WO2004009675A1 - Hydrophile polyorganosiloxane - Google Patents

Hydrophile polyorganosiloxane Download PDF

Info

Publication number
WO2004009675A1
WO2004009675A1 PCT/EP2003/050304 EP0350304W WO2004009675A1 WO 2004009675 A1 WO2004009675 A1 WO 2004009675A1 EP 0350304 W EP0350304 W EP 0350304W WO 2004009675 A1 WO2004009675 A1 WO 2004009675A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy
functional
methyl
radical
mol
Prior art date
Application number
PCT/EP2003/050304
Other languages
English (en)
French (fr)
Inventor
Timothy Clark
Hans-Dieter Feucht
Jürgen STROPP
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10319563A external-priority patent/DE10319563A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AU2003255530A priority Critical patent/AU2003255530A1/en
Priority to EP03765118A priority patent/EP1523514A1/de
Publication of WO2004009675A1 publication Critical patent/WO2004009675A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/10Equilibration processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the invention relates to epoxy-functional, hydrophilic and free-radically hardenable polyorganosiloxanes, their production and use.
  • polyorganosiloxanes Due to their chemical structure, polyorganosiloxanes have a number of specific properties, such as chemical and thermal stability, UV stability, flexibility, elasticity, low water absorption, good dielectric properties and non-toxic behavior. Because of these properties and possible combinations of properties, polyorganosiloxanes are used in many areas of technology. It is particularly noteworthy that polymeric polyorganosiloxanes are molten up to molasses of approx. 150,000 and are therefore particularly suitable for use in impregnation and coating systems, adhesives, release agents, resists, masking compounds, reflective and protective layers and for other special purposes, in particular also in medicine and medical technology.
  • the range of properties of the polyorganosiloxanes can be specifically changed or adapted to various technical requirements by varying the chain-like organic residues or by introducing suitable functional groups.
  • the related prior art is comprehensively presented, inter alia, in EP 0 562 369 B1.
  • Biosensors are increasingly used here in which a biological detection system is linked to a physical transducer (A. Kerk, Nachr. Chem. Tech. Lab., 1999, 7, 777-779; JM Kauffann, BlOforum, 2000 , 4, 19-21; F. Hanel, HP Saluz, BlO Forum, 1999, 9, 504-507).
  • the recognition systems themselves are formed from biological recognition molecules, such as antibodies, enzymes and nucleic acids, which are bound or immobilized on a support via an immobilization layer.
  • Two-dimensional, but also three-dimensional biological detection layers are described in the literature. E. Katz, I. Willner, Angew. Give a broad overview of the structure of almost two-dimensional biological layers. Che. , 2000, 112, 1230-1269.
  • the company Schleicher & Schüll GmbH uses a three-dimensional immobilization layer for its product called FAST TM Slides DNA chips, in which the catcher oligos are immobilized in a three-dimensional nitrocellulose membrane (Schleicher & Schüll, BioMolecular Screening, Catalog 2001 (int. Ed.).
  • EP 0 562 369 B1 and EP 0 562 372 B1 describe a liquid, free-radically crosslinkable polyorganosiloxane for the construction of such selectively recognizing layers for sensory applications, which additionally contains linker groups for coupling biological or chemical function carriers.
  • linker groups for coupling biological or chemical function carriers.
  • the double bond group (methacrylic acid residue) ensures the production of a three-dimensional network by, for example, radical polymerization, ie either thermal or UV curing.
  • the epoxy-functional group ie the glycidyl ether residue, is used due to its high hen reactivity, for example towards amino groups, as a coupling group function in order to be able to equip this layer with selective recognition molecules.
  • the hydrophilicity of the matrix which is not yet sufficient for the finishing with biological function carriers, has proven to be disadvantageous. Since the field of bio or DNA chip sensors is used almost exclusively in an aqueous environment, an exchange of materials with such an immobilization matrix cannot be achieved satisfactorily.
  • the hydrophilicity of the matrix can be increased to such an extent that, for example, enzymes, such as glucose oxidase, maintain their functionality Layer can be immobilized.
  • this represents a further and sometimes complex process step which is process incompatible in the context of the realization of a microstructured DNA chip with an immobilization matrix based on functionalized polysiloxanes.
  • the object of the present invention is therefore to provide a polyorganosiloxane which can be UV-crosslinked by free-radical polymerization and which, on the one hand, has epoxy-functional side chains for the covalent binding of corresponding biomolecules, i.e. Detection molecules with compatible linker groups, contains, and on the other hand is already equipped with hydrophilic side chains in order to enable the exchange of substances or the biocompatibility in an aqueous environment.
  • An essential aspect of this task is not only the increase in the hydrophilicity of the polyorganosiloxanes according to the invention, but also the targeted adjustability of the hydrophilicity and the variability of the crosslinking density.
  • the present invention accordingly relates to (totally) polymerizable, epoxy-functional, hydrophilic polyorganosiloxanes having the following general structure:
  • R 1 lower alkyl group with preferably 1 to 4 carbon atoms
  • the present invention achieves the stated object in part by using the basic components and synthesis synthesis as described in EP 0 562 369 B1.
  • special, synthetically produced polyalkylene glycol ether side chains are introduced.
  • the proportion of these side chains can be varied within wide limits and enables the desired selectability of hydrophilicity.
  • This new compound class of double-containing, epoxy-functional and polyorganosiloxanes with hydrophilic side chains has a high storage stability of at least six months at 4 ° C, good applicability through modern coating methods such as Spm-Coatmg, Drop-Coatmg, dispensing, and are therefore suitable and due to the good layer formation properties for use in many areas of technology, especially for coating a wide variety of substrates.
  • reaction mediators or diluents such as (Tr ⁇ - (meth) - acrylates, di- and mono-functional polyethylene glycol (meth) - acrylates, which can themselves be hydrophilic, m the new polymer matrix, an additional variation possibility of the hydrophilicity and in particular the crosslinking density is possible.
  • the (photo) polymerizable group Z is introduced preferably by addition of a (photo) polymerizable compound, preferably ⁇ as acrylic acid or methacrylic acid to a xankette at the silo located radical E.
  • the hydrophilic radical Y is preferably a polyalkylene glycol ether, in particular a polyethylene glycol ether compound.
  • Polyorganosiloxanes which are particularly preferred in the context of the present invention, in particular with regard to their hydrophilicity, are the following:
  • the present invention also relates to a process for the preparation of the epoxy-functional hydrophilic polyorganosiloxanes by
  • steps b) and c) can optionally and preferably also be carried out simultaneously
  • a selective and partial opening of the remaining epoxy-functional side chains with alkylene glycol ether, preferably (mono-, di-, tri- or tetra-) alkylene glycol ether is carried out.
  • alkylene glycol ether preferably (mono-, di-, tri- or tetra-) alkylene glycol ether
  • the alkyl groups of the starting compounds mentioned are preferably lower alkyl groups having 1 to 4 carbon atoms, preferably methyl groups.
  • the glycol ether used for the hydrophilization is preferably a mono-, di-, t ⁇ - or tetra-ethylene glycol ether.
  • Hydrosilylation is an established process for the functionalization of polysiloxanes.
  • the usual reaction conditions are well suited for the generation of side-chain-functional polysiloxanes.
  • i. H. problems sometimes arise with a combination of double-bonded, epoxy-functional and hydrophilic side chains, which is why one has to select other reaction conditions.
  • the hydrosilylation steps are carried out using m 2-butanone as a solvent in the presence of a catalyst at a slightly elevated temperature.
  • the reaction temperature is preferably 44-55 ° C and 10 ⁇ 10 equ. H2PtClg used. at
  • the polyorganosiloxanes according to the invention can be produced in a wide variety in compliance with these reaction conditions.
  • the polyorganosiloxanes according to the invention are particularly well suited for the formation of three-dimensional immobilization layers for chemical or biological function carriers, although their application is not intended to be restricted to this area.
  • the systems according to the invention show a wide variation in the number of double-bonded, epoxy-functional and hydrophilic side chains in the polyorganosiloxane (EPS150H), a miscibility with the reactive tionsvernetzern or intermediaries, as indicated above, pelbmdungs termen in a wide variable mixing ratio, an adjustable crosslink density and hydrophilicity by the number of dop ⁇ and hydrophilic side chains of the Polyor- ganosiloxanes (EPS150H) on the one hand and by the simultaneous use of appropriate Christsvernetzern or - intermediaries to the other.
  • EPS150H polyorganosiloxane
  • EPS150H Polyor- ganosiloxanes
  • the mixture is then pressure-filtered: the main part of the volatile components is distilled off under an oil pump vacuum (0.1 mbar) at a bath temperature of 120 ° C.
  • the raw product is finally cleaned using a thin-film evaporator at 0.05 mbar and a heating temperature of 130 ° C.
  • the equilibration product poly- [dimethyl] c Q [hydro-methyl] ⁇ , -siloxane (1) is obtained as a clear, viscous liquid.
  • the yield is 360.2 g (77.6% of theory), the SiH value of the product is determined to be 0.59 mol / 100 g (Th. 0.57 mol / 100 g).
  • poly- [dimethyl] 90 - [hydro-methyl] 30 - [methyl- (3-ox ⁇ - ranylmethoxy-1-propyl)] 30 -s ⁇ loxane (2) is obtained as a clear, viscous liquid.
  • the yield is 41.2 g (89.1% of theory), the SiH value of the product becomes 0.21 mol / 100 g (Th. 0.22 mol / 100 g), the epoxy value 0.21 mol / 100 g (Th. 0.21 mol / 100 g).
  • the reaction mixture is stirred at 50 ° C. until the volumetrically determined SiH content has reached a constant value. This is the case after 48 hours at the latest.
  • a 10-fold excess, based on H-PtCl 6 , of cross-linked polyvinylpyridm is added and the mixture is stirred at room temperature for 2 hours.
  • the solids are filtered off, the solvent is largely on a rotary evaporator in a water jet vacuum distilled off.
  • the remaining volatile constituents are distilled off at 70 ° C. in an oil pump vacuum (0.1 mbar).
  • the yield is 9.2 g (80.1% of theory), the SiH value of the product becomes 0.11 mol / 100 g (Th. 0.12 mol / 100 g), the epoxy value 0.13 mol / 100 g (Th. 0.12 mol / 100 g).
  • Reaction mixture stirred for 10 h at an oil bath temperature of 50 ° C.
  • the reaction mixture is then allowed to cool to room temperature, 2.5 g (25 mmol) of acidic aluminum oxide are added and the mixture is stirred for 2 hours.
  • the solids are filtered off and the solvent or the volatile constituents are distilled off in an oil pump vacuum on a rotary evaporator at room temperature.
  • the yield is 15.7 g (89 l of theory), the SiH value of the product becomes 0.12 mol / 100 g (0.11 mol / 100 g), the epoxy value 0.13 mol / 100 g (Th. 0.14 mol / 100 g) determined.
  • the reaction mixture is stirred at 50 ° C. until the volumetrically determined SiH content has reached a constant value. This is the case after 48 hours at the latest. After cooling to room temperature, a 10-fold excess, based on H 2 PtCl 6 , of crosslinked polyvinylpyride is added and the mixture is stirred at room temperature for 2 hours.
  • the yield is 8.6 g (84.9% of theory), the SiH value of the product becomes 0.09 mol / 100 g (Th. 0.10 mol / 100 g), the epoxy value is 0.14 mol / 100 g (Th. 0.13 mol / 100 g).
  • the yield is 20.9 g (88.7% of theory), the SiH value of the product becomes 0.10 mol / 100 g (Th. 0.09 mol / 100 g), the epoxy value 0.10 mol / 100 g (Th. 0.09 mol / 100 g).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)

Abstract

TFoto)polymerisierbare, epoxyfunktionelle, hydrophile Polyorganosiloxarie mit olgender allgemeiner Struktur: worin folgendes gilt: E = epoxyfunktioneller Rest mit 4 bis 20 C-Atomen; Z = (photo)polymerisierbarer Rest mit 8 bis 40 C-Atomen; Y = hydrophiler Rest R<1>= Niederalkylgruppe mit vorzugsweise 1 bis 4 C-Atomen; R<2>= R1 oder H and m + n + o + p + r = 50 bis 200 = L

Description

Beschreibung
Hydrophile Polyorganosiloxane
Die Erfindung betrifft epoxyfunktionelle, hydrophile und radikalisch hartbare Polyorganosiloxane, deren Herstellung und Verwendung.
Polyorganosiloxane besitzen aufgrund ihres chemischen Aufbau- es eine Reihe von spezifischen Eigenschaften, wie chemische und thermische Stabilität, UV-Stabilitat, Flexibilität, Elastizität, geringe Wasseraufnahme, gute dielektrische Eigenschaften und untoxisches Verhalten. Wegen dieser Eigenschaften und möglicher Eigenschaftskombinationen finden Polyorga- nosiloxane m vielen Bereichen der Technik Anwendung. Bemerkenswert ist vor allem, dass lmearpolymere Polyorganosiloxane bis zu Mol assen von ca. 150.000 flussig sind und deshalb besonders für den Einsatz in Imprägnier- und Beschichtungs- systemen, Klebstoffen, Trennmitteln, Resists, Abdeckmassen, Reflexions- und Schutzschichten sowie für andere spezielle Einsatzzwecke, insbesondere auch in der Medizin und m der medizinischen Technik, geeignet sind.
Durch Variation der kettenstandigen organischen Reste oder durch Einfuhrung geeigneter funktioneller Gruppen lasst sich das Eigenschaftsspektrum der Polyorganosiloxane gezielt verandern bzw. verschiedenen technischen Anforderungen anpassen. Der diesbezügliche Stand der Technik ist unter anderem m der EP 0 562 369 Bl umfassend dargestellt.
Ein weiteres interessantes Anwendungsgebiet ist die moderne biologische Analysentechnik und die medizinische Diagnostik. Hier werden m zunehmendem Maße Biosensoren eingesetzt, bei denen ein biologisches Erkennungssystem mit einem physikali- sehen Transducer verknüpft ist (A. Kerk, Nachr. Chem. Tech. Lab., 1999, 7, 777-779; J. M. Kauff ann, BlOforum, 2000, 4, 19-21; F. Hanel, H. P. Saluz, BlOforum, 1999, 9, 504-507). Die Erkennungssysteme selbst sind aus biologischen Erkennungsmolekülen, wie Antikörpern, Enzymen und Nukleinsäuren, gebildet, die an einem Träger über eine Im obilisierungss- chicht gebunden bzw. immobilisiert sind. In der Literatur sind dazu zweidimensionale, aber auch dreidimensionale biologische Erkennungsschichten beschrieben. Einen breiten Überblick über den Aufbau annähernd zweidimensionaler biologischer Schichten geben E. Katz, I. Willner, Angew. Che . , 2000, 112, 1230-1269.
Eine dreidimensionale Immobilisierungsschicht verwendet die Firma Schleicher & Schüll GmbH für ihr Produkt mit dem Namen FAST™ Slides DNA-Chips, in denen die Fänger-Oligos in einer dreidimensionalen Nitrocellulose-Membran immobilisiert sind (Schleicher & Schüll, BioMolecular Screening, Katalog 2001 (int. Ed.) .
In der EP 0 562 369 Bl bzw. der EP 0 562 372 Bl wird für den Aufbau derartiger selektiv erkennender Schichten für sensorische Anwendungen ein flüssiges, radikalisch vernetzbares Po- lyorganosiloxan, das zusätzlich Linkergruppen zur Ankopplung biologischer oder chemischer Funktionsträger enthält, beschrieben. Dabei werden die weiter oben bereits beschriebenen spezifischen Eigenschaften von Polyorganosiloxanen, wie chemische und thermische Stabilität, Flexibilität, Elastizität, UV-Stabilität, gute dielektrische Eigenschaften und Biokompatibilität ausgenutzt.
Bei den dort beschriebenen Polyorganosiloxanen handelt es sich um epoxyfunktionelle, doppelbindungshaltige Polydi- methylsiloxane mit einer Kettenlänge von L = 150 (EPS150) . Die doppelbindungshaltige Gruppe (Methacrylsäure-Rest) gewährleistet die Herstellung eines dreidimensionalen Netzwer- kes durch beispielsweise radikalische Polymerisation, d.h. entweder thermische oder UV-Härtung. Die epoxyfunktionelle Gruppe, d.h. der Glycidylether-Rest, dient aufgrund ihrer ho- hen Reaktivität, beispielsweise gegenüber Ammogruppen, als Kopplungsgruppenfunktion, um diese Schicht mit selektiven Er- kennungsmolekulen ausrüsten zu können. Bei den aus EPS150 hergestellten Immobilisierungsschichten erweist sich die für die Ausrüstung mit biologischen Funktionstragern noch nicht ausreichende Hydrophilie der Matrix als nachteilig. Da m Bereich der Bio- bzw. DNA-Chip-Sensorik fast ausschließlich im wassrigen Milieu gearbeitet wird, ist ein Stoffaustausch mit einer solchen Immobilisierungsmatrix nicht zufriedenstellend zu realisieren.
Durch einen zusätzlichen Prozessschritt, nämlich die Umsetzung eines Teiles der m der EPS150-Immobιlιsιerungsmatnx vorhandenen Epoxidgruppen mit einer Aminosäure, zum Beispiel Prolm, lasst sich die Hydrophilie der Matrix so weit steigern, dass zum Beispiel Enzyme, wie Glucoseoxidase, unter Erhalt ihrer Funktionsfahigkeit m der Schicht immobilisiert werden können. Dies stellt jedoch einen weiteren und teilweise aufwendigen Prozessschritt dar, der im Rahmen der Reali- sierung eines mikrostrukturierten DNA-Chips mit einer Immobilisierungsmatrix auf der Basis von funktionalisierten Polysi- loxanen prozessinkompatibel ist.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstel- lung eines durch radikalische Polymerisation UV-vernetzbaren Polyorganosiloxans, das zum einen epoxyfunktionelle Seitenketten für die kovalente Bindung von entsprechenden Biomole- kulen, d.h. Erkennungsmolekulen mit kompatiblen Linker- Gruppen, enthalt, und zum anderen zusätzlich bereits mit hydrophilen Seitenketten ausgerüstet ist, um den Stoffaustausch bzw. die Biokompatibilitat im wassrigen Milieu zu ermöglichen .
Ein wesentlicher Aspekt dieser Aufgabe ist nicht nur die Er- hohung der Hydrophilie der erfmdungsgemaßen Polyorganosiloxane, sondern auch die gezielte Emstellbarkeit der Hydrophilie und die Varnerbarkeit der Vernetzungsdichte. Gegenstand der vorliegenden Erfindung sind demnach (ho- to)polymeπsιerbare epoxyfunktionelle, hydrophile Polyorganosiloxane mit der folgenden allgemeinen Struktur:
Figure imgf000005_0001
worin folgendes gilt
E = epoxyfunktioneller Rest mit 4 bis 20 C-Atomen;
Z = (photo) polymerisierbarer Rest mit 8 bis 40 C-Atomen;
Y = hydrophiler Rest
R1= Niederalkylgruppe mit vorzugsweise 1 bis 4 C-Atomen;
R2= R! oder Wasserstof f und m + n + o + p + r = 50 bis 200 = L
Die vorliegende Erfindung lost die gestellte Aufgabe teilweise unter Nutzung der Basiskomponenten und Syntheseschπtte, wie sie m der EP 0 562 369 Bl beschrieben sind. Zusatzlich werden spezielle, synthetisch hergestellte Polyalkylenglyco- lether-Seitenketten eingeführt. Der Anteil dieser Seitenketten ist m weiten Grenzen variierbar und ermöglicht die angestrebte gezielte Einsteilbarkeit der Hydrophilie.
Diese neue Verbmdungsklasse der doppelbmdungshaltigen, epo- xyfunkcionellen und mit hydrophilen Seitenketten versehenen Polyorganosiloxane besitzen eine hohe Lagerstabilitat von mindestens sechs Monaten bei 4°C, eine gute Applizierbarkeit durch moderne Beschichtungsmethoden, wie Spm-Coatmg, Drop- Coatmg, Dispensierung, und eignen sich daher und aufgrund der guten Schichtbildungseigenschaften für die Anwendung in vielen Bereichen der Technik, insbesondere zur Beschichtung verschiedenster Untergrunde .
Sie eignen sich insbesondere auch nach entsprechender Schichtherstellung zur Immobilisierung chemischer oder biologischer Erkennungsmolekule für analytische und diagnostische Zwecke. Hier ist darüber hinaus durch das gezielte Einfuhren von Reaktionsvermittlern bzw. -Verdünnern, wie (Trι-(meth)- acrylate, di- und mono-funktionelle Polyethylenglykol- (meth) - acrylate, welche selbst hydrophil sein können, m die neue Polymermatrix, eine zusätzliche Va iationsmoglichkeit der Hydrophilie und insbesondere der Vernetzungsdichte möglich.
Der epoxyfunktionelle Rest E wird vorteilhafterweise aus der folgenden Gruppe ausgewählt:
Figure imgf000006_0001
-CH—CH(CH3)—CH—O—CH—CH—CH2
0
-CH—CH(CH3)-COO—CH—CH—CH2
O
Figure imgf000006_0002
wobei insbesondere der Rest
-(CH2)r- O~- CH; -CH CH, \ / O
bevorzugt wird.
Der (photo) polymerisierbare Rest Z wird vorzugsweise durch Addition einer (photo) polymerisierbaren Verbindung, vorzugs¬ weise Acrylsäure oder Methacrylsäure, an einen an der Silo- xankette befindlichen Rest E eingeführt.
Der hydrophile Rest Y ist vorzugsweise eine Polyalkylenglyco- lether-, insbesondere eine Polyethylenglycoletherverbindung.
Im Rahmen der vorliegenden Erfindung besonders bevorzugte Polyorganosiloxane, insbesondere im Hinblick auf ihre Hydrophilie, sind die folgenden:
Figure imgf000007_0001
O:
:CH,
H3C mit
m + n + o + p + r = 150 = L m = 90-120 n = 20-30 o = 5 p = 5-20 q = 1-2 r = 5-20,
CH,
Figure imgf000008_0001
O:
:CH,
H3C
mit
m + n + o + p + r 150 m = 90-100 n = 20-30 o = 5 p = 5-20 q = 3-4 r = 15-20 s = 1-9, vorzugsweise 9 R = H, CH3 oder
C H3 CH, CH,
H3C- -S i — O -Si — O Si — CH,
C CH _Jm CH,
Figure imgf000009_0001
mit m + n + o + p + r = 150 = L m = 90-100 n = 30 o = 5 p = 10-25 q = 1-10, vorzugsweise 1-4 r = 0-5. Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der epoxyfunktionellen hydrophilen Polyorganosiloxane durch
a) gezielte Aquilibπerung von Poly- [hydroalkyl] -siloxan und Octaalkyltetrasiloxan zu Poly- [dιalkyl]m- [hydroalkyl] p-siloxan einer Kettenlange von L = 50 bis 200, bevorzugt 150, wobei gegebenenfalls zur gezielten Ein- Stellung der Kettenlange Hexaalkyldisiloxan als "Kettenstopper" eingesetzt werden kann,
b partielle Hydrosilylierung von SiH-Gruppen mit Allylgly- cidylether zu Poly- [dιalkyl]m[hydroalkyl] - [alkyl- (3- oxιranylmethoxy-1-propyl) -siloxan,
c) Hydrosilylierung der verbliebenen SiH-Gruppen mittels zur Hydrosilylierung funktionalisierter Polyalkylengly- colether und
d) selektive partielle Öffnung von epoxyfunktionellen Seitenketten mit (Meth) Acrylsaure,
wobei die Stufen b) und c) wahlweise und bevorzugt auch gleichzeitig durchgeführt werden können oder
indem nach Stufe b) zunächst
c') eine selektive und partielle Öffnung von epoxyfunktio- nellen Seitenketten mit (Meth) Acrylsaure und
d' ) eine selektive und partielle Öffnung der verbliebenen epoxyfunktionellen Seitenketten mit Alkylenglycolether, vorzugsweise (mono-, di-, tri- oder tetra-) Alkylengly- colether durchgeführt wird. Die Hydrosilylierung verbliebener SiH-Gruppen beinhaltet im Rahmen der vorliegenden Erfindung eine möglichst weitgehende Silylierung, soweit die sterischen Verhaltnisse dies zulassen.
Vorzugsweise sind die Alkylgruppen den genannten Ausgangsverbindungen Niederalkylgruppen mit 1 bis 4 C-Atomen, vorzugsweise Methylgruppen. Der zur Hydrophillerung eingesetzte Glycolether ist vorzugsweise ein mono-, di-, tπ- oder tetra- Ethylenglycolether .
Bei der Funktionalisierung von Polysiloxanen stellt die Hydrosilylierung ein etabliertes Verfahren dar. Die üblichen Reaktionsbedingungen eignen sich gut für die Erzeugung von seitenkettenfunktionalen Polysiloxanen. Bei der Herstellung von Polyorganosiloxanen gemäß der vorliegenden Erfindung, d. h. mit einer Kombination von doppelbmdungshaltigen, epoxyfunktionellen und hydrophilen Seitenketten ergeben sich manchmal Probleme, weshalb man andere Reaktionsbedingungen auswählen muß.
Gemäß einer bevorzugten Ausfuhrungsform werden die Hydrosily- lierungsstufen m 2-Butanon als Losungsmittel Gegenwart eines Katalysators bei schwach erhöhter Temperatur durchge- fuhrt. Vorzugsweise betragt die Reaktionstemperatur 44-55°C und als Katalysator werden 10~10 equ. H2PtClg eingesetzt. Bei
Einhaltung dieser Reaktionsbedingungen lassen sich die erf - dungsgemaßen Polyorganosiloxane m großer Vielfalt erzeugen.
Die erfmdungsgemaßen Polyorganosiloxane eignen sich besonders gut zur Ausbildung dreidimensionaler Immobilisierungss- chichten für chemische oder biologische Funktionstrager, obwohl ihre Anwendung nicht auf diesen Bereich beschrankt sein soll. Die erfmdungsgemaßen Systeme zeigen eine breite Vaπa- tionsmoglichkeit hinsichtlich der Anzahl der doppelbmdungshaltigen, epoxyfunktionellen und hydrophilen Seitenketten im Polyorganosiloxan (EPS150H) , eine Mischbarkeit mit den Reak- tionsvernetzern bzw. -Vermittlern, wie oben angegeben, in einem breit variierbaren Mischungsverhältnis, eine einstellbare Vernetzungsdichte und Hydrophilie durch die Anzahl der dop¬ pelbmdungshaltigen und hydrophilen Seitenketten des Polyor- ganosiloxanes (EPS150H) zum einen und durch den gleichzeitigen Einsatz von entsprechenden Reaktionsvernetzern bzw. -Vermittlern zum andern. Sie zeigen auch eine ausreichende Transparenz zur photoiniziierten Vernetzung, d.h. UV-Härtung, die ihre Anwendung auf Mikrochips ganz wesentlich erleichtert. Auch ihre Verarbeitungsviskosität ist durch Zugabe von Lösungsmittel oder durch Variation der Lösungsmittelkonzentration gut einstellbar, und man kann sie mit sogenannten Haftvermittlern zur Verstärkung der Haftung auf unterschiedlichen Substratoberflächen verwenden.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
Beispiel 1
Darstellung von Poly- [dimethyl ] 90- [hydro-methyl ] so-siloxan ( 1 )
Figure imgf000012_0001
(1)
Es werden 296,6 g (1,0 mol) 1, 1 , 3, 3, 5, 5, 7, 7-Octamethyl- [1, 3,5,7]-tetrasiloxan und 167,6 g (0,044 mol) Poly- [hydro- methyl] 6o-siloxan vorgelegt. Unter kräftigem Rühren werden als Katalysator 0,12 ml (1,4 mmol) Trifluormethansulfonsäure und 0,2 ml Wasser zugetropft. Das Reaktionsgemisch wird bei 70°C 40 h lang gerührt. Nach Abkühlen auf Raumtemperatur gibt man zur Entfernung des Katalysators 0,3 g (2,8 mol) Na2C03 zu und rührt 2 h. Anschließend wird die Mischung druckfil- trieri:, der Hauptteil der fluchtigen Anteile wird im Olpum- penvakuum (0,1 mbar) bei 120° C Badtemperatur abdestilliert. Das Rohprodukt wird schließlich noch über einen Dunnschicht- verdampfer bei 0,05 mbar und 130° C Heiztemperatur gereinigt. Man erhalt das Aquilibrierungsprodukt Poly- [dimethyl] cQ [hydro-methyl] ς, -siloxan (1) als klare, viskose Flüssigkeit.
Die Ausbeute betragt 360,2 g (77,6 % d.Th.), der SiH-Wert des Produkts wird zu 0,59 mol/lOOg (Th. 0,57 mol/lOOg) bestimmt.
Darstellung von Poly- [dimethyl] 90- [hydro-methyl] 3p- [methyl- (3- oxιranyl-methoxy-1-propyl) ] p-sιloxan (2)
H3C-
Figure imgf000013_0001
HC.
;o
C H,
(2)
13,70 g (0,12 mol) frisch destilliertes 2-Allyloxy-methyl- oxiran werden in 100 ml 2-Butanon vorgelegt und mit 0,12 ml (5,7 μmol) einer 0,05 M H_PtCl,3-Losung m tert .-Butanol versetzt. Anschließend werden bei einer Olbadtemperatur von 50 °C 33,9 g (0,20 mol, bezogen auf den SiH-Wert: 0,59 mol/
100 g) des Aqu librierungsprodukts Poly- [dimethyl] 90 [hydro- methyl] 6o-sιloxan (1) innerhalb von 2 h zugetropft. Das Reak- tionsgemisch wird so lange bei 50 °c gerührt, bis der volu e- trisch bestimmte SiH-Gehalt einen konstanten bzw. den angestrebten Wert erreicht hat. Dies ist spätestens nach 48 h der Fall. Nach Abkühlen auf Raumtemperatur gibt man einen 10-fa- chen Uberschuss - bezogen auf H2PtCl6 - von quervernetztem Polyvmylpyrid zu und rührt das Gemisch bei Raumtemperatur 2 h lang. Die Feststoffanteile werden abfiltriert, das Losungsmittel wird am Rotationsverdampfer weitgehend abdestilliert. Die restlichen fluchtigen Bestandteile werden im 01- pumpenvakuum (0,1 mbar) bei 70 °C abdestilliert. Schließlich erhalt man Poly- [dimethyl] 90- [hydro-methyl] 30- [methyl- (3-oxι- ranylmethoxy-1-propyl) ] 30-sιloxan (2) als klare, viskose Flüssigkeit .
Die Ausbeute betragt 41,2 g (89,1 % d.Th.), der SiH-Wert des Produkts wird zu 0,21 mol/100 g (Th. 0,22 mol/lOOg) , der Epoxidwert zu 0,21 mol/100 g (Th. 0,21 mol/ 100 g) bestimmt.
Darstellung von Poly- [dimethyl] 90- [hydro-methyl] 20- [methyl- (3- oxιranyl-methoxy-1-propyl) ] 3Q- [methyl -ll-undecylsaure-2- (2-
{2-methoxy-ethoxy}-ethoxy) -ethylester] 10-sιloxan (3)
H,C —
Figure imgf000015_0001
(3)
6,94 g (0,021 mol) Undec-10-ensaure-2- [2- (2-methoxy-ethoxy) - ethoxy] -ethylester werden m 100 ml 2-Butanon vorgelegt und mit 6,1 μl (0,29 μmol) einer 0,05 M H2PtCl6-Losung versetzt. Anschließend werden bei einer Olbadtemperatur von 50 °C 9,52 g (0,020 mol, bezogen auf SiH-Wert: 0,21 mol/100 g) Poly- [dimethyl] -.p- [hydro-methyl] 30- [methyl- (3-oxιranylmethoxy- 1-propyl) ] 3p-sιloxan (2) innerhalb von 2 h zugetropft. Das Reaktionsgemisch wird so lange bei 50 CC gerührt, bis der volumetrisch bestimmte SiH-Gehalt einen konstanten Wert erreicht hat. Dies ist spätestens nach 48 h der Fall. Nach Abkühlen auf Raumtemperatur gibt man einen 10-fachen Uber- schuss - bezogen auf H-PtCl6 - von quervernetzte Polyvmyl- pyridm zu und rührt das Gemisch bei Raumtemperatur 2 h lang. Die Feststoffanteile werden abfiltriert, das Losungsmittel wird am Rotationsverdampfer im Wasserstrahlvakuum weitgehend abdestilliert. Die restlichen flüchtigen Bestandteile werden im Olpumpenvakuum (0,1 mbar) bei 70 °C abdestilliert. Man erhält Poly- [dimethyl] 90- [hydro-methyl] 20- [methyl- (3-oxiranyl- methoxy-1-propyl) ] 30- [methyl-ll-undecylsäure-2- (2- {2-methoxy- ethoxy}-ethoxy) -ethylester] xo-siloxan (3) als klare, viskose
Flüssigkeit .
Die Ausbeute beträgt 9,2 g (80,1 % d.Th.), der SiH-Wert des Produkts wird zu 0,11 mol/100 g (Th. 0,12 mol/lOOg) , der Epoxidwert zu 0,13 mol/100 g (Th. 0,12 mol/100 g) bestimmt.
Darstellung von Poly- [dimethyl] 90- [hydro-methyl] 20- [3- (2- hydroxy-3- { 2-allyi-oxycarbonyl } -propoxy) -1-propyl -methyl] 5- [ methyl- (3-oxiranyl-methoxy-l-propyl) ] 25- [methyl-ll-undecyl- saure-2- (2- { 2 -methoxy- ethoxy] -ethoxy) -ethylester] 10- siloxan (4)
Figure imgf000016_0001
(4) 23,08 g (0,03 mol, bezogen auf EpoxidWert: 0,13 mol/100 g)
Poly- [dimethyl] 90- [hydro-methyl] 2o~ [methyl- (3-oxιranyl- methoxy-1-propyl) ] 30- [methyl-ll-undecylsaure-2- (2- {2-methoxy- ethoxy} -ethoxy) -ethylester] 10-sιloxan (3) werden 50 ml 2-Butanon vorgelegt. Nach der Zugabe von 0,430 g (5,0 mmol)
2-Methyl-acrylsaure, 0,076 g (0,3 mmol) N,N,N',N'~
Tetramethyl-4, 4 '-diammo-diphenylmethan (T-Base) und 0,119 g
(0,5 mmol) 2, 6-Dι-tert .-butyl-4-methylphenol (BHT) wird das
Reaktions-gemisch für 10 h bei einer Olbadtemperatur von 50 °C gerührt. Anschließend laßt man das Reaktionsgemisch auf Raumtemperatur abkühlen, versetzt es mit 2,5 g (25 mmol) saurem Alummium-oxid und rührt 2 h lang. Die Feststoffanteile werden abfil-triert und das Losungsmittel bzw. die fluchtigen Bestandteile im Olpumpenvakuum am Rotations- Verdampfer bei Raumtemperatur abdestilliert. Man erhalt Poly- [dimethyl] so- [hydro-methyl] 20- [3- (2-hydroxy-3- {2-allyl- oxycarbonyl }-propoxy) -1-propyl-methyl] 5- [methyl- (3-oxιranyl- methoxy-1-propyl) ] 25- [methyl-ll-undecylsaure-2- (2- {2-methoxy- ethoxy}-ethoxy) -ethylester] lc-sιloxan (4) .
Die Ausbeute betragt 15,7 g (89 l d.Th.), der SiH-Wert des Produkts wird zu 0,12 mol/100 g (Th. 0,11 mol/lOOg) , der Epoxidwert zu 0,13 mol/100 g (Th. 0,14 mol/100 g) bestimmt.
Beispiel 2 :
Darstellung von Poly- [dimethyl] ι00- [hydro-methyl] so-siloxan (5)
H3C CH,
Figure imgf000018_0001
(5)
Es werden 296,6 g (1,0 mol) 1, 1, 3, 3, 5, 5, 7, 7-Octamethyl- [1, 3, 5, 7]-tetrasιloxan, 125,7 g (0,033 mol) Poly- [hydro- methyl] 6o-sιloxan und 1,1 g (0,006 mol) 1, 1, 1, 3, 3, 3-Hexa- methyl-disiloxan vorgelegt. Unter kraftigem Ruhren werden als Katalysator 0,12 ml (1,4 mmol) Trifluormethansulfonsaure und 0,2 ml Wasser zugetropft. Das Reaktionsgemisch wird bei 70°C 40 h lang gerührt. Nach Abkühlen auf Raumtemperatur gibt man zur Entfernung des Katalysators 0,3 g (2,8 mmol) Na2C03 zu und rührt 2 h. Anschließend wird die Mischung druckfil- tπert, der Hauptteil der fluchtigen Anteile wird im Olpum- penvakuum (0,1 mbar) bei 120° C Badtemperatur abdestilliert. Das Rohprodukt wird schließlich noch über einen Dunnschicht- verdampfer bei 0,05 mbar und 130° C Heiztemperatur gereinigt. Man erhalt das Aquilibrierungsprodukt Poly- [dimethyl] ι00- [hydro-methyl] 50-sιloxan (5) als klare, viskose Flüssigkeit. Die Ausbeute betragt 317,1 g (74,9 °0 d.Th.), der SiH-Wert des Produkts wird zu 0,49 mol/lOOg (Th. 0,47 mol/lOOg) bestimmt. Darstellung von Poly- [dimethyl] 100- [hydro-methyl] 3Q- [ ethyl- (3-oxιranylmethoxy-l-propyl) ];n-sιloxan (6)
CH, CH, CH, CH, CH,
H3C - - Si - O - -Si — O - Si — O - - Si — O - - Si — CH,
CH, CH2 20 H 30 CH, 100 CH3 CH2
CH,
I O
CH,
Figure imgf000019_0001
( 6) 9,13 g (0,08 mol) frisch destilliertes 2-Allyloxymethyl- oxiran werden m 100 ml 2-Butanon vorgelegt und mit 0,12 ml (5,7 μmol) einer 0,05 M H2PtClδ-Losung m tert . -Butanol versetzt. Anschließend werden bei einer Olbadtemperatur von 50 °C 40,82 g (0,20 mol, bezogen auf den SiH-Wert: 0,49 mol/100 g) des Aquilibπerungsprodukts Poly-[dιme- thyl]i . [hydro-methyl] tr.-siloxan (5) innerhalb von 2 h zugetropft. Das Reaktionsgemisch wird so lange bei 50 °C gerührt, bis der volumetrisch bestimmte SiH-Gehalt einen konstanten bzw. den angestrebten Wert erreicht hat. Dies ist spätestens nach 48 h der Fall. Nach Abkühlen auf Raumtemperatur gibt man einen 10-fachen Uberschuss - bezogen auf H_PtClJ - von quer- vernetzte Polyvmylpyridm zu und rührt das Gemisch bei Raumtemperatur 2 h lang. Die Feststoffanteile werden abfiltriert, das Losungsmittel wird am Rotationsverdampfer weit- gehend abdestilliert. Die restlichen fluchtigen Bestandteile werden im Olpumpenvakuum (0,1 mbar) bei 70 °C abdestilliert.
Schließlich erhält man Poly- [dimethyl] 100- [hydro-methyl] 3p-
[methyl- (3-oxiranylmethoxy-l-propyl) ]2o-siloxan (6) als klare, viskose Flüssigkeit.
Die Ausbeute betragt 45,7 g (88,7 % d.Th.), der SiH-Wert des
Produkts wird zu 0,21 mol/100 g (Th. 0,23 mol/lOOg), der
Epoxidwert zu 0,14 mol/100 g (Th. 0,15 mol/100 g) bestimmt.
Darstellung von Poly- [dimethyl] IQQ- [hydro-methyl] 15- [3- (2- { 2- ethoxy-ethoxy} -ethoxy) -1-propyl-methyl] 15- [methyl- (3- oxiranylmethoxy-l-propyl) ]2o-sιloxan (7)
CH, CH3 CH3 CH, CH, CH,
H3C — Si — O - - Si — O - - Si — O - - Si - - O - Si — O - - Si — CH,
I
CH, CH2 20 CH2 15 H J15 CH, 100 CH3 CH2 CH2
Figure imgf000020_0001
(7 )
4,49 g (0,028 mol) 3- [2- (2-Methoxy-ethoxy) -ethoxy] -propen werden m 100 ml 2-Butanon vorgelegt und mit 6,1 μl (0,29 μmol) einer 0,05 M H2PtClδ-Losung versetzt. Anschließend werden bei einer Olbadtemperatur von 50 °C 9,52 g (0,020 mol, bezogen auf SiH-Wert: 0,21 mol/100 g) Poly- [dimethyl] i00- [hydro-methyl] 30- [methyl- (3-oxiranylme- thoxy-1-propyl) ] 20-sιloxan (6) innerhalb von 2 h zugetropft.
Das Reaktionsgemisch wird so lange bei 50 °C gerührt, bis der volumetrisch bestimmte SiH-Gehalt einen konstanten Wert erreicht hat. Dies ist spätestens nach 48 h der Fall. Nach Abkühlen auf Raumtemperatur gibt man einen 10-fachen Uber- schuss - bezogen auf H2PtCl6 - von quervernetztem Polyvmyl- pyrid zu und r hrt das Gemisch bei Raumtemperatur 2 h lang.
Die Feststoffanteile werden abfiltriert, das Losungsmittel wird am Rotationsverdampfer im Wasserstrahlvakuum weitgehend abdestilliert. Die restlichen fluchtigen Bestandteile werden im Olpumpenvakuum (0,1 mbar) bei 70 °C abdestilliert. Man erhalt Poly- [dimethyl] 100- [hydro-methyl] 15- [3- (2- (2-methoxy- ethoxy}-ethoxy) -1-propyl-methyl] 15- [methyl- (3- oxιranylmethoxy-1-propyl) ] 20-sιloxan (7) als klare, viskose Flüssigkeit.
Die Ausbeute betragt 8, 6 g (84,9 % d.Th.), der SiH-Wert des Produkts wird zu 0,09 mol/100 g (Th. 0,10 mol/lOOg) , der Epoxidwert zu 0,14 mol/100 g (Th. 0,13 mol/100 g) bestimmt.
Darstellung von Poly- [dimethyl] ι00- [hydro-methyl] 15- [3- (2- hydroxy-3-{2-allyl-oxycarbonyl}-propoxy) -1-propyl-methyl] 5-
[3- ( 2- {2-methoxy-ethoxy} -ethoxy) -1-propyl -methyl] ι5- [methyl-
(3-oxιranylmethoxy-l-propyl) ] 15- siloxan (8)
Figure imgf000022_0001
(8)
21,43 g (0,03 mol, bezogen auf Epoxid-Wert: 0,14 mol/100 g) Poly- [dimethyl] ,00- [hydro-methyl] 15- [3- (2- {2-methoxy-ethoxy}- ethoxy) -1-propyl-methyl] 15- [methyl- (3-oxιranylmethoxy-l- propyl) ] _0-sιloxan (7) werden 50 ml 2-Butanon vorgelegt. Nach der Zugabe von 0,646 g (7,5 mmol) 2-Methyl-acrylsaure, 0,076 g (0,3 mmol) N, N, N' , N ' -Tetramethyl- , 4 ' -diammo- diphenylmethan (T-Base) und 0,119 g (0,5 mmol) 2, 6-Dι-tert . - butyl-4-methylphenol (BHT) wird das Reaktionsgemisch für 10 h bei einer Olbadtemperatur von 50 °C gerührt. Anschließend laßt man das Reaktionsgemisch auf Raumtemperatur abkühlen, versetzt es mit 2,5 g (25 mmol) saurem Aluminiumoxid und rührt 2 h lang. Die Feststoffanteile werden abfiltriert und das Lösungsmittel bzw. die flüchtigen Bestandteile im
Ölpumpenvakuum am Rotationsverdampfer bei Raumtemperatur abdestilliert. Man erhält Poly- [dimethyl] 100- [hydro-methyl] 15-
[3- (2-hydroxy-3- {2-allyl-oxycarbonyl }-propoxy) -1-propyl- methyl] 5- [3- (2- { 2-methoxy-ethoxy}-ethoxy) -1-propyl-methyl] 15-
[methyl- (3-oxiranylmethoxy-l-propyl) ]ιs-siloxan (8) .
Die Ausbeute beträgt 20,9 g (88,7 % d.Th.), der SiH-Wert des Produkts wird zu 0,10 mol/100 g (Th. 0,09 mol/lOOg) , der Epoxidwert zu 0,10 mol/100 g (Th. 0,09 mol/100 g) bestimmt.

Claims

Patentansprüche
1. (Foto)polymerisierbare epoxyfunktionelle, hydrophile Polyorganosiloxane mit folgender allgemeiner Struktur:
R1 —
Figure imgf000024_0001
worin folgendes gilt:
E = epoxyfunktioneller Rest mit 4 bis 20 C-Atomen;
Z = (photo) polymerisierbarer Rest mit 8 bis 40 C-Atomen;
Y = hydrophiler Rest
Rl= Niederalkylgruppe mit vorzugsweise 1 bis 4 C-Atomen;
R2= R1 oder Wasserstoff und m + n + o + p + r = 50 bis 200 = L
2. Polyorganosiloxan nach Anspruch 1, dadurch gekennzeichnet, dass der epoxyfunktionelle Rest E aus der folgenden Gruppe ausgewählt ist:
(CH —0—CH—CH—CH —(CH„—CH—CH 23 \ / \ / O O
-CH—CH(CH3)—CH—O—CH—CH—CH2
O
—CH—CH(CH3)-COO—CH—CH—CH2
O
Figure imgf000025_0001
Polyorganosiloxan nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der epoxyfunktionelle Rest E
-(CH2)—0—CH—CH—CH2
O
Figure imgf000025_0002
Polyorganosiloxan nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der (photo) polymerisierbare Rest Z durch Addition einer (photo) polymeπsierbaren Verbindung an einen an der Siloxankette befindlichen Rest E erhältlich ist.
5. Polyorganosiloxan nach Anspruch 4, dadurch gekennzeichnet, dass die (photo) polymerisierbare Verbindung eine (Meth) crylsaure ist.
Polyorganosiloxan nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der hydrophile Rest H eine Polyethylenglycoletherverb dung ist .
7. Polyorganosiloxan nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass es aus der folgenden Gruppe ausgewählt
Figure imgf000025_0003
C H3 CH3 CH,
H3C- -S i — o- Si — O Si — CH,
I
C CH, CH,
Figure imgf000026_0001
O:
:CH,
H3C
mit m + n + o + p + r = 150 = L m = 90-120 n = 20-30 o = 5 p = 5-20 q = 1-2 r = 5-20,
CH,
Figure imgf000027_0001
O:
XH,
H3C
m + n + o + p + r = 150 = L m = 90-100 n = 20-30 o = 5
P = 5-20 q = 3-4 r = 15-20 s = 1-9, vorzugsweise 9
R = H,CH3
oder H3 CH, CH,
H3C- - i — O Si — O Si — CH, CH, CH,
Figure imgf000028_0001
mit m + n + o + p + r = 150 = L = 90-100 n = 30 o = 5 p = 10-25 q = 1-10, vorzugsweise 1-4 r = 0-5.
Verfahren zur Herstellung von epoxyfunktionellen, hydrophilen Polyorganosiloxanen nach einem der vorhergehenden Ansprüche durch
a) gezielte Aquilibrierung von Poly- [hydroalkyl] - siloxan und Octaalkyltetrasiloxan zu Poly-[dial- kyl] m- [hydroalkyl]p-siloxan einer Kettenlänge von
L = 50 bis 200, bevorzugt 150, wobei zur gezielten Einstellung der Kettenlange Hexaalkyldisiloxan als "Kettenstopper" eingesetzt werden kann,
b) partielle Hydrosilylierung von Si-H-Gruppen mit AI- lylglycidylether zu Poly- [dιalkyl]m [hydroalkyl] -
[alkyl- (3-oxιranylmethoxy-l-propyl) -siloxan,
c) Hydrosilylierung der verbliebenen Si-H-Gruppen mittels zur Hydrosilylierung funktionalisierter Poly- alkylenglycolether und
d) selektive partielle Öffnung von epoxyfunktionellen Seitenketten mit (Meth) Acrylsaure,
wobei die Stufen b) und c) wahlweise und bevorzugt gleichzeitig durchgeführt werden können oder
indem nach Stufe b) zunächst
c') eine selektive und partielle Öffnung von epoxyfunkionel- len Seitenketten mit (Meth) acrylsaure und
d' ) eine selektive und partielle Öffnung der verbliebenen epoxyfunktionellen Seitenketten mit einem Alkylenglyco- lether, vorzugsweise (mono-/dι/trι oder tet- ra) Alkylenglycolether durchgeführt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass Alkyl für eine Niederalkylgruppe mit 1 bis 4 C-Atomen, vorzugsweise eine Methylgruppe steht und der Glycolether vorzugsweise ein mono-, di-, tri- oder tetra- Ethylenglycolether ist.
10. Verfahren nach Anspruch 8 und/oder 9, dadurch gekenn- zeichnet, dass man die Hydrosilylierungsstufen 2- Butanon als Lösungsmittel in Gegenwart eines Katalysators und bei schwacher Temperatur durchführt.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Reaktionstemperatur 44-55°C beträgt und als Katalysator 10~10 equ. H2PtClß verwendet werden.
12. Verwendung eines Polyorganosiloxans nach einem der vorhergehenden Ansprüche zur Ausbildung dreidimensionaler Immobilisierungsschichten für chemische oder biologische Funktionsträger .
PCT/EP2003/050304 2002-07-18 2003-07-10 Hydrophile polyorganosiloxane WO2004009675A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003255530A AU2003255530A1 (en) 2002-07-18 2003-07-10 Hydrophilic polyorganosiloxanes
EP03765118A EP1523514A1 (de) 2002-07-18 2003-07-10 Hydrophile polyorganosiloxane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10232696.7 2002-07-18
DE10232696 2002-07-18
DE10319563.7 2003-04-30
DE10319563A DE10319563A1 (de) 2002-07-18 2003-04-30 Hydrophile Polyorganosiloxane

Publications (1)

Publication Number Publication Date
WO2004009675A1 true WO2004009675A1 (de) 2004-01-29

Family

ID=30771715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/050304 WO2004009675A1 (de) 2002-07-18 2003-07-10 Hydrophile polyorganosiloxane

Country Status (3)

Country Link
EP (1) EP1523514A1 (de)
AU (1) AU2003255530A1 (de)
WO (1) WO2004009675A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027276A1 (en) * 2005-08-31 2007-03-08 Kimberly-Clark Worldwide, Inc. Hydrophilic silicone elastomers
WO2008041187A2 (en) * 2006-10-03 2008-04-10 Centre National De La Recherche Scientifique Method for treating surfaces containing si-h groups

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468270A1 (de) * 1990-07-21 1992-01-29 Th. Goldschmidt AG Verwendung von mit Oxyalkylenethergruppen modifizierten Epoxypolysiloxanen als härtbare Beschichtungsmittel
EP0562372A2 (de) * 1992-03-23 1993-09-29 Siemens Aktiengesellschaft Biosensor
EP0562373A2 (de) * 1992-03-23 1993-09-29 Siemens Aktiengesellschaft Immobilisierung biochemischer Substanzen
EP0562369A1 (de) * 1992-03-23 1993-09-29 Siemens Aktiengesellschaft Polysiloxane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468270A1 (de) * 1990-07-21 1992-01-29 Th. Goldschmidt AG Verwendung von mit Oxyalkylenethergruppen modifizierten Epoxypolysiloxanen als härtbare Beschichtungsmittel
EP0562372A2 (de) * 1992-03-23 1993-09-29 Siemens Aktiengesellschaft Biosensor
EP0562373A2 (de) * 1992-03-23 1993-09-29 Siemens Aktiengesellschaft Immobilisierung biochemischer Substanzen
EP0562369A1 (de) * 1992-03-23 1993-09-29 Siemens Aktiengesellschaft Polysiloxane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027276A1 (en) * 2005-08-31 2007-03-08 Kimberly-Clark Worldwide, Inc. Hydrophilic silicone elastomers
US7452957B2 (en) 2005-08-31 2008-11-18 Kimberly-Clark Worldwide, Inc. Hydrophilic silicone elastomers
WO2008041187A2 (en) * 2006-10-03 2008-04-10 Centre National De La Recherche Scientifique Method for treating surfaces containing si-h groups
EP1911791A1 (de) * 2006-10-03 2008-04-16 Institut Curie Verfahren zum Behandeln von Oberflächen mit Si-H Gruppen
WO2008041187A3 (en) * 2006-10-03 2008-06-12 Centre Nat Rech Scient Method for treating surfaces containing si-h groups
US10465055B2 (en) 2006-10-03 2019-11-05 Centre Nationale De Recherche Scientifique Method for treating surfaces containing Si—H groups

Also Published As

Publication number Publication date
EP1523514A1 (de) 2005-04-20
AU2003255530A1 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
EP1595909B1 (de) Verwendung von neuen Polysiloxanen mit über SiOC-Gruppen gebundenen (Meth)acrylsäureestergruppen als Additive für strahlenhärtende Beschichtungen
EP2352779B1 (de) Alkoxysilylgruppen tragende polyethersiloxane sowie verfahren zu deren herstellung
EP2178947B1 (de) Verfahren zur kontrollierten hydrolyse und kondensation von epoxy-funktionellen organosilanen sowie deren cokondensation mit weiteren organofunktionellen alkoxysilanen
DE69720941T2 (de) Photohärtbare Faserbeschichtungen mit niedrigem Brechungsindex
DE102012210553A1 (de) Siliconpolyether und Verfahren zu deren Herstellung aus Methylidengruppen tragenden Polyethern
JP2001522925A5 (de)
DE202010017915U1 (de) Neuartige Siliconpolyethercopolymere
DE102013216777A1 (de) Bei Raumtemperatur härtbare Silikonharz-Zusammensetzungen
EP2112189A1 (de) (Meth)acryl-modifizierte Siloxan-Verbindungen
WO2016079319A1 (de) Polysiloxane als anti-adhäsive und schmutzabweisende zusätze, verfahren zu deren herstellung und deren verwendung
EP1611141A1 (de) Organosilylfunktionalisierte partikel und deren herstellung
DE1720496C3 (de) Verfahren zur Herstellung von Organopolysiloxanen
US11535716B2 (en) (Meth)acrylic-modified siloxane compound
EP3858893A1 (de) Verfahren zur herstellung hochreiner hydrosilylierungsprodukte
EP0650997B1 (de) Hydrophile Gruppen aufweisende Organopolysiloxane
DE102005001040B4 (de) Mehrfachfunktionelle Polysiloxane mit über SiOC-Gruppen gebundenen (Meth)acrylsäureestergruppen und einem unmodifizierten Polysiloxan-Block, Verfahren zu deren Herstellung sowie deren Verwendung als strahlenhärtbare abhäsive Beschichtung
WO2004009675A1 (de) Hydrophile polyorganosiloxane
DE102008001825A1 (de) Verwendung von Organosilicon-Copolymeren als Schlagzähmodifizierer
EP2024408B1 (de) Über methylolgruppen vernetzbare siliconpolymere
DE102011006313A1 (de) Härtbare Zusammensetzung mit bei der Härtung Alkohol freisetzenden Bestandteilen
DE10319563A1 (de) Hydrophile Polyorganosiloxane
DE102005007320A1 (de) Durch Michael Additionsreaktion härtbare Zusammensetzungen
DE69632306T2 (de) Härtbare wässrige silylpolymerzusammensetzungen
DE102007016990A1 (de) Methylolgruppen enthaltende Siloxane
DE102011081260A1 (de) Verfahren zur Herstellung von beschichteten Glasoberflächen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003765118

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003765118

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003765118

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP