WO2004011927A1 - Method of measuring stress in reinforcement, method of measuring stress in pc structure utilizing the method, and pc structure deterioration diagnosing system - Google Patents

Method of measuring stress in reinforcement, method of measuring stress in pc structure utilizing the method, and pc structure deterioration diagnosing system Download PDF

Info

Publication number
WO2004011927A1
WO2004011927A1 PCT/JP2003/009490 JP0309490W WO2004011927A1 WO 2004011927 A1 WO2004011927 A1 WO 2004011927A1 JP 0309490 W JP0309490 W JP 0309490W WO 2004011927 A1 WO2004011927 A1 WO 2004011927A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
stress
reinforcing bar
measured
evaluation
Prior art date
Application number
PCT/JP2003/009490
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Hida
Takuji Okamoto
Kenji Kubota
Ryuji Kubo
Kazuaki Yokoyama
Original Assignee
Chiyoda Engineering Consultants Co., Ltd.
Keisoku Research Consultant Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Engineering Consultants Co., Ltd., Keisoku Research Consultant Co. filed Critical Chiyoda Engineering Consultants Co., Ltd.
Priority to AU2003252698A priority Critical patent/AU2003252698A1/en
Publication of WO2004011927A1 publication Critical patent/WO2004011927A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Definitions

  • the present invention relates to a technique for measuring a prestressed concrete structure (hereinafter, referred to as a PC structure).
  • the prestress applied to concrete members is reduced and deteriorated due to the creep of concrete and the corrosion and breakage of PC steel. It is preferable to know the condition, because knowing the state of reduced prestress enables appropriate measures to be taken.
  • the decrease in prestress causes an increase in deflection, abnormal deflection, cracking, and changes in vibration characteristics. There are methods for measuring this deflection and cracking.
  • a method of knowing the state of decrease in prestress a method of attaching a strain gauge to the surface of a PC structure and measuring the amount of strain when the load of the PC structure changes is known.
  • the change in the amount of strain measured by the above method is measured by measuring the increase or decrease of the internal stress based on the elastic modulus measured by a co-specimen manufactured in advance under the same conditions.
  • the existing internal stress can be accurately measured.However, at present, the service life of the strain gauge body is short, and it is difficult to accurately install it at the measurement position. .
  • the present invention provides a method for measuring stress of a reinforcing bar included in a PC structure for easily and accurately measuring the internal stress of the PC structure, a method for measuring a stress of a PC structure using the method, It is an object of the present invention to provide an object deterioration diagnosis system. Disclosure of the invention
  • the method for measuring the stress of the reinforcing bar A included in the predetermined structure includes a step of measuring and / or calculating an initial value including a permeability and a stress of the reinforcing bar and a function of the permeability and the temperature in advance.
  • a calculating step includes a step of measuring and / or calculating an initial value including a permeability and a stress of the reinforcing bar and a function of the permeability and the temperature in advance.
  • the existing stress of the measured object (rebar) can be directly measured. Also, by measuring the stress of the reinforcing bar, the stress state and the stress change of the structure (PC structure) having the reinforcing bar can be measured.
  • the method for measuring the stress of a PC structure (50) using the method for measuring the stress of a reinforcing bar according to the present invention includes a measuring means (53) for measuring a stress on a reinforcing bar included in the PC structure. From the current stress of the reinforcing bar measured by the measuring means and the subsequent changes, The method is characterized in that a decrease in stress is evaluated, and a stress state of the PC structure is estimated and measured.
  • the rebar Since the rebar is integrated with the concrete and is subjected to the same distortion that the concrete is receiving, the rebar is subjected to the stress applied to the concrete from the time of construction. In this case, the concrete member undergoes stress-free strain such as creep and drying shrinkage, but this stress-free strain is not reflected as the stress of the reinforcing bar. However, when stress-free strain occurs, concrete members are affected by secondary stress such as creep due to restraint, etc., and the secondary stress also acts on the reinforcing steel. For this reason, the rebar also receives stress with reduced prestress due to the effects of creep and the like. Therefore, by measuring the stress of the reinforcing bars included in the PC structure, it is possible to estimate and measure the current stress state and stress change.
  • stress-free strain such as creep and drying shrinkage
  • the deterioration diagnosis system (100) for a PC structure using the method for measuring the stress of a reinforcing bar of the present invention is a measuring means (53) for measuring at least the present stress of the reinforcing bar included in the PC structure.
  • Determining means for determining whether or not the PC structure has deteriorated based on the current stress value of the reinforcing bar measured by the measuring means and the pre-measured stress value of the reinforcing bar.
  • Evaluation / diagnosis means (23b) for evaluating and diagnosing the deterioration state of the PC structure based on the determination means, and evaluation and Z or the result of the diagnosis by the evaluation / diagnosis means.
  • output means (32) for outputting.
  • Extraction means (23c) for extracting a coping method or the like based on the evaluation and / or diagnosis results, and output means (3c) for outputting the coping method or the like extracted by the extraction means. 2) and may be provided.
  • the measuring means is a sensor for detecting at least the magnetic permeability and temperature of a predetermined reinforcing bar included in the PC structure.
  • Fig. 1 is an overall system diagram.
  • FIG. 2 shows an embodiment of the measuring device.
  • FIG. 3 is a flowchart showing an example of an operation mode of the present system.
  • Figure 4 is an example of a database.
  • Fig. 5 shows the evaluation database.
  • Fig. 5 (a) shows the load-bearing performance evaluation database
  • Fig. 5 (b) shows the durability performance evaluation database
  • Fig. 5 (c) shows the evaluation level.
  • Fig. 5 (d) is a database showing the relationship between the coping method and the coping method.
  • FIG. 6 is a flowchart showing an example of a usage form of the present system.
  • Fig. 7 shows an example of EM sensor installation on a PC structure.
  • Fig. 7 (a) is a schematic diagram when an EM sensor is installed on a PC structure.
  • Fig. 7 (b) is Fig. 7 (a). This is an enlarged view of B.
  • FIG. 8 is a cross-sectional view of the EM sensor.
  • FIG. 9 is a flowchart showing a method of attaching the EM sensor to the PC structure.
  • FIG. 1 is an overall system diagram of the present invention
  • FIG. 2 is an embodiment of a measuring device.
  • a PC structure deterioration diagnosis system 100 includes a measuring device 100 for measuring a deterioration phenomenon of a PC structure, and a PC at the present time based on data measured by the measuring device. It is configured to include a management device 20 for evaluating and diagnosing the state of the structure, and a terminal 30 for outputting information on the PC structure at the present time such as the evaluation.
  • the terminal 30 is a terminal of a management company or the like that manages the PC structure (hereinafter, referred to as “management terminal 30”).
  • the measuring device 10 and the management device 20 and the management device 20 and the management terminal 30 are connected via communication lines 35 and 36.
  • the communication lines 35, 3 and 6 may take any form such as a wireless or wired line. Note that generally used computer devices are used for the management device 20 and the management terminal 30.
  • the measuring device 10 includes a plurality of sensors 11, 11 a,..., Llh as a plurality of measuring means disposed at predetermined positions of the PC structure, and these sensors 1.
  • a storage unit 12 as a storage unit for storing data measured by 1 and a transmission unit as a communication unit for transmitting data stored in the storage unit 12 to the management device 20.
  • a communication unit 13 (including an antenna, etc.).
  • the data measured by the sensor 11 is measured every predetermined time.
  • the storage unit 12 stores data measured by the sensors 11 in time series.
  • the measuring device 10 includes a plurality of sensors 11, a data port gir 12 a functioning as a storage unit 12, a communication unit 13 (an antenna 13). a, etc.), a network line 16 as a transmission means for transmitting data, and a junction box 17 as a branching means for switching the sensor 11 stored in the data port girder 12a.
  • a solar panel 18 as a power supply means for supplying power to each device constituting the measuring device 10, and a lead-out box as an external output means for taking out the data stored in the data port 12a. 1 9 and, are provided. These devices and the like are arranged at predetermined positions of the PC structure 15.
  • the plurality of sensors 11 are arranged at predetermined positions on the PC structure 15 based on the functions of each sensor 11. Further, the plurality of sensors 11 and the data port gir 12a are electrically connected via a network line 16 and / or a junction box 17 as a transmission means for transmitting data. You. Also, Junction Bo The boxes 17 are disposed on the PC structure 15 at predetermined intervals.
  • the data port 12a is electrically connected to the communication unit 13 (including the antenna 13a and the like). Further, the solar panel 18 is electrically connected to the data port gir 12a, the communication unit 13, the sensors 11 and the like, and the measuring devices 10 and the like.
  • the lead-out box 19 is electrically connected to the data port ger 12a via the network line 16.
  • the data measured by each sensor 11 is stored in the data port ger 12a in time series via the junction box 17 and / or the network line 16. Further, the stored data is transmitted to the management device 20 at predetermined time intervals. The transmission of the stored data to the management device 20 may be performed simultaneously with the storage of the data 12a in the data port logger.
  • Sensors 11, 11a, lib,..., Llh are sensors (slot stress, EM sensor, etc.) for measuring the stress level (state) of PC structure 50 (prestressed concrete), for example.
  • the sensor 11 for measuring the stress degree of the PC structure is a sensor for measuring the stress of the reinforcing bar included in the PC structure.
  • these sensors need a life of about the remaining useful life of the PC structure (specifically, about 50 to 60 years).
  • the stress state of the PC structure can be directly measured, and that no stress-free strain such as temperature and creep should be sensed.
  • the management device 20 includes a communication unit 21 including a reception unit for receiving data transmitted from the measurement device 10, a database 22, the received data and predetermined values (predicted values and management reference values). And judge the PC structure from the comparison result. And a communication unit 21 including a transmission unit as a communication unit for transmitting the result determined by the determination unit 23 to the management terminal 30. .
  • the management device 20 includes a control unit (not shown), and the control unit controls each of the units 21 to 23d.
  • the database 22 contains data for evaluating and diagnosing the deterioration of PC structures based on the measured data, and based on the results of the evaluation and diagnosis, based on the current situation and the subsequent countermeasures. ⁇ Data indicating the countermeasure method is stored.
  • the determination unit 23 includes a comparison unit 23 a as a comparison unit for comparing the received data with a predetermined value (such as a previously measured and / or calculated stress value of a reinforcing bar). Evaluation of the current PC structure based on the result of comparison by the comparison unit 23aEvaluation for diagnosis, etc.Evaluation as diagnostic meansEvaluation by the diagnosis unit 23b and the evaluation 'diagnosis unit 23b Extraction unit 23c as extraction means for extracting the current and subsequent methods of handling and handling methods for PC structures based on the diagnosed results from database 22 and comparison unit 23a And a prediction unit 23 d as prediction means for predicting the future deterioration of PC structures from the results of the comparison.
  • the results determined by the determination unit 23 include the evaluation / diagnosis unit 23b, the prediction unit 23d, and the extraction unit.
  • Information such as data evaluated, predicted, and extracted by 23 c (information indicating the current or future state of the PC structure).
  • the management terminal 30 includes a communication unit 31 including a reception unit for receiving information transmitted from the management device 20, and an output unit 32 as output means for outputting the information.
  • the management terminal 30 includes a control unit (not shown).
  • FIG. 3 is a flowchart showing an example of an operation mode of the present system. Note that, for easy understanding, reference numerals corresponding to those in FIG. 1 are given, but the present invention is not limited thereto.
  • step S1 the deterioration phenomenon of the PC structure is measured by the sensors 11, 11a, lib,..., 11h installed at predetermined positions of the PC structure.
  • step S2 data measured at predetermined time intervals by the sensors 11 is stored in the storage unit 12 in a time series.
  • step S3 the data capacity stored in the storage unit 12 predetermined time (period) Is transmitted to the management device 20 by the communication unit 13 every time.
  • step S4 the receiving unit 21 of the management device 20 receives the data transmitted from the measurement device 10.
  • the received data is input to the database 22 in a time series for each sensor 11, stored and managed.
  • Figure 4 shows an example of a database.
  • the database 22 includes monitoring items 41, measured values and predicted values items 42, 43, and management reference value items 44.
  • the monitoring item 41 is, for example, a measurement item (stress item 41a, tension item 41b, displacement item 41c, etc.) of each sensor 11 to 11h.
  • the item 42 of the measured value is a value 42a measured by the sensor 11 at a predetermined time interval.
  • Items 4 3 of the predicted values are the deterioration conditions for each predetermined period calculated in advance from the structural elements of the specified PC structure 15, construction conditions, history of similar structures, environmental conditions, use environment conditions, etc.
  • the predicted value is 4 3 a.
  • the control standard value 44 is a limit value calculated from the various conditions of the specified PC structure, and is a value 44a that requires a specified measure immediately.
  • step S4 the measured value 42a actually measured for each of the measurement items 41a, 41b, ... of each sensor 11 to 11h is automatically stored in a predetermined column of the database 22. Is input to.
  • step S5 the determination unit 23 of the management device 20 determines whether the PC structure is deteriorated. If this determination is affirmed, the process proceeds to step S6, and if not, the process ends.
  • the measured value 42a input to the database 22 by the comparing unit 23a of the management device 20 is compared with a predetermined management reference value 44a or a predicted value 43a. Be compared.
  • the determination unit 23 determines (determines) whether the measured value 42a exceeds the management reference value 44a or the predicted value 43a. Further, when the measured value 42a exceeds the predicted value 43a or the control standard value 44a, the evaluation (diagnosis) of the PC structure is performed in the next step S6.
  • step S6 the evaluation / diagnosis unit 23b of the management device 20 evaluates (diagnoses) the current state of the PC structure based on the received data.
  • the evaluation is performed based on a predetermined calculation method. It is calculated from the measured value 42a measured by 11h, and based on the calculation result, referring to Figs. 5 (a) and (b) described later, the load-bearing performance and durability performance of the PC structure Evaluation and diagnosis.
  • Fig. 5 shows the evaluation database.
  • Fig. 5 (a) shows the load-bearing performance evaluation database
  • Fig. 5 (b) shows the durability performance evaluation database
  • Fig. 5 (c) shows the evaluation level pairing method.
  • Fig. 5 (d) is a database showing the relationship between the coping method and the coping method.
  • the load-bearing performance is classified into levels 1 to 3 according to the degree of decrease in load-bearing performance.
  • Durability is classified into levels A to C according to the degree of decrease in durability as shown in Fig. 5 (b).
  • the load carrying capacity can be obtained (calculated) by measuring the stress level of the PC structure 50 (see Fig. 7).
  • Durability can be obtained (calculated) by measuring the cracks in the PC structure 50 and the fracture, displacement, corrosion, etc. of the PC steel.
  • the current PC structure is evaluated and diagnosed comprehensively as shown in Fig. 5 (c).
  • the evaluation was performed by referring to the load-bearing performance database 22a and the durability performance database 22b shown in Figs. 5 (a) and (b). Based on the results of comparison with the reference value), it is classified as 11-A to 3-C according to which level of load-bearing performance or durability performance it belongs to. For example, as a result of calculating from measured values based on a predetermined calculation method, if the load-bearing performance level is 2 and the endurance '1' performance level is A, the evaluation is 2-A.
  • step S7 the prediction unit 23d of the management device 20 predicts future deterioration of the PC structure based on the measured value 42a. Specifically, the time when the value falls below the management reference value 44a is calculated and predicted from the measurement history and the like based on a predetermined calculation method and the like.
  • step S8 the evaluation of the management device 20 '
  • the diagnostic unit 23b determines the current method of handling the PC structure and the method of handling it based on the results evaluated in step S6.
  • the extractor 23 c extracts the coping method and coping method data from the database 22. Specifically, first, the coping method is determined from the database 22c that shows the relationship between the evaluation level of the PC structure and the coping method shown in Fig. 5 (c). Next, an appropriate coping method for the coping method is determined from the database 22 d showing the relationship between the coping method and the coping method shown in Fig. 5 (d), and the data of each (coping method and coping method) is extracted.
  • the countermeasure method will be comprehensively determined based on the specifications of the PC structure, evaluation level, and other factors. The judgment is calculated and determined by a predetermined calculation method. For example, if the evaluation level is 2_A, the necessary reinforcement measures will be determined as a method of handling a PC structure with an evaluation level of 2-A based on the database 22c in Fig. 5 (c). Next, as a reinforcement measure based on the database 22d in Fig. 5 (d), a calculation method determined in advance from steel plate method, FRP bonding method, thickening method, prestress introduction method, fulcrum extension method, etc. Based on the results obtained, an appropriate construction method is selected and its details are extracted.
  • step S9 the transmission unit 21 of the management device 20 transmits the evaluation, prediction, extracted evaluation data, prediction data, coping method, coping method data, etc. in steps S6 to S8.
  • the information is transmitted to the management terminal 30.
  • step S10 the receiving unit 31 of the management terminal 30 receives the information transmitted from the management device 20.
  • step S11 the management terminal 30 outputs the received information through the output unit 32, and the process ends.
  • the management terminal 30 evaluates and diagnoses a PC structure exceeding a predetermined reference value after a predetermined period, and evaluates the evaluation data and / or predicts deterioration data of the future PC structure.
  • Information such as data indicating the current method of handling and / or remedial measures for PC structures based on the evaluation, and prediction data on future deterioration of PC structures is transmitted. Therefore, the manager of the PC structure can know the current situation and the future situation, and at the present time, what kind of measures should be taken and how much should be taken in the future. Information on labor and labor costs at that time, and take appropriate measures against deterioration of PC structures.
  • FIG. 6 is a flowchart showing an example of a use form of the present system.
  • the reference numerals corresponding to FIG. 1 are attached for easy understanding, but the present invention is not limited to them.
  • step S21 a bridge (a bridge made of a PC structure) on which the measuring device 10 of the present system is installed is extracted.
  • step S22 sensors 11 to 11 are set at predetermined positions of the extracted PC structure.
  • the measuring device 10 including 11h etc. and start measuring the PC structure.
  • the measured data is transmitted to the management device 20 every predetermined time (period).
  • step S23 the determination unit 23 of the management device 20 determines whether the measured value exceeds a predetermined reference value (predicted value, management reference value, etc.). . If this judgment is affirmed, the process proceeds to step S24, and if not, the process proceeds to step S29.
  • a predetermined reference value predicted value, management reference value, etc.
  • step S24 the administrator is notified that the measured value has exceeded the criterion (the information is transmitted from the management device 20 to the management terminal 30).
  • step S25 the evaluation / diagnosis unit 23b of the management device 20 determines whether or not a countermeasure is required. If this determination is affirmed, the process proceeds to step S27, and if denied, the process proceeds to step S28.
  • step S27 the administrator is notified that countermeasures and the like are necessary (transmitted to the management terminal 30), and the administrator implements countermeasures.
  • the judgment unit 23 of the management device 20 evaluates the current state of the PC structure and, based on the evaluation, determines an appropriate countermeasure and a countermeasure construction method.
  • the appropriate countermeasures, countermeasures, etc. are extracted from the database 22 in which the countermeasures, countermeasures, etc. have been input in advance, and the information indicating the evaluation, target method, countermeasures, etc. This allows the administrator to know the current state of deterioration of the PC structure and evaluate the timing of repairs, etc., through the evaluation, countermeasures, and countermeasures.
  • step S28 if the countermeasure (repair, etc.) is performed in step S27, the administrator checks the PC structure for which the countermeasure has been taken. If there is no particular defect in the inspection, return to step S21 and continue measurement again. If there is any defect due to inspection, etc., the process proceeds to step S31, and the manager Re-establish reference values (forecast values, management reference values, etc.).
  • step S23 determines whether or not it is necessary to review the criteria. If this determination is affirmed, the process proceeds to step S30, and if it is denied, the process returns to step S21 and measurement is continued again.
  • step S30 the judgment reference value is reviewed by the administrator.
  • step S31 the administrator sets a criterion value based on the criterion value reviewed in step S30, and ends the process. The measurement can be continued again.
  • step S26 If the result in step S26 is negative, the process proceeds to step S29, and the processing from step S29 to step S31 is performed.
  • the PC structure is provided with measuring means (sensors 11 to 1 lh, etc.) for measuring the deterioration state of the PC structure, and the present state of the PC structure measured by the measuring means and changes thereafter. Based on the (deterioration status), evaluate whether or not a countermeasure is required. Based on the evaluation result, determine a countermeasure method and notify the administrator. As described above, the PC structure deterioration diagnosis system 100 determines whether or not a countermeasure is required based on a predetermined reference value, and notifies the administrator when the determination result indicates that the countermeasure is required. As a result, the management burden on the administrator can be reduced.
  • measuring means sensors 11 to 1 lh, etc.
  • Fig. 7 shows an example of installation of an EM sensor (Elasto-Magnetic Sensor).
  • Fig. 7 (a) is a schematic diagram when the EM sensor is installed on a PC structure
  • Fig. 7 (b) is Fig. 7 ( It is a B enlarged view of a).
  • the EM sensor described according to the present embodiment measures internal stress in a PC structure.
  • the PC structure 50 is formed by providing a PC steel material 51 and a plurality of rebars A, A,..., A at predetermined positions in a tensioned state, and integrally formed with concrete.
  • a predetermined reinforcing bar A is selected from the reinforcing bars A, and the reinforcing bar A is provided with an EM sensor 53 as a measuring means for measuring a stress.
  • a reinforcing bar B provided with an EM sensor on the outer periphery of a predetermined position is attached to the reinforcing bar A in advance. Both ends of reinforcing bar B are connected to specified portions of reinforcing bar A by welding or the like.
  • the stress of reinforcing bar A A predetermined portion of the rebar A is cut to act on B.
  • FIG. 8 is a cross-sectional view of the EM sensor.
  • the EM sensor 53 includes a magnetic flux applying coil (hereinafter, referred to as “primary coil 54 J”), a magnetic flux detecting coil (hereinafter, referred to as “secondary coil 55”), and a temperature sensor. 5 and 6.
  • the temperature sensor 56 is provided so as to be in contact with the outer peripheral surface of the hollow cylindrical cylindrical member 57 made of a polyurethane-impregnated waterproof material.
  • the secondary coil 55 is wound around the outer peripheral surface of the temperature sensor 56.
  • the primary coil 54 is wound around the outside of the secondary coil via a partition 58.
  • the primary coil 54 and the secondary coil 55 are wound around the cylindrical member 57 with a predetermined number of turns.
  • the object to be measured (reinforcing bar A) is provided inside the cylindrical member 57 so as to penetrate.
  • the primary coil 54 is connected to a power supply as an application unit for applying a pulse voltage
  • the secondary coil 55 is connected to a measuring device as a measurement unit for measuring an induced electromotive force.
  • a pulse voltage is applied to the primary coil 54 to temporarily magnetize the rebar. Thereafter, during the process of demagnetizing the magnetized rebar, the induced electromotive force generated in the secondary coil 55 is measured, and the magnetic permeability is calculated. As described above, the change in the magnetic permeability corresponding to the change in the reinforcing bar stress is detected, and the stress is calculated. More specifically, a force test is performed on the rebar in advance to obtain initial values of permeability and stress, and functions of permeability and temperature, and the permeability, temperature, and (current value) are determined by an EM sensor. The stress is calculated by measuring.
  • FIG. 9 is a flowchart showing a method of attaching the EM sensor to the PC structure. For easy understanding of the description, reference is made to FIG.
  • step S41 a reinforcing bar A for mounting the EM sensor 53 from a predetermined PC structure 50 is selected.
  • step S42 the work of exposing the selected reinforcing bar A is performed. Specifically, a predetermined position of the PC structure (concrete member) 50 is cut out to expose a predetermined portion of the reinforcing bar A.
  • Step S43 the reinforcing bar B with the EM sensor is installed so as to be along the reinforcing bar A. Specifically, both ends of reinforcing bar B are connected to reinforcing bar A by welding or the like.
  • the reinforcing bar B with the EM sensor it is necessary to measure the initial values of the reinforcing bar B (permeability, stress, a function of permeability and temperature, etc.) in advance.
  • Step S44 a predetermined portion of the reinforcing bar A is cut. Specifically, a predetermined portion of the reinforcing bar A corresponding to the connecting point of the reinforcing bar B is cut. This is because the stress acting on the reinforcing bar A is measured by the EM sensor 53.
  • step S45 surface restoration work (including urethane injection, etc.) is performed.
  • step S46 measurement is started, and the mounting operation is completed.
  • the internal stress of the PC structure 50 is measured by providing the reinforcing bar A included in the PC structure 50 with the EM sensor 53 as a measuring means for measuring the stress. can do.
  • the method of measuring the stress of a reinforcing bar includes the steps of: measuring and Z or calculating an initial value including a permeability and a stress of the reinforcing bar and a function of a permeability and a temperature in advance; A step of providing a measuring means for measuring the current value including the magnetic permeability and the temperature of the reinforcing bar on the reinforcing bar, and measuring the current stress of the reinforcing bar based on the initial value and the numerical value of the current value. And a step of performing.
  • the method for measuring the stress of a PC structure using the method for measuring the stress of a reinforcing bar of the present invention includes a measuring means for measuring a stress on a reinforcing bar included in the PC structure, wherein the measuring means measures the stress by the measuring means.
  • the prestress reduction is evaluated based on the current stress of the reinforcing bar and the subsequent changes, and the stress state of the PC structure is estimated and measured.
  • the PC structure deterioration diagnosis system 100 of the present invention includes an EM sensor 53 as a measuring means for measuring stress on at least a reinforcing bar included in the PC structure 50, and the measurement is performed by the measuring means.
  • a determination unit 23 as determination means for determining whether the PC structure is degraded based on the measured current stress value of the reinforcing bar and a pre-measured stress value of the reinforcing bar; Evaluation for evaluating and / or diagnosing the deterioration state of the PC structure based on the means.Evaluation as a diagnosis means.Diagnosis unit 23b, and the result evaluated and / or diagnosed by the evaluation and diagnosis means.
  • an extracting unit 23c as an extracting unit for extracting a coping method or the like based on the evaluation and / or diagnosis result, and an output unit for outputting the coping method or the like extracted by the extracting unit.
  • the output unit 32 and the output unit 32 may be provided.
  • the measuring means is a sensor 11 for detecting a magnetic permeability and a temperature of a predetermined reinforcing bar included in the PC structure.
  • the measuring means includes a sensor 11 for measuring the degree of stress of a PC structure (prestressed concrete), a sensor 1 la for measuring at least the tension of the PC steel material, and a sensor for measuring the breakage of the PC steel material.
  • Sensor 1 1b sensor for measuring displacement of PC structure 11 c, sensor for measuring cracks in PC structure 11 d, sensor for measuring pre-stressed concrete neutralization 1 1e, press rest. Sensor for measuring the amount of salt contained in concrete 11 f, sensor for measuring corrosion of PC steel material 1 1g, measuring the change of vibration applied to the PC structure It may be configured to include any one of the sensors 11h for the above.
  • the present invention is not limited to the above embodiments, but may be implemented in various forms.
  • the data transmission means and communication means provided in the measuring device can be used, for example, when the PC structure to be measured is an expressway or the like, using an optical fiber provided on the expressway.
  • the power supply means may be configured to take out power from a power supply used on a highway.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A method of measuring a stress in reinforcements contained in specified structures such as a PC structure for easily and accurately measuring an internal stress in the PC structure, comprising the steps of measuring and/or calculating initial values having the permeability of and stress in the reinforcements and functions between the permeability and temperatures, installing, on the reinforcement, a measurement means for measuring current values having the permeability and temperatures of the reinforcements measurement the current values, and calculating the current stress in the reinforcements based on the measured and/or calculated initial and current numerical values.

Description

鉄筋の応力計測方法、 及びその方法を利用した P C構造物の応力計測方法、 P C構造物の劣化診断システム 技術分野  Method of measuring stress of reinforcing bar, method of measuring stress of PC structure using the method, system for diagnosing deterioration of PC structure
本発明は、 プレストレスト 'コンクリート構造物 (以下、 P C構造物と呼ぶ。 ) の計測技術に関する。 背景技術  The present invention relates to a technique for measuring a prestressed concrete structure (hereinafter, referred to as a PC structure). Background art
P C構造物は、 コンクリ"ト部材に作用させたプレストレスがコンクリートの クリープや P C鋼材の腐食、 破断によって減少し、 劣化する。 このプレストレス の減少を知るには、 P C構造物の内部応力の状態を把握することが好ましい。 な ぜなら、 プレストレスの減少状態を知ることにより、 適切な処置を実施すること が可能となるからである。  In PC structures, the prestress applied to concrete members is reduced and deteriorated due to the creep of concrete and the corrosion and breakage of PC steel. It is preferable to know the condition, because knowing the state of reduced prestress enables appropriate measures to be taken.
また、 プレストレスの減少に伴い、 たわみの増加、 異常なたわみ、 ひぴ割れの 発生、 振動特性の変化等が生じる。 このたわみ、 ひび割れを計測する方法は存在 する。  In addition, the decrease in prestress causes an increase in deflection, abnormal deflection, cracking, and changes in vibration characteristics. There are methods for measuring this deflection and cracking.
また、 プレストレスの減少状態を知る方法として、 従来は、 P C構造物表面に 歪計を取り付け、 P C構造物 負荷が変化した時の歪量を計測する方法が知られ ている。 上記方法により計測された歪量の変化は、 同条件で予め製作された共試 体等で計測した弾性係数によって内部応力の増減を計測する。 また、 コンクリー ト部材に歪計を埋め込み計測する方法も存在する。  Conventionally, as a method of knowing the state of decrease in prestress, a method of attaching a strain gauge to the surface of a PC structure and measuring the amount of strain when the load of the PC structure changes is known. The change in the amount of strain measured by the above method is measured by measuring the increase or decrease of the internal stress based on the elastic modulus measured by a co-specimen manufactured in advance under the same conditions. There is also a method for embedding and measuring a strain gauge in a concrete member.
し力 し、 上記に示すように、 まず、 たわみの変化の計測は、 可能であるが不動 点等の設定の難しさと、 たわみの変化がプレストレスの減少とクリープによって 生じるためこの分離ができないという問題点がある。 また、 ひぴ割れの計測にお いては、 微細なひび割れの発見が難しく、 的確な計測をすることが困難であると いう問題点がある。 また、 プレストレスの減少による振動特性 (周波数) の変化 の計測にあっては、 現状の計測技術では困難であるという問題点がある。 また、 プレストレスの減少状態を直接知る方法としての応力計測方法 (歪量を 計測する方法等) で得られるのは応力の増減値であって、 現存する内部応力の値 ではないという問題点がある。 First, as shown above, it is possible to measure the change in deflection, but it is difficult to set the fixed point, etc., and this separation cannot be performed because the change in deflection is caused by reduction of prestress and creep. There is a problem. Also, in measuring cracks, there is a problem that it is difficult to find minute cracks and it is difficult to measure accurately. In addition, there is a problem that it is difficult to measure changes in vibration characteristics (frequency) due to a decrease in prestress with the current measurement technology. Another problem is that the stress measurement method (method of measuring the amount of strain, etc.) as a method of directly knowing the reduced state of prestress can only obtain the increase or decrease of stress, not the value of existing internal stress. is there.
また、 従来のたわみの変化、 ひぴ割れ等の計測にあっては、 P C構造物の耐久 性能は計測できるが、 耐荷性能が計測できないという問題点があった。 この耐荷 性能は、 現存内部応力を的確に計測できれば、 算出できるので、 補修や補強の計 画設計を的確に行えるので便利である。  Also, in the conventional measurement of change in deflection, cracking, etc., there is a problem that the durability performance of the PC structure can be measured, but the load-bearing performance cannot be measured. This load-carrying capacity can be calculated if the existing internal stress can be accurately measured, so it is convenient because repair and reinforcement planning can be performed accurately.
また、 コンクリート部材に歪計を埋め込んで計測する場合は、 現存内部応力を 的確に計測できるが、 現状では、 歪計本体の耐用年数が短いとともに、 計測位置 に的確に設置することが困難である。  In addition, when measuring by embedding a strain gauge in a concrete member, the existing internal stress can be accurately measured.However, at present, the service life of the strain gauge body is short, and it is difficult to accurately install it at the measurement position. .
そこで本発明は、 P C構造物の内部応力を、 容易、 かつ的確に計測するための P C構造物に含まれる鉄筋の応力計測方法、 及びその方法を利用した P C構造物 の応力計測方法、 P C構造物の劣化診断システムを提供することを目的とする。 発明の開示  Accordingly, the present invention provides a method for measuring stress of a reinforcing bar included in a PC structure for easily and accurately measuring the internal stress of the PC structure, a method for measuring a stress of a PC structure using the method, It is an object of the present invention to provide an object deterioration diagnosis system. Disclosure of the invention
以下、 本発明について説明する。 なお、 本発明の理解を容易にするために添付 図面の参照符号を括弧書きにて付記するが、 それにより本発明が図示の形態に限 定されるものではない。  Hereinafter, the present invention will be described. To facilitate understanding of the present invention, reference numerals in the accompanying drawings are appended in parentheses, but the present invention is not limited to the illustrated embodiment.
本発明の所定の構造物に含まれる鉄筋 Aの応力計測方法は、 予め前記鉄筋の透 磁率と応力、 及び透磁率と温度との関数とを含む初期値を計測及び/又は算出す る工程と、 前記鉄筋の透磁率と温度とを含む現状値を検出するための計測手段を 前記鉄筋に設けて計測する工程と、 前記初期値と前記現状値の数値に基づいて現 状の鉄筋の応力を算出する工程と、 を備えていることを特徴とする。  The method for measuring the stress of the reinforcing bar A included in the predetermined structure according to the present invention includes a step of measuring and / or calculating an initial value including a permeability and a stress of the reinforcing bar and a function of the permeability and the temperature in advance. Providing a measuring means for detecting a current value including the magnetic permeability and temperature of the reinforcing bar on the reinforcing bar, and measuring the current value of the reinforcing bar based on the initial value and the numerical value of the current value. And a calculating step.
このようにすれば、 被測定体 (鉄筋) の現有応力を直接測定できる。 また、.鉄 筋の応力を測定することにより、 その鉄筋を有する構造物 (P C構造物) の応力 状態並びに応力変化を計測することができる。  In this way, the existing stress of the measured object (rebar) can be directly measured. Also, by measuring the stress of the reinforcing bar, the stress state and the stress change of the structure (PC structure) having the reinforcing bar can be measured.
また、 本発明の鉄筋の応力計測方法を利用した P C構造物 (5 0 ) の応力計測 方法は、 P C構造物に含まれる鉄筋に応力を計測するための計測手段 (5 3 ) を 備え、 前記計測手段により計測される前記鉄筋の現状応力とその後の変化からプ レス トレスの減少を評価し、 前記 P C構造物の応力状態を推定し計測することを 特徴とする。 The method for measuring the stress of a PC structure (50) using the method for measuring the stress of a reinforcing bar according to the present invention includes a measuring means (53) for measuring a stress on a reinforcing bar included in the PC structure. From the current stress of the reinforcing bar measured by the measuring means and the subsequent changes, The method is characterized in that a decrease in stress is evaluated, and a stress state of the PC structure is estimated and measured.
鉄筋は、 コンクリートと一体ィ匕されておりコンクリートが受けている同じ歪み を受けているため、 この鉄筋は施工時からのコンクリートに作用した応力を受け ている。 また、 この場合、 コンクリート部材は、 クリープ、 乾燥収縮等の無応力 ひずみが発生するが、 この無応力ひ.ずみは鉄筋の応力として反映されない。 しか し、 無応力ひずみが発生すると、 拘束等によりコンクリート部材はクリープ等の 2次応力の影響を受け、 その 2次応力は鉄筋にも作用する。 そのためクリープ等 の影響でプレストレスが減少した応力も鉄筋は受けている。 故に、 P C構造物に 含まれる鉄筋の応力を計測することにより、 現状での応力状態並びに応力変化を 推定し計測することができる。 また、 この現状の応力状態並びに応力変化から、 P C構造物のプレストレス減少の今後の予測が可能となる。 また、 この予測値か ら将来の安全性が評価できるとともに、 対処を行う時期や対処方法を分析するこ とができる。 また、 応力状態と、 その変化量を把握すれば、 P C鋼材の破断状況 を定量的に把握でき、耐荷性能の評価、対策工法の検討を行う情報が取得できる。 また、 本発明の鉄筋の応力計測方法を利用した P C構造物の劣化診断システム ( 1 0 0 ) は、 少なくとも P C構造物に含まれる鉄筋の現状の応力を計測するた めの計測手段 (5 3 ) と、 前記計測手段により計測された鉄筋の現状の応力値と 予め計測された鉄筋の応力値に基づいて、 前記 P C構造物が劣化しているか否か を判定するための判定手段 (2 3 ) と、 前記判定手段に基づいて前記 P C構造物 の劣化状況を評価し診断するための評価 ·診断手段 (2 3 b ) と、 前記評価 '診 断手段により評価及び Z又は診断された結果を出力するための出力手段 (3 2 ) と、 を備えていることを特徴とする。 また、 前記評価及び/又は診断結果に基づ いて対処方法等を抽出するための抽出手段 (2 3 c ) と、 前記抽出手段により抽 出された対処方法等を出力するための出力手段(3 2 )と、を備えていてもよい。 また、 前記計測手段は、 少なくとも前記 P C構造物に含まれる所定の鉄筋の透磁 率と温度とを検出するためのセンサである。  Since the rebar is integrated with the concrete and is subjected to the same distortion that the concrete is receiving, the rebar is subjected to the stress applied to the concrete from the time of construction. In this case, the concrete member undergoes stress-free strain such as creep and drying shrinkage, but this stress-free strain is not reflected as the stress of the reinforcing bar. However, when stress-free strain occurs, concrete members are affected by secondary stress such as creep due to restraint, etc., and the secondary stress also acts on the reinforcing steel. For this reason, the rebar also receives stress with reduced prestress due to the effects of creep and the like. Therefore, by measuring the stress of the reinforcing bars included in the PC structure, it is possible to estimate and measure the current stress state and stress change. From the current stress state and stress change, it is possible to predict future reduction of prestress of PC structures. In addition, it is possible to evaluate future safety from these predicted values, and to analyze the timing of countermeasures and countermeasures. Also, by grasping the stress state and the amount of change, it is possible to quantitatively grasp the fracture state of the PC steel material, and to obtain information for evaluating load-bearing performance and studying countermeasures. Further, the deterioration diagnosis system (100) for a PC structure using the method for measuring the stress of a reinforcing bar of the present invention is a measuring means (53) for measuring at least the present stress of the reinforcing bar included in the PC structure. Determining means for determining whether or not the PC structure has deteriorated based on the current stress value of the reinforcing bar measured by the measuring means and the pre-measured stress value of the reinforcing bar. Evaluation / diagnosis means (23b) for evaluating and diagnosing the deterioration state of the PC structure based on the determination means, and evaluation and Z or the result of the diagnosis by the evaluation / diagnosis means. And output means (32) for outputting. Extraction means (23c) for extracting a coping method or the like based on the evaluation and / or diagnosis results, and output means (3c) for outputting the coping method or the like extracted by the extraction means. 2) and may be provided. Further, the measuring means is a sensor for detecting at least the magnetic permeability and temperature of a predetermined reinforcing bar included in the PC structure.
このようにすれば、 現状の P C構造物の応力状態並びに応力変化を計測し、 P C構造物が劣化しているか否かを評価及び/又は診断することができる。 これに より P C構造物の耐荷性能を評価できる。 また、 評価及び/又は診断結果による 劣化状態に基づいて、 今後の対処方法を決定することができる。 更に、 将来の P C構造物の劣化状態を予測することも可能となる。 In this way, it is possible to measure the current stress state and stress change of the PC structure, and to evaluate and / or diagnose whether the PC structure has deteriorated. to this It is possible to evaluate the load-carrying performance of PC structures. In addition, the future countermeasures can be determined based on the deterioration status based on the evaluation and / or diagnosis results. In addition, it will be possible to predict the future state of deterioration of PC structures.
また、 P C構造物のひび割れや P C鋼材の破断、 変位、 腐食等を計測するため の計測手段 (センサ) を合わせて用いることにより、 P C構造物の劣化状態を詳 細に計測し、 評価することができる。 更に、 その劣化状態に基づいて、 的確な今 後の対処方法を決定することができる。 また、 的確な将来の P C構造物の劣化状 態を予測することもできる。 図面の簡単な説明  In addition, by using measurement means (sensors) for measuring cracks in PC structures and fracture, displacement, corrosion, etc. of PC steel materials, the deterioration state of PC structures is measured and evaluated in detail. Can be. Furthermore, an appropriate future countermeasure can be determined based on the state of deterioration. It is also possible to accurately predict the future state of deterioration of PC structures. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 全体のシステム図である。  Fig. 1 is an overall system diagram.
第 2図は、 計測装置の実施例である。  FIG. 2 shows an embodiment of the measuring device.
第 3図は、 本システムの動作形態の一例を示すフローチャートである。  FIG. 3 is a flowchart showing an example of an operation mode of the present system.
第 4図は、 データベースの例である。  Figure 4 is an example of a database.
第 5図は、 評価用データベースを示し、 第 5図 (a ) は耐荷性能評価データべ ース、 第 5図 (b ) は耐久性能評価データベース、 第 5図 (c ) は評価レベル一 対処方法の関係を示すデータベース、 第 5図 (d ) は対処方法一対処工法の関係 を示すデータベースである。  Fig. 5 shows the evaluation database. Fig. 5 (a) shows the load-bearing performance evaluation database, Fig. 5 (b) shows the durability performance evaluation database, and Fig. 5 (c) shows the evaluation level. Fig. 5 (d) is a database showing the relationship between the coping method and the coping method.
第 6図は、 本システムの利用形態の一例を示すフローチャートである。  FIG. 6 is a flowchart showing an example of a usage form of the present system.
第 7図は、 P C構造物における EMセンサ設置例を示し、 第 7図 (a ) は P C 構造物に EMセンサを設置した際の概要図、 第 7図 (b ) は第 7図 (a ) の B拡 大図である。  Fig. 7 shows an example of EM sensor installation on a PC structure. Fig. 7 (a) is a schematic diagram when an EM sensor is installed on a PC structure. Fig. 7 (b) is Fig. 7 (a). This is an enlarged view of B.
第 8図 、 EMセンサの断面図である。  FIG. 8 is a cross-sectional view of the EM sensor.
第 9図は、 P C構造物に対する EMセンサの取付方法を示すフローチャートで める。 発明を実施するための最良の形態  FIG. 9 is a flowchart showing a method of attaching the EM sensor to the PC structure. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図示する一実施形態に基づいて説明する。 第 1図は、 本発明の 全体のシステム図、 第 2図は計測装置の実施例である。 図示のように、 本発明に係る P C構造物の劣化診断システム 1 0 0は、 P C構 造物の劣化現象を計測するための計測装置 1 0と、 この計測装置により計測され るデータから現状における P C構造物の状態の評価 ·診断等を行う管理装置 2 0 と、 前記評価等の現状における P C構造物の情報を出力するための端末 3 0と、 を含んで構成される。 また、 この端末 3 0とは、 P C構造物を管理する管理会社 等の端末 (以下、 「管理端末 3 0」 と称す。 ) である。 また、 本実施形態では、 計測装置 1 0と管理装置 2 0、及び管理装置 2 0と管理端末 3 0は通信回線 3 5、 3 6を介して接続される。 通信回線 3 5、 3 6.は無線 ·有線回線等どのような形 態をとつても構わない。 なお、 管理装置 2 0、 管理端末 3 0には、 一般に使用さ れるコンピュータ装置が使用される。 Hereinafter, the present invention will be described based on one embodiment shown in the drawings. FIG. 1 is an overall system diagram of the present invention, and FIG. 2 is an embodiment of a measuring device. As shown in the figure, a PC structure deterioration diagnosis system 100 according to the present invention includes a measuring device 100 for measuring a deterioration phenomenon of a PC structure, and a PC at the present time based on data measured by the measuring device. It is configured to include a management device 20 for evaluating and diagnosing the state of the structure, and a terminal 30 for outputting information on the PC structure at the present time such as the evaluation. The terminal 30 is a terminal of a management company or the like that manages the PC structure (hereinafter, referred to as “management terminal 30”). In the present embodiment, the measuring device 10 and the management device 20 and the management device 20 and the management terminal 30 are connected via communication lines 35 and 36. The communication lines 35, 3 and 6 may take any form such as a wireless or wired line. Note that generally used computer devices are used for the management device 20 and the management terminal 30.
計測装置 1 0は、 第 1図に示すように、 P C構造物の所定位置に配設される複 数の計測手段としてのセンサ 1 1、 1 1 a、 · ' ·、 l l hと、 これらセンサ 1 1に より計測されるデータを記憶するための記憶手段としての記憶部 1 2と、 この記 憶部 1 2に記憶されるデータを管理装置 2 0に送信するための通信手段としての 送信部を含む通信部 1 3 (アンテナ等も含む) と、 を備える。 また、 センサ 1 1 により計測されるデータは所定の時間ごとに計測される。また、記憶部 1 2には、 時系列で各センサ 1 1により計測されたデータが記憶される。  As shown in FIG. 1, the measuring device 10 includes a plurality of sensors 11, 11 a,..., Llh as a plurality of measuring means disposed at predetermined positions of the PC structure, and these sensors 1. A storage unit 12 as a storage unit for storing data measured by 1 and a transmission unit as a communication unit for transmitting data stored in the storage unit 12 to the management device 20. And a communication unit 13 (including an antenna, etc.). The data measured by the sensor 11 is measured every predetermined time. The storage unit 12 stores data measured by the sensors 11 in time series.
具体的には、 第 2図に示すように、 計測装置 1 0は、 複数のセンサ 1 1と、 記 憶部 1 2として機能するデータ口ガー 1 2 aと、 通信部 1 3 (アンテナ 1 3 a等 も含む。 ) と、 データを伝送する伝送手段としてのネットワークライン 1 6と、 データ口ガー 1 2 aに記憶するセンサ 1 1を切り替える等の分岐手段としてのジ ヤンクションボックス 1 7と、 計測装置 1 0を構成している各装置に電源を供給 する電源供給手段としてのソーラパネル 1 8と、 データ口ガー 1 2 aに記憶され たデータを外部に取り出す外部出力手段としてのリードアウトボックス 1 9と、, を備えている。 これら各装置等は P C構造物 1 5の所定位置に配設される。  Specifically, as shown in FIG. 2, the measuring device 10 includes a plurality of sensors 11, a data port gir 12 a functioning as a storage unit 12, a communication unit 13 (an antenna 13). a, etc.), a network line 16 as a transmission means for transmitting data, and a junction box 17 as a branching means for switching the sensor 11 stored in the data port girder 12a. A solar panel 18 as a power supply means for supplying power to each device constituting the measuring device 10, and a lead-out box as an external output means for taking out the data stored in the data port 12a. 1 9 and, are provided. These devices and the like are arranged at predetermined positions of the PC structure 15.
複数のセンサ 1 1は、 各センサ 1 1が有する機能に基づいて P C構造物 1 5の 所定位置に配設される。 また、 複数のセンサ 1 1とデータ口ガー 1 2 aとは、 デ ータを伝送するための伝送手段としてのネットワークライン 1 6及び/又はジャ ンクシヨンボックス 1 7を介して電気的に接続される。 また、 ジャンクションボ ックス 17は PC構造物 15に所定の間隔をおいて配設される。 また、 データ口 ガー 1 2 aは通信部 13 (アンテナ 13 a等も含む。 ) と電気的に接続される。 また、 ソーラパネル 18は、 データ口ガー 12 aや通信部 13、 センサ 1 1等計 測装置 10の各装置等と電気的に接続される。 また、 リードアウトボックス 19 はデータ口ガー 12 aとネットワークライン 16を介して電気的に接続される。 このように、 各センサ 1 1により計測されたデータはジャンクションボックス 1 7及び/又はネットワークライン 16を介してデータ口ガー 12 aに時系列で 記憶される。 また、 記憶されたデータは、 所定時間ごとに管理装置 20に送信さ れる。 なお、 記憶されたデータの管理装置 20への送信は、 データ口ガーに 12 a記憶されると同時に送信されても構わない。 The plurality of sensors 11 are arranged at predetermined positions on the PC structure 15 based on the functions of each sensor 11. Further, the plurality of sensors 11 and the data port gir 12a are electrically connected via a network line 16 and / or a junction box 17 as a transmission means for transmitting data. You. Also, Junction Bo The boxes 17 are disposed on the PC structure 15 at predetermined intervals. The data port 12a is electrically connected to the communication unit 13 (including the antenna 13a and the like). Further, the solar panel 18 is electrically connected to the data port gir 12a, the communication unit 13, the sensors 11 and the like, and the measuring devices 10 and the like. The lead-out box 19 is electrically connected to the data port ger 12a via the network line 16. In this way, the data measured by each sensor 11 is stored in the data port ger 12a in time series via the junction box 17 and / or the network line 16. Further, the stored data is transmitted to the management device 20 at predetermined time intervals. The transmission of the stored data to the management device 20 may be performed simultaneously with the storage of the data 12a in the data port logger.
また、 センサ 1 1、 1 1 a、 l i b, ···、 l l hは、 例えば、 PC構造物 50 (プレストレスト .コンクリート) の応力度(状態) を計測するためのセンサ(ス ロットストレス、 EMセンサ等) 1 1、 PC鋼材の張力状態を計測するためのセ ンサ (ロードセル、. EMセンサ等) l l a、 PC鋼材の破断状態を計測するため のセンサ (S o un d P r i n t、 AE (ァコースティックェミッション)等) 1 1 b、 PC構造物の変位(たわみ変位)状態を計測するためのセンサ(変位計、 レーザ変位計等) l l c、 PC構造物のひび割れ等を計測するためのセンサ (撮 影装置等) 1 1 d、 プレストレスト 'コンクリートの中性化を計測するためのセ ンサ 1 1 e、 プレストレスト .コンクリートに含まれる塩分量を計測するための センサ 11 f 、 PC鋼材の腐食を計測するためのセンサ 1 1 g、 PC構造物にか カる振動の変化状態を計測するためのセンサ (加速度計等) l l h等である。 ま た、 上記 PC構造物の応力度を計測するためのセンサ 1 1とは、 PC構造物に含 まれる鉄筋の応力を計測するためのセンサである。 また、 これらセンサは PC構 造物の残存耐用年数程度の寿命が必要である(具体的には、 50〜60年程度)。 また、 直接 PC構造物の応力状態を計測できることが好ましく、 かつ、 温度、 ク リープ等の無応力ひずみを感知しないことが必要である。  Sensors 11, 11a, lib,..., Llh are sensors (slot stress, EM sensor, etc.) for measuring the stress level (state) of PC structure 50 (prestressed concrete), for example. 1) Sensors for measuring the tension state of PC steel (load cells, EM sensors, etc.) lla, Sensors for measuring the break state of PC steel (Soun d Print, AE (acoustic) 1) b, sensors for measuring the displacement (flexure displacement) of PC structures (displacement gauges, laser displacement gauges, etc.) llc, sensors for measuring cracks, etc., in PC structures 1d, prestressed sensor for measuring carbonation of concrete 11e, prestressed sensor 11f for measuring the amount of salt contained in concrete, measuring corrosion of PC steel Sensor for 1 1 g, P Sensors (accelerometers, etc.) for measuring the change in vibration applied to the C structure. Further, the sensor 11 for measuring the stress degree of the PC structure is a sensor for measuring the stress of the reinforcing bar included in the PC structure. In addition, these sensors need a life of about the remaining useful life of the PC structure (specifically, about 50 to 60 years). In addition, it is preferable that the stress state of the PC structure can be directly measured, and that no stress-free strain such as temperature and creep should be sensed.
管理装置 20は、 計測装置 10から送信されるデータを受信するための受信部 を含む通信部 21と、 データベース 22と、 受信したデータと予め定められた所 定値 (予測値や管理基準値) とを比較しその比較結果から P C構造物の判定を行 うための判定手段としての判定部 2 3と、 判定部 2 3により判定された結果を管 理端末 3 0に送信するための通信手段としての送信部を含む通信部 2 1と、 を備 える。 また、 管理装置 2 0は制御部 (図示なし) を備え、 制御部は各部 2 1〜2 3 dを制御する。 また、 データベース 2 2には、 計測されたデータに基づいて P C構造物の劣化状況を評価し診断するためのデータや、 評価 ·診断された結果に 基づレ、て現状及ぴその後の対処方法 ·対処工法を示すデータ等が記憶されている。 また、 判定部 2 3は、 受信したデータと予め定められた所定値 (予め計測及び /又は算出された鉄筋の応力値等) とを比較するための比較手段としての比較部 2 3 aと、 比較部 2 3 aにより比較された結果から現状の P C構造物の評価 ·診 断等を行うための評価 ·診断手段としての評価 ·診断部 2 3 bと、 評価'診断部 2 3 bにより評価 ·診断された結果に基づいて現状及びその後の P C構造物の対 処方法及ぴ対処工法をデータベース 2 2から抽出するための'抽出手段としての抽 出部 2 3 cと、 比較部 2 3 aにより比較された結果から将来の P C構造物の劣化 予測を行うための予測手段としての予測部 2 3 dと、 を備えている。 また、 判定 部 2 3により判定された結果とは、 評価 ·診断部 2 3 b、 予測部 2 3 d、 抽出部The management device 20 includes a communication unit 21 including a reception unit for receiving data transmitted from the measurement device 10, a database 22, the received data and predetermined values (predicted values and management reference values). And judge the PC structure from the comparison result. And a communication unit 21 including a transmission unit as a communication unit for transmitting the result determined by the determination unit 23 to the management terminal 30. . The management device 20 includes a control unit (not shown), and the control unit controls each of the units 21 to 23d. The database 22 contains data for evaluating and diagnosing the deterioration of PC structures based on the measured data, and based on the results of the evaluation and diagnosis, based on the current situation and the subsequent countermeasures. · Data indicating the countermeasure method is stored. Further, the determination unit 23 includes a comparison unit 23 a as a comparison unit for comparing the received data with a predetermined value (such as a previously measured and / or calculated stress value of a reinforcing bar). Evaluation of the current PC structure based on the result of comparison by the comparison unit 23aEvaluation for diagnosis, etc.Evaluation as diagnostic meansEvaluation by the diagnosis unit 23b and the evaluation 'diagnosis unit 23b Extraction unit 23c as extraction means for extracting the current and subsequent methods of handling and handling methods for PC structures based on the diagnosed results from database 22 and comparison unit 23a And a prediction unit 23 d as prediction means for predicting the future deterioration of PC structures from the results of the comparison. The results determined by the determination unit 23 include the evaluation / diagnosis unit 23b, the prediction unit 23d, and the extraction unit.
2 3 cにより評価、 予測、 抽出されたデータ等の情報 (現状又は将来の P C構造 物の状態を示す情報) である。 Information such as data evaluated, predicted, and extracted by 23 c (information indicating the current or future state of the PC structure).
管理端末 3 0は、 管理装置 2 0から送信される情報を受信するための受信部を 含む通信部 3 1と、 その情報を出力するための出力手段としての出力部 3 2と、 を備える。また、管理端末 3 0は制御部(図示なし) を備え、制御部は各部 3 1、 The management terminal 30 includes a communication unit 31 including a reception unit for receiving information transmitted from the management device 20, and an output unit 32 as output means for outputting the information. The management terminal 30 includes a control unit (not shown).
3 2を制御する。 Control 3 2
次に、 本システムの動作形態の一実施例について説明する。 第 3図は、 本シス テムの動作形態の一例を示すフローチャートである。 なお、 理解し易いように第 1図に対応する符号を付するがそれに限定されるものではない。  Next, an example of an operation mode of the present system will be described. FIG. 3 is a flowchart showing an example of an operation mode of the present system. Note that, for easy understanding, reference numerals corresponding to those in FIG. 1 are given, but the present invention is not limited thereto.
まず、 ステップ S 1では、 P C構造物の所定位置に設置された各センサ 1 1、 1 1 a、 l i b , · · ·、 1 1 hにより P C構造物の劣化現象が計測される。  First, in step S1, the deterioration phenomenon of the PC structure is measured by the sensors 11, 11a, lib,..., 11h installed at predetermined positions of the PC structure.
ステップ S 2では、 各センサ 1 1により所定時間ごとに計測されたデータが、 時系列で記憶部 1 2に記憶される。  In step S2, data measured at predetermined time intervals by the sensors 11 is stored in the storage unit 12 in a time series.
次に、 ステップ S 3では、記憶部 1 2に記憶されたデータ力 所定時間 (期間) ごとに通信部 1 3により管理装置 2 0へ送信される。 Next, in step S3, the data capacity stored in the storage unit 12 predetermined time (period) Is transmitted to the management device 20 by the communication unit 13 every time.
次に、 ステップ S 4では、 管理装置 2 0の受信部 2 1では、 計測装置 1 0より 送信されたデータが受信される。 また、 受信されたデータはセンサ 1 1ごとに時 系列でデータベース 2 2に入力され、 記憶されるとともに管理される。  Next, in step S4, the receiving unit 21 of the management device 20 receives the data transmitted from the measurement device 10. The received data is input to the database 22 in a time series for each sensor 11, stored and managed.
第 4図にデータベースの例を示す。  Figure 4 shows an example of a database.
図示のように、 データベース 2 2は、 モニタリング項目 4 1と計測値及ぴ予測 値の項目 4 2、 4 3と、 管理基準値の項目 4 4とを含んで構成される。 モニタリ ング項目 4 1とは、例えば、各センサ 1 1〜 1 1 hの計測項目(応力項目 4 1 a、 張力項目 4 1 b、 変位項目 4 1 c等) である。 計測値の項目 4 2とは、 各センサ 1 1により所定時間ごとに計測された値 4 2 aである。 予測値の項目 4 3とは、 所定の P C構造物 1 5の構造緖元、 施工条件、 同様の構造物の履歴、 環境条件、 使用環境条件等から予め算出された所定期間ごとの劣化状況を予測した値 4 3 a である。 管理基準値 4 4とは、 所定の P C構造物の諸条件から算出された限界値 であり、 すぐにも所定の対策が必要な値 4 4 aである。  As shown in the figure, the database 22 includes monitoring items 41, measured values and predicted values items 42, 43, and management reference value items 44. The monitoring item 41 is, for example, a measurement item (stress item 41a, tension item 41b, displacement item 41c, etc.) of each sensor 11 to 11h. The item 42 of the measured value is a value 42a measured by the sensor 11 at a predetermined time interval. Items 4 3 of the predicted values are the deterioration conditions for each predetermined period calculated in advance from the structural elements of the specified PC structure 15, construction conditions, history of similar structures, environmental conditions, use environment conditions, etc. The predicted value is 4 3 a. The control standard value 44 is a limit value calculated from the various conditions of the specified PC structure, and is a value 44a that requires a specified measure immediately.
また、ステップ S 4では、各センサ 1 1〜1 1 hの計測項目 4 1 a、 4 1 b、 · · · ごとに実測された計測値 4 2 aが自動的にデータベース 2 2の所定の欄に入力さ れる。  Also, in step S4, the measured value 42a actually measured for each of the measurement items 41a, 41b, ... of each sensor 11 to 11h is automatically stored in a predetermined column of the database 22. Is input to.
次に、 ステップ S 5では、 管理装置 2 0の判定部 2 3では P C構造物が劣化し ているか否かが判断される。 この判断が肯定されれば、 ステップ S 6に進み、 否 定されれば、 処理を終了する。  Next, in step S5, the determination unit 23 of the management device 20 determines whether the PC structure is deteriorated. If this determination is affirmed, the process proceeds to step S6, and if not, the process ends.
具体的には、 まず、 管理装置 2 0の比較部 2 3 aによりデータベース 2 2に入 力された計測値 4 2 aが予め定められている管理基準値 4 4 a又は予測値 4 3 a と比較される。 次に、 判定部 2 3により計測値 4 2 aがその管理基準値 4 4 a又 は予測値 4 3 aを超えたか否かが判定 (判断) される。 更に、 計測値 4 2 aが予 測値 4 3 a又は管理基準値 4 4 aを超えた場合には、次のステップ S 6において、 P C構造物の評価 (診断) が行われる。  Specifically, first, the measured value 42a input to the database 22 by the comparing unit 23a of the management device 20 is compared with a predetermined management reference value 44a or a predicted value 43a. Be compared. Next, the determination unit 23 determines (determines) whether the measured value 42a exceeds the management reference value 44a or the predicted value 43a. Further, when the measured value 42a exceeds the predicted value 43a or the control standard value 44a, the evaluation (diagnosis) of the PC structure is performed in the next step S6.
次に、 ステップ S 6では、 管理装置 2 0の評価 ·診断部 2 3 bでは、 受信した データに基づいて現状の P C構造物の状態が評価 (診断) される。  Next, in step S6, the evaluation / diagnosis unit 23b of the management device 20 evaluates (diagnoses) the current state of the PC structure based on the received data.
評価 (診断) は、 まず、 予め定められた算出方法に基づいて、 各センサ 1 1〜 1 1 hにより計測された計測値 4 2 aから算出され、 その算出結果に基づいて後 述する第 5図 (a ) 、 ( b ) を参照して P C構造物の耐荷性能と耐久性能につい て評価,診断される。 The evaluation (diagnosis) is performed based on a predetermined calculation method. It is calculated from the measured value 42a measured by 11h, and based on the calculation result, referring to Figs. 5 (a) and (b) described later, the load-bearing performance and durability performance of the PC structure Evaluation and diagnosis.
第 5図は評価用データベースを示し、 第 5図 (a ) は耐荷性能評価データべ一 ス、 第 5図 (b ) は耐久性能評価データベース、 第 5図 (c ) は評価レベル一対 処方法の関係を示すデータベース、 第 5図 (d ) は対処方法一対処工法の関係を 示すデータベースである。  Fig. 5 shows the evaluation database. Fig. 5 (a) shows the load-bearing performance evaluation database, Fig. 5 (b) shows the durability performance evaluation database, and Fig. 5 (c) shows the evaluation level pairing method. Fig. 5 (d) is a database showing the relationship between the coping method and the coping method.
第 5図 (a ) に示すように耐荷性能は、 耐荷性能の低下の度合いによりレベル 1〜3に区分けされる。 また、 耐久性能は、 第 5図 (b ) に示すように耐久性能 の低下の度合いによりレベル A〜Cに区分けされる。 また、 耐荷性能は P C構造 物 5 0の応力度を計測 (第 7図参照) することにより得られる (算出できる) 。 また、 耐久性能は P C構造物 5 0のひび割れや P C鋼材の破断、 変位、 腐食等を 計測することにより得られる (算出できる) 。  As shown in Fig. 5 (a), the load-bearing performance is classified into levels 1 to 3 according to the degree of decrease in load-bearing performance. Durability is classified into levels A to C according to the degree of decrease in durability as shown in Fig. 5 (b). The load carrying capacity can be obtained (calculated) by measuring the stress level of the PC structure 50 (see Fig. 7). Durability can be obtained (calculated) by measuring the cracks in the PC structure 50 and the fracture, displacement, corrosion, etc. of the PC steel.
次に、 診断された結果に基づき、 第 5図 (c ) に示すように、 総合的に、 現状 の P C構造物の評価 ·診断がされる。 具体的には、 評価は、 第 5図 (a ) 、 ( b ) に示す耐荷性能データベース 2 2 aと耐久性能データベース 2 2 bを参照して、 計測された結果 (計測値と予測値又は管理基準値との比較結果) に基づいて耐荷 性能と耐久性能のどのレベルに属するかにより、 1一 Aから 3— Cにランク分け される。 例えば、 予め定められた算出方法に基づいて計測値から算出した結果、 耐荷性能レベルが 2で耐久' 1"生能レベルが Aであった場合には、 評価は 2— Aとな る。  Next, based on the results of the diagnosis, the current PC structure is evaluated and diagnosed comprehensively as shown in Fig. 5 (c). Specifically, the evaluation was performed by referring to the load-bearing performance database 22a and the durability performance database 22b shown in Figs. 5 (a) and (b). Based on the results of comparison with the reference value), it is classified as 11-A to 3-C according to which level of load-bearing performance or durability performance it belongs to. For example, as a result of calculating from measured values based on a predetermined calculation method, if the load-bearing performance level is 2 and the endurance '1' performance level is A, the evaluation is 2-A.
次に、 ステップ S 7では、 管理装置 2 0の予測部 2 3 dでは、 計測値 4 2 aに 基づ'いて、 将来の P C構造物の劣化予測を行う。 具体的には、 管理基準値 4 4 a を下回る時期等が予め定められた算出方法等に基づいて計測履歴等から算出され 予測される。  Next, in step S7, the prediction unit 23d of the management device 20 predicts future deterioration of the PC structure based on the measured value 42a. Specifically, the time when the value falls below the management reference value 44a is calculated and predicted from the measurement history and the like based on a predetermined calculation method and the like.
次に、 ステップ S 8では、 管理装置 2 0の評価'診断部 2 3 bでは、 ステップ S 6で評価された結果に基づいて、 現状における P C構造物の対処方法及ぴ対処 工法を決定し、 抽出部 2 3 cによりその対処方法及び対処工法データをデータべ ース 2 2から抽出する。 具体的には、 まず、 第 5図 (c ) に示す P C構造物の評価レベルと対処方法の 関係を示すデータベース 2 2 cから対処方法を決定する。 次に、 第 5図 (d ) に 示す対処方法と対処工法の関係を示すデータベース 2 2 dから対処方法に対する 適切な対処工法を決定し、それぞれ(対処方法、対処工法)のデータを抽出する。 また、 対処工法は、 P C構造物の緒元、 評価レベル、 等により総合的に判断され る。 判断は予め定められた算出方法により算出され決定される。 例えば、 評価レ ベルが 2 _ Aであった場合は、 第 5図 (c ) のデータベース 2 2 cにより評価レ ベルが 2— Aの P C構造物の対処方法として、 要補強対策が決定する。 次に、 第 5図 (d ) のデータベース 2 2 dにより補強対策として、 鉄板工法、 F R P接着 工法、 増厚工法、 プレストレス導入工法、 支点増設工法等の中から、 予め定めら れた算出方法等により得られた結果に基づいて、 適切な工法が選定され、 その詳 細等が抽出される。 Next, in step S8, the evaluation of the management device 20 'The diagnostic unit 23b determines the current method of handling the PC structure and the method of handling it based on the results evaluated in step S6. The extractor 23 c extracts the coping method and coping method data from the database 22. Specifically, first, the coping method is determined from the database 22c that shows the relationship between the evaluation level of the PC structure and the coping method shown in Fig. 5 (c). Next, an appropriate coping method for the coping method is determined from the database 22 d showing the relationship between the coping method and the coping method shown in Fig. 5 (d), and the data of each (coping method and coping method) is extracted. The countermeasure method will be comprehensively determined based on the specifications of the PC structure, evaluation level, and other factors. The judgment is calculated and determined by a predetermined calculation method. For example, if the evaluation level is 2_A, the necessary reinforcement measures will be determined as a method of handling a PC structure with an evaluation level of 2-A based on the database 22c in Fig. 5 (c). Next, as a reinforcement measure based on the database 22d in Fig. 5 (d), a calculation method determined in advance from steel plate method, FRP bonding method, thickening method, prestress introduction method, fulcrum extension method, etc. Based on the results obtained, an appropriate construction method is selected and its details are extracted.
次に、 ス.テツプ S 9では、 管理装置 2 0の送信部 2 1では、 ステップ S 6〜S 8により評価、 予測、 抽出された評価データ、 予測データ、 対処方法及び対処ェ 法データ等の情報を管理端末 3 0に送信する。  Next, in step S9, the transmission unit 21 of the management device 20 transmits the evaluation, prediction, extracted evaluation data, prediction data, coping method, coping method data, etc. in steps S6 to S8. The information is transmitted to the management terminal 30.
次に、 ステップ S 1 0では、 管理端末 3 0の受信部 3 1は、 管理装置 2 0より 送信された情報を受信する。  Next, in step S10, the receiving unit 31 of the management terminal 30 receives the information transmitted from the management device 20.
次に、 ステップ S 1 1では、 管理端末 3 0は、 受信した情報を出力部 3 2によ り出力し、 処理が終了する。  Next, in step S11, the management terminal 30 outputs the received information through the output unit 32, and the process ends.
このように、 管理端末 3 0には、 所定の期間経過後、 一定の基準値を超えた P C構造物についての評価 ·診断がされ、 その評価データ及び/又は将来の P C構 造物の劣化予測データ、 評価に基づく現状の P C構造物の対処方法及び/又は対 処工法を示すデータ、将来の P C構造物の劣化予測データ等の情報が送信される。 そのため、 P C構造物の管理者は、 現状の状況と将来の状況とを知ることができ るとともに、 現状であれば、 どのような対処をすればよいの力 また将来になる と、 どれくらいの対処が必要となるのか、 また、 その際の手間、 工賃等の情報を 知ることができ、 P C構造物の劣化に対して適切な対策を施すことができる。 次に、 本システムの利用形態の一実施例について説明する。  In this way, the management terminal 30 evaluates and diagnoses a PC structure exceeding a predetermined reference value after a predetermined period, and evaluates the evaluation data and / or predicts deterioration data of the future PC structure. Information such as data indicating the current method of handling and / or remedial measures for PC structures based on the evaluation, and prediction data on future deterioration of PC structures is transmitted. Therefore, the manager of the PC structure can know the current situation and the future situation, and at the present time, what kind of measures should be taken and how much should be taken in the future. Information on labor and labor costs at that time, and take appropriate measures against deterioration of PC structures. Next, an example of a use form of the present system will be described.
第 6図は本システムの利用形態の一例を示すフローチャートである。 なお、 理 解し易いように第 1図に対応する符号を付するがそれに限定されるものではない。 まず、 ステップ S 2 1では、 本システムの計測装置 1 0を設置する橋梁 (P C 構造物からなる橋梁) の抽出を行う。 FIG. 6 is a flowchart showing an example of a use form of the present system. In addition, The reference numerals corresponding to FIG. 1 are attached for easy understanding, but the present invention is not limited to them. First, in step S21, a bridge (a bridge made of a PC structure) on which the measuring device 10 of the present system is installed is extracted.
次に、 ステップ S 2 2では、 抽出された P C構造物の所定位置にセンサ 1 1〜 Next, in step S22, sensors 11 to 11 are set at predetermined positions of the extracted PC structure.
1 1 h等を含んで構成される計測装置 1 0を設置し、 P C構造物の計測を開始す る。 なお、 計測されたデータは所定時間 (期間) ごとに管理装置 2 0に伝送され る。 Install the measuring device 10 including 11h etc. and start measuring the PC structure. The measured data is transmitted to the management device 20 every predetermined time (period).
次に、 ステップ S 2 3では、 管理装置 2 0の判定部 2 3では、 計測された値が 予め定められた基準値 (予測値、 管理基準値等) を超えた力否かが判断される。 この判断が肯定されればステップ S 2 4に進み、 否定されれば、 ステップ S 2 9 に進む。  Next, in step S23, the determination unit 23 of the management device 20 determines whether the measured value exceeds a predetermined reference value (predicted value, management reference value, etc.). . If this judgment is affirmed, the process proceeds to step S24, and if not, the process proceeds to step S29.
次に、 ステップ S 2 4では、 管理者に計測値が判断基準を超えた旨が通報され る (管理装置 2 0から管理端末 3 0にその情報が送信される) 。  Next, in step S24, the administrator is notified that the measured value has exceeded the criterion (the information is transmitted from the management device 20 to the management terminal 30).
次に、 ステップ S 2 5、 ステップ S 2 6では、 管理装置 2 0の評価 ·診断部 2 3 bにより対策等の要否が判断される。 この判断が肯定されれば、 ステップ S 2 7に進み、 否定されれば、 ステップ S 2 8に進む。  Next, in steps S25 and S26, the evaluation / diagnosis unit 23b of the management device 20 determines whether or not a countermeasure is required. If this determination is affirmed, the process proceeds to step S27, and if denied, the process proceeds to step S28.
次に、 ステップ S 2 7では、 対策等が必要な旨を管理者に通報 (管理端末 3 0 に送信) するとともに、 管理者は対策を実施する。  Next, in step S27, the administrator is notified that countermeasures and the like are necessary (transmitted to the management terminal 30), and the administrator implements countermeasures.
具体的には、 計測値が基準値を超えた時点で、 管理装置 2 0の判定部 2 3は、 P C構造物の現状評価を行い、 その評価に基づいて適切な対処方法及ぴ対処工法 を予めその対処方法、 対処工法等が入力されているデータベース 2 2から適切な 対処方法、 対処工法等を抽出し、 その評価、 対象方法、 対処工法を示す情報 (デ →、 を管理者 (管理端末 3 0 ) に送信する。 これにより、 管理者はその評価、 対処方法、 対処工法により、 現状の P C構造物の劣化状況を知ることができると ともに、 修理等の時期を検討することができる。  Specifically, when the measured value exceeds the reference value, the judgment unit 23 of the management device 20 evaluates the current state of the PC structure and, based on the evaluation, determines an appropriate countermeasure and a countermeasure construction method. The appropriate countermeasures, countermeasures, etc. are extracted from the database 22 in which the countermeasures, countermeasures, etc. have been input in advance, and the information indicating the evaluation, target method, countermeasures, etc. This allows the administrator to know the current state of deterioration of the PC structure and evaluate the timing of repairs, etc., through the evaluation, countermeasures, and countermeasures.
次に、 ステップ S 2 8では、管理者は、 ステップ S 2 7において対策 (修理等) が実施された場合は、 対策を施した P C構造物の点検等を行う。 点検により特に 不備等がなければ、 ステップ S 2 1に戻り、 再度、 計測を続ける。 また、 点検等 により何らかの不備等がある場合は、 ステップ S 3 1に進み、 管理者は、 判断基 準値 (予測値や管理基準値等) の再設定等を行う。 Next, in step S28, if the countermeasure (repair, etc.) is performed in step S27, the administrator checks the PC structure for which the countermeasure has been taken. If there is no particular defect in the inspection, return to step S21 and continue measurement again. If there is any defect due to inspection, etc., the process proceeds to step S31, and the manager Re-establish reference values (forecast values, management reference values, etc.).
また、 ステップ S 2 3において否定された場合は、 管理者は、 判断基準の見直 しが必要であるか否かを判断する。 この判断が肯定されれば、 ステップ S 3 0に 進み、 否定されれば、 ステップ S 2 1に戻り、 再度、 計測を続ける。  If the result of the determination in step S23 is negative, the administrator determines whether or not it is necessary to review the criteria. If this determination is affirmed, the process proceeds to step S30, and if it is denied, the process returns to step S21 and measurement is continued again.
次に、 ステップ S 3 0では、 管理者によって判断基準値の見直しが行われる。 次に、 ステップ S 3 1では、 管理者は、 ステップ S 3 0において見直された判 断基準値に基づいて判断基準値を設定し、 処理を終了する。 なお、 再度、 計測は 続けられる。  Next, in step S30, the judgment reference value is reviewed by the administrator. Next, in step S31, the administrator sets a criterion value based on the criterion value reviewed in step S30, and ends the process. The measurement can be continued again.
また、 ステップ S 2 6において否定された場合は、 ステップ S 2 9に進み、 ス テツプ S 2 9〜ステップ S 3 1の処理を行う。  If the result in step S26 is negative, the process proceeds to step S29, and the processing from step S29 to step S31 is performed.
このように P C構造物において、 P C構造物の劣化状況を計測するための計測 手段 (センサ 1 1〜1 l h等) を備え、 その計測手段により計測される前記 P C 構造物の現状とその後の変化 (劣化状況) から、 対策を要するか否かの評価を行 レ、、 その評価結果に基づいて対処方法等を決定するとともに管理者に通報する。 このように、 P C構造物の劣化診断システム 1 0 0によって、 予め定められた 基準値に基づいて対策の要否が判断され、判断結果が要対策である場合において、 管理者に通報されるようにしたので、 管理者の管理負担を軽減できる。  As described above, the PC structure is provided with measuring means (sensors 11 to 1 lh, etc.) for measuring the deterioration state of the PC structure, and the present state of the PC structure measured by the measuring means and changes thereafter. Based on the (deterioration status), evaluate whether or not a countermeasure is required. Based on the evaluation result, determine a countermeasure method and notify the administrator. As described above, the PC structure deterioration diagnosis system 100 determines whether or not a countermeasure is required based on a predetermined reference value, and notifies the administrator when the determination result indicates that the countermeasure is required. As a result, the management burden on the administrator can be reduced.
次に、 P C構造物に設置されるセンサの一実施例について説明する。第 7図は、 EMセンサ (Elasto-Magnetic Sensor) 設置例を示し、 第 7図 (a ) は P C構造 物に EMセンサを設置した際の概要図、 第 7図 (b ) は第 7図 (a ) の B拡大図 である。 本実施形態により説明する EMセンサは、 P C構造物における内部応力 を計測するものである。  Next, an embodiment of a sensor installed on a PC structure will be described. Fig. 7 shows an example of installation of an EM sensor (Elasto-Magnetic Sensor). Fig. 7 (a) is a schematic diagram when the EM sensor is installed on a PC structure, and Fig. 7 (b) is Fig. 7 ( It is a B enlarged view of a). The EM sensor described according to the present embodiment measures internal stress in a PC structure.
図示のように、 P C構造物 5 0は、 P C鋼材 5 1及び複数の鉄筋 A、 A、 ···、 Aが緊張状態で所定位置に設けられ、 コンクリートと一体ィヒされて形成される。 この鉄筋 Aのうち所定の鉄筋 Aを選択し、 その鉄筋 Aには応力を計測するための 計測手段としての EMセンサ 5 3を設ける。 具体的には、 既に形成されている P C構造物に EMセンサを設ける場合には、 第 7図 (b ) に示すように、 予め所定 位置の外周に EMセンサを備えた鉄筋 Bを鉄筋 Aに沿わせるように設け、 鉄筋 B の両端部を鉄筋 Aの所定部に溶接等により接続する。 また、 鉄筋 Aの応力が鉄筋 Bに作用するように鉄筋 Aの所定部は切断される。 As shown in the drawing, the PC structure 50 is formed by providing a PC steel material 51 and a plurality of rebars A, A,..., A at predetermined positions in a tensioned state, and integrally formed with concrete. A predetermined reinforcing bar A is selected from the reinforcing bars A, and the reinforcing bar A is provided with an EM sensor 53 as a measuring means for measuring a stress. Specifically, when an EM sensor is provided on a PC structure that has already been formed, as shown in Fig. 7 (b), a reinforcing bar B provided with an EM sensor on the outer periphery of a predetermined position is attached to the reinforcing bar A in advance. Both ends of reinforcing bar B are connected to specified portions of reinforcing bar A by welding or the like. Also, the stress of reinforcing bar A A predetermined portion of the rebar A is cut to act on B.
第 8図は EMセンサの断面図である。  FIG. 8 is a cross-sectional view of the EM sensor.
図示のように、 EMセンサ 5 3は、 磁束印加コイル (以下、 「一次コイル 5 4 J と呼ぶ。 ) と、 磁束検知コイル (以下、 「二次コイル 5 5」と呼ぶ。 ) と、 温度セ ンサ 5 6と、 から構成される。 具体的には、 温度センサ 5 6が、 中空円筒状のポ リウレタン系含浸防水材から構成される円筒部材 5 7の外周面に接するように設 けられる。 また、 二次コイル 5 5は温度センサ 5 6の外側に外周面に卷き付けら れている。 更に、 一次コイル 5 4は、 仕切 5 8を介して二次コイルの外側に卷き 付けられている。 一次コイル 5 4及ぴ二次コイル 5 5は円筒部材 5 7に所定の卷 数、 卷き付けられる。 また、 円筒部材 5 7の内部には被計測体 (鉄筋 A) が貫通 するように設けられる。 一次コイル 5 4はパルス電圧を印加するための印加手段 としての電源と接続され、 二次コイル 5 5は、 誘導起電力を計測するための計測 手段としての計測装置と接続される。  As shown in the figure, the EM sensor 53 includes a magnetic flux applying coil (hereinafter, referred to as “primary coil 54 J”), a magnetic flux detecting coil (hereinafter, referred to as “secondary coil 55”), and a temperature sensor. 5 and 6. Specifically, the temperature sensor 56 is provided so as to be in contact with the outer peripheral surface of the hollow cylindrical cylindrical member 57 made of a polyurethane-impregnated waterproof material. The secondary coil 55 is wound around the outer peripheral surface of the temperature sensor 56. Further, the primary coil 54 is wound around the outside of the secondary coil via a partition 58. The primary coil 54 and the secondary coil 55 are wound around the cylindrical member 57 with a predetermined number of turns. Further, the object to be measured (reinforcing bar A) is provided inside the cylindrical member 57 so as to penetrate. The primary coil 54 is connected to a power supply as an application unit for applying a pulse voltage, and the secondary coil 55 is connected to a measuring device as a measurement unit for measuring an induced electromotive force.
また、 応力を検知する場合は、 まず、 一次コイル 5 4にパルス電圧を印加し、 鉄筋を一時的に磁化する。 その後、 磁ィ匕された鉄筋が消磁される過程において、 二次コイル 5 5に発生する誘導起電力を計測し、透磁率を算出する。以上により、 鉄筋の応力変化に対応した透磁率の変化を検出し、 応力を算出する。 更に具体的 には、 予め鉄筋に対して加力試験を行い、 透磁率と応力及び透磁率と温度の関数 等の初期値を求めておき、 EMセンサにより透磁率と温度と (現状値) を計測す ることにより応力を算定する。  When detecting stress, first, a pulse voltage is applied to the primary coil 54 to temporarily magnetize the rebar. Thereafter, during the process of demagnetizing the magnetized rebar, the induced electromotive force generated in the secondary coil 55 is measured, and the magnetic permeability is calculated. As described above, the change in the magnetic permeability corresponding to the change in the reinforcing bar stress is detected, and the stress is calculated. More specifically, a force test is performed on the rebar in advance to obtain initial values of permeability and stress, and functions of permeability and temperature, and the permeability, temperature, and (current value) are determined by an EM sensor. The stress is calculated by measuring.
既に存在する P C構造物に対する EMセンサの取付方法について説明する。 第 9図は、 P C構造物に対する EMセンサの取付方法を示すフローチャートである。 なお、 説明を理解しやすいように、 第 7図を参照し、 対応する符号を付して説明 する。  The following describes how to attach an EM sensor to an existing PC structure. FIG. 9 is a flowchart showing a method of attaching the EM sensor to the PC structure. For easy understanding of the description, reference is made to FIG.
図示のように、 ステップ S 4 1では、 所定の P C構造物 5 0から EMセンサ 5 3を取り付けるための鉄筋 Aを選定する。  As shown, in step S41, a reinforcing bar A for mounting the EM sensor 53 from a predetermined PC structure 50 is selected.
次に、 ステップ S 4 2では、 選定した鉄筋 Aの露出作業を行う。 具体的には、 P C構造物 (コンクリート部材) 5 0の所定位置をきりだし、 鉄筋 Aの所定部を 露出させる。 次に、 ステップ S 4 3では、 鉄筋 Aに沿わせるように EMセンサ付きの鉄筋 B を設置する。 具体的には、 鉄筋 Bの両端部を鉄筋 Aに溶接等により接続する。 ま た、 この EMセンサ付きの鉄筋 Bは、 予め鉄筋 Bの初期値 (透磁率、 応力、 透磁 率と温度との関数等) を計測しておく必要がある。 Next, in step S42, the work of exposing the selected reinforcing bar A is performed. Specifically, a predetermined position of the PC structure (concrete member) 50 is cut out to expose a predetermined portion of the reinforcing bar A. Next, in Step S43, the reinforcing bar B with the EM sensor is installed so as to be along the reinforcing bar A. Specifically, both ends of reinforcing bar B are connected to reinforcing bar A by welding or the like. In addition, for the reinforcing bar B with the EM sensor, it is necessary to measure the initial values of the reinforcing bar B (permeability, stress, a function of permeability and temperature, etc.) in advance.
次に、 ステップ S 4 4では、 鉄筋 Aの所定部を切断する。 具体的には、 鉄筋 B の接続箇所に対応する鉄筋 Aの所定部を切断する。 鉄筋 Aに作用する応力を EM センサ 5 3で計測するためである。  Next, in Step S44, a predetermined portion of the reinforcing bar A is cut. Specifically, a predetermined portion of the reinforcing bar A corresponding to the connecting point of the reinforcing bar B is cut. This is because the stress acting on the reinforcing bar A is measured by the EM sensor 53.
次に、 ステップ S 4 5では、 表面の復旧作業 (ウレタン注入等も含む。 ) を行 5 o  Next, in step S45, surface restoration work (including urethane injection, etc.) is performed.
次に、 ステップ S 4 6では、 計測を開始し、 取付作業を終了する。  Next, in step S46, measurement is started, and the mounting operation is completed.
このように P C構造物 5 0において、 その P C構造物 5 0に含まれる鉄筋 Aに 応力を計測するための計測手段としての EMセンサ 5 3を備えることにより P C 構造物 5 0の内部応力を計測することができる。  As described above, in the PC structure 50, the internal stress of the PC structure 50 is measured by providing the reinforcing bar A included in the PC structure 50 with the EM sensor 53 as a measuring means for measuring the stress. can do.
以上に示すように、 本発明の鉄筋の応力計測方法は、 予め前記鉄筋の透磁率と 応力、 及ぴ透磁率と温度との関数とを含む初期値を計測及び Z又は算出する工程 と、 前記鉄筋の透磁率と温度とを含む現状値を計測するための計測手段を前記鉄 筋に設けて計測する工程と、 前記初期値と前記現状値の数値に基づいて現状の鉄 筋の応力を算出する工程と、 を備えている。  As described above, the method of measuring the stress of a reinforcing bar according to the present invention includes the steps of: measuring and Z or calculating an initial value including a permeability and a stress of the reinforcing bar and a function of a permeability and a temperature in advance; A step of providing a measuring means for measuring the current value including the magnetic permeability and the temperature of the reinforcing bar on the reinforcing bar, and measuring the current stress of the reinforcing bar based on the initial value and the numerical value of the current value. And a step of performing.
また、 本発明の鉄筋の応力計測方法を利用した P C構造物の応力計測方法は、 P C構造物に含まれる鉄筋に応力を計測するための計測手段を備え、 前記計測手 段により計測される前記鉄筋の現状応力とその後の変化からプレストレスの減少 を評価し、 前記 P C構造物の応力状態を推定し計測するものである。  Further, the method for measuring the stress of a PC structure using the method for measuring the stress of a reinforcing bar of the present invention includes a measuring means for measuring a stress on a reinforcing bar included in the PC structure, wherein the measuring means measures the stress by the measuring means. The prestress reduction is evaluated based on the current stress of the reinforcing bar and the subsequent changes, and the stress state of the PC structure is estimated and measured.
また、 本発明の P C構造物の劣化診断システム 1 0 0は、 少なくとも P C構造 物 5 0に含まれる鉄筋に応力を計測するための計測手段としての EMセンサ 5 3 を備え、 前記計測手段により計測された鉄筋の現状の応力値と予め計測された鉄 筋の応力値に基づいて、 前記 P C構造物が劣化しているか否かを判定するための 判定手段としての判定部 2 3と、 前記判定手段に基づいて前記 P C構造物の劣化 状況を評価及び/又は診断するための評価 ·診断手段としての評価 ·診断部 2 3 bと、 前記評価 ·診断手段により評価及び/又は診断された結果を出力するため の出力手段としての出力部 3 2と、 を備えている。 また、 前記評価及び/又は診 断結果に基づいて対処方法等を抽出するための抽出手段としての抽出部 2 3 cと、 前記抽出手段により抽出された対処方法等を出力するための出力手段としての出 力部 3 2と、 を備えていてもよい。 また、 前記計測手段は、 前記 P C構造物に含 まれる所定の鉄筋の透磁率と温度とを検出するためのセンサ 1 1である。 また、 前記計測手段は、 P C構造物 (プレストレスト ·コンクリート) の応力度を計測 するためのセンサ 1 1と、 少なくとも P C鋼材の張力を計測するためのセンサ 1 l a、 P C鋼材の破断を計測するためのセンサ 1 1 b、 P C構造物の変位を計測 するためのセンサ 1 1 c、 P C構造物のひび割れ等を計測するためのセンサ 1 1 d、 プレストレスト ' コンクリートの中性化を計測するためのセンサ 1 1 e、 プ レストレスト .コンクリートに含まれる塩分量を計測するためのセンサ 1 1 f 、 P C鋼材の腐食を計測するためのセンサ 1 1 g、 P C構造物にかかる振動の変化 状態を計測するためのセンサ 1 1 hのいずれかを含んで構成されるとよい。 Further, the PC structure deterioration diagnosis system 100 of the present invention includes an EM sensor 53 as a measuring means for measuring stress on at least a reinforcing bar included in the PC structure 50, and the measurement is performed by the measuring means. A determination unit 23 as determination means for determining whether the PC structure is degraded based on the measured current stress value of the reinforcing bar and a pre-measured stress value of the reinforcing bar; Evaluation for evaluating and / or diagnosing the deterioration state of the PC structure based on the means.Evaluation as a diagnosis means.Diagnosis unit 23b, and the result evaluated and / or diagnosed by the evaluation and diagnosis means. To output And an output unit 32 as an output means of. Further, an extracting unit 23c as an extracting unit for extracting a coping method or the like based on the evaluation and / or diagnosis result, and an output unit for outputting the coping method or the like extracted by the extracting unit. The output unit 32 and the output unit 32 may be provided. Further, the measuring means is a sensor 11 for detecting a magnetic permeability and a temperature of a predetermined reinforcing bar included in the PC structure. In addition, the measuring means includes a sensor 11 for measuring the degree of stress of a PC structure (prestressed concrete), a sensor 1 la for measuring at least the tension of the PC steel material, and a sensor for measuring the breakage of the PC steel material. Sensor 1 1b, sensor for measuring displacement of PC structure 11 c, sensor for measuring cracks in PC structure 11 d, sensor for measuring pre-stressed concrete neutralization 1 1e, press rest. Sensor for measuring the amount of salt contained in concrete 11 f, sensor for measuring corrosion of PC steel material 1 1g, measuring the change of vibration applied to the PC structure It may be configured to include any one of the sensors 11h for the above.
本発明は以上の実施形態に限定されることなく、種々の形態にて実施してよレ、。 例えば、 計測装置に備えられるデータ伝送手段や通信手段等は、 例えば、 計測す る P C構造物が高速道路等のような場合は、 高速道路に設けられている光フアイ バ等を利用してもよい。 また、 電源供給手段は、 高速道路で使用されている電源 から取り出すような形態としてもよい。  The present invention is not limited to the above embodiments, but may be implemented in various forms. For example, the data transmission means and communication means provided in the measuring device can be used, for example, when the PC structure to be measured is an expressway or the like, using an optical fiber provided on the expressway. Good. Further, the power supply means may be configured to take out power from a power supply used on a highway.

Claims

請求の範囲 The scope of the claims
1 . 所定の構造物に含まれる鉄筋の応力を計測する方法であって、 1. A method for measuring the stress of a reinforcing bar included in a predetermined structure,
予め前記鉄筋の透磁率と応力、 及び透磁率と温度との関数とを含む初期値を計 測及び/又は算出する工程と、  Measuring and / or calculating an initial value including the permeability and stress of the rebar and a function of the permeability and temperature in advance;
前記鉄筋の透磁率と温度とを含む現状値を計測するための計測手段を前記鉄筋 に設けて計測する工程と、  A step of providing a measuring means for measuring a current value including the magnetic permeability and the temperature of the reinforcing bar on the reinforcing bar, and performing measurement;
前記計測及び Z又は算出した初期値と現状値の数値に基づいて現状の鉄筋の応 力を算出する工程と、  Calculating the current rebar stress based on the measurement and Z or the calculated initial value and current value,
を備えていることを特徴とする鉄筋の応力計測方法。  A method for measuring the stress of a reinforcing bar, comprising:
2 . P C構造物の応力を計測する方法であって、  2. A method of measuring the stress of a PC structure,
前記 P C構造物に含まれる鉄筋に応力を計測するための計測手段を備え、 前記 計測手段により計測される前記鉄筋の現状応力とその後の変化からプレストレス の減少を評価し、 前記 P C構造物の応力状態を推定し計測することを特¾¾とする P C構造物の応力計測方法。  Measuring means for measuring stress in the reinforcing bars included in the PC structure; evaluating a reduction in pre-stress based on a current stress of the reinforcing bars measured by the measuring means and a subsequent change; A stress measurement method for PC structures that specializes in estimating and measuring the stress state.
3 . 少なくとも P C構造物に含まれる鉄筋の現状の応力を計測するための計測 手段と、  3. Measuring means for measuring at least the current stress of the rebar contained in the PC structure;
前記計測手段により計測された鉄筋の現状の応力値と予め計測された鉄筋の応 力値に基づいて、 前記 P C構造物が劣化しているか否かを判定するための判定手 段と、  Determining means for determining whether or not the PC structure has deteriorated based on the current stress value of the reinforcing bar measured by the measuring means and the stress value of the reinforcing bar measured in advance;
前記判定手段に基づいて前記 P C構造物の劣化状況を評価し診断するための評 価 ·診断手段と、  An evaluation and diagnosis means for evaluating and diagnosing the deterioration state of the PC structure based on the determination means;
前記評価 ·診断手段により評価及び Z又は診断された結果を出力するための出 力手段と、  Output means for outputting the result evaluated and Z or diagnosed by the evaluation and diagnosis means;
を備えていることを特徴とする P c構造物の劣化診断システム。  A deterioration diagnosis system for a Pc structure, comprising:
4 . 前記評価及び/又は診断結果に基づいて対処方法及ぴ Z又は対処工法を抽 出するための抽出手段と、  4. Extraction means for extracting the coping method and the Z or coping method based on the evaluation and / or diagnosis results,
前記抽出手段により抽出された対処方法及び/又は対処工法を出力するための 出力手段と、 を備えていることを特徴とする請求項 3に記載の P C構造物の劣化診断システ ム。 Output means for outputting the coping method and / or coping method extracted by the extracting means, The system for diagnosing deterioration of a PC structure according to claim 3, wherein the system is provided with:
5 . 前記計測手段が、 少なくとも前記 P C構造物に含まれる所定の鉄筋の透磁 率と温度とを検出するためのセンサであることを特徴とする請求項 3に記載の P C構造物の劣化診断システム。  5. The deterioration diagnosis of a PC structure according to claim 3, wherein the measurement means is a sensor for detecting at least a magnetic permeability and a temperature of a predetermined reinforcing bar included in the PC structure. system.
PCT/JP2003/009490 2002-07-26 2003-07-25 Method of measuring stress in reinforcement, method of measuring stress in pc structure utilizing the method, and pc structure deterioration diagnosing system WO2004011927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003252698A AU2003252698A1 (en) 2002-07-26 2003-07-25 Method of measuring stress in reinforcement, method of measuring stress in pc structure utilizing the method, and pc structure deterioration diagnosing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002218469A JP2004264022A (en) 2002-07-26 2002-07-26 Method for measuring stress of reinforcing rod, method for measuring stress of pc structure using the same and system for diagnosing deterioration of pc structure
JP2002-218469 2002-07-26

Publications (1)

Publication Number Publication Date
WO2004011927A1 true WO2004011927A1 (en) 2004-02-05

Family

ID=31184680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009490 WO2004011927A1 (en) 2002-07-26 2003-07-25 Method of measuring stress in reinforcement, method of measuring stress in pc structure utilizing the method, and pc structure deterioration diagnosing system

Country Status (3)

Country Link
JP (1) JP2004264022A (en)
AU (1) AU2003252698A1 (en)
WO (1) WO2004011927A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975420B2 (en) * 2006-11-28 2012-07-11 公益財団法人鉄道総合技術研究所 Structure state detection apparatus and state detection system
JP2016205833A (en) * 2015-04-15 2016-12-08 日本電信電話株式会社 Estimation method
KR101874828B1 (en) 2017-09-26 2018-07-05 주식회사 광익기술단 Device and Method for Measuring Load Carrying Capacity of a Concrete Structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038723A (en) * 2000-07-26 2002-02-06 Suzuko Oshita Real time life cycle maintenance method of steel frame/ reinforced concrete constructed building

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038723A (en) * 2000-07-26 2002-02-06 Suzuko Oshita Real time life cycle maintenance method of steel frame/ reinforced concrete constructed building

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KRAUSE H.-J. ET AL.: "SQUID system for magnetic inspection of prestressed tendons on concrete bridges", INSIGHT, vol. 43, no. 7, July 2001 (2001-07-01), pages 458 - 461, XP002974149 *
OJUN RA: "EM sensor ni yoru PC kozai no jitsuoryoku sokutei", PRESTRESSED CONCRETE, vol. 43, no. 6, November 2001 (2001-11-01), pages 99 - 103, XP002974147 *
SHOI KUROKAWA ET AL.: "Jiwai sensor ni yoru kakushu kozai no oyoryoku keisoku", PRESTRESSED CONCRETE GIJUTSU KYOKAI, DAI 11 KAI SYMPOSIUM RONBUNSHU, 15 October 2001 (2001-10-15), pages 101 - 106, XP002974148 *

Also Published As

Publication number Publication date
JP2004264022A (en) 2004-09-24
AU2003252698A1 (en) 2004-02-16
AU2003252698A8 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
Hui et al. Structural health monitoring: From sensing technology stepping to health diagnosis
Dong et al. Bridges structural health monitoring and deterioration detection-synthesis of knowledge and technology
KR101386395B1 (en) Structural condition evaluation system for smart structure using multi sensing
Ni et al. Integrating bridge structural health monitoring and condition-based maintenance management
JP2008255570A (en) System and method of diagnostic data collection for large construction
JP2006337144A (en) Fatigue life diagnostic method and diagnostic support device of bridge
CN102034021A (en) Integral and local information fusing method of structure health diagnosis
KR20060102581A (en) Bridge and ground test loading and measurement vehicle system
US20230096788A1 (en) Boom monitoring method and system, and engineering machinery, and machine-readable storage medium
Gastineau et al. Bridge health monitoring and inspections–a survey of methods
Saidin et al. Vibration-based approach for structural health monitoring of ultra-high-performance concrete bridge
KR101406005B1 (en) Decentralized structural condition evaluation system for smart structure using multi sensing
JP3984185B2 (en) Structure monitoring device and monitoring system
CN114722858A (en) Safety assessment method for prestressed concrete structure
JP2008255571A (en) Diagnostic system for large construction, diagnostic program for large construction, recording medium, and diagnostic method for large construction
CN109781863B (en) Structure corrosion two-stage detection method and system based on rapid vibration test
WO2004011927A1 (en) Method of measuring stress in reinforcement, method of measuring stress in pc structure utilizing the method, and pc structure deterioration diagnosing system
Limongelli et al. The indicator readiness level for the classification of research performance indicators for road bridges
JP4366467B2 (en) AE sensor, structure abnormality detection method using AE sensor, and safety evaluation method
JP5690254B2 (en) Method and apparatus for monitoring deterioration of RC structure due to rebar corrosion
CN109235922A (en) Based on the structural strengthening and many reference amounts synchronous monitoring device from perception carbon cloth
Sumitro et al. Structural health monitoring paradigm for concrete structures
Roshan et al. Review paper on structural health monitoring: Its benefit and scope in India
Elrefae et al. Implementation of the IoT technology in structural health monitoring of bridges: case study
Shenton III et al. A system for monitoring live load strain in bridges

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase