WO2004011493A1 - Facteur de transcription de type bzipm du mais et gene codant, et utilisation de ceux-ci - Google Patents

Facteur de transcription de type bzipm du mais et gene codant, et utilisation de ceux-ci Download PDF

Info

Publication number
WO2004011493A1
WO2004011493A1 PCT/CN2003/000599 CN0300599W WO2004011493A1 WO 2004011493 A1 WO2004011493 A1 WO 2004011493A1 CN 0300599 W CN0300599 W CN 0300599W WO 2004011493 A1 WO2004011493 A1 WO 2004011493A1
Authority
WO
WIPO (PCT)
Prior art keywords
abp4
abp2
abp9
sequences
sequence
Prior art date
Application number
PCT/CN2003/000599
Other languages
English (en)
French (fr)
Inventor
Jun Zhao
Lei Wang
Yunliu Fan
Original Assignee
Institute Of Biotechnology, The Chinese Academy Ofagricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Biotechnology, The Chinese Academy Ofagricultural Sciences filed Critical Institute Of Biotechnology, The Chinese Academy Ofagricultural Sciences
Priority to AU2003257774A priority Critical patent/AU2003257774A1/en
Publication of WO2004011493A1 publication Critical patent/WO2004011493A1/zh
Priority to US11/046,255 priority patent/US7323339B2/en
Priority to US11/810,795 priority patent/US20080060098A1/en
Priority to US11/810,784 priority patent/US20080060097A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Definitions

  • the present invention relates to transcription factors and their coding genes and applications in the field of plant genetic engineering, in particular to corn bZIP transcription factors, and their coding genes and applications.
  • plants Under abiotic stress conditions such as drought, high salinity, and low temperature, plants are not only passively receiving, but actively mobilizing the defense system in the body to resist external adversity. At this time, many changes occur in the plant, such as new proteins Synthesis, metabolic changes, accumulation of stress-resistant substances, etc. (Hans J. Plant cell. 1995, 7: 1099-1111). Many of these proteins are involved in the plant's response to abiotic stresses (Ashwani Pareek. Current Science. 1998, 75: 1170-1174). They synergistically regulate changes in plant physiology, biochemistry, and metabolism, and increase plant resistance to abiotic stresses. Studies have shown that plant resistance to abiotic stresses does not depend on one or two functional genes.
  • coli is transferred to tobacco, the mannitol content of the plant can be increased; and transferred to tobacco and rice P5CS can increase the proline content of plants; the transfer of coi3 ⁇ 4 to Arabidopsis thaliana and rice can increase the plant betaine content (Sakamoto A. PMB .. 1998, 38: 1011-1019) ⁇ . 2) UEA_ and Its related proteins: such as transfer to 3 ⁇ 4 window mustard-into corl5a 3 ⁇ 4 @ (Steponkus PL. PNAS. 1998, 95: 14570-14575). 3) Oxidative stress related proteins: For example, Mn-SOD (Mckersic BD. Plant Physiol.
  • CBF1 stress-resistance-related transcription factor CBFl (C-repeat Binding Factor) to Arabidopsis.
  • CBF1 can regulate the expression of a series of cold-resistance-related genes. Compared with the above-mentioned monofunctional genes, CBF1 is significantly increased Cold resistance of Arabidopsis (Kirsten R. Science. 1998, 280: 104-106).
  • the transfer of the DREB1A factor gene to Arabidopsis can regulate the expression of multiple genes related to resistance to abiotic stress, and significantly enhance the plant's ability to resist salt, cold and drought (Mie Kasuga. Nature Biotechnology. 1999, 17: 287-291).
  • cloning the transcription factor coding gene that regulates Catl expression not only helps to understand the ROS signaling pathway, but also has important guiding significance for the cultivation of crops with drought, salt, and cold resistance, because such trans Factors can not only regulate the expression of the C «t7 gene, but also regulate the expression of a series of other antioxidant genes and abiotic stress resistance genes.
  • ABRE is an ABA response element (ABA Responsive elelment) existing in the promoter region of many stress response genes, and its characteristic sequence is (C / G / T) ACGTG (G / T) (A / C) (Chen WQ. Plant Cell. 2001, 14: 559-574).
  • the promoter region of the Catl gene contains important cis-regulatory elements AJBRE1 and ABRE2, and deletion analysis indicates that ABRE2 (5'-GAAGTCCACGTGGAGGTGG) is a cis-element necessary for Catl gene response to ABA regulation.
  • the process of embryo development is a process of continuous accumulation of organic matter and continuous dehydration of cells, as well as a process of continuous improvement of the cell's ability to resist stress.
  • trans factors capable of interacting with ABRE2 exist in the cells, which can be divided into two categories: one is a trans factor that depends on ABA and can interact with the ABRE2 element of the Catl gene (Named Catl promoter Binding Factor 1, CBF1), the other is a trans factor (named Catl promoter Binding Factor 2, CBF2) capable of interacting with the ABRE2 element of the Catl gene, independent of ABA (Lingqing M. Guan. The Plant Journal. 2000, 22 (2): 87-95). There are no reports on these two important regulatory factors.
  • the object of the present invention is to provide a bZIP-type transcription factor and its coding gene in maize.
  • the corn bZIP transcription factors provided by the present invention are derived from corn, and are named as ABRE binding proteins ABP2, ABP4, and ABP9 (ABRE Binding Protein). Proteins with amino acid residue sequences of sequences 2, 4, and 6 in the list, or amino acid residue sequences of sequences 2, 4, and 6, after substitution, deletion, or addition of one or several amino acid residues, and have the same sequence as sequence 2, The amino acid residue sequences of 4, 6 have the same activity as the protein derived from sequences 2, 4, and 6.
  • ABP2 is preferably a protein having the sequence of the amino acid residue of Sequence 2 in the Sequence Listing, consisting of 351 amino acid residues.
  • ABP4 is preferably a protein having the sequence of amino acid residues of Sequence 4 in the Sequence Listing, consisting of 360 amino acid residues. .
  • ABP6 is preferably a protein having the sequence of 6 amino acid residues in the sequence listing, which is composed of 385 amino acid residues.
  • ABP2, ABP4, and ABP9 protein sequences obtained by the present invention were input into GenBank for BLAST analysis. The results showed that ABP2, ABP4, and ABP9 belonged to the bZIP-type transcription factors. Compared with the reported bZIP-type transcription factors, ABP2, ABP4, The homology between ABP9 and them is very low.
  • Not I adapter 5 '-pGACTAGTTCTAGATCGCGAGCGGCCGCC C (T) 15 -3' construct 17 days (17dpp) Immature maize embryos pollination cDNA library as primers, the storage capacity of the library was 5.2 X 10 6 cfo.
  • ABP4 rv2 5'-AGC GCC AGAAGC GGA GGC CA-3 'ABP9 rv2: 5'-CCT TCA CCA GGAAGT CCT CCA-3' PCR primers: AUAP fw: 5, -GGC CAC GCG TCG ACT AGT AC- 3,
  • ABP2 rv3 5, -AGG AAC TCC TCC AGA GTC AT-3 'ABP4 rv3: 5' -TCG TCG AAC GTC AAC GAG TAG -3 'ABP9 rv3: 5' -AAC CAA TCC TCC GTT CTC ACC-3 'via RT -PCR and RACE methods to clone maize bZIP-like transcription factor genes from maize immature embryos.
  • Maize bZIP-like transcription factors ABP2, ABP4, and ABP9 encode genes ABP2, ABP4, and ABP9, respectively, which have more than 90% homology with the DNA sequences defined by SEQ ID Nos : 1, 3, and 5 in the sequence listing, and encode the same function D sequence of the protein.
  • the DNA sequence of Sequence 1 in the Sequence Listing is composed of 1485 bp bases, and the reading frame of the gene is a DNA sequence from the 114th base to the 1056th base at the 5 'end.
  • the DNA sequence of Sequence 3 in the Sequence Listing is composed of 1835 bp bases, and the reading frame of the gene is a DNA sequence from the 5th end at the 93rd to the 1175th base.
  • ⁇ P is preferably the DNA sequence of sequence 5 in the sequence listing, which is composed of 1510bp bases, and the reading frame of this gene is the DNA sequence from the 45th to 1202th bases at the 5 'end.
  • the cloned ABP2, ABP4, and ABP9 genes were constructed on the yeast expression vector pPC86, respectively.
  • the in vivo binding specificity of ABP2, ABP4, ABP9, and ABRE was studied.
  • the results showed that the ABP2, ABP4, and ⁇ BPP gene products had ABRE binding in yeast. Specificity.
  • ABP2 and ABP4 S ⁇ genes were constructed on the prokaryotic expression vector pGEX4T-1, respectively.
  • the in vitro binding specificity of ABP2, ABP4, ABP9 and ABRE was studied. The results showed that the ABP2, ABP4, ⁇ BRP gene products had ABRE in vitro. Binding specificity, can specifically act on the ABRE cis element containing the core element sequence (C / G / T) ACGTG (G / T) (A / C).
  • the cloned ⁇ SP2, ABP4, and ⁇ SRP genes were constructed into the yeast expression vector YepGAP and the plant expression vector pBI121, respectively.
  • the ABRE binding specificity and transcription activation function of ABP2, ABP4, and ABP9 in yeast and corn cells were studied.
  • the results showed that ⁇ ⁇ 2, ⁇ 4, ⁇ 9 gene products have ABRE binding specificity and transcription activation function in yeast and corn suspension cells. Therefore, ABP2, ABP4, and ⁇ SPP gene products are transcription factors with ABRE binding specificity and transcription activation function.
  • ⁇ P2, ABP4, genes are affected by salt, drought, hydrogen peroxide,
  • the ABP2, ABP4, and ABP9 genes were constructed on the plant transformation vectors pBI121 and pZP212 to obtain pZP212-ABP2, pZP212-ABP4, and pBI121-ABP9, and transformed into Agrobacterium.
  • Agrobacterium was used to transform Arabidopsis thaliana and obtain transgenic plants. The transgenic plants were treated under different adversity conditions, and the results proved that ⁇ ⁇ 2, ⁇ 4, ⁇ ⁇ PP can improve the ability of transgenic plants to resist abiotic stresses such as cold, salt and drought.
  • the expression vectors and cell lines containing the ⁇ 2, ⁇ BP4, ⁇ BPP genes of the present invention, and the abiotic stress-resistant plant varieties containing such genes are all within the protection scope of the present invention.
  • the present invention successfully isolates and clones the genes encoding genes ABP2, ABP4, and ABP9 of transcription regulation factors with ABRE binding specificity from corn, which not only contributes to the understanding of ROS signaling pathways, but also has resistance to drought, salt, Crops with adversity ability such as cold resistance have important guiding significance. Regulatory factors expressed by this type of genes can act on the ABRE cis-acting elements of the promoter region of multiple abiotic stress-related genes, regulate the expression of genes related to abiotic stress resistance, and improve plant growth. The ability of things to resist abiotic adversity.
  • Figure 1 shows the growth of yeast, showing the specific binding properties of ABP2, ABP4, ABP9 and ABRE in vivo.
  • Figure 2 is a non-denaturing polyacrylamide electrophoresis spectrum showing the in vitro binding specificity of ABP2, ABP4, ABP9 and ABRE.
  • Figure 3 shows the growth of yeast, showing the ABRE binding specificity and transcription activation function of ABP2, ABP4, and ABP9 in yeast. .
  • Figure 4 shows the transformed corn suspension cells, showing the ABRE binding specificity and transcription activation function of ABP2, ABP4, and ABP9 in corn cells.
  • Figure 5 is an electrophoresis map of the PCR results, showing the expression of ABP2, ABP4, and ABP9 under stress conditions such as salt, drought, hydrogen peroxide, ABA, and low temperature.
  • Figure 6 is a schematic physical map of the construction of ABP2, ABP4, and ABP9 transgene expression vectors.
  • Fig. 7 shows the results of salt resistance test of Arabidopsis thaliana with ABP2, ABP4 and ABP9 genes. .
  • Fig. 8 shows the results of cold resistance test of Arabidopsis thaliana with ABP2, ABP4, and ABP9 genes.
  • Fig. 9 shows the results of drought resistance test of Arabidopsis thaliana with transgenic ⁇ 2, ⁇ 4 and ⁇ PP genes.
  • Maize material Maize was selected from immature embryos of 17 days (17 dpp) after 319 pollination.
  • Carrier pBSK +, pRS315 and pPC86.
  • Kit Promega's Wizard TM Minipreps DNA Purification System and Wizard TM Maxipreps DNA Purification System for plasmid DNA extraction; DNA fragment rapid purification / recovery kit for DNA recovery; Promega for RNA extraction
  • RNA extraction and mRNA isolation were performed according to Promega's RNAgents Total RNA Isolation System kit and PolyATtract mRNA Isolation System, respectively. Take 17 dpp of immature embryo lg of corn, extract 2.834 mg of total RNA, and isolate 43.7 ⁇ g of mRNA. Take 21 dpp immature embryo lg of corn, extract 2.427 mg of total RNA, and isolate 41.6 ⁇ g of mRNA.
  • Formulated with 2 X LB medium 4L (Bacto-tryptone, 20g / L, Bacto-yeast extract 10g / L, NaCl 10g / L, SeaPrep agarose 3g / L, H 7.0), sterilized at 121 ° C for 30min, 37 Incubate for 2 hours at ° C; add ampicillin to a final concentration of 200mg / L ; add the library to 10 6 cfb / L ; after mixing, aliquot 20 ⁇ 30mL to 50mL culture tube; ice bath for 1 hour; 30 ° C Incubate for 40 hours. Centrifuge at 8000 rpm for 10 min to collect the bacterial cells. Discard the supernatant and add 200 mL of 2 XLB (containing 12.5% of Gan Sleeve) suspension cells. Aliquot into 10 mL portions and store at -70.
  • 2 X LB medium 4L Bo-tryptone, 20g / L, Bacto-yeast extract 10g /
  • the pRS315His (Leu +) vector and pA4 and pMA4 plasmids were double-cut with BamIH and Xba I and purified.
  • 4mer ABRE and 4mer mABRE were cloned into pRS315His to obtain the decoy vector pRSA4 (Leu + ) and rescue vector pRSmA4 (Leu +) plasmid.
  • YWAM2 competent cells were prepared, and pRSA4 was transformed into the yeast strain yWAM2 LeiT, His-, Trp_).
  • the transformation method was performed according to the Two Hybrid System TRAFO Protocol.
  • a yeast strain yA4 (His ', Trp') containing pRSA4 was obtained.
  • the library was screened with yA4 yeast containing a bait vector.
  • the transformation method was the same as above.
  • the transformed cells were coated on 13 ⁇ 4_ selection medium and cultured at 28 ° C for 3 to 5 days. After the yeast has grown, the plasmid is extracted.
  • Method I Quick Plasmid DNA Preparations from Yeast (Christine Guthrie 1991).
  • the yeast plasmid was transformed into Co / ⁇ ⁇ DH5 ⁇ , the plasmid was extracted therefrom, and the enzyme digestion analysis was performed to determine the DNA sequence of the obtained positive clone by sequencing, and the sequence was then analyzed.
  • the 5'RACE method was used to obtain the full-length cDNA sequences of ABP2, ABP4, and ABP9 genes.
  • the 5'RACE System for Rapid Amplification of cDNA Ends, Version 2.0 kit was used by GibcoBRL.
  • ABP4 rv2 5 '-AGCGCC AGAAGCGGAGGCC A-3'
  • ABP9 rv2 5 '-CCTTC ACC AGGAAGTCCTCC A-3'
  • ABP2 rv3 5 '-AGGAACTCCTCCAGAGTCAT-3'
  • ABP4 rv3 5 '-TCGTCGAACGTCAACGAGTAG -3'
  • ABP9 rv3 5'-AACCAATCCTCCGTTCTCACC-3 '
  • the PCR conditions were: 94 ° C, 3min; 94 ° C, 30sec; 60V, 30sec; 72 ° C, 1min, 35 cycles; 72 ° C, 5min.
  • the amplified DNA fragment was separated with 1% agarose gel, recovered and ligated to pGEM-T easy vector, transformed into co /. JM109, digested and identified by sequencing, and the full-length cDNA sequences of ABP2, ABP4, and ⁇ BP genes were obtained.
  • Example 2 ABRE in vivo binding specificity analysis of ABP2, ABP4, and ABP9. YA4 and ymA4 were transformed into yWAM2 yeast to obtain yA4 and ymA4 strains. The ABP2, ABP4, and ABP9 plasmids obtained from the screening library were transformed into yA4 and ymA4 yeast, Cultivate on His-selective medium at 28 ° C for 3-5 days.
  • ABP2, ABP4, and ⁇ 8R were cloned into pGEX4T-1 prokaryotic expression vector, and then transformed into BL21 strain. The expression was induced by 37 ° C, 0.3mM IPTG for 2-3 hours. SDS-PAGE electrophoresis was specific ABP2, ABP4, ABP9 expression bands.
  • ABP2, ABP4, and ABP9 proteins were purified according to the MicroSpin TM GST Purification ModuLe protocol of Pharmacia. The purified proteins were used in EMSA experiments.
  • Adopting DNA 5 'End-Labeling System from Promega, the reaction system is: ABRE (or mABRE) l ⁇ 1, T 4 PNK 10 X buffer 5 ⁇ 1, Y- 32 P-ATP 3 ⁇ 1, T 4 PNK (10U / U 1) 2 1, ⁇ 2 0 39 ⁇ ⁇ ; 37 ° C for 20 minutes; force B 2 ⁇ 1 0.5M EDTA, inactivated at 68 ° C for 10 minutes; 37 ° C for 10 minutes; 4 ° C stored for future use.
  • ABRE or mABRE
  • 5 X binding buffer (125mM HEPES-KOH pH7,6; 50% glycerol; 250mM KC1) 4 ⁇ 1; ABP2, ABP4, ABP9 and GST proteins each about 4 ⁇ g (9 ⁇ 1); 1M DTT 1 ⁇ 1; above Labeled ABRE (or mABRE) probe 1 ⁇ 1; ⁇ 2 ⁇ 4 ⁇ 1; bind on ice for 30 minutes, add 3 ⁇ 1 loading buffer (sterile water containing 0.025% bromophenol blue), and perform polypropylene Amide electrophoresis analysis.
  • 3 ⁇ 1 loading buffer sterile water containing 0.025% bromophenol blue
  • Formulated polyacrylamide gel (5.4%): 30% acrylamide 9ml ; 10 X electrophoresis buffer 5ml (glycine 142.7g / L, EDTA 3.92g / L, Tris 30.28g / L); 50% glycerol 2.5ml; deionized 33ml water; 10% APS 400 ⁇ 1; TEMED 25 ⁇ 1.
  • electrophoresis with 1X electrophoresis buffer pre-electrophoresis for 10 minutes (300V); load, electrophoresis for 1 hour (300V); glue with filter paper, seal the plastic wrap, press X-ray film for 1 hour; The film was washed, developed for 2 minutes, and fixed for 5 minutes.
  • AS ABP4 was hooked into YepGAP (Trp +) vector to obtain yeast expression vectors YepGAPABP-2, YepGAPABP-4, YepGAPABP-9 plasmids containing full-length cDNA of SP ABP4 5 * / 3 ⁇ 4 gene, and transformed them into yA4 and ymA4 In yeast, cultured at 28 ° C on His-selective medium: ⁇ 5 days.
  • ABP2, ABP4, and ABP9 transient expression vectors The full-length cDNAs of 2, ABP4, ABP9 ⁇ Xba I, Xho I) genes were constructed on the plant transient expression vector pBI221 to obtain PBI221-ABP2, ABP4, and ABP9 plasmids.
  • the gene gun method co-transformed the reporter plasmid and the target gene.
  • the transformation material was corn suspension cells.
  • For the transformation method refer to "Pragmatic Methods in Plant Molecular Biology and Biotechnology" edited by BR Glick and JE Thompson. No reporter gene expression ( Figure 4A).
  • Example 5 Analysis of expression specificity of ABP2, ABP4, ABP9 under abiotic stress conditions 1) Treatment of corn material: take corn seeds, swell for 24hr, plant in flowerpot, 28 ° C, 12hr light culture for about 20 Three days, three leaves and one core will be grown for different conditions.
  • 1Chilling damage treatment Put the corn seedlings in a 2 ⁇ incubator, culture for 12hr under 48hr light, remove and wash the soil from the roots, quickly freeze with liquid nitrogen, and store at -80 ⁇ for future use.
  • Salting treatment Put the corn seedlings in 0.6%, 0.8%, and 1% NaCl solutions, and culture for 12 days under light for 3 hours. Take out and wash the soil from the roots, quickly freeze with liquid nitrogen, and save at -80 ⁇ for future use.
  • Drought treatment Put the corn seedlings in 8% water (mixed with 920g dry soil and 80mL water), 10%, 13% soil: culture in 12hr light for 3 days, remove and remove the soil from the root, and use liquid nitrogen Frozen ⁇ -80 ° C.
  • ABA treatment Put the corn seedlings in ABA solutions of 10 ⁇ 4 ⁇ , 10 ⁇ 5 ⁇ , and 10 ' 6 ⁇ (5mg of ABA was dissolved in 0.1N KOH, and the volume was adjusted to 95 mL of water to obtain 10_ 4 M). Incubate for 12hr under 12hr light, remove and wash the soil from the roots, quickly freeze with liquid nitrogen, and store at -80 ° C for later use.
  • Control treatment Take the untreated seedlings at -80 ° C as a control. 2) RNA extraction and DNA removal:
  • RNA Dissolve the RNA in 85 ⁇ 1 water, and add 10 X buffer 10 ⁇ 1 and 5 ⁇ 1 RQl RNA Free DNase (lU / l), 37 ° C, 15 min to remove DNA contamination.
  • RNA concentration was 1 ⁇ g / ⁇ 1.
  • this primer for amplification, if it is cDNA, it can amplify a 405bp band, and if it is genomic DNA, it can amplify a 512bp band (with 107bp introns :).
  • PCR reaction system template 1 ⁇ 1, 2XPCR buffer 10 ⁇ 1, 10mM dNTP 1 ⁇ 1,
  • PCR conditions 94 ° C, 2min; 94V, 30sec; 55 ° C, 30sec ; 72 ° C, 30sec; 30 cycle; 72 ° C, 5min.
  • primers designed for PCR amplification are as follows (amplification 548bp):
  • RV 5 '-ACTCCAGGTTACTTGCATTAT-3' PGR system template 1 ⁇ 1, 2 XPCR buffer 10 ⁇ 1, 10 mM dNTP 1 ⁇ 1, lOuM mActl F 1 ⁇ 1, lOuM mActl R 1 ⁇ 1, Taq 1U, sterilized water 6 ⁇ 1.
  • PCR conditions 94. C, 2min; 94 ° C, 30sec; 55 ° C, 30sec; 72 ° C, 30sec; 30 cycle; 72 ° C, 5min.
  • primers designed for PCR amplification are as follows (amplification 632bp):
  • PCR system template 1 ⁇ 1, 2 XPCR buffer 10 ⁇ 1, lOmM dNTP 1 ⁇ 1, lOuM mActl F 1 ⁇ 1, lOuM mActl R 1 ⁇ 1, Taq 1U, sterilized water 6 ⁇ 1.
  • PCR conditions 94. C, 2min; 94 "C, 30sec; 55 ° C, 30sec; 72 ° C, 30sec; 30 cycle;
  • primers designed for PCR amplification are as follows (amplification 937bp):
  • PCR system template 1 ⁇ 1, 2 X PCR buffer 10 ⁇ 1, 10 mM dNTP 1 ⁇ 1, lOuM mActl F 1 ⁇ 1, lOuM mActl R 1 ⁇ 1, Taq 1U, sterilized water 6 ⁇ 1.
  • Arabidopsis cultivation Arabidopsis seeds are vernalized at 4 ° C for 2-3 days, and 7 to 10 seeds are sown per pot (nutrient soil and vermiculite according to 2: 1); placed in a greenhouse for cultivation ( (22 ° C, light for 16h); after the primary moss is extracted from the Arabidopsis thaliana, the primary moss is cut off, and when more secondary moss is extracted, and a few of them start to pod, it can be used for transformation.
  • Culture of Agrobacterium Single colonies of Agrobacterium were inoculated in 3mlYEB (Kan50mg / L, rifampicin 50mg / l), 28 ° C, 250 rpm incubation for 30 hours; 1: 200 transfers into 200ml fresh YEB (Kan50mg / l, rifampin 50mg / L), 28 ° C, 250rpm incubation for about 14 hours.
  • ABP2, ABP4, and ABJP were constructed on the pBI121 and pZP212 vectors to obtain pZP212-ABP2, pZP212-ABP4, and pBI121-ABP9 ( Figure 6), transformed into JM109, extracted plasmids, identified by enzyme digestion, selected The desired clones were sequenced and transformed into Agrobacterium LBA4404.
  • CTAB Tris 100mM, NaCl 1.4M, 20mM EDTA, CTAB 2%, mercaptoethanol 0.1%), 60V, _ 30 minutes. Every 10 minutes, upside down.
  • ABP4 rv3 5'-TCG TCG AAC GTC AAC GAG TAG -3 ' ABP9 rv3: 5'-AAC CAATCC TCC GTT CTC ACC-3 'reaction system (20 ⁇ ): transgenic plant DNA ll (20ng ⁇ 50ng); 10 X buffer 2 1; MgCl 2 (2.5mM) 2 ⁇ 1; Taq Enzyme 0.2 ⁇ 1; dNTP (2.5 mM) 2 ⁇ 1; 10 ⁇ M of each primer; add sterile water to 20 ⁇ 1.
  • Reaction conditions 94 ° F, 5 minutes; 94 45 seconds; 60 ° C, 45 seconds; 72 ° C, 45 seconds; 35 cycles; 72 ° C extension for 5 minutes. PCR-positive plants were selected.
  • the invention successfully cloned the coding genes of maize bZIP-like transcription factors ABP2, ABP4, and ABP9, and successfully introduced them into Arabidopsis to obtain abiotic stress-resistant Arabidopsis. It has important theoretical and practical significance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

玉米 bZIP类转录因子及其编码基因与应用 技术领域
本发明涉及植物基因工程领域中的转录因子及其编码基因与应用, 特别 是玉米 bZIP类转录因子、 及其编码基因与应用。
背景技术
在干旱、高盐和低温等非生物逆境条件下,植物并不仅仅是被动的接受, 而是积极地调动体内的防卫体系来对抗外来的逆境, 这时在植物体内发生很 多变化, 如新蛋白质的合成, 代谢的转变, 抗逆境物质的积累等等 (Hans J. Plant cell. 1995, 7: 1099-1111 )。其中很多蛋白参与了植物对非生物逆境的反应 (Ashwani Pareek. Current Science. 1998, 75: 1170-1174), 它们协同调节植物生 理生化以及代谢的变化, 提高植物对非生物逆境的抗性。 研究表明植物对非 生物逆境的抵抗并不是依靠某一两个功能基因就能 成的。
在非生物逆境条件下, 植物体内被诱导产生的蛋白中有许多与植物抗逆 境密切相关, 其中的一些蛋白的编码基因已被克隆 (Anil Grover. Current Science. 1998, 75: 689-695 )。为了提高植物的抗寒、抗旱和抗盐等非生物逆境 的能力, 许多其它不同来源的抗逆相关基因被克隆, 并转化到植物中 ( Shavindra Bajaj. Molecular Breeding. 1999, 5:493-503 )。其编码的蛋白可分为 三类: 1 )合成渗透调节因子的酶类: 如向烟草转入来自 Ε· coli的 t/Z)基因, 可提高植物的甘露醇含量; 向烟草、水稻转入 P5CS, 可提高植物的脯氨酸含 量; 向拟南芥、 水稻转入 coi¾, 可提高植物甜菜碱的含量 (Sakamoto A. PMB. .1998,38: 1011-1019) ο. 2 ) UEA_及其相关蛋白:.如向 ¾窗芥转—入 corl5a ¾@ (Steponkus PL. PNAS. 1998, 95: 14570-14575)。 3 )氧化逆境相关蛋白: 如向苜 蓿中转入 Mn-SOD(Mckersic BD. Plant Physiol. 1999,111 : 1177-1181);向烟草中 转入 GST。 这些功能基因转入到植物体后, 在实验室条件下, 植株在某一方 面的抗逆性有所提高, 但所取得的效果并不理想。 最近, 有人向拟南芥中转 入抗逆相关的转录因子 CBFl(C-repeat Binding Factor)的基因, CBF1可调控 一系列抗寒相关基因的表达,与上述单功能基因相比, CBF1明显提高拟南芥 的抗寒性能 (Kirsten R. Science. 1998, 280:104-106)。 同样, 向拟南芥转入 DREB1A因子的基因, 可调控与抗非生物逆境相关的多个基因的表达, 明显 提高了植株的抗盐、 抗寒、 抗旱的能力 (Mie Kasuga. Nature Biotechnology. 1999,17: 287- 291)。
已有研究表明在干早、 盐渍和低温等逆境条件下, 植物体内会产生大量 的活性氧, 形成氧化逆境 (Zhu J K.. Trends Plant Sci. 2001,6:66-71 )。 由于活性 氧具有非常活泼的化学性质, 它会对细胞造成严重的伤害, 如损伤细胞膜、 使重要的酶类失活及 DNA断裂等, 因此活性氧的及时清除对植物抗非生物 逆境能力的提高具有重要意义。 在活性氧的清除过程中, 过氧化氢酶 CAT1 起着重要作用, 但在逆境条件下, 植物本身的抗氧化***受诱导表达的能力 比较弱, 不能及时地清除体内的活性氧, 影响了植物抗逆性的进一步提高。 因此, 克隆调控 Catl表达的转录因子编码基因不仅有助于对 ROS信号传导 路径的理解, 而且对培育具有抗旱、 抗盐、 抗寒等逆境能力的作物具有重要 的指导意义, 因为这样的反式因子不仅能够调控 C«t7基因的表达,还能调控 其它一系列的抗氧化基因和抗非生物逆境基因的表达。
ABRE是存在于许多逆境响应基因启动子区的 ABA 响应元件 (ABA Responsive elelment) , 其特征序列是 (C/G/T)ACGTG(G/T)(A/C) (Chen WQ. Plant Cell. 2001,14:559-574)。 Catl基因的启动子区含有与逆境相关的重要的 顺式调控元件 AJBRE1 和 ABRE2 , 缺失分析表 明 ABRE2 (5'-GAAGTCCACGTGGAGGTGG)是 Catl基因响应 ABA调控所必需的顺式 元件。 在玉米幼胚的发育过程中, 随着 ABA含量的升高, 基因的表达 也随之增强。 胚发育的过程就是有机物质不断积累、 细胞不断脱水的过程, 也是细胞抗逆境能力不断提高的过程。 研究表明在玉米幼胚的发育过程中, 细胞中存在着能够与 ABRE2相互作用的反式因子, 可分为两类: 一类是依 赖于 ABA的能够与 Catl基因 ABRE2元件相互作用的反式因子(命名为 Catl promoter Binding Factor 1, CBF1 ), 另一类是不依赖于 ABA的能够与 Catl基 因 ABRE2元件相互作用的反式因子 (命名为 Catl promoter Binding Factor 2, CBF2 ) (Lingqing M. Guan. The Plant Journal. 2000, 22(2):87-95 )。 目前还没有 关于这两类重要调控因子的报道。
发明公开
本发明的目的是提供玉米 bZIP类转录因子及其编码基因。
本发明所提供的玉米 bZIP类转录因子来源于玉米, 分别命名为 ABRE 结合蛋白 ABP2、 ABP4、 ABP9 (ABRE Binding Protein), 它们分别是具有序 列表中序列 2、 4、 6的氨基酸残基序列的蛋白质, 或者是将序列 2、 4、 6的 氨基酸残基序列经过一个或几个氨基酸残基的取代、 缺失或添加且具有与序 列 2、 4、 6的氨基酸残基序列相同活性的由序列 2、 4、 6衍生的蛋白质。
ABP2优选的是具有序列表中序列 2氨基酸残基序列的蛋白质,由 351个 氨基酸残基组成。
ABP4优选的是具有序列表中序列 4氨基酸残基序列的蛋白质, 由 360个 氨基酸残基组成。 .
ABP6优选的是具有序列表中序列 6氨基酸残基序列的蛋白质, 由 385个 氨基酸残基组成。
把本发明所得到的 ABP2、 ABP4、 ABP9的蛋白序列输入到 GenBank中 进行 BLAST分析, 结果表明 ABP2、 ABP4、 ABP9属于 bZIP类转录因子, 与已报道的 bZIP类转录因子相比, ABP2、 ABP4、 ABP9与它们之间的同源 性均很低。
本发明以 Not I adapter: 5 ' -pGACTAGTTCTAGATCGCGAGCGGCCGCC C(T)15-3' 为引物构建了玉米授粉后 17天(17dpp)幼胚的 cDNA文库, 该文 库的库容量为 5.2 X 106 cfo。
本发明设计合成了下述引物:
用于反转录的引物: ABP2 rv2: 5 '-GCG ACA GCG ACG ACA GAT CA-3 '
ABP4 rv2: 5'-AGC GCC AGAAGC GGA GGC CA-3' ABP9 rv2: 5'-CCT TCA CCA GGAAGT CCT CCA-3' 用于 PCR的引物: AUAP fw: 5,-GGC CAC GCG TCG ACT AGT AC-3,
ABP2 rv3: 5,-AGG AAC TCC TCC AGA GTC AT-3 ' ABP4 rv3: 5' -TCG TCG AAC GTC AAC GAG TAG -3 ' ABP9 rv3: 5' -AAC CAA TCC TCC GTT CTC ACC-3' 通过 RT- PCR及 RACE方法从玉米幼胚中克隆玉米 bZIP类转录因子基因。 玉米 bZIP类转录因子 ABP2、 ABP4、 ABP9的编码基因 ABP2、 ABP4、 ABP9, 分别是与序列表中 SEQ ID No : 1、 3、 5限定的 DNA序列具有 90 %以上同源 性, 且编码相同功能蛋白质的 D 序列。
优选的是序列表中序列 1的 DNA序列, 由 1485bp碱基组成,该基 因的读码框为自 5' 端第 114位到第 1056位碱基的 DNA序列。 ^9 ¾优选的是序列表中序列 3的 DNA序列, 由 1835bp碱基组成, 该基 因的读码框为自 5' 端第 93位到第 1175位碱基的 DNA序列。
^^P 优选的是序列表中序列 5的 DNA序列, 由 1510bp碱基组成, 该基 因的读码框为自 5' 端第 45位到第 1202位碱基的 DNA序列。
将所克隆的 ABP2、 ABP4、 ABP9基因分别构建到酵母表达载体 pPC86 上,研究了 ABP2、ABP4、ABP9与 ABRE的体内结合特异性,结果表明 ΑΒΡ2、 ΑΒΡ4、 ^ΒΡΡ基因产物在酵母体内具有 ABRE结合特异性。
将所克隆的 ABP2、ABP4 S ^基因分别构建到原核表达载体 pGEX4T-l 上,研究了 ABP2、ABP4、ABP9与 ABRE的体外结合特异性,结果表明 ABP2、 ABP4、 ^BRP基因产物在体外具有 ABRE结合特异性, 能够特异作用于含有 核心元件序列为 (C/G/T) ACGTG (G/T) (A/C)的 ABRE顺式元件。
将所克隆的 ^SP2、 ABP4、 ^SRP基因分别构建到酵母表达载体 YepGAP 和植物表达载体 pBI121上, 研究了 ABP2、 ABP4、 ABP9在酵母体内和玉米 细胞中的 ABRE结合特异性及转录激活功能。 结果表明^ δΡ2、 ΑΒΡ4、 ΑΒΡ9 基因产物在酵母和玉米悬浮细胞中均具有 ABRE 结合特异性和转录激活功 能。 因此, ABP2、 ABP4 , ^SPP基因产物是具有 ABRE结合特异性和转录激 活功能的转录因子。 且^^ P2、 ABP4, 基因受到盐、 干旱、 过氧化氢、
ABA等逆境条件的诱导表达。
把 ABP2、 ABP4, ABP9基因构建到植物转化载体 pBI121及 pZP212上 得到 pZP212-ABP2、 pZP212-ABP4、 pBI121-ABP9, 并转化到农杆菌中, 用 农杆菌转化拟南芥并获得了转基因植株。 对转基因植株在不同的逆境条件下 进行处理, 结果证明^ δΡ2、 ΑΒΡ4、 ^δΡΡ能够提高转基因植物的抗寒、 抗盐 和抗旱等非生物逆境的能力。
含有本发明 ^^2、 ΑΒΡ4 , ^ΒΡΡ基因的表达载体和细胞系, 以及含有该 类基因的抗非生物逆境植物品种均为本发明的保护范围。
本发明成功地从玉米中分离、克隆到了具有 ABRE结合特异性的转录调 控因子的编码基因 ABP2、 ABP4、 ABP9, 不仅有助于对 ROS信号传导路径 的理解, 而且对培育具有抗旱、 抗盐、 抗寒等逆境能力的作物具有重要的指 导意义。 由该类基因表达的调控因子可作用于多个抗非生物逆境相关基因启 动子区的 ABRE顺式作用元件, 调控抗非生物逆境相关基因的表达, 提高植 物对非生物逆境的抵抗能力。
附图说明
图 1为酵母的生长情况, 显示 ABP2、 ABP4、 ABP9与 ABRE的体内结合特 异性。
图 2为非变性聚丙烯酰胺电泳图谱, 显示 ABP2、 ABP4、 ABP9与 ABRE的 体外结合特异性。
图 3为酵母的生长情况,显示 ABP2、 ABP4、 ABP9在酵母体内的 ABRE 结合特异性及转录激活功能。 .
图 4为转化的玉米悬浮细胞, 显示 ABP2、 ABP4、 ABP9在玉米细胞中 的 ABRE结合特异性及转录激活功能。
图 5为 PCR结果的电泳图谱, 显示 ABP2、 ABP4、 ABP9在盐、 干旱、 过氧化氢、 ABA、 低温等逆境条件下的表达。
图 6为 ABP2、 ABP4、 ABP9转基因表达载体的构建示意物理图谱。 图 7为转 ABP2、 ABP4、 ABP9基因拟南芥的抗盐试验结果。 .
图 8为转 ABP2、 ABP4、 ABP9基因拟南芥的抗寒试验结果。
图 9为转 ^δΡ2、 ΑΒΡ4、 ^δΡΡ基因拟南芥的抗旱试验结果。
实施发明的最佳方式
实施例 1、 玉米 bZIP类转录因子编码基因的克隆与筛选
材料与方法
1 ) 玉米材料: 玉米选用齐 319授粉后 17天 (17dpp) 的幼胚。
2 )菌种: 大肠杆菌£ ^' 011501, DH10B、 JM109及酵母菌株 yWAM2 (Leu",His",Trp") o
3 ) 载体: pBSK+、 pRS315及 pPC86。
4 ) 工具酶和修饰酶: 各种限制性内切酶和修饰酶购自 Promega公司, New England Biola 公司和 Gibco公司。
5 ) 化学试剂: 酵母培养用试剂均购自 Sigma公司和 Oxford公司; 其 它化学药品均为国产分析纯。
6 )试剂盒:质粒 DNA提取用 Promega公司的 Wizard™ Minipreps DNA Purification System和 Wizard™ Maxipreps DNA Purification System; 回收 DNA用鼎国公司的 DNA片段快速纯化 /回收试剂盒; RNA提取用 Promega 公司的 RNAgents Total RNA Isolation System kit 和 PolyATtract mRNA Isolation System; 文库构建用 GibcoBRL公司的 Superscript™ Plasmid System for cDNA Synthesis and Plasmid Cloning kit。
7 )引物合成: 由北京赛百盛生物工程公司和上海博亚生物技术有限公 司合成。
8 ) 测序: 由上海博亚生物技术有限公司完成。
实验步骤
1 ) 总 RNA的提取和 mRNA的分离:
总 RNA的提取和 mRNA的分离分别按 Promega公司的 RNAgents Total RNA Isolation System kit和 PolyATtract mRNA Isolation System进行。 取玉米 17dpp幼胚 lg,提取总 RNA 2.834mg,共分离出 mRNA 43.7 μ g。取玉米 21dpp 幼胚 lg, 提取总 RNA 2.427mg, 共分离出 mRNA 41.6 μ g。
2 ) 玉米幼胚 17dpp、 21dpp cDNA文库的构建:
按 GibcoBRL公司的 Superscript™ Plasmid System for cDNA Synthesis and Plasmid Cloning kit进行。 取出 5 μ g 17dpp的 mRNA用于 cDNA文库构 建, 反转录引物用:
Not I adapter: 5'-pGACTAGTTCTAGATCGCGAGCGGCCGCCC(T)15-3' , 双链合成后加 Sa/ 1 adapter: 5'-TCGACCCACGCGTCCG-3 ';
3'-GGGTGCGCAGGCp-5';
再用 Not I酶切, 构建到经 Sal I和 Not I酶切纯化后的 pPC86载体上
(Trp+) o 转化 E.coli. DH10B , 得到库容量为 5.2 X 106 cfu的 cDNA文库。
3 ) cDNA文库的扩增:
配 2 X LB培养基 4L(Bacto-胰蛋白胨, 20g/L, Bacto-酵母膏 10g/L, NaCl 10g/L, SeaPrep 琼脂糖 3g/L, H 7.0), 121 °C灭菌 30min后, 37°C温育 2小 时; 加入氨苄青霉素至终浓度 200mg/L; 加入文库至 106 cfb/L; 混匀后, 分 装 20~30mL到 50mL的培养管中; 冰浴 1小时; 30°C培养 40小时; 8000rpm 离心 10min,收集菌体;弃上清,加入 200mL 2 XLB (含甘袖 12.5%)悬浮细胞, 分装成 10mL—份于 -70Ό保存备用。
4) 4mer ABRE诱饵载体及 4mer mutant ABRE (mABRE) 挽救载体的 构建 合成引物 ABRE(+): 5'GAAGTCCACGTGGAGGTGG3' 和 ABRE(-): 5 CCCACCTCCACGTGGACT3', 各取 20 μ 1(1 μ g/ μ 1)的 ABRE(+)和 ABRE(-), 混匀, 加 4 μ 1 3M的 NaOAc和 100 μ 1的无水乙醇, -20°C, 30分 钟后 12000 rpm离心, 沉淀 DNA, 70%乙醇洗一次, 干燥, 力 Π 6.5 μ 1无菌水, 1 μ 1 10 X的 Τ4 多核苷酸激酶缓冲液,退火:条件是 88°C, 2min; 65 °C, lOmin; 37°C, lOmin; 25 °C , 5min; 力卩 1.5 μ 1 20mM的 ATP和 1 μ 1 T4 多核苷酸激 酶, 37°C反应 2小时,加苯酚一氯仿和氯仿各抽提一次,用无水乙醇沉淀 DNA。 再加 2 μ 1 10 X 连接酶缓冲液, Ι μ ΐ连接酶 (5units/ w l), 17 μ 1无菌水, 16°C 连接过夜, 用 2%的琼脂糖电泳, 分离大小约为 80bp的 DNA片段, 克隆到 pBSK+载体上 (经 S e l 酶切, 补平), 测序, 获得 pA4质粒。
合成引物 mABRE(+): 5'-GAAGTAACATGTTCGGTGG-3';
mABRE (-): 5' TCCCACCGAACATGTTACT 3', 方法同上, 获得 pmA4质粒。
pRS315His(Leu+)载体及 pA4和 pmA4质粒均用 BamIH、 Xba I双切后纯 化, 把 4mer ABRE 和 4mer mABRE 克隆到 pRS315His, 得到诱饵载体 pRSA4(Leu+)和挽救载体 pRSmA4(Leu+)质粒。
5 ) 玉米幼胚 17dpp cDNA文库的筛选:
制备 yWAM2感受态细胞,把 pRSA4转化到酵母菌株 yWAM2 LeiT, His―, Trp_)中, 转化方法参照 Two Hybrid System TRAFO Protocol进行。 获得含有 pRSA4的酵母菌株 yA4(His', Trp')。 用含有诱饵载体的 yA4酵母对文库进行 筛选, 转化方法同上, 将转化细胞涂到 1¾_选择培养基上, 28°C培养 3~5天。 待酵母长出后, 提酵 质粒, 提取方法参照 Method I: Quick Plasmid DNA Preparations from Yeast(Christine Guthrie 1991)。 将酵母质粒转化 Co/ζ· DH5 α, 从中提取质粒, 酶切分析, 测序可知所获得的阳性克隆的 DNA序列, 再对序列进行分析。
6) ABP2、 ABP4、 ^B ^全长 cDNA序列的获得:
采用 5'RACE的方法得到了 ABP2、ABP4、ABP9基因的全长 cDNA序列, 按 GibcoBRL公司 5'RACE System for Rapid Amplification of cDNA Ends, Version2.0 kit操作。
用于反转录的引物: ABP2 rv2: 5'-GCGACAGCGACGACAGATCA-3 '
ABP4 rv2: 5 ' - AGCGCC AGAAGCGGAGGCC A-3 ' ABP9 rv2: 5 ' -CCTTC ACC AGGAAGTCCTCC A-3 ' 用于 PCR的引物: AUAP fw: 5'-GGCCACGCGTCGACTAGTAC-3 '
ABP2 rv3: 5 '-AGGAACTCCTCCAGAGTCAT-3 '
ABP4 rv3: 5 ' -TCGTCGAACGTCAACGAGTAG -3' ABP9 rv3: 5'-AACCAATCCTCCGTTCTCACC-3'
PCR条件是: 94°C, 3min; 94 °C , 30sec; 60V , 30sec; 72°C,lmin, 35个循环; 72°C, 5min。 把扩增出 DNA片段用 1 %的琼脂糖胶分离、 回收 并连接到 pGEM-T easy vector, 转化 co/ . JM109, 酶切鉴定后测序, 获得 ABP2, ABP4 , ^B P基因的全长 cDNA序列, 分别为序列表中的序列 1、 3、 5, 根据 cDNA序列推测出其蛋白序列为序列 2、 4、 6。
实施例 2、 ABP2、 ABP4、 ABP9的 ABRE体内结合特异性分析 将 yA4和 ymA4转化到 yWAM2酵母中, 得到 yA4和 ymA4菌株, 把筛 库得到的 ABP2、 ABP4、 ABP9质粒分别转化 yA4和 ymA4酵母, 28°C在 His— 选择培养基上培养 3~5天, 只有用 ABP2、 ABP4、 ABP9质粒转化的 yA4酵 母能够生长, 而 ABP2、 ABP4、 ABP9质粒转化的 ymA4酵母不能够生长, 说明 ABP2、 ABP4、 ABP9在酵母体内能够特异结合 ABRE元件, 激活了报 告基因 H/S3基因的 *达, 故能够在 选择培养基上生长 (图 1B), 相反由于 ABP2, ABP4、 ABP9不能与 mABRE结合, 不能激活报告基因 H/S3基因的 表达, 在 His_选择培养基上也不能生长 (图 1A), 因此, ABP2、 ABP4、 ABP9 在酵母体内具有 ABRE结合特异性。
实施例 3 . ABP2, ABP4、 ABP9.的 ABRE体外结合特异性分析(EMSA 实验)
1) ABP2, ABP4、 ABP9蛋白的纯化:
^ ABP2, ABP4、 ^8R 的全长基因克隆到 pGEX4T-l原核表达载体上, 然后转化到 BL21菌株中,用 37°C, 0.3mM IPTG诱导表达 2〜3小时, SDS-PAGE 电泳, 有特异的 ABP2、 ABP4、 ABP9表达条带。 ABP2、 ABP4、 ABP9蛋白 纯化的操作方法按照 Pharmacia公司的 MicroSpin™ GST Purification ModuLe protocol进行, 纯化的蛋白用于 EMSA实验。
2) 同位素标记 ABRE和 mABRE:
采用 Promega 公司的 DNA 5' End-Labeling System , 反应体系是: ABRE (或 mABRE)l μ 1, T4 PNK 10 X buffer 5 μ 1, Y -32P-ATP 3 μ 1, T4 ΡΝΚ (10U/ U 1) 2 1, Η20 39 μ ΐ; 37°C 20分钟; 力 Β 2 μ 1 0.5Μ EDTA, 68 °C 10 分钟灭活; 37°C 10分钟; 4°C保存备用。
3) ABP2s ABP4、 ABP9蛋白与 DNA结合反应:
5 X binding buffer (125mM HEPES-KOH pH7,6; 50%甘油; 250mM KC1) 4 μ 1; ABP2、 ABP4、 ABP9和 GST蛋白各约 4 μ g (9 μ 1); 1Μ DTT 1 μ 1; 上 述标记的 ABRE (或 mABRE)探针 1 μ 1; Η2Ο 4 μ 1; 冰上结合 30分钟, 加 3 μ 1上样缓冲液 (含 0.025%溴酚蓝的无菌水), 进行聚丙烯酰胺电泳分析。
4 ) 非变性聚丙烯酰胺电泳:
配制聚丙烯酰胺胶 (5.4%): 30%丙烯酰胺 9ml; 10 X电泳缓冲液 5ml (甘 氨酸 142.7g/L, EDTA 3.92g/L, Tris 30.28g/L); 50%甘油 2.5ml; 去离子水 33ml; 10%APS 400 μ 1; TEMED 25 μ 1。待胶凝后, 用 1 X电泳缓冲液电泳, 预电泳 10分钟 (300V); 上样, 电泳 1小时 (300V) ; 用滤纸粘下胶, 保鲜膜封 好后, 压 X光片 1小时; 洗片, 显影 2分钟, 定影 5分钟。 结果表明有明显 的被 ΑΒΡ2、 ΑΒΡ4、 ΑΒΡ9蛋白阻滞 ABRE的电泳条带(图 2),相反, mABRE 则不被阻滞, 说明 ABP2、 ABP4, ABP9基因产物在体外同样具有 ABRE结 合特异性。
实施例 4、 ABP2、 ABP4、 ABP9在酵母和玉米细胞中的 ABRE结合特异性及 转录激活功能
1 ) 酵母细胞中转录激活试验
把 AS ABP4, 勾建到 YepGAP (Trp+)载体上, 得到含有 SP ABP4 5*/¾基因全长 cDNA的酵母表达载体 YepGAPABP- 2、 YepGAPABP- 4、 YepGAPABP- 9 质粒, 将其转化到 yA4和 ymA4酵母中, 在 His—选择培养基上 28 °C培养: Γ5天, 结果表明用 YepGAPABP- 2、 YepGAPABP_4、 YepGAPABP- 9质粒转化的 yA4能够生 长(图 3B、 D、 F), 而 ymA4不能生长 (图 3A、 C、 E), 因此 ABP2、 ABP4、 ABP9 在酵母细胞内不但具有 ABRE结合特异性, 而且具有转录激活功能。 图 3中, A : ymA4 + ABP2 ; B : yA4 + ABP2 ; C : ymA4 + ABP4; D : yA4 + ABP4; E : ymA4 + ABP9; F : yA4 + ABP9。
2 ) 玉米细胞中的转录激活功能试验
报告载体的构建: PIG46 载体用 Xho I 酶切, T4 DNA 聚合酶补平, pBluescript II SK+载体上的 4mer ABRE用 S I、 £c 136 II酶切, 回收约 80bp的 DNA片段与载体连接, 转化 .co/Z' DH5a, 提质粒, 酶切鉴定, 测 序表明 ABRE已连在 35S mini启动子上游。
ABP2、 ABP4、 ABP9瞬时表达载体的构建:把 2、 ABP4、 ABP9{Xba I, Xho I)基因的全长 cDNA构建到植物瞬时表达载体 pBI221 上, 得到 PBI221-ABP2, ABP4、 ABP9质粒, 釆用基因枪的方法共转化报告质粒和目 的基因, 转化材料为玉米悬浮细胞, 转化方法参照 B.R.格利克和 J.E. 汤普 森主编的 《植物分子生物学及生物技术的实用方法》, 结果表明单独转化 pIG46质粒,没有报告基因的表达(图 4A),把 pIG46和 pBI221-ABP2、 ABP4、 ABP9共转化时, 有明显的报告基因的表达(图 4B、 C、 D), 因此 ABP2、 ABP4、 ABP9在玉米细胞内不但具有 ABRE结合特异性, 而且具有转录激活 功能。
实施例 5、 ABP2、 ABP4、 ABP9在非生物逆境条件下的表达特异性分析 1 ) 玉米材料的处理: 取玉米种子, 吸胀 24hr, 种植于花盆中, 28°C, 12hr光照培养约 20天, 待长出三叶一芯, 进行不同条件的处理。
①冷害处理: 将玉米苗置于 2Ό培养箱, 12hr光照培养 48hr, 取出并洗 去根上的土, 用液氮速冻, -80Ό保存备用。
②盐渍处理: 分别将玉米苗置于 0.6%, 0.8%, 1%的 NaCl溶液中, 12hr 光照培养 3天, 取出并洗去根上的土, 用液氮速冻, -80Ό保存备用。
③干旱处理:分别将玉米苗置于含水量为 8% (混和 920g干土和 80mL水), 10%, 13%的土: 中 12hr光照培养 3天, 取出并 去根上的土, 用液氮速冻 ^ -80°C保存备用。
④ ABA处理:分别将玉米苗置于 10·4Μ、 10·5Μ、 10'6Μ的 ABA溶液中 (取 5mg ABA用 0.1N KOH溶解后, 定容至 95mL水中即为 10_4M), 12hr光照培 养 24hr, 取出并洗去根上的土, 用液氮速冻, -80°C保存备用。
⑤ ¾02处理:分别将玉米苗置于 10mM H2O2 (1.13ml 30% H2O2/l), 60mM H202 (6.78mL 30% H2O2/L), 150mM H2O2 (14.95mL 30% ¾O2/L)的水溶液中, 12hr光照培养 24hr, 取出并洗去根上的土, 用液氮速冻, -80Ό保存备用。
⑥水处理: 将玉米苗直接置于水中 12hr光照培养 24hr, -80°C冻存。
⑦对照的处理: 直接取未经任何处理的苗 -80°C冻存作为对照。 2) RNA的提取及 DNA的去除:
①取约 200mg 处理的玉米材料, 液氮研磨, 提取 RNA 的方法按照 Promega公司的 RNAgents Total RNA Isolation System kit进行。
②将 RNA溶于 85 μ 1水中,加入 10 X buffer 10 μ 1和 5 μ 1 RQl RNA Free DNase(lU/ l), 37°C, 15min, 以去除 DNA的污染。
③加入 100 μ 1的酚氯仿抽提一次,取上清,用等体积的异丙醇沉淀 RNA, 70%的乙醇洗一次, 溶于 50μ1的水中。
④定量 RNA的浓度为 1 μ g/ μ 1。
3) RT-PCR:
取 Oligo dT181 μ 1 (0.5 μ g/μ 1), RNA 5 μ 1(1 μ g/μ 1), dNTP 1 μ l(10mM),
Η2027 μΐ; 65。C, 5min; 0°C, 2min; 加入 5X buffer 10 l, DTT (lOOmM) 5 μ 1, RNase Inhibitor 10U(40U/ μ 1); 42。C, 2〜5min;加入 SuperScipt II 1 μ l(200u/ l); 42 °C, 50min; 70 °C, 15min灭活, 备用。
模板 cDNA的相对定量及内标引物的设计:根据 GenBank上登录的玉米 肌动蛋白基因 (Maize cftW gene: Accession NO. J01238)设计如下引物:
mActl F: 5'-CACCTTCTACAACGAGCTCCG-3'
mActl R: 5'-TAATCAAGG GCAACGTAGGCA-3 '
用该引物进行扩增, 如果是 cDNA可扩增出 405bp的条带, 如果是基因 组 DNA可扩增出 512bp的条带 (有 107bp的内含子:)。
PCR反应体系: 模板 1μ1, 2XPCR缓冲液 10μ1, 10mM dNTP 1 μ 1,
10 μ Μ mActl F 1μ.1, 10 Μ mActl R 1 μ 1, Taq 1U, 灭菌水 6μ1。
PCR条件: 94 °C, 2min; 94V, 30sec; 55°C, 30sec; 72 °C, 30sec; 30 cycle; 72 °C, 5min。
根据 PCR产物的电泳结果对模板 DNA进行稀释, 调整模板 DNA的用 量, 直到用 mActl F和 mActl R引物扩增出的 DNA条带的量基本一致, 使 每微升溶液中模板 cDNA的含量基本一致。
4) ABP2, ABP4、 基因的 PCR扩增:
ΦΑΒΡ2, 设计 PCR扩增的引物如下 (扩增 548bp):
FW1 5 ' -TGATCTGTCGTCGCTGTCGC-3 '
RV 5 '-ACTCCAGGTTACTTGCATTAT-3 ' PGR体系: 模板 1 μ 1, 2 XPCR缓冲液 10 μ 1, 10mM dNTP 1 μ 1, lOuM mActl F 1 μ 1, lOuM mActl R 1 μ 1, Taq 1U, 灭菌水 6 μ 1。
PCR条件: 94。C, 2min; 94 °C , 30sec; 55°C, 30sec; 72 °C , 30sec; 30 cycle; 72 °C , 5min。
② ABP4, 设计 PCR扩增的引物如下 (扩增 632bp):
W1R 5, -TCGGTTATTCCCAATACACA-3 '
W2F 5 ' -AGC AGCGGTGAACCAGCTTG-3 '
PCR体系: 模板 1 μ 1, 2 XPCR buffer 10 μ 1, lOmM dNTP 1 μ 1, lOuM mActl F 1 μ 1, lOuM mActl R 1 μ 1, Taq 1U, 灭菌水 6 μ 1。
PCR条件: 94。C, 2min; 94 "C , 30sec; 55°C, 30sec; 72 °C , 30sec; 30 cycle;
72 °C , 5min。
③ ABP9, 设计 PCR扩增的引物如下 (扩增 937bp):
FW1 5 ' -C ATGACGCTGGAGGACTTCCT-3 '
RV 5 ' -TTGACGAAAAC AC AGAGC-3 '
PCR体系: 模板 1 μ 1, 2 X PCR缓冲液 10 μ 1, 10mM dNTP 1 μ 1, lOuM mActl F 1 μ 1, lOuM mActl R 1 μ 1, Taq 1U, 灭菌水 6 μ 1。
PCR条件: 94 °C , 2min; 94 °C , 30sec; 55 °C , 30sec; 72°C, 50sec; 30 cycle; 72 °C , 5min。 电泳结果表明 ABP2、 ABP4、 ABP9基因受盐渍 (图 5A、 B、 C)、 干旱(图 5J、 K)、 ABA (L、 M、 N)、 过氧化氢 (F、 G)等逆境条件的 诱导表达。图 5中, A: CK1 B: l%NaCl C: 0.8%NaCl D: 0.6%NaCl E: 150mM H2O2 F: 60mM H2O2 G: 10mM H2O2 H: H2O I: 13% O J: 10% H2O K: 8% H2O L: 10-6MABA M: 10_5M ABA N: 10_4M ABA 0: 4°C P: CK2
实施例 6、 ABP2、 ABP4、 ABP9转基因表达载体的构建
1 ) ABP2 , ABP4、 9基因的拟南芥转化:
拟南芥的培养:拟南芥种子在 4°C进行 2-3天的春化处理,每盆播种 7~10 粒种子 (营养土和蛭石按 2: 1); 放于温室中培养 (22 °C, 光照 16h); 待拟南芥 抽出初生苔后, 剪去初生苔, 待其抽出更多的次生苔, 且少数开始结荚时, 可用于转化。
农杆菌的培养: 挑农杆菌单菌落接种在 3mlYEB(Kan50mg/L, 利福平 50mg/l), 28 °C, 250rpm培养 30 小时; 按 1 :400 转接入 200ml 新鲜的 YEB(Kan50mg/l,利福平 50mg/L)中, 28°C, 250rpm培养约 14小时,测 OD600 ^ 1.5; 7500rpm,4°C,10min离心收集菌体; 重悬菌体于二倍体积 (400ml)的渗 透液 (1/2 MS盐 +5%蔗糖, ρΗ5.7, 121 Ό,15πώι灭菌; 用之前加 6-ΒΑ至终浓 度为 0.044uM, VB6终浓度为 lmg/l, VB 1终浓度为 10mg/l, SILWET 0.02%。
①载体构建及农杆菌转化:把 ABP2、ABP4、ABJP构建到 pBI121及 pZP212 载体上得到 pZP212-ABP2、pZP212-ABP4、pBI121-ABP9 (图 6),转化 JM109 , 提质粒,酶切鉴定,挑出所需克隆,测序,并将其转化到农杆菌 LBA4404中。
②拟南芥转化: 把拟南芥的花蕾浸入渗透液中, 抽真空 (25 IN Hg, 保持 5分钟); 转化完毕后, 花盆外套上塑料袋, 水平放置, 使其在低光强度下生 长 24-48小时后, 即可正常培养。
③收集种子,进行筛选:称 25-30mg种子放入 1.5mL离心管,加 1ml 75% 的乙醇 (含 0.05% Tween 20), 于摇床上摇 10分钟 (300rpm), 离心, 去上清; 力口 1ml 95%的乙醇洗一次, 离心, 去上清; 重复一次; 在超净台中加 0.3ml 的 100%乙醇, 移到无菌滤纸上, 吹干; 把吹干的种子撒到 1/2MS平板 (Kan50mg/1)上; 4°C, 放 2天后, 22°C, 16h光照培养; 将阳性植株 (TO代) 移栽到盆中培养, 并收集种子进行 T1代筛选。
2)转基因拟南芥基因组 DNA的提取:
①在液氮中研磨 0.1-0.2g植物叶片, 转移至 1.5ml离心管中。
②加入 0.7ml CTAB (Tris lOOmM, NaCl 1.4M, 20mM EDTA, CTAB 2%, 巯基乙醇 0.1%), 60V , _ 30分钟。 每隔 10分钟, 颠倒一次。
③加 0.7ml酚:氯仿 (1: 1), 颠倒几次, 10000 rpm离心 5分钟, 转移上 清至一新的离心管, 加等体积的氯仿:异戊醇 (24: 1), 混匀, 10000 rpm离 心 5分钟。 转移上清至一新的离心管。
④加等体积的异丙醇, 颠倒混匀, 10000 rpm离心 10分钟, 除去上清,
70%乙醇洗一次, 抽干, 溶于 50 μ ΐ的无菌水中, 用于 PCR检测。
3 )转基因拟南芥 PCR检测:
正向引物: 35S启动子: 5,-TCTGCCGACAGTGGTCCCAA-3, 反向引物: ABP2 rv3: 5'-AGG AAC TCC TCC AGA GTC AT-3'
ABP4 rv3: 5'-TCG TCG AAC GTC AAC GAG TAG -3 ' ABP9 rv3: 5'-AAC CAATCC TCC GTT CTC ACC-3' 反应体系 (20 μ ΐ): 转基因植株 DNA l l(20ng~50ng); 10 X buffer 2 1; MgCl2(2.5mM) 2 μ 1; Taq酶 0.2 μ 1; dNTP(2.5mM) 2 μ 1;. 引物各加 10 μ Μ; 加无菌水至 20 μ 1。
反应条件: 94Ό, 5分钟; 94 45秒; 60°C, 45秒; 72°C, 45秒; 35 个循环; 72°C延伸 5分钟。 筛选出 PCR阳性植株。
实施例 7、 ABP2, ABP4、 ABP9转基因植株的生理分析实验
1)抗寒实验: 把转基因植株与未转基因植株置于 -6°C, 保持 6小时; 转 移到正常的生长条件下继续培养, 结果表明: 转基因植株的存活率为 80%, 未转基因的植株存活率为 10%, ABP2, ABP4, ABP9 能够明显提高植株的 抗寒性能, 结果如图 7所示。
2)抗盐实验: 把转基因植株与未转基因植株置于 600mM的 NaCl中浸泡 3小时; 22°C,光照培养 24小时; 转移到拟南芥正常的生长条件下继续培养, 结果表明: 转基因植株的存活率为 80%, 未转基因的植株存活率为 15%, ABP2、 ABP4 ABP9能够明显提高植株的抗盐性能, 结果如图 8所示。
3)抗旱实验: 把转基因植株与未转基因植株置于拟南芥正常的生长条件 下不给水连续培养 15~20天。 结果表明: 转基因植株的存活率为 90%, 未转 基因的植株存活率为 5%, ABP2、 ABP4、 ABP9能够明显提高植株的抗旱性 能, 结果如图 9所示, 其中 A为未转基因的植株, B为转基因植株。
工农业应用
本发明成功地克隆到了玉米 bZIP类转录因子 ABP2、 ABP4、 ABP9的编 码基因, 并成功地将其导入拟南芥中, 得到了抗非生物逆境的拟南芥, 对于 培育抗非生物逆境植物品种具有重要的理论及现实意义。

Claims

权利要求书
1、 玉米 bZIP类转录因子 ABP2、 ABP4、 ABP9, 它们分别是具有序列表中 序列 2、 4、 6的氨基酸残基序列的蛋白质, 或者是将序列 2、 4、 6的氨基酸 残基序列经过一个或几个氨基酸残基的取代、缺失或添加且具有与序列 2、 4、 6的氨基酸残基序列相同活性的由序列 2、 4、 6衍生的蛋白质。
2、 根据权利要求 1所述的转录因子 ABP2、 ABP4、 ABP9, 其特征在于: 它们分别是具有序列表中序列 2、 4、 6氨基酸残基序列的蛋白质。
3、 玉米 bZIP类转录因子 ABP2、 ABP4、 ABP9的编码基因 ABP2、 ABP4、 ABP9, 分别是与序列表中 SEQ ID Ns : 1、 3、 5限定的 DNA序列具有 90%以 上同源性, 且编码相同功能蛋白质的 DNA序列。
4、 根据权利要求 3所述的基因, 其特征在于: 所述玉米 bZIP类转录因 子 ABP2、 ABP4、 ABP9的编码基因^ ¾"、 ABP4, 分别是序列表中序列 1、 3、 5的 DNA序列。
5、 根据权利要求 4所述的基因, 其特征在于: 所述玉米 bZIP类转录因 子 ABP2、 ABP4、 ABP9的编码基因 ABP2、 ABP4、 的读码框分别为自 5, 端第 11 位到第 1056碱基、第 93位到第 1175位碱基、第 45位到第 1202位 碱基的 DNA序列。
6、 含有权利要求 3或 4所述基因的表达载体。
7、根据权利要求 6所述的表达载体,其特征在于: 所述表达载体分别为 pZP212-ABP2、 pZP212-ABP4、 ρΒΙ121-ΑΒΡ9。
8、 含有权利要求 3或 4所述基因的细胞系。
9、 权利要求 3或 4所述基因在培育抗非生物逆境植物品种中的应用。
10、根据权利要求 9所述的应用, 其特征在于: 所述非生物逆境为寒害、 旱害和盐害。
PCT/CN2003/000599 2002-07-30 2003-07-28 Facteur de transcription de type bzipm du mais et gene codant, et utilisation de ceux-ci WO2004011493A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003257774A AU2003257774A1 (en) 2002-07-30 2003-07-28 The bzip type transcription factor of corn and its coding gene and the usage thereof
US11/046,255 US7323339B2 (en) 2002-07-30 2005-01-28 Maize bZIP transcription factors and genes encoding the same and use thereof
US11/810,795 US20080060098A1 (en) 2002-07-30 2007-06-07 Maize bZIP transcription factors and genes encoding the same and use thereof
US11/810,784 US20080060097A1 (en) 2002-07-30 2007-06-07 Maize bZIP transcription factors and genes encoding the same and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB021271879A CN1273483C (zh) 2002-07-30 2002-07-30 一个玉米bZIP类转录因子及其编码基因与应用
CN02127187.9 2002-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/046,255 Continuation US7323339B2 (en) 2002-07-30 2005-01-28 Maize bZIP transcription factors and genes encoding the same and use thereof

Publications (1)

Publication Number Publication Date
WO2004011493A1 true WO2004011493A1 (fr) 2004-02-05

Family

ID=30121518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000599 WO2004011493A1 (fr) 2002-07-30 2003-07-28 Facteur de transcription de type bzipm du mais et gene codant, et utilisation de ceux-ci

Country Status (4)

Country Link
US (3) US7323339B2 (zh)
CN (2) CN1273483C (zh)
AU (1) AU2003257774A1 (zh)
WO (1) WO2004011493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323339B2 (en) 2002-07-30 2008-01-29 The Institute Of Biotechnology Of The Chinese Academy Of Agricultural Sciences Maize bZIP transcription factors and genes encoding the same and use thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395266C (zh) * 2005-03-10 2008-06-18 中国农业科学院生物技术研究所 一个玉米抗逆转录调控因子及其编码基因与应用
CN102382182B (zh) * 2010-09-01 2013-07-24 中国科学院遗传与发育生物学研究所 一种与植物耐逆性相关的蛋白nek6及其编码基因与应用
CN102911262B (zh) * 2011-08-03 2014-05-07 中国农业科学院作物科学研究所 植物耐逆性相关蛋白及其编码基因和应用
CN103044534B (zh) * 2011-10-14 2014-07-02 中国农业科学院北京畜牧兽医研究所 紫花苜蓿抗旱相关基因及其编码的蛋白和应用
CN104017061B (zh) * 2013-03-01 2016-08-03 中国科学院植物研究所 转录因子ZmbZIP17及编码基因与其在响应逆境中的应用
CN103320448B (zh) * 2013-06-26 2014-09-03 昆明理工大学 一种岷江百合bZIP转录因子基因LrbZIP1及应用
WO2015042737A1 (zh) * 2013-09-26 2015-04-02 创世纪转基因技术有限公司 一种小盐芥亮氨酸拉链蛋白bZIP-4及其编码基因与应用
CN104513823B (zh) * 2014-11-24 2017-06-20 扬州大学 一种耐旱耐盐的转基因植物的制备方法
CN107298701B (zh) * 2017-04-18 2020-10-30 上海大学 玉米转录因子ZmbZIP22及其应用
CN107488667B (zh) * 2017-08-15 2019-12-03 四川农业大学 玉米ZmbZIP107基因在培育耐铅胁迫的植物中的应用
CN111206031A (zh) * 2020-03-11 2020-05-29 中国农业科学院生物技术研究所 一种用于检测玉米植物naz-4的核酸序列及其检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014559A1 (fr) * 1999-08-19 2001-03-01 Kumiai Chemical Industry Co., Ltd. Gene de regulation de la ramification des plantes, vecteur contenant ledit gene, micro-organisme transforme par ledit vecteur, et procede de regulation de la ramification des plantes utilisant ledit micro-organisme
WO2002031154A1 (fr) * 2000-10-11 2002-04-18 National Institute Of Agrobiological Sciences Facteurs de transcription de type bzip permettant de reguler l"expression de la proteine de stockage du riz

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US72159A (en) * 1867-12-17 bostw-ick
US20100293669A2 (en) * 1999-05-06 2010-11-18 Jingdong Liu Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement
US20110093981A9 (en) * 1999-05-06 2011-04-21 La Rosa Thomas J Nucleic acid molecules and other molecules associated with transcription in plants and uses thereof for plant improvement
CN1273483C (zh) 2002-07-30 2006-09-06 中国农业科学院生物技术研究所 一个玉米bZIP类转录因子及其编码基因与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014559A1 (fr) * 1999-08-19 2001-03-01 Kumiai Chemical Industry Co., Ltd. Gene de regulation de la ramification des plantes, vecteur contenant ledit gene, micro-organisme transforme par ledit vecteur, et procede de regulation de la ramification des plantes utilisant ledit micro-organisme
WO2002031154A1 (fr) * 2000-10-11 2002-04-18 National Institute Of Agrobiological Sciences Facteurs de transcription de type bzip permettant de reguler l"expression de la proteine de stockage du riz

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323339B2 (en) 2002-07-30 2008-01-29 The Institute Of Biotechnology Of The Chinese Academy Of Agricultural Sciences Maize bZIP transcription factors and genes encoding the same and use thereof

Also Published As

Publication number Publication date
CN1273483C (zh) 2006-09-06
CN1296382C (zh) 2007-01-24
US20080060098A1 (en) 2008-03-06
US7323339B2 (en) 2008-01-29
AU2003257774A1 (en) 2004-02-16
CN1472223A (zh) 2004-02-04
US20080060097A1 (en) 2008-03-06
US20060021091A1 (en) 2006-01-26
CN1671738A (zh) 2005-09-21

Similar Documents

Publication Publication Date Title
US20140165228A1 (en) Identification of diurnal rhythms in photosynthetic and non-photosynthetic tissues from zea mays and use in improving crop plants
US20090265813A1 (en) Stress tolerance in plants
US7323339B2 (en) Maize bZIP transcription factors and genes encoding the same and use thereof
US20150159166A1 (en) Plant drought tolerance and nitrogen use efficiency by reducing plant sensitivity to ethylene
AU2012279466B2 (en) Constitutively active ABA receptor mutants
CA2887143A1 (en) Genes controlling photoperiod sensitivity in maize and sorghum and uses thereof
WO2014164014A1 (en) Genes for improving nutrient uptake and abiotic stress tolerance in plants
WO2011134126A1 (zh) 植物耐逆性相关蛋白TaDREB4B及其编码基因和应用
US10155956B1 (en) Nitrogen uptake in plants
US20150361442A1 (en) Use of dimerization domain component stacks to modulate plant architecture
AU2010255488B2 (en) Methods and compositions for stress tolerance in plants
WO2007033587A1 (fr) Procede d'isolement d'un promoteur de gene bidirectionnel et son utilisation
CN114106119B (zh) 齿肋赤藓ScSoloist基因及其应用
EP2288709A1 (en) CONTROLLED cDNA OVEREXPRESSION SYSTEM IN ARABIDOPSIS
JP4085110B2 (ja) ジャーミン様タンパク4遺伝子プロモーター、およびその利用
NZ618916B2 (en) Constitutively active aba receptor mutants
OA16804A (en) Constitutively active ABA receptor mutants.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038178079

Country of ref document: CN

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)