WO2004013074A1 - Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte - Google Patents

Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte Download PDF

Info

Publication number
WO2004013074A1
WO2004013074A1 PCT/EP2003/007870 EP0307870W WO2004013074A1 WO 2004013074 A1 WO2004013074 A1 WO 2004013074A1 EP 0307870 W EP0307870 W EP 0307870W WO 2004013074 A1 WO2004013074 A1 WO 2004013074A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler fraction
fraction
polyhydric alcohol
acid
formaldehyde
Prior art date
Application number
PCT/EP2003/007870
Other languages
English (en)
French (fr)
Inventor
Alexander Wartini
Tilman Sirch
Johann-Peter Melder
Matthias Dernbach
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2003250113A priority Critical patent/AU2003250113A1/en
Priority to US10/521,810 priority patent/US7301058B2/en
Priority to MXPA05000267A priority patent/MXPA05000267A/es
Priority to DE50310114T priority patent/DE50310114D1/de
Priority to EP03766229A priority patent/EP1525175B1/de
Priority to BR0312954-3A priority patent/BR0312954A/pt
Priority to JP2004525253A priority patent/JP2006501206A/ja
Publication of WO2004013074A1 publication Critical patent/WO2004013074A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/75Reactions with formaldehyde

Definitions

  • the present invention relates to a process for increasing the yield in the production of polyhydric alcohols obtained by condensation of formaldehyde with a higher aldehyde by decomposing acetals formed in the production in a high boiler fraction obtained by working up and having a water content of 20 to 90% by weight. by acid treatment.
  • Polyvalent alcohols are obtained on a large scale by condensation of formaldehyde with higher, CH-acidic aldehydes or with water and acrolein or 2-alkylacroleins. In this reaction, a distinction is made between two basic implementation options.
  • the organic Cannizzaro process uses a tertiary alkylamine instead of an inorganic base.
  • Trialkylamonium formate is obtained as an undesirable by-product. This means that one equivalent of formaldehyde is also lost here.
  • the solution containing the product is subjected to a catalytic and / or thermal treatment in order to convert incompletely alkylolated alkanals into the desired fully methylolated compounds.
  • the by-product formed in this process is separated off by distillation and the bottom product thus obtained is subjected to the catalytic hydrogenation which leads to the polyhydric alcohols.
  • neopentyl glycol pentaerythritol
  • trimethylol ethane trimethylol butane
  • TMP trimethylol propane
  • Both the alcohols produced by the Cannizzaro and the hydrogenation process must be freed from components by distillation which are more volatile (so-called low boilers) or are more volatile than this (so-called high boilers) and components which boil in the alcohol range (so-called medium boilers) ).
  • Low boilers are in particular water, methanol and the free amine when an A ins is used as the catalyst.
  • the high boilers and medium boilers are often compounds which are derivatives of the polyhydric alcohol produced and have been obtained from this by reaction with, for example, formaldehyde, methanol or an aldehyde or alcohol obtained in the course of the process.
  • a low content of formaldehyde-containing acetals in the alcohol is particularly important for the use of the polyhydric alcohol.
  • Acetals containing formaldehyde are understood to mean all compounds derived from formaldehyde and the structural element
  • R 1 , R 2 independently of one another hydrogen, C ⁇ ⁇ to C ⁇ 0 -alkyl , C ⁇ ⁇ to Cio-hydroxyalkyl, carboxyl or C ⁇ ⁇ to C 4 -alkoxycarbonyl, preferably C ⁇ ⁇ to Cio-alkyl and C ⁇ ⁇ to C ⁇ o-hydro - xyalkly,
  • R 3 is hydrogen, Ci to Cio-alkyl, preferably Ci ⁇ to g-, particularly preferably Ci ⁇ to Cs-alkyl, or Ci to Cio-hydroxyalkyl, preferably Ci to C_-, particularly preferably Ci to Cs alkyl , and
  • n is an integer from 1 to 4, preferably from 1 to 3 and particularly preferably 1 to 2,
  • alkyl radicals can be branched or unbranched.
  • R 1 and R 2 are hydrogen, methyl, ethyl, isopropyl, n-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, hydroxymethyl, carboxyl, methoxycarbonyl, ethoxycarbonyl or n-butoxycarbonyl, preferably hydrogen, hydroxymethyl, methyl and ethyl, particularly preferably hydroxymethyl, methyl and ethyl.
  • R 3 are hydrogen, methyl, ethyl, n-propyl, n-butyl, 2-methylpropyl, 2-methylbutyl, 2-ethyl-3-hydroxypropyl, 2-methyl-3-hydroxypropyl, 2, 2-bis (hydroxymethyl) butyl,
  • Typical acetals containing formaldehyde for example in the case of the synthesis of the trihydric alcohol trimethylolpropane (TMP) from formaldehyde and n-butyraldehyde in the presence of catalytic amounts of trialkylamine, are the TMP-formaldehyde-methanol acetals (purple) and (Illb.) Mentioned below ), which can be contained in the crude product of the hydrogenation process to 0.05 to 10% by weight,
  • US Pat. No. 6,096,905 discloses a process in which a composition obtained by the Cannizarro process and containing the linear bis-TMP formal or the linear bis-tri ethylolethane formal with a strongly acidic catalyst at 30 to 300 ° C. 1/2 treated for up to 8 hours.
  • the treated composition should not contain more than 15% by weight of water.
  • the addition of a hydrocarbon that forms an azeotrope with water is recommended in order to keep the water content low.
  • DD-A 287 251 discloses the recovery of trimethylolpropane from by-products which are less volatile than trimethylolpropane by acid cleavage.
  • the trimethylolpropane described is produced by the Cannizarro process.
  • a maximum content of alkali or alkaline earth compounds of 0.05 kg / kg is given.
  • DD-A 287 251 also considers the water concentration in the acid cleavage of the high-boiling by-products to be a critical variable for sales.
  • DD 287 251 recommends the lowest possible water content, but a maximum of 0.05 kg / kg.
  • the object on which the present invention is based is therefore to provide a process which makes it possible to reduce the losses in yield in the production of polyhydric alcohols, in particular TMP, preferably by the hydrogenation process, by the formation of high-boiling by-products containing TMP.
  • the process should be effective and not complex, but at the same time improve the yield of polyhydric alcohol in such a way that it is particularly worthwhile to use it in the hydrogenation process.
  • the object is achieved by a process for increasing the yield in the production of polyhydric alcohols obtained by condensation of formaldehyde with a higher aldehyde, in particular trimethylolpropane, by acid treatment of a mixture obtained by working up and containing derivatives of these alcohols and boiling higher than the respective alcohol ( High boiler fraction) and recovery of the polyhydric alcohol from the acid-treated high boiler fraction, the water content of the high boiler fraction being 20 to 90% by weight, preferably 40 to
  • the synthesis of the polyhydric alcohols can have been carried out either by the Cannizarro or by the hydrogenation process.
  • the synthesis mixture obtained by the Cannizarro process is usually worked up, in which the inorganic or organic base such as NaOH, Ca (0H) 2 or neutralized tertiary alkylamine and excess aldehyde is separated.
  • the polyhydric alcohol is then separated from the formate of the inorganic or organic base and from the water (low boilers).
  • the crude product obtained which contains the polyhydric alcohol has, in addition to compounds of the base used as catalyst, for example salts such as formates, by-products such as acetals and esters and other compounds boiling higher than the polyhydric alcohol.
  • the process according to the invention is preferably applied to high-boiling fractions obtained from the hydrogenation process by synthesis.
  • the polyhydric alcohol is prepared in the hydrogenation process by aldolization of formaldehyde with a higher aldehyde in the presence of catalytic amounts of a tertiary amine and hydrogenation of the mono- or polymethylolalkanols obtained in this way, preferably of dimethylolbutanol to trimethylolpropane, as described in the literature.
  • polyhydric alcohol obtained by hydrogenation of mono- or polymethylolalkanols in particular trimethylolpropane (TMP) obtained from 2,2-dimethylolbutanol, is worked up by distillation, in the first stage of which after Hydrogenation obtained crude water and other low boilers such as methanol, trialkylamine, trialkylamonium formate are separated by distillation.
  • TMP trimethylolpropane
  • the polyhydric alcohol in particular TMP, high boilers and some compounds which have a lower boiling point than the polyhydric alcohol, such as, for example, TMP formate, ethyl propanediol, cyclic TMP formal (hereinafter referred to as middle boiler)
  • the main amount of polyhydric alcohol, especially TMP, and the middle boilers are separated from the high boilers by distillation.
  • the high boiler fraction is then treated with acid in the process according to the invention.
  • the pure polyvalent alcohol is obtained by separating off the middle boilers, which can optionally be subjected to further pure distillation to obtain polyhydric alcohol with a low color number.
  • the product alcohol can be recovered from the high boiler fraction, preferably by distillation.
  • the acid-treated high-boiling fractions are wholly or partly directly in the hydrogenation stage of the hydrogenation process, i.e. in the hydrogenation of the mono- or polyethyl-olalkanals to polyhydric alcohol, in particular dimethylolbutanal to TMP. If the acid-treated high-boiling fraction is partially recycled, high-boiling by-products are separated from this before recycling via a distillation separator or a phase separator. The separated by-products can, for example, be incinerated or otherwise disposed of.
  • This procedure offers the advantage over the direct removal of the product alcohol from the acid-treated high-boiling fraction that the re-formation of high-boiling acetals by transacetalization resulting from the hydrogenation of aldehydes is avoided and yield increases in the range of several percent are possible.
  • the middle boiler fraction separated from the main amount of the polyhydric alcohol can also be recycled in whole or in part and subjected to the acid treatment mixed with the high boiler fraction.
  • This mixing with the medium boiler fraction leads to a further increase in yield through the splitting of medium-boiling acetals.
  • the water content of the high boiler fraction of 20 to 90% by weight, preferably 40 to 80% by weight, particularly preferably 70 to 75% by weight, is a particularly effective recovery of polyhydric alcohol, in particular TMP from the high boiler fraction enables.
  • the water contents according to the invention are adjusted by adding water.
  • the amount of acid added to the mixture according to the present invention to decompose the high boilers is, according to the invention, 0.1 to 20% by weight, based on the total amount of high boiler fraction and water, or the mixture of high boiler fraction and middle boiler fraction and water, preferably 0.1 to 10% by weight, particularly preferably 0.5 to 2.5% by weight.
  • acids according to the invention ci to C ⁇ 2 carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid and lactic acid, C to C ⁇ 2 dicarboxylic acids such as oxalic acid, malonic acid, maleic acid, succinic acid and tartaric acid, sulfonic acids, mineral acids such as Sulfuric acid, phosphoric acid and sulfurous acid, acidic gases in gaseous or aqueous form such as carbon dioxide or sulfur dioxide or acidic ion exchangers.
  • Formic acid and phosphoric acid are preferably used. It is particularly preferred to use formic acid.
  • formic acid is particularly suitable. This is surprising since, in contrast to the mineral acid, formic acid forms TMP esters and these TMP formates are difficult to separate from polyhydric alcohol.
  • the hydrogenation is carried out in the presence of the catalyst known from DE-A 198 09 418, to which reference is expressly made here, which contains an inorganic support which contains TiO 2 and copper or a mixture of copper as active component with at least one of the metals selected from the group consisting of zinc, aluminum, cerium, a noble metal and a metal of subgroup VIII, and the specific copper surface area of which is at most 10 m 2 / g.
  • These catalysts preferably have as support Ti0 2 or a mixture of Ti0 and Al 2 0 3 or a mixture of Ti0 2 and Zr0 2 or a mixture of Ti0 2 Al 2 0 3 and Zr0, particularly preferably Ti0 is used.
  • metallic Cu powder can be added as a further additive during tableting, so that the copper surface is a maximum of 10 m 2 / g.
  • the acid treatment of the high boiler fraction takes place at temperatures from 30 to 180 ° C., preferably 80 to 120 ° C.
  • Dwell times based on the high boiler fraction are selected, which range from 0.5 to 10 hours, preferably from 1 to 6 hours.
  • the method according to the invention is not particularly pressure-dependent.
  • the decomposition can be carried out in a vacuum, under normal pressure or else with the application of an external pressure, preferably under normal pressure or under the system's own pressure. It is possible to work without an inert gas atmosphere, or with one such as, for example, an argon or nitrogen atmosphere.
  • the process is applicable to all polyhydric alcohols that can be produced by condensing formaldehyde with higher aldehydes with the addition of catalytic amounts of trialkylamine and subsequent hydrogenation.
  • Suitable higher aldehydes are practically all alkanals with an acidic hydrogen atom in position to the carbonyl group.
  • Aliphatic aldehydes with 2 to 24 carbon atoms can be used as starting materials, which are straight-chain or branched, or else alicyclic group can contain pen.
  • Araliphatic aldehydes are also suitable as starting materials, provided that they contain a methylene group in the ⁇ -position to the carbonyl group.
  • aralkyl aldehydes with 8 to 24 carbon atoms, preferably with 8 to 12 carbon atoms, are used as starting materials, for example phenylacetaldehyde.
  • Aliphatic aldehydes having 2 to 12 carbon atoms for example 3-ethyl, 3-n-propyl, 3-isopropyl, 3-n-butyl, 3-isobutyl, 3-sec-butyl, are preferred -, 3-tert-butyl-butanal and corresponding n-pentanal, -n-hexanal, -n-heptanal; 4-ethyl, 4-n-propyl, 4-isopropyl, 4-n-butyl, 4-isobutyl, 4-sec-butyl, 4-tert-butyl-pentanals, -n -he- xanal, -n-heptanal; 5-ethyl, 5-n-propyl, 5-isopropyl, 5-n-but
  • Particularly preferred polyhydric alcohols in the context of the present invention are trimethylolethane, trimethylolpropane, trimethylolbutane, neopentylglycol and pentaerythritol.
  • the most preferred alcohol is trimethylol propane.
  • An apparatus consisting of two heatable stirred tanks with a total capacity of 72 l, which were connected to one another by an overflow tube, was mixed with fresh, aqueous formaldehyde solution (4300 g / h in the form of the 40% aqueous solution and n-butyraldehyde (1800 g / h ) and continuously charged with fresh trimethylamine as a catalyst (130 g / h) in the form of the 45% strength aqueous solution, the reactors being brought to a temperature of 40 ° C.
  • the discharge was passed directly into the upper part of a falling-film evaporator with a column attached, where it was separated by distillation under normal pressure into a low-boiling overhead product, essentially comprising n-butyraldehyde, ethyl acrolein, formaldehyde, water and trimethylamine, and a high-boiling bottom product.
  • a low-boiling overhead product essentially comprising n-butyraldehyde, ethyl acrolein, formaldehyde, water and trimethylamine
  • the top product was continuously condensed and returned to the reactors described above.
  • the high-boiling bottom product from the evaporator (approx. 33.5 kg / h) was continuously mixed with fresh trimethylamine catalyst (50 g / h, in the form of the 45% strength aqueous solution) and placed in a heatable tubular reactor with packing Empty volume led by 12 1.
  • the reactor was tempered to 40 ° C.
  • the discharge from the post-reactor was fed continuously into the upper part of a further distillation device, the formaldehyde removal, and there it was separated by distillation into a low-boiling top product, essentially comprising ethyl acrolein, formaldehyde, water and trimethylamine, and a high-boiling bottom product.
  • the low-boiling top product (27 kg / h) was continuously condensed and returned to the first stirred tank, whereas the high-boiling bottom product was collected.
  • the bottom product thus obtained essentially contained dimethylol butyraldehyde, formaldehyde and traces of monomethylol butyraldehyde. It was then subjected to continuous hydrogenation.
  • the reaction solution at 90 bar and 115 ° C in a main reactor in the cycle / trickle mode and a post- switched post-reactor hydrogenated in a cycle mode.
  • the catalyst was produced analogously to DE 198 09 418. It contained 24% CuO, 20% Cu and 46% Ti0 2 .
  • the apparatus used consisted of a 10 m long heated post-reactor (inner diameter: 25 mm). The circulation throughput was 25 l / h liquid, the reactor feed was adjusted to 4 kg / h. Accordingly, 4 kg / h of hydrogenation discharge were obtained.
  • the mixture obtained after water removal is separated into a fraction boiling higher than TMP, here called high boiler fraction, and a fraction boiling lower than TMP, here referred to as medium boiler.
  • the high boiler fraction obtained in this way essentially consists of the following compounds: 45% TMP-DMB acetal, 10% linear bis-TMP formal (IV), 10-25% TMP and 20-35% unknown high boilers.
  • the middle boiler fraction obtained essentially consists of the following compounds: 50% consist of TMP and TMP formate, 10% of the cyclic TMP formal (V), 5-10% TMP formaldehyde acetal (Ha), 5% 2- Ethyl propanediol and approx. 20% are unknown medium boilers.
  • GC gas chromatography
  • % By weight relate to the total amount of high boiler fraction and water
  • Example 2 50 g of high boiler fraction were mixed with 50 g of medium boiler fraction, each obtained as described in Example 1. The mixture was mixed with the amount of water and formic acid described in Table 3 and heated to the specified temperature with stirring and protective gas. The analysis with GC analysis shows the increase in trimethylolpropane (TMP) and 2.2 ⁇ -dimethylolbutanal (DMB). The pH is 2.1.
  • % By weight relate to the total amount of high boiler fraction and water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

Gegenstand der vorliegenden Anmeldung ist ein Verfahren zur Ausbeuteerhöhung bei der Herstellung von durch Kondensation von Formaldehyd mit einem höheren Aldehyd erhaltenen mehrwertigen Alkoholen, insbesondere Trimethylolpropan, durch Säurebehandlung eines durch Aufarbeitung erhaltenen, Derivate dieser Alkohole enthaltenden und höher als der jeweilige Alkohol siedenden Gemischs (Hochsiederfraktion) und Rückgewinnung des mehrwertigen Alkohols aus der säurebehandelten Hochsiederfraktion, dadurch gekennzeichnet, dass der Wassergehalt der Hochsiederfraktion 20 bis 90 Gew.-%, bezogen auf die Gesamtmenge aus Hochsiederfraktion und Wasser, beträgt.

Description

Verfahren zur Ausbeuteerhöhung bei der Herstellung von mehrwertigen Alkoholen durch Spaltung acetalhaltiger Nebenprodukte
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Ausbeuteerhöhung bei der Herstellung von durch Kondensation von Formaldehyd mit einem höheren Aldehyd erhaltenen mehrwertigen Alkoho- len durch Zersetzung von bei der Herstellung gebildeten Acetalen in einer durch Aufarbeitung erhaltenen Hochsiederfraktion mit einem Wassergehalt von 20 bis 90 Gew.-% durch Säurebehandlung.
Mehrwertige Alkohole werden in großem Maßstab durch Kondensation von Formaldehyd mit höheren, CH-aciden Aldehyden oder mit Wasser und Acrolein bzw. 2-Alkylacroleinen erhalten. Dabei unterscheidet man bei dieser Reaktion zwischen zwei prinzipiellen Durchführungsvarianten.
Zum einen ist dies das sogenannte Cannizarro-Verfahren, das wiederum unterteilt wird in das anorganische und das organische Can- nizzaro-Verfahren. Bei der anorganischen Variante setzt man einen Überschuß an Formaldehyd mit dem entsprechenden Alkanal in Gegenwart von stöchiometrischen Mengen einer anorganischen Base wie NaOH oder Ca(0H) um. Das in der ersten Stufe gebildete Methylol- alkanal reagiert in der zweiten Stufe mit dem überschüssigen Formaldehyd in einer Disproportionierungsreaktion zum mehrwertigen Alkohol und dem Formiat der entsprechenden Base, also etwa zu Natrium- oder Kalziumformiat. Der Anfall dieser Salze stellte einen Nachteil dar, da sie schwierig vom Reaktionsprodukt abzutrennen sind, und außerdem ein Äquivalent Formaldehyd verloren geht.
Bei dem organischen Cannizzaro-Verfahren wird anstelle einer an- organischen Base ein tertiäres Alkylamin eingesetzt. Es fällt als unerwünschtes Nebenprodukt Trialkylamoniumformiat an. Somit geht auch hier ein Äquivalent des Formaldehyds verloren.
Die Nachteile des Cannizzaro-Verfahrens werden bei dem sogenann- ten Hydrierverfahren vermieden. Dabei bringt man Formaldehyd mit dem entsprechenden Aldehyd in Gegenwart von katalytischen Mengen eines Amins zur Reaktion. Damit wird erreicht, daß die Reaktion auf der Stufe des alkylolierten Aldehyds anhält. Nach Abtrennung des Formaldehyds wird das Reaktionsgemisch, das neben dem erwähn- ten alkylolierten Aldehyd noch geringe Mengen des entsprechenden mehrwertigen Alkohols und von Acetalen der gebildeten Alkohole enthält, einer Hydrierung unterworfen, bei der der gewünschte mehrwertige Alkohol erhalten wird.
Ein besonders effektives Verfahren zur Herstellung von durch Kondensation von Aldehyden mit Formaldehyd erhältlichen Alkoholen wird dabei in der WO 98/28253 beschrieben. Hohe Ausbeuten, verbunden mit den Anfallen geringer Mengen an Koppelprodukten, werden mit diesem Verfahren ermöglicht. Es wird dabei so verfahren, daß der höhere Aldehyd mit der 2- bis 8-fachen Menge Formaldehyd in Gegenwart eines tertiären A ins umgesetzt wird, und man das so erhaltene Reaktionsgemisch in zwei Lösungen auftrennt, wobei eine Lösung das erwähnte vollständig methylolierte Alkanal und die andere Lösung nicht umgesetztes Ausgangsprodukt aufweist. Diese letzte Lösung wird in die Reaktion zurückgeführt. Die Auftrennung erfolgt durch Destillation oder einfaches Abtrennen der wässrigen von der organischen Phase. Die das Produkt enthaltende Lösung wird einer katalytischen und/oder thermischen Behandlung unterworfen, um nicht-vollständig alkylolierte Alkanale in die gewünschten vollständig methylolierten Verbindungen zu überführen. Hierbei entstandenes Nebenprodukt wird durch Destillation abgetrennt, und der so erhaltene Sumpf wird der katalytischen Hydrierung, die zu den mehrwertigen Alkoholen führt, unterworfen.
Beispiele für wichtige, mit den beschriebenen Verfahren herge- stellte Alkohole sind Neopentylglycol, Pentaerythrit, Tri- methylolethan, Trimethylolbutan und insbesondere Trimethylol- propan (TMP) .
Sowohl nach dem Cannizzaro- als auch nach dem Hydrierverfahren dargestellte Alkohole müssen destillativ von Komponenten befreit werden, die leichter flüchtig sind (sogenannte Leichtsieder) bzw. schwerer flüchtig sind als dieser (sogenannte Hochsieder) als auch von im Bereich des Alkohols siedenden Komponenten (sogenannte Mittelsieder) . Leichtsieder sind dabei insbesondere Was- ser, Methanol und bei Verwendung eines A ins als Katalysator das freie Amin.
Bei den Hochsiedern und Mittelsiedern handelt es sich oft um Verbindungen, die Derivate des hergestellten mehrwertigen Alkohols sind und aus diesem durch Reaktion mit beispielsweise Formaldehyd, Methanol oder auch einem im Verlauf des Verfahrens anfallenden Aldehyd oder Alkohol entstanden sind.
Für die Anwendung des mehrwertigen Alkohols ist insbesondere ein niedriger Gehalt des Alkohols an formaldehydhaltigen Acetalen von Bedeutung. Unter formaldehydhaltigen Acetalen werden dabei alle Verbindungen verstanden, die sich von Formaldehyd ableiten und das Strukturelement
-0-CH2-C~ (I)
aufweisen und auch als Formale bezeichnet werden können.
Bei der Herstellung mehrwertiger Alkohole treten formaldehydhal- tige Acetale der allgemeinen Formeln (Ha) oder (Ilb)
Figure imgf000004_0001
(Ha) (Hb)
auf, in denen
R1, R2 unabhängig voneinander Wasserstoff, Cχ~ bis Cι0-Alkyl' Cχ~ bis Cio-Hydroxyalkyl , Carboxyl oder Cχ~ bis C4-Alkoxycar- bonyl, bevorzugt Cι~ bis Cio-Alkyl und Cι~ bis Cχo-Hydro- xyalkly,
R3 Wasserstoff, Ci- bis Cio-Alkyl, bevorzugt Cι~ bis g- , besonders bevorzugt Cι~ bis Cs-Alkyl, oder Ci- bis Cio-Hydroxyalkyl, bevorzugt Ci- bis C_- , besonders bevorzugt Ci- bis Cs-Alkyl, und
n eine ganze Zahl von 1 bis 4, bevorzugt von 1 bis 3 und besonders bevorzugt 1 bis 2 ,
bedeuten und die Alkylreste jeweils verzweigt oder unverzweigt sein können.
Beispiele für R1 und R2 sind Wasserstoff, Methyl, Ethyl, iso-Pro- pyl, n-Propyl, n-Butyl, iso-Butyl, sek-Butyl, tert-Butyl, n-Pen- tyl, n-Hexyl, n-Heptyl, n-Octyl, n-Decyl, Hydroxymethyl, Carboxyl, Methoxycarbonyl, Ethoxycarbonyl oder n-Butoxycarbonyl , be- vorzugt Wasserstoff, Hydroxymethyl, Methyl und Ethyl, besonders bevorzugt Hydroxymethyl , Methyl und Ethyl .
Beispiele für R3 sind Wasserstoff, Methyl, Ethyl, n-Propyl, n-Bu- tyl, 2-Methylpropyl, 2-Methylbutyl, 2-Ethyl-3-hydroxypropyl, 2-Methyl-3-hydroxypropyl, 2 , 2-Bis (hydroxymethyl) butyl,
2 , 2-Bis (hydroxymethyl) propyl , 2 , 2-Dimethyl-3-hydroxypropyl, 3-Hydroxypropyl , 3-Hydroxy-2- (hydroxymethyl) propyl oder 3-Hydroxy-2 , 2-bis (hydroxymethyl) propyl .
Typische formaldehydhaltige Acetale sind beispielsweise für den i Fall der Synthese des dreiwertigen Alkohols Trimethylolpropan (TMP) aus Formaldehyd und n-Butyraldehyd in Gegenwart katalyti- scher Mengen an Trialkylamin die nachfolgend genannten TMP-For- maldehyd-Methanol-Acetale (lila) und (Illb) , welche im Rohprodukt des Hydrierverfahren zu 0,05 bis 10 Gew.-% enthalten sein können,
Figure imgf000005_0001
aber auch das lineare bis-TMP-Formal [C2H5C (CH2OH) 2CH20] 2CH2 (IV) und das cyclische TMP-Formal
Figure imgf000005_0002
Es ist offensichtlich, dass die Bildung dieser Einheiten des mehrwertigen Alkohols, insbesondere TMP-Einheiten, enthaltenden Acetale unerwünscht ist, da sie die Ausbeute an gewünschtem Produkt deutlich senken und zudem die Anwendungseigenschaften des Produktalkohols negativ beeinflussen. Um diese Nachteile zu' ver- meiden, ist es wünschenswert, die formaldehydhaltigen Acetale zu spalten und die TMP-Einheiten zurückzugewinnen. Dabei werden in der Literatur verschiedene Verfahren offenbart, um dieses zu erreichen.
In US 6 096 905 ist ein Verfahren offenbart, bei dem eine durch das Cannizarro-Verfahren erhaltene, das lineare bis-TMP-Formal oder das lineare bis-Tri ethylolethanformal enthaltende Zusammensetzung mit einem stark sauren Katalysator bei 30 bis 300°C 1/2 bis 8 Stunden lang behandelt wird. Die behandelte Zusammensetzung soll nicht mehr als 15 Gew.-% Wasser enthalten. Der Zusatz eines mit Wasser ein Azeotrop bildenden Kohlenwasserstoffs wird empfohlen, um den Wassergehalt niedrig zu halten.
Aus DD-A 287 251 ist die Rückgewinnung von Trimethylolpropan aus schwerer als Trimethylolpropan flüchtigen Nebenprodukten durch Säurespaltung bekannt. Die beschriebene Herstellung des Trime- thylolpropans erfolgt nach dem Cannizarro-Verfahren. Für die Sau- respaltung wird daher ein Maximalgehalt an Alkali bzw. Erdalkaliverbindungen von 0,05 kg/kg angegeben. Wie schon in US 6 096 905 wird auch in der DD-A 287 251 die Wasserkonzentration bei der Säurespaltung der hochsiedenden Nebenprodukte als kritische Größe für den Umsatz angesehen. In der DD 287 251 wird ein möglichst geringer Wassergehalt, maximal jedoch 0,05 kg/kg, empfohlen.
Nachteilig an beiden aus dem Stand der Technik bekannten Verfahren ist es, dass das stark saure Medium zu Nebenreaktionen führen kann, welche Eigenschaften des gewünschten mehrwertigen Alkohols, wie die Farbzahl nachteilig beeinflussen können.
Die der vorliegenden Erfindung zugrundeliegenden Aufgabe ist daher, die Bereitstellung eines Verfahrens, das es erlaubt, die Ausbeuteverluste bei der Herstellung mehrwertiger Alkohole, insbesondere TMP, bevorzugt nach dem Hydrierverfahren, durch die Bildung hochsiedender TMP-haltiger Nebenprodukte zu verringern. Das Verfahren soll effektiv und nicht- aufwendig sein, gleichzeitig jedoch die Ausbeute an mehrwertigem Alkohol so verbessern, dass sich ein Einsatz insbesondere beim Hydrierverfahren lohnt.
Die Aufgabe wird gelöst durch ein Verfahren zur Ausbeuteerhöhung bei der Herstellung von durch Kondensation von Formaldehyd mit einem höheren Aldehyd erhaltenen mehrwertigen Alkoholen, ins- besondere Trimethylolpropan, durch Säurebehandlung eines durch Aufarbeitung erhaltenen, Derivate dieser Alkohole enthaltenden und höher als der jeweilige Alkohol siedenden Gemischs (Hochsiederfraktion) und Rückgewinnung des mehrwertigen Alkohols aus der säurebehandelten Hochsiederfraktion, wobei der Wassergehalt der Hochsiederfraktion 20 bis 90 Gew.-%, bevorzugt 40 bis
80 Gew.-% und insbesondere bevorzugt 70 bis 75 Gew.-%, bezogen auf die Gesamtmenge aus Hochsiederfraktion und Wasser, beträgt.
Es wurde überraschenderweise gefunden, dass bei hohen Wasser- gehalten der die Hochsieder enthaltenden Fraktion eine effektive Zersetzung des jeweiligen hochsiedenden Derivats und somit eine deutliche Ausbeuteerhöhung erreicht werden kann. Durch dieses einfache Verfahren ergibt sich eine Ausbeutesteigerung, die bis zu mehreren Prozent betragen kann.
Nach dem erfindungsgemäßen Verfahren kann die Synthese der mehrwertigen Alkohole sowohl nach dem Cannizarro als auch nach dem Hydrierverfahren erfolgt sein.
Das durch das Cannizarro-Verfahren erhaltene Synthesegemisch wird üblicherweise aufgearbeitet, in dem zunächst die als Katalysator dienende anorganische oder organische Base wie NaOH, Ca(0H)2 oder tertiäres Alkylamin neutralisiert und überschüssiger Aldehyd abgetrennt wird. Anschließend wird der mehrwertige Alkohol vom Formiat der anorganischen oder organischen Base und vom Wasser getrennt (Leichtsieder) . Das gewonnene den mehrwertigen Alkohol enthaltende Rohprodukt weist neben Verbindungen der als Katalysator verwendeten Base wie zum Beispiel Salze wie Formiate, Nebenprodukte wie Acetale und Ester und andere höher als der mehrwertige Alkohol siedende Verbindungen auf. Diese Nebenprodukte werden üblicherweise durch Destillation vom Hauptprodukt ge- trennt, wobei eine schwerer als der mehrwertige Alkohol siedende Fraktion (Hochsiederfraktion) und eine leichter flüchtige Fraktion (Mittelsieder) erhalten wird. Aus dieser durch die an sich bekannte Aufarbeitung erhaltenen Hochsiederfraktionen, die schwerer als der mehrwertige Alkohol siedende Verbindungen wie die vorstehend genannten formaldehydhaltigen Acetale der allgemeinen Formeln (Ha) und (Ilb) enthält, werden durch das erfindungsgemäße Verfahren schonend und effektiv die gebundenen Einheiten des mehrwertigen Alkohols zurückgewonnen.
Bevorzugt wird das erfindungsgemäße Verfahren jedoch auf aus Syn- thesege isehen des Hydrierverfahrens durch Aufarbeitung erhaltene Hochsiederfraktionen angewendet. Der mehrwertige Alkohol wird beim Hydrierverfahren durch Aldolisierung von Formaldehyd mit einem höheren Aldehyd in Gegenwart katalytischer Mengen eines tertiären Amins und Hydrieren der so erhaltenen Mono- oder Poly- methylolalkanole, vorzugsweise von Dimethylolbutanol zu Trimethylolpropan, hergestellt wie in der Literatur beschrieben.
Beispiele verschiedener Verfahrensvarianten finden sich dabei in den Anmeldungen DE-A-25 07 461, DE-A-27 02 582 und
DE-A-28 13 201, die bereits oben zitiert wurden. Das erfindungsgemäße Verfahren eignet sich besonders zur Ausbeuteerhöhung bei Synthesegemischen, die nach dem in der WO 98/28253 beschriebenen Verfahren hergestellt wurden. Eine kurze Beschreibung dieses Ver- fahrens findet sich weiter oben. Die Aufarbeitung erfolgt dann in üblicher Weise, wie in der Literatur beschrieben, generell durch Abtrennen von Wasser und anschließender Destillation. Die Hochsiederfraktion kann bei der Aufarbeitung vom Produkt und Mittel- siedern abgetrennt werden, beispielsweise durch Destillation. In einer separaten Stufe wird dann mit der Hochsiederfraktion das erfindungsgemäße Verfahren durchgeführt und der durch Zersetzen der Hochsieder erhaltene Produktalkohol abdestilliert.
Das erfindungsgemäße Verfahren zur Ausbeuteerhöhung lässt sich besonders gut durchführen mit einer durch das in DE-A 199 63 435 beschriebene Verfahren erhaltene Hochsiederfraktion. Die Offenba- rung der genannten Anmeldung ist durch Referenz in die vorliegende Anmeldung einbezogen.
Bei dem in DE-A 199 63 435 offenbarten Verfahren wird durch Hy- drierung von Mono- oder Polymethylolalkanolen erhaltener mehrwertiger Alkohol, insbesondere aus 2,2-Dimethylolbutanol erhaltenes Trimethylolpropan (TMP) , destillativ aufgearbeitet, wobei in der ersten Stufe von dem nach der Hydrierung erhaltenen Rohprodukt Wasser und andere Leichtsieder wie Methanol, Trialkylamin, Trialkylamoniumformiat durch Destillation abgetrennt werden.
Von dem in der ersten Stufe als Sumpfprodukt gewonnenen Gemisch, enthaltend den mehrwertigen Alkohol, insbesondere TMP, Hochsieder und einen Teil leichter als der mehrwertige Alkohol siedende Verbindungen wie zum Beispiel TMP-Formiat, Ethylpropandiol, cy- clisches TMP-Formal (im folgenden Mittelsieder genannt) werden, die Hauptmenge des mehrwertigen Alkohols, insbesondere TMP, und die Mittelsieder destillativ von den Hochsiedern getrennt. Die Hochsiederfraktion wird sodann im erfindungsgemäßen Verfahren mit Säure behandelt.
Aus der die Hauptmenge des mehrwertigen Alkohols und die Mittelsieder enthaltenden Fraktion wird unter Abtrennen der Mittelsieder der reine mehrwertige Alkohol gewonnen, der fakultativ einer weiteren Reindestillation zum Gewinnen von mehrwertigen Alkohol mit niedriger Farbzahl unterworfen werden kann.
Aus der Hochsiederfraktion kann nach der erfindungsgemäßen Säurebehandlung der Produktalkohol, bevorzugt durch Destillation, zu- rückgewonnen werden. In einer besonders bevorzugten Ausführungs- form des erfindungsgemäßen Verfahren wird die säurebehandelte Hochsiederfraktionen jedoch direkt ganz oder teilweise in die Hydrierstufe des Hydrierverfahren, d.h. in die Hydrierung der Mono- oder Polyethyl-olalkanale zum mehrwertigen Alkohol, ins- besondere des Dimethylolbutanals zum TMP, zurückgeführt. Bei teilweiser Rückführung der säurebehandelten Hochsiederfraktion werden aus dieser vor Rückführung hochsiedende Nebenprodukte über eine destillative Trenneinrichtung oder einen Phasenscheider abgetrennt. Die abgetrennten Nebenprodukte können beispielsweise verbrannt oder anderweitig entsorgt werden.
Diese Verfahrensweise bietet gegenüber der direkten Abtrennung des Produktalkohols aus der säurebehandelten Hochsiederfraktion den Vorteil, dass die Rückbildung hochsiedender Acetale durch Umacetalisierung durch die Hydrierung entstandener Aldehyde ver- mieden wird und dadurch Ausbeuteerhöhungen im Bereich von mehreren Prozent möglich werden.
In einer besonderen Ausführungsform kann weiterhin die von der Hauptmenge des mehrwertigen Alkohols abgetrennte Mittelsieder- fraktion ganz oder teilweise zurückgeführt und mit der Hochsiederfraktion vermischt der Säurebehandlung unterzogen werden. Diese Vermischung mit der Mittelsiederfraktion führt zu einer weiteren Ausbeutesteigerung durch die Spaltung mittelsiedender Acetale. Es wäre auch möglich, die Mittelsiederfraktion anstelle der Hochsiederfraktion nach dem erfindungsgemäßen Verfahren zu behandeln. Erfindungsgemäß wurde jedoch festgestellt, dass die Behandlung der Hochsiederfraktion für sich oder vermischt mit den Mittelsiedern vorteilhaft ist.
Erfindungsgemäß wurde erkannt, das Wassergehalte der Hochsiederfraktion von 20 bis 90 Gew.-%, bevorzugt 40 bis 80 Gew.-%, besonders bevorzugt 70 bis 75 Gew.-%, eine besonders effektive Rückgewinnung von mehrwertigem Alkohol, insbesondere TMP aus der Hoch- siederfraktion ermöglicht. Die Einstellung der erfindungsgemäßen Wassergehalte erfolgt durch Wasserzugabe.
Die Menge an Säure, die nach der vorliegenden Erfindung zur Zersetzung der Hochsieder dem Gemisch zugegeben wird, beträgt erfindungsgemäß 0,1 bis 20 Gew.-%, bezogen auf die Gesamtmenge aus Hochsiederfraktion und Wasser, oder das Gemisch aus Hochsiederfraktion und Mittelsiederfraktion und Wasser, bevorzugt 0,1 bis 10 Gew.-%, besonders bevorzugt 0,5 bis 2,5 Gew.-%.
Als Säuren können erfindungsgemäß Ci- bis Cχ2-Carbonsäuren wie Ameisensäure, Essigsäure, Propionsäure, Buttersäure, 2-Ethyl- hexansäure und Milchsäure, C- bis Cχ2-Dicarbonsäuren wie Oxalsäure, Malonsäure, Maleinsäure, Bernsteinsäure und Weinsäure, Sulfonsäuren, Mineralsäuren wie Schwefelsäure, Phosphorsäure und schwefelige Säure, saure Gase in gasförmiger oder wässriger Form wie Kohlendioxid oder Schwefeldioxid oder saure Ionentauscher. Bevorzugt werden Ameisensäure und Phosphorsäure verwendet. Es ist besonders bevorzugt Ameisensäure zu verwenden.
Es wurde erfindungsgemäß erkannt, dass Ameisensäure besonders geeignet ist. Dies ist überraschend, da Ameisensäure im Gegensatz zu den Mineralsäure TMP-Ester bildet und diese TMP-Formiate nur schwer von mehrwertigen Alkohol zu trennen sind.
Insbesondere in der weiter oben beschrieben besonderen Aus- führungsform des erfindungsgemäßen Verfahren, in der die säurebehandelte Hochsiederfraktion ganz oder teilweise, vorzugsweise ganz, in die Hydrierung rückgeführt wird, können die Vorteile der Ameisensäure ausgeschöpft werden, denn die im Hydrierverfahren zur Herstellung mehrwertiger Alkohole bevorzugt verwendeten Hydrierkatalysatoren sind in der Lage Formiate zu spalten. Derar- tige Hydrierkatalysatoren sind beispielsweise in der
DE 101 52 527.7 "Verfahren zur Zersetzung von Ammoniumformiaten in polyolhaltigen Reaktionsgemischen" offenbart, auf deren Offenbarung hier ausdrücklich Bezug genommen wird.
Gemäß einer besonders bevorzugten Ausführungsform wird die Hydrierung in Gegenwart des aus der DE-A 198 09 418, auf die hier ausdrücklich Bezug genommen wird, bekannten Katalysators, der einen anorganischen Träger, der Ti02 enthält, und als Aktivkomponente Kupfer oder ein Gemisch aus Kupfer mit mindestens einem der Metalle, ausgewählt aus der Gruppe Zink, Aluminium, Cer, einem Edelmetall und einem Metall der VIII. Nebengruppe, umfasst und dessen spezifische Kupferoberfläche maximal 10 m2/g beträgt, durchgeführt. Diese Katalysatoren weisen bevorzugt als Träger Ti02 oder eine Mischung aus Ti0 und Al203 oder eine Mischung aus Ti02 und Zr02 oder eine Mischung aus Ti02 Al203 und Zr0 auf, besonders bevorzugt wird Ti0 verwendet. Bei der Herstellung dieses Katalysators gemäß DE-A 19809418 kann metallisches Cu-Pulver als weiteres Additiv während der Tablettierung zugesetzt werden, dass die Kupferoberfläche maximal 10 m2/g beträgt.
Die erfindungsgemäße Säurebehandlung der Hochsiederfraktion findet statt bei Temperaturen von 30 bis 180°C, bevorzugt 80 bis 120°C. Dabei werden auf die Hochsiederfraktion bezogene Verweilzeiten gewählt, die von 0,5 bis 10 Stunden, vorzugsweise von 1 bis 6 Stunden, reichen.
Das erfindungsgemäße Verfahren ist nicht ausgeprägt druckabhängig. Die Zersetzung kann im Vakuum, unter Normaldruck oder auch unter Anlegen eines äußeren Drucks durchgeführt werden, bevorzugt unter Normaldruck oder unter dem Eigendruck des Systems. Dabei kann ohne Inertgasatmosphäre, oder mit einer solchen, wie beispielsweise einer Argon- oder Stickstoffatmosphäre, gearbeitet werden.
Das Verfahren ist auf alle mehrwertigen Alkohole anwendbar, die durch Kondensation von Formaldehyd mit höheren Aldehyden unter Zugabe katalytischer Mengen Trialkylamin und nachfolgender Hydrierung hergestellt werden können. Geeignete höhere Aldehyde sind praktisch alle Alkanale mit einem aciden Wasserstoffatom in -Stellung zur Carbonylgruppe . Es können aliphatische Aldehyde mit 2 bis 24 C-Atomen als Ausgangsmaterialien verwendet werden, die geradkettig oder verzweigt sein oder auch alicyclische Grup- pen enthalten können. Ebenso sind araliphatische Aldehyde als Ausgangsstoffe geeignet, vorausgesetzt daß sie eine Methylengruppen in α-Stellung zur Carbonylgruppe enthalten. Im allgemeinen werden Aralkylaldehyde mit 8 bis 24 C-Atomen, vorzugs- weise mit 8 bis 12 C-Atomen als Ausgangsmaterialien verwendet, beispielsweise Phenylacetaldehyd. Bevorzugt werden aliphatische Aldehyde mit 2 bis 12 C-Atomen, beispielsweise 3-Ethyl-, 3-n-Pro- pyl-, 3-Isopropyl-, 3-n-Butyl-, 3-Isobutyl-, 3-sek.-Butyl-, 3-tert.-Butyl-butanal sowie entsprechende n-pentanale, -n-hexa- nale,-n-heptanale; 4-Ethyl-, 4-n-Propyl-, 4-Isopropyl-, 4-n-Bu- tyl-, 4-Isobutyl-, 4-sek.-Butyl-, 4-tert .-Butyl-pentanale, -n-he- xanale, -n-heptanale; 5-Ethyl-, 5-n-Propyl-, 5-Isopropyl-, 5-n- Butyl-, 5-Isobutyl-, 5-sek.-Butyl-, 5-tert .-Butyl-n-hexanale, -n-heptanale; 3-Methyl-hexanal, 3-Methyl-heptanal; 4-Methyl-pen- tanal, 4-Methyl-heptanal, 5-Methyl-hexanal, 5-Methylheptanal; 3,3, 5-Trimethyl-n-pentyl-, 3 , 3-Diethyl-pen-tyl-, 4 , 4-Diethylpen- tyl-, 3,3-Dimethyl-n-butyl-, 3,3-Dimethyl-n-pentyl- , 5 , 5-Dimethylheptyl-, 3 , 3-Dimethylheptyl- , 3,3, 4-Trimethylpentyl , 3,4-Dimethylheptyl-, 3 , 5-Dimethylheptyl-, 4,4-Dimethylheptyl-, 3,3-Diethylhexyl-, 4, 4-Dimethylhexyl-, 4, 5-Dimethylhexyl-, 3,4-Dimethylhexyl-, 3, 5-Dimethylhexyl-, 3 , 3-Dimethylhexyl-, 3,4-Diethylhexyl-, 3-Methyl-4-ethylpentyl, 3-Methyl-4-ethyl- hexyl-, 3 , 3, 4-Trimethylpentyl-, 3, 4, 4-Trimethylpentyl-, 3,3,4-Trimethylhexyl-, 3 , 4, 4-Trimethylhexyl-, 3 , 3 , 4 , 4 , -Tetrame- thylpentylaldehyd; insbesondere C2 bis Ci2 _:n-. -Alkanale.
Besonders bevorzugte mehrwertige Alkohole im Rahmen der vorliegenden Erfindung sind Trimethylolethan, Trimethylolpropan, Tri- methylolbutan, Neopentylglykol und Pentaerythrit . Der meist be- vorzugte Alkohol ist Trimethylolpropan.
Die Erfindung wird jetzt in den nachfolgenden Beispielen erläuter .
Beispiele
Beispiel 1: Herstellung von Roh-TMP
Roh-TMP wurde wie folgt dargestellt:
Eine Apparatur bestehend aus zwei beheizbaren, durch Überlauf- röhre miteinander verbundenen Rührkesseln mit einem Fassungsvermögen von insgesamt 72 1 wurde mit frischer, wässriger Form- aldehydlösung (4300 g/h in Form der 40 5igen wäßrigen Lösung und n-Butyraldehyd (1800 g/h) und mit frischem Trimethylamin als Katalysator (130 g/h) in Form der 45 %igen wäßrigen Lösung kontinuierlich beschickt. Der Reaktoren wurden dabei auf 40°C temperiert .
Der Austrag wurde direkt in den oberen Teil eines Fallfilmverdampfers mit aufgesetzter Kolonne geleitet und dort bei normalem Druck destillativ in ein leichtsiedendes Kopfprodukt, im wesentlichen enthaltend n-Butyraldehyd, Ethylacrolein, Formaldehyd, Wasser und Trimethylamin, und ein hochsiedendes Sumpfprodukt aufgetrennt .
Das Kopfprodukt wurde kontinuierlich kondensiert und in die oben beschriebenen Reaktoren zurückgeführt.
Das hochsiedende Sumpfprodukt aus dem Verdampfer (ca. 33,5 kg/h) wurde kontinuierlich mit frischem Trimethylamin-Katalysator (50 g/h, in Form der 45 %igen wäßrigen Lösung) versetzt und in einen beheizbaren, mit Füllkörpern versehenen Rohrreaktor mit einem Leervolumen von 12 1 geführt. Der Reaktor war dabei auf 40°C temperiert.
Der Austrag des Nachreaktors wurde kontinuierlich in den oberen Teil einer weiteren Destillationseinrichtung, der Formaldehydab- trennung, gegeben und dort destillativ in ein leichtsiedendes Kopfprodukt, im wesentlichen enthaltend Ethylacrolein, Formaldehyd, Wasser und Trimethylamin, und ein hochsiedendes Sumpfprodukt aufgetrennt. Das leichtsiedende Kopfprodukt (27 kg/h) wurde kontinuierlich kondensiert und in den ersten Rührkessel zu- rückgeleitet, wohingegen das hochsiedende Sumpfprodukt gesammelt wurde.
Das so erhaltene Sumpfprodukt enthielt neben Wasser im wesentlichen Dimethylolbutyraldehyd, Formaldehyd und Spuren Monomethylol- butyraldehyd. Es wurde dann einer kontinuierlichen Hydrierung unterworfen. Dazu wurde die Reaktionslösung bei 90 bar und 115°C in einem Hauptreaktor in Kreislauf-/Rieselfahrweise und einem nach- geschalteten Nachreaktor in Kreislauffahrweise hydriert. Der Katalysator wurde analog der DE 198 09 418 hergestellt. Er enthielt 24% CuO, 20% Cu und 46% Ti02. Die verwendete Apparatur bestand aus einem 10 m langen beheizten Nachreaktor (Innendurchmesser: 25 mm) . Der Kreislaufdurchsatz betrug 25 1/h Flüssigkeit, der Reaktorzulauf wurde auf 4 kg/h eingestellt. Dementsprechend wurden 4 kg/h Hydrieraustrag erhalten.
Das nach der Hydrierung erhaltene Gemisch wurde entsprechend den Beispielen 2 und 3 der DE 199 63 435 beschriebenen Methode destillativ aufgearbeitet .
Hierbei wird das nach einer Wasserabtrennung erhaltene Gemisch in eine höher als TMP siedende Fraktion, hier Hochsiederfraktion ge- nannt, und eine leichter als TMP siedende Fraktion aufgetrennt, hier als Mittelsieder bezeichnet.
Die so gewonnene Hochsiederfraktion setzt sich im wesentlichen aus folgenden Verbindungen zusammen: 45% TMP-DMB-Acetal , 10% li- neares bis-TMP-Formal (IV) , 10-25% TMP und 20-35% unbekannte Hochsieder auf .
Die erhaltene Mittelsiederfraktion setzt sich im wesentlichen aus folgenden Verbindungen zusammen: 50% bestehen aus TMP und TMP- Formiat, 10% des cyklischen TMP-Formals (V) , 5-10% TMP-Formalde- hydacetale (Ha) , 5% 2-Ethyl-Propandiol und ca. 20% sind unbekannte Mittelsieder.
Beispiele 2 bis 11
Alle Versuche bis 100°C wurden in einer Rührapparatur bei Normaldruck unter Stickstoff durchgeführt. Versuche oberhalb von 100°C wurden in einem Autoclaven unter Stickstoffdruck (50 bar) durchgeführt .
Die Analytik erfolgte mit Hilfe von Gaschromatographie (GC) an einer DB5-Säule von J&W Scientific (30 m, 0,32 mm, lμin) , Injektor: 300°C, 90°C bei 15 K pro Minute. Die Detektion erfolgte mit FID.
Beispiele 2 bis 9
100 g Hochsiederfraktion, wie in Beispiel 1 beschrieben hergestellt, wurden mit der in der Tabelle 1 beschriebenen Menge an Wasser und Ameisensäure versetzt und auf die angegebene
Temperatur unter Rühren und Schutzgas erhitzt. Bei Temperaturen oberhalb 100°C wurde die Reaktion im Autoclaven durchgeführt. Die pH-Werte lagen bei allen Versuchen zwischen 2 und 3. Die Zunahmen an Dimethylolbutanol (DMB) beziehungsweise Trimethylolpropan (TMP) wurden gaschromatographisch bestimmt und sind, bezogen auf einen Vergleich mit gleicher Wassermenge ohne Säure bei sonst gleichen Versuchsbedingungen, als Ausbeutezunahme in GC-Flächen- prozent (GC-Fl.-%) angegeben. Die Ergebnisse sind in Tabelle 1 zusammengefasst.
Tabelle 1
Gew.-% beziehen sich auf die Gesamtmenge aus Hochsiederfraktion und Wasser
Beispiel 10
100 g Mittelsiederfraktion, wie in Beispiel 1 erhalten, wurden mit der in der Tabelle beschriebenen Menge an Wasser und Ameisen- säure versetzt und auf die angegebene Temperatur unter Rühren und Schutzgas erhitzt. Die Auswertung mit GC-Analytik zeigt den Anstieg an Trimethylolpropan (TMP) und 2 , 2 -Dimethylolbutanal (DMB) . Der pH-Wert lag bei 2,4. Das Ergebnis ist in Tabelle 2 zusammengefasst .
Tabelle 2
Figure imgf000014_0002
Gew.-% beziehen sich auf die Gesamtmenge aus Hochsiederfraktion und Wasser Beispiel 11
50 g Hochsiederfraktion wurden mit 50 g Mittelsiederfraktion, jeweils erhalten wie in Beispiel 1 beschrieben, gemischt. Das Gemisch wurde mit der in der Tabelle 3 beschriebenen Menge an Wasser und Ameisensäure versetzt und auf die angegebene Temperatur unter Rühren und Schutzgas erhitzt. Die Auswertung mit GC-Analytik zeigt den Anstieg an Trimethylolpropan (TMP) und 2,2λ-Dimethylolbutanal (DMB). Der pH-Wert liegt bei 2,1.
Tabelle 3
Figure imgf000015_0001
Gew.-% beziehen sich auf die Gesamtmenge aus Hochsiederfraktion und Wasser

Claims

Patentansprüche
1. Verfahren zur Ausbeuteerhöhung bei der Herstellung von durch Kondensation von Formaldehyd mit einem höheren Aldehyd erhaltenen mehrwertigen Alkoholen, insbesondere Trimethylolpropan, durch Säurebehandlung eines durch Aufarbeitung erhaltenen, Derivate dieser Alkohole enthaltenden und höher als der jeweilige Alkohol siedenden Gemischs (Hochsieder- fraktion) und Rückgewinnung des mehrwertigen Alkohols aus der säurebehandelten Hochsiederfraktion, dadurch gekennzeichnet, dass der Wassergehalt der Hochsiederfraktion 20 bis 90 Gew.-%, bezogen auf die Gesamtmenge aus Hochsiederfraktion und Wasser, beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der mehrwertige Alkohol durch Aldolisierung von Formaldehyd mit einem höheren Aldehyd in Gegenwart katalytischer Mengen eines tertiären Amins und Hydrieren der so erhaltenen Mono- oder Polymethylolalkanale, vorzugsweise von Dimethylolbutanal zu Trimethylolpropan, hergestellt wurde.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass es folgende Schritte aufweist :
a) destillative Abtrennung der leichter als der mehrwertige Alkohol siedenden Komponenten vom Rohprodukt der Hydrierung der Mono- oder Polymethylolalkanale
b) Auftrennung des erhaltenen Sumpf rodukts in einer zweiten Destillationsstufe in eine Hochsiederfraktion und eine die Hauptmenge des mehrwertigen Alkohols enthaltende Fraktion
c) Säurebehandlung der Hochsiederfraktion
d) Destillation der die Hauptmenge des mehrwertigen Alkohols enthaltenden Fraktion unter Abtrennen der leichter flüchtigen Verbindungen (Mittelsiederfraktion) und Gewinnen von reinem mehrwertigen Alkohol
dadurch gekennzeichnet, dass die mit säurebehandelte Hochsiederfraktion in die Hydrierung der Mono- oder Polymethyl- olalkane zum mehrwertigen Alkohol zurückgeführt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die durch Destillation aus der die Hauptmenge der mehrwertigen Alkohols enthaltenden Fraktion abgetrennte Mittelsiederfraktion vor der Säurebehandlung ganz oder teilweise mit der Hochsiederfraktion vermischt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Säurekonzentration von 0,1 Gew.-% bis
20 Gew.-%, bezogen auf die Gesamtmenge aus Hochsiederfraktion oder dem Gemisch aus Hochsiederfraktion und Mittelsiederfraktion und Wasser, beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Säure ausgewählt ist aus Cι~ bis Cχ2- Carbonsäuren, C - bis Cχ -Dicarbonsäuren, Sulfonsäuren, Mineralsäuren, Kohlendioxid, Schwefeldioxid und sauren Ionen- tauschern.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekenn- zeichnet, dass Ameisensäure verwendet wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mehrwertigen Alkohole ausgewählt sind aus der Gruppe Trimethylolethan, Trimethylolpropan, Trimethylol- butan, Neopentylgylkol und Pentaerythrit .
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der mehrwertige Alkohol Trimethylolpropan ist.
PCT/EP2003/007870 2002-07-26 2003-07-18 Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte WO2004013074A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2003250113A AU2003250113A1 (en) 2002-07-26 2003-07-18 Method for increasing yield in the production of polyvalent alcohols by splitting by-products containing acetal
US10/521,810 US7301058B2 (en) 2002-07-26 2003-07-18 Method for increasing yield in the production of polyvalent alcohols by splitting by-products containing acetal
MXPA05000267A MXPA05000267A (es) 2002-07-26 2003-07-18 Metodo para incrementar el rendimiento en la produccion de alcoholes polivalentes por medio de separacion de sub-productos que contienen acetal.
DE50310114T DE50310114D1 (de) 2002-07-26 2003-07-18 Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte
EP03766229A EP1525175B1 (de) 2002-07-26 2003-07-18 Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte
BR0312954-3A BR0312954A (pt) 2002-07-26 2003-07-18 Processo para aumentar o rendimento quando da produção de álcoois polivalentes
JP2004525253A JP2006501206A (ja) 2002-07-26 2003-07-18 アセタール含有副生物の開裂による多価アルコールを製造する際の収率を増大させる方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10234016A DE10234016A1 (de) 2002-07-26 2002-07-26 Verfahren zur Ausbeuteerhöhung bei der Herstellung von mehrwertigen Alkoholen durch Spaltung acetalhaltiger Nebenprodukte
DE10234016.1 2002-07-26

Publications (1)

Publication Number Publication Date
WO2004013074A1 true WO2004013074A1 (de) 2004-02-12

Family

ID=30010385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/007870 WO2004013074A1 (de) 2002-07-26 2003-07-18 Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte

Country Status (12)

Country Link
US (1) US7301058B2 (de)
EP (1) EP1525175B1 (de)
JP (1) JP2006501206A (de)
KR (1) KR20050025357A (de)
CN (1) CN1284753C (de)
AT (1) ATE400541T1 (de)
AU (1) AU2003250113A1 (de)
BR (1) BR0312954A (de)
DE (2) DE10234016A1 (de)
ES (1) ES2307980T3 (de)
MX (1) MXPA05000267A (de)
WO (1) WO2004013074A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010033844A1 (de) 2010-08-11 2012-02-16 Oxea Gmbh Verfahren zur Gewinnung von Di-Trimethylolpropan und mit Trimethylolpropan angereicherten Pruduktströmen aus den Nebenströmen der Trimethylolpropanherstellung
DE102011118953A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Destillatives Verfahren zur Gewinnung von Di-Trimethylolpropan
WO2013072008A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Verfahren zur gewinnung von di-trimethylolpropan und mit trimethylolpropan angereicherten produktströmen aus den nebenströmen der trimethylolpropanherstellung
DE102011118956A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Verfahren zur Gewinnung von Di-Trimethylolpropan und mit Trimethylolpropan angereicherten Produktströmen aus den Nebenströmen der Trimethylolpropanherstellung
DE102011122356A1 (de) 2011-12-23 2013-06-27 Oxea Gmbh Verfahren zur Gewinnung von mit Trimethylolpropan angereicherten Produktströmen aus den Nebenströmen der Trimethylolpropanherstellung
EP2376413B1 (de) 2008-12-09 2016-07-20 Basf Se Verfahren zur reingung von polymethylolen
CN107188783A (zh) * 2017-06-15 2017-09-22 浙江新和成股份有限公司 一种超临界法合成异戊烯醇体系中甲醛的回收方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006200442B1 (en) * 2006-02-02 2007-04-19 Hsiao-Hung Chiang Mop with Drying Mechanism
CN102432430B (zh) * 2011-09-25 2013-11-06 万华化学集团股份有限公司 一种多段循环加氢制备三羟甲基丙烷的方法
JP6003204B2 (ja) * 2012-05-11 2016-10-05 日立化成株式会社 アルカンジオールモノグリシジルエーテル(メタ)アクリレートの製造方法
WO2014042768A1 (en) * 2012-09-17 2014-03-20 Oxea Bishop, Llc Recovery of trimethylolpropane from purification residue
US8759593B2 (en) 2012-09-17 2014-06-24 Oxea Bishop Llc Recovery of alcohols from purification residue
US8921618B2 (en) 2012-09-17 2014-12-30 Oxea Bishop Llc Recovery of trimethylolpropane from purification residue
US8710278B1 (en) 2013-01-31 2014-04-29 Eastman Chemical Company Process for producing polyols
US9056824B2 (en) 2013-01-31 2015-06-16 Eastman Chemical Company Preparation of hydroxy aldehydes
JP2016527311A (ja) * 2013-08-06 2016-09-08 オクシア・ビショップ・エルエルシー メチロールアルカンの改良された製造
WO2015020794A1 (en) * 2013-08-06 2015-02-12 Oxea Bishop Llc Manufacture of methylolalkanes with augmented heat transfer and improved temperature control
KR102224267B1 (ko) * 2016-10-31 2021-03-08 주식회사 엘지화학 트리메틸올프로판의 제조장치 및 이를 이용한 제조방법
CN110759821A (zh) * 2019-11-23 2020-02-07 张家港市华昌新材料科技有限公司 一种新戊二醇生产原料回收***及其回收方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1291335A (en) * 1969-11-29 1972-10-04 Koei Chemical Co Recovery of ditrimethylolpropane
US6096905A (en) * 1999-06-01 2000-08-01 Celanese International Corporation Treatment of a composition comprising a trimethylolalkane bis-monolinear formal
EP1178030A2 (de) * 2000-08-03 2002-02-06 Mitsubishi Gas Chemical Company, Inc. Verfahren zur Rückgewinnung von Ditrimethylolpropan

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2507461C3 (de) 1975-02-21 1986-05-07 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von 2,2- Dimethylolalkanalen
DE2702582C3 (de) 1977-01-22 1980-12-04 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Trimethylolalkanen
DE2813201A1 (de) 1978-03-25 1979-10-04 Bayer Ag Verfahren zur herstellung von 2,2-dimethylolalkanalen
DD287251A5 (de) 1989-08-21 1991-02-21 Veb Leuna-Werke "Walter Ulbricht",De Verfahren zur gewinnung von trimethylolpropan
DE19653093A1 (de) 1996-12-20 1998-06-25 Basf Ag Verfahren zur Herstellung von Polyalkoholen
DE19809418A1 (de) 1998-03-05 1999-09-09 Basf Ag Verfahren zur Hydrierung von Carbonylverbindungen
DE19963437A1 (de) * 1999-12-28 2001-07-05 Basf Ag Verfahren zur Zersetzung von bei der Synthese mehrwertiger Alkohole gebildeter hochsiedender Nebenprodukte
DE19963435A1 (de) 1999-12-28 2001-07-05 Basf Ag Verfahren zur Reinigung von durch Hydrierung hergestelltem Trimethylolpropan durch kontinuierliche Destillation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1291335A (en) * 1969-11-29 1972-10-04 Koei Chemical Co Recovery of ditrimethylolpropane
US6096905A (en) * 1999-06-01 2000-08-01 Celanese International Corporation Treatment of a composition comprising a trimethylolalkane bis-monolinear formal
EP1178030A2 (de) * 2000-08-03 2002-02-06 Mitsubishi Gas Chemical Company, Inc. Verfahren zur Rückgewinnung von Ditrimethylolpropan

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2376413B1 (de) 2008-12-09 2016-07-20 Basf Se Verfahren zur reingung von polymethylolen
EP2376413B2 (de) 2008-12-09 2018-10-31 Basf Se Verfahren zur destillation eines wässrigen neopentylglykolgemisches
TWI403496B (zh) * 2010-08-11 2013-08-01 Oxea Gmbh 雙三羥甲基丙烷和富含三羥甲基丙烷的生成物流之製造方法
DE102010033844A1 (de) 2010-08-11 2012-02-16 Oxea Gmbh Verfahren zur Gewinnung von Di-Trimethylolpropan und mit Trimethylolpropan angereicherten Pruduktströmen aus den Nebenströmen der Trimethylolpropanherstellung
WO2012019714A1 (de) 2010-08-11 2012-02-16 Oxea Gmbh Verfahren zur gewinnung von di-trimethylolpropan und mit trimethylolpropan angereicherten produktströmen aus den nebenströmen der trimethylolpropanherstellung
US8987523B2 (en) 2010-08-11 2015-03-24 Oxea Gmbh Method for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the side-streams in trimethylolpropane production
WO2013072006A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Verfahren zur gewinnung von di-trimethylolpropan und mit trimethylolpropan angereicherten produktströmen aus den nebenströmen der trimethylolpropanherstellung
US9045451B2 (en) 2011-11-19 2015-06-02 Oxea Gmbh Method for recovering di-trimethylolpropane and trimethylolpropane-enriched product streams from the side streams of trimethylolpropane production
DE102011118956A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Verfahren zur Gewinnung von Di-Trimethylolpropan und mit Trimethylolpropan angereicherten Produktströmen aus den Nebenströmen der Trimethylolpropanherstellung
US9745236B2 (en) 2011-11-19 2017-08-29 Oxea Gmbh Method for recovering di-trimethylolpropane by distillation
DE102011118993A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Verfahren zur Gewinnung von Di-Trimethylpropan und mit Trimethylpropan angereicherten Produktströmen aus den Nebenströmen der Trimethylolpropanherstellung
WO2013072007A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Destillatives verfahren zur gewinnung von di-trimethylolpropan
DE102011118953A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Destillatives Verfahren zur Gewinnung von Di-Trimethylolpropan
WO2013072008A1 (de) 2011-11-19 2013-05-23 Oxea Gmbh Verfahren zur gewinnung von di-trimethylolpropan und mit trimethylolpropan angereicherten produktströmen aus den nebenströmen der trimethylolpropanherstellung
US9115110B2 (en) 2011-11-19 2015-08-25 Oxea Gmbh Method for recovering di-trimethylolpropane and trimethylolpropane-enriched product streams from the side streams of trimethylolpropane production
US8987527B2 (en) 2011-12-23 2015-03-24 Oxea Gmbh Process for obtaining trimethylolpropane-enriched product streams from the secondary streams of trimethylolpropane preparation
WO2013091765A1 (de) 2011-12-23 2013-06-27 Oxea Gmbh Verfahren zur gewinnung von mit trimethylolpropan angereicherten produktströmen aus den nebenströmen der trimethylolpropanherstellung
DE102011122356A1 (de) 2011-12-23 2013-06-27 Oxea Gmbh Verfahren zur Gewinnung von mit Trimethylolpropan angereicherten Produktströmen aus den Nebenströmen der Trimethylolpropanherstellung
CN107188783A (zh) * 2017-06-15 2017-09-22 浙江新和成股份有限公司 一种超临界法合成异戊烯醇体系中甲醛的回收方法
CN107188783B (zh) * 2017-06-15 2020-11-06 浙江新和成股份有限公司 一种超临界法合成异戊烯醇体系中甲醛的回收方法

Also Published As

Publication number Publication date
CN1284753C (zh) 2006-11-15
ATE400541T1 (de) 2008-07-15
JP2006501206A (ja) 2006-01-12
CN1671640A (zh) 2005-09-21
EP1525175A1 (de) 2005-04-27
KR20050025357A (ko) 2005-03-14
BR0312954A (pt) 2005-06-14
ES2307980T3 (es) 2008-12-01
DE10234016A1 (de) 2004-02-05
AU2003250113A1 (en) 2004-02-23
US7301058B2 (en) 2007-11-27
MXPA05000267A (es) 2005-03-31
US20050256346A1 (en) 2005-11-17
EP1525175B1 (de) 2008-07-09
DE50310114D1 (de) 2008-08-21

Similar Documents

Publication Publication Date Title
EP1525175B1 (de) Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte
DE19653093A1 (de) Verfahren zur Herstellung von Polyalkoholen
EP2108009B1 (de) Verfahren zur herstellung von polyalkoholen aus formaldehyd mit geringem ameisensäuregehalt
WO2001047847A1 (de) Verfahren zur reinigung von durch hydrierung hergestelltem trimethylolpropan durch kontinuierliche destillation
DE60013814T2 (de) Behandlung einer zusammensetzung enthaltend ein trimethylolalkan-bis-monolineares formal
WO2008000650A1 (de) Verfahren zur herstellung von polyalkoholen mit methanolarmem formaldehyd
EP2281794B1 (de) Verfahren zur Farbzahlverbesserung von Trimethylolpropan
EP1246786B1 (de) Farbzahlverbesserung von mehrwertigen alkoholen durch hydrierung
EP1246785B1 (de) Verfahren zur zersetzung von bei der synthese mehrwertiger alkohole gebildeter hochsiedender nebenprodukte
EP0322660B1 (de) Verfahren zur Gewinnung von 2-Methylbutanal
DE69320454T3 (de) Verfahren zur Herstellung von 1,3-butylenglykol
DE10029055B4 (de) Verfahren zur Farbzahlverbesserung von mehrwertigen Alkoholen durch Tempern
EP1326819B1 (de) Farbzahlverbesserung von mehrwertigen alkoholen durch hydrierung
DE2433513C3 (de) Verfahren zur Herstellung von Alken-1,5-diolen
DE102019209233A1 (de) Verfahren zur Herstellung eines β-Hydroxyketons
EP1448502B1 (de) Verfahren zum enfernen von formaldehydhaltigen acetalen aus mehrwertigen alkoholen durch tempern
WO2001047854A1 (de) Verfahren zur destillativen abtrennung von formaldehyd aus polyolhaltigen reaktionsgemischen durch zusatz von wasser vor und/oder während der destillation
WO2003035594A1 (de) Verfahren zur zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen
DE19963438A1 (de) Verfahren zur Herstellung von Polyalkoholen mit Methanolarmem Formaldehyd
WO2001047849A1 (de) Verfahren zur umwandlung von bei der trimethylolalkan-herstellung anfallendem trimethylolalkanformiat
WO2005019145A1 (de) Verfahren zur hydrierenden zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen
DE1185600B (de) Verfahren zur Herstellung von ameisensaeurefreiem, reinem, monomerem Formaldehyd
DE10109053A1 (de) Verfahren zur Ausbeuteerhöhung von durch Hydrierung hergestelltem Trimethylolpropan

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003766229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/000267

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 10521810

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038178206

Country of ref document: CN

Ref document number: 1020057001372

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004525253

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057001372

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003766229

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003766229

Country of ref document: EP