Priority to EP04763695A priority patent/EP1658371A2/de
Priority to NO20050600A priority patent/NO20050600L/no
Priority to IL173644A priority patent/IL173644A0/en
Priority to IL173645A priority patent/IL173645A0/en
Priority to NO20060720A priority patent/NO20060720L/no
Priority to IL173780A priority patent/IL173780A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0093Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/179Colouring agents, e.g. pigmenting or dyeing agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
    • A23L5/44Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives using carotenoids or xanthophylls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Definitions

  • the present invention relates to a method for producing ⁇ -carotenoids by cultivating genetically modified plants, the genetically modified plants, and their use as food and feed and for producing ⁇ -carotenoid extracts.
  • Carotenoids are synthesized de novo in bacteria, algae, fungi and plants.
  • ß-Carotenoids i.e. carotenoids of the ß-carotene pathway, such as ß-carotene, ß-cryptoxanthine, zeaxanthine, antheraxanthine, violaxanthine and neoxanthine are natural antioxidants and pigments that are produced by microorganisms, algae, fungi and plants as secondary metabolites.
  • ß-Carotene is a vitamin A precursor and therefore an important component in food, feed and cosmetic applications. It is also used as a pigment in many areas, such as the beverage industry.
  • Zeaxanthin is one of the main pigments in the macula of the human eye and protects the sensitive visual cells with its special light absorption spectrum. Zeaxanthin is degraded by the light and must be replenished with the food in order to obtain efficient protection of the macula and to prevent long-term damage, such as age-related macular degeneration (ADM). Zeaxanthin also serves as a pigment for animal products, in particular for pigmenting egg yolk, skin and meat of chicken birds by oral administration.
  • ADM age-related macular degeneration
  • ß-carotenoids are also of great economic interest because they are used as color pigments and antioxidants as food additives, dyes, preservatives, animal feed and food supplements.
  • ß-carotenoids such as ß-carotene and zeaxanthin
  • chemical synthesis processes The production of ß-carotenoids such as ß-carotene and zeaxanthin is nowadays mostly carried out by chemical synthesis processes.
  • Natural ß-carotenoids such as natural ß-carotene, are obtained in small amounts in biotechnological processes by cultivating microorganisms, algae or fungi or by fermentation of genetically optimized microorganisms and subsequent isolation.
  • Natural zeaxanthin is a component of so-called oleoresin, an extract from dried petals of the Tagetes errecta plant.
  • the content of zeaxanthin in oleoresin is low, since the carotenoids in the Petale ⁇ of Tagetesrerecta predominantly consist of carotenoids of the ⁇ -carotene pathway, such as lutein.
  • Carlo Rosati et al. describe the overexpression of a ß-cyclase from Arabidopsis thaliana with a fruit-specific promoter in tomato (Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G. Metabolie engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 2000 Nov; 24 (3): 413-9.). As a result, the lycopene present in the wild-type fruit is increasingly converted into ⁇ -carotene.
  • Sridhar Dharmapuri et al. describe the overexpression of a ß cyclase and the combination with the overexpression of a ß hydroxylase in the fruit of tomato (Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G. Metabolie engineering of xanthophyll content in tomato fruits , FEBS Lett. 2002 May 22; 519 (1-3): 30-4).
  • the carotenoid content, here lutein, is numbered.
  • the lutein amounts are between 1.0 and 2.0 ⁇ g / mg fresh weight (wild type: 1.9 ⁇ g / mg) and the proportion of lutein in the total carotenoids is between 1, 4 and 2 in all the cases described , 9% (wild type: 2.8%).
  • the content of lutein is not significantly reduced in any fruit of these transgenic plants.
  • EP 393690 B1, WO91 / 13078 A1, EP 735137 A1, EP 747483 A1 and WO 97/36998 A1 describe ⁇ -cyclase genes. • . •
  • EP 393690 describes a process for the preparation of carotenoids by using at least one of the genes coding for phytoene synthase, phytoene dehydrogenase, ⁇ -cyclase and ⁇ -hydroxylase obtained from Erwinia uredovora.
  • WO91 / 13078 A1 describes a process for the preparation of carotenoids by using the genes selected from GGPP synthase, phytoene synthase, phytoene dehydrogenase, ⁇ -cyclase and ⁇ -hydroxylase obtained from Erwinia herbicola.
  • WO 96/36717 describes a process for the preparation of carotenoids by using genes coding for ⁇ -cyclase obtained from Capsicum annum.
  • EP 747483 A1 describes a process for the preparation of carotenoids by using the genes coding for GGPP synthase, phytoene synthase, phytoene dehydrogenase, ⁇ -cyclase and ⁇ -hydroxylase obtained from flavobacterium.
  • WO 96/28014 describes and claims DNA sequences coding for a ⁇ cyclase from Synechococcus sp. PCC7942, tobacco and tomato.
  • WO 00/08920 describes a new ⁇ -cyclase gene from tomato (Bgene), the use of the regulation signals of the gene for the chromoplast-specific expression of foreign genes and the use of the antisense DNA from Bgene for reducing the ⁇ -carotenoid content in tomato. WO 00/08920 also describes that the gene for the production of carotenoids can be overexpressed in higher plants.
  • WO 00/32788 describes a method for manipulating the carotenoid content in plants using ⁇ -cyclase genes from Marigold.
  • WO 00/32788 also describes genetically modified Marigold plants that overexpress a ⁇ -cyclase.
  • WO 00/32788 also describes genetically modified Marigold plants with a reduced ⁇ -cyclase activity.
  • the invention was therefore based on the object to provide an alternative process for the production of ⁇ -carotenoids by cultivating genetically modified plants, or to provide other transgenic plants which produce ⁇ -carotenoids which have the disadvantages described Not have prior art and provide a high content of ⁇ -carotenoids, with a simultaneously lower amount of ⁇ -carotenoids.
  • a process for the production of ß-carotenoids was found by cultivating genetically modified plants which, compared to the wild type, have an increased ß-cyclase activity in plant tissues containing photosynthetically inactive plastids, and the increased ß-cyclase activity by ⁇ -cyclase is caused, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the SEQ sequence. ID. NO. 2, with the proviso that tomato is excluded as a plant.
  • the increase in the ⁇ -cyclase activity in plant tissues containing photosynthetically inactive plastids caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has, in genetically modified plants with the exception of tomato, an increase in the content of ⁇ -carotenoids and a decrease in the content of ⁇ -carotenoids.
  • ⁇ -cyclase activity means the enzyme activity of a ⁇ -cyclase.
  • a ß-cyclase is understood to be a protein which has the enzymatic activity to convert a terminal, linear residue of lycopene into a ß-ionone ring.
  • a ⁇ -cyclase is understood to mean a protein which has the enzymatic activity, lycopene in ⁇ -carotene, ⁇ -carotene in ⁇ -carotene or lycopene . convert to ß-carotene.
  • ß-cyclase activity is understood to mean the amount of lycopene or ⁇ -carotene converted or the amount of ⁇ -carotene or ß-carotene formed in a certain time by the ß-cyclase protein.
  • the amount of lycopene or ⁇ -carotene converted or the amount of ⁇ -carotene or ß-carotene formed is increased by the protein ß-cyclase in a certain time compared to the wild type.
  • This increase in the ⁇ -cyclase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the ⁇ - Wild-type cyclase activity.
  • the determination of the ⁇ -cyclase activity in genetically modified plants according to the invention and in wild-type or reference plants is preferably carried out under the following conditions:
  • the activity of the ⁇ -cyclase is determined according to Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15) / ⁇ vitro.
  • Potassium phosphate as a buffer (pH 7.6), lycopene as a substrate, stroma protein from paprika, NADP +, NADPH and ATP are added to a certain amount of plant extract.
  • the in vitro assay is carried out in a volume of 250 ⁇ l volume.
  • the mixture contains 50 mM potassium phosphate (pH 7.6), different amounts of plant extract, 20 nM lycopene, 250 g of chromoplastidic stromal protein from paprika, 0.2 mM NADP +, 0.2 mM NADPH and 1 mM ATP.
  • NADP / NADPH and ATP are in . 10 ml ethanol dissolved with 1 mg Tween 80 immediately before adding to the incubation medium. After a reaction time of 60 minutes at 30C, the reaction is ended by adding chloroform / methanol (2: 1). The reaction products extracted in chloroform are analyzed by HPLC.
  • photosynthetically inactive plastids is understood to mean plastids in which no photosynthesis takes place, such as, for example, chromoplasts, leucoplasts or amyloplasts.
  • plant tissue containing photosynthetically inactive plastids is understood to mean plant tissue or parts of plants which contain plastids in which no photosynthesis takes place, that is to say, for example, plant tissue or parts of plants which contain chromoplasts, leucoplasts or amyloplasts, such as flowers, fruits or tubers.
  • the plant tissues containing photosynthetically inactive plastids are selected from the group consisting of flower, fruit and tuber.
  • the plant in this preferred embodiment has an increased ⁇ -cyclase activity in flowers, fruits or tubers compared to the wild type.
  • each plant chooses the plant tissue containing photosynthetically inactive plastids, ie preferably flower, fruit or tuber, in which the highest total carotenoid content is already present in the wild type.
  • wild type is understood to mean the corresponding non-genetically modified starting plant.
  • plant can mean the starting plant (wild type) or a genetically modified plant according to the invention or both.
  • wild type is used to increase the ⁇ -cyclase activity, to increase the hydroxylase activity described below, to reduce the described below endogenous ß-hydroxylase activity, for the reduction of ⁇ -cyclase activity described below and the increase in the ß-carotenoid content each understood a reference plant.
  • This reference plant is particularly preferred for plants which have the highest carotenoid content in flowers as flowers, Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta or Tagetes campanulata, particularly preferably Tagetes erecta.
  • This reference plant is for plants which, as a wild type, have the highest carotenoid content in fruits, preferably maize.
  • This reference plant is for plants which, as a wild type, have the highest carotenoid content in tubers, preferably Solanum tuberosum.
  • the ⁇ -cyclase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the translation and protein levels or by increasing the gene expression of a nucleic acid encoding a ⁇ -cyclase compared to the wild type, for example by inducing the ⁇ -cyclase gene by activators or strong promoters or by introducing nucleic acids encoding a ⁇ -cyclase into the plant.
  • the ⁇ -cyclase activity is increased compared to the wild type by increasing the gene expression of a nucleic acid encoding a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 compared to the wild type.
  • the gene expression of a nucleic acid encoding a ⁇ -cyclase is increased by introducing nucleic acids which encode ⁇ -cyclases containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has in the plant.
  • the transgenic plants according to the invention there is at least one further ⁇ -cyclase gene under the control of a promoter which guarantees the expression of the ⁇ -cyclase gene in plant tissues containing photosynthetically inactive plastids, coding for a ⁇ - Cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • SEQ sequence. ID. NO. 2 has, on or at least two endogenous nucleic acids, coding for a ⁇ -cyclase, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has on.
  • any ⁇ -cyclase gene according to the invention that is to say any nucleic acids containing a ⁇ -cyclase, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2, can be used coded.
  • nucleic acids mentioned in the description can be, for example, an RNA, DNA or cDNA sequence.
  • nucleic acid sequences which have already been processed, such as to use the corresponding cDNAs.
  • Tomato (Bgene; WO 00/08920; nucleic acid: SEQ ID NO: 1, protein SEQ ID NO: 2).
  • ⁇ -cyclases and ⁇ -cyclase genes which can be used in the process according to the invention can be obtained, for example, from various organisms whose genomic sequence is known by comparing the identity of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the Sequences described above and in particular with the sequence SEQ ID NO: 2 are easy to find.
  • ⁇ -cyclases and ⁇ -cyclase genes can also be obtained from the nucleic acid sequences described above, in particular from SEQ ID NO: 1, from various organisms, the genomic sequence of which is not known, by hybridization techniques in a manner known per se Easy to find.
  • the hybridization can take place under moderate (low stringency) or preferably under stringent (high stringency) conditions.
  • the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with 2X SSC at 50 ° C) and those with high stringency (with 0.2X SSC at 50 ° C, preferably at 65 ° C) (20X SSC: 0.3 M sodium citrate, 3 M sodium chloride, pH 7.0).
  • the temperature during the washing step can be raised from moderate conditions at room temperature, 22 ° C, to stringent conditions at 65 ° C.
  • Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can be kept constant and only the other can be varied.
  • Denaturing agents such as formamide or SDS can also be used during hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C.
  • Polyvinylpyrrolidone 50 mM sodium phosphate buffer pH 6.5, 750 mM NaCI, 75 mM sodium citrate at 42 ° C, or
  • nucleic acids are encoded which encode a protein containing the amino acid sequence SEQ ID NO: 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which preferably has an identity of at least 65% at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, particularly preferably at least 97% at the amino acid level with the sequence SEQ ID NO: 2 and the enzymatic property of a Cyclase.
  • This can be a natural ⁇ -cyclase sequence which, as described above, can be found by comparing the identity of the sequences or using hybridization techniques from other organisms, or an artificial ⁇ -cyclase sequence which is based on the sequence SEQ ID NO : 2 was modified by artificial variation, for example by substitution, insertion or deletion of amino acids.
  • substitution is to be understood as meaning the replacement of one or more amino acids by one or more amino acids. So-called conservative exchanges are preferably carried out, in which the replaced amino acid has a similar property to the original amino acid, with for example exchange of GIu by Asp, Gin by Asn, Val by lle, Leu by lle, Ser by Thr.
  • Deletion is the replacement of an amino acid with a direct link.
  • Preferred positions for deietions are the termini of the polypeptide and the links between the individual protein domains.
  • Inserts are insertions of amino acids into the polypeptide chain, with a direct bond being formally replaced by one or more amino acids.
  • Identity between two proteins is understood to mean the identity of the amino acids over the respective total protein length, in particular the identity obtained by comparison with the aid of the laser genes software from DNASTAR, ine. Madison, Wisconsin (USA) using the Clustal method (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microeomputer. Comput Appl. Biosci. 1989 Apr; 5 (2): 151 -1) using the following parameters becomes:
  • a protein which has an identity of at least 20% at the amino acid level with a specific sequence is accordingly understood to mean a protein which, when comparing its sequence with the specific sequence, in particular according to the above program logarithm with the above parameter set, has an identity of at least 20%.
  • a protein which has an identity of at least 60% at the amino acid level with the sequence SEQ ID NO: 2 is accordingly understood to be a protein which, when comparing its sequence with the sequence SEQ ID NO: 2, in particular according to the above program logarithm with the above parameter set has an identity of at least 60%.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the plant-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 1 is introduced into the plant.
  • All of the above-mentioned ⁇ -cyclase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • the ⁇ -cyclase containing the amino acid sequence SEQ is expressed in the process according to the invention. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2, under the control of regulatory signals, preferably a promoter and plastid transit peptides, which ensure the expression of the ⁇ -cyclase in the plant tissues, containing photosynthetically inactive plastids.
  • genetically modified plants which, in plant tissues containing photosynthetically inactive plastids, have the highest expression rate of the ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the expression of the ⁇ -cyclase according to the invention takes place under the control of a promoter specific for the plant tissue.
  • a promoter specific for the plant tissue In the case described above in which the expression is to take place in flowers, it is advantageous for the ⁇ -cyclase according to the invention to be expressed under the control of a flower-specific or preferred petal-specific promoter.
  • the ⁇ -cyclase according to the invention is advantageous for the ⁇ -cyclase according to the invention to be expressed under the control of a fruit-specific promoter.
  • the expression is to be carried out in tubers, it is advantageous for the ⁇ -cyclase according to the invention to be expressed under the control of a bulb-specific promoter.
  • genetically modified plants are cultivated which additionally have an increased hydroxylase activity compared to the wild type.
  • Hydroxylase activity is understood to mean the enzyme activity of a ⁇ -carotene hydroxylase, which is referred to below as hydroxylase.
  • a hydroxylase is understood to mean a protein which has the enzymatic activity of introducing a hydroxyl group on the optionally substituted ⁇ -ionone ring of carotenoids.
  • a hydroxylase is understood to mean a protein which has the enzymatic activity to convert ⁇ -carotene into zeaxanthin.
  • hydroxyase activity means the amount of ⁇ -carotene or amount of zeaxanthin formed by the protein hydroxylase in a certain time.
  • the amount of ⁇ -carotene or the amount of zeaxanthin formed is increased in a certain time by the protein hydroxylase compared to the wild type.
  • This increase in the hydroxylase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the hydroxylase activity of the wild type.
  • the "endogenous ⁇ -hydroxylase” described below means the plant's own endogenous hydroxylase. The activity is determined analogously.
  • hydroxylase activity in genetically modified plants according to the invention and in wild-type or reference plants is preferably determined under the following conditions:
  • the activity of the hydroxylase is according to Bouvier et al. (Biochim. Biophys. Acta 1391 10 (1998), 320-328) in vitro. Ferredoxin, ferredoxin-NADP oxidoreductase, catalase, NADPH and beta-carotene with mono- and digalactosylglycerides are added to a certain amount of plant extract.
  • the hydroxylase activity is particularly preferably determined under the following conditions according to Bouvier, Keller, d'Harlingue and Camara (xanthophyll bio-synthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L .; Biochim. Biophys. Acta 1391 (1998) 320-328):
  • the in vitro assay is carried out in a volume of 0.250 ml volume.
  • the 0 approach contains 50 mM potassium phosphate (pH 7.6), 0.025 mg ferredoxin from spinach, 0.5 units ferredoxin-NADP + oxidoreductase from spinach, 0.25 mM NADPH, 0.010 mg beta-carotene (emulsified in 0.1 mg Tween 80), 0.05 mM a mixture of Mono- and digalactosylglycerides (1: 1), 1 unit of catalysis, 200 mono- and digalactosylglycerides, (1: 1), 0.2 mg bovine serum albumin and plant extract in 5 different volumes.
  • the reaction mixture is incubated for 2 hours at 30C.
  • the reaction products are extracted with organic solvent such as acetone or chloroform / methanol (2: 1) and determined by means of HPLC.
  • the hydroxylase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing the gene expression of nucleic acids encoding a hydroxylase compared to the Wiid type.
  • the increase in the gene expression of the nucleic acids encoding a hydroxylase 5 compared to the wild type can also be achieved in various ways, for example by inducing the hydroxylase gene by activators or by introducing one or more hydroxylase gene copies, i.e. by introducing at least one nucleic acid encoding a hydroxylase into the plant.
  • Increasing the gene expression of a nucleic acid encoding a hydroxylase is also understood according to the invention to mean the manipulation of the expression of the plants' own endogenous hydroxylase.
  • Such a change, which results in an increased expression rate of the gene can take place, for example, by deleting or inserting DNA sequences.
  • an altered or increased expression of an endogenous hydroxylase gene can be achieved in that a regulator protein which does not occur in the non-transformed plant interacts with the promoter of this gene.
  • Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
  • the gene expression of a nucleic acid encoding a hydroxylase is increased by introducing at least one nucleic acid encoding a hydroxylase into the plant.
  • any hydroxylase gene that is to say any nucleic acid which codes for a hydroxylase, can be used for this purpose.
  • nucleic acid sequences which have already been processed such as the corresponding cDNAs
  • examples of a hydroxylase gene are:
  • nucleic acid encoding a hydroxylase from Haematococcus pluvialis, Access AX038729, WO 0061764); (Nucleic acid: SEQ ID NO: 3, protein: SEQ ID NO: 4),
  • a particularly preferred hydroxylase is also the hydroxylase from tomato (Acc.No. LEY14810) (nucleic acid: SEQ ID NO: 5; protein: SEQ ID NO. 6).
  • At least one further hydroxylase gene is thus present in the preferred transgenic plants according to the invention compared to the wild type.
  • the genetically modified plant has, for example, at least one exogenous nucleic acid encoding a hydroxylase or at least two endogenous nucleic acids encoding a hydroxylase.
  • nucleic acids encoding proteins are preferably used as the hydroxylase genes, containing the amino acid sequence SEQ ID NO: 6 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 20 %, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 6, and which have the enzymatic property of a hydroxylase.
  • hydroxylases and hydroxylase genes can be obtained, for example, from different organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or Find the corresponding back-translated nucleic acid sequences from databases with SeQ ID NO: 6.
  • hydroxylases and hydroxylase genes can also easily be obtained, for example, starting from the sequence SEQ ID NO: 5 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se find.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the hydroxylase of the sequence SEQ ID NO: 6.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons that are frequently used in accordance with the plant-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 5 is introduced into the organism.
  • All of the above-mentioned hydroxylase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • the expression of the hydroxylase in the process according to the invention is preferably carried out under the control of regulation signals, preferably a promoter and plastid transit peptides, which ensure the expression of the hydroxylase in the plant tissues containing photosynthetically inactive plastids.
  • regulation signals preferably a promoter and plastid transit peptides, which ensure the expression of the hydroxylase in the plant tissues containing photosynthetically inactive plastids.
  • genetically modified plants are used which, in plant tissues containing photosynthetically inactive plastids, have the highest expression rate of the hydroxylase.
  • the genetically modified plants have, in addition to the wild type, a reduced activity of at least one of the activities selected from the group ⁇ -cyclase activity and endogenous ß-hydroxylase activity.
  • ⁇ -Cyclase activity means the enzyme activity of an ⁇ -cyclase.
  • An ⁇ -cyclase is understood to mean a protein which has the enzymatic activity of converting a terminal, linear residue of lycopene into an ⁇ -ionone ring.
  • ⁇ -cyclase is therefore understood to mean in particular a protein which has the enzymatic activity to convert lycopene to ⁇ -carotene.
  • ⁇ -cyclase activity is understood to mean the amount of lycopene converted or amount of ⁇ -carotene formed by the protein ⁇ -cyclase in a certain time.
  • the amount of lycopene converted or the amount of ⁇ -carotene formed is reduced in a certain time by the protein ⁇ -cyclase compared to the wild type.
  • the determination of the ⁇ -cyclase activity in genetically modified plants according to the invention and in wild-type or reference plants is preferably carried out under the following conditions:
  • the ⁇ -cyclase activity can be determined according to Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15) / t7 vitro if potassium phosphate is used as a buffer for a certain amount of plant extract (pH 7.6 ), Lycopene as substrate, stromal protein from paprika, NADP +, NADPH and ATP are added.
  • ⁇ -cyclase activity in genetically modified plants according to the invention and in wild-type or reference plants is carried out particularly preferably according to Bouvier, d'Harlingue and Camara (Molecular Analysis of carotenoid cyclase inhibition; Arch. Biochem. Biophys. 346 (1) ( 1997) 53-64):
  • the in vitro assay is carried out in a volume of 0.25 ml.
  • the mixture contains 50 mM potassium phosphate (pH 7.6), different amounts of plant extract, 20 nM lycopene, 0.25 mg of chromoplastid stromal protein from paprika, 0.2 mM NADP +, 0.2 mM NADPH and 1 mM ATP.
  • NADP / NADPH and ATP are dissolved in 0.01 ml ethanol with 1 mg Tween 80 immediately before adding to the incubation medium.
  • the reaction products extracted in chloroform are analyzed by HPLC.
  • Endogenous ⁇ -hydroxylase activity is understood to mean the enzyme activity of the endogenous, plant-specific ⁇ -hydroxylase.
  • An endogenous .beta.-hydroxylase is understood to mean an endogenous, plant-specific hydroxylase as described above.
  • the endogenous ⁇ -hydroxylase is understood to mean the ß-hydroxylase of Tagetes errecta.
  • An endogenous ⁇ -hydroxylase is accordingly understood to mean, in particular, a plant's own protein which has the enzymatic activity to convert ⁇ -carotene into zeaxanthin.
  • endogenous .beta.-hydroxylase activity is understood to mean the amount of .beta.-carotene or the amount of zeaxanthin formed by the protein which is endogenous .beta.-hydroxylase.
  • the amount of ß-carotene converted by the protein endogenous ß-hydroxylase or the amount of zeaxanthin formed is reduced in a certain time compared to the wild type.
  • This reduction in endogenous ⁇ -hydroxylase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, further preferably 100%.
  • the endogenous ⁇ -hydroxylase activity is particularly preferably completely switched off.
  • the endogenous ⁇ -hydroxylase activity is determined as described above analogously to the determination of the hydroxylase activity.
  • a reduced ⁇ -cyclase activity or hydroxylase activity is preferably the partial or essentially complete prevention or blocking of the functionality of an ⁇ -cyclase or hydroxylase in a plant cell, plant or one of these, based on different cell biological mechanisms understood derived part, tissue, organ, cells or seeds.
  • the enzyme activities according to the invention in plants can be reduced compared to the wild type, for example by reducing the amount of protein or the amount of mRNA in the plant. Accordingly, an enzyme activity which is reduced compared to the wild type can be determined directly or by determining the amount of protein or the amount of mRNA of the plant according to the invention in comparison to the wild type.
  • a reduction in ⁇ -cyclase activity includes a quantitative reduction in ⁇ -cyclase up to an essentially complete absence of ⁇ -cyclase (i.e. lack of detectability of ⁇ -cyclase activity or lack of immunological detectability of ⁇ -cyclase).
  • the ⁇ -cyclase activity or the ⁇ -cyclase protein amount or the ⁇ -cyclase mRNA amount in the plant, particularly preferably in flowers compared to the wild type by at least 5%, more preferably by at least 20% , more preferably reduced by at least 50%, more preferably by 100%.
  • “reduction” also means the complete absence of the ⁇ -cyclase activity (or the ⁇ -cyclase protein or the ⁇ -cyclase mRNA).
  • a reduction in the endogenous ⁇ -hydroxylase activity comprises a quantitative reduction of an endogenous ⁇ -hydroxylase up to an essentially complete absence of the endogenous ⁇ -hydroxylase (ie lack of detectability of endogenous ⁇ -hydroxylase activity or lack of immunological detectability of the endogenous ⁇ -hydroxylase hydroxylase).
  • the endogenous ß-hydroxylase activity (or the endogenous ß-hydroxylase protein amount or the endogenous ß-hydroxylase mRNA amount) in the plant, particularly preferably in flowers, is preferably more preferably reduced by at least 5% compared to the wild type at least 20%, more preferably reduced by at least 50%, more preferably reduced by 100%.
  • “reduction” also means the complete absence of the endogenous ⁇ -hydroxylase activity (or the endogenous ⁇ -hydroxylase protein or the endogenous ⁇ -hydroxylase mRNA).
  • the ⁇ -cyclase activity and / or the endogenous ß-hydroxylase activity in plants is preferably reduced by at least one of the following methods:
  • dsRNA is directed against a gene (ie genomic DNA sequences such as the promoter sequence) or a transcript (ie mRNA sequences),
  • ⁇ -cyclase-antisense-ribonucleic acid sequence introducing at least one ⁇ -cyclase-antisense-ribonucleic acid sequence and / or endogenous ß-hydroxylase-antisense-ribonucleic acid sequence or an expression cassette or expression cassette ensuring their expression into plants.
  • ⁇ -cyclase-antisense-ribonucleic acid sequence introducing at least one ⁇ -cyclase-antisense-ribonucleic acid sequence and / or endogenous ß-hydroxylase-antisense-ribonucleic acid sequence or an expression cassette or expression cassette ensuring their expression into plants.
  • introducing at least one construct for generating an insertion, deletion, inversion or mutation in a ⁇ -cyclase gene and / or endogenous ß-hydroxylase gene in plants comprises the introduction of at least one construct to generate a loss of function, such as the generation of stop codons or a shift in the reading frame, on a gene, for example by generating an insertion, deletion, inversion or mutation in a gene.
  • Knockout mutants can preferably be inserted by means of targeted insertion into said gene by homologous recombination or Introduction of sequence-specific nucleases against the corresponding gene sequences can be generated.
  • ⁇ -cyclase-dsRNA double-stranded ⁇ -cyclase-ribonucleic acid sequence
  • endogenous ß-hydroxylase-dsRNA double-stranded endogenous ß-hydroxylase-dsRNA
  • double-stranded RNA interference double-stranded RNA interference
  • dsRNAi double-stranded RNA interference
  • Matzke MA et al. (2000) Plant Mol Biol 43: 401-415; Fire A. et al (1998) Nature 391: 806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035 or WO 00/63364.
  • dsRNAi double-stranded RNA interference
  • double-stranded ribonucleic acid sequence means one or more ribonucleic acid sequences that are theoretically in vitro and / or in vivo due to complementary sequences, for example according to the base pair rules of Waston and Crick and / or factually, for example due to hybridization experiments. to form double-stranded RNA structures.
  • RNA structures represents an equilibrium state.
  • the ratio of is preferred double-stranded molecules to corresponding dissociated forms at least 1 to 10, preferably 1: 1, particularly preferably 5: 1, most preferably 10: 1.
  • a double-stranded ⁇ -cyclase-ribonucleic acid sequence or ⁇ -cyclase-dsRNA is preferably understood to mean an RNA molecule which has a region with a double-strand structure and which contains a nucleic acid sequence in this region which
  • a) is identical to at least part of the plant's own ⁇ -cyclase transcript and / or
  • b) is identical to at least part of the plant's own ⁇ -cyclase promoter sequence.
  • RNA which has an area with a double-strand structure and which contains a nucleic acid sequence in this area which
  • a) is identical to at least part of the plant's own ⁇ -cyclase transcript and / or
  • b) is identical to at least part of the plant's own ⁇ -cyclase promoter sequence.
  • ⁇ -cyclase transcript is understood to mean the transcribed part of an ⁇ -cyelase gene which, in addition to the ⁇ -cyclase coding sequence, also contains, for example, non-coding sequences such as, for example, also UTRs.
  • RNA which is "identical to at least part of the plant's own ⁇ -cyclase promoter sequence is preferably taken to mean that the RNA sequence with at least part of the theoretical transcript of the ⁇ -cyclase promoter sequence, ie the corresponding RNA sequence, is identical.
  • a part of the plant's own ⁇ -cyclase transcript or the plant's own ⁇ -cyclase promoter sequence is understood to mean partial sequences which can range from a few base pairs to complete sequences of the transcript or the promoter sequence. The person skilled in the art can easily determine the optimal length of the partial sequences by routine experiments.
  • a double-stranded endogenous ⁇ -hydroxylase ribonucleic acid sequence or also endogenous ⁇ -hydroxylase dsRNA is preferably understood to mean an RNA molecule which has a region with a double-strand structure and which contains a nucleic acid sequence in this region
  • a) is identical to at least part of the plant's own endogenous ⁇ -hydroxylase transcript and / or
  • b) is identical to at least a part of the plant's own endogenous ⁇ -hydroxylase promoter sequence.
  • an RNA which has an area with a double-strand structure and which contains a nucleic acid sequence in this area is therefore preferably introduced into the plant to reduce the endogenous ⁇ -hydroxylase activity
  • a) is identical to at least part of the plant's own endogenous ⁇ -hydroxylase transcript and / or
  • b) is identical to at least a part of the plant's own endogenous ⁇ -hydroxylase promoter sequence.
  • endogenous ⁇ -hydroxylase transcript is understood to mean the transcribed part of an endogenous ⁇ -hydroxylase gene which, in addition to the endogenous ⁇ -hydroxylase coding sequence, also contains, for example, non-coding sequences, such as UTRs.
  • a part of the plant's own, endogenous ⁇ -hydroxylase transcript or the plant's own endogenous ⁇ -hydroxylase promoter sequence is understood to mean partial sequences which can range from a few base pairs to complete sequences of the transcript or the promoter sequence.
  • the person skilled in the art can easily determine the optimal length of the partial sequences by routine experiments.
  • the length of the partial sequences is at least 10 bases and at most 2 kb, preferably at least 25 bases and at most 1.5 kb, particularly preferably at least 50 bases and at most 600 bases, very particularly preferably at least 100 bases and at most 500, most preferably at least 200 bases or at least 300 bases and at most 400 bases.
  • the partial sequences are preferably selected in such a way that the highest possible specificity is achieved and activities of other enzymes, the reduction of which is not desired, are not reduced. It is therefore advantageous for the partial sequences of the dsRNA to select parts of the transcripts and / or partial sequences of the promoter sequences which do not occur in other activities.
  • the dsRNA therefore contains a sequence which is identical to part of the plant's own ⁇ -cyclase transcripts or endogenous ⁇ -hydroxylase transcripts and the 5 'end or the 3' end of the plant's own nucleic acid, encoding an ⁇ -cyclase or endogenous ß-hydroxylase.
  • non-translated regions in the 5 'or 3' of the transcript are suitable for producing selective double-strand structures.
  • Another object of the invention relates to double-stranded RNA molecules (dsRNA molecules) which, when introduced into a plant organism (or a cell, tissue, organ or propagation material derived therefrom) reduce a ⁇ -cyclase or an endogenous ß- Cause hydroxylase.
  • dsRNA molecules double-stranded RNA molecules
  • a double-stranded RNA molecule for reducing the expression of an ⁇ -cyclase preferably comprises
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of a "sense" RNA ⁇ -cyclase transcript, and
  • RNA strand which is essentially, preferably completely, complementary to the RNA “sense” strand under a).
  • a nucleic acid construct is preferably used which is introduced into the plant and which is transcribed in the plant into the endogenous ⁇ -hydroxylase dsRNA.
  • a double-stranded RNA molecule for reducing the expression of an endogenous ⁇ -hydroxylase preferably comprises
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of a “sense” RNA endogenous ⁇ -hydroxylase transcript, and
  • RNA strand which is essentially, preferably completely, complementary to the RNA “sense” strand under a).
  • a nucleic acid construct is preferably used which is introduced into the plant and which is transcribed into the endogenous ⁇ -hydroxylase dsRNA in the plant.
  • nucleic acid constructs are also called expression cassettes or expression vectors below.
  • ⁇ -cyclase nucleic acid sequence or the corresponding transcript for the preferred plant Tagetes erecta is preferably understood to mean the sequence according to SEQ ID NO: 8 or a part thereof.
  • the endogenous ⁇ -hydroxylase nucleic acid sequence or the corresponding transcript for the preferred plant Tagetes erecta is preferably understood to mean the sequence according to SEQ ID NO: 16 or a part thereof.
  • dsRNA sequence can also have insertions, deletions and individual point mutations in comparison to the target sequence and nevertheless brings about an efficient reduction in expression.
  • the homology is preferably at least 75%, preferably at least 80%, very particularly preferably at least 90%, most preferably 100% between the "sense" strand of an inhibitory dsRNA and at least part of the "sense” RNA transcript, or between the "antisense” strand the complementary strand of the corresponding gene.
  • dsRNA A 100% sequence identity between dsRNA and a gene transcript is not absolutely necessary in order to bring about an efficient reduction in protein expression.
  • the method is tolerant of sequence deviations, such as may arise as a result of genetic mutations, polymorphisms or evolutionary divergences.
  • the dsRNA which was generated on the basis of the ⁇ -cyclase sequence or endogenous ß-hydroxylase sequence of one organism, to suppress the ⁇ -cyclase expression or endogenous ß-hydroxylase expression in another organism.
  • the dsRNA preferably comprises sequence regions of gene transcripts which correspond to conserved regions. Said conserved areas can easily be derived from sequence comparisons.
  • “Essentially complementary” means that the “antisense” RNA strand can also have insertions, deletions and individual point mutations in comparison to the complement of the “sense” RNA strand.
  • the homology is preferably at least 80%, preferably at least 90%, very particularly preferably at least 95%, most preferably 100% between the "antisense” RNA strand and the complement of the "sense” RNA strand.
  • the ⁇ -cyclase dsRNA comprises
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of the promoter sequence of an ⁇ -cyclase gene
  • RNA strand which is essentially — preferably completely — complementary to the RNA “sense” strand under a).
  • the promoter region of an ⁇ -cyclase for the preferred plant Tagetes Erecta is preferably understood to mean a sequence according to SEQ ID NO: 9 or a part thereof.
  • SEQ ID NO: 10 Sense fragment of the 5'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 11 Antisense fragment of the 5'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 12 Sense fragment of the 3'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 13 Antisense fragment of the 3'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 14 Sense fragment of the ⁇ -cyclase promoter
  • SEQ ID NO: 15 Antisense fragment of the ⁇ -cyclase promoter
  • the endogenous ⁇ -hydroxylase dsRNA comprises
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of the promoter sequence of an endogenous ⁇ -hydroxylase gene
  • RNA strand which is essentially — preferably completely — complementary to the RNA “sense” strand under a).
  • SEQ ID NO: 18 Sense fragment of the 5'-terminal region of the endogenous ⁇ -hydroxylase
  • SEQ ID NO: 19 Antisense fragment of the 5'-terminal region of the endogenous ⁇ -hydroxylase
  • the dsRNA can consist of one or more strands of polyribonucleotides.
  • several individual dsRNA molecules, each comprising one of the ribonucleotide sequence sections defined above, can be introduced into the cell or the organism.
  • the double-stranded dsRNA structure can be formed from two complementary, separate RNA strands or - preferably - from a single, self-complementary RNA strand.
  • the “sense” RNA strand and the “antisense” RNA strand are preferably covalently linked to one another in the form of an inverted “repeat”.
  • the dsRNA can also comprise a hairpin structure in that the “sense” and “antisense” strand are connected by a connecting sequence (“linker”; for example an intron).
  • linker for example an intron
  • the self-complementary dsRNA structures are preferred because they only require the expression of an RNA sequence and always comprise the complementary RNA strands in an equimolar ratio.
  • the connecting sequence is preferably an intron (for example an intron of the ST-LS1 potato gene; Vancanneyt GF et al. (1990) Mol Gen Genet 220 (2): 245-250).
  • the nucleic acid sequence coding for a dsRNA can contain further elements, such as, for example, transcription termination signals or polyadenylation signals.
  • the dsRNA is directed against the promoter sequence of an enzyme, it preferably does not include any transcription termination signals or polyadenylation signals. This enables retention of the dsRNA in the nucleus of the cell and prevents distribution of the dsRNA in the entire plant ("spreading").
  • the two strands of the dsRNA are to be brought together in a cell or plant, this can be done, for example, in the following way:
  • RNA duplex The formation of the RNA duplex can be initiated either outside the cell or inside it.
  • the dsRNA can be synthesized either in vivo or in vitro.
  • a DNA sequence coding for a dsRNA can be placed in an expression cassette under the control of at least one genetic control element (such as, for example, a promoter). Polyadenylation is not required, and there is no need for elements to initiate translation.
  • the expression cassette for the MP-dsRNA is preferably contained on the transformation construct or the transformation vector.
  • the expression cassettes coding for the "antisense” and / or the “sense” strand of an ⁇ -cyclase dsRNA or for the self-complementary strand of the dsRNA are preferably inserted into a transformation vector and with the ones below described method introduced into the plant cell.
  • a stable insertion into the genome is advantageous for the method according to the invention.
  • the dsRNA can be introduced in an amount that enables at least one copy per cell. Larger quantities (e.g. at least 5, 10, 100, 500 or 1000 copies per cell) can possibly result in an efficient reduction.
  • ⁇ -cyclase-antisenseRNA introduction of an antisense-ribonucleic acid sequence of an ⁇ -cyclase ( ⁇ -cyclase-antisenseRNA) or introduction of an antisense-ribonucleic acid sequence of an endogenous ß-hydroxylase (endogenous ß-hydroxylase-antisenseRNA)
  • the antisense nucleic acid molecule hybridizes or binds with the cellular mRNA and / or genomic DNA coding for the ⁇ -cyclase or endogenous ⁇ -hydroxylase to be reduced. This suppresses the transcription and / or translation of the ⁇ -cyclase or endogenous ß-hydroxylase.
  • Hybridization can occur in a conventional manner via the formation of a stable duplex or - in the case of genomic DNA - by binding of the antisense nucleic acid molecule with the duplex of the genomic DNA through specific interaction in the major groove of the DNA helix.
  • An ⁇ -cyclase antisense RNA can be derived using the nucleic acid sequence coding for this ⁇ -cyclase, for example the nucleic acid sequence according to SEQ ID NO: 7 according to the base pair rules of Watson and Crick.
  • the ⁇ -cyclase antisenseRNA can be complementary to the entire transcribed mRNA of the ⁇ -cyclase, limited to the coding region or consist only of an oligonucleotide which is complementary to part of the coding or non-coding sequence of the mRNA.
  • the oligonucleotide can be complementary to the region that comprises the translation start for the ⁇ -cyclase.
  • An endogenous ⁇ -hydroxylase antisense RNA can be used using the nucleic acid sequence coding for this endogenous ⁇ -hydroxylase, for example the nucleic acid sequence according to SEQ ID NO: 16 according to the base pair rules of Watson and crick are derived.
  • the endogenous ⁇ -hydroxylase antisenseRNA can be complementary to the entire transcribed mRNA of the endogenous ⁇ -hydroxylase, limited to the coding region or consist only of an oligonucleotide which is complementary to part of the coding or non-coding sequence of the mRNA.
  • the oligonucleotide can be complementary to the region that comprises the translation start for the endogenous ⁇ -hydroxylase.
  • the antisenseRNAs can have a length of, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides, but can also be longer and comprise at least 100, 200, 500, 1000, 2000 or 5000 nucleotides ,
  • the antisenseRNAs are preferably recombinantly expressed in the target cell in the context of the method according to the invention.
  • Another object of the invention relates to transgenic expression cassettes containing a nucleic acid sequence coding for at least a part of an ⁇ -cyclase or endogenous ⁇ -hydroxylase, said nucleic acid sequence being functionally linked to a promoter which is functional in plant organisms in an antisense orientation.
  • Said expression cassettes can be part of a transformation construct or transformation vector, or can also be introduced as part of a co-transformation.
  • an ⁇ -cyclase or endogenous ⁇ -hydroxylase can be inhibited by nucleotide sequences which are complementary to the regulatory region of an ⁇ -cyclase gene or endogenous ß-hydroxylase gene (for example promoters and / or enhancers ) and form triple-helical structures with the DNA double helix there, so that the transcription of the ⁇ -cyclase gene or endogenous ß-hydroxylase gene is reduced.
  • Appropriate methods are described (Helene C (1991) Anticancer Drug Res 6 (6): 569-84;
  • the antisenseRNA can be an ⁇ -anomeric nucleic acid.
  • ⁇ -anomeric nucleic acid molecules form specific double-stranded hybrids with complementary RNA in which, in contrast to the conventional ⁇ -nucleic acids, the two strands run parallel to one another (Gautier C et al. (1987) Nucleic Acids Res 15: 6625-6641).
  • the antisense strategy described above can advantageously be coupled with a ribozyme method.
  • Catalytic RNA molecules or ribozymes can be adapted to any target RNA and cleave the phosphodiester framework at specific positions, whereby the target RNA is functionally deactivated (Tanner NK (1999) FEMS Microbiol Rev 23 (3): 257-275 ). This does not modify the ribozyme itself, but is able to cleave further target RNA molecules analogously, which gives it the properties of an enzyme.
  • the incorporation of ribozyme sequences into "antisense" RNAs gives precisely these "antisense” RNAs this enzyme-like, RNA-cleaving property and thus increases their efficiency in inactivating the target RNA.
  • RNA molecules The preparation and use of corresponding ribozyme "antisense” RNA molecules is described (inter alia in Haseloff et al. (1988) Nature 334: 585-591); Haselhoff and Gerlach (1988) Nature 334: 585-591; Steinecke P et al. (1992) EMBO J 11 (4): 1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250 (3): 329-338).
  • ribozymes e.g. "Hammerhead” ribozymes; Haselhoff and Gerlach (1988) Nature 334: 585-591
  • ribozymes can be used to catalytically cleave the mRNA of a ⁇ -cyclase to be reduced and thus to prevent translation.
  • Ribozyme technology can increase the efficiency of an antisense strategy.
  • Methods for the expression of ribozymes for the reduction of certain proteins are described in (EP 0291 533, EP 0321 201, EP 0360257). Ribozyme expression is also described in plant cells (Steinecke P et al. (1992) EMBO J 11 (4): 1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250 (3): 329- 338).
  • Suitable target sequences and ribozymes can, for example, as described in "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. Eds, Academic Press, Inc. (1995), pp. 449-460", by secondary structure calculations of ribozyme and Target RNA and their interaction can be determined (Bayley CC et al. (1992) Plant Mol Biol. 18 (2): 353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242 (6) : 653-657).
  • derivatives of Tetrahymena L-19 IVS RNA can be constructed which have regions complementary to the mRNA of the ⁇ -cyclase to be suppressed (see also US Pat. No. 4,987,071 and US Pat. No. 5,116,742).
  • ribozymes can also be identified via a selection process from a library of diverse ribozymes (Bartel D and Szostak JW (1993) Science 261: 1411-1418).
  • ⁇ -cyclase ribonucleic acid sequence or endogenous ß-hydroxylase ribonucleic acid sequence (or a part thereof) in sense orientation can lead to a co-suppression of the corresponding ⁇ -cyclase gene or endogenous ß-hydroxylase gene.
  • sense RNA with homology to an endogenous gene can reduce or switch off its expression, similar to that described for antisense approaches (Jorgensen et al. (1996) Plant Mol Biol 31 (5): 957-973; Goring et al. (1991) Proc Natl Acad Sei USA 88: 1770-1774; Smith et al. (1990) Mol Gen Genet 224: 447-481; Napoli et al.
  • the suppression for the particularly preferred plant Tagetes ercecta is preferably implemented using a sequence which is essentially identical to at least part of the nucleic acid sequence coding for an ⁇ -cyclase or endogenous ⁇ -hydroxylase, for example the nucleic acid sequence according to SEQ ID NO: 7 or SEQ. ID. NO. 16th
  • the senseRNA is preferably selected in such a way that the corresponding protein or a part thereof cannot be translated.
  • the 5'-untranslated or 3'-untranslated region can be selected, for example, or the ATG start codon can be deleted or mutated.
  • a reduction in ⁇ -cyclase or endogenous ß-hydroxylase expression is also possible with specific DNA-binding factors, for example with factors of the type of zinc finger transcription factors. These factors attach to the genomic sequence of the endogenous target gene, preferably in the regulatory areas, and bring about a reduction in expression. Appropriate processes for the production of such factors are described (Dreier B et al. (2001) J Biol Chem 276 (31): 29466-78; Dreier B et al. (2000) J Mol Biol 303 (4): 489-502; Beieri RR et al. (2000) Proc NatI Acad Sei USA 97 (4): 1495-1500; Beerii RR et al.
  • ⁇ -cyclase gene or endogenous ß-hydroxylase gene can be selected using any piece of an ⁇ -cyclase gene or endogenous ß-hydroxylase gene.
  • This section is preferably in the region of the promoter region. For gene suppression, however, it can also lie in the area of the coding exons or introns.
  • proteins can be introduced into a cell that inhibit the ⁇ -cyclase or endogenous ß-hydroxylase itself.
  • protein binding factors can e.g. Aptamers (Famulok M and Mayer G (1999) Curr Top Microbiol Immunol 243: 123- 36) or antibodies or antibody fragments or single-chain antibodies. The extraction of these factors has been described (Owen M et al. (1992) Biotechnology (NY) 10 (7): 790-794; Franken E et al. (1997) Curr Opin Biotechnol 8 (4): 411 -416; Whitelam ( 1996) Trend Plant Be 1: 286-272).
  • the ⁇ -cyclase or endogenous ß-hydroxylase expression can also effectively by inducing the specific RNA degradation by the plant using a viral expression system (Amplikon; Angell SM et al. (1999) Plant J 20 (3): 357-362 ) will be realized.
  • a viral expression system Amplikon; Angell SM et al. (1999) Plant J 20 (3): 357-362
  • VGS viral induced gene silencing
  • the VIGS-mediated reduction is preferably implemented using a sequence which is essentially identical to at least part of the nucleic acid sequence coding for an ⁇ -cyclase or an endogenous ⁇ -hydroxylase, for example the nucleic acid sequence according to SEQ ID NO: 7 or 16 ,
  • genomic sequences can be modified in a targeted manner. These include in particular methods such as the generation of knockout mutants by means of targeted homologous recombination e.g. by generating stop codons, shifts in the reading frame etc. (Hohn B and Puchta H (1999) Proc NatI Acad Sei USA 96: 8321-8323) or the targeted deletion or inversion of sequences using e.g. sequence-specific recombinases or nucleases (see below).
  • the reduction in the amount, function and / or activity of the enzyme can also be achieved by a targeted insertion of nucleic acid sequences (for example the nucleic acid sequence to be inserted in the context of the method according to the invention) into the sequence coding for an ⁇ -cyclase or endogenous ß- Hydroxylase (eg by means of intermolecular homologous recombination) can be realized.
  • nucleic acid sequences for example the nucleic acid sequence to be inserted in the context of the method according to the invention
  • ß- Hydroxylase eg by means of intermolecular homologous recombination
  • a DNA construct is preferably used which comprises at least a part of the sequence of an ⁇ -cyclase gene or endogenous ⁇ -hydroxylase gene or neighboring sequences, and can thus be recombined in a targeted manner in the target cell, so that a Deletion, addition or substitution of at least one nucleotide, the ⁇ -cyclase gene or endogenous ß-hydroxylase gene is changed such that the functionality of the gene is reduced or completely eliminated.
  • the change can also affect the regulatory elements (eg the promoter) of the genes, so that the coding sequence remains unchanged, but expression (transcription and / or translation) is omitted and reduced.
  • the sequence to be inserted is flanked at its 5 'and / or 3' end by further nucleic acid sequences (A 'or B') which are of sufficient length and homology to the corresponding sequences of the ⁇ -cyclase gene or endogenous ⁇ -hydroxylase gene (A or B) to enable homologous recombination.
  • the length is usually in a range from several hundred bases to several kilobases (Thomas KR and Capecchi MR (1987) Cell 51: 503; Strepp et al. (1998) Proc NatI Acad Sei USA 95 (8): 4368- 4373).
  • the plant cell with the Recombinant construct transformed using the method described below and successfully recombined clones selected based on the inactivated ⁇ -cyclase or endogenous ß-hydroxylase.
  • the efficiency of the recombination is increased by combination with methods which promote homologous recombination.
  • methods which promote homologous recombination.
  • Such methods include, for example, the expression of proteins such as RecA or the treatment with PARP inhibitors.
  • PARP inhibitors Puchta H et al. (1995) Plant J 7: 203-210).
  • the rate of homologous recombination in the recombination constructs after induction of the sequence-specific DNA double-strand break and thus the efficiency of deletion of the transgene sequences can be further increased.
  • Various PARP inhibitors can be used.
  • Inhibitors such as 3-aminobenzamide, 8-hydroxy-2-methylquinazolin-4-one (NU1025), 1, 11 b-dihydro- [2H] benzopyrano- [4,3,2-deJisoquinolin-3-one (GPI 6150), 5-aminoisoquinolinone, 3,4-dihydro-5- [4- (1-piperidinyl) butoxy] -1 (2H) -isoquinolinone or those described in WO 00/26192, WO 00/29384, WO 00/32579, WO 00/64878, WO 00/68206, WO 00/67734, WO 01/23386 and WO 01/23390.
  • RNA / DNA oligonucleotides into the plant
  • Knockout mutants with the help of e.g. T-DNA mutagenesis
  • Point mutations can also be generated using DNA-RNA hybrids, also known as "chimeraplasty” (Cole-Strauss et al. (1999) Nucl Acids Res 27 (5): 1323-1330; Kmiec (1999) Gene therapy American Scientist 87 (3): 240-247).
  • the ⁇ -cyclase activity is reduced compared to the wild type by:
  • the ⁇ -cyclase activity is reduced compared to the wild type by introducing at least one double-stranded ⁇ -cyclase ribonucleic acid sequence or an expression cassette or expression cassettes ensuring its expression in plants.
  • the transcription of the ⁇ -cyclase-dsRNA sequences in the method according to the invention is preferably carried out under the control of regulation signals, preferably a promoter and plastid transit peptides, which ensure the transcription of the ⁇ -cyclase-dsRNA sequences in the plant tissues containing photosynthetically inactive plastids.
  • regulation signals preferably a promoter and plastid transit peptides, which ensure the transcription of the ⁇ -cyclase-dsRNA sequences in the plant tissues containing photosynthetically inactive plastids.
  • genetically modified plants are used which, in plant tissues containing photosynthetically inactive plastids, have the highest transcription rate of the ⁇ -cyclase dsRNA sequences. .
  • the endogenous ⁇ -hydroxylase activity is reduced compared to the wild type by:
  • the endogenous ⁇ -hydroxylase activity is reduced compared to the wild type by introducing at least one double-stranded endogenous ⁇ -hydroxylase ribonucleic acid sequence or an expression cassette or expression cassettes ensuring its expression in plants.
  • the transcription of the endogenous ⁇ -hydroxylase dsRNA sequences in the method according to the invention is preferably carried out under the control of regulation signals, preferably a promoter and plastid transit peptides which transcribe the endogenous ⁇ -hydroxylase dsRNA sequences in the plant tissues, containing photosynthetically inactive plastids , guarantee.
  • regulation signals preferably a promoter and plastid transit peptides which transcribe the endogenous ⁇ -hydroxylase dsRNA sequences in the plant tissues, containing photosynthetically inactive plastids , guarantee.
  • genetically modified plants are used which, in plant tissues containing photosynthetically inactive plastids, have the highest transcription rate of the endogenous ⁇ -hydroxylase dsRNA sequences.
  • Genetically modified plants with the following combinations of genetic changes are particularly preferably used in the method according to the invention: Genetically modified plants which have an increased ⁇ -cyclase activity according to the invention and an increased hydroxylase activity compared to the wild type,
  • genetically modified plants which, compared to the wild type, have an increased ⁇ -cyclase activity according to the invention, an increased hydroxylase activity and a reduced ⁇ -cyclase activity.
  • genetically modified plants which, compared to the wild type, have an increased ⁇ -cyclase activity according to the invention, a reduced ⁇ -cyclase activity and a reduced, endogenous ⁇ -hydroxylase activity,
  • genetically modified plants which, compared to the wild type, have an increased ⁇ -cyclase activity according to the invention, an increased hydroxylase activity and a reduced, endogenous ⁇ -hydroxylase activity,
  • genetically modified plants which, compared to the wild type, have an increased ⁇ -cyclase activity according to the invention, an increased hydroxylase activity and a reduced ⁇ -cyclase activity and a reduced, endogenous ⁇ -hydroxylase activity.
  • these genetically modified plants can be produced, for example, by introducing individual nucleic acid constructs (expression cassettes) or by introducing multiple constructs which contain up to two, three or four of the activities described.
  • the cultivation step of the genetically modified plants is preferably followed by harvesting the plants and isolating the ⁇ -carotenoids from the plants or the plant tissues containing photosynthetically inactive plastids.
  • the transgenic plants are grown on nutrient media in a manner known per se and harvested accordingly.
  • the isolation of ⁇ -carotenoids from the harvested plant tissues containing photosynthetically inactive plastids, such as flowers, fruits or tubers, is carried out in a manner known per se, for example by drying and subsequent extraction and, if appropriate, further chemical or physical purification processes, such as, for example, precipitation methods. Crystallography, thermal separation processes such as rectification processes or physical separation processes such as chromatography.
  • ⁇ -carotenoids from the plant tissues containing photosynthetically inactive plastids, such as flowers, fruits or tubers, is preferably carried out, for example, by organic solvents such as acetone, hexane, ether or tert-methylbutyl ether.
  • the ⁇ -carotenoids are preferably selected from the group ⁇ -carotene, ⁇ -cryptoxanthine, zeaxanthin, antheraxanthin, violaxanthin and neoxanthine.
  • Preferred ⁇ -carotenoids are ⁇ -carotene and zeaxanthin, particularly preferably zeaxanthin.
  • the plant tissues containing photosynthetically inactive plastids are preferably selected from the group consisting of flower, fruit and tuber.
  • a plant selected from the Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae families is used as the genetically modified plants which have an increased ⁇ -cyclase activity in flowers compared to the wild type , Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeo- laceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliacideaeae, Liliacideaeae, Liliacideaeae, Liliacideaeae, Liliaceaeae, Liliaceaeae, Liliaceaeae, Liliaceaeae, Liliaceaeae, Liliaceaeae, Liliaceaeae, Liliaceaeae
  • a plant selected from the plant genera Actinophloeus, Aglaeonema, Pineapple, Arbutus, Archontophoenix, Area, Aronia is used as the genetically modified plants which have an increased ⁇ -cyclase activity in fruits compared to the wild type , Asparagus, Avocado, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Diospyrusus, Diosyrusus , Elaeis, Erythroxylon, Euonymus, Pea, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophae
  • a plant selected from the plant species beetroot, radish, radish and Solanum tuberosum is used as the genetically modified plant which has an increased ⁇ -cyclase activity in tubers compared to the wild type.
  • Particularly preferred plants as a wild type, have a higher proportion of ⁇ -carotenoids than ⁇ -carotenoids in the total carotenoid content in plant tissues containing photosynthetically inactive plastids.
  • Particularly preferred plants are Marigold, Tagetes erecta, Tagetes patula, the production of the ⁇ -carotenoids, preferably zeaxanthin, in flowers, particularly preferably in the petals.
  • the following is an example of the production of genetically modified plants with increased ⁇ -cyclase activity in plant tissues containing photosynthetically inactive plastids such as flowers, fruits or tubers.
  • the increase Further activities such as, for example, the hydroxylase activity, can be carried out analogously using a nucleic acid sequence encoding a hydroxylase instead of encoding a ⁇ -cyclase instead of nucleic acid sequences.
  • the reduction of further activities for example the reduction of the ⁇ -cyclase activity and / or the endogenous ß-hydroxylase activity, can be carried out analogously using a antisense nucleic acid sequence or inverted repeat nucleic acid sequence instead of nucleic acid sequences encoding a ß-cyclase.
  • the transformation can take place individually or through multiple constructs.
  • the transgenic plants are preferably produced by transforming the starting plants with a nucleic acid construct which contains the ⁇ -cyclase encoding the above-described nucleic acids and which are functionally linked to one or more regulation signals which ensure transcription and translation in plants.
  • nucleic acid constructs in which the coding nucleic acid sequence is functionally linked to one or more regulatory signals which ensure transcription and translation in plants, are also called expression cassettes below.
  • the invention further relates to nucleic acid constructs containing at least one nucleic acid encoding a ⁇ -cyclase and additionally at least one further nucleic acid selected from the group a) nucleic acids encoding a ⁇ -hydroxylase, b) double-stranded endogenous ⁇ -hydroxylase ribonucleic acid sequence and / or endogenous ß-hydroxylase antisense Ribonucleic acid sequences and c) double-stranded ⁇ -cyclase ribonucleic acid sequence and / or ⁇ -cyclase antisense ribonucleic acid sequence,
  • nucleic acids are functionally linked to one or more regulatory signals that ensure transcription and translation in plants.
  • nucleic acid constructs are therefore preferably used in order to increase or decrease the activities, in particular to increase or decrease more than 3 activities in plants.
  • the preferred genetically modified plants are produced by introducing combinations of nucleic acid constructs.
  • the regulation signals preferably contain one or more promoters which ensure transcription and translation in plant tissues containing photosynthetically inactive plastids, such as flowers, fruits or tubers.
  • the expression cassettes contain regulatory signals, that is to say regulatory nucleic acid sequences which control the expression of the coding sequence in the host cell.
  • an expression cassette comprises upstream, i.e. at the 5 'end of the coding sequence, a promoter and downstream, i.e. at the 3 'end, a polyadenylation signal and optionally further regulatory elements which are operatively linked to the coding sequence in between for at least one of the genes described above.
  • An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
  • nucleic acid constructs, expression cassettes and vectors for plants and methods for producing transgenic plants and the transgenic plants themselves are described below by way of example.
  • sequences preferred but not limited to the operative linkage are targeting sequences to ensure subcellular localization in the apoplast, in the vacuole, in plastids, in the mitochondrion, in the endoplasmic reticulum (ER), in the nucleus, in oil bodies or other compartments and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711).
  • any promoter which expresses the expression of foreign genes in plant tissues is suitable as a promoter of the expression cassette according to the invention.
  • Constant promoter means those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably at all times during plant development.
  • a plant promoter or a plant virus-derived promoter is preferably used.
  • Particularly preferred is the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140 : 281-288; Gardner et al. (1986) Plant Mol Biol 6: 221-228) or the 19S CaMV promoter (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8: 2195-2202) ,
  • Another suitable constitutive promoter is the pds promoter (Pecker et al. (1992) Proc. NatI. Acad. Be USA 89: 4962-4966) or the "Rubisco small subunit (SSU)" promoter (US 4,962,028), the LeguminB Promoter (GenBank Acc. No. X03677), the promoter of nopaline synthase from agrobaeterium, the TR double promoter, the OCS (oetopin synthase) promoter from agrobaeterium, the ubiquitin promoter (Holtorf S et al.
  • the expression cassettes can also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), through which the expression of the ⁇ -cyclase gene in the plant at a specific point in time can be controlled.
  • a chemically inducible promoter such as the PRP1 promoter (Ward et al. (1993) Plant Mol Biol 22: 361-366), a salicylic acid-inducible promoter (WO 95/19443), a benzenesulfonamide-inducible promoter (EP 0388 186) by tetracycline-inducible promoter (Gatz et al. (1992) Plant J 2: 397-404), an abscisic acid-inducible promoter (EP 0335528) or a promoter inducible by ethanol or cyclohexanone (WO 93/21334) can also be used.
  • promoters that are induced by biotic or abiotic stress such as the pathogen-inducible promoter of the PRP1 gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp70 or hsp80 promoter from tomato (US 5,187,267), the cold-inducible alpha-amylase promoter from the potato (WO 96/12814), the light-inducible PPDK promoter or the wound-induced pinII promoter (EP375091).
  • pathogen-inducible promoter of the PRP1 gene Ward et al. (1993) Plant Mol Biol 22: 361-366
  • the heat-inducible hsp70 or hsp80 promoter from tomato US 5,187,267
  • the cold-inducible alpha-amylase promoter from the potato
  • the light-inducible PPDK promoter or the wound-induced pinII promoter EP375091.
  • Pathogen-inducible promoters include those of genes induced by pathogen attack such as genes from PR proteins, SAR proteins, ⁇ -1, 3-glucanase, chitinase etc. (e.g. Redolfi et al. (1983) Neth J Plant Pathol 89: 245-254; Uknes, et al. (1992) The Plant Cell 4: 645-656; Van Loon (1985) Plant Mol Viral 4: 111-116; Marineau et al. (1987) Plant Mol Biol 9: 335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2: 325-342; Somssich et al.
  • wound-inducible promoters such as that of the pinll gene (Ryan (1990) Ann Rev Phytopath 28: 425-449; Duan et al. (1996) Nat Biotech 14: 494-498), the wunl and wun2 gene (US 5,428,148), the winl and win2 genes (Stanford et al. (1989) Mol Gen Genet 215: 200-208), the systemin (McGurl et al. (1992) Science 225: 1570-1573), the WIP1 gene (Rohmeier et al. (1993) Plant Mol Biol 22: 783-792; Ekelkamp et al. (1993) FEBS Letters 323: 73-76), the MPI gene (Corderok et al. (1994) The Plant J 6 ( 2): 141-150) and the like.
  • Suitable promoters are, for example, fruit ripening-specific
  • Promoters such as the fruit-ripening-specific promoter from tomato (WO 94/21794, EP 409625). Development-dependent promoters partly include the tissue-specific promoters, since the formation of individual tissues is naturally development-dependent.
  • promoters are particularly preferred which ensure expression in tissues or plant tissues in which, for example, the biosynthesis of ⁇ -X-carotinoids or its precursors takes place.
  • promoters with specificities for the anthers, ovaries, petals, sepals, flowers, leaves, stems and roots and combinations thereof are preferred.
  • Tuber-, storage root- or root-specific promoters are, for example, the patatin class I promoter (B33) or the potato cathepsin D inhibitor promoter.
  • Flower-specific promoters are, for example, the phytoene synthase promoter (WO 92/16635), the promoter of the P-rr gene (WO 98/22593), the EPSPS promoter (M37029), the DFR-A promoter (X79723), the B gene Promoter (WO 0008920) and the CHRC promoter (WO 98/24300; Vishnevetsky et al. (1996) Plant J.
  • All promoters described in the present application enable the expression of the ⁇ -cyclase in plant tissues containing photosynthetically inactive plastids, such as, for example, flower, fruit or tuber.
  • Preferred promoters are promoters which are specific for plant tissue containing photosynthetically inactive plastids.
  • constitutive, flower-specific and in particular petal-specific, fruit-specific and tuber-specific promoters are particularly preferred in the process according to the invention.
  • the present invention therefore relates in particular to a nucleic acid construct containing functionally linked a flower-specific or in particular a petal-specific promoter and a nucleic acid encoding a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the present invention therefore relates in particular to a nucleic acid construct containing functionally linked a fruit-specific promoter and a nucleic acid encoding a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or one of this sequence by substitution, insertion or deletion of amino acid-derived sequence that has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2, with the proviso that the natural promoter of the ⁇ -cyclase is excluded.
  • the present invention therefore relates in particular to a nucleic acid construct containing functionally linked a tuber-specific promoter and a nucleic acid encoding a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2, with the proviso that the natural promoter of the ⁇ -cyclase is excluded.
  • the present invention therefore relates in particular to a nucleic acid construct containing functionally linked a constitutive promoter and a nucleic acid encoding a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO.2, with the proviso that the natural promoter of the ⁇ -cyclase is excluded.
  • An expression cassette is preferably produced by fusing a suitable promoter with a nucleic acid described above encoding a ⁇ -cyclase and preferably a nucleic acid inserted between the promoter and nucleic acid sequence, which codes for a plastid-specific transit peptide, and a polyadenylation signal according to common recombination and cloning techniques, such as these for example in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in T.J. Silhavy, M.L Berman and L.W.
  • nucleic acids encoding a plastid transit peptide ensure localization in plastids and in particular in chromoplasts.
  • Expression cassettes the nucleic acid sequence of which codes for a ⁇ -cyclase fusion protein, can also be used, part of the fusion protein being a transit peptide which controls the translocation of the polypeptide.
  • Preferred transit peptides are preferred for the chromoplasts, which after translocation of the ß-Cyclase in the chromoplasts from the ß-cyclase part are cleaved enzymatically.
  • the transit peptide derived from the Nicotiana tabacum Transketolase plastid or another transit peptide e.g. the Rubisco small subunit transit peptide (rbcS) or the ferredoxin NADP oxidoreductase as well as the isopentenyl pyrophosphate isomerase-2
  • rbcS Rubisco small subunit transit peptide
  • ferredoxin NADP oxidoreductase as well as the isopentenyl pyrophosphate isomerase-2
  • Nucleic acid sequences of three cassettes of the plastid transit peptide of plastid transketolase from tobacco in three reading frames are particularly preferred as Kpnl / BamHI fragments with an ATG codon in the Ncol interface:
  • a plastid transit peptide are the transit peptide of the plastid isopentenyl pyrophosphate isomerase-2 (IPP-2) from Arabisopsis thaliana and the transit peptide of the small subunit of ribulose bisphosphate carboxylase (rbcS) from pea (Guerineau, F, Woolston, S, Brook L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the
  • nucleic acids according to the invention can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural nucleic acid constituents, and can consist of different heterologous gene segments from different organisms.
  • various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter can be native or homologous as well as foreign or heterologous to the host plant.
  • the expression cassette preferably contains, in the 5'-3 'transcription direction, the promoter, a coding nucleic acid sequence or a nucleic acid construct and a region for the transcriptional termination. Different termination areas are interchangeable.
  • Examples of a terminator are the 35S terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), the nos terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet.
  • Manipulations which provide suitable restriction sites or which remove superfluous DNA or restriction sites can also be used. Where insertions, deletions or substitutions such as Transitions and transversions can be used in w ⁇ ro mutagenesis, "primer repair", restriction or ligation.
  • Preferred polyadenylation signals are vegetable polyadenylation signals, preferably those which essentially comprise T-DNA polyadenylation signals
  • Agrobaeterium tumefaciens in particular gene 3 of T-DNA (oetopin synthase) of the Ti plasmid pTiACH ⁇ (Gielen et al., EMBO J. 3 (1984), 835 ff) or functional equivalents.
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • Suitable methods for the transformation of plants are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene gun - the so-called particle bombardment method, the electroporation, the incubation of dry embryos in DNA-containing solution, the microinjection and the Agrobaeterium-mediated gene transfer described above.
  • the methods mentioned are described, for example, in B. Jenes et al., Technologies for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, published by S.D. Kung and R. Wu, Academic Press (1993), 128-143 and in Potrykus, Annu. Rev. Plant Physiol. Plant Molee. Biol. 42 (1991), 205-225).
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobaeterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) or particularly preferably pSUN2, pSUN3, pSUN4 or pSUN5 (WO 02/00900).
  • Agrobacteria transformed with an expression plasmid can be used in a known manner to transform plants, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the fused expression cassette which expresses a ⁇ -cyclase, is cloned into a vector, for example pBin19 or in particular pSUN5, which is suitable for being transformed into Agrobaeterium tumefaciens with a Agrobacteria transformed in this way can then be used in a known manner for transforming plants, in particular crop plants, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • transgenic plants can be regenerated from the transformed cells of the wounded leaves or leaf pieces, which plants contain a gene encoding a ⁇ -cyclase coding for the expression of a nucleic acid for the expression of a nucleic acid.
  • an expression cassette is inserted as an insert into a recombinant vector whose vector DNA contains additional functional regulation signals, for example sequences for replication or integration.
  • Suitable vectors are inter alia in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Chap. 6/7, pp. 71-119 (1993).
  • the expression cassettes can be cloned into suitable vectors that allow their proliferation, for example in E. coli.
  • suitable cloning vectors include pJIT117 (Guerineau et al. (1988) Nucl. Acids Res. 16: 11380), pBR332, pUC series, M13mp series and pACYCI 84.
  • Binary vectors which are particularly suitable are those found both in E. coli and in can replicate in agrobacteria.
  • the invention further relates to the genetically modified plants, the genetic modification increasing the activity of a ⁇ -cyclase in plant tissues containing photosynthetically inactive plastids compared to the wild type and the increased ⁇ -cyclase activity being caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the ⁇ -cyclase activity is preferably increased by increasing the gene expression of a nucleic acid coding for a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 compared to the wild type. ;
  • the gene expression is preferably increased by introducing into the plant nucleic acids which encode ⁇ -cyclases containing the amino acid sequence SEQ. ID. NO.2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • Genetically modified plants which contain at least one nucleic acid encoding a ⁇ -cyclase and containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 60% at the amino acid level with the sequence SEQ. ID. NO.2 included, with the proviso that tomato is excluded.
  • genetically modified plants as mentioned above, additionally have an increased hydroxase activity compared to the wild type. Further preferred embodiments are described above in the method according to the invention.
  • genetically modified plants additionally have a reduced activity compared to the wild type, at least one of the activities selected from the group ⁇ -cyclase activity and endogenous ß-hydroxylase activity. Further preferred embodiments are described above in the method according to the invention.
  • the plant tissues containing photosynthetically inactive plastids are preferably selected from the group consisting of flower, fruit and tuber.
  • the genetically modified plants which, compared to the wild type, have an increased ⁇ -cyclase activity in flowers are selected from the families Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassiceae, Cucurbitacee, Primulaceae , Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae or Maivaceae, Maivaceae.
  • the genetically modified plants which, compared to the wild type, have an increased ⁇ -cyclase activity in fruits are selected from the plant genera Actinophloeus, Aglaeonema, pineapple, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Avocado, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elauraonymus, Elaeagnusroxy Pea, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Kiwi, Lathyrus,
  • Particularly preferred plants have a higher proportion of ⁇ -Ca as a wild type in the total carotenoid content in plant tissues containing photosynthetically inactive plastids .
  • rotinoids as ß-carotenoids.
  • Particularly preferred plants are Marigold, Tagetes erecta, Tagetes patula, the production of the ⁇ -carotenoids, preferably zeaxanthin, in flowers, particularly preferably in the petals.
  • Particularly preferred plant tissues containing photosynthetically inactive plastids are the tuber of Solanum tuberosum, the seed fruits of Zea maize, the flower of Tagetes erecta and the flower of Calendula officinalis.
  • the genetically modified plants, their propagation material, and their plant cells and tissue. or parts, in particular their petals, bulbs or fruits, are a further subject of the present invention.
  • the genetically modified plants can be used to produce ⁇ -carotenoids, in particular ⁇ -carotene and zeaxanthin.
  • Genetically modified plants according to the invention with increased ⁇ -carotenoid content that can be consumed by humans and animals can also be used, for example, directly or after processing known per se as food or feed or as feed and food supplements. Furthermore, the genetically modified plants can be used for the production of ⁇ -carotenoid-containing extracts of the plants and / or for the production of feed and food supplements.
  • Extracts containing zeaxanthin can be used to pigment animal products, especially those of the Galiformes family.
  • the pigmentation takes place by oral administration of the extracts containing zeaxanthin, which were processed according to the respective animal and prepared for oral administration.
  • Animal products are understood in particular as skin, rich, feather and egg yolk
  • the genetically modified plants can also be used as ornamental plants in the horticulture area.
  • the genetically modified plants have an increased content of ⁇ -carotenoids in plant tissues, containing photosynthetically inactive plastids, compared to the wild type.
  • An increased content of ⁇ -carotenoids is generally understood to mean an increased content of total ⁇ -carotenoids.
  • An increased content of ⁇ -carotenoids is also understood to mean, in particular, an altered content of the preferred ⁇ -carotenoids, without the total carotenoid content necessarily having to be increased.
  • the genetically modified plants according to the invention have an increased content of ⁇ -carotene or zeaxanthin, in particular zeaxanthin, in comparison to the wild type in plant tissues containing photosynthetically inactive plastids.
  • an increased content is also understood to mean a caused content of ⁇ -carotenoids, or ⁇ -carotene or zeaxanthin.
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence
  • Example 1 Production of expression vectors for the flower-specific expression of the chromoplast-specific lycopene ⁇ cyclase from Lycopersicon esculentum under the control of the promoter P76
  • oligonucleotide primers SEQ. ID. No. 20 (P76for) and SEQ. ID. NO. 21 (P76rev) used.
  • the oligonucleotides were provided with a 5 'phosphate residue during the synthesis.
  • the genomic DNA was isolated from Arabidopsis thallana as described (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1: 25-34).
  • the PCR amplification was carried out as follows:
  • the PCR product (SEQ. ID. NO. 22) is purified by agarose gel electrophoresis and the 1032 bp fragment is isolated by gel elution.
  • the vector pSun5 is digested with the restriction endonuclease EcoRV and also purified by agarose gel electrophoresis and obtained by gel elution.
  • the purified PCR product is cloned into the vector treated in this way.
  • BamHI is digested with the restriction endonuclease. If this results in a 628 bp fragment, the orientation is as shown in Fig. 2. This construct is called p76.
  • oligonucleotide primers SEQ. ID. NO. 23 (BgeneFor) and SEQ. ID. NO. 24 (BgeneRev) used.
  • the oligonucleotides were provided with a 5 'phosphate residue during the synthesis.
  • the genomic DNA was isolated from Lycopersicon esculentum as described (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1: 25-34).
  • the PCR amplification was carried out as follows:
  • the PCR product was purified by agarose gel electrophoresis and the 1486 bp fragment isolated by gel elution.
  • the vector p76 is digested with the restriction endonuclease Smal and also purified by agarose gel electrophoresis and obtained by gel elution.
  • the purified PCR product is cloned into the vector treated in this way.
  • the restriction endonuclease EcoRI is digested. If this results in a 445 bp fragment, the orientation is as shown in Fig. 2.
  • Example 2 Production of a cloning vector for the production of double-stranded ⁇ -cyclase-ribonucleic acid sequence expression cassettes for the flower-specific expression of epsilon-cyclase dsRNAs in Tagetes erecta
  • inverted repeat transcripts consisting of fragments of the epsilon cyclase in Tagetes erecta was carried out under the control of a modified version AP3P of the flower-specific promoter AP3 from Arabidopsis thaliana (AL132971: nucleotide region 9298-10200; Hill et al. (1998) Development 125: 1711 -1721)
  • the inverted-repeat transcript contains a fragment in the correct orientation (sense fragment) and a sequence-identical fragment in the opposite orientation (antisense fragment), which is generated by a functional intron, the PIV2 intron of the ST-LH1 gene from potato (Vancanneyt G. et al. (1990) Mol Gen Genet 220: 245-50).
  • the cDNA coding for the AP3 promoter (-902 to +15) from Arabidopsis thaliana was PCR-analyzed using genomic DNA (isolated from Arabidopsis thaliana according to the standard method) and the primers PR7 (SEQ ID No. 25) and PR10 (SEQ ID No. 28).
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA encoding the AP3 promoter fragment (-902 to +15) was carried out in a 50 ⁇ l reaction mixture which contained:
  • a ⁇ haliana genomic DNA (1: 100 dil prepared as described above)
  • the PCR was carried out under the following cycle conditions:
  • the 922 bp amplificate was cloned into the PCR cloning VeMor pCR 2.1 (Invitrogen) using standard methods and the plasmid pTAP3 was obtained. Sequencing of the clone pTAP3 confirmed a sequence which is only in the insert (an G in position 9765 of the sequence AL132971) and a base exchange (a G instead of an A in position 9726 of the sequence AL132971) of the published AP3 sequence (AL132971 , Nucleotide region 9298-10200) (position 33: T instead of G, position 55: T instead of G). These nucleotide differences were reproduced in an independent amplification experiment and thus represent the nucleotide sequence in the Arabidopsis thaliana plant used.
  • the modified version AP3P was produced by recombinant PCR using the plasmid pTAP3.
  • the region 10200-9771 was amplified with the primers PR7 (SEQ ID No. 25) and primers PR9 (SEQ ID No.27) (amplificate A7 / 9), the region 9526-9285 with the PR8 (SEQ ID No. 26 ) and PR10 (SEQ ID No. 28) amplified (amplificate A8 / 10).
  • the PCR conditions were as follows:
  • the PCR was carried out under the following cycle conditions:
  • the recombinant PCR includes annealing of the amplificates A7 / 9 and A8 / 10, which overlap over a sequence of 25 nucleotides, completion into a double strand and subsequent amplification. This creates a modified version of the AP3 promoter, AP3P, in which positions 9670-9526 are deleted.
  • the denaturation (5 min at 95 ° C) and annealing (slow cooling at room temperature to 40 Q C) of the two amplicons A7 / A8 and 9/10 was performed in a 17.6 ml of reaction mixture containing:
  • the nucleic acid coding for the modified promoter version AP3P was amplified by means of PCR using a sense-specific primer (PR7 SEQ ID No. 25) and an antisense-specific primer (PR10 SEQ ID No. 28).
  • the PCR conditions were as follows:
  • the PCR for the amplification of the AP3P fragment was carried out in a 50 ml reaction mixture, which contained:
  • PCR amplification with PR7, SEQ ID No. 25 and PR10 SEQ ID No. 28 resulted in a 778 bp fragment which codes for the modified promoter version AP3P.
  • the amplificate was cloned in the cloning membrane Mor pGR2.1 (Invitrogen). Sequencing with the primers T7 and M13 confirmed a sequence identical to the sequence AL132971, region 10200-9298, the internal region 9285-9526 being deleted. This clone was therefore used for the cloning in the expression vMor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380).
  • the cloning was carried out by isolating the 771 bp SacI-HindIII fragment from pTAP3P and ligation in the SacI-HindIII cut VeMor pJIT117.
  • the clone that contains the AP3P promoter instead of the original d35S promoter is called pJAP3P.
  • a DNA fragment containing the PIV2 intron of the ST-LS1 gene was PCR-analyzed using plasmid DNA p35SGUS INT (Vancanneyt G. et al. (1990) Mol Gen Genet 220: 245-50) and the primer PR40 ( Seq ID No. 30) and Primer PR41 (Seq ID No. 31).
  • the PCR conditions were as follows:
  • PCR amplification with PR40 and PR41 resulted in a 206 bp fragment.
  • the amplificate was cloned in the PCR cloning method Mor pBluntll (Invitrogen) and the clone pBluntll-40-41 was obtained. Sequencing of this clone with the primer SP6 confirmed a sequence which is identical to the corresponding sequence from the vector p35SGUS INT.
  • This clone was therefore used for cloning in the VeMor pJAP3P (described above).
  • the cloning was carried out by isolating the 206 bp Sall-BamHI fragment from pBluntl 1-40-41 and ligation with the Sall-BamHI cut VeMor pJAP3P.
  • the clone which contains the intron PIV2 of the ST-LS1 gene in the correct orientation after the 3 'end of the rbcs transit peptide is called pJAH and is suitable for producing expression cassettes for the flower-specific expression of inverted repeat transcripts.
  • fragment AP3P contains the modified AP3P promoter (771 bp), fragment rbcs the rbcS transit peptide from pea (204 bp), fragment intron the intron PIV2 of the potato gene ST-LS1, and fragment term (761 bp) the polyadenylation signal by CaMV.
  • Example 3 Production of inverted repeat expression cassettes for the flower-specific expression of epsilon cyclase dsRNAs in Tagetes erecta (directed against the 5 ′ region of the epsilon cyclase cDNA)
  • the nucleic acid which contains the 5'-terminal 435bp region of the epsilon cyclase cDNA (Genbank accession no. AF251016), was extracted from Tagetes erecta cDNA using a polymerase chain reaction (PCR) using a sense-specific primer (PR42 SEQ ID NO. 32) and an antisense specific primer (PR43 SEQ ID NO. 33).
  • the 5'-terminal 435 bp region of the Epsilon cyclase cDNA from Tagetes erecta is composed of 138 bp 5'-untranslated sequence (5'UTR) and 297 bp of the coding region corresponding to the N-terminus.
  • RNA from Tagetes flowers 100 mg of the frozen, powdered flowers were transferred to a reaction vessel and taken up in 0.8 ml of Trizol buffer (LifeTechnologies). The suspension was extracted with 0.2 ml of chloroform. After centrifugation at 12,000 g for 15 minutes, the aqueous supernatant was removed and transferred to a new reaction vessel and extracted with a volume of ethanol. The RNA was precipitated with a volume of isopropanol, washed with 75% ethanol and the pellet dissolved in DEPC water (overnight incubation of water with 1/1000 volume of diethyl pyrocarbonate at room temperature, then autoclaved). The RNA concentration was determined photometrically.
  • RNA For the cDNA synthesis, 2.5 ⁇ g of total RNA were denatured for 10 min at 60 ° C., cooled on ice for 2 min and using a cDNA kit (ready-to-go-you-prime-beads, Pharmacia Biotech) according to the manufacturer's instructions using an antisense-specific primer (PR17 SEQ ID NO. 29) transcribed into cDNA.
  • a cDNA kit ready-to-go-you-prime-beads, Pharmacia Biotech
  • PR17 SEQ ID NO. 29 an antisense-specific primer
  • the PCR for the amplification of the PR42-PR43 DNA fragment which contains the 5'-terminal 435bp region of the epsilon cyclase, was carried out in a 50 ml reaction mixture which contained:
  • the PCR for the amplification of the PR44-PR45 DNA fragment which contains the 5'-terminal 435 bp region of the epsilon cyclase, was carried out in a 50 ml reaction mixture which contained:
  • the PCR amplification with primers PR42 and PR43 resulted in a 443 bp fragment
  • the PCR amplification with primers PR44 and PR45 resulted in a 444 bp fragment.
  • the two amplicons were cloned into the PCR cloning vector pCR-BluntII (Invitrogen) using standard methods. Sequencing with the primer SP6 confirmed one each. published sequence AF251016 (SEQ ID No. 7) identical sequence apart from the restriction sites introduced. These clones were therefore used for the production of an inverted repeat construct in the cloning cell pJAH (see Example 2).
  • the first cloning step was carried out by isolating the 444 bp PR44-PR45 BamHI-EcoRI fragment from the cloning VeMor pCR-BluntII (Invitrogen) and ligation with the BamHI-EcoRI cut vector pJAH.
  • the clone that contains the 5'-terminal region of the epsilon cyclase in the antisense orientation is called pJAI2.
  • the ligation creates a transcriptional fusion between the antisense fragment of the 5'terminal region of the epsilon cyclase and the polyadenylation signal from CaMV.
  • the second cloning step was carried out by isolating the 443 bp PR42-PR43 HindIII-SalI fragment from the cloning VeMor pCR-BluntII (Invitrogen) and ligation with the HindII-SalI cut VeMor pJAI2.
  • the clone which contains the 435 bp 5'-terminal region of the epsilon cyclase cDNA in the sense orientation is called pJAI3.
  • the ligation creates a transcriptional fusion between the AP3P and the sense fragment of the 5'-terminal region of the epsilon cyclase.
  • a CHRC promoter fragment using genomic DNA from petunia (produced according to standard methods) and the primers PRCHRC5 (SEQ ID No. 50) and PRCHRC3 (SEQ ID No. 51) amplified.
  • the amplificate was cloned in the cloning cell pCR2.1 (Invitrogen). Sequencing of the resulting clone pCR2.1-CHRC with the primers M13 and T7 confirmed a sequence identical to the sequence AF099501. This clone was therefore used for the cloning in the expression cell pJAI3. Cloned in the cloning vector pCR2.1 (Invitrogen). Sequencing of the resulting clone pCR2.1-CHRC with the primers M13 and T7 confirmed a sequence identical to the sequence AF099501. This clone was therefore used for the cloning into the expression vector pJAI3.
  • the cloning was carried out by isolating the 1537 bp SacI-HindIII fragment from pCR2.1-CHRC and ligating into the SacI-HindIII cut vector pJAI3.
  • the clone that contains the CHRC promoter instead of the original AP3P promoter is called pJCI3.
  • the expression vectors for the Agrobacterium -mediated transformation of the AP3P or CHRC-controlled inverted repeat transcripts in Tagetes erecta were produced using the binary VeMor pSUN5 (WO02 / 00900).
  • fragment AP3P contains the modified AP3P promoter (771 bp), fragment ⁇ sense the 5 'region of the epsilon cyclase from Tagetes erecta (435 bp) in sense orientation, fragment intron the intron PIV2 of the potato gene ST-LS1 , Fragment 5anti the 5 'region of the epsilon cyclase from Tagetes erecta (435 bp) in antisense orientation, and fragment term (761 bp) the polyadenylation signal of CaMV.
  • fragment CHRC contains the promoter (1537 bp), fragment 5sense the 5 'region of the Epsilon cyclase from Tagetes erecta (435 bp) in sense orientation, fragment intron the intron PIV2 of the potato gene ST-LS1, fragment 5anti the 5 'region of the Epsilon cyclase from Tagetes erecta (435 bp) in the antisense orientation, and fragment term (761 bp) the polyadenylation signal of CaMV.
  • Example 4 Production of an inverted repeat expression cassette for the flower-specific expression of epsilon cyclase dsRNAs in Tagetes erecta (directed against the 3 ′ region of the epsilon cyclase cDNA)
  • the nucleic acid that contains the 3'terminaie region (384 bp) of the epsilon cyclase cDNA was obtained by means of polymerase chain reaction (PCR) from Tagetes erecta cDNA using a sense-specific primer (PR46 SEQ ID NO. 36) and an antisense-specific primer (PR47 SEQ ID NO. 37).
  • the 3 'terminal region (384 bp) of the epsilon cyclase cDNA from Tagetes erecta is composed of 140 bp 3' untranslated sequence (3'UTR ) and 244 bp of the coding region corresponding to the C-terminus.
  • Total RNA was prepared from Tagetes flowers as described in Example 3.
  • the cDNA synthesis was carried out as described in Example 2 using the antisense-specific primer PR17 (SEQ ID No. 19).
  • the PCR for the amplification of the PR46-PR457 DNA fragment which contains the 3'-terminal 384 bp region of the epsilon cyclase, was carried out in a 50 ml reaction mixture which contained:
  • the PCR for the amplification of the PR48-PR49 DNA fragment which contains the 3'-terminal 384 bp region of the epsilon cyclase, was carried out in a 50 ⁇ l reaction mixture which contained:
  • the first cloning step was carried out by isolating the 396 bp PR48-PR49 BamHI-EcoRI fragment from the cloning vector pCR-BluntII (Invitrogen) and ligation with the BamHI-EcoRI cut vector pJAM.
  • the clone that contains the 3'-terminal region of the epsilon cyclase in the antisense orientation is called pJAI4.
  • the ligation results in a transcriptional fusion between the antisense fragment of the 3'-terminal region of the epsilon cyclase and the polyadenylation signal from CaMV.
  • the second cloning step was carried out by isolating the 392 bp PR46-PR47 HindIII-SalI fragment from the cloning VeMor pCR-BluntII (Invitrogen) and ligation with the HindIII-SalI cut vector pJAI4.
  • the clone which contains the 392 bp 3 ′ terminal region of the epsilon cyclase cDNA in the sense orientation is called pJAI5.
  • the ligation creates a transcriptional fusion between the AP3P and the sense fragments 3'terminal region of the epsilon cyclase.
  • An expression vector for the Agrobacterium -mediated transformation of the AP3P-controlled inverted repeat transcript in Tagetes erecta was produced using the binary VeMor pSUN5 (WO02 / 00900).
  • the expression vector pS5AI5 To produce the expression vector pS5AI5, the 2523 bp SacI-Xhol fragment from pJAI5 was ligated with the SacM-Xhol cut VeMor pSUN5 ( Figure 5, KonstruM payment).
  • fragment AP3P contains the modified AP3P promoter (771 bp), fragment sense the 3 'region of the Epsilon cyclase from Tagetes erecta (435 bp) in sense orientation, fragment intron the intron IV2 of the potato gene ST-LS1, fragment anti the 3 'region of the Epsilon cyclase from Tagetes erecta (435 bp) in antisense orientation, and fragment term (761 bp) the polyadenylation signal of CaMV.
  • a 199 bp fragment or the 312 bp fragment of the epsilon cyclase promoter was determined by two independent cloning strategies, inverse PCR (adapted Long et al. Proc. NatI. Acad. Sei USA 90: 10370) and TAIL-PCR (Liu YG. Et al. (1995) Plant J. 8: 457-463) using genomic DNA (isolated according to the standard method from Tagetes erecta, Orange Prince line, isolated).
  • the PCR for the amplification of the PR50-PR51 DNA fragment which contains, among other things, the 312 bp promoter fragment of epsilon cyclase, was carried out in a 50 ⁇ l reaction mixture which contained:
  • the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) using standard methods. Sequencing with the primers M13 and T7 resulted in the sequence SEQ ID No. 9. This sequence was reproduced in an independent amplification experiment and thus represents the nucleotide sequence in the Orange Prince line of Tagetes erecta used.
  • the TAIL1-PCR was carried out in a 20 ml reaction mixture which contained:
  • AD1 initially represented a mixture of primers of the sequences (a / c / g / t) tcga (g / c) t (at) t (g / c) g (a / t) gtt.
  • the PCR-ReaMion TAIL1 were carried out under the following cycle conditions
  • the TAIL2-PCR was carried out in a 21 ml reaction mixture which contained:
  • the PCR reaction TAIL2 was carried out under the following cycle conditions:
  • the TAIL3-PCR was carried out in a 100 ml reaction mixture, which contained:
  • the PCR reaction TAIL3 was carried out under the following cycle conditions:
  • PCR amplification with primers PR63 and AD1 resulted in a 280 bp fragment, which contains, among other things, the 199 bp promoter fragment of epsilon cyclase ( Figure 8).
  • the amplificate was cloned into the PCR cloning VeMor pCR2.1 (Invitrogen) using standard methods. Sequencing with the primers M13 and T7 resulted in the sequence SEQ ID No. 9. This sequence is identical to the ecyclase region within the sequence SEQ ID No. 7, which was isolated with the IPCR strategy, and thus represents the nucleotide sequence in the Tagetes erecta line Orange Prince used.
  • the pCR2.1 clone which contains the 312 bp fragment (SEQ ID No. 9) of the epsilon cyclase promoter, which was isolated by the IPCR strategy, is called pTA-ecycP and was used for the preparation of the IR KonstruMe.
  • Example 6 Production of an inverted repeat expression cassette for the flower-specific expression of epsilon cyclase dsRNAs in Tagetes erecta (directed against the promoter region of the epsilon cyclase cDNA).
  • inverted repeat transcripts consisting of promoter fragments of the epsilon cyclase in Tagetes erecta was carried out under the control of a modified version AP3P of the flower-specific promoter AP3 from Arabidopsis (see Example 2) or the flower-specific promoter CHRC (Genbank accession ho. AF099501).
  • the inverted repeat transcript each contains an epsilon cyclase promoter fragment in the correct orientation (sense fragment) and a sequence-identical epsilon cyclase promoter fragment in the opposite orientation (antisense fragment), which are linked to one another by a funMional intron (see Example 2) are.
  • the promoter fragments were PCR by means of plasmid DNA (clone pTA-ecycP, see Example 5) and the primers PR124 (SEQ ID No. 46) and PR126 (SEQ ID No. 48) or the primer PR125 (SEQ ID No . 47) and PR127 (SEQ ID No. 49).
  • the conditions of the PCR reactions were as follows:
  • PCR amplification with primers PR124 and PR126 resulted in a 358 bp fragment
  • PCR amplification with primers PR125 and PR127 resulted in a 361 bp fragment.
  • the two amplicons, the PR124-PR126 (HindIII-Sall sense) fragment and the PR125-PR127 (EcoRI-BamHI antisense) fragment were cloned into the PCR cloning vector pCR-BluntII (Invitrogen) using standard methods. Sequencing with the primer SP6 each confirmed a sequence which, apart from the restriction sites introduced, is identical to SEQ ID No. 7. These clones were therefore used for the production of an inverted repeat construct in the cloning cell pJAH (see example 2).
  • the first cloning step was carried out by isolating the 358 bp PR124-PR126 HindIII-SalI fragment from the cloning vector pCR-BluntII (Invitrogen) and ligation with the BamHI-EcoRI cut VeMor pJAH.
  • the clone that contains the epsilon cyclase promoter fragment in the sense orientation is called cs43.
  • the sense fragment of the epsilon cyclase promoter is inserted between the AP3P promoter and the intron by the ligation.
  • the second cloning step was carried out by isolating the 361 bp PR125-PR127 BamHI-EcoRI fragment from the cloning vector pCR-BluntII (Invitrogen) and ligation with BamHI-EcoRI cut VeMor cs43.
  • the clone that contains the epsilon cyclase promoter fragment in the antisense orientation is called cs44.
  • the ligation creates a transcriptional fusion between the intron and the antisense fragment of the epsilon cyclase promoter.
  • a CHRC promoter fragment using genomic DNA from petunia (produced according to standard methods) and the primers PRCHRC3 '(SEQ ID NO. 51) and PRCHRC5' (SEQ ID NO. 50) amplified.
  • the amplificate was cloned into the cloning vector pCR2.1 (Invitrogen). Sequencing of the resulting clone pCR2.1-CHRC with the primers M13 and T7 confirmed a sequence identical to the sequence AF099501. This clone was therefore used for the cloning in the expression VeMor cs44.
  • the cloning was carried out by isolating the 1537 bp Sacl-Hindlll fragment from pCR2.1-CHRC and ligation into the Sacl-Hindlll cut vector cs44.
  • the clone that contains the CHRC promoter instead of the original AP3P promoter is called cs45.
  • the AP3P promoter was cloned in cs45 in antisense orientation at the 3'terminus of the epsilon-cyclase antisense fragment.
  • the AP3P promoter fragment from pJAH was under Use of the primers PR128 and PR129 amplified.
  • the amplificate was cloned into the cloning cell pCR2.1 (Invitrogen). This clone pCR2.1-AP3PSX was used to produce an inverted repeat expression cassette under the control of two promoters.
  • the cloning was carried out by isolating the 771 bp Sal-Xhol fragment from pCR2.1-AP3PSX and ligation into the Xhol-cut vector cs45.
  • the clone which contains the promoter AP3P in the antisense orientation on three sides of the inverted repeat is called cs46.
  • the expression vectors for the Agrobacterium -mediated transformation of the AP3P-controlled inverted repeat transcript in Tagetes erecta were produced using the binary VeMor pSUN5 (WO02 / 00900).
  • fragment AP3P contains the modified AP3P promoter (771 bp), fragment P-sense the 312 bp promoter fragment of the epsilon cyclase in sense orientation, fragment intron the intron IV2 of the potato gene ST-LS1), and fragment P- anti the 312 bp promoter fragment of the epsilon cyclase in antisense orientation.
  • fragment CHRC contains the CHRC promoter (1537 bp), fragment P-sense the 312 bp promoter fragment of epsilon cyclase in sense
  • fragment CHRC contains the CHRC promoter (1537 bp), fragment P-sense the 312 bp promoter fragment of epsilon cyclase in sense Orientation, fragment intron the intron IV2 of the potato gene ST-LS1), fragment P anti the 312 bp promoter fragment of epsilon cyclase in antisense orientation and the fragment AP3P the 771 bp AP3P promoter fragment in antisense orientation.
  • germination medium MS medium; Murashige and Skoog, Physiol. Plant. 15 (1962), 473-497) pH 5.8, 2% sucrose.
  • Germination takes place in a temperature / light / time interval of 18 to 28 ° C / 20 to 200 oCE / 3 to 16 weeks, but preferably at 21 ° C, 20 to 70 ⁇ * E, for 4 to 8 weeks.
  • the AgrobaMerium tumefaciens strain EHA105 was transformed with the binary plasmid PS5AI3.
  • the transformed A. tumefaciens strain EHA105 was grown overnight under the following conditions: A single colony was grown in YEB (0.1% yeast extract, 0.5% beef extract, 0.5% peptone, 0.5% sucrose, 0.5% Magnesium sulfate x 7 H 2 0) inoculated with 25 mg / l kanamycin and attracted at 28 ° C for 16 to 20 h.
  • the bacterial suspension was then harvested by centrifugation at 6000 g for 10 min and resuspended in liquid MS medium in such a way that an OD 600 of approximately 0.1 to 0.8 was obtained. This suspension was used for the co-cultivation with the leaf material.
  • the MS medium in which the leaves have been kept is replaced by the BaMeriensuspension.
  • the leaflets were incubated in the Agroba mineral suspension for 30 min with gentle shaking at room temperature.
  • the infected explants are then placed on an MS medium solidified with agar (for example 0.8% Plant Agar (Duchefa, NL) with growth regulators, for example 3 mg / l benzylaminopurine (BAP) and 1 mg / l indolylacetic acid (IAA).
  • agar for example 0.8% Plant Agar (Duchefa, NL) with growth regulators, for example 3 mg / l benzylaminopurine (BAP) and 1 mg / l indolylacetic acid (IAA).
  • BAP Plant Agar
  • IAA indolylacetic acid
  • Cultivation of the explants takes place for 1 to 8 days, but preferably for 6 days, the following can Conditions are used: light intensity: 30 to 80 mol / m 2 x sec, temperature: 22 to 24 ° C., light / dark change of 16/8 hours, then the co-cultivated explants are placed on fresh MS medium, preferably with transferred to the same growth regulators, this second medium additionally containing an antibiotic to suppress bacterial growth, timentin in a concentration of 200 to 500 mg / l is for for this purpose very much suitable.
  • the second seleMive component is used to select the success of the transformation.
  • Phosphinothricin in a concentration of 1 to 5 mg / l selects very efficiently, but other selective components according to the method to be used are also conceivable.
  • the explants are transferred to fresh medium until shoot buds and small shoots develop, which are then on the same basal medium including timentin and PPT or alternative components with growth regulators, namely, for example, 0.5 mg / l indolylbutyric acid (IBA) and 0.5 mg / l gibberillic acid GA 3 , are transferred for rooting. Rooted shoots can be transferred to the greenhouse.
  • IBA 0.5 mg / l indolylbutyric acid
  • GA 3 gibberillic acid
  • the pH for regeneration (usually 5.8) can be adjusted to pH 5.2. This improves control of Agroba series growth.
  • Liquid culture medium can also be used for the entire process.
  • the culture can also be incubated on commercially available carriers which are positioned on the liquid medium.
  • the flower material of the transgenic Tagetes erecta plants CS30-1, CS30-3 and CS30-4 from Example 7 was ground in liquid nitrogen and the powder (about 250 to 500 mg) extracted with 100% acetone (three times 500 ul each). The solvent was evaporated and the carotenoids resuspended in 100 ul acetone.
  • Table 1 shows the carotenoid profile in day tetals of the transgenic tagetes and control day plants produced according to the examples described above. All carotenoid amounts are given in [ ⁇ g / g] fresh weight, percentage changes compared to the control plant are given in brackets. Compared to the genetically unmodified control plant, the genetically modified plants have a significantly increased content of carotenoids of the " ⁇ -carotene pathway", such as, for example, ⁇ -carotene and zeaxanthin, and a significantly reduced content of carotenoids of the " ⁇ -carotene pathway” , such as lutein.
  • ⁇ -carotene pathway such as, for example, ⁇ -carotene and zeaxanthin
  • Example 8.2 Reduction of the ⁇ -cyclase activity in Tagetes erecta by Antisense CS 32-9
  • a Tagetes erecta antisense line CS32-9 was produced as a comparative example, in which the ⁇ -cyclase activity was reduced by antisense.
  • the carotenoid profile of this line (CS32-9), measured by the method described above, is also shown in Table 1.
  • Example 8.3 Alkaline hydrolysis of carotenoid esters and identification of the carotenoids of MK14-1-1
  • the petals of the transgenic Tagetes Errecta plants MK14-1-1 from Example 7 were ground in liquid nitrogen and the petalen powder (about 20 mg) was extracted with 100% acetone (three times 500 ul each). The solvent was evaporated and the residue was taken up in 180 ⁇ l of acetone. In order to ensure homogeneity of the extract, the extract was treated with ultrasound for two minutes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Birds (AREA)
  • Pregnancy & Childbirth (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Insects & Arthropods (AREA)
  • Reproductive Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von ss-Carotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die genetisch veränderten Pflanzen, sowie deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von ss-Carotinoidextrakten.

Description

Verfahren zur Herstellung von ß-Carotinoiden
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von ß-Carotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die genetisch veränderten Pflanzen, sowie deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von ß-Carotinoidextrakten.
Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflanzen synthetisiert. ß-Carotinoide, also Carotinoide des ß-Carotin-Weges, wie beispielsweise ß-Carotin, ß-Cryptoxanthin, Zeaxanthin, Antheraxanthin, Violaxanthin und Neoxanthin sind natürliche Antioxidantien und Pigmente, die von Mikroorganismen, Algen, Pilzen und Pflanzen als Sekundärmetabolite produziert werden. .; ß-Carotin ist eine Vitamin A Vorstufe und damit wichtiger Bestandteil in Food-, Feed- und Kosmetik-Anwendungen. Femer dient es als Pigmentierstoff in vielen Bereichen, wie beispielsweise in der Getränkemittelindustrie.
Zeaxanthin ist eines der Hauptpigmente in der Macula des menschlichen Auges und schützt durch sein spezielles Lichabsorptionsspektrum die empfindlichen Sehzellen. Durch die Lichteinstrahlung wird Zeaxanthin degradiert und muss mit der Nahrung wieder zugeführt werden um einen effizienten Schutz der Macula zu erhalten und Langzeitschäden, wie die altersbedingte Maculadegeneration (ADM), zu vermeiden. Ferner dient Zeaxanthin als Pigmentierstoff von Tierprodukten, insbesondere zur Pigmentierung von Eidotter, Haut und Fleisch von Hühnervögeln durch orale Verabreichung.
Viele ß-Carotinoide sind zudem von hohem wirtschaftlichen Interesse, da sie in ihrer Eigenschaft als Farbpigmente und Antioxidantien als Nahrungsmittelzusätze, Farbstoffe, Konservierungsstoffe, Futtermittel und Nahrungsergänzungsmittel genutzt werden.
Die Herstellung von ß-Carotinoiden, wie beispielsweise ß-Carotin und Zeaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren.
Natürliche ß-Carotinoide, wie beispielsweise natürliches ß-Carotin, werden in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Mikroorganismen, Algen oder Pilzen oder durch Fermentation von gentechnologisch optimierten Mikro- Organismen und anschließender Isolierung gewonnen. Natürliches Zeaxanthin ist Bestandteil von sogenanntem Oleoresin, einem Extrakt aus getrockneten Petalen der Pflanze Tagetes errecta. Der Gehalt an Zeaxanthin in Oleoresin ist jedoch gering, da die Carotinoide in den Petaleή von Tagetes errecta zur überwiegenden Mehrheit aus Carotinoiden des α-Carotin-Weges, wie beispielsweise Lutein, bestehen.
Die Erhöhung des ß-Carotinoid Gehaltes in Pflanzen bzw. in den entsprechenden Pflanzengeweben ist daher ein wichtiges Ziel der biotechnologischen Optimierung von Pflanzen.
Carlo Rosati et al. beschreiben die Überexpression einer ß-Cyclase aus Arabidopsis thaliana mit einem fruchtspezifischen Promoter in Tomate (Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G. Metabolie engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 2000 Nov;24(3):413-9.). Hierdurch wird das in der Wildtypfrucht vorhandene Lycopin verstärkt in ß Carotin überführt.
Sridhar Dharmapuri et al. beschreiben die Überexpression einer ß Cyclase und die Kombination mit der Überexpression einer ß Hydroxylase in der Frucht von Tomate (Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G. Metabolie engineering of xanthophyll content in tomato fruits, FEBS Lett. 2002 May 22;519(1-3):30-4). Der Gehalt an Carotinoiden, hier Lutein, ist beziffert. Die Lutein Mengen liegen in allen Fällen zwischen 1 ,0 und 2,0 μg/mg Frischgewicht (Wildtyp: 1 ,9 μg/mg) und der Anteil von Lutein an den Gesamtcarotinoiden beträgt in allen beschrie- benen Fällen zwischen 1 ,4 und 2,9% (Wildtyp: 2,8%). In keiner Frucht dieser trans- genen Pflanzen wird der Anteil an Lutein signifikant reduziert.
EP 393690 B1 , WO91/13078 A1 , EP 735137 A1 , EP 747483 A1 und WO 97/36998 A1 beschreiben ß-Cyclase-Gene. .
EP 393690 beschreibt ein Verfahren zur Herstellung von Carotinoiden durch Nutzung mindestens eines der Gene codierend für Phytoen Synthase, Phytoen Dehydrogenase, ß-Cyclase und ß Hydroxylase erhalten aus Erwinia uredovora.
WO91/13078 A1 beschreibt ein Verfahren zur Herstellung von Carotinoiden durch Nutzung der Gene ausgewählt aus GGPP-Synthase, Phytoen Synthase, Phytoen Dehydrogenase, ß-Cyclase und ß Hydroxylase erhalten aus Erwinia herbicola.
WO 96/36717 beschreibt ein Verfahren zur Herstellung von Carotinoiden durch Nutzung von Genen, codierend für ß-Cyclase, erhalten aus Capsicum annum. EP 747483 A1 beschreibt ein Verfahren zur Herstellung von Carotinoiden durch Nutzung der Gene codierend für GGPP-Synthase, Phytoen Synthase, Phytoen Dehydrogenase, ß-Cyclase und ß Hydroxylase erhalten aus Flavobakterium.
WO 96/28014 beschreibt und beansprucht DNA Sequenzen codierend für eine ß Cyclase aus Synechococcus sp. PCC7942, Tabak und Tomate.
WO 00/08920 beschreibt ein neues ß-Cyclase-Gen aus Tomate (Bgene), die Verwendung der Regulationssignale des Bgenes zur chromoplastenspezifischen Expression von Fremdgenen sowie die Verwendung der antisense DNA von Bgene zur Reduktion des ß Carotinoid Gehaltes in Tomate. WO 00/08920 beschreibt ferner, dass das Bgene zur Herstellung von Carotinoiden in höheren Pflanzen überexprimiert werden kann.
WO 00/32788 beschreibt ein Verfahren zur Manipulation des Carotinoidgehaltes in Pflanzen mittels ß-Cyclase-Genen aus Marigold. WO 00/32788 beschreibt ferner genetisch veränderte Marigold Pflanzen die eine ß-Cyclase überexprimieren. WO 00/32788 beschreibt ferner genetisch veränderte Marigold Pflanzen mit einer reduzierten ε-Cyclase Aktivität.
Alle Verfahren des Standes der Technik liefern zwar teilweise einen höheren Gehalt an ß-Carotinoiden am Gesamtcarotinoid-Gehalt, jedoch ohne die Menge an -Caro- tinoiden signifikant abzusenken. Das gezielte Absenken des Gehalts an α-Carotinoiden nach den Verfahren des Standes der Technik, wie beispielsweise die Reduzierung der ε-Cyclase Aktivität, führt jedoch zu einer Abnahme des Gesamtcarotinoid-Gehalts.
Der Erfindung lag daher die Aufgabe zugrunde, ein alternatives Verfahren zur Herstellung von ß-Carotinoiden durch Kultivierung von genetisch veränderten Pflanzen zur Verfügung zu stellen, bzw. weitere transgene Pflanzen, die ß-Carotinoide herstellen, zur Verfügung zu stellen, die die geschilderten Nachteile des Standes der Technik nicht aufweisen und einen hohen Gehalt an ß-Carotinoiden liefern, bei einer gleichzeitig niedrigeren Menge an α-Carotinoiden.
Demgemäß wurde ein Verfahren zur Herstellung von ß-Carotinoiden gefunden, indem man genetisch veränderten Pflanzen kultiviert, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, aufweisen und die erhöhte ß-Cyclase-Aktivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, lnsertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, mit der Maßgabe, dass Tomate als Pflanze ausgenommen ist.
Überraschenderweise wurde gefunden, dass die Erhöhung der ß-Cyclase-Aktivität in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, in genetisch veränderten Pflanzen mit der Aus- nähme von Tomate zu einer Erhöhung des Gehalts an ß-Carotinoiden und zu einer Erniedrigung des Gehalts an α-Carotinoiden.
Unter ß-Cyclase-Aktivität wird die Enzymaktivität einer ß-Cyclase verstanden.
Unter einer ß-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen ß-lonon-Ring zu überführen.
Insbesondere wird unter einer ß-Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, Lycopin in γ-Carotin, γ-Carotin in ß-Carotin bzw. Lycopin. in ß-Carotin umzuwandeln.
Dementsprechend wird unter ß-Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein ß-Cyclase umgesetzte Menge Lycopin oder γ-Carotin bzw. gebildete Menge γ-Carotin oder ß-Carotin verstanden.
Bei einer erhöhten ß-Cyclase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein ß-Cyclase die umgesetzte Menge Lycopin oder γ-Carotin bzw. gebildete Menge γ-Carotin oder ß-Carotin erhöht.
Vorzugsweise beträgt diese Erhöhung der ß-Cyclase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der ß-Cyclase-Aktivität des Wildtyps.
Die Bestimmung der ß-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen: Die Aktivität der ß-Cyclase wird nach Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15)/π vitro bestimmt. Es werden zu einer bestimmten Menge an Pflanzenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stroma- protein von Paprika, NADP+, NADPH und ATP zugegeben.
Der in-vitro Assay wird in einem Volumen von 250 μl Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 250 g an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in . 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.
Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).
Unter dem Begriff „photosynthetisch inaktive Plastide" werden Plastide verstanden, in denen keine Photosynthese stattfindet, wie beispielsweise Chromoplasten, Leukoplas- ten oder Amyloplasten.
Dementsprechend werden unter dem Begriff „Pflanzengewebe, enthaltend photosynthetisch inaktive Plastide" Pflanzengewebe oder Pflanzenteile verstanden, die Plastide enthalten, in denen keine Photosynthese stattfindet, also beispielsweise Pflanzen- gewebe oder Pflanzenteile, die Chromoplasten, Leukoplasten oder Amyloplasten enthalten, wie beispielsweise Blüten, Früchte oder Knollen.
In einer nachstehend ausführlich beschriebenen Ausführungsform sind die Pflanzengewebe, enthaltend photosynthetisch inaktive Plastide, ausgewählt aus der Gruppe Blüte, Frucht und Knolle.
Je nach verwendeter Ausgangspflanze oder entsprechender genetisch veränderter Pflanze weist die Pflanze in dieser bevorzugten Ausführungsform eine erhöhte ß-Cyclase-Aktivität in Blüten, Früchten oder Knollen im Vergleich zum Wildtyp auf.
Dabei ist es vorteilhaft für jede Pflanze das Pflanzegewebe, enthaltend photosynthetisch inaktive Plastide, also vorzugsweise Blüte, Frucht oder Knolle, zu wählen in dem im Wildtyp bereits der höchste Gesamtcarotinoid-Gehalt vorliegt. Unter dem Begriff "Wildtyp" wird erfindungsgemäß die entsprechende nicht genetisch veränderte Ausgangspflanze verstanden.
Je nach Zusammenhang kann unter dem Begriff "Pflanze" die Ausgangspflanze (Wildtyp) oder eine erfindungsgemäße, genetisch veränderte Pflanze oder beides verstanden werden.
Vorzugsweise und insbesondere in Fällen, in denen die Pflanze oder der Wildtyp nicht eindeutig zugeordnet werden kann , wird unter "Wildtyp" für die Erhöhung der ß-Cyclase-Aktivität, für die nachstehend beschriebene Erhöhung der Hydroxylase- Aktivität, für die nachstehend beschriebene Reduzierung der endogenen ß-Hydroxy- iase Aktivität, für die nachstehend beschriebene Reduzierung der ε-Cyclase-Aktivität und die Erhöhung des Gehalts an ß-Carotinoiden jeweils eine Referenzpflanze verstanden.
Diese Referenzpflanze ist für Pflanzen, die als Wildtyp in Blüten den höchsten Gehalt an Carotinoiden aufweisen vorzugsweise Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta oder Tagetes campanulata, besonders bevorzugt Tagetes erecta.
Diese Referenzpflanze ist für Pflanzen, die als Wildtyp in Früchten den höchsten Gehalt an Carotinoiden, vorzugsweise Mais.
Diese Referenzpflanze ist für Pflanzen, die als Wildtyp in Knollen den höchsten Gehalt an Carotinoiden, vorzugsweise Solanum tuberosum.
Die Erhöhung der ß-Cyclase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Translations- und Proteinebene oder durch Erhöhung der Genexpression einer Nukleinsäure codierend eine ß-Cyclase gegenüber dem Wildtyp, beispielsweise durch Induzierung des ß-Cyclase-Gens durch Aktivatoren oder starke Promotoren oder durch Einbringen von Nukleinsäuren kodierend eine ß-Cyclase in die Pflanze.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der ß-Cyclase-Aktivität gegenüber dem Wildtyp durch die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp. In einer weiter bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine ß-Cyclase durch Einbringen von Nukleinsäuren, die ß-Cyclasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, in die Pflanze.
In den erfindungsgemäßen transgenen Pflanzen liegt also in dieser Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres ß-Cyclase-Gen unter der Kontrolle eines Promotors, der die Expression des ß-Cyclase-Gens in Pflanzengeweben enthaltend photosynthetisch inaktive Plastide gewährleistet, vor, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist. In dieser Ausführungsform weist die erfindungsgemäße genetisch veränderte Pflanze in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, dementsprechend mindestens eine exogene (=heterologe) ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der
Sequenz SEQ. ID. NO. 2 aufweist, auf oder mindestens zwei endogene Nukleinsäuren, codierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, auf.
Dazu prinzipiell jedes erfindungsgemäße ß-Cyclase-Gen, also jede Nukleinsäuren die eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleite- te Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, codiert verwendet werden.
Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.
Bei genomischen ß-Cyclase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden ß-Cyclase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden. Beispiele für Nukleinsäuren, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, und die entsprechenden ß-Cyclasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, die im erfindungsgemäßen Verfahren ver- wendet werden können, sind beispielsweise Sequenzen aus
Tomate (Bgene; WO 00/08920; Nukleinsäure: SEQ ID NO: 1, Protein SEQ ID NO: 2).
Weitere natürliche Beispiele für ß-Cyclasen und ß-Cyclase-Gene, die im erfindungs- gemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit der Sequenz SEQ ID NO: 2 leicht auffinden.
Weitere natürliche Beispiele für ß-Cyclasen und ß-Cyclase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von der Sequenz SEQ ID NO: 1 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.
Die im folgenden verwendeten Parameter und Bedingungen für Identitätsvergleiche und Hybridisierungstechniken gelten analog auch für alle weiteren, nachstehend beschriebenen Nukleinsäuren und Proteine, die in bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens oder der genetisch veränderten Pflanzen verwendet werden.
Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.
Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben. Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50°C, bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumeitrat, 3 M Natriumchlorid, pH 7.0).
Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.
Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.
Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:
(1 ) Hybridiserungsbedingungen mit zum Beispiel
(i) 4X SSC bei 65°C, oder
(ii) 6X SSC bei 45°C, oder
(iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
(iv) 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
(v) 6XSSC,' 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-
DNA, 50 % Formamid bei 42°C, oder
(vi) 50 % Formamid, 4X SSC bei 42°C, oder
(vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll, 0.1 %
Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6.5, 750 mM NaCI, 75 mM Natriumeitrat bei 42°C, oder
(viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42° (moderate Bedingungen).
(2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
(i) 0.015 M NaCI/0.0015 M Natriumcitrat/0.1 % SDS bei 50°C, oder
(ii) 0.1X SSC bei 65°C, oder
(iii) 0.1 X SSC, 0.5 % SDS bei 68°C, oder
(iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder
: (v) 0.2X SSC, 0.1 % SDS bei 42°C, oder
(vi) 2X SSC bei 65°C (moderate Bedingungen).
In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 65 %, vorzugsweise mindestens 70 %, bevorzugter mindestens 75 %, bevorzugter mindestens 80 %, bevorzugter mindestens 85 %, bevorzugter mindestens 90 %, bevorzugter mindestens 95 %, besonders bevorzugt mindestens 97 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 und die enzymatische Eigenschaft einer ß-Cyclase aufweist.
Dabei kann es sich um eine natürliche ß-Cyclase-Sequenz handeln, die wie vor- stehend beschrieben durch Identitätsvergleich der Sequenzen oder mit Hybridisierungstechniken aus anderen Organismen gefunden werden kann oder um eine künstliche ß-Cyclase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 2 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.
Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, bei- spielsweise Austausch von GIu durch Asp, Gin durch Asn, Val durch lle, Leu durch lle, Ser durch Thr.
Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deietionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.
Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.
Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, ine. Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microeomputer. Comput Appl. Biosci. 1989 Apr;5(2):151 -1 ) unter Einstellung folgender Parameter berechnet wird:
Multiple alignment parameter: Gap penalty 10 Gap length penalty 10
Pairwise alignment parameter: K-tuple 1
Gap penalty 3 Window 5
Diagonals saved 5
Unter einem Protein, das eine Identität von mindestens 20 % auf Aminosäureebene mit einer bestimmten Sequenz aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der bestimmten Sequenz insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 20 % aufweist.
Unter einem Protein, das eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 2 insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 60 % aufweist. Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzspezifi- sehen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 1 in die Pflanze ein.
Alle vorstehend erwähnten ß-Cyclase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Im erfindungsgemäßen Verfahren erfolgt die Expression der ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, unter Kontrolle von Regulationssignalen, vorzugsweise einem Promotor und plasti- dären Transitpeptiden, die die Expression der ß-Cyclase in den Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, gewährleisten.
In einer bevorzugten Ausführungsform verwendet man genetisch veränderte Pflanzen, die in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, die höchste Expressionsrate der ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Amino- säuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, aufweisen.
Vorzugsweise wird dies dadurch erreicht, dass die Expression der erfindungsgemäßen ß-Cyclase unter Kontrolle eines für das Pflanzengewebe spezifischen Promotors erfolgt. Für den vorstehend beschriebenen Fall, dass die Expression in Blüten erfolgen soll ist es vorteilhaft, dass die Expression der erfindungsgemäßen ß-Cyclase unter Kontrolle eines blütenspezifischen oder bevorzugter petalenspezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Früchten erfolgen soll ist es vorteilhaft, dass die Expression der erfindungsgemäßen ß-Cyclase unter Kontrolle eines fruchtspezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Knollen erfolgen soll ist es vorteilhaft, dass die Expression der erfindungsgemäßen ß-Cyclase unter Kontrolle eines knollenspezifischen Promotors erfolgt.
In einer bevorzugten Ausführungsform werden genetisch veränderte Pflanzen kultiviert, die gegenüber dem Wildtyp zusätzlich eine erhöhte Hydroxylase-Aktivität aufweisen.
Unter Hydroxylase-Aktivität wird die Enzymaktivität einer ß-Carotin-Hydroxylase verstanden, die im folgenden Hydroxylase genannt wird.
Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, ß-lonon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.
Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Zeaxanthin umzuwandeln.
Dementsprechend wird unter Hydroxyase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge ß-Carotin bzw. gebildete Menge Zeaxanthin verstanden.
Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge ß-Carotin bzw. die gebildete Menge Zeaxanthin erhöht.
Vorzugsweise beträgt diese Erhöhung der Hydroxylase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase-Aktivität des Wildtyps. Unter der nachstehend beschriebenen "endogenen ß-Hydroxylase" wird die pflanzeneigene, endogene Hydroxylase verstanden. Die Bestimmung der Aktivität erfolgt analog.
5 Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:
Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 10 (1998), 320-328) in vitro bestimmt. Es wird zu einer bestimmten Menge an Pflanzenextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie beta- Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.
Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgen- 15. den Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll bio- synthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320-328):
Der in-vitro Assay wird in einem Volumen von 0.250 ml Volumen durchgeführt. Der 0 Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Mono- und Digalaktosylglyzeriden, (1:1), 0.2 mg Rinderserumalbumin und Pflanzenextrakt in 5 unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1 ) extrahiert und mittels HPLC bestimmt.
Die Erhöhung der Hydroxylase-Aktivität kann durch verschiedene Wege erfolgen, 0 beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wiidtyp.
Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase 5 gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure kodierend eine Hydroxylase in die Pflanze. Unter Erhöhung der Genexpression einer Nukleinsäure codierend eine Hydroxylase wird erfindungsgemäß auch die Manipulation der Expression der Pflanzen eigenen, endogenen Hydroxylase verstanden.
Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Hydroxy- lasen kodierende Gene erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.
Es ist, wie vorstehend beschrieben, möglich, die Expression der endogenen Hydroxylase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.
Des weiteren kann eine veränderte bzw. erhöhte Expression eines endogenen Hydroxylase-Gens dadurch erzielt werden, dass ein in der nicht transformierten Pflanze nicht vorkommendes Regulator-Protein mit dem Promotor dieses Gens in Wechselwirkung tritt.
Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA- Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.
Bei bestimmten bevorzugten Pflanzen, bei denen der Schwerpunkt der Biosynthese auf dem α-Carotinoid-Weg liegt, wie beispielsweise Pflanzen der Gattung Tagetes, ist es vorteilhaft, die endogene ß-Hydroxylase-Aktivität zu reduzieren und die Aktivittät von exogenen Hydroxylasen zu erhöhen.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase durch Einbringen von mindestens einer Nukleinsäure kodierend eine Hydroxylase in die Pflanze.
Dazu kann prinzipiell jedes Hydroxylase-Gen, also jede Nukleinsäure, die eine Hydroxylase codiert, verwendet werden.
Bei genomischen Hydroxylase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu ver- wenden. Beispiele für ein Hydroxylase-Gene sind:
eine Nukleinsäure, kodierend eine Hydroxylase aus Haematococcus pluvialis, Acces- sion AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 3, Protein: SEQ ID NO: 4),
sowie Hydroxylasen der folgenden Accession Nummern:
lemblCAB55626.1, CAA70427.1 , CAA70888.1, CAB55625.1, AF499108_1, AF315289_1 , AF296158_1 , AAC49443.1 , NP_194300.1 , NP_200070.1 , AAG10430.1 , CAC06712.1 , AAM88619.1 , CAC95130.1 , AAL80006.1, AF162276.1, AAO53295.1 , AAN85601.1, CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1, CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1, ZP_00094836.1, AAC44852.1, BAC77670.1, NP_745389.1 , NP_344225.1 , NP_849490.1 , ZP_00087019.1 , NP_503072.1 , NP_852012.1 , NP_115929.1 , ZP_00013255.1
Eine besonders bevorzugte Hydroxylase ist weiterhin die Hydroxylase aus Tomate (Acc.No. LEY14810) (Nukleinsäure: SEQ ID NO: 5; Protein: SEQ ID NO. 6).
In den erfindungsgemäßen bevorzugten transgenen Pflanzen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase-Gen vor.
In dieser bevorzugten Ausführungsform weist die genetisch veränderte Pflanze beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase auf.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Amino- säuresequenz SEQ ID NO: 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 6, und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.
Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 6 leicht auffinden.
Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin bei- spielsweise ausgehend von der Sequenz SEQ ID NO: 5 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 6.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 5 in den Organismus ein.
Alle vorstehend erwähnten Hydroxylase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäure- bausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Frag- mentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungs- verfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Vorzugsweise erfolgt die Expression der Hydroxylase im erfindungsgemäßen Verfahren unter Kontrolle von Regulationssignalen, vorzugsweise einem Promotor und plastidären Transitpeptiden, die die Expression der Hydroxylase in den Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, gewährleisten. In einer besonders bevorzugten Ausführungsform verwendet man genetisch veränderte Pflanzen, die in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, die höchste Expressionsrate der Hydroxylase aufweisen.
Vorzugsweise wird dies dadurch erreicht, dass die Expression der Hydroxylase unter Kontrolle eines für das Pflanzengewebe spezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Blüten erfolgen soll ist es vorteilhaft, dass die zusätzliche Expression der Hydroxylase unter Kontrolle eines blütenspezifischen oder bevorzugter petalenspezif ischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Früchten erfolgen soll ist es vorteilhaft, dass die zusätzliche Expression der Hydroxylase unter Kontrolle eines fruchtspezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Knollen erfolgen soll ist es vorteilhaft, dass die zusätzliche Expression der Hydroxylase unter Kontrolle eines knollenspezifischen Promotors erfolgt.
In einer weiter bevorzugten Ausführungsform des Verfahrens weisen die genetisch veränderten Pflanzen gegenüber dem Wildtyp zusätzlich eine reduzierte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe ε-Cyclase-Aktivität und endogene ß-Hydroxylase Aktivität auf.
Unter ε-Cyclase-Aktivität wird die Enzymaktivität einer ε-Cyclase verstanden.
Unter einer ε-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen ε-lonon-Ring zu überführen.
Unter einer ε-Cyclase wird daher insbesondere ein Protein verstanden, das die enzymatische Aktivität aufweist, Lycopin in δ-Carotin umzuwandeln.
Dementsprechend wird unter ε-Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein ε-Cyclase umgesetzte Menge Lycopin bzw. gebildete Menge δ-Carotin verstanden.
Bei einer reduzierten ε-Cyclase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein ε-Cyclase die umgesetzte Menge Lycopin bzw. die gebildete Menge δ-Carotin reduziert. Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:
Die ε-Cyclase-Aktivität kann nach Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15)/t7 vitro bestimmt werden, wenn zu einer bestimmten Menge an Pflanzenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stroma- protein von Paprika, NADP+, NADPH und ATP zugegeben werden.
Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt besonders bevorzugt nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclase inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):
Der in-vitro Assay wird in einem Volumen von 0.25 ml durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 0.25 mg an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 0.01 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.
Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15). Eine weitere analytische Methode ist beschrieben in Beyer, Kröncke und Nievelstein (On the mechanism of the lycopene isomerase/cyclase reaction in Narcissus pseudonarcissus L chromopast, J. Biol. Chem. 266(26) (1991) 17072-17078).
Unter endogener ß-Hydroxylase -Aktivität wird die Enzymaktivität der endogenen, pflanzeneigenen ß-Hydroxylase verstanden.
Unter einer endogenen ß-Hydroxylase wird eine endogene, pflanzeneigene Hxdroxy- läse wie vorstehend beschrieben, verstanden. Ist beispielsweise Tagetes errecta die genetisch zu verändernde Zielpflanze, so wird unter der endogenen ß-Hydroxylase die ß-Hydoxylase von Tagetes errecta verstanden. Unter einer endogenen ß-Hydroxylase wird demnach insbesondere ein pflanzeneigenes Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Zeaxanthin umzuwandeln.
Dementsprechend wird unter endogener ß-Hydroxylase-Aktivität die in einer bestimmten Zeit durch das Protein endogene ß-Hydroxylase umgesetzte Menge ß-Carotin bzw. gebildete Menge Zeaxanthin verstanden.
Bei einer reduzierten endogenen ß-Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit die durch das Protein endogene ß-Hydroxylase umgesetzte Menge ß-Carotin bzw. die gebildete Menge Zeaxanthin reduziert.
Vorzugsweise beträgt diese Reduzierung der endogenen ß-Hydroxylase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt 100 %. Besonders bevorzugt ist die endogenen ß-Hydroxylase-Aktivität komplett ausgeschaltet.
Es wurde überraschenderweise gefunden, dass es bei Pflanzen die mehrheitlich Carotinoide des α-Carotin-Weges, wie beispielsweise Lutein, herstellen, wie beispielsweise Pflanzen der Gattung Tagetes, vorteilhaft ist, die Aktivität der endogenen ß-Hydroxylase zu reduzieren und gegebenenfalls die Aktivität einer heterologen Hydroxylase zu erhöhen. Besonders bevorzugt werden dabei Hydroxylasen oder funktionelle Äquivalente davon verwendet, die aus Pflanzen stammen, die mehrheit- lieh Carotinoide des ß-Carotin-Weges herstellen, wie beispielsweiese die vorstehend beschriebene ß-Hydroxylase aus Tomate (Nukleinsäure: SEQ ID No. 5, Protein: SEQ ID No. 6).
Können wir das hier schon antizipieren?
Die Bestimmung der endogenen ß-Hydroxylase Aktivtät erfolgt wie vorstehend beschrieben analog zur Bestimmung der Hydroxylase-Aktivität.
Unter einer reduzierten ε-Cyclase-Aktivität bzw. Hydroxylase-Aktivität wird vorzugs- weise die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der Funktionalität einer ε-Cyclase bzw. Hydroxylase in einer pflanzlichen Zelle, Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen verstanden. Die Reduzierung der erfindungsgemäßen Enzym-Aktivitäten in Pflanzen gegenüber dem Wildtyp kann beispielsweise durch Reduzierung der Proteinmenge, oder der mRNA-Menge in der Pflanze erfolgen. Dementsprechend kann eine gegenüber dem Wildtyp reduzierte Enzym-Aktivität direkt bestimmt werden oder über die Bestimmung der Proteinmenge oder der mRNA-Menge der erfindungsgemäßen Pflanze im Vergleich zum Wildtyp erfolgen.
Eine Reduzierung der ε-Cyclase-Aktivität umfasst eine mengenmäßige Verringerung einer ε-Cyclase bis hin zu einem im wesentlichen vollständigen Fehlen der ε-Cyclase (d.h. fehlende Nachweisbarkeit von ε-Cyclase-Aktivität oder fehlende immunologische Nachweisbarkeit der ε-Cyclase). Vorzugsweise wird die ε-Cyclase-Aktivität (bzw. die ε-Cyclase-Proteinmenge oder die ε-Cyclase-mRNA-Menge) in der Pflanze, besonders bevorzugt in Blüten im Vergleich zum Wildtyp um mindestens 5 %, weiter bevorzugt um mindestens 20 %, weiter bevorzugt um mindestens 50 %, weiter bevorzugt um 100 % reduziert. Insbesondere meint "Reduzierung" auch das vollständigen Fehlen der ε-Cyclase-Aktivität (bzw. des ε-Cyclase-Proteins oder der ε-Cyclase-mRNA).
Eine Reduzierung der endogenen ß-Hydroxylase-Aktivität umfasst eine mengenmäßige Verringerung einer endogenen ß-Hydroxylase bis hin zu einem im wesentlichen vollständigen Fehlen der endogenen ß-Hydroxylase (d.h. fehlende Nachweisbarkeit von endogener ß-Hydroxylase-Aktivität oder fehlende immunologische Nachweisbarkeit der endogenen ß-Hydroxylase). Vorzugsweise wird diß endogene ß-Hydroxylase- Aktivität (bzw. die endogenen ß-Hydroxylase-Proteinmenge oder die endogenen ß-Hydroxylase-mRNA-Menge) in der Pflanze, besonders bevorzugt in Blüten im Vergleich zum Wildtyp um mindestens 5 %, weiter bevorzugt um mindestens 20 %, weiter bevorzugt um mindestens 50 %, weiter bevorzugt um 100 % reduziert. Insbesondere meint "Reduzierung" auch das vollständigen Fehlen der endogenen ß-Hydroxylase-Aktivität (bzw. des endogenen ß-Hydroxylase-Proteins oder der endogenen ß-Hydroxylase-mRNA).
Vorzugsweise erfolgt die Reduzierung der ε-Cyclase-Aktivität und/oder der endogenen ß-Hydroxylase Aktivität in Pflanzen durch mindestens eines der nachfolgenden Verfahren:
a) Einbringen mindestens einer doppelsträngigen ε-Cyclase- Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxylase-Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen. Umfasst sind solche Verfahren, bei denen die dsRNA gegen ein Gen (also genomische DNA-Sequenzen wie die Promotorsequenz) oder ein Transkript (also mRNA-Sequenzen) gerichtet ist,
b) Einbringen mindestens einer ε-Cyclase-antisense-Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxylase-antisense-Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressi- onskasetten in Pflanzen. Umfasst sind solche Verfahren, bei denen die anti- senseRNA gegen ein Gen (also genomische DNA-Sequenzen) oder ein Gentranskript (also RNA-Sequenzen) gerichtet ist. Umfasst sind auch α-anomere Nukleinsäuresequenzen,
c) Einbringen mindestens einer ε-Cyclase-antisense-Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxylase-antisense-Ribonukleinsäuresequenz jeweils kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden . Expressionskassette oder Expressionskassetten in Pflanzen,
d) Einbringen mindestens einer ε-Cyclase-sense-Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxylase-sense-Ribonukleinsäuresequenz zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskasetten in Pflanzen,
e) Einbringen mindestens eines DNA-oder Protein-bindenden Faktors gegen ein ε-Cyclase-Gen, -RNA oder -Protein und/oder endogenes ß-Hydroxylase-Gen, - RNA oder -Protein oder einer dessen Expression gewährleistenden Expressi- onskassette oder Expressionskasetten in Pflanzen,
f) Einbringen mindestens einer den ε-Cyclase-RNA und/oder endogenen ß-Hydroxylase-RNA-Abbau bewirkenden viralen Nukleinsäuresequenz oder Nukleinsäuresequenzen oder einer deren Expression gewährleistenden Expres- sionskassette oder Expressionskasetten in Pflanzen,
g) Einbringen mindestens eines Konstruktes zur Erzeugung einer Insertion, Deletion, Inversion oder Mutation in einem ε-Cyclase-Gen und/oder endogenem ß-Hydroxylase-Gen in Pflanzen. Die Methode umfasst das Einbringen minde- stens eines Konstruktes zur Erzeugung eines Funktionsverlustes, wie beispielsweise die Generierung von Stopp-Kodons oder eine Verschiebungen im Leseraster, an einem Gen beispielsweise durch Erzeugung einer Insertion, Deletion, Inversion oder Mutation in einem Gen. Bevorzugt können Knockout-Mutanten mittels gezielter Insertion in besagtes Gen durch homologe Rekombination oder Einbringen von sequenzspezifischen Nukleasen gegen die entsprechenden Gensequenzen generiert werden.
Dem Fachmann ist bekannt, dass auch weitere Verfahren im Rahmen der vorliegenden Erfindung zur Verminderung einer ε-Cyclase und/oder endogenen ß-Hydroxylase bzw. seiner Aktivität oder Funktion eingesetzt werden können. Beispielsweise kann auch das Einbringen einer dominant-negativen Variante einer ε-Cyclase bzw. endogenen ß-Hydroxylase oder einer deren Expression gewährleistenden Expressionskassette vorteilhaft sein. Dabei kann jedes einzelne dieser Verfahren eine Verminderung der Proteinmenge, mRNA-Menge und/oder Aktivität einer ε-Cyclase bzw. endogenen ß-Hydroxylase bewirken. Auch eine kombinierte Anwendung ist denkbar. Weitere Methoden sind dem Fachmann bekannt und können die Behinderung oder Unterbindung der Prozessierung der ε-Cyclase bzw. endogenen ß-Hydroxylase, des Transports der ε-Cyclase bzw. endogenen ß-Hydroxylase oder deren mRNAs, Hemmung der Ribosomenanlagerung, Hemmung des RNA-Spleißens, Induktion eines ε-Cyclase-RNA bzw. endogenen ß-Hydroxylase-RNA abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination umfassen.
Die einzelnen bevorzugten Verfahren seien infolge durch beispielhafte Ausführungs- formen beschrieben:
a) Einbringen einer doppelsträngigen ε-Cyclase-Ribonukleinsäuresequenz (ε-Cyclase-dsRNA) bzw. doppelsträngigen endogenen ß-Hydroxylase- Ribonukleinsäuresequenz (endogene ß-Hydroxylase-dsRNA)
Das Verfahren der Genregulation mittels doppelsträngiger RNA ("double-stranded RNA interference"; dsRNAi) ist bekannt und beispielsweise in Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391 :806-811 ; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035 oder WO 00/63364 beschrieben. Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird hiermit ausdrücklich Bezug genommen.
Unter "Doppelsträngiger Ribonukleinsäuresequenz" wird erfindungsgemäß eine oder mehr Ribonukleinsäuresequenzen, die aufgrund komplementärer Sequenzen theo- retisch, beispielsweise gemäß den Basenpaarregeln von Waston und Crick und/oder faktisch, beispielsweise aufgrund von Hybridisierungsexperimenten, in vitro und/oder in vivo in der Lage sind, doppelsträngige RNA-Strukturen auszubilden.
Dem Fachmann ist bewusst, dass die Ausbildung von doppelsträngigen RNA- Strukturen, einen Gleichgewichtszustand darstellt. Bevorzugt ist das Verhältnis von doppelsträngigen Molekülen zu entsprechenden dissozierten Formen mindestens 1 zu 10, bevorzugt 1:1 , besonders bevorzugt 5:1 , am meisten bevorzugt 10:1.
Unter einer doppelsträngigen ε-Cyclase-Ribonukleinsäuresequenz oder auch ε-Cyclase-dsRNA wird vorzugsweise ein RNA-Molekül verstanden, das einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze eigenen ε-Cyclase-Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen ε-Cyclase-Promotor-Sequenz identisch ist.
Inrrerfindungsgemäßen Verfahren bringt man daher zur Reduzierung der ε-Cyclase- Aktivität bevorzugt in die Pflanze eine RNA ein, die einen Bereich mit Doppel-Strang- Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze eigenen ε-Cyclase-Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen ε-Cyclase-Promotor-Sequenz identisch ist.
Unter dem Begriff "ε-Cyclase-Transkripf wird der transkribierte Teil eines ε-Cyelase- Gens verstanden, der neben der ε-Cyclase kodierenden Sequenz beispielsweise auch nichtkodierende Sequenzen, wie beispielsweise auch UTRs enthält.
Unter einer RNA, die "mit mindestens einem Teil der Pflanze eigenen ε-Cyclase- Promotor-Sequenz identisch isf, ist vorzugsweise gemeint, dass die RNA-Sequenz mit mindestens einem Teil des theoretischen Transkriptes der ε-Cyclase-Promotor- Sequenz, also der entsprechenden RNA-Sequenz, identisch ist.
Unter "einem Teil" des Pflanze eigenen ε-Cyclase-Transkripts bzw. der Pflanze eigenen ε-Cyclase-Promotor-Sequenz werden Teilsequenzen verstanden, die von wenigen Basenpaaren bis hin zu vollständigen Sequenzen des Transkripts bzw. der Promotorssequenz reichen können. Die optimale Länge der Teilsequenzen kann der Fachmann durch Routineversuche leicht ermitteln. Unter einer doppelsträngigen endogenen ß-Hydroxylase-Ribonukleinsäuresequenz oder auch endogene ß-Hydroxylase-dsRNA wird vorzugsweise ein RNA-Molekül verstanden, das einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze eigenen, endogenen ß-Hydroxylase- Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen, endogenen ß-Hydroxylase- Promotor-Sequenz identisch ist.
Im erfindungsgemäßen Verfahren bringt man daher zur Reduzierung der endogenen ß-Hydroxylase-Aktivität bevorzugt in die Pflanze eine RNA ein, die einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze eigenen, endogenen ß-Hydroxylase- Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen, endogenen ß-Hydroxylase- Promotor-Sequenz identisch ist.
Unter dem Begriff "endogene ß-Hydroxylase-Transkript" wird der transkribierte Teil eines endogenen ß-Hydroxylase-Gens verstanden, der neben der endogenen ß-Hydroxylase kodierenden Sequenz beispielsweise auch nichtkodierende Sequenzen, wie beispielsweise auch UTRs enthält.
Unter einer RNA, die "mit mindestens einem Teil der Pflanze eigenen, endogenen ß-Hydroxylase-Promotor-Sequenz identisch ist", ist vorzugsweise gemeint, dass die RNA-Sequenz mit mindestens einem Teil des theoretischen Transkriptes der endogenen ß-Hydroxylase-Promotor-Sequenz, also der entsprechenden RNA-Sequenz, identisch ist.
Unter "einem Teil" des Pflanze eigenen, endogenen ß-Hydroxylase-Transkripts bzw. der Pflanze eigenen endogenen ß-Hydroxylase-Promotor-Sequenz werden Teilsequenzen verstanden, die von wenigen Basenpaaren bis hin zu vollständigen Sequenzen des Transkripts bzw. der Promotorssequenz reichen können. Die optimale Länge der Teilsequenzen kann der Fachmann durch Routineversuche leicht ermitteln. In der Regel beträgt die Länge der Teilsequenzen mindestens 10 Basen und höchstens 2 kb, bevorzugt mindestens 25 Basen und höchstens 1 ,5 kb, besonders bevorzugt mindestens 50 Basen und höchstens 600 Basen, ganz besonders bevorzugt mindestens 100 Basen und höchstens 500, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen und höchstens 400 Basen.
Vorzugsweise werden die Teilsequenzen so ausgesucht, dass eine möglichst hohe Spezifität erreicht wird und nicht Aktivitäten anderer Enzyme reduziert werden, deren Verminderung nicht erwünscht ist. Es ist daher vorteilhaft für die Teilsequenzen der dsRNA Teile der Transkripte und/oder Teilsequenzen der Promotor-Sequenzen zu wählen, die nicht in anderen Aktivitäten auftreten.
In einer besonders bevorzugten Ausführungsform enthält daher die dsRNA eine Sequenz, die mit einem Teil der Pflanze eigenen ε-Cyclase-Transkripts bzw. endogenen ß-Hydroxylase Transkripts identisch ist und das 5'-Ende oder das 3'-Ende der Pflanze eigenen Nukleinsäure, codierend eine ε-Cyclase bzw. endogene ß-Hydroxylase enthält. Insbesondere sind nichttranslatierte Bereiche im 5' oder 3' des Transkriptes geeignet, selektive Doppel-Strang-Strukturen herzustellen.
Ein weiterer Gegenstand der Erfindung bezieht sich auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle), die bei Einbringen in einen pflanzlichen Organismus (oder eine davon abgeleitete Zelle, Gewebe, Organ oder Vermehrungsmaterial) die Verminderung einer ε-Cyclase bzw. einer endogenen ß-Hydroxylase bewirken.
Ein doppelsträngiges RNA-Molekül zur Reduzierung der Expression einer ε-Cyclase (ε-Cyclase-dsRNA) umfasst dabei bevorzugt
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil eines "sense"-RNA-ε- Cyclase Transkriptes, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen, bevorzugt vollständig, komplementären ist.
Zur Transformation der Pflanze mit einer endogenen ß-Hydroxylase-dsRNA wird bevorzugt ein Nukleinsäurekonstrukt verwendet, das in die Pflanze eingebracht wird und das in der Pflanze in die endogenen ß-Hydroxylase-dsRNA transkripiert wird. Ein doppelsträngige RNA-Molekül zur Reduzierung der Expression einer endogenen ß-Hydroxylase (endogenen ß-Hydroxylase-dsRNA) umfasst dabei bevorzugt
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil eines "sense"-RNA- endogenen ß-Hydroxylase Transkriptes, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen, bevorzugt vollständig, komplementären ist.
Zur Transformation der Pflanze mit einer endogenen ß-Hydroxylase-dsRNA wird bevorzugt ein Nukleinsäurekonstrukt verwendet, das in die Pflanze eingebracht wird und das in der Pflanze in die endogene ß-Hydroxylase-dsRNA transkripiert wird.
Diese Nukleinsäurekonstrukte werden im folgenden auch Expressionskassetten oder Expressionsvektoren genannt.
In Bezug auf die dsRNA-Moleküle wird unter ε-Cyclase-Nukleinsäuresequenz, bzw. das entsprechende Transkript für die bevorzugte Pflanze Tagetes erecta bevorzugt die Sequenz gemäß SEQ ID NO: 8 oder ein Teil derselben verstanden.
In Bezug auf die dsRNA-Moleküle wird unter endogener ß-Hydroxylase-Nukleinsäure- sequenz, bzw. das entsprechende Transkript für die bevorzugte Pflanze Tagetes erecta bevorzugt die Sequenz gemäß SEQ ID NO: 16 oder ein Teil derselben ver- standen.
"Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zur Zielsequenz aufweisen kann und dennoch eine effizient Verminderung der Expression bewirkt. Bevorzugt beträgt die Homologie mindestens 75 %, bevorzugt mindestens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem "sense"- Strang .einer inhibitorischen dsRNA und mindestens einem Teil des "sense"-RNA- Transkriptes, bzw. zwischen dem "antisense"-Strang dem komplementären Strang des entsprechenden Gens.
Eine 100%ige Sequenzidentität zwischen dsRNA und einem Gentranskript ist nicht zwingend erforderlich, um eine effiziente Verminderung der Protein Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Polymorphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise möglich mit der dsRNA, die ausgehend von der ε-Cyclase Sequenz bzw. endogenen ß-Hydroxylase- Sequenz des einen Organismus generiert wurde, die ε-Cyclase Expression bzw. endogene ß-Hydroxylase Expression in einem anderen Organismus zu unterdrücken. Zu diesem Zweck umfasst die dsRNA bevorzugt Sequenzbereiche Gentranskripten, die konservierten Bereichen entsprechen. Besagte konservierte Bereiche können aus Sequenzvergleichen leicht abgeleitet werden.
"Im wesentlichen komplementär" meint, dass der "antisense"-RNA-Strang auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Kom- plement des "sense"-RNA-Stranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 100 % zwischen dem "antisense"-RNA-Strang und dem Komplement des "sense"-RNA-Stranges.
In einer weiteren Ausführungsform umfasst die ε-Cyclase-dsRNA
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil der Promotorsequenz eines ε-Cyclase-Gens, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen - bevorzugt vollständig - komplementären ist.
Vorzugsweise wird unter dem Promotorbereich einer ε-Cyclase für die bevorzugte Pflanze Tagetes Erecta eine Sequenz gemäß SEQ ID NO: 9 oder ein Teil der selben verstanden.
Zur Herstellung der ε-Cyclase-dsRNA-Sequenzen zur Reduzierung der ε-Cyclase- Aktivität werden, insbesondere für die bevorzugte Pflanze Tagetes erecta, besonders bevorzugt die folgenden Teil-Sequenzen verwendet:
SEQ ID NO: 10: Sense-Fragment der 5'terminalen Region der ε-Cyclase
SEQ ID NO: 11 : Antisense-Fragment der 5'terminalen Region der ε-Cyclase
SEQ ID NO: 12: Sense-Fragment der 3'terminalen Region der ε-Cyclase
SEQ ID NO: 13: Antisense-Fragment der 3'terminalen Region der ε-Cyclase
SEQ ID NO: 14: Sense-Fragment des ε-Cyclase-Promotors SEQ ID NO: 15: Antisense-Fragment des ε-Cyclase-Promotors
In einer weiteren Ausführungsform umfasst die endogene ß-Hydroxylase-dsRNA
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil der Promotorsequenz eines endogenen ß-Hydroxylase-Gens, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen - bevorzugt vollständig - komplementären ist.
Zur Herstellung der endogenen ß-Hydroxylase-dsRNA-Sequenzen zur Reduzierung der endogenen ß-Hydroxylase -Aktivität werden, insbesondere für die bevorzugte Pflanze Tagetes erecta, besonders bevorzugt die folgenden Teil-Sequenzen verwendet:
SEQ ID NO: 18: Sense-Fragment der 5'terminalen Region der endogenen ß-Hydroxylase
SEQ ID NO: 19: Antisense-Fragment der 5'terminalen Region der endogenen ß-Hydroxylase
Die dsRNA kann aus einem oder mehr Strängen von Polyribonukleotiden bestehen. Natürlich können, um den gleichen Zweck zu erreichen, auch mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequenz- abschnitte umfassen, in die Zelle oder den Organismus eingebracht werden.
Die doppelsträngige dsRNA-Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder - bevorzugt - ausgehend von einem einzelnen, selbstkomplementären RNA-Strang gebildet werden. In diesem Fall sind "sense"-RNA- Strang und "antisense"-RNA-Strang bevorzugt kovalent in Form eines invertierten "Repeats" miteinander verbunden.
Wie z.B. in WO 99/53050 beschrieben, kann die dsRNA auch eine Haarnadelstruktur umfassen, indem "sense"- und "antisense"-Strang durch eine verbindende Sequenz ("Linker"; beispielsweise ein Intron) verbunden werden. Die selbstkomplementären dsRNA-Strukturen sind bevorzugt, da sie lediglich die Expression einer RNA-Sequenz erfordern und die komplementären RNA-Stränge stets in einem äquimolaren Verhält- nis umfassen. Bevorzugt ist die verbindende Sequenz ein Intron (z.B. ein Intron des ST-LS1 Gens aus Kartoffel; Vancanneyt GF et al. (1990) Mol Gen Genet 220(2):245- 250).
Die Nukleinsäuresequenz kodierend für eine dsRNA kann weitere Elemente bein- halten, wie beispielsweise Transkriptionsterminationssignale oder Polyadenylierungs- signale.
Ist die dsRNA jedoch gegen die Promotorsequenz eines Enzyms gerichtet, so umfasst sie bevorzugt keine Transkriptionsterminationssignale oder Polyadenylierungssignale. Dies ermöglicht eine Retention der dsRNA im Nukleus der Zelle und verhindert eine Verteilung der dsRNA in der gesamten Pflanze "Spreading").
Sollen die zwei Stränge der dsRNA in einer Zelle oder Pflanze zusammengebracht werden, so kann dies beispielhaft auf folgende Art geschehen:
a) Transformation der Zelle oder Pflanze mit einem Vektor, der beide Expressionskassetten umfasst,
b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei der eine die Expressionskassetten mit dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst.
c) Kreuzung von zwei individuellen Pflanzenlinien, wobei die eine die Expressionskassetten mit dem "sense"-Strang, die andere die Expressionskassetten mit dem "antisense"-Strang umfasst.
Die Bildung der RNA Duplex kann entweder außerhalb der Zelle oder innerhalb derselben initiiert werden.
Die dsRNA kann entweder in vivo oder in vitro synthetisiert werden. Dazu kann eine DNA-Sequenz kodierend für eine dsRNA in eine Expressionskassette unter Kontrolle mindestens eines genetischen Kontrollelementes (wie beispielsweise einem Promotor) gebracht werden. Eine Polyadenylierung ist nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein. Bevorzugt ist die Expressi- onskassette für die MP-dsRNA auf dem Transformationskonstrukt oder dem Transformationsvektor enthalten.
Die Expressionskassetten kodierend für den "antisense"- und/oder den "sense"-Strang einer ε-Cyclase -dsRNA oder für den selbstkomplementären-Strang der dsRNA, werden dazu bevorzugt in einen Transformationsvektor insertiert und mit den unten beschriebenen Verfahren in die pflanzliche Zelle eingebracht. Für das erfindungsgemäße Verfahren ist eine stabile Insertion in das Genom vorteilhaft.
Die dsRNA kann in einer Menge eingeführt werden, die zumindest eine Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung bewirken.
b) Einbringen einer antisense-Ribonukleinsäuresequenz einer ε-Cyclase (ε-Cyclase-antisenseRNA) bzw. einbringen einer antisense-Ribonuklein- säuresequenz einer endogenen ß-Hydroxylase (endogene ß-Hydroxylase- antisenseRNA)
Verfahren zur Verminderung eines bestimmten Proteins durch die "antisense"- Technologie sind vielfach - auch in Pflanzen - beschrieben (Sheehy et al. (1988) Proc Natl Acad Sei USA 85: 8805-8809; US 4,801 ,340; Mol JN et al. (1990) FEBS Lett 268(2):427-430).
Das antisense Nukleinsäuremolekül hybridisiert bzw. bindet mit der zellulären mRNA und/oder genomischen DNA kodierend für die zu vermindernde ε-Cyclase bzw. endogene ß-Hydroxylase. Dadurch wird die Transkription und/oder Translation der ε-Cyclase bzw. endogene ß-Hydroxylase unterdrückt.
Die Hybridisierung kann auf konventionelle Art über die Bildung einer stabilen Duplex oder - im Fall von genomischer DNA - durch Bindung des antisense Nukleinsäure- moleküls mit der Duplex der genomischen DNA durch spezifische Wechselwirkung in der großen Furche der DNA-Helix entstehen.
Eine ε-Cyclase-antisense-RNA kann unter Verwendung der für diese ε-Cyclase kodierenden Nukleinsäuresequenz, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 7 nach den Basenpaarregeln von Watson und Crick abgeleitet werden. Die ε-Cyclase-antisenseRNA kann zu der gesamten transkribierten mRNA der ε-Cyclase komplementär sein, sich auf die kodierende Region beschränken oder nur aus einem Oligonukleotid bestehen, das zu einem Teil der kodierenden oder nicht-kodierenden Sequenz der mRNA komplementär ist. So kann das Oligonukleotid beispielsweise komplementär zu der Region sein, die den Translationsstart für die ε-Cyclase umfasst.
Eine endogene ß-Hydroxylase-antisense-RNA kann unter Verwendung der für diese endogene ß-Hydroxylase kodierenden Nukleinsäuresequenz, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 16 nach den Basenpaarregeln von Watson und Crick abgeleitet werden. Die endogene ß-Hydroxylase -antisenseRNA kann zu der gesamten transkribierten mRNA der endogene ß-Hydroxylase komplementär sein, sich auf die kodierende Region beschränken oder nur aus einem Oligonukleotid bestehen, das zu einem Teil der kodierenden oder nicht-kodierenden Sequenz der mRNA komplementär ist. So kann das Oligonukleotid beispielsweise komplementär zu der Region sein, die den Translationsstart für die endogene ß-Hydroxylase umfasst.
Die antisenseRNAs können eine Länge von zum Beispiel 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleotide haben, kann aber auch länger sein und mindestens 100, 200, 500, 1000, 2000 oder 5000 Nukleotide umfassen. Die antisenseRNAs werden im Rahmen des erfindungsgemäßen Verfahrens bevorzugt rekombinant in der Zielzelle exprimiert.
Ein weiterer Gegenstand der Erfindung betrifft transgene Expressionskassetten enthaltend eine Nukleinsäuresequenz kodierend für zumindest einen Teil einer ε-Cyclase bzw. endogene ß-Hydroxylase, wobei besagte Nukleinsäuresequenz mit einem in pflanzlichen Organismen funktioneilen Promotor in antisense-Orientierung funktioneil verknüpft ist.
Besagte Expressionskassetten können Teil eines Transformationskonstruktes oder Transformationsvektors sein, oder aber auch im Rahmen einer Kotransformation eingeführt werden.
In einer weiteren bevorzugten Ausführungsform kann die Expression einer ε-Cyclase bzw. endogenen ß-Hydroxylase durch Nukleotidsequenzen inhibiert werden, die komplementär zu der regulatorischen Region eines ε-Cyclase-Gens bzw, endogenen ß-Hydroxylase-Gens (z.B. Promoter und/oder Enhancer) sind und triple-helikale - Strukturen mit der dortigen DNA-Doppelhelix ausbilden, so dass die Transkription des ε-Cyclase-Gens bzw, endogenen ß-Hydroxylase-Gens reduziert wird. Entsprechende Verfahren sind beschrieben (Helene C (1991 ) Anticancer Drug Res 6(6):569-84;
Helene C et al. (1992) Ann NY Acad Sei 660:27-36; Mäher LJ (1992) Bioassays
14(12):807- 815).
In einer weiteren Ausführungsform kann die antisenseRNA eine α-anomere Nuklein- säure sein. Derartige α-anomere Nukleinsäuremoleküle bilden spezifische doppelsträngige Hybride mit komplementärer RNA in denen, - im Unterschied zu den konventionellen ß-Nukleinsäuren - die beiden Stränge parallel zueinander verlaufen (Gautier C et al. (1987) Nucleic Acids Res 15:6625-6641). c) Einbringen einer ε-Cyclase-antisenseRNA bzw. endogene ß-Hydroxylase- antisenseRNA kombiniert mit einem Ribozym
Vorteilhaft kann die oben beschriebene antisense-Strategie mit einem Ribozym-Ver- fahren gekoppelt werden. Katalytische RNA-Moleküle oder Ribozyme können an jede beliebige Ziel-RNA angepasst werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequen- zen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. Die Herstellung und Verwendung entsprechender Ribozym-"antisense"- RNA-Moleküle ist beschrieben (u.a. bei Haseloff et al. (1988) Nature 334: 585-591); Haselhoff und Gerlach (1988) Nature 334:585-591 ; Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338).
Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Haselhoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um die mRNA eines zu vermindem- den ε-Cyclases katalytisch zu spalten und so die Translation zu verhindern. Die
Ribozym-Technologie kann die Effizienz einer antisense-Strategie erhöhen. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in (EP 0291 533, EP 0321 201 , EP 0360257). In pflanzlichen Zellen ist eine Ribozym-Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11 (4): 1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338).
Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S. 449-460" beschrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361 ; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu der mRNA des zu supprimieren- den ε-Cyclases aufweisen (siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261 :1411-1418). d) Einbringen einer sense-Ribonukleinsäuresequenz einer ε-Cyclase bzw. endogener ß-Hydroxylase (ε-Cyclase-senseRNA bzw. endogene ß-Hydroxylase- senseRNA) zur Induktion einer Kosuppression
Die Expression einer ε-Cyclase Ribonukleinsäuresequenz bzw. endogenen ß-Hydroxylase Ribonukleinsäuresequenz (oder eines Teils derselben) in sense- Orientierung kann zu einer Kosuppression des entsprechenden ε-Cyclase-Gens bzw. endogenen ß-Hydroxylase-Gens führen. Die Expression von sense-RNA mit Homologie zu einem endogenen Gen kann die Expression desselben vermindern oder ausschalten, ähnlich wie es für antisense Ansätze beschrieben wurde (Jorgensen et al. (1996) Plant Mol Biol 31 (5):957-973; Goring et al. (1991) Proc Natl Acad Sei USA 88:1770-1774; Smith et al. (1990) Mol Gen Genet 224:447-481 ; Napoli et al. (1990) Plant Cell 2:279-289; Van der Krol et al. (1990) Plant Cell 2:291 -99). Dabei kann das eingeführte Konstrukt das zu vermindernde, homologe Gen ganz oder nur teilweise repräsentieren. Die Möglichkeit zur Translation ist nicht erforderlich. Die Anwendung dieser Technologie auf Pflanzen ist beschrieben (z.B. Napoli et al. (1990) Plant Cell 2:279-289; in US 5,034,323.
Bevorzugt wird die Kosuppression für die besonders bevorzugte Pflanze Tagetes ercecta unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für eine ε-Cyclase bzw. endogene ß-Hydroxylase, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 7 bzw. SEQ. ID. NO. 16.
Bevorzugt ist die senseRNA so gewählt, dass es nicht zu einer Translation des entsprechenden Proteins oder eines Teils desselben kommen kann. Dazu kann beispielsweise der 5'-untranslatierte oder 3'-untranslatierte Bereich gewählt oder aber das ATG- Startkodon deletiert oder mutiert werden.
e) Einbringen von- DNA-oder Protein-bindende Faktoren gegen ε-Cyclase Gene, -RNAs oder Proteine bzw, gegen endogene ß-Hydroxylase-Gene, RNAs oder Proteine
Eine Verminderung einer ε-Cyclase bzw. endogene ß-Hydroxylase Expression ist auch mit spezifischen DNA-bindenden Faktoren z.B. mit Faktoren vom Typ der Zink- fingertranskriptionsfaktoren möglich. Diese Faktoren lagern sich an die genomische Sequenz des endogenen Zielgens, bevorzugt in den regulatorischen Bereichen, an und bewirken eine Verminderung der Expression. Entsprechende Verfahren zur Herstellung entsprechender Faktoren sind beschrieben (Dreier B et al. (2001) J Biol Chem 276(31 ):29466-78; Dreier B et al. (2000) J Mol Biol 303(4) :489-502; Beerii RR et al. (2000) Proc NatI Acad Sei USA 97 (4): 1495-1500; Beerii RR et al. (2000) J Biol Chem 275(42):32617-32627; Segal DJ and Barbas CF 3rd. (2000) Curr Opin Chem Biol 4(1):34-39; Kang JS and Kim JS (2000) J Biol Chem 275(12):8742-8748; Beerii RR et al. (1998) Proc NatI Acad Sei USA 95(25):14628- 14633; Kim JS et al. (1997) Proc NatI Acad Sei USA 94(8):3616 -3620; Klug A (1999) J Mol Biol 293(2):215-218; Tsai SY et al. (1998) Adv Drug Deliv Rev 30(1 -3):23-31 ; Mapp AK et al. (2000) Proc NatI Acad Sei USA 97(8):3930-3935; Sharrocks AD et al. (1997) Int J Biochem Cell Biol 29(12):1371 -1387; Zhang L et al. (2000) J Biol Chem 275(43):33850-33860).
Die Selektion dieser Faktoren kann unter Verwendung eines beliebigen Stückes eines ε-Cyclase-Gens bzw. endogenen ß-Hydroxylase-Gens erfolgen. Bevorzugt liegt dieser Abschnitt im Bereich der Promotorregion. Für eine Genunterdrückung kann er aber auch im Bereich der kodierenden Exons oder Introns liegen.
Ferner können Faktoren in eine Zelle eingebracht werden, die die ε-Cyclase bzw. endogene ß-Hydroxylase selber inhibieren. Diese proteinbindenden Faktoren können z.B. Aptamere (Famulok M und Mayer G (1999) Curr Top Microbiol Immunol 243:123- 36) oder Antikörper bzw. Antikörperfragmente oder einzelkettige Antikörper sein. Die Gewinnung dieser Faktoren ist beschrieben (Owen M et al. (1992) Biotechnology (N Y) 10(7):790-794; Franken E et al. (1997) Curr Opin Biotechnol 8(4):411 -416; Whitelam (1996) Trend Plant Sei 1 :286-272).
f) Einbringen von den ε-Cyclase RNA-Abbau bzw. endogenen ß-Hydroxylase RNA-Abbau bewirkenden viralen Nukleinsäuresequenzen und Expressions- konstrukten
Die ε-Cyclase bzw. endogene ß-Hydroxylase Expression kann effektiv auch durch Induktion des spezifischen RNA-Abbaus durch die Pflanze mit Hilfe eines viralen Expressionssystems (Amplikon; Angell SM et al. (1999) Plant J 20(3):357-362) realisiert werden. Diese Systeme - auch als "VIGS" (viral induced gene silencing) bezeichnet - bringen Nukleinsäuresequenzen mit Homologie zu dem Transkript einer zu reduzierenden Enzymaktivität mittels viraler Vektoren in die Pflanze ein.
Die Transkription wird sodann - vermutlich mediiert durch pflanzliche Abwehrmecha- nismen gegen Viren - abgeschaltet. Entsprechende Techniken und Verfahren sind beschrieben (Ratcliff F et al. (2001) Plant J 25(2):237-45; Fagard M und Vaucheret H (2000) Plant Mol Biol 43(2-3) :285-93; Anandalakshmi R et al. (1998) Proc NatI Acad Sei USA 95(22): 13079-84; Ruiz MT (1998) Plant Cell 10(6):937-46). Bevorzugt wird die VIGS-vermittelte Verminderung unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für eine ε-Cyclase bzw. eine endogene ß-Hydroxylase, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 7 bzw. 16.
g) Einbringen von Konstrukten zur Erzeugung eines Funktionsverlustes oder einer Funktionsminderung an ε-Cyclase-Genen bzw. endogenen ß-Hydroxylase- Genen
Dem Fachmann sind zahlreiche Verfahren bekannt, wie genomische Sequenzen gezielt modifiziert werden können. Dazu zählen insbesondere Verfahren wie die Erzeugung von Knockout-Mutanten mittels gezielter homologen Rekombination z.B. durch Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc. (Hohn B und Puchta H (1999) Proc NatI Acad Sei USA 96:8321-8323) oder die gezielte Deletion oder Inversion von Sequenzen mittels z.B. sequenzspezifischer Rekombinasen oder Nükleasen (s.u.).
Die Verminderung der Enzym-Menge, -Funktion und/oder -Aktivität kann auch durch eine gezielte Insertion von Nukleinsäuresequenzen (z.B. der im Rahmen der erfin- dungsgemäßen Verfahrens zu insertierenden Nukleinsäuresequenz) in die Sequenz kodierend für eine ε-Cyclase bzw. endogene ß-Hydroxylase (z.B. mittels intermolekularer homologer Rekombination) realisiert werden. Im Rahmen dieser Ausführungsform verwendet man bevorzugt ein DNA-Konstrukt, das zumindest einen Teil der Sequenz eines ε-Cyclasegens bzw. endogenen ß-Hydroxylasegens oder benach- barter Sequenzen umfasst, und so mit diesen in der Zielzelle gezielt rekombinieren kann, so dass durch eine Deletion, Addition oder Substitution mindestens eines Nukleotids das ε-Cyclase-Gen bzw. endogene ß-Hydroxylase-Gen so verändert wird, dass die Funktionalität des Gens reduziert oder gänzlich aufgehoben wird.
Die Veränderung kann auch die regulativen Elemente (z.B. den Promotor) der Gene betreffen, so dass die kodierende Sequenz unverändert bleibt, eine Expression (Transkription und/oder Translation) jedoch unterbleibt und reduziert wird. Bei der konventionellen homologen Rekombination ist die zu insertierende Sequenz an ihrem 5'- und/oder 3'-Ende von weiteren Nukleinsäuresequenzen (A' bzw. B') flankiert, die eine ausreichende Länge und Homologie zu entsprechenden Sequenzen des ε-Cyclase-Gens bzw. endogenen ß-Hydroxylase-Gens (A bzw. B) für die Ermöglichung der homologen Rekombination aufweisen. Die Länge liegt in der Regel in einem Bereich von mehreren hundert Basen bis zu mehreren Kilobasen (Thomas KR und Capecchi MR (1987) Cell 51 :503; Strepp et al. (1998) Proc NatI Acad Sei USA 95(8):4368-4373). Für die homologe Rekombination wird die pflanzliche Zelle mit dem Rekombinationskonstrukt unter Verwendung der unten beschriebenen Verfahren transformiert und erfolgreich rekombinierte Klone basierend auf der infolge inaktivierten ε-Cyclase bzw. endogenen ß-Hydroxylase selektioniert.
In einer weiteren bevorzugten Ausführungsform wird die Effizienz der Rekombination gesteigert durch Kombination mit Verfahren, die die homologe Rekombination fördern. Solche Verfahren sind beschrieben und umfassen beispielhaft die Expression von Proteinen wie RecA oder die Behandlung mit PARP-Inhibitoren. Es konnte gezeigt werden, dass die intrachromosomale homologe Rekombination in Tabakpflanzen durch die Verwendung von PARP-Inhibitoren erhöht werden kann (Puchta H et al. (1995) Plant J 7:203-210). Durch den Einsatz dieser Inhibitoren kann die Rate der homologen Rekombination in den Rekombinationskonstrukten nach Induktion des sequenzspezifischen DNA-Doppelstrangbruches und damit die Effizienz der Deletion der Transgensequenzen weiter erhöht werden. Verschiedene PARP Inhibitoren können dabei zum Einsatz kommen. Bevorzugt umfasst sind Inhibitoren wie 3-Aminobenzamid, 8-Hydroxy-2-methylquinazolin-4-on (NU1025), 1 ,11 b-Dihydro-[2H]benzopyrano- [4,3,2-deJisoquinolin-3-on (GPI 6150), 5-Aminoisoquinolinon, 3,4-Dihydro-5-[4-(1- piperidinyl)butoxy]-1 (2H)-isoquinolinon oder die in WO 00/26192, WO 00/29384, WO 00/32579, WO 00/64878, WO 00/68206, WO 00/67734, WO 01/23386 und WO 01/23390 beschriebenen Substanzen.
Weitere geeignete Methoden sind die Einführung von Nonsense-Mutationen in endogene Markerprotein Gene zum Beispiel mittels Einführung von RNA/DNA- Oligonukleotiden in die Pflanze (Zhu et al. (2000) Nat Biotechnol 18(5):555-558) oder die Generierung von Knockout-Mutanten mit Hilfe von z.B. T-DNA-Mutagenese (Koncz et al., Plant Mol. Biol. 1992, 20(5):963-976). Punktmutationen können auch mittels DNA-RNA Hybriden erzeugt werden, die auch als "chimeraplasty" bekannt sind (Cole- Strauss et al. (1999) Nucl Acids Res 27(5):1323-1330; Kmiec (1999) Gene therapy American Scientist 87(3):240-247).
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Reduzierung der ε-Cyclase-Aktivität gegenüber dem Wildtyp durch:
a) Einbringen mindestens einer doppelsträngigen ε-Cyclase Ribonukleinsäure- sequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen und/oder
b) Einbringen mindestens einer ε-Cyclase antisense-Ribonukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette in Pflanzen. In einer ganz besonders bevorzugten Ausführungsform erfolgt die Reduzierung der ε-Cyclase-Aktivität gegenüber dem Wildtyp durch Einbringen mindestens einer doppelsträngigen ε-Cyclase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen.
Vorzugsweise erfolgt die Transkription der ε-Cyclase-dsRNA-Sequenzen im erfindungsgemäßen Verfahren unter Kontrolle von Regulationssignalen, vorzugsweise einem Promotor und plastidären Transitpeptiden, die die Transkription der ε-Cyclase- dsRNA-Sequenzen in den Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, gewährleisten.
In einer besonders bevorzugten Ausführungsform verwendet man genetisch veränderte Pflanzen, die in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, die höchste Transkriptionsrate der ε-Cyclase-dsRNA-Sequenzen aufweisen. .;
Vorzugsweise wird dies dadurch erreicht, dass die Transkription der ε-Cyclase- dsRNA-Sequenzen unter Kontrolle eines für das Pflanzengewebe spezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Blüten erfolgen soll ist es vorteilhaft, dass die Transkription der ε-Cyclase-dsRNA-Sequenzen unter Kontrolle eines blütenspezifischen oder bevorzugter petalenspezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Früchten erfolgen soll ist es vorteilhaft, dass die Transkription der ε-Cyclase-dsRNA-Sequenzen unter Kontrolle eines fruchtspezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Knollen erfolgen soll ist es vorteilhaft, dass die Transkription der ε-Cyclase-dsRNA-Sequenzen unter Kontrolle eines knollenspezifischen Promotors erfolgt.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Reduzierung der endogenen ß-Hydroxylase-Aktivität gegenüber dem Wildtyp durch:
a) Einbringen mindestens einer doppelsträngigen endogenen ß-Hydroxylase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen und/oder b) Einbringen mindestens einer endogenen ß-Hydroxylase antisense-Ribonuklein- säuresequenzen oder einer deren Expression gewährleistenden Expressionskassette in Pflanzen.
In einer ganz besonders bevorzugten Ausführungsform erfolgt die Reduzierung der endogenen ß-Hydroxylase-Aktivität gegenüber dem Wildtyp durch Einbringen mindestens einer doppelsträngigen endogenen ß-Hydroxylase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen.
Vorzugsweise erfolgt die Transkription der endogenen ß-Hydroxylase-dsRNA- Sequenzen im erfindungsgemäßen Verfahren unter Kontrolle von Regulationssignalen, vorzugsweise einem Promotor und plastidären Transitpeptiden, die die Transkription der endogenen ß-Hydroxylase-dsRNA-Sequenzen in den Pflanzengeweben, ent- haltend photosynthetisch inaktive Plastide, gewährleisten.
In einer besonders bevorzugten Ausführungsform verwendet man genetisch veränderte Pflanzen, die in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, die höchste Transkriptionsrate der endogenen ß-Hydroxylase-dsRNA- Sequenzen aufweisen.
Vorzugsweise wird dies dadurch erreicht, dass die Transkription der endogenen ß-Hydroxylase-dsRNA-Sequenzen unter Kontrolle eines für das Pflanzengewebe spezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Blüten erfolgen soll ist es vorteilhaft, dass die Transkription der endogenen ß-Hydroxylase-dsRNA- Sequenzen unter Kontrolle eines blütenspezifischen oder bevorzugter petalen- spezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Früchten erfolgen soll ist es vorteilhaft, dass die Transkription der endogenen ß-Hydroxylase-dsRNA- Sequenzen unter Kontrolle eines fruchtspezifischen Promotors erfolgt.
Für den vorstehend beschriebenen Fall, dass die Expression in Knollen erfolgen soll ist es vorteilhaft, dass die Transkription der endogenen ß-Hydroxylase-dsRNA- Sequenzen unter Kontrolle eines knollenspezifischen Promotors erfolgt.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren genetisch veränderte Pflanzen mit folgende Kombinationen genetischer Veränderungen verwendet: Genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte, erfindungsgemäße ß-Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,
genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte, erfindungsgemäße ß-Cyclase-Aktivität und eine reduzierte ε-Cyclase-Aktivität aufweisen,
genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte, erfindungsgemäße ß-Cyclase-Aktivität und eine reduzierte, endogene ß-Hydroxylase-Aktivität aufweisen,
genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte, erfindungsgemäße ß-Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und eine reduzierte ε-Cyclase-Aktivität aufweisen.
genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte, erfindungsgemäße ß-Cyclase-Aktivität, eine reduzierte ε-Cyclase-Aktivität und eine reduzierte, endogene ß-Hydroxylase-Aktivität aufweisen,
genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte, erfindungsgemäße ß-Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und eine reduzierte, endogene ß-Hydroxylase-Aktivität aufweisen,
genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte, erfindungs- gemäße ß-Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und eine reduzierte ε-Cyclase-Aktivität und eine reduzierte, endogene ß-Hydroxylase-Aktivität aufweisen.
Die Herstellung dieser genetisch veränderten Pflanzen kann, wie nachstehend beschrieben, beispielsweise durch Einbringen einzelner Nukleinsäurekonstrukte (Expressionskassetten) oder durch Einbringen von Mehrfachkonstrukten erfolgen, die bis zu zwei, drei oder vier der beschriebenen Aktivitäten enthalten.
Im erfindungsgemäßen Verfahren zur Herstellung von ß-Carotinoiden wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, ein Ernten der Pflanzen und die Isolierung der ß-Carotinoide aus den Pflanzen oder den Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, angeschlossen.
Die transgenen Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet. Die Isolierung von ß-Carotinoiden aus den geernteten Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, wie beispielsweise Blüten, Früchten oder Knollen erfolgt in an sich bekannter Weise, beispielsweise durch Trocknung und anschließen- der Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von ß-Carotinoiden aus den Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, wie beispielsweise Blüten, Früchten oder Knollen erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutylether.
Weitere Isolierverfahren von ß-Carotinoiden, insbesondere aus Blütenblättern, sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437-440) und Egger (Phytochemistry (1965) 4, 609-618) beschrieben.
Vorzugsweise sind die ß-Carotinoide ausgewählt aus der Gruppe ß-Carotin, ß-Crypto- xanthin, Zeaxanthin, Antheraxanthin, Violaxanthin und Neoxanthin.
Bevorzugte ß-Carotinoide sind ß-Carotin und Zeaxanthin, besonders bevorzugt Zeaxanthin.
Vorzugsweise sind die Pflanzengewebe, enthaltend photosynthetisch inaktive Plastide, ausgewählt aus der Gruppe Blüte, Frucht und Knolle.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens verwendet man als genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Blüten aufweist, eine Pflanze, ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeo- laceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, liliaceae oder Lamiaceae.
Besonders bevorzugt sind Pflanzen, ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Calendula officinalis, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Greviilea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hyperi- cum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Labumum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Nar- cissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Solanum tuberosum, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens verwendet man als genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Früchten aufweisen, eine Pflanze ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Avocado, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Erbse, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Kiwi, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Mais, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Orange, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia, Vitis oder Zucchini verwendet.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens verwendet man als genetisch veränderte Pflanze, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Knollen aufweist, eine Pflanze ausgewählt aus den Pflanzengattungen Rote Beete, Radieschen, Rettich und Solanum tuberosum.
Besonders bevorzugte Pflanzen weisen als Wildtyp am Gesamtcarotinoidgehalt in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide einen höheren Anteil an α-Carotinoiden als ß-Carotinoiden auf.
Besonders bevorzugte Pflanzen sind Marigold, Tagetes erecta, Tagetes patula wobei die Herstellung der ß-Carotinoide, vorzugsweise Zeaxanthin, in Blüten, besonders bevorzugt in den Petalen stattfindet.
Im folgenden wird exemplarisch die Herstellung genetisch veränderter Pflanzen mit erhöhter ß-Cyclase-Aktivität in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, wie beispielsweise Blüten, Früchten oder Knollen beschrieben. Die Erhöhung weiterer Aktivitäten, wie beispielsweise der Hydroxylase-Aktivität kann analog unter Verwendung von Nukleinsäuresequenzen kodierend eine Hydroxylase anstelle von Nukleinsäuresequenzen kodierend eine ß-Cyclase erfolgen. Die Reduzierung weiterer Aktivitäten, wie beispielsweise die Reduzierung der ε-Cyclase-Aktivität und/oder der endogenen ß-Hydroxylase-Aktivität kann analog unter Verwendung von antisense- Nukieinsäuresequenzen oder Inverted-Repeat-Nukleinsäuresequenz anstelle von Nukleinsäuresequenzen kodierend eine ß-Cyclase erfolgen.
Die Transformation kann bei den Kombinationen von genetischen Veränderungen einzeln oder durch Mehrfachkonstrukte erfolgen.
Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nukleinsäuren codierend eine ß-Cyclase enthält, die mit einem oder mehreren Regulationssignalen funktioneil verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.
Diese Nukleinsäurekonstrukte, in denen die kodierende Nukleinsäuresequenz mit einem oder mehreren Regulationssignalen funktioneil verknüpft sind, die die Transkrip- tion und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.
Die Erfindung betrifft weiterhin Nukleinsäurekonstrukte enthaltend mindestens eine Nukleinsäure kodierend eine ß-Cyclase und zusätzlich mindestens eine weitere Nukleinsäure, ausgewählt aus der Gruppe a) Nukleinsäuren kodierend eine ß-Hydroxylase, b) doppelsträngige endogenen ß-Hydroxylase Ribonukleinsäuresequenz und/oder endogene ß-Hydroxylase antisense-Ribonukleinsäuresequenzen und c) doppelsträngige ε-Cyclase- Ribonukleinsäuresequenz und/oder ε-Cyclase antisense-Ribonukleinsäuresequenz,
wobei die Nukleinsäuren mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.
Es ist, insbesondere in Pflanzen, technisch nur schwer zu realisieren, mehrere
Aktivitäten mit einem Nukleinsäurekonstrukt zu erhöhen oder zu erniedrigen. Daher werden bevorzugt Kombinationen von Nukleinsäurekonstrukten verwendet um die Aktivitäten, insbesondere um mehr als 3 Aktivitäten in Pflanzen zu erhöhen oder zu erniedrigen. Es ist jedoch auch möglich, genetisch veränderte Pflanzen zu kreuzen, die bereits veränderte Aktivitäten enthalten. Beispielsweise ist es durch Kreuzen von genetisch veränderten Pflanzen, die jeweils zwei veränderte Aktivitäten enthalten, möglich, Pflanzen mit vier veränderten Aktivitäten herzustellen. Gleiches kann auch erreicht werden, indem man eine Kombination von zwei Nukleinsäurekonstrukten die jeweils 2 Aktivitäten verändern in die Pflanzen einführt.
In einer bevorzugten Ausführungsform werden die bevorzugten genetisch veränderten Pflanzen durch Einbringen von Kombinationen von Nukleinsäurekonstrukten her- gestellt.
Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die die Transkription und Translation in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, wie beispielsweise Blüten, Früchten oder Knollen, gewährleisten.
Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, das jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen selbst beschrieben.
Die zur operativen Verknüpfung bevorzugten aber nicht darauf beschränkten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Piastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).
Als erfindungsgemäßer Promotoren der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzengeweben, ent- haltend photosynthetisch inaktive Plastide, wie beispielsweise Blüte, Frucht oder Knolle steuern kann.
"Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.
Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202).
Ein weiterer geeigneter konstitutiver Promotor ist der pds Promoter (Pecker et al. (1992) Proc. NatI. Acad. Sei USA 89: 4962-4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobaeterium, der TR-Doppel- promotor, der OCS (Oetopin Synthase) Promotor aus Agrobaeterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc NatI Acad Sei USA 86:9692-9696), den Smas Promotor, den Cinnamylalkoholdehydro- genase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Unterein- heiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991 ), der Pnit-Promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hillebrand et al. (1996), Gene, 170, 197-200, der Ferredoxin-NADPH-Oxidoreductase Promotor (Datenbankeintrag AB011474, Position 70127 bis 69493), der TPT-Promoter (WO 03006660), der „Superpromotor" (US-Patent 5955646), der 34S-Promotor (US- Patent 6051753) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.
Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des ß-Cyclase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid- induzierbarer Promotor (EP 0388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.
Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1 - Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierbare alpha- Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinll-Promoter (EP375091 ).
Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR- Proteinen, ß-1 ,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325- 342; Somssich et al. (1986) Proc NatI Acad Sei USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc NatI Acad Sei USA 91 :2507-2511 ; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1 :961-968(1989).
Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinll Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494- 498), des wunl und wun2-Gens (US 5,428,148), des winl- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Ekelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.
Weitere geeignete Promotoren sind beispielsweise fruchtreifung-spezifische
Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409625). Entwicklungsabhängige Promotoren schließt zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.
Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzengeweben sicherstellen, in denen beispielsweise die Biosynthese von ß-XCarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel und Wurzeln und Kombinationen hieraus. Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren sind beispielsweise der Patatin Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.
Blütenspezifische Promotoren sind beispielsweise der Phytoen Synthase Promotor (WO 92/16635), der Promotor des P-rr Gens (WO 98/22593), der EPSPS-Promotor (M37029), der DFR-A Promotor (X79723), der B-Gen Promotor (WO 0008920) und der CHRC-Promotor (WO 98/24300; Vishnevetsky et al. (1996) Plant J. 10, 1111 -1118), der Promotor P76 und P84 (DE Patentanmeldung 10247599.7) sowie die Promotoren der Arabidopsis Gen-Loci At5g33370 (infolge M1 Promoter), At5g22430 (infolge M2 Promoter) und At1g26630 (infolge M3 Promoter).
Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben in Rogers et al. (1987) Methods in Enzymol 153:253-277; SchardI et al. (1987) Gene 61 :1-11 und Berger et al. (1989) Proc NatI Acad Sei USA 86:8402-8406).
Alle in der vorliegenden Anmeldung beschriebenen Promotoren ermöglichen die Expression der ß-Cyclase in in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, wie beispielsweise Blüte, Frucht oder Knolle.
Bevorzugte Promotoren sind Promotoren die spezifisch für Pflanzengewebe, enthaltend photosynthetisch inaktive Plastide sind.
Besonders bevorzugt im erfindungsgemäßen Verfahren sind, wie vorstehend erwähnt, je nach verwendeter Pflanze konstitutive, blütenspezifische und insbesondere blütenblattspezifische, fruchtspezifische und knollenspezifische Promotoren.
Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen blütenspezifischen oder insbesondere einen blütenblattspezifischen Promotor und eine Nukleinsäure codierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und eine Nukleinsäure codierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Amino- säuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, mit der Maßgabe dass der natürliche Promotor der ß-Cyclase ausgenommen ist.
Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen knollenspezifischen Promotor und eine Nukleinsäure codierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäure- ebene mit der Sequenz SEQ. ID. NO. 2 aufweist, mit der Maßgabe dass der natürliche Promotor der ß-Cyclase ausgenommen ist.
Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen konstitutiven Promotor und eine Nukleinsäure codierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO.2 aufweist, mit der Maßgabe dass der natürliche Promotor der ß-Cyclase ausgenommen ist.
Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer vorstehend beschriebenen Nukleinsäure kodierend eine ß-Cyclase und vorzugsweise einer zwischen Promotor und Nukleinsäuresequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.
Die vorzugsweise insertierte Nukleinsäuren kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Piastiden und insbesondere in Chromoplasten.
Es können auch Expressionskassetten verwendet werden, deren Nukleinsäuresequenz für ein ß-Cyclase-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chromoplasten spezifische Transitpeptide, welche nach Translokation der ß-Cyclase in die Chromoplasten vom ß-Cyclase-Teil enzymatisch abgespalten werden.
Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana tabacum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat lsomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.
Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden- Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als Kpnl/BamHI Fragmente mit einem ATG-Codon in der Ncol Schnittstelle:
pTP09
KpnLGGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- , GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGG- GATCC_BamHI
pTP10
KpnLGGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CACTTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTG- GATCC_BamHI
pTP11
KpnLGGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGG- GATCC_BamHI Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat lsomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphosphat Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).
Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure- Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.
Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.
Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkrip- tionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminations- bereiche sind gegeneinander beliebig austauschbar.
Beispiele für einen Terminator sind der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1982;1(6):561-73) oder der ocs Terminator (Gielen, J, de Beuekeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobaeterium tumefaciens plasmid pTiAchδ. EMBO J. 3: 835-846).
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in wϊro-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden.
Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.
Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus
Agrobaeterium tumefaciens, insbesondere des Gens 3 der T-DNA (Oetopin Synthase) des Ti-Plasmids pTiACHδ entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.
Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.
Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentrans- formation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobaeterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Tech- niques for Gene Transfer, in: Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molee. Biol. 42 (1991), 205-225) beschrieben.
Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobaeterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).
Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösuήg gebadet und anschließend in geeigneten Medien kultiviert werden.
Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die eine ß-Cyclase exprimiert, in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN5 Moniert, der geeignet ist, in Agrobaeterium tumefaciens transformiert zu werden Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression einer Nukleinsäure codierend eine ß-Cyclase enthalten.
Zur Transformation einer Wirtspflanze mit einer für eine ß-Cyclase kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.
Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16 :11380), pBR332, pUC- Serien, M13mp-Serien und pACYCI 84. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können. Die Erfindung betrifft ferner die genetisch veränderten Pflanzen, wobei die genetische Veränderung die Aktivität einer ß-Cyclase in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, gegenüber dem Wildtyp erhöht und die erhöhte ß-Cyclase- Aktivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
Vorzugsweise erfolgt die Erhöhung der ß-Cyclase-Aktivität durch eine Erhöhung der Genexpression einer Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp. ;
Vorzugsweise erfolgt die Erhöhung der Genexpression dadurch, dass man Nukleinsäuren in die Pflanze einbringt, die ß-Cyclasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO.2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
Bevorzugt sind genetisch veränderte Pflanze, die mindestens eine Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO.2 aufweist, enthalten, mit der Maßgabe, dass Tomate ausgenommen ist.
Weiter besonders bevorzugte, genetisch veränderte Pflanzen weisen, wie vorstehend erwähnt, zusätzlich gegenüber dem Wildtyp eine erhöhte Hydroxiase-Aktivität auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.
Weiter besonders bevorzugte, genetisch veränderte Pflanzen weisen, wie vorstehend erwähnt, zusätzlich gegenüber dem Wildtyp eine reduzierte Aktivität, mindestens einer der Aktivitäten, ausgewählt aus der Gruppe ε-Cyclase-Aktivität und endogene ß-Hydroxylase-Aktivität auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben. Vorzugsweise sind die Pflanzengewebe, enthaltend photosynthetisch inaktive Plastide, ausgewählt sind aus der Gruppe Blüte, Frucht und Knolle.
In einer bevorzugten Ausführungsform sind die genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Blüten aufweisen ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Maivaceae, liliaceae oder Lamiaceae.
Besonders bevorzugt sind Pflanzen, ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Calendula officinalis, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Croeus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hyperi- cum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Labumum, Lathyrus, Leontodon, ülium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcis- sus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Solanum tuberosum, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia.
In einer weiteren bevorzugten Ausführungsform sind die genetisch veränderten Pflanzen, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Früchten aufweisen ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Avocado, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Erbse, Ficus, Fortunella, Fragariä, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Kiwi, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Mais, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Orange, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Vibumum, Vignia, Vitis oder Zucchini verwendet. In einer weiteren bevorzugten Ausführungsform sind die genetisch veränderten Pflanzen, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Knollen aufweisen Solanum tuberosum.
Besonders bevorzugte Pflanzen weisen als Wildtyp am Gesamtcarotinoidgehalt in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide einen höheren Anteil an α-Ca.rotinoiden als ß-Carotinoiden auf.
Besonderes bevorzugt sind genetisch veränderte Pflanzen der Gattung Tagetes, enthaltend mindestens eine Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
Besonders bevorzugte Pflanzen sind Marigold, Tagetes erecta, Tagetes patula wobei die Herstellung der ß-Carotinoide, vorzugsweise Zeaxanthin, in Blüten, besonders bevorzugt in den Petalen stattfindet.
Besonders bevorzugte Pfanzengewebe, enthaltend photosynthetisch inaktive Plastide sind die Wurzelknolle von Solanum tuberosum, die Samenfrüchte von Zea Mais, die Blüte von Tagetes erecta und die Blüte von Calendula officinalis.
Die gegentisch veränderten Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, -gewebe. oder -teile, insbesondere deren Blütenblätter, Knollen oder Früchte sind ein weiterer Gegenstand der vorliegenden Erfindung.
Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstellung von ß-Carotinoiden, insbesondere ß-Carotin und Zeaxanthin verwendet werden.
Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Pflanzen mit erhöhtem Gehalt an ß-Carotinoiden können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter- und Nahrungsergänzungsmittel verwendet werden. Ferner können die genetisch veränderten Pflanzen zur Herstellung von ß-Carotinoid-haltigen Extrakten der Pflanzen und/oder zur Herstellung von Futter- und Nahrungsergänzungsmitteln verwendet werden.
Zeaxanthinhaltige Extrakten können zur Pigmentierung von Tierprodukten ins- besondere der Familie Galiformes, verwendet werden. Die Pigmentierung erfolgt durch orale Verabreichung der zeaxanthinhaltigen Extrakte, die dem jeweiligen Tier entsprechend prozessiert und zu oralen Verabreichung aufbereitet wurden. Unter Tierprodukten werden insbesondere Haut, Reich, Feder und Eidotter verstanden
Die genetisch veränderten Pflanzen können auch als Zierpflanzen im Horticulture- Bereich verwendet werden.
Die genetisch veränderten Pflanzen weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an ß-Carotinoiden in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, auf.
Unter einem erhöhten Gehalt an ß-Carotinoiden wird in der Regel ein erhöhter Gehalt an Gesamt-ß-Carotinoid verstanden.
Unter einem erhöhten Gehalt an ß-Carotinoiden wird aber auch insbesondere ein veränderter Gehalt der bevorzugten ß-Carotinoide verstanden, ohne dass zwangsläufig der Gesamt-Carotinoidgehalt erhöht sein muss.
In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, einen erhöhten Gehalt an ß-Carotin oder Zeaxanthin, insbesondere Zeaxanthin auf.
Unter einem erhöhten Gehalt wird in diesem Fall auch ein verursachter Gehalt an ß-Carotinoiden, bzw. ß-Carotin oder Zeaxanthin verstanden.
Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:
Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-
DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. NatI. Acad. Sei. USA 74 (1977), 5463-5467). Beispiel 1 : Herstellung von Expressionsvektoren zur blütenspezifischen Expression der chromoplastenspezifischen Lycopin ß cyclase aus Lycopersicon escu- lentum unter Kontrolle des Promoters P76
a) Isolation von Promoter P76 mittels PCR mit genomischer DNA von Arabidopsis thallana als Matrize.
Hierzu wurden die Oligonukleotid Primer SEQ. ID. No. 20 (P76for) und SEQ. ID. NO. 21 (P76rev) verwendet. Die Oligonukleotide wurden bei der Synthese mit einem 5' Phosphatrest versehen. Die genomische DNA wurde aus Arabidopsis thallana wie beschrieben (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1 :25-34) isoliert.
Die PCR Amplifikation wurde wie folgt durchgeführt:
80ng genomische DNA
Ix Expand Long Template PCR Puffer
2,5 mM MgCI2 je 350 μM dATP, dCTP, dGTP, dTTp je 300 nM eines jeden Primers 2,5 Units Expand Long Template Polymerase in einem Endvolumen von 25 μl
Folgendes Temperaturprogramm wird verwendet:
1 Zyklus mit 120 sec bei 94°C
35 Zyklen mit 94°C für 10 sec, 48°C für 30 sec und 68°C für 3 min 1 Zyklus mit 68°C für 10 min
Das PCR Produkt (SEQ. ID. NO. 22) wird mit Agarosegelektrophorese gereinigt und das 1032 bp Fragment durch Gelelution isoliert.
Der Vektor pSun5 wird mit der Restriktionsendonuklease EcoRV verdaut und ebenfalls über Agarosegelektrophorese aufgereinigt und durch Gelelution gewonnen.
Das gereinigte PCR Produkt wird in den so behandelten Vektor kloniert.
Um die Orientierung des Promotors im Vektor zu überprüfen wird mit der Restriktionsendonuklease BamHI verdaut. Entsteht hierbei ein 628 bp Fragment ist die Orientierung entsprechend der Abb. 2. Dieses Konstrukt wird mit p76 bezeichnet.
b) Isolation der Nukleinsäure, kodierend eine ß-Cyclase (Bgene) mittels PCR mit genomischer DNA von Lycopersicon esculentum als Matrize.
Hierzu wurden die Oligonukleotid Primer SEQ. ID. NO. 23 (BgeneFor) und SEQ. ID. NO. 24 (BgeneRev) verwendet. Die Oligonukleotide wurden bei der Synthese mit einem 5' Phosphatrest versehen. Die genomische DNA wurde aus Lycopersicon esculentum wie beschrieben (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1 :25- 34) isoliert.
Die PCR Amplifikation wurde wie folgt durchgeführt:
80ng genomische DNA 1 x. Expand Long Template PCR Puffer
2,5 mM MgCI2 je 350 μM dATP, dCTP, dGTP, dTTp je 300 nM eines jeden Primers
2,5 Units Expand Long Template Polymerase in einem Endvolumen von 25 μl
Folgendes Temperaturprogramm wurde verwendet:
1 Zyklus mit 120 sec bei 94°C 35 Zyklen mit 94°C f ür 10 sec, 48°C für 30 sec und 68°C für 3 min 1 Zyklus mit 68°C für 10 min
Das PCR Prσduktwurde mit Agarosegelektrophorese gereinigt und das 1486 bp Fragment durch Gelelution isoliert.
Der Vektor p76 wird mit der Restriktionsendonuklease Smal verdaut und ebenfalls über Agarosegelektrophorese aufgereinigt und durch Gelelution gewonnen.
Das gereinigte PCR Produkt wird in den so behandelten Vektor Moniert. Um die Orientierung von Bgene im VeMor zu überprüfen wird mit der Restriktionsendonuklease EcoRI verdaut. Entsteht hierbei ein 445 bp Fragment ist die Orientierung entsprechend der Abb. 2.
Dieses Konstrukt wird mit p76Bgene bezeichnet. Beispiel 2: Herstellung eines Klonierungsvektors zur Herstellung von doppelsträngigen ε-Cyclase-Ribonukleinsäuresequenz-Expressionskassetten für die blütenspezifischen Expression von Epsilon-cyclase dsRNAs in Tagetes erecta
Die Expression von Inverted-Repeat Transkripten bestehend aus Fragmenten der Epsilon-Cyclase in Tagetes erecta erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus Arabidopsis thaliana (AL132971 : Nukleotidregion 9298-10200; Hill et al. (1998) Development 125: 1711-1721)
Das Inverted-Repeat Transkript enthält jeweils ein Fragment in korrekter Orientierung (Sense- Fragment) und ein sequenzidentisches Fragment in entgegengesetzter Orientierung (Antisense-Fragment), die durch ein funMionelles Intron, das PIV2 Intron des ST-LH1 Genes aus Kartoffel (Vancanneyt G. et al. (1990) Mol Gen Genet 220: 245-50) mit einander verbunden sind.
Die cDNA, die für den AP3 Promoter (-902 bis +15) aus Arabidopsis thaliana kodiert, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethode aus Arabidopsis thaliana isoliert) und der Primer PR7 (SEQ ID No. 25) und PR10 (SEQ ID No. 28) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (-902 bis +15) kodiert, erfolgte in einem 50 μl ReaMionsansatz, in dem enthalten war:
- 1 ml genomischer DNA aus AΛhaliana (1:100 verd hergestellt wie oben beschrieben)
- 0,25 mM dNTPs - 0,2 mM PR7 (SEQ ID No. 25)
- 0,2 mM PR10 (SEQ ID No. 28) - 5 mHOX PCR-Puffer (Stratagene)
- 0,25 ml Pfu Polymerase (Stratagene)
- 28,8 miAq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X 94°C 1 Minute 50°C 1 Minute 72°C 1 Minute 1X 72°C 10 Minuten
Das 922 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- KlonierungsveMor pCR 2.1 (Invitrogen) Moniert und das Plasmid pTAP3 erhalten. Sequenzierung des Klons pTAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der Sequenz AL132971) und einen Basenaus- tausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 Sequenz (AL132971 , Nukleotidregion 9298-10200) unterscheidet (Position 33: T statt G, Position 55: T statt G). Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleo- tidsequenz in der verwendeten Arabidopsis thaliana Pflanze.
Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pTAP3 hergestellt. Die Region 10200-9771 wurde mit den Primern PR7 (SEQ ID No. 25) und Primern PR9 (SEQ ID No.27) amplifiziert (Amplifikat A7/9), die Region 9526-9285 wurde mit den PR8 (SEQ ID No. 26) und PR10 (SEQ ID No. 28) amplifiziert (Amplifikat A8/10).
Die PCR-Bedingungen waren die folgenden:
Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die für die Regionen Region 10200-9771 und 9526-9285 des AP3 Promoters kodieren, erfolgte in 50 μl ReaMionsansätzen, in denen enthalten war:
- 100 ng AP3 Amplifikat (oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM PR7 (SEQ ID No. 15) bzw. PR8. (SEQ ID No. 26)
- 0,2 mM PR9 (SEQ ID No. 17) bzw. PR10 (SEQ ID No. 28) - 5 ml 10 X PCR-Puffer (Stratagene)
- 0,25 ml Pfu Taq Polymerase (Stratagene)
- 28,8 ml Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1 X 94°C 2 Minuten 35 X 94°C 1 Minute
50°C 2 Minuten
72°C 3 Minuten 1 X 72°C 10 Minuten
Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A7/9 und A8/10, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670-9526 deletiert sind. Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40QC) beider Amplifikate A7/9 und A8/10 erfolgte in einem 17.6 ml Reaktionsansatz, in dem enthalten war:
- 0,5 mg A7/9 - 0,25 mg A8/10
Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgte in einem 20 μl ReaMionsansatz, in dem enthalten war:
- 17,6 ml A7/9 und A8/10-AnneaIingsreaktion (hergestellt wie oben beschrieben) - 50 M dNTPs - 2 ml 1 X Klenow Puffer
- 2 U Klenow Enzym
Die Nukleinsäure kodierend für die modifizierte Promoterversion AP3P wurde mittels PCR unter Verwendung eines sense spezifischen Primers (PR7 SEQ ID No. 25) und eines antisense spezifischen Primers (PR10 SEQ ID No. 28) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 ml Reaktionsan- satz, in dem enthalten war:
- 1 ml Annealingsreaktion (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs - 0,2 mM PR7 (SEQ ID No. 25)
- 0,2 mM PR10 (SEQ ID No. 28)
- 5 ml 10 X PCR-Puff er (Stratagene)
- 0,25 ml Pfu Taq Polymerase (Stratagene)
- 28,8 ml Aq. Dest. Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1 X 94°C 2 Minuten 35 X 94°C 1 Minute
50°C 1 Minuten
72°C 1 Minuten 1 X 72°C 10 Minuten
Die PCR-Amplifikation mit PR7, SEQ ID No. 25 und PR10 SEQ ID No. 28 resultierte in einem 778 Bp Fragment das für die modifizierte Promoterversion AP3P kodiert. Das Amplifikat wurde in den KlonierungsveMor pGR2.1 (Invitrogen) Moniert. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971 , Region 10200-9298 identische Sequenz, wobei die interne Region 9285-9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den ExpressionsveMor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.
Die Klonierung erfolgte durch Isolierung des 771 Bp Sacl-Hindlll Fragmentes aus pTAP3P und Ligierung in den Sacl-Hindlll geschnittenen VeMor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heißt pJAP3P.
Ein DNA-Fragment, das das PIV2 Intron des Gens ST-LS1 enthält wurde mittels PCR unter Verwendung von Plasmid-DNA p35SGUS INT (Vancanneyt G. et al.(1990) Mol Gen Genet 220: 245-50)sowie der Primer PR40 (Seq ID No. 30) und Primer PR41 (Seq ID No. 31) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der Sequenz des Intron PIV2 des Gens ST-LS1 , erfolgte in einem 50 °=l ReaMionsansatz, in dem enthalten war:
- 1 ml p35SGUS INT
- 0,25 mM dNTPs - 0,2 mMPR40 (SEQ ID No. 30)
- 0,2 mM PR41 (SEQ ID No. 31)
- 5 mMOX PCR-Puffer (TAKARA)
- 0,25 ml R Taq Polymerase (TAKARA)
- 28,8 ml Aq. Dest. Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X 94°C 1 Minute
53°C 1 Minute
72°C 1 Minute 1X 72°C 10 Minuten
Die PCR-Amplifikation mit PR40 und PR41 resultierte in einem 206 Bp-Fragment. Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR- KlonierungsveMor pBluntll (Invitrogen) Moniert und der Klon pBluntll-40-41 erhalten. Sequenzierungen dieses Klons mit dem Primer SP6 bestätigte eine Sequenz, die identisch ist mit der entsprechenden Sequenz aus dem Vektor p35SGUS INT.
Dieser Klon wurde daher für die Klonierung in den VeMor pJAP3P (oben beschrieben).
Die Klonierung erfolgte durch Isolierung des 206 Bp Sall-BamHI Fragmentes aus pBluntl 1-40-41 und Ligierung mit dem Sall-BamHI geschnittenen VeMor pJAP3P. Der Klon, der das Intron PIV2 des Gens ST-LS1 in der korreMen Orientierung anschließend an das 3'Ende des rbcs Transitpeptides enthält, heißt pJAH und ist geeignet, Expressionskassetten für die blütenspezifische Expression von Inverted-Repeat Transkripten herzustellen.
In der Abbildung 3 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment rbcs das rbcS Transitpeptid aus Erbse (204 bp), Fragment intron das Intron PIV2 des Kartoffel-Gens ST-LS1, und Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.
Beispiel 3: Herstellung von Inverted-Repeat-Expressionskassetten für die blütenspezifische Expression von Epsilon-cyclase dsRNAs in Tagetes erecta (gerichtet gegen die 5'Region der Epsilon-Cyclase cDNA)
Die Nukleinsäure, die die 5'terminale 435bp Region der Epsilon-Cyclase cDNA (Genbank accession no. AF251016) enthält, wurde mittels polymerase chain reaction (PCR) aus Tagetes erecta cDNA unter Verwendung eines sense spezifischen Primers (PR42 SEQ ID NO. 32) und eines antisense spezifischen Primers (PR43 SEQ ID NO. 33) amplifiziert. Die 5'terminale 435 bp Region der Epsilon-Cyclase cDNA aus Tagetes erecta setzt sich zusammen aus 138 bp 5'Nicht-translatierter Sequenz (5'UTR) und 297 bp der dem N-Terminus entsprechenden kodierenden Region. Für die Präparation von Total-RNA aus Blüten von Tagetes wurden 100 mg der gefrorenen, pulverisierten Blüten in ein Reaktionsgefäß überführt und in 0,8 ml Trizol- Puffer (LifeTechnologies) aufgenommen. Die Suspension wurde mit 0,2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75% Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt. Für die cDNA-Synthese wurden 2,5 μg Gesamt-RNA für 10 min bei 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR17 SEQ ID NO. 29) in cDNA umgeschrieben.
Die Bedingungen der anschließenden PCR-ReaMionen waren die folgenden:
Die PCR zur Amplifikation des PR42-PR43 DNA-Fragmentes, das die 5'terminale 435bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 ml ReaMionsansatz, in dem enthalten war:
- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 M PR42 (SEQ ID No. 32) - 0,2 mM PR43 (SEQ ID No. 33)
- 5 ml 10X PCR-Puffer (TAKARA)
- 0,25 ml R Taq Polymerase (TAKARA)
- 28,8 ml Aq. Dest.
Die PCR zur Amplifikation des PR44-PR45 DNA-Fragmentes, das die 5'terminale 435 bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:
- 1 ml cDNA (hergestellt wie oben beschrieben) - 0,25 mM dNTPs
- 0,2 mM PR44 (SEQ ID No. 34)
- 0,2 mM PR45 (SEQ ID No. 35)
- 5 ml 10X PCR-Puffer (TAKARA)
- 0,25 ml R Taq Polymerase (TAKARA) 1X 94°C 2 Minuten 35X 94°C 1 Minute 58°C 1 Minute 72°C 1 Minute 1X 72°C 10 Minuten
Die PCR-Amplifikation mit Primer PR42 und PR43 resultierte in einem 443 Bp- Fragment, die PCR-Amplifikation mit Primer PR44 und PR45 resultierte in einem 444 Bp-Fragment.
Die beiden Amplifikate, das PR42-PR43 (Hindi Il-Sall sense) Fragment und das PR44r PR45 (EcoRI-BamHI antisense) Fragment, wurden unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR-Bluntll (Invitrogen) Moniert. Sequenzierungen mit dem Primer SP6 bestätigten jeweils eine zur. publizierten Sequenz AF251016 (SEQ ID No. 7 ) identische Sequenz abgesehen von den eingeführten Restriktionsstellen. Diese Klone wurde daher für die Herstellung eines Inverted- Repeat Konstrukts in dem KIonierungsveMor pJAH (siehe Beispiel 2) verwendet.
Der erste Klonierungsschritt erfolgte durch Isolierung des 444 Bp PR44-PR45 BamHI- EcoRI Fragmentes aus dem KIonierungsveMor pCR-Bluntll (Invitrogen) und Ligierung mit dem BamHI-EcoRI geschnittenen Vektor pJAH . Der Klon, der 5'terminale Region der Epsilon-Cyclase in der antisense Orientierung enthält, heißt pJAI2. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem antisense Fragment der 5'terminalen Region der Epsilon-Cyclase und dem Polyadenylierungssignal aus CaMV.
Der zweite Klonierungsschritt erfolgte durch Isolierung des 443 Bp PR42-PR43 Hindlll- Sall Fragmentes aus dem KIonierungsveMor pCR-Bluntll (Invitrogen) und Ligierung mit dem Hindlll-Sall geschnittenen VeMor pJAI2. Der Klon, der 435 bp 5'terminale Region der Epsilon-Gyclase cDNA in der sense Orientierung enthält, heißt pJAI3. Durch die Ligation entsteht eine transkriptioneile Fusion zwischen dem AP3P und dem sense Fragment der 5'terminalen Region der Epsilon-Cyclase.
Für die Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle des CHRC-Promoters wurde ein CHRC-Promoterfragment unter Verwendung genomischer DNA aus Petunie (nach Standardmethoden hergestellt) sowie der Primer PRCHRC5 (SEQ ID No. 50) und PRCHRC3 (SEQ ID No. 51) amplifiziert. Das Amplifikat wurde in den KIonierungsveMor pCR2.1 (Invitrogen) Moniert. Sequenzierungen des resultierenden Klons pCR2.1-CHRC mit den Primern M13 und T7 bestätigten eine zur Sequenz AF099501 identische Sequenz. Dieser Klon wurde daher für die Klonierung in den ExpressionsveMor pJAI3 verwendet. in den Klonierungsvektor pCR2.1 (Invitrogen) Moniert. Sequenzierungen des resultierenden Klons pCR2.1-CHRC mit den Primern M13 und T7 bestätigten eine zur Sequenz AF099501 identische Sequenz. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJAI3 verwendet.
Die Klonierung erfolgte durch Isolierung des 1537 bp Sacl-Hindlll Fragments aus pCR2.1-CHRC und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJAI3. Der Klon, der den Promoter CHRC anstelle des ursprünglichen Promoters AP3P enthält, heißt pJCI3.
Die Herstellung der Expressionsvektoren für die Agrobacterium-vermittelte Transformation der AP3P- bzw. CHRC-kontrollierten Inverted-Repeat Transkripts in Tagetes erecta erfolgte unter der Verwendung des binären VeMors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors pS5AI3 wurde das 2622 bp Sacl-Xhol Fragment aus pJAI3 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 4, KonstruMkarte).
In der Abbildung 4 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment δsense die 5'Region der Epsilon-Cyclase aus Tagetes erecta (435 bp) in Sense-Orientierung, Fragment intron das Intron PIV2 des Kartoffel-Gens ST-LS1 , Fragment 5anti die 5'Region der Epsilon- cyclase aus Tagetes erecta (435 bp) in antisense Orientierung, und Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.
Zur Herstellung des Expressionsvektors pS5CI3 wurde das 3394 bp Sacl-Xhol Fragment aus pJCI3 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 5, KonstruMkarte).
In der Abbildung 5 beinhaltet Fragment CHRC den Promoter (1537 bp), Fragment 5sense die 5'Region der Epsilon-Cyclase aus Tagetes erecta (435 bp) in Sense- Orientierung, Fragment intron das Intron PIV2 des Kartoffel-Gens ST-LS1 , Fragment 5anti die 5'Region der Epsilon-Cyclase aus Tagetes erecta (435 bp) in Antisense- Orientierung, und Fragment term (761 Bp) das Polyadenylierungssignal von CaMV. Beispiel 4: Herstellung einer Inverted-Repeat-Expressionskassette für die blütenspezifische Expression von Epsilon-cyclase dsRNAs in Tagetes erecta (gerichtet gegen die 3'Region der Epsilon-Cyclase cDNA)
Die Nukleinsäure, die die 3'terminaie Region (384 bp) der Epsilon-Cyclase cDNA (Genbank accession no. AF251016) enthält wurde mittels polymerase chain reaction (PCR) aus Tagetes erecta cDNA unter Verwendung eines sense spezifischen Primers (PR46 SEQ ID NO. 36) und eines antisense spezifischen Primers (PR47 SEQ ID NO. 37) amplifiziert Die 3'terminale Region (384 bp) der Epsilon-Cyclase cDNA aus Tagetes erecta setzt sich zusammen aus 140 bp 3'-Nicht-translatierter Sequenz (3'UTR) und 244 bp der dem C-Terminus entsprechenden kodierenden Region.
Die Präparation von Total-RNA aus Blüten von Tagetes erolgte wie unter Beispiel 3 beschrieben.
Die cDNA Synthese erfolgte wie unter Beispiel 2 unter Verwendung des antisense spezifischen Primers PR17 (SEQ ID No. 19) beschrieben.
Die Bedingungen der anschließenden PCR-Reaktionen waren die folgenden:
Die PCR zur Amplifikation des PR46-PR457 DNA-Fragmentes, das die 3'terminale 384 bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 ml ReaMionsansatz, in dem enthalten war:
- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM PR46 (SEQ ID No. 36)
- 0,2 mM PR47 (SEQ ID No. 37)
- 5 ml 10X PCR-Puffer (TAKARA) - 025 ml R Taq Polymerase (TAKARA)
- 28,8 ml Aq. Dest.
Die PCR zur Amplifikation des PR48-PR49 DNA-Fragmentes, das die 3'terminale 384 bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:
- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 M PR48 (SEQ ID No. 38) - 0,2 mM PR49 (SEQ ID No. 39)
- 5 ml 10 X PCR-Puffer (TAKARA)
- 0,25 ml R Taq Polymerase (TAKARA)
- 28,8 ml Aq. Dest.
Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X 94°C 1 Minute 58°C 1 Minute
72°C 1 Minute 1X 72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID NO.36 und SEQ ID NO.37 resultierte in einem 392 Bp-Fragment, die PCR-Amplifikation mit SEQ ID NO.38 und SEQ ID NO. 39 resultierte in einem 396 Bp-Fragment.
Die beiden Amplifikate, das PR46-PR47 Fragment und das PR48-PR49 Fragment, wurden unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR-Bluntll (Invitrogen) Moniert. Sequenzierungen mit dem Primer SP6 bestätigten jeweils eine zur publizierten Sequenz AF251016 (SEQ ID NO. 7 ) identische Sequenz abgesehen von den eingeführten RestriMionsstellen. Diese Klone wurde daher für die Herstellung eines Inverted-Repeat Konstrukts in dem Klonierungsvektor pJAH (siehe Beispiel 2) verwendet.
Der erste Klonierungsschritt erfolgte durch Isolierung des 396 Bp PR48-PR49 BamHI- EcoRI Fragmentes aus dem Klonierungsvektor pCR-Bluntll (Invitrogen) und Ligierung mit dem BamHI-EcoRI geschnittenen Vektor pJAM . Der Klon, der 3'terminale Region der Epsilon-Cyclase in der antisense Orientierung enthält, heißt pJAI4. Durch die Ligation entsteht eine transkriptioneile Fusion zwischen dem Antisense-Fragment der 3'terminale Region der Epsilon-Cyclase und dem Polyadenylierungssignal aus CaMV.
Der zweite Klonierungsschritt erfolgte durch Isolierung des 392 Bp PR46-PR47 Hindlll- Sall Fragmentes aus dem KIonierungsveMor pCR-Bluntll (Invitrogen) und Ligierung mit dem Hindlll-Sall geschnittenen Vektor pJAI4. Der Klon, der 392 bp 3'terminale Region der Epsilon-Cyclase cDNA in der sense Orientierung enthält, heißt pJAI5. Durch die Ligation entsteht eine transkriptioneile Fusion zwischen dem AP3P und dem Sense- Fragmente 3'terminale Region der Epsilon-Cyclase. Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation des AP3P-kontrollierten Inverted-Repeat Transkripts in Tagetes erecta erfolgte unter der Verwendung des binären VeMors pSUN5 (WO02/00900). Zur Herstellung des Expressionsvektors pS5AI5 wurde das 2523 bp Sacl-Xhol Fragment aus pJAI5 mit dem Sacl-Xhol geschnittenen VeMor pSUN5 ligiert (Abbildung 5, KonstruMkarte).
In der Abbildung 5 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment sense die 3'region der Epsilon cyclase aus Tagetes erecta (435 bp) in sense Orientierung, Fragment intron das Intron IV2 des Kartoffel-Gens ST-LS1 , Fragment anti die 3'region der Epsilon cyclase aus Tagetes erecta (435 bp) in antisense Orientierung, und Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.
Beispiel 5: Klonierung des Epsilon-Cyclase Promoters
Ein 199 bp Fragment bzw. das 312 bp Fragment des Epsilon-Cyclase Promoters wurde durch zwei unabhängige Klonierungsstrategien, Inverse PCR (adaptiert Long et al. Proc. NatI. Acad. Sei USA 90: 10370) und TAIL-PCR (Liu Y-G. et al. (1995) Plant J. 8: 457-463) unter Verwendung genomischer DNA (nach Standardmethode aus Tagetes erecta, Linie Orangenprinz, isoliert) isoliert.
Für den Inverse PCR-Ansatz wurden 2 ug genomische DNA in einem 25 ul ReaMions- ansatz mit EcoRV und Rsal verdaut, anschließend auf 300 ul verdünnt und über Nacht bei 16°C mit 3U Ligase religiert. Unter Verwendung der Primer PR50 (SEQ ID NO. 40) und PR51 (SEQ ID NO.41) wurde durch PCR Amplifikation ein Fragment hergestellt, das, jeweils in Sense-Orientierung, 354 bp der Epsilon-Cyclase cDNA (Genbank Accession AF251016), ligiert an 300 bp des Epsilon-Cyclase Promoters sowie 70 bp des 5'terminalen Bereichs der cDNA Epsilon-Cyclase enthält (siehe- Abbildung 7).
Die Bedingungen der, PCR-ReaMionen waren die folgenden:
Die PCR zur Amplifikation des PR50-PR51 DNA-Fragmentes, das unter anderem das 312 bp Promoterfragment der Epsilon-Cyclase enthält, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:
- 1 ml Ligationsansatz (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM PR50 (SEQ ID No. 40)
- 0 2 mM PR51 (SEQ ID No. 41) - 5 ml 10X PCR-Puffer (TAKARA) - 0,25 ml R Taq Polymerase (TAKARA)
- 28,8 ml Aq. Dest.
Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X 94°C 1 Minute 53°C 1 Minute 72°C 1 Minute 1X 72°C 10 Minuten
Die PCR-Amplifikation mit Primer PR50 und PR51 resultierte in einem 734 Bp- Fragment, das unter anderem das 312 bp Promöterfragment der Epsilon-Cyclase enthält (Abbildung 7). J
Das Amplifikat, wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR2.1 (Invitrogen) Moniert. Sequenzierungen mit den Primern M13 und T7 ergaben die Sequenz SEQ ID No. 9. Diese Sequenz wurde in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotid- sequenz in der verwendeten Tagetes erecta Linie Orangenprinz.
Für den TAIL-PCR Ansatz wurden drei sukzessive PCR-ReaMionen mit jeweils unterschiedlichen gen-spezifischen Primern (nested primers) durchgeführt.
Die TAIL1-PCR erfolgte in einem 20 ml ReaMionsansatz, in dem enthalten war:
- 1 nggenomische DNA (hergestellt wie oben beschrieben)
- 0,2 mM jedes dNTPs - 0,2 M PR60 (SEQ ID No. 42) - 0,2 mM AD1 (SEQ ID No. 45)
- 2 ml 10X PCR-Puffer (TAKARA)
- 0,5 ml R Taq Polymerase (TAKARA)
- mit Aq. Dest. auf 20 ul aufgefüllt
AD1 stellte dabei zunächst eine Mischung aus Primern der Sequenzen (a/c/g/t)tcga(g/c)t(at)t(g/c)g(a/t)gtt dar. Die PCR-ReaMion TAIL1 wurden unter folgenden Zyklusbedingungen durchgeführt
1X 93°C: 1 Min., 95°C: 1 Min. 5X 94°C: 30 Sek., 62°C: 1 Min., 72°C: 2,5 Min. 1 X 94°C: 30 Sek., 25°C: 3 Min., ramp to 72°C in 3 Min. 72°C: 2,5 Min
15X94°C: 10 Sek., 68°C: 1 Min., 72°C: 2,5 Min.; 94°C: 10 Sek., 68°C: 1 Min., 72°C: 2,5 Min.; 94°C: 10 Sek., 29°C: 1 Min., 72°C: 2,5 Min. 1X72°C: 5 Min.
Die TAIL2-PCR erfolgte in einem 21 ml Reaktionsansatz, in dem enthalten war:
- 1. ml einer 1 :50 Verdünnung des TAIL1 -Reaktionsansatzes (hergestellt wie oben beschrieben)
- 0,8 mM dNTP
- 0,2 M PR61 (SEQ ID No. 43)
- 0,2 mM AD1 (SEQ ID No. 45)
- 2 ml 10X PCR-Puff er (TAKARA) - 0,5 ml R Taq Polymerase (TAKARA)
- mit Aq. Dest. auf 21 ul aufgefüllt
Die PCR-Reaktion TAIL2 wurde unter folgenden Zyklusbedingungen durchgeführt:
12X 94°C: 10 Sekunden, 64°C: 1 Minute, 72°C: 2.5 Minuten; 94°C: 10 Sekunden, 64°C: 1 Minute, 72°C: 2.5 Minuten; 94°C: 10 Sekunden, 29°C: 1 Minute, 72°C: 2.5 Minuten 1X72°C: 5 Minuten
Die TAIL3-PCR erfolgte in einem 100 ml Reaktionsansatz, in dem enthalten war:
- 1 ml einer 1:10 Verdünnung des TAIL2-Reaktionsansatzes (hergestellt wie oben beschrieben)
- 0,8 mM dNTP - 0,2 mM PR63 (SEQ ID No. 44)
- 0,2 mM AD1 (SEQ ID No. 45)
- 10 ml 10X PCR-Puffer (TAKARA)
- 0,5 ml R Taq Polymerase (TAKARA) - mit Aq. Dest. auf 100 ul aufgefüllt
Die PCR-Reaktion TAIL3 wurde unter folgenden Zyklusbedingungen durchgeführt:
20X 94°C: 15 Sekunden, 29°C: 30 Sekunden, 72°C: 2 Minuten 1X 72°C: 5 Minuten
Die PCR-Amplifikation mit Primer PR63 und AD1 resultierte in einem 280 Bp- Fragment, das unter anderem das 199 bp Promoterfragment der Epsilon-Cyclase enthält (Abbildung 8).
Das Amplifikat, wurde unter Verwendung von Standardmethoden in den PCR- KlonierungsveMor pCR2.1 (Invitrogen) Moniert. Sequenzierungen mit den Primern M13 und T7 ergaben die Sequenz SEQ ID No. 9. Diese Sequenz ist identisch mit der ecyclase Region innerhalb der Sequenz SEQ ID No. 7, die mit der IPCR Strategie isoliert wurde, und repräsentiert somit die Nukleotidsequenz in der verwendeten Tagetes erecta Linie Orangenprinz.
Der pCR2.1-Klon, der das 312 bp Fragment (SEQ ID No. 9) des Epsilon-Cyclase Promoters, das durch die IPCR-Strategie isoliert wurde, enthält, heißt pTA-ecycP und wurde für die Herstellung der IR KonstruMe verwendet.
Beispiel 6: Herstellung einer Inverted-Repeat-Expressionskassette für die blütenspezifische Expression von Epsilon-cyclase dsRNAs in Tagetes erecta (gerichtet gegen die Promoterregion der Epsilon-Cyclase cDNA).
Die Expression von Inverted-Repeat Transkripten bestehend aus Promoterfragmenten der Epsilon-cyclase in Tagetes erecta erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus Arabidopsis (siehe Beispiel 2) oder des blütenspezifischen Promoters CHRC (Genbank accession ho. AF099501 ). Das Inverted-Repeat Transkript enthält jeweils ein Epsilon-Cyclase-Promoterfragment in korreMer Orientierung (Sense-Fragment) und ein sequenzidentisches Epsilon- Cyclase-Promoterfragment in entgegengesetzter Orientierung (Antisense-Fragment), die durch ein funMionelles Intron (siehe Beispiel 2) miteinander verbunden sind.
Die Promoterfragmente wurde mittels PCR unter Verwendung von Plasmid-DNA (Klon pTA-ecycP, siehe Beispiel 5 ) und der Primer PR124 (SEQ ID No. 46) und PR126 (SEQ ID No. 48) bzw. der Primer PR125 (SEQ ID No. 47) und PR127 (SEQ ID No. 49) hergestellt. Die Bedingungen der PCR-ReaMionen waren die folgenden:
Die PCR zur Amplifikation des PR124-PR126 DNA-Fragmentes, das das Promoterfragment der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktions- ansatz, in dem enthalten war:
- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM PR124 (SEQ ID No. 46) - 0,2 mM PR126 (SEQ ID No. 48)
- 5 ml 10X PCR-Puffer (TAKARA)
- 0,25 ml R Taq Polymerase (TAKARA) - 28,8 ml Aq. Dest.
Die PCR zur Amplifikation des PR125-PR127 DNA-Fragmentes, das das 312bp Promqterfragment der Epsilon-Cyclase enthält, erfolgte in einem 50 μl ReaMionsansatz, in dem enthalten war:
- 1 ml cDNA (hergestellt wie oben beschrieben) - 0,25 mM dNTPs
- 0,2 mM PR125 (SEQ ID No. 47)
- 0,2 mM PR127 (SEQ ID No. 49)
- 5 ml 10X PCR-Puffer (TAKARA)
- 0,25 ml R Taq Polymerase (TAKARA) - 28,8 ml Aq. Dest.
Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X 94°C 1 Minute
53°C 1 Minute
72°C 1 Minute 1X 72°C 10 Minuten
Die PCR-Amplifikation mit Primer PR124 und PR126 resultierte in einem 358 Bp- Fragment, die PCR-Amplifikation mit Primer PR125 und PR127 resultierte in einem 361 Bp-Fragment. Die beiden Amplifikate, das PR124-PR126 (Hindlll-Sall sense) Fragment und das PR125-PR127 (EcoRI-BamHI antisense) Fragment, wurden unter Verwendung von Standardmethoden in den PCR-KIonierungsvektor pCR-Bluntll (Invitrogen) kloniert. Sequenzierungen mit dem Primer SP6 bestätigten jeweils eine Sequenz, die abge- sehen von den eingeführten Restriktionsstellen identisch ist zu SEQ ID No. 7. Diese Klone wurden daher für die Herstellung eines Inverted-Repeat Konstrukts in dem KIonierungsveMor pJAH (siehe Beispiel 2) verwendet.
Der erste Klonierungsschritt erfolgte durch Isolierung des 358 Bp PR124-PR126 Hindlll-Sall Fragmentes aus dem Klonierungsvektor pCR-Bluntll (Invitrogen) und Ligierung mit dem BamHI-EcoRI geschnittenen VeMor pJAH. Der Klon, das Epsilon- Cyclase Promoterfragment in der sense Orientierung enthält, heißt cs43. Durch die Ligation wird das Sense-Fragment des Epsilon-Cyclase Promoters zwischen den AP3P Promoter und das Intron eingefügt.
Der zweite Klonierungsschritt erfolgte durch Isolierung des 361 Bp PR125-PR127 BamHI-EcoRI Fragmentes aus dem Klonierungsvektor pCR-Bluntll (Invitrogen) und Ligierung mit BamHI-EcoRI geschnittenen VeMor cs43. Der Klon, der das Epsilon- Cyclase Promoterfragment in der antisense Orientierung enthält, heißt cs44. Durch die Ligation entsteht eine transkriptioneile Fusion zwischen dem Intron und dem Antisense-Fragment des Epsilon-Cyclase Promoters.
Für die Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle des CHRC-Promoters wurde ein CHRC-Promoterfragment unter Verwendung genomischer DNA aus Petunie (nach Standardmethoden hergestellt) sowie der Primer PRCHRC3' (SEQ ID NO. 51) und PRCHRC5' (SEQ ID NO. 50) amplifiziert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen des resultierenden Klons pCR2.1-CHRC mit den Primern M13 und T7 bestätigten eine zur Sequenz AF099501 identische Sequenz. Dieser Klon wurde daher für die Klonierung in den ExpressionsveMor cs44 verwendet.
Die Klonierung erfolgte durch Isolierung des 1537 bp Sacl-Hindlll Fragments aus pCR2.1-CHRC und Ligierung in den Sacl-Hindlll geschnittenen Vektor cs44. Der Klon, der den Promoter CHRC anstelle des ursprünglichen Promoters AP3P enthält, heißt cs45.
Für die Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle zweier Promotoren, des CHRC-Promoter und des AP3P-Promoters, wurde der AP3P- Promoter in antisense Orientierung an den 3'Terminus des Epsilon-Cyclase antisense Fragmentes in cs45 kloniert. Das AP3P-Promoterfragments aus pJAH wurde unter Verwendung der Primer PR128 und PR129 amplifiziert. Das Amplifikat wurde in den KIonierungsveMor pCR2.1 (Invitrogen) kloniert. Dieser Klon pCR2.1-AP3PSX wurde für Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle zweier Promotoren verwendet.
Die Klonierung erfolgte durch Isolierung des 771 bp Sall-Xhol Fragments aus pCR2.1- AP3PSX und Ligierung in den Xhol geschnittenen Vektor cs45. Der Klon, der 3'seitig des Inverted Repeats, den Promoter AP3P in antisense Orientierung enthält, heißt cs46.
Die Herstellung der Expressionsvektoren für die Agrobacterium-vermittelte Transformation des AP3P-kontrollierten Inverted-Repeat Transkripts in Tagetes erecta erfolgte unter der Verwendung des binären VeMors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors pS5AI7 wurde das 1685bp Sacl-Xhol Fragment aus cs44 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 9, KonstruMkarte).
In der Abbildung 9 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment P-sense das 312 bp Promoterfragment der Epsilon-Cyclase in sense Orientierung, Fragment intron das Intron IV2 des Kartoffel-Gens ST-LS1), und Fragment P-anti das 312 bp Promoterfragment der Epsilon- Cyclase in antisense Orientierung.
Zur Herstellung des Expressionsvektors pS5CI7 wurde das 2445bp Sacl-Xhol Fragment aus cs45 mit dem Sacl-Xhol geschnittenen VeMor pSUN5 ligiert (Abbildung 10, KonstruMkarte).
In der Abbildung 10 beinhaltet Fragment CHRC den CHRC-Promoter (1537 bp), Fragment P-sense das 312 bp Promoterfragment der Epsilon-Cyclase in sense
Orientierung, Fragment intron das Intron IV2 des Kartoffel-Gens ST-LS1), und Fragment P-anti das 312 bp Promoterfragment der Epsilon- Cyclase in antisense Orientierung.
Zur Herstellung des Expressionsvektors pS5CI7 wurde das 3219bp Sacl-Xhol Fragment aus cs46 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 11 , KonstruMkarte).
In der Abbildung 11 beinhaltet Fragment CHRC den CHRC-Promoter (1537 bp), Fragment P-sense das 312 bp Promoterfragment der Epsilon-Cyclase in sense Orientierung, Fragment intron das Intron IV2 des Kartoffel-Gens ST-LS1), Fragment P- anti das 312 bp Promoterfragment der Epsilon-Cyclase in antisense Orientierung und das Fragment AP3P das 771 bp AP3P-Promoterfragment in antisense Orientierung.
Beispiel 7: Herstellung transgener Tagetes Pflanzen
Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 15(1962), 473-497) pH 5,8, 2 % Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18 bis 28°C/20 bis 200 ocE/3 bis 16 Wochen, bevorzugt jedoch bei 21 °C, 20 bis 70 <*E, für 4 bis 8 Wochen.
Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 bis 60 mm2 werden im Verlaufe der Präparation in flüssigem MS-Medium bei Raumtemperatur für maximal 2 h aufbewahrt.
Der AgrobaMerium tumefaciens Stamm EHA105 wurde mit dem Binärplasmid PS5AI3 transformiert. Die Anzucht des transformierten A. tumefaciens Stammes EHA105 erfolgte über Nacht unter folgenden Bedingungen: Eine Einzelkolonie wurde in YEB (0,1 % HefeextraM, 0,5 % RindfleischextraM, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H20) mit 25 mg/l Kanamycin angeimpft und bei 28°C für 16 bis 20 h angezogen. Anschließend wurde die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, dass eine OD600 von ca. 0,1 bis 0,8 entstand. Diese Suspension wurde für die Co-Kulti- vierung mit dem Blattmaterial verwendet.
Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die BaMeriensuspension ersetzt. Die Inkubation der Blättchen in der AgrobaMeriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur, Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/l Benzylaminopurin (BAP) sowie 1 mg/l Indolylessig- säure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30 bis 80 «Mol/m2 x sec, Temperatur: 22 bis 24°C, hell/dunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite seleMive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l seleMiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar.
Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sprossknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA3, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.
Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:
• Bevor die Explantate mit den BaMerien infiziert werden, können sie für 1 bis
12 Tage, bevorzugt 3 bis 4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert werden. Anschließend erfolgt die InfeMion, Co-Kultur und seleMive Regeneration wie oben beschrieben.
• Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenM werden. Dadurch wird die Kontrolle des AgrobaMerienwachstums verbessert.
• Die Zugabe von AgNO3 (3 bis 10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.
• Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus.
• Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.
Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden ExpressionskonstruMen folgende Linien erhalten:
Mit p76Bgene (aus Beispiel 1) wurde erhalten: MK14-1-1 Mit pS5AI3 wurde erhalten: CS30-1 , CS30-3 und CS30-4 Beispiel 8: CharaMerisierung der transgenen Pflanzen
Beispiel 8.1 : CS30-1 , CS30-3 und CS30-4
Das Blütenmaterial der transgenen Tagetes erecta Pflanzen CS30-1 , CS30-3 und CS30-4 aus Beispiel 7 wurde in flüssigem Stickstoff gemörsert und das Pulver (etwa 250 bis 500 mg) mit 100 % Aceton extrahiert (dreimal je 500 ul). Das Lösungsmittel wurde evaporiert und die Carotinoide in 100 ul Aceton resuspendiert.
Mittels einer C30-reverse phase-Säule konnte zwischen Mono- und Diestem der Carotinoide unterschieden werden. HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al. (2000), Plant Journal 24(4): 551-558). Eine Identifizierung der Carotinoide war aufgrund der UV-VIS-Spektren möglich.
Tabelle 1 zeigt das Carotinoidprofil in Tagetespetalen der gemäß der vorstehend beschriebenen Beispiele hergestellten transgenen Tagetes- und Kontrolltagetespflanzen. Alle Carotinoidmengen sind in [μg/g] Frischgewicht angegeben, prozentuale Veränderungen gegenüber der Kontrollpflanze sind in Klammern angegeben. Im Vergleich zur genetisch nicht veränderten Kontrollpflanze, weisen die genetisch veränderten Pflanzen einen deutlich erhöhten Gehalt an Carotinoiden des "ß-Carotin- Weges", wie beispielsweise ß-Carotin und Zeaxanthin und einen deutlich reduzierten Gehalt an Carotinoiden des "α-Carotin-Weges", wie beispielsweise Lutein auf.
Tabelle 1
Figure imgf000079_0001
Beispiel 8.2: Reduzierung der ε-Cyclase-Aktivität in Tagetes erecta durch Antisense CS 32-9
Unter Verwendung herkömmlicher, dem Fachmann bekannter Methoden wurde als Vergleichsbeispiel eine Tagetes erecta Antisense-Linie CS32-9 hergestellt bei der die Reduzierung der ε-Cyclase-Aktivität durch Antisense erfolgte. Das Carotinoidprofil dieser Linie (CS32-9), gemessen nach vorstehend beschriebener Methode ist ebenfalls in Tabelle 1 dargestellt.
Beispiel 8.3: Alkalische Hydrolyse von Carotinoidestem und Identifizierung der Carotinoide von MK14-1-1
Die Blütenblätter der transgenen Tagetes errecta Pflanzen MK14-1-1 aus Beispiel 7 wurden in flüssigem Stickstoff gemörsert und das Petalenpulver (etwa 20 mg) mit 100% Aceton extrahiert (dreimal je 500 ul). Das Lösungsmittel wurde evaporiert und der Rückstand in 180μl Aceton aufgenommen. Um Homogenität des Extraktes zu gewährleisten wurde der Extrakt für zwei Minuten mit Ultraschall behandelt
Dem Extrakt wurden 20μl 10%ige KOH in Methanol zugesetzt und 30 min bei Raum- temperatur bei 1000-1300 rpm geschüttelt. Hiernach wurde der ExtraM mit HCL auf pH 7,5 titriert und bei 10000 g für 10 min zentrifugiert.
Der Überstand wurde mittels einer C30-reverse phase-Säule analysiert. HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al.(2000), Plant Journal 24(4): 551-558). Eine Identifizierung der Carotinoide war aufgrund der UV-VIS-SpeMren und aufgrund der Massen möglich.
Die Überexpression der erfindungsgemäßen ß Cyclase (Bgene) aus Lycopersicon esculentum unter der Kontrolle des blütenspezifischen Promoters P76 aus Arabidopsis thaliana in Tagetes erecta führte überraschend nicht nur zur Akkumulation von höheren
Mengen ß Carotinoiden sondern zu einer drastischen Verringerung der Menge von α-Carotinoiden zugunsten der Menge von ß Carotinoiden.
Hierdurch wurden die in der Blüte von Tagetes erecta vorhandenen α-Carotinoid
Mengen von im Wildtyp über 80 % auf unter 30 % der Gesamtcarotinoide reduziert und der Anteil der ß Carotinoide am Gesamtcarotinoidgehalt von im Wildtyp unter 20 % auf über 70% erhöht (Siehe Abbildung 1).

Claims

Patentansprüche
1. Verfahren zur Herstellung von ß-Carotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase- AMivität in Pflanzengeweben, enthaltend photosynthetisch inaktive Plastide, aufweisen und die erhöhte ß-Cyclase-AMivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, mit der Maßgabe, dass Tomate als Pflanze ausgenommen ist.
2... Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man zur Erhöhung der ß-Cyclase-Aktivität die Genexpression einer Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp erhöht.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression Nukleinsäuren in die Pflanzen einbringt, die ß-Cyclasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 1 einbringt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Expression der ß-Cyclase unter Kontrolle eines Promotors stattfindet, der die Expression der ß-Cyclase in den Pflanzengeweben, enthaltend photosynthetisch in- aMive Plastide, gewährleistet.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Pflanzengeweben, enthaltend photosynthetisch inaMive Plastide, die höchste Expressionsrate der ß-Cyclase aufweisen.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Expression der ß- Cyclase unter Kontrolle eines für das Pflanzengewebe spezifischen Promotors erfolgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Pflanzen zusätzlich gegenüber dem Wildtyp eine erhöhte Hydroxylase-Aktivität aufweisen.
9 Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung der Hydroxylase-AMivität, die Genexpression einer Nukleinsäure kodierend eine Hydroxylase gegenüber dem Wildtyp erhöht.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression eine Nukleinsäure kodierend eine Hydroxylase in die Pflanze ein- bringt.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine Hydroxylase, Nukleinsäuren einbringt, die eine Hydroxylase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 9 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete
Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 9 aufweist.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 8 einbringt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Pflanzengeweben, enthaltend photosynthetisch inaMive Plastide, die höchste Expressionsrate der Hydro- xylase aufweisen.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Expression der Hydroxylase unter Kontrolle eines für das Pflanzengewebe spezifischen Promotors erfolgt.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Pflanzen gegenüber dem Wildtyp zusätzlich eine reduzierte AMivität mindestens einer der AMivitäten, ausgewählt aus der Gruppe ε-Cyclase-AMivität und endogene ß-Hydroxylase AMivität aufweisen.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass man die Reduzierung der ε-Cyclase-AMivität und/oder der endogenen ß-Hydroxylase Aktivität in Pflanzen durch mindestens eines der nachfolgenden Verfahren erreicht:
a) Einbringen mindestens einer doppelsträngigen ε-Cyclase- Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxylase-Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen,
b) Einbringen mindestens einer ε-Cyclase-antisense-Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxylase-antisense-Ribonukleinsäuresequenz o- der einer deren Expression gewährleistenden Expressionskassette oder Expressionskasetten in Pflanzen,
c) Einbringen mindestens einer ε-Cyclase-antisense-Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxylase-antisense-Ribonukleinsäuresequenz jeweils kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen,
d) Einbringen mindestens einer ε-Cyclase-sense-Ribonukleinsäuresequenz und/oder endogenen ß-Hydroxyiase-sense-Ribonukleinsäuresequenz zur In- duMion einer Kosuppression oder einer deren Expression gewährleistenden .Expressionskassette oder Expressionskasetten in Pflanzen,
e) Einbringen mindestens eines DNA-oder Protein-bindenden Faktors gegen ein ε-Cyclase-Gen, -RNA oder -Protein und/oder endogenes ß-Hydroxylase-Gen, -RNA oder -Protein oder einer dessen Expression gewährleistenden Expressionskassette oder Expressionskasetten in Pflanzen,
f) Einbringen mindestens einer den ε-Cyclase-RNA und/oder endogenen ß- Hydroxylase-RNA-Abbau bewirkenden viralen Nukleinsäuresequenz oder
Nukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskasetten in Pflanzen,
g) Einbringen mindestens eines KonstruMes zur Erzeugung einer Insertion, De- letion, Inversion oder Mutation in einem ε-Cyclase-Gen und/oder endogenem ß-Hydroxylase-Gen in Pflanzen.
17. Verfahren nach Anspruch 16, Ausführungsform a), dadurch gekennzeichnet, dass man in die Pflanze eine RNA einbringt, die einen Bereich mit Doppel-Strang- StruMur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze-eigenen ε-Cyclase-Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen ε-Cyclase -Promotor-
Sequenz identisch ist.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass der Bereich mit Dop- pel-Strang-StruMur eine Nukleinsäuresequenz enthält, die mit mindestens einem Teil des Pflanze-eigenen ε-Cyclase -Transkripts identisch ist und das 5'-Ende oder das 3'-Ende der Pflanze-eigenen Nukleinsäure, kodierend eine ε-Cyclase enthält.
19. Verfahren nach Anspruch 16, Ausführungsform a), dadurch gekennzeichnet, dass man in die Pflanze eine RNA einbringt, die einen Bereich mit Doppel-Strang- Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze-eigenen, endogenem ß-Hydroxylase- Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen, endogenen ß-Hydroxylase -
Promotor-Sequenz identisch ist.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass der Bereich mit Dop- pel-Strang-StruMur eine Nukleinsäuresequenz enthält, die mit mindestens einem Teil des Pflanze-eigenen, endogenen ß-Hydroxylase -Transkripts identisch ist und das 5'-Ende oder das 3'-Ende der Pflanze-eigenen Nukleinsäure, kodierend eine endogene ß-Hydroxylase enthält.
21. Verfahren nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Pflanzengeweben, enthaltend photosynthetisch inaMive Plastide, die geringste Expressionsrate einer ε- Cyclase und/oder endogenen ß-Hydroxylase aufweisen.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass die Transkription der doppelsträngigen Ribonukleinsäuresequenz gemäß Anspruch 16, Ausführungsform a) und/oder der Äntisense-Sequenzen gemäß Anspruch 16, Ausführungsform b) unter Kontrolle eines Promotors erfolgt, der für die Pflanzengeweben, enthaltend photosynthetisch inaMive Plastide, spezifisch ist:
23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass man nach dem Kultivieren die genetisch veränderten Pflanzen erntet und anschließend die ß-Carotinoide aus den Pflanzen oder den Pfianzengeweben, enthaltend photosynthetisch inaktive Plastide, isoliert.
24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Pflanzengewebe, enthaltend photosynthetisch inaktive Plastide, ausgewählt sind aus der Gruppe Blüte, Frucht und Knolle.
25. Verfahren nach einem der Ansprüche 1 bis.24, dadurch gekennzeichnet, dass man als genetisch veränderte Pflanze, die im Vergleich zum Wildtyp eine erhöhte ß- Cyclase-Aktivität in Blüten aufweist, eine Pflanze, ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Faba- ceae, Linaceae, Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophylla- ceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllida- ceae, Poaceae, Orchidaceae, Malvaceae, liliaceae oder Lamiaceae verwendet.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bigno- nia, Calendula, Calendula officinalis, Caltha, Campanula, Canna, Centaurea, Chei- ranthus, Chrysanthemum, Citrus, Crepis, Croeus, Curcurbita, Cytisus, Delonia,
Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fre- montia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Gre- villea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hyperi- cum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenia, Labumum, Lathyrus, Leon- todon, Lilium, Linum, Lotus, Lysimachia, Maratia, Medicago, Mimulus, Narcissus,
Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Solanum tuberosum, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet:
27. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass man als genetisch veränderte Pflanze, die im Vergleich zum Wildtyp eine erhöhte ß- Cyclase-AMivität in Früchten aufweist, eine Pflanze ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Avocado, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Ca- liptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Erbse, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Kiwi, Lathyrus, Lonicera, Luffa, Lycium, Mais, Malpighia, Mangi- fera, Mormodica, Murraya, Musa, Nenga, Orange, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia, Vitis oder Zucchini verwendet
28. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass man als genetisch veränderte Pflanze, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität in Knollen aufweist, Solanum tuberosum verwendet.
29. Verfahren nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, dass die ß-Carotinoide ausgewählt sind aus der Gruppe ß-Carotin, ß-Cryptoxanthin, Zeaxanthin, Antheraxanthin, Violaxanthin und Neoxanthin.
30. Genetisch veränderte Pflanze, wobei die genetische Veränderung die AMivität einer ß-Cyclase in Pflanzenteilen, enthaltend photosynthetisch inaktive Plastide, gegenüber dem Wildtyp erhöht und die erhöhte ß-Cyclase-AMivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Ami- nosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
31 Genetisch veränderte Pflanze nach Anspruch 30, dadurch gekennzeichnet, dass die Erhöhung der ß-Cyclase-AMivität durch eine Erhöhung der Genexpression ei- ner Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz
SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp bewirt t wird.
32. Genetisch veränderte Pflanze nach Anspruch 31, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression Nukleinsäuren in die Pflanze einbringt, die ß-Cyclasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion- oder Deletion von Aminosäu- ren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
33. Genetisch veränderte Pflanze, enthaltend mindestens eine Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder ei- ne von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, mit der Maßgabe, dass Tomate ausgenommen ist.
34. Genetisch veränderte Pflanze nach einem der Ansprüche 30 bis 33, dadurch gekennzeichnet, dass die genetische Veränderung zusätzlich die Hydroxiase-AMivität gegenüber dem Wildtyp erhöht.
35. Genetisch veränderte Pflanze nach einem der Ansprüche 30 bis 34, dadurch gekennzeichnet, dass die genetische Veränderung zusätzlich mindestens eine der AMivitäten, ausgewählt aus der Gruppe ε-Cyclase-AMivität und endogene ß- Hydroxylase-AMivität gegenüber dem Wildtyp reduziert.
36. Genetisch veränderte Pflanze nach einem der Ansprüche 30 bis 35, dadurch gekennzeichnet, dass die Pflanzengewebe, enthaltend photosynthetisch inaMive Plastide, ausgewählt sind aus der Gruppe Blüte, Frucht und Knolle.
37. Genetisch veränderte Pflanze nach einem der Ansprüche 30 bis 36, dadurch ge- kennzeichnet, dass die genetisch veränderte Pflanze, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-AMivität in Blüten aufweist, ausgewählt ist aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fa- baceae, Linaceae, Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophyl- laceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceäe, Asteraceae, Liliaceae, Amaryllida- ceae, Poaceae, Orchidaceae, Malvaceae, liliaceae oder Lamiaceae.
38. Genetisch veränderte Pflanze nach Anspruch 37, dadurch gekennzeichnet, dass die Pflanze ausgewählt ist aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus,
Bignonia, Calendula, Calendula officinalis, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Croeus, Curcurbita, Cytisus, Delo- nia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Geisemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hype- ricum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leon- todon, Liiium, Linum, Lotus, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Solanum tuberosum, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia.
39. Genetisch veränderte Pflanze nach einem der Ansprüche 30 bis 36, dadurch gekennzeichnet, dass die genetisch veränderte Pflanze, die im Vergleich zum Wiidtyp eine erhöhte ß-Cyclase-AMivität in Früchten aufweist, ausgewählt ist aus den
Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoe- nix, Area, Aronia, Asparagus, Avocado, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Di- oscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Erbse, Fi- cus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Kiwi, Lathyrus, Lonicera, Luffa, Lycium, Mais, Malpig- hia, Mangifera, Mormodica, Murraya, Musa, Nenga, Orange, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ri- bes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus,
Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Vi- burnum, Vignia, Vitis oder Zucchini.
40. Genetisch veränderte Pflanze nach einem der Ansprüche 30 bis 36, dadurch ge- kennzeichnet, dass die genetisch veränderte Pflanze, die im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-AMivität in Knollen aufweist Solanum tuberosum ist.
41. Verwendung der genetisch veränderten Pflanzen oder Pflanzengeweben nach einem der Ansprüche 30 bis 40 als Futter- oder Nahrungsmittel.
42. Verwendung der genetisch veränderten Pflanzen oder Pflanzengewben nach einem der Ansprüche 30 bis 40 zur Herstellung von ß-carotinoidhaltigen ExtraMen oder zur Herstellung von ß-carotinoidhaltigen Futter- und Nahrungsergänzungsmit- tel.
43. Verwendung von zeaxanthinhaltigen Extrakten gemäß Anspruch 42 zur Pigmentierung von Tierprodukten.
PCT/EP2003/009101 2002-08-20 2003-08-18 VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN WO2004018688A1 (de)

Priority Applications (21)

Application Number Priority Date Filing Date Title
AU2003258622A AU2003258622A1 (en) 2002-08-20 2003-08-18 Method for the production of $g(b)-carotinoids
US10/524,971 US20060059584A1 (en) 2002-08-20 2003-08-18 Method for the production of $g(b)-carotinoids
EP03792344A EP1532256A1 (de) 2002-08-20 2003-08-18 VERFAHREN ZUR HERSTELLUNG VON &bgr;-CAROTINOIDEN
AU2004267196A AU2004267196A1 (en) 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms
US10/569,022 US20060194274A1 (en) 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms
EP04763695A EP1658371A2 (de) 2003-08-18 2004-07-31 Promotoren zur expression von genen in tagetes
JP2006523556A JP2007502605A (ja) 2003-08-18 2004-07-31 遺伝子的に改変された非ヒト生物におけるケトカロテノイドの製造方法
PCT/EP2004/008625 WO2005019461A2 (de) 2003-08-18 2004-07-31 Ketolasen und verfaren zur herstellung von ketocarotinoiden
US10/568,741 US20060162020A1 (en) 2003-08-18 2004-07-31 Promoters for the expression of genes in tagetes
PCT/EP2004/008623 WO2005019467A1 (de) 2003-08-18 2004-07-31 Verfahren zur herstellung von ketocarotinoiden in genetisch veränderten, nichthumanen organismen
MXPA06001620A MXPA06001620A (es) 2003-08-18 2004-07-31 Metodo para producir cetocarotenoides en organismos no humanos geneticamente modificados.
EP04741347A EP1658377A1 (de) 2003-08-18 2004-07-31 VERFAHREN ZUR HERSTELLUNG VON KETOCAROTINOIDEN IN GENETISCH VER&Auml;NDERTEN, NICHTHUMANEN ORGANISMEN
US10/569,064 US20080060096A1 (en) 2003-08-18 2004-07-31 Novel Ketolases and Method for Producing Ketocarotinoids
CA002535972A CA2535972A1 (en) 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms
PCT/EP2004/008624 WO2005019460A2 (de) 2003-08-18 2004-07-31 Promotoren zur expression von genen in tagetes
EP04763696A EP1658372A2 (de) 2003-08-18 2004-07-31 Ketolasen und verfahren zur herstellung von ketocarotinoiden
NO20050600A NO20050600L (no) 2002-08-20 2005-02-03 Fremgangsmate for fremstilling av beta-karotinoiden
IL173645A IL173645A0 (en) 2003-08-18 2006-02-09 Novel ketolases and method for producing ketocarotinoids
IL173644A IL173644A0 (en) 2003-08-18 2006-02-09 Method for producing ketocarotinoids in genetically modified, non-human organisms
NO20060720A NO20060720L (no) 2003-08-18 2006-02-14 Fremgangsmate for fremstilling av ketokarotinoider i genetisk modifiserte, ikke-humane organismer
IL173780A IL173780A0 (en) 2003-08-18 2006-02-16 Promoters for the expression of genes in tagetes

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10238979A DE10238979A1 (de) 2002-08-20 2002-08-20 Verfahren zur Herstellung von Zeaxanthin und/oder dessen biosynthetischen Zwischen- und/oder Folgeprodukten
DE2002138980 DE10238980A1 (de) 2002-08-20 2002-08-20 Verfahren zur Herstellung von Ketocarotinoiden in Blütenblättern von Pflanzen
DE10238980.2 2002-08-20
DE10238979.9 2002-08-20
DE2002158971 DE10258971A1 (de) 2002-12-16 2002-12-16 Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes als Futtermittel
DE10258971.2 2002-12-16

Publications (1)

Publication Number Publication Date
WO2004018688A1 true WO2004018688A1 (de) 2004-03-04

Family

ID=31950225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/009101 WO2004018688A1 (de) 2002-08-20 2003-08-18 VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN

Country Status (5)

Country Link
US (1) US20060059584A1 (de)
EP (1) EP1532256A1 (de)
AU (1) AU2003258622A1 (de)
NO (1) NO20050600L (de)
WO (1) WO2004018688A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1554388A1 (de) * 2002-10-11 2005-07-20 Sungene GmbH & Co. KGaA Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte
US7851199B2 (en) 2005-03-18 2010-12-14 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804062B2 (ja) * 2005-07-29 2011-10-26 オリンパス株式会社 内視鏡システム
CN108949809B (zh) * 2018-07-05 2022-03-08 北京林业大学 一种连翘叶片trv载体介导病毒诱导基因沉默的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032788A2 (en) * 1998-11-30 2000-06-08 Chr. Hansen A/S Method for regulating carotenoid biosynthesis in marigolds
WO2001088169A2 (en) * 2000-05-12 2001-11-22 Monsanto Technology Llc Method for producing carotenoid compounds in plants
EP1323825A2 (de) * 2001-11-09 2003-07-02 Enea Ente Per Le Nuove Tecnologie, L'energia E L'ambiente Rekombinante Pflanzen und DNA Konstrukte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05001944A (es) * 2002-08-20 2005-06-22 Sungene Gmbh & Co Kgaa Procedimiento para elaborar cetocarotenoides en frutos de plantas.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032788A2 (en) * 1998-11-30 2000-06-08 Chr. Hansen A/S Method for regulating carotenoid biosynthesis in marigolds
WO2001088169A2 (en) * 2000-05-12 2001-11-22 Monsanto Technology Llc Method for producing carotenoid compounds in plants
EP1323825A2 (de) * 2001-11-09 2003-07-02 Enea Ente Per Le Nuove Tecnologie, L'energia E L'ambiente Rekombinante Pflanzen und DNA Konstrukte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DHARMAPURI S ET AL: "Metabolic engineering of xanthophyll content in tomato fruits", FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 519, no. 1-3, 22 May 2002 (2002-05-22), pages 30 - 34, XP004356816, ISSN: 0014-5793 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1554388A1 (de) * 2002-10-11 2005-07-20 Sungene GmbH & Co. KGaA Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte
US7851199B2 (en) 2005-03-18 2010-12-14 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
US8288149B2 (en) 2005-03-18 2012-10-16 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi
US9909130B2 (en) 2005-03-18 2018-03-06 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi
US9297031B2 (en) 2006-09-28 2016-03-29 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi

Also Published As

Publication number Publication date
EP1532256A1 (de) 2005-05-25
AU2003258622A1 (en) 2004-03-11
US20060059584A1 (en) 2006-03-16
NO20050600L (no) 2005-04-18

Similar Documents

Publication Publication Date Title
EP1531683B1 (de) Verwendung von astaxanthinhaltigen pflanzen oder pflanzenteilen der gattung tagetes als futtermittel
DE10300649A1 (de) Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen
DE10238980A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in Blütenblättern von Pflanzen
DE102004007622A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten, nicht-humanen Organismen
EP1532256A1 (de) VERFAHREN ZUR HERSTELLUNG VON &amp;bgr;-CAROTINOIDEN
DE10258971A1 (de) Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes als Futtermittel
DE10238978A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflanzen
WO2005019461A2 (de) Ketolasen und verfaren zur herstellung von ketocarotinoiden
DE10253112A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten Organismen
DE10238979A1 (de) Verfahren zur Herstellung von Zeaxanthin und/oder dessen biosynthetischen Zwischen- und/oder Folgeprodukten
WO2004027069A1 (de) Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte
EP1658372A2 (de) Ketolasen und verfahren zur herstellung von ketocarotinoiden
EP1554388A1 (de) Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003792344

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006059584

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10524971

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003792344

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10524971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2003792344

Country of ref document: EP