WO2004005496A1 - Novel undifferentiated stem cells contained in cord blood, bone marrow, peripheral blood or the like - Google Patents

Novel undifferentiated stem cells contained in cord blood, bone marrow, peripheral blood or the like Download PDF

Info

Publication number
WO2004005496A1
WO2004005496A1 PCT/JP2003/008562 JP0308562W WO2004005496A1 WO 2004005496 A1 WO2004005496 A1 WO 2004005496A1 JP 0308562 W JP0308562 W JP 0308562W WO 2004005496 A1 WO2004005496 A1 WO 2004005496A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
antibody
cells
cell
undifferentiated stem
Prior art date
Application number
PCT/JP2003/008562
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Sonoda
Takafumi Kimura
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to AU2003281309A priority Critical patent/AU2003281309A1/en
Priority to JP2004519278A priority patent/JPWO2004005496A1/en
Publication of WO2004005496A1 publication Critical patent/WO2004005496A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors

Definitions

  • the present invention relates to undifferentiated stem cells derived from human cord blood, bone marrow, peripheral blood, and the like, and a method for isolating the cells.
  • hematopoietic stem cell transplantation therapy in which these hematopoietic stem cells are transplanted with hematopoietic stem cells of another person or autologous normal hematopoietic stem cells to leukemia patients or patients with hematopoietic disorders such as aplastic anemia, has become widely used.
  • hematopoietic stem cell transplantation therapy in which these hematopoietic stem cells are transplanted with hematopoietic stem cells of another person or autologous normal hematopoietic stem cells to leukemia patients or patients with hematopoietic disorders such as aplastic anemia.
  • CD34 CD / — (Goodell MA et al. Nat Med 3: 1337, 1997). These facts have raised questions about transplantation medicine using conventional CD34. The focus was again on CD34-negative cells in human stem cells.
  • Lin-CD34-CD38- was found to contain cells with high potential as stem cells by xenotransplantation experiments on immunodeficient mice (N0D / SCID) (Bhatia M et al, Nat Med 4: 1038). , 1998). Zanjani and colleagues also show that CD34 + cells and CD34-negative cells derived from human bone marrow (umbilical cord blood) are prolonged in CD34 + and CD34-negative cells by transplanting them into the peritoneal cavity of fetal sheep that is tolerated. We clarified that some cells maintain the chimerism of human cells. (Zanjani ED et al, Exp Hematol 26: 353, 1998, Zanjani ED etal, Blood 92: 504a, 1998).
  • CD34 ⁇ cells can be induced by co-culturing LiiTCD34— cells in human cord blood with mouse stromal cells HESS-5 in vitro. That is, it was clarified that stem cells upstream of CD34 + cells were present in the CD34- fraction (Nakamura Y et al, Blood 94: 4053, 1999).
  • CD34 ⁇ was to compare the ability to induce CD34 ⁇ cells from L in-CD34-negative cells This suggests that the bone marrow of patients transplanted with the cell fraction lacks CD34 stem cells that can induce CD34 + cells (Kato S et al, Bone Marrow Transplantat ion 28: 587,
  • CD34-cell population may contain more undifferentiated stem cells than CD34 cells, but that the CD34-cells may also contain subcellular populations at various stages of differentiation. —Not all cells are pluripotent stem cells.
  • a method for isolating human CD45 antigen-positive, CD34 antigen-negative and differentiation antigen-negative cells Japanese Patent Laid-Open No.
  • An object of the present invention is to obtain undifferentiated stem cells from cord blood, bone marrow, peripheral blood, and the like.
  • the present inventors selected a specific cell population from human umbilical cord blood using the expression of various differentiation antigens on the cell surface as an index, examined the differentiation ability of the cell population, and examined CD34 negative Among the cells, cells that were negative for the differentiation antigen (lineage antigen) and weakly expressed CD45 were found to be more undifferentiated than CD34-positive cells, and thus completed the present invention.
  • the present invention is as follows.
  • the fluorescence intensity when fluorescent immunostaining with a fluorescently labeled anti-CD45 antibody is 1% to 1% of the fluorescence intensity of the cell showing the maximum fluorescent intensity when the human leukocyte cell population is fluorescently immunostained with a fluorescently labeled anti-CD45 antibody. 10% of the undifferentiated stem cell population of (1) or (2),
  • human umbilical cord blood a method for isolating liifCD45 1 (lli CD34 _ undifferentiated stem cells from bone marrow or peripheral blood, human umbilical cord blood, mononuclear cells from bone marrow or peripheral blood and Kohi Bok differentiation antigens Contacting the antibody, anti-human CD34 antibody and anti-human CD45 antibody, and isolating cells that do not bind to the anti-human differentiation antigen antibody and anti-human CD34 antibody and show weak binding to the anti-human CD45 antibody.
  • CD45 lM CD34 a method for isolating undifferentiated stem cells
  • lin— of (7) which separates and removes monocytes that bind to one or more differentiation antigens selected from the group consisting of: CD14, CD16, CD19, ⁇ , CD23, CD24, CD4L CD56, CD66b, and GPA.
  • CD45 lM CD34 a method for isolating undifferentiated stem cells
  • Human cord blood, bone marrow or peripheral blood-derived cells are liiTCD45 CD34—undifferentiated stem
  • a method for determining whether a cell is a cell comprising contacting the cell with an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibody, and then contacting the cell with an anti-human differentiation antigen antibody and an anti-human CD34 antibody. without binding, comprising determining whether shows weak binding and Kohiboku CD45 antibody, a method in which cells to determine whether the liifCD45 l CD34- undifferentiated stem cells,
  • Fluorescence intensity when fluorescent immunostaining with a fluorescently labeled anti-human CD45 antibody is 1% of the fluorescence intensity of the cell that shows the maximum immunological intensity when a human leukocyte cell population is fluorescently immunostained with a fluorescently labeled anti-CD45 antibody determining that the CD45 lw if it is 10%, (1 5) or (1 6), a method in which cells to determine whether the liiTCD45 lmf CD34- undifferentiated stem cells,
  • a method for analyzing liiTCD45 lM CD34-undifferentiated stem cells in a cell population derived from human umbilical cord blood, bone marrow or peripheral blood comprising analyzing the cell population and an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibodies contacting the said cell does not bind to the anti-human differentiation antigen antibody and anti-human CD34 antibody, and determining whether show anti-human CD45 antibody and weak bonds, LiiTCD45 1 ⁇ 2 in the cell population CD34- How to analyze undifferentiated stem cells,
  • (21) A method for analyzing lin-CD45- lM CD34-undifferentiated stem cells in a cell population according to (20), using an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibody labeled with a fluorescent dye. ,
  • the cells of the present invention are cells characterized by being negative for differentiation antigens (lineage-specific antigens), weakly expressing CD45 and negative for CD34 (hereinafter referred to as liifCD45 lmf CD34-cells). Stem cells are more undifferentiated than CD34-positive cells.
  • the cells of the present invention also have the characteristics of blastoid cells.
  • the cells of the present invention are present in umbilical cord blood, bone marrow, and peripheral blood, and can be isolated from these tissues and organs.
  • Negative differentiation antigen means that it does not have a surface antigen that appears in response to differentiation of hematopoietic stem cells into cells of a specific lineage, that is, it does not express the surface antigen on the cell surface
  • it means that CD2, CD3, CD7, picture, CD14, CD16, CD19, CD20, CD23, CD24, CD41, CD56, CD66b, and GPA are negative.
  • CD45 lM means that CD45 expression is weak.
  • CD45 is present on all leukocytes, including peripheral blood lymphocytes, monocytes, granulocytes, eosinophils, and basophils.
  • Weak CD45 expression in the present invention means that the presence of a significant amount of CD45 on the cell surface is relatively low in the total leukocyte population expressing CD45.
  • a human blood-derived leukocyte cell population and the cells of the present invention are mixed and stained with a fluorescent dye-labeled anti-human CD45 antibody, and then FACS (Fluorescence activated cell) is performed.
  • the cell population of the present invention is included in the cell population exhibiting a fluorescence intensity of 1% to 10% of the fluorescence intensity of the white blood cells exhibiting the maximum fluorescence intensity when the fluorescence intensity is measured using the sorter).
  • the CD34'lin- cells are the cells of the present invention.
  • CD34- means that the CD34 antigen is negative, that is, that CD34 is not expressed on the cell surface or that expression is extremely low.
  • CD34 is a surface antigen that has been implicated in hematopoietic stem cells.
  • Whether these surface antigens are negative and whether they are weakly expressed depends on the antibodies against these antigens, and whether the cells were stained using antibodies labeled with chromogenic enzymes, fluorescent compounds, etc. It can be determined by microscopic observation or the like. For example, the presence or absence of a surface antigen can be determined by immunostaining cells using these antibodies, or can be determined using magnetic beads to which the antibody has been bound. Also, FACS or flow cytometry can be used to determine if surface antigens are present. As FACS and flow cytometry, for example, FACS vantage (manufactured by Becton, Dickinson) and FACS Cal ibur (manufactured by Becton, Dickinson) can be used.
  • the cells of the present invention can be isolated based on these cell surface antigen properties.
  • Mononuclear cells are separated from umbilical cord blood by, for example, Ficoll-Paaue density centrifugation, and the separated cells are stained with antibodies to differentiation antigens, antibodies to CD34 and antibodies to CD45 labeled with different fluorescent dyes, and using FACS. Te, it is possible to isolate cells of the present invention by Seo one computing a l iiTCD45 l CD34 _ cells.
  • the differentiation antigen may be isolated directly from mononuclear cells by FACS, or by using magnetic beads to which antibodies against one or more of the differentiation antigens are bound before sorting by FACS. The cells are removed, and the cells of the present invention can be isolated from the remaining cells using FACS.
  • APC Allophycocyanin
  • PE Physicalerythrin
  • PC5 Physical5, PE-Cy5 (Cy-Chrome, PE and Cy-5 tandem dye
  • FITC Fluorescein isothiocyanate
  • PerCP Perid inin Chlorophyll Protein
  • a cell population isolated by such an isolation method and substantially consisting of the cells of the present invention is also included in the scope of the present invention.
  • the cell population consisting essentially of the cells of the present invention is a cell population consisting of cells having different surface antigen characteristics, that is, expression patterns of surface antigens, and a cell population containing liiTCD45lM CD34-cells.
  • the cell of the present invention is a composition of a lin -CD45 CD34-cell including a lin- CD45 LM CD34-cell.
  • mononuclear cells are separated from human cord blood using Ficoll-Paciue specific gravity centrifugation, and among the above-mentioned differentiation antigens, CD2, CD3, CD14, CD16, CD19, CD20 or CD24, CD56, CD66b and GPA Negative ones were isolated and, for the isolated cells, antibodies to human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20, CD23, CD24, CD4K CD56 and GPA labeled with different fluorescent dyes Cells are triple-stained with a plurality of antibodies, preferably an antibody mixture containing 10 or more antibodies, anti-human CD34 antibody and anti-human CD45 antibody, differentiation antigen negative, CD34 negative and CD45 weak positive by FACS It is sufficient to isolate the cells having the following conditions.
  • the antibody mixture, CD34 antibody and CD45 antibody are labeled with different fluorescent dyes, of which human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19 CD20, CD23, CD24, CD4K
  • an antibody mixture containing a plurality of antibodies to CD56 and GPA, preferably 10 or more antibodies is labeled with PE.
  • the fluorescence intensity is up to 2000 channels, about 10 times more sensitive than about 200 channels when stained with FITC, and human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20 It is possible to detect cells expressing any of CD23, CD24, CD41, CD56 and GPA. Therefore, cells that weakly express the above differentiation antigen can be excluded with high accuracy.
  • the FACS analysis was performed under the conditions of Example 1 described later, the cells present in the fraction C in the scattergram shown in FIG. 1 are the cells of the present invention.
  • the cells of the present invention also have the characteristic that they do not survive in the bone marrow of immunodeficient mice such as NOD / Shi-scid mice by conventional tail vein injection transplantation, but survive when transplanted by direct injection.
  • the presence or absence of engraftment was determined by transplanting the cells into the bone marrow cavity of immunodeficient mice, and 12 weeks after transplantation, the cells derived from the cells transplanted into the bone marrow cavity of the bone or another bone.
  • the presence or absence of blood cells may be confirmed using, for example, the presence of the CD45 antigen as an index.
  • the cells of the present invention are also referred to as CD34-negative SRC (scid-repopul ating cell) cells.
  • NOD / Shi-scid mice can be obtained from the Central Laboratory for Experimental Animals. Furthermore, the cells of the present invention have a feature that expression of chemokine receptors such as CXCR4, which is expressed on CD34-positive cells, is not observed, and CD3L, CD49d, CD54, CD62L, which are similarly expressed on CD34-positive cells. It has the feature that no adhesion factor such as CD106 is expressed. The presence or absence of expression can be confirmed by performing immunostaining using antibodies against these labeled with a fluorescent dye.
  • the cells of the present invention have the property of not having the ability to form hematopoietic progenitor cell colonies. That is, no colonies are formed when cultured in vitro with optimal concentrations of SCF, IL-3, GM-CSF, G-CSF, and erythropoietin.
  • the cells of the invention are characterized in that they do not differentiate into T lymphocytes in the thymus, spleen and liver at 12 weeks after transplantation. It also has the characteristic that the engraftment rate in the liver and spleen is lower than that of CD34-positive cells.
  • the cells of the present invention have the property that their migration ability is significantly higher than that of CD34-positive cells.
  • the migration ability refers to the ability of cells to migrate from one tissue to another.In the case of the cells of the present invention, when transplanted into the medullary cavity of a specific bone, the cells can migrate to another bone after a certain period of time. The ability to move into the medullary cavity.
  • the technique used in the above-described method for isolating the cells of the present invention it is possible to determine whether or not a certain cell is the cell of the present invention and whether or not a certain cell population contains the cell of the present invention.
  • the cells determined as the cells of the present invention can be applied to various uses as described below. This determination method is also included in the scope of the present invention.
  • the cells of the present invention in a certain cell population are analyzed by the technique used in the method for isolating cells of the present invention, that is, whether or not the cells of the present invention are contained in a certain cell population. It can be analyzed whether it is included at a certain ratio, etc. Utilizing the results of this analysis, the cells of the present invention can be isolated from the cells to be analyzed. It can also be evaluated whether or not it can be directly applied to the various uses described. This analysis method is also included in the scope of the present invention.
  • the cells of the present invention can be collected from human umbilical cord blood, bone marrow or peripheral blood, or expanded by various methods. For example, it can be grown on a stromal cell layer.
  • the cells of the present invention are transplanted into immunodeficient mice, and after 8 to 16 weeks, undifferentiated cells of the present invention are recovered from mouse bone marrow, and the recovered cells are transplanted again into immunodeficient mice. By repeating this transplantation and collection, a large amount of highly pure cells free of other cells can be obtained.
  • the human stem cells obtained using the mouse of the present invention can be expanded in exo-vipo and transplanted into humans for the treatment of leukemia and the like, and for regenerative medical treatment of the liver and the like. It can also be used as a stem cell for tissue formation.
  • the cells of the present invention were transformed into SCF, IL-3, GM-CSF, G-CSF, erythropoietin, FLT3 ligand, TP0, IL-6, s IL-6 receptor, IL-6 / s IL-6 receptor.
  • a specific hematopoietic cell can be obtained by culturing with a physiologically active substance such as one fusion protein (see, for example, WO 00/01731, WO 97/32891, WO 99/02552), maturing and proliferating.
  • a foreign gene can be introduced into the cells of the present invention and used for gene therapy targeting human hematopoietic stem cells.
  • Gene transfer into stem cells can be performed using a virus vector such as a lentivirus vector, a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, and the like.
  • a virus vector such as a lentivirus vector, a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, and the like.
  • Examples of the gene used herein include the ADA gene for adenosine deaminase (ADA) deficiency patients.
  • the cells of the present invention are undifferentiated stem cells characterized by liifCD45 LMCD34- , and the cells of the present invention can also be used for searching for a new stem cell marker.
  • FIG. 1 shows various lin antibodies (FITC-labeled), CD34 antibodies (PE-labeled), and CD45 of cord blood-derived liiT cells.
  • FIG. 3 is a view showing a scat tergram after triple staining with an antibody (PC5 label).
  • FIG. 2 is a photograph showing cytospin specimens ( May-Giemsa staining) of cells of fractions A to C.
  • FIG. 3 is a diagram showing the hematopoietic progenitor cell colony forming ability of fractions A to D.
  • FIG. 4 shows the expression of CXCR4 and various adhesion factors in CD34-positive and CD34-negative cells derived from cord blood.
  • FIG. 5 is a diagram showing the results of transplantation of fractions A and C by direct transplantation into the bone marrow cavity of the mouse tibia in comparison with the results of transplantation from a conventional tail vein.
  • FIG. 6 is a diagram showing the results of multi-blood cell lineage analysis of human-derived cells in mouse bone marrow after fraction A transplantation.
  • FIG. 7 is a diagram showing the results of multi-blood cell lineage analysis of human-derived cells in mouse bone marrow after transplantation of fraction C.
  • FIG. 8 shows the results of comparison of various antigen-expressing cells in human CD45-positive cells (all cells) in mouse bone marrow after transplantation of fractions A and C.
  • FIG. 9 shows lymphocyte cells present in the thymus, spleen, and liver after transplantation of Fraction A (CD34-positive SRC).
  • FIG. 10 is a diagram showing the results of a time-dependent analysis of human CD45-positive cells in mouse bone marrow after transplantation of Fraction A and Fraction C cells.
  • FIG. 11 shows the results of a comparison of the migration ability between fraction A (CD34-positive SRC) and fraction C (CD34-negative SRC).
  • FIG. 3 is a view showing skutterograms of cord blood-derived liiT cells after triple staining with various lin antibodies (PE labeling), CD34 antibody (PC5 labeling), and CD45 antibody (FITC labeling).
  • FIG. 13 is a diagram showing the frequency of CD34 neg SRC in cord blood-derived lin-LN cells by the ultradilution method. 5,000, 20,000, and 40,000 lin-LN cells / mouse from cord blood were transplanted into the left tibia of an 8-week-old NOD / shi-scid mouse by the IBMI method. After 12 weeks, the mice were sacrificed and the proportion of human CD45-positive cells in the bone marrow was analyzed by FACS (0.1% or more was determined to be positive). The frequency of CD34 neg SRC was calculated by Poisson analysis.
  • FIG. 14 shows the engraftment rate of cord blood-derived CD34-positive SRC in mouse bone marrow.
  • LiifCD34 high cells were transplanted at 1250, 5000, 20000, and 50,000 cells / mouse, and the percentage of human CD45-positive cells in the bone marrow of N0D / SCID mice after 12 weeks was measured by FACS. As is clear from the figure, engraftment was observed in all mice transplanted with 5,000 or more mice. However, it was found that the engraftment rate reached a blat level when more than 20000 cells / mouse were transplanted. * P * 0.02 * 0.01
  • FIG. 15 is a diagram showing the number of blood cells produced by one CD34-positive or CD34-negative SRC.
  • a) shows the number of CD45-positive cells
  • b) shows the number of CD34-positive cells.
  • the stem cells of the present invention were isolated from human umbilical cord blood from normal term infants.
  • cord blood was donated to the cord blood bank but was not registered for transplantation, the informed consent was given to the research hospital or to the disposal to dispose of it. The collected one was used.
  • All cord blood used in the experiments was derived from normal term infants. That is, after the umbilical cord artery stops beating after delivery, the umbilical cord is clamped at two locations near the fetus and cut in between. Next, wipe the stump with alcoholic cotton for disinfection, and further disinfect it with Popidedon's solution. After the popidone odor solution has dried, the umbilical cord vein is punctured with a 17-gauge blood collection needle attached to an umbilical cord blood collection bag (with ACD, manufactured by Terumo Corporation), and the umbilical cord blood is collected by gravity flow into the bag.
  • ACD manufactured by Terumo Corporation
  • Red blood cells are removed from the collected cord blood by adding liydroxye thyl starch (HES, Nipro), and buffy coat cells are collected. Suspend the cells in RPMI 1640 medium (Gibco) and increase cell density to 2
  • the thawed cord blood was washed with spike-MEM medium (Gibco), resuspended in an appropriate amount of QJ-MEM medium (Gibco), and centrifuged by Ficoll-Paaue (Pharmacia, Piscataway, NJ, USA) by specific gravity centrifugation (1500 rpm, 30 rpm). ) was used to separate mononuclear cells (hereinafter abbreviated as MNC).
  • lin-cells were combined with anti-human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20, CD23, CD24, CD41, CD56, GPA (FIK label, Coulter, Becton Dickinson, DAK0, Nichirei).
  • Purified lin-CD45 lM CD34-cells by triple staining with anti-human CD34 antibody (PE-labeled, Becton Dickinson) and anti-human CD45 antibody (PC5-labeled, I-band unotecli) and sorting using FACS Vantage ( Figure lb of fraction C cells).
  • Immunostaining was performed according to a previously reported method (Kimura et al, Blood 90: 4767, 1997; Minamiguchi et al, Br J Haematol 110: 327, 2000). The definition of the expression levels of CD34 and CM5 in this cell will be described later. This cell is based on May- Giemsa staining findings.
  • May-Giemsa staining was performed according to the usual method. That is, the cells were stained with May-Grunwald solution for 5 minutes, washed with water, stained with 5% Giemsa solution (prepared with a pH 6.4 phosphate buffer) for 30 minutes, and examined with a microscope and photographs.
  • Umbilical cord blood lin- Cells were triple-stained with 14 lineage antibodies (FITC-labeled), CD34 antibody (PE-labeled), and CD45 antibody (PC5-labeled) as described above. ) was divided into four fractions. Fractions A and B have high CD34 antigen expression levels (maximum fluorescence intensity ⁇ 15%) and low expression levels (10-1%), and their ratio to total cell number is about 80% and about 5%, respectively. . On the other hand, cells negative for the CD34 antigen (0.5% or less of the fluorescence intensity max) were divided into fraction C and fraction D according to the expression level of CD45.
  • Fraction D and CD45 antigen expression level The bells are high (fluorescence intensity max ⁇ 15%) and low (10 ⁇ 1%), respectively, and the ratio to the total cell number is about 5% and about 0.5%.
  • the exact frequency of cells in FIG. 1b was A; 79.7%, B; 4.7%, C; 0.5%, D; 5.2% of the total cells shown in b.
  • Figure 1 shows the scattergram of cord blood liiT cells after triple staining with FITC-labeled lin antibodies, PE-labeled CD34 antibodies, and PC5-labeled CD45 antibodies.
  • FIG. 2 shows a photograph of May-Giemsa-stained cells.
  • C is a photograph of the cells of the present invention.
  • Example 2 Hemopoietic progenitor cell colony forming ability of fractions A to D in cord blood 1 in-cell The method was reported previously (Sonoda et al, Blood 84: 4099, 1994; Kimura et al, Blood
  • Fraction C is the cells of the present invention. The results are shown in Figure 3.
  • FIG. 3 shows the number of colonies per 200 cultured cells.
  • CFU-GM is colony-forming unit-granulocyte / macrop age age ⁇
  • BFU-E is
  • CFU-Mix means mixed colony-forming unit. As is evident from FIG. 3, the colony formation rates of fractions A and B are approximately 50%.
  • Fraction A contained granulocyte progenitor cells (CFU-GM), erythroid progenitor cells (BFU-E), and pluripotent progenitor cells (CFU-Mix).
  • Fraction B was predominantly BFIHE, indicating a hematopoietic progenitor cell population that had differentiated into the erythroid lineage.
  • CFU-Meg megakaryocytic progenitor cells
  • liiTCD45 lffl CD34 scid-repopulating cell (SRC) activity of cells Using NOD / SM-scid mice (obtained from Central Research Institute for Experimental Animals), fractions A to D in FIG. The scid-reaction cell (SRC) activity was examined. The method was performed according to the method of Bhatia et al. (NatureMed 4: 1038, 1998). That is, using NOD / Shi_scid mice of 8 to 12 weeks of age previously irradiated with 2.5 Gy of ⁇ -ray, fractions A, B, and D were 2
  • the cells were transplanted through the tail vein (up to 2X10 4 pieces in some mice) 2 ⁇ 5X10 3 or with respect to fractions C.
  • the mice were sacrificed 8 to 12 weeks after the transplantation, and the femur, tibia and humerus were aseptically removed.
  • Each stump was cut with a sterile Cooper, and bone marrow cells were collected by injecting - ⁇ medium (Gibco) using a 26 gauge needle to prepare a single cell suspension.
  • the cell suspension was passed through a nylon mesh to remove cell aggregates and debris, washed with 2% fetal calf serum (FCS, Hyclone) and PBS-, and subjected to the following immunostaining.
  • FCS fetal calf serum
  • FIG. 5 shows the percentage (%) of human CD45-positive cells in the whole bone marrow (tibia, femur, humerus).
  • open circles represent the results when transplantation was performed from the tail vein (conventional method), and solid circles represent the results when transplantation was directly performed into the bone marrow cavity of the tibia in Example 5 described later.
  • the horizontal line in Fig. 5 shows the average engraftment rate.
  • CD106, CD49d, CD49e, and CD62P antibodies were obtained from Coulter / Immimotech, Pharmingen,
  • FIG. 4 shows the results.
  • (a) to (! 1) show the following adhesion molecules.
  • CXCR4 was expressed in some CD34-positive cells, whereas no expression was observed in CD34-negative cells.
  • adhesion molecules such as CD31, CD54, CD62L and CD106 also showed significant expression in CD34-positive cells and were not expressed in CD34-negative cells.
  • CD49d was weakly expressed in CD34-positive cells, but CD49e, CD62P, etc. did not clearly express in both cells.
  • the above results suggest that even if undifferentiated stem cells are present in fraction C, transplantation from the tail vein may not be able to home to niche in the bone marrow.
  • the tibia up to 2 X 10 4 side was injected directly into the tibia bone marrow cavity. puncture site was thoroughly disinfected at Popidonyo one de solution. the method described in example 3 after transplantation 12 weeks, femur, The proportion of human CD45-positive cells in the humeral bone marrow was determined.
  • this undifferentiated stem cell was named CD34 negative SRC.
  • Mouse whole bone marrow (femur, tibia, upper Cells collected from the humerus) were analyzed using anti-human CD45 antibody (PC5 label, Immunotech), anti-human CD34 (PE label, Becton Dickinson), and FITC-labeled anti-human CD3, CD19, CD14, CD33, CD41, and Glycophorine A ( (GPA) (eBioscience, Coulter, Nichirei, Becton Dickinson, DAKO) was triple-stained and measured using a FACS Cal ibur. For analysis, all bone marrow cells of mice were subjected to R1 gate and human CD45-positive cells contained therein were counted. Furthermore, the ratio of CD34, CD3, CD19, CD14, CD33, CD41 positive cells in the CD45 positive cells was measured. For GPA-positive cells, the percentage of total bone marrow cells (R1 gate) was measured.
  • PC5 label, Immunotech anti-human CD34
  • PE label PE label,
  • FIG. 6 shows the results of multi-blood cell lineage analysis of fraction A (CD34-positive SRC).
  • FIG. 6 shows the expression rates of CD3, CD19, CD14, CD33, and CD41 in CD45-positive cells and the percentage of GPA-positive cells in all cells.
  • the ratio of human CD45-positive cells in the bone marrow cells of this mouse was 80.1%, and 15.6% was occupied by CD34-positive cells.
  • CD19-positive B cells were the most common at 49.1%.
  • CD14, CD33, CD41, and GPA positive cells were also observed, confirming the pluripotency of CD34-positive SRCs (potential for differentiation into B lymphocytes, myeloid cells, monocytes, megakaryocytes, and erythroid cells).
  • FIG. 7 shows the results of multi-cell lineage analysis of fraction C (CD34-negative SRC).
  • FIG. 7 shows the expression rates of CD3, CD19, CD14, CD33, and CD41 in CD45-positive cells and the proportion of GPA-positive cells in all cells, as in FIG.
  • the proportion of human CD45-positive cells in the bone marrow cells of this mouse was 52.6%, and 6.7% was occupied by CD34-positive cells.
  • the most common CD19-positive B cells were 23.8%.
  • CD14, CD33, and CD4L GPA-positive cells were also observed, confirming that they exhibited pluripotency similarly to CD34-positive SRC.
  • no CD3-positive T cells were found in any case.
  • CD34-positive cells appeared by transplanting the CD34-negative cell fraction. This indicates that the CD34-negative SRC is a more undifferentiated stem cell than the CD34-positive SRC.
  • Figure 8 compares the results of multi-blood cell lineage analysis of CD34-negative SRC and CD34-positive SRC in multiple mice.
  • the cells of fraction A are indicated by hatched columns, and the cells of fraction C are indicated by black columns.
  • CD34, CD19, CD33, CD14, and CD41 are shown as percentages in CM5 positive cells, and GPA is shown as a percentage in all cells.
  • CD34-positive cells did not differ between the two, while CD19, CD33, CD14 and GPA The ratio of the positive cells was significantly higher in the CD34-positive SRC.
  • CD34-positive SRC can supply more differentiated blood cells. This in turn suggests that the CD34-negative SRC is a more undifferentiated stem cell.
  • Figure 9 shows the results.
  • a shows CD3-positive cells in the thymus
  • b shows CD4-positive cells in the spleen
  • c shows CD56-positive cells in the liver.
  • CD34-positive SRC when CD34-positive SRC was transplanted, CD3-positive cells were found in the thymus, CD4-positive cells in the spleen, and CD56-positive cells in the liver. This suggests that CD34-positive SRCs retain the ability to differentiate into T cell lines.
  • CD34-negative SRC when CD34-negative SRC was transplanted, these cells hardly appeared at 12 weeks after transplantation. This result suggests that the cells of the present invention are more undifferentiated than CD34-positive cells and are in a deeper cell quiescent state, and it takes time to differentiate into each blood cell even after transplantation.
  • the engraftment rates of CD34-positive SRC in the liver and spleen were 10.3% and 51.4%, respectively, and mainly differentiated cells into CD10 and CD19-positive B cell lines were observed.
  • the engraftment rates of CD34-negative SRC in the liver and spleen were 2.1% and 6.3%, respectively, and similarly, CD10- and CD19-positive differentiated B-cell lines were mainly observed.
  • the differentiation stage of CD34-negative SRC was compared with that of CD34-positive SRC.
  • the cells of the fraction A (5 ⁇ 10 4 ) and the fraction C (5 ⁇ 10 3 ) were transplanted using a direct transplantation method into the medullary cavity of the tibia. After 8 and 12 weeks, the ratio of human CD45-positive cells in the bone marrow was measured over time. The method was the same as that described above. At each time point, three mice were analyzed and the average value was shown.
  • Undifferentiated stem cells are known to show higher migration ability (Nagasawa et al, Nature 382: 635, 1996; MaQ et al, PNAS 95: 9448, 1998; Zou et al, Nature 393: 595, 1998) Peled et al, Science 283: 845, 1999; Voermans et al, Exp Hematol 27: 1806, 1999). Therefore, the migration ability of CD34-positive and negative SRCs was compared in vivo. In the same manner as described above, the cells of the fraction A and the fraction C were transplanted using the direct transplantation method into the bone marrow cavity of the tibia, and the ratio of human CD45-positive cells in the bone marrow was measured 12 weeks later.
  • the absolute number of proliferating and differentiated CD34-positive cells was calculated from the ratio of CD34-positive cells in the bone marrow of the left tibia to which the transplanted cells were injected and the number of recovered cells (A). Inject further directly
  • CD34-positive cells generated in the bone marrow other than the left tibia directly injected with cells of fraction A or fraction C are considered to be derived from SRC that migrated from the injection site.
  • the migration ability of SRCs derived from both fractions was compared using B / A as the migration index (MI).
  • Figure 11 shows the typical FACS analysis results.
  • the proportion of CD34-positive cells in the bone marrow of the left tibia to which fraction A was directly transplanted was 6.43%, and the proportion of CD34-positive cells in the other bone marrow was 1.13%.
  • Absolute number calculation result in the left tibia 19.
  • 3 X 10 4 ⁇ of CD34 positive cells multiplied by the respective number of cells, other in the bone marrow becomes 33 ⁇ 5 X 10 4 cells, Ml is 33. 5/19. 3 1.74.
  • fraction A was 1.7-41.7 (median 7.9) and the Ml of fraction C was 23.7-236.9 (median 70.7). Taking the median ratio (C / A) as 9, it can be said that fraction C, that is, the CD34-negative SRC has much higher migration ability.
  • Stem cells were isolated from human cord blood from normal term infants.
  • cord blood was donated to the cord blood bank but was not registered for transplantation, the informed consent was given to the research hospital or to the disposal to dispose of it. The collected one was used.
  • ⁇ -MEM medium Gibco
  • spike-MEM medium Gibco
  • ⁇ C Mononuclear cells
  • Anti-human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20, CD24, CD41, CD56, GPA monoclonal antibodies (Coulter, Becton) After triple staining with Dickinson, DAK0, Niclii re i), anti-human CD34 monoclonal antibody (PC5 label, Becton Dickinson), and anti-human CD45 monoclonal antibody (FITC label, I-band unotech), sorting using FACS Vantage By doing liifCD45 lM CD34 " Cells (liif LN) were purified.
  • FIG. 12 shows scat tergrams of cord blood-derived liif cells after triple staining with various lin antibodies labeled with PE, CD34 antibody labeled with PC5, and CD45 antibody labeled with FITC.
  • the scattergram shown as a in FIG. 12a is the gate of Rin-cell (R2), and the scattergram shown as b in FIG. 12 is LiiTCD34 high (R3 gate) after triple staining, 1 ⁇ 11; 1) 34 (R4 gate) and LiiTCD34— (R5 gate) are shown.
  • the lowest sorting window (R5) contains the LiirCD45 l () W CD34 cell of the present invention.
  • the fluorescence intensity obtained by this triple staining is a maximum of about 2,000 channels (Fig. 12 Ba) in PE stained with the differentiation antigen, and a maximum of 200 channels (Fig. 12 Aa in the case of FITC shown in Example 1). ) was about 10 times as sensitive.
  • the maximum fluorescence levels of CD34 stained with PC5 and CD45 stained with FITC were 000 and 1,000 channels, respectively, showing almost the same fluorescence intensity as the conventional method (Fig. 12 Ab, Bb) . From the above results, 1) This improved method makes it possible to exclude cells that express weakly the differentiation antigen that could not be removed by the conventional method.> 2) The target l in-LN cells were converted to CD34. As for the expression intensity of CD45 antigen, it became possible to purify the cells as cells of almost the same quality.
  • target cells can be concentrated 10 to 20 times as compared with the method described in Example 1.
  • CD34-negative SRC in lin-CD34-LN cells obtained by the method described in Example 1.
  • mice After 12 weeks, mice are sacrificed and the percentage of human CD45-positive cells in bone marrow analyzed by FACS (0.1% or more was determined to be positive).
  • the frequency of CD34 neg SRC was calculated by Poisson analysis. It was calculated to be 1 / 24,100 ( Figure 13) by the ultra dilution experiment. Therefore, it is estimated that the frequency of CD34 neg SRC will increase to about 1/1, 200 to 2,400 by using this improved method.
  • the CD34-negative stem cells of the present invention are 1) in a deeper cell quiescent state because the proliferation state after transplantation into N0D / SCID mice is slower than that of CD34-positive SRC. 2) Produces CD34-positive SRC in vitro and in vivo, and 3) The migration ability to other bones from the transplanted left tibia is significantly higher than that of CD34-positive SRC. These indicated that the CD34-negative stem cells of the present invention were undifferentiated. The undifferentiated nature of the CD34-negative stem cells of the present invention was further examined.
  • 5xl0 3 Lin-CD34 high or 5xl0 4 UITCD34- cells derived from human umbilical cord blood were transplanted into the left tibia of a female N0D / Shi_scid mouse of 8 to 12 weeks by the IBMI method. Were sacrificed and analyzed. The bone marrow of the left tibia and other bones were separately collected, and after staining with anti-human CD45 and CD34 monoclonal antibodies, the positive rate of each was measured by FACS. The absolute number of each cell was calculated from the number of living bone marrow cells collected.
  • Lin-CD34 high cells were transplanted at 1250, 5000, 20000, and 50,000 cells / mouse, and the ratio of human CD45-positive cells in mouse bone marrow after 12 weeks was compared. As a result, it became clear that the engraftment rate reached the plateau level when more than 20000 cells / mouse were transplanted, and the repopulation ability of individual SRCs could not be accurately evaluated.
  • the number of transplanted SRCs was calculated based on published limiting dilution experiments. The outline of the method is as follows. It is described below. First, 300-1250 umbilical cord blood-derived L in_CD34 high cells per animal were transplanted into a total of 26 8-week-old NOD / Shi-scid mice, and 0.1% in mouse bone marrow cells 12 weeks later. Engraftment was determined when the above human CD45 positive cells were observed. Similarly, 5000-40000 Lin "CD34- cells were transplanted into a total of 21 NOD / Shi-scid mice and analyzed. The frequency of SRC was reported previously (Bhatia M et al., PNAS94: 5320-5325, 1997) was performed Poisson analysis according.
  • CD45 positive cells in which one SRC is produced to the 6Xl0 4 pieces 53. is CD34 positive SRC, CD34-negative SRC in 286Xl0 4 and significantly (P rather 0.05) There were many. Further, CD34 positive cells, respectively 10. 2Xl0 4 and 15. 5Xl0 4/5 pieces and CD34-negative SRC has produced more CD34-positive cells (P rather 0.05).
  • CD34-positive cells were collected from the bone marrow of the primary mouse transplanted with 3 Lin-CD34 high or 5xl0 4 Lin-CD34 cells by IBMI in the left tibia of 5 secondary mice each. Was reimplanted.
  • CD34-positive cells derived from Lin-CD34-cells reconstituted human hematopoiesis in secondary mice. From the above, it became clear that there is a clear difference between the CD34-positive SRC and the CD34-negative SRC not only in their proliferation ability but also in their ability to produce CD34-positive SRC in vivo.
  • the CD34 antigen is reversed in human bone marrow-derived stem cells (Dao MA et al., Blood 101: 112-118, 2003; Zanjani ED et al., ⁇ Hematol 31: 406-412, 2003).
  • the results of this example revealed that these two types of stem cells were completely different classes of stem cells, in other words, CD34-negative stem cells were more undifferentiated.
  • Industrial utility As shown in the Examples, the lin-CD45 ll) lf CD34-undifferentiated stem cell population of the present invention is more undifferentiated than CD34-positive cells, which were conventionally considered to be hematopoietic stem cells. Can replace CD34-positive cells and can be used for various purposes.Especially when considering long-term hematopoietic reconstitution over the life of humans, it can have more advantageous effects as stem cells than CD34-positive cells. It is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

It is intended to provide undifferentiated stem cells originating in cord blood, bone marrow, peripheral blood or the like and a method of isolating these cells. Namely, undifferentiated lin-CD45lowCD34- stem cells originating in human cord blood, bone marrow or peripheral blood, and a method of isolating undifferentiated lin-CD45lowCD34- stem cells which comprises contacting mononuclear cells originating in human cord blood, bone marrow or peripheral blood with an antihuman differentiation antigen antibody, antihuman CD34 antibody and antihuman CD45 antibody and then isolating cells which do not bind to the antihuman differentiation antigen antibody or the antihuman CD34 antibody but weakly binds to the antihuman CD45 antibody.

Description

明細書 臍帯血、 骨髄、 末梢血等に含まれる新規な未分化幹細胞集団 技術分野  Description New undifferentiated stem cell population contained in cord blood, bone marrow, peripheral blood, etc.
本発明は、 ヒトの臍帯血、 骨髄、 末梢血等由来の未分化幹細胞およびその細胞 の単離方法に関する。  The present invention relates to undifferentiated stem cells derived from human cord blood, bone marrow, peripheral blood, and the like, and a method for isolating the cells.
背景技術 Background art
すべての血液細胞を作り出す力があるとされる造血幹細胞の存在が Tillらによ り提唱され(Till J.E. et al., Radit. Res 14:213, 1961)、 今日においては造血 能力を持つ細胞が、 骨髄のみならず末梢血、 膀帯血中にも存在することが明らか にされた。 特にヒ卜においては CD34抗原を発現する細胞の中に高い造血能力を有 する細胞が存在することが示され(Civin CI et al, J Immunol 133: 157, 1984)、 CD34抗原に対する抗体を用いた免疫磁気ビーズ法などにより CD34陽性細胞が純化 される方法が開発されている(Vogel W et al, Stem Cells 1 : 87, 2000)。  Till et al. (Till JE et al., Radit. Res 14: 213, 1961) proposed the existence of hematopoietic stem cells, which are believed to be capable of producing all blood cells. However, it was revealed that it is present not only in bone marrow but also in peripheral blood and bladder blood. In particular, in humans, it has been shown that cells having a high hematopoietic ability exist among cells expressing the CD34 antigen (Civin CI et al, J Immunol 133: 157, 1984), and an antibody against the CD34 antigen was used. A method has been developed to purify CD34-positive cells by the immunomagnetic bead method or the like (Vogel W et al, Stem Cells 1: 87, 2000).
これら造血幹細胞を白血病患者や再生不良性貧血などの造血障害のある患者に対 し、 他人の造血幹細胞または自己の正常な造血幹細胞を移植するいわゆる造血幹 細胞移植療法が普及し、その有用性が示されている(BerensonRJ et al, Blood 77: 1717, 1991、 Corr Ingham RE et al, Blood 86: 2052, 1995、 Bensinger WI et al, Blood. 88:4132, 1996、 Dunbar CE et al, Blood. 85:3048, 1995、 Negrin S et al, Biol. Blood Marrow Transplant. 6 :262, 2000、 Michallet M et al, Exp. Hematol. 28:858, 2000)。 The hematopoietic stem cell transplantation therapy, in which these hematopoietic stem cells are transplanted with hematopoietic stem cells of another person or autologous normal hematopoietic stem cells to leukemia patients or patients with hematopoietic disorders such as aplastic anemia, has become widely used. (BerensonRJ et al, Blood 77: 1717, 1991, Corr Ingham RE et al, Blood 86: 2052, 1995, Bensinger WI et al, Blood. 88: 4132, 1996, Dunbar CE et al, Blood. 85 3048, 1995, Negrin S et al, Biol. Blood Marrow Transplant. 6: 262, 2000, Michallet M et al, Exp. Hematol. 28: 858, 2000).
しかし、 大沢らによるマウスの造血幹細胞研究において、 Lin7c_Kit/Sca_l+ 細胞画分のうち CD34が検出できないか、弱く発現している細胞画分(CD34— に骨 髄球系統ならびにリンパ球系統に長期にわたり分化しうる細胞が存在することが 明らかにされた(Osawa M et al, Science. 273:242, 1996)。 また Morelらも CD34— 分画に幹細胞が存在することを証明した(Morel F et al, Exp Hematol 26:440, 1998)。 別の観点から Goodellらは色素排出法 (Hoechst33342 efflux assay)による 幹細胞純化法により色素を排出する細胞群を SP細胞(Side populat ion)と名づけ、 生着可能な細胞であることを示し、 またそれらマウス骨髄細胞から得た SP細胞はHowever, in the study of hematopoietic stem cells in mice by Osawa et al., CD34 was not detected or was weakly expressed in the Lin7c_Kit / Sca_l + cell fraction (CD34— (Osawa M et al, Science. 273: 242, 1996), and Morel et al. Also demonstrated the presence of stem cells in the CD34— fraction (Morel F et al, Exp Hematol 26: 440, 1998) From another perspective, Goodell et al. Use a dye elimination method (Hoechst33342 efflux assay). The cells that excrete the dye by the stem cell purification method are named SP cells (Side population), indicating that they are viable cells, and the SP cells obtained from the mouse bone marrow cells are
CD34½/—であることを見出した(Goode l l MA et al. Nat Med 3 : 1337, 1997)。 これ らの事実から従来の CD34を利用した移植医療に疑問がもたれるようになった。 そ してヒトにおける幹細胞についても改めて CD34陰性細胞に目が向けられることと なった。 CD34 CD / — (Goodell MA et al. Nat Med 3: 1337, 1997). These facts have raised questions about transplantation medicine using conventional CD34. The focus was again on CD34-negative cells in human stem cells.
佐藤、 田島、 小川らは、 マウス幹細胞における CD34の発現は可逆的であること を示し、杭がん剤(5-FU)や顆粒球コロニー刺激因子(G - CSF)で刺激をすることによ り幹細胞が CD34—から CD34}細胞に変化することを示した(Sato T e t al, Blood 94 : 2548, 1999、 Taj ima F et al, Blood 96 : 1989, 2000、 Taj i ma F et al, BloodSato, Tajima, Ogawa et al. Show that CD34 expression in mouse stem cells is reversible, and that stimulation with stake cancer drugs (5-FU) and granulocyte colony-stimulating factor (G-CSF) is possible. Stem cells changed from CD34— to CD34 } cells (Sato T et al, Blood 94: 2548, 1999; Tajima F et al, Blood 96: 1989, 2000; Tajima F et al, Blood
97 : 2618, 2001)。 97: 2618, 2001).
ヒ トの造血幹細胞に関しては、 Bhat iaらが、 ヒ トの骨髄(臍帯血)の Regarding human hematopoietic stem cells, Bhatia et al. Reported that human bone marrow (umbilical cord blood)
Lin—CD34— CD38—は幹細胞としての高い能力を持つ細胞を含むことを免疫不全マウ ス(N0D/SCID)に対する異種間の移植実験により明らかにした(Bhat i a M et al, Nat Med 4 : 1038, 1998)。 また、 Zanj aniらはヒ卜骨髄(臍帯血)に由来する CD34陽性細 胞および CD34陰性細胞を免疫寛容な胎仔ヒッジ腹腔へ移植することにより、 CD34 陽性細胞および CD34陰性細胞中に長期に渡り高いヒ卜細胞のキメリズムを維持す る細胞が存在することを明らかにした。 (Zanj ani ED et al, Exp Hematol 26 : 353, 1998、 Zanj ani ED e t al, Blood 92 : 504a, 1998)。 Lin-CD34-CD38- was found to contain cells with high potential as stem cells by xenotransplantation experiments on immunodeficient mice (N0D / SCID) (Bhatia M et al, Nat Med 4: 1038). , 1998). Zanjani and colleagues also show that CD34 + cells and CD34-negative cells derived from human bone marrow (umbilical cord blood) are prolonged in CD34 + and CD34-negative cells by transplanting them into the peritoneal cavity of fetal sheep that is tolerated. We clarified that some cells maintain the chimerism of human cells. (Zanjani ED et al, Exp Hematol 26: 353, 1998, Zanjani ED etal, Blood 92: 504a, 1998).
中村、 安藤(東海大)らは、 ヒ卜臍帯血中の LiiTCD34—細胞をマウスストローマ細 胞 HESS- 5と in vi t ro で共培養することで CD34細胞を誘導できることを示した。 すなわち、 CD34—画分に CD34+細胞よりも上流の幹細胞が存在することを明らかに した (Nakamura Y et al, Blood 94 : 4053, 1999) 。 さらに彼らは、 骨髄移植を 受けた患者について、 全骨髄を移植した患者と CD34陽性細胞分画を移植した患者 について、 L in—CD34陰性細胞から CD34細胞を誘導する能力を比較したところ CD34 細胞分画を移植した患者の骨髄には CD34+細胞を誘導できる CD34—幹細胞が欠如し ていることを示唆している (Kato S et al, Bone Marrow Transplantat ion 28 : 587,Nakamura and Ando (Tokai Univ.) Have shown that CD34 cells can be induced by co-culturing LiiTCD34— cells in human cord blood with mouse stromal cells HESS-5 in vitro. That is, it was clarified that stem cells upstream of CD34 + cells were present in the CD34- fraction (Nakamura Y et al, Blood 94: 4053, 1999). In addition, they are, for patients who have undergone bone marrow transplantation, for patients who were transplanted patients and CD34-positive cell fraction were transplanted with whole bone marrow, CD34 was to compare the ability to induce CD34 cells from L in-CD34-negative cells This suggests that the bone marrow of patients transplanted with the cell fraction lacks CD34 stem cells that can induce CD34 + cells (Kato S et al, Bone Marrow Transplantat ion 28: 587,
2001)ことから、 ヒト由来の CD34細胞分画がどこまで造血を長期にわたり維持で きるのか疑問がもたれている。 このように、 CD34—細胞集団が CD34細胞よりも未分化な幹細胞を含む可能性が 示されていたが、 CD34—細胞も種々の分化段階の亜細胞集団を含んでいる可能性が 有り、 CD34—細胞がすべて多分化能を有する幹細胞とはいえない。 ヒト CD45抗原陽 性かつ CD34抗原陰性かつ分化抗原陰性の細胞を分離する方法 (特開 2000-166541 号公報) や CD7抗原陽性かつ CD34抗原陰性かつ分化抗原陰性の細胞集団 (特表 200卜 525176号公報) についての報告も存在するが、 これらは CD34陰性のみを指標 に細胞を選択しているに過ぎず、 CD34陰性細胞集団の中からさらに真の幹細胞を 得ようとする試みはされていない。 このように従来から、 CD34—細胞集団の未分化 細胞としての重要性は示唆されていたものの、 その細胞集団をさらに分画し、 真 の幹細胞ともいえる細胞集団を単離しようとする試みは達成されていなかった。 発明の開示 (2001), it has been questioned to what extent the human-derived CD34 cell fraction can maintain hematopoiesis for a long period of time. Thus, it was shown that the CD34-cell population may contain more undifferentiated stem cells than CD34 cells, but that the CD34-cells may also contain subcellular populations at various stages of differentiation. —Not all cells are pluripotent stem cells. A method for isolating human CD45 antigen-positive, CD34 antigen-negative and differentiation antigen-negative cells (Japanese Patent Laid-Open No. 2000-166541), and a CD7 antigen-positive, CD34 antigen-negative and differentiation antigen-negative cell population However, there are reports on the selection of cells using only CD34 negative as an index, and no attempt has been made to obtain more true stem cells from the CD34 negative cell population. Thus, although the importance of CD34-cell populations as undifferentiated cells has been suggested, attempts to further fractionate the cell population and isolate a cell population that can be said to be true stem cells have been achieved. Had not been. Disclosure of the invention
本発明は、 臍帯血、 骨髄、 末梢血等から未分化の幹細胞を得ることを目的とす る。  An object of the present invention is to obtain undifferentiated stem cells from cord blood, bone marrow, peripheral blood, and the like.
本発明者らは上記課題を解決すべく、 ヒト臍帯血から細胞表面の種々の分化抗 原の発現を指標に特定の細胞集団を選択し、 該細胞集団の分化能について検討を 行い、 CD34陰性細胞の中でも分化抗原 (l ineage抗原) が陰性で、 CD45の発現が弱 い細胞が、 CD34陽性細胞よりもより未分化な細胞であることを見出し、 本発明を 完成させるに至った。  In order to solve the above problem, the present inventors selected a specific cell population from human umbilical cord blood using the expression of various differentiation antigens on the cell surface as an index, examined the differentiation ability of the cell population, and examined CD34 negative Among the cells, cells that were negative for the differentiation antigen (lineage antigen) and weakly expressed CD45 were found to be more undifferentiated than CD34-positive cells, and thus completed the present invention.
すなわち、 本発明は、 以下の通りである。  That is, the present invention is as follows.
( 1 ) ヒ卜臍帯血、骨髄または末梢血由来の l iifCD45lMCD34—未分化幹細胞集団、(1) human umbilical cord blood, bone marrow or peripheral blood-derived lifCD45 LM CD34—undifferentiated stem cell population,
( 2 ) ヒ卜臍帯血、 骨髄または末梢血由来の単核細胞から得られ、 芽球様の形 態学的所見を示す、 (1 ) の未分化幹細胞集団、 (2) the undifferentiated stem cell population according to (1), which is obtained from mononuclear cells derived from human umbilical cord blood, bone marrow or peripheral blood, and has blast-like morphological findings;
( 3 ) 蛍光標識抗 CD45抗体で蛍光免疫染色したときの蛍光強度が、 ヒト白血球 細胞集団を蛍光標識抗 CD45抗体で蛍光免疫染色したときに最大蛍光強度を示す細 胞の蛍光強度の 1 %〜10%である、 (1 ) または (2 ) の未分化幹細胞集団、 (3) The fluorescence intensity when fluorescent immunostaining with a fluorescently labeled anti-CD45 antibody is 1% to 1% of the fluorescence intensity of the cell showing the maximum fluorescent intensity when the human leukocyte cell population is fluorescently immunostained with a fluorescently labeled anti-CD45 antibody. 10% of the undifferentiated stem cell population of (1) or (2),
( 4 ) 免疫不全マウスの骨髄中に移植したときに生着し得る、 (1 ) から (3 ) のいずれかの未分化幹細胞集団、 (4) An undifferentiated stem cell population according to any one of (1) to (3), which can engraft when transplanted into the bone marrow of an immunodeficient mouse,
( 5 ) さらに、 免疫不全マウスの特定の骨の骨髄中に移植したときに他の骨の 骨髄中に移動する遊走能力が CD34¾M に比較して高い、 (4) の未分化幹細胞集 団、 (5) In addition, when transplanted into the bone marrow of a specific bone in immunodeficient mice, (4) the undifferentiated stem cell population, which has a higher ability to migrate into the bone marrow as compared to CD34¾M;
(6) さらに、 造血前駆細胞コロニー形成能を有さない、 (5) の未分化幹細 胞集団、  (6) the undifferentiated stem cell population of (5), which has no hematopoietic progenitor cell colony-forming ability;
(7) ヒト臍帯血、 骨髄または末梢血から liifCD451(lliCD34_未分化幹細胞を単離 する方法であって、 ヒト臍帯血、 骨髄または末梢血由来の単核球と抗ヒ卜分化抗 原抗体、 抗ヒト CD34抗体および抗ヒト CD45抗体を接触させ、 抗ヒト分化抗原抗体 および抗ヒト CD34抗体と結合せず、 抗ヒ卜 CD45抗体と弱い結合を示す細胞を分離 することを含む、 lin—CD45lMCD34—未分化幹細胞を単離する方法、 (7) human umbilical cord blood, a method for isolating liifCD45 1 (lli CD34 _ undifferentiated stem cells from bone marrow or peripheral blood, human umbilical cord blood, mononuclear cells from bone marrow or peripheral blood and Kohi Bok differentiation antigens Contacting the antibody, anti-human CD34 antibody and anti-human CD45 antibody, and isolating cells that do not bind to the anti-human differentiation antigen antibody and anti-human CD34 antibody and show weak binding to the anti-human CD45 antibody. CD45 lM CD34—a method for isolating undifferentiated stem cells,
(8) 抗ヒト CD34抗体および抗ヒト CD45抗体を接触させる前に、 CD2、 CD3、 CD7、 (8) Before contacting the anti-human CD34 antibody and the anti-human CD45 antibody, CD2, CD3, CD7,
■、 CD14、 CD16、 CD19、 ■、 CD23, CD24、 CD4L CD56、 CD66b、 GPAから なる群から選択される一つ以上の分化抗原と結合する単核球を分離除去する、 (7) の lin—CD45lMCD34—未分化幹細胞を単離する方法、 (7) the lin— of (7), which separates and removes monocytes that bind to one or more differentiation antigens selected from the group consisting of: CD14, CD16, CD19, ■, CD23, CD24, CD4L CD56, CD66b, and GPA. CD45 lM CD34—a method for isolating undifferentiated stem cells,
(9) 蛍光色素で標識されている抗ヒト分化抗原抗体、 抗ヒト CD34抗体および 抗ヒト CD45抗体との結合の有無を標識抗体-細胞結合体の蛍光強度を測定するこ とにより決定する、 (7) または (8) の liifCD45lwCD34—未分化幹細胞を単離す る方法、 (9) Determine the presence or absence of binding to the anti-human differentiation antigen antibody, anti-human CD34 antibody, and anti-human CD45 antibody labeled with a fluorescent dye by measuring the fluorescence intensity of the labeled antibody-cell conjugate, ( 7) or (8) liifCD45 lw CD34—a method for isolating undifferentiated stem cells,
(1 0) FACSまたはフローサイトメトリーを用いて、 抗ヒト CD34抗体と結合せ ず、 抗ヒト CD45抗体と弱い結合を示す細胞を分離する、 (9) の liiTCD45lMCD34— 未分化幹細胞を単離する方法、 (10) Use FACS or flow cytometry to isolate cells that do not bind to anti-human CD34 antibody and show weak binding to anti-human CD45 antibody. (9) liiTCD45 lM CD34—isolate undifferentiated stem cells how to,
(1 1) 蛍光標識抗ヒト CD45抗体と接触させたときの抗ヒト CD45抗体と弱い結 合を示す細胞の蛍光強度が、 ヒト白血球細胞集団を蛍光標識抗ヒト CD45抗体と接 触させたときの全白血球細胞中で最大蛍光強度を示す細胞の 1 %〜10%である、 (11) The fluorescence intensity of cells that show weak binding to the anti-human CD45 antibody when contacted with the fluorescently labeled anti-human CD45 antibody was similar to that when the human leukocyte cell population was contacted with the fluorescently labeled anti-human CD45 antibody. 1% to 10% of cells showing the highest fluorescence intensity among all leukocyte cells,
(9) または (1 0) の liifCD45lMCD34—未分化幹細胞を単離する方法、 (9) or (10) liifCD45 lM CD34—a method for isolating undifferentiated stem cells,
(1 2) 抗ヒト分化抗原抗体が PEで標識されている (9) 〜 (1 1) のいずれ かの方法、  (1 2) The method according to any of (9) to (11), wherein the anti-human differentiation antigen antibody is labeled with PE,
(1 3) 抗ヒト CD34抗体および抗ヒト CD45抗体が FITCまたは Cy5で別々に標識さ れている (1 2) の方法、  (1 3) The method according to (1 2), wherein the anti-human CD34 antibody and the anti-human CD45 antibody are separately labeled with FITC or Cy5.
(14) ヒト臍帯血、 骨髄または末梢血由来の細胞が liiTCD45 CD34—未分化幹 細胞であるかを決定する方法であって、該細胞と抗ヒト分化抗原抗体、抗ヒ卜 CD34 抗体および抗ヒト CD45抗体を接触させ、 該細胞が抗ヒト分化抗原抗体および抗ヒ ト CD34抗体と結合せず、 抗ヒ卜 CD45抗体と弱い結合を示すか否かを決定すること を含む、 細胞が liifCD45l CD34—未分化幹細胞であるかを決定する方法、 (14) Human cord blood, bone marrow or peripheral blood-derived cells are liiTCD45 CD34—undifferentiated stem A method for determining whether a cell is a cell, comprising contacting the cell with an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibody, and then contacting the cell with an anti-human differentiation antigen antibody and an anti-human CD34 antibody. without binding, comprising determining whether shows weak binding and Kohiboku CD45 antibody, a method in which cells to determine whether the liifCD45 l CD34- undifferentiated stem cells,
(1 5) 蛍光色素で標識された抗ヒト分化抗原抗体、 抗ヒト CD34抗体および抗 ヒト CD45抗体を用いる、 (14) の、 細胞が liifCD451()lfCD34—未分化幹細胞である かを決定する方法、 (15) Using an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibody labeled with a fluorescent dye, determining if the cells are liifCD45 1 () lf CD34—undifferentiated stem cells in (14) how to,
( 1 6) FACSまたはフローサイ トメトリーを用いる、 ( 1 5) の、 細胞が lin—CM51MCD34—未分化幹細胞であるかを決定する方法、 (16) The method of (15), wherein the cells are lin-CM5 1M CD34-undifferentiated stem cells, using FACS or flow cytometry,
(1 7) 蛍光標識抗ヒト CD45抗体で蛍光免疫染色したときの蛍光強度が、 ヒト 白血球細胞集団を蛍光標識抗 CD45抗体で蛍光免疫染色したときに最大免疫強度を 示す細胞の蛍光強度の 1 %〜10%である場合に CD45lwであると決定する、 (1 5) または(1 6)の、細胞が liiTCD45lmfCD34—未分化幹細胞であるかを決定する方法、(17) Fluorescence intensity when fluorescent immunostaining with a fluorescently labeled anti-human CD45 antibody is 1% of the fluorescence intensity of the cell that shows the maximum immunological intensity when a human leukocyte cell population is fluorescently immunostained with a fluorescently labeled anti-CD45 antibody determining that the CD45 lw if it is 10%, (1 5) or (1 6), a method in which cells to determine whether the liiTCD45 lmf CD34- undifferentiated stem cells,
(1 8) 抗ヒト分化抗原抗体が PEで標識されている (14) 〜 (1 7) のいず れかの方法、 (18) The method according to any of (14) to (17), wherein the anti-human differentiation antigen antibody is labeled with PE.
(1 9) 抗ヒト CD34抗体および抗ヒト CD45抗体が FITCまたは Cy5で別々に標識さ れている (1 8) 記載の方法、  (19) The method according to (18), wherein the anti-human CD34 antibody and the anti-human CD45 antibody are separately labeled with FITC or Cy5.
(20) ヒト臍帯血、 骨髄または末梢血由来の細胞集団中の liiTCD45lMCD34—未 分化幹細胞を分析する方法であって、 該細胞集団と抗ヒト分化抗原抗体、 抗ヒト CD34抗体および抗ヒト CD45抗体を接触させ、 該細胞が抗ヒト分化抗原抗体および 抗ヒト CD34抗体と結合せず、 抗ヒト CD45抗体と弱い結合を示すか否かを決定する ことを含む、 細胞集団中の liiTCD45½CD34—未分化幹細胞を分析する方法、 (20) A method for analyzing liiTCD45 lM CD34-undifferentiated stem cells in a cell population derived from human umbilical cord blood, bone marrow or peripheral blood, comprising analyzing the cell population and an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibodies contacting the said cell does not bind to the anti-human differentiation antigen antibody and anti-human CD34 antibody, and determining whether show anti-human CD45 antibody and weak bonds, LiiTCD45 ½ in the cell population CD34- How to analyze undifferentiated stem cells,
(2 1) 蛍光色素で標識された抗ヒト分化抗原抗体、 抗ヒト CD34抗体および抗 ヒト CD45抗体を用いる、 (20) の、 細胞集団中の lin— CD45lMCD34—未分化幹細胞 を分析する方法、 (21) A method for analyzing lin-CD45- lM CD34-undifferentiated stem cells in a cell population according to (20), using an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibody labeled with a fluorescent dye. ,
(2 2) FACSまたはフローサイトメトリーを用いる、 (2 1) の、 細胞集団の liiTCD45lMCD34—未分化幹細胞を分析する方法、 (22) The method of (21), wherein the cell population is analyzed for liiTCD45 LM CD34—undifferentiated stem cells using FACS or flow cytometry,
(2 3) 蛍光標識抗ヒト CD45抗体で蛍光免疫染色したときの蛍光強度が、 ヒト 白血球細胞集団を蛍光標識抗 CD45抗体で蛍光免疫染色したときに最大免疫強度を 示す細胞の蛍光強度の 1 %〜10%である場合に CD45l であると決定する、 (2 1 ) または (2 2 ) の、 細胞集団の l iiTCD45lMCD34—未分化幹細胞を分析する方法、 ( 2 4 ) 抗ヒト分化抗原抗体が PEで標識されている (2 0 ) 〜 (2 3 ) のいず れかの方法、 ならびに (2 3) The fluorescence intensity when immunofluorescently stained with a fluorescently labeled anti-human CD45 antibody was the highest when the human leukocyte cell population was fluorescently immunostained with a fluorescently labeled anti-CD45 antibody. (2 1) or (2 2) a method of analyzing liiTCD45 lM CD34—undifferentiated stem cells of the cell population, wherein the cell is determined to be CD45 l when the fluorescence intensity of the indicated cells is 1% to 10%. (24) The method according to any one of (20) to (23), wherein the anti-human differentiation antigen antibody is labeled with PE, and
( 2 5 ) 抗ヒト CD34抗体および抗ヒト CD45抗体が FITCまたは Cy5で別々に標識さ れている (2 4 ) 記載の方法。  (25) The method according to (24), wherein the anti-human CD34 antibody and the anti-human CD45 antibody are separately labeled with FITC or Cy5.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
1 . 本発明の細胞の取得および本発明の細胞の性質 1. Acquisition of the cells of the present invention and properties of the cells of the present invention
本発明の細胞は、 分化抗原 (系統特異的抗原) が陰性で、 CD45の発現が弱くか つ CD34が陰性であることを特徴とする細胞(以下、 l iifCD45lmfCD34—細胞とする)で あり、 CD34陽性細胞よりも未分化な幹細胞である。 また、 本発明の細胞は、 芽球 様細胞の特徴も有する。 本発明の細胞は、 臍帯血、 骨髄、 末梢血中に存在し、 こ れらの組織 ·器官から単離することができる。 The cells of the present invention are cells characterized by being negative for differentiation antigens (lineage-specific antigens), weakly expressing CD45 and negative for CD34 (hereinafter referred to as liifCD45 lmf CD34-cells). Stem cells are more undifferentiated than CD34-positive cells. The cells of the present invention also have the characteristics of blastoid cells. The cells of the present invention are present in umbilical cord blood, bone marrow, and peripheral blood, and can be isolated from these tissues and organs.
分化抗原が陰性 (l iiO とは、 造血幹細胞からの特定系統の細胞への分化に対 応して出現する表面抗原を有していないこと、 すなわち該表面抗原を細胞表面に 発現していないことをいい、本発明においては CD2、 CD3、 CD7、画、 CD14、 CD16、 CD19、 CD20、 CD23、 CD24、 CD41、 CD56、 CD66b、 GPAが陰性であることをいう。 前 記表面抗原中、 CD3は T細胞と関連を有し、 CD10、 CD19、 CD20、 CD23および CD24 は B細胞と関連を有し、 CD16および CD56は NK細胞等と関連を有し、 CD2および CD7 は T細胞、 NK細胞と関連を有し、 CD41は血小板と関連を有し、 GPAは赤血球と関連 を有し、 CD66bは顆粒球と関連を有する。  Negative differentiation antigen (LiiO means that it does not have a surface antigen that appears in response to differentiation of hematopoietic stem cells into cells of a specific lineage, that is, it does not express the surface antigen on the cell surface In the present invention, it means that CD2, CD3, CD7, picture, CD14, CD16, CD19, CD20, CD23, CD24, CD41, CD56, CD66b, and GPA are negative. Related to T cells, CD10, CD19, CD20, CD23 and CD24 related to B cells, CD16 and CD56 related to NK cells, etc., CD2 and CD7 related to T cells, NK cells CD41 is associated with platelets, GPA is associated with red blood cells, and CD66b is associated with granulocytes.
CD45lMとは、 CD45の発現が弱いことをいう。 CD45は、末梢血のリンパ球、単球、 顆粒球、 好酸球、 好塩基球を含むすべての白血球が有している。 本発明で CD45の 発現が弱いとは、 細胞表面上に有意の量の CD45の存在が認められるが、 CD45を発 現している全白血球集団の中で相対的に CD45の存在が低いことをいい、 蛍光色素 で標識した抗 CD45抗体で本発明の細胞および前記白血球細胞集団を同一の条件で 染色したときに染色される細胞の最大蛍光強度の 1 %〜10%の蛍光強度を示す細 胞をいう。 例えば、 ヒト血液由来の白血球細胞集団と本発明の細胞を混ぜ蛍光色 素標識抗ヒト CD45抗体を用いて染色し、 FACS (Fluorescence act ivated ce l l sorter) を用いて、 蛍光強度を測定したときに最大蛍光強度を示す白血球細胞の 蛍光強度の 1 %〜10 %の蛍光強度を示す細胞集団中に本発明の細胞集団が含まれ、 最大蛍光強度を示すリンパ球細胞の蛍光強度の 1 %〜10%の蛍光強度を示す細胞 集団中、 CD34'l in—の細胞が本発明の細胞である。 CD45 lM means that CD45 expression is weak. CD45 is present on all leukocytes, including peripheral blood lymphocytes, monocytes, granulocytes, eosinophils, and basophils. Weak CD45 expression in the present invention means that the presence of a significant amount of CD45 on the cell surface is relatively low in the total leukocyte population expressing CD45. When cells of the present invention and the leukocyte cell population are stained under the same conditions with an anti-CD45 antibody labeled with a fluorescent dye under the same conditions, cells exhibiting a fluorescence intensity of 1% to 10% of the maximum fluorescence intensity of the cells stained are obtained. Say. For example, a human blood-derived leukocyte cell population and the cells of the present invention are mixed and stained with a fluorescent dye-labeled anti-human CD45 antibody, and then FACS (Fluorescence activated cell) is performed. The cell population of the present invention is included in the cell population exhibiting a fluorescence intensity of 1% to 10% of the fluorescence intensity of the white blood cells exhibiting the maximum fluorescence intensity when the fluorescence intensity is measured using the sorter). Among the cell populations exhibiting the fluorescence intensity of 1% to 10% of the fluorescence intensity of the lymphocyte cells exhibiting the above, the CD34'lin- cells are the cells of the present invention.
CD34—とは、 CD34抗原が陰性であること、 すなわち細胞の表面に CD34が発現して いないことあるいは非常に発現が低いことをいう。 CD34は造血幹細胞に関連を有 するとされている表面抗原である。  CD34- means that the CD34 antigen is negative, that is, that CD34 is not expressed on the cell surface or that expression is extremely low. CD34 is a surface antigen that has been implicated in hematopoietic stem cells.
これらの表面抗原が陰性かどう力、、 発現が弱いかどうかはこれらの抗原に対す る抗体であって、 発色酵素、 蛍光化合物等で標識した抗体を用いて細胞が染色さ れたか否かを顕微鏡観察等により決定することができる。 例えば、 これらの抗体 を用いて細胞を免疫染色して、 表面抗原の有無を決定することができ、 また該抗 体を結合させた磁性ビーズを用いても決定することができる。 また、 FACSまたは フローサイトメ一夕一を用いても表面抗原があるかどうか決定することができる。 FACS, フロ一サイトメ一夕一としては例えば FACS vantage (べクトン'ディッキン ソン社製)、 FACS Cal ibur (べクトン'ディッキンソン社製)等を用いることができ る。  Whether these surface antigens are negative and whether they are weakly expressed depends on the antibodies against these antigens, and whether the cells were stained using antibodies labeled with chromogenic enzymes, fluorescent compounds, etc. It can be determined by microscopic observation or the like. For example, the presence or absence of a surface antigen can be determined by immunostaining cells using these antibodies, or can be determined using magnetic beads to which the antibody has been bound. Also, FACS or flow cytometry can be used to determine if surface antigens are present. As FACS and flow cytometry, for example, FACS vantage (manufactured by Becton, Dickinson) and FACS Cal ibur (manufactured by Becton, Dickinson) can be used.
本発明の細胞は、 これらの細胞表面の抗原特性に基づいて単離することができ る。  The cells of the present invention can be isolated based on these cell surface antigen properties.
臍帯血から例えば F icol l - Paaue比重遠心法により単核細胞を分離し、 それぞれ 異なる蛍光色素で標識した分化抗原に対する抗体、 CD34に対する抗体および CD45 に対する抗体で前記分離細胞を染色し、 FACSを用いて、 l iiTCD45l CD34_細胞をソ 一ティングすることにより本発明の細胞を単離することができる。 この際、 単核 細胞から直接 FACSで単離してもよいし、 FACSでソーティングする前に分化抗原の うちの 1種類以上の抗原に対する抗体を結合させた磁気ビーズを用いて、 分化抗 原を有する細胞を除去し、 残った細胞から FACSを用いて本発明の細胞を単離する ことができる。 この際用い得る蛍光色素として、 APC (Al lophycocyanin)、 Mononuclear cells are separated from umbilical cord blood by, for example, Ficoll-Paaue density centrifugation, and the separated cells are stained with antibodies to differentiation antigens, antibodies to CD34 and antibodies to CD45 labeled with different fluorescent dyes, and using FACS. Te, it is possible to isolate cells of the present invention by Seo one computing a l iiTCD45 l CD34 _ cells. At this time, the differentiation antigen may be isolated directly from mononuclear cells by FACS, or by using magnetic beads to which antibodies against one or more of the differentiation antigens are bound before sorting by FACS. The cells are removed, and the cells of the present invention can be isolated from the remaining cells using FACS. APC (Allophycocyanin), a fluorescent dye that can be used at this time,
PE (Phycoerythrin) , PC5、 PE-Cy5 (Cy-Chrome, PEと Cy- 5のタンデム色素)、 PE (Phycoerythrin), PC5, PE-Cy5 (Cy-Chrome, PE and Cy-5 tandem dye),
FITC (Fluorescein isothiocyanat e) , PerCP (Perid inin Chlorophyl l Protein)等 が挙げられる。 免疫磁気ビーズ法で回収した細胞の 50%以下、 40 %以下、 20%以 下、 10 %以下または 5 %以下が l iiTCD45½CD34—細胞である。 FITC (Fluorescein isothiocyanate), PerCP (Perid inin Chlorophyll Protein) and the like. 50% or less, 40% or less, 20% or less of cells recovered by the immunomagnetic bead method Lower than 10% or 5% or less is l iiTCD45 ½ CD34- cells.
このような単離方法により単離した細胞集団であって、 実質的に本発明の細胞 からなる細胞集団も本発明の範囲に包含される。 実質的に本発明の細胞からなる 細胞集団とは、 表面抗原特性すなわち表面抗原の発現パターンが異なる細胞から なる細胞集団であり、 l iiTCD45lMCD34—細胞が含まれる細胞集団である。 また、 本 発明の細胞は、 l in— CD45lMCD34—細胞が含まれる l in—CD45 CD34—細胞の組成物であ る。 A cell population isolated by such an isolation method and substantially consisting of the cells of the present invention is also included in the scope of the present invention. The cell population consisting essentially of the cells of the present invention is a cell population consisting of cells having different surface antigen characteristics, that is, expression patterns of surface antigens, and a cell population containing liiTCD45lM CD34-cells. The cell of the present invention is a composition of a lin -CD45 CD34-cell including a lin- CD45 LM CD34-cell.
例えば、 ヒト臍帯血から Ficol l-Paciue比重遠心法を用いて単核細胞を分離し、 上述の分化抗原のうち、 CD2、 CD3、 CD14、 CD16、 CD19、 CD20もしくは CD24、 CD56、 CD66bおよび GPAが陰性のものを単離し、 該単離細胞について、 異なる蛍光色素で 標識したヒト CD2、 CD3、 CD4、 CD7、 CD10、 CD14、 CD16、 CD19、 CD20、 CD23、 CD24、 CD4K CD56および GPAに対する抗体のうちの複数の抗体、好ましくは 10種類以上の 抗体を含む抗体混合物、 抗ヒト CD34抗体ならびに抗ヒ卜 CD45抗体を用いて細胞を 3重染色し、 FACSで分化抗原陰性、 CD34陰性かつ CD45が弱陽性である細胞を単離 すればよい。 3重染色の際、 前記抗体混合物、 CD34抗体および CD45抗体は別々の 蛍光色素で標識するが、 このうちヒト CD2、 CD3、 CD4、 CD7、 CD10、 CD14、 CD16、 CD19 CD20、 CD23、 CD24、 CD4K CD56および GPAに対する抗体のうちの複数の抗体、 好ましくは 10種類以上の抗体を含む抗体混合物を PEで標識するのが好ましい。 PE 標識することにより、 蛍光強度は最大 2000チャネルとなり、 FITCで染色した場合 の約 200チャネルに比べ約 10倍の感度で、 ヒト CD2、 CD3、 CD4、 CD7、 CD10、 CD14、 CD16、 CD19、 CD20、 CD23, CD24、 CD41、 CD56および GPAのいずれかを発現している 細胞を検出することが可能である。 このため上記分化抗原を弱く発現している細 胞を高精度で除外することができる。 後述の実施例 1の条件で FACS解析を行った 場合に、 図 1に示すスキヤッタグラム (散布図) において分画 Cに存在する細胞が 本発明の細胞である。  For example, mononuclear cells are separated from human cord blood using Ficoll-Paciue specific gravity centrifugation, and among the above-mentioned differentiation antigens, CD2, CD3, CD14, CD16, CD19, CD20 or CD24, CD56, CD66b and GPA Negative ones were isolated and, for the isolated cells, antibodies to human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20, CD23, CD24, CD4K CD56 and GPA labeled with different fluorescent dyes Cells are triple-stained with a plurality of antibodies, preferably an antibody mixture containing 10 or more antibodies, anti-human CD34 antibody and anti-human CD45 antibody, differentiation antigen negative, CD34 negative and CD45 weak positive by FACS It is sufficient to isolate the cells having the following conditions. During triple staining, the antibody mixture, CD34 antibody and CD45 antibody are labeled with different fluorescent dyes, of which human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19 CD20, CD23, CD24, CD4K Preferably, an antibody mixture containing a plurality of antibodies to CD56 and GPA, preferably 10 or more antibodies, is labeled with PE. By PE labeling, the fluorescence intensity is up to 2000 channels, about 10 times more sensitive than about 200 channels when stained with FITC, and human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20 It is possible to detect cells expressing any of CD23, CD24, CD41, CD56 and GPA. Therefore, cells that weakly express the above differentiation antigen can be excluded with high accuracy. When the FACS analysis was performed under the conditions of Example 1 described later, the cells present in the fraction C in the scattergram shown in FIG. 1 are the cells of the present invention.
本発明の細胞は、 さらに NOD/Shi- sc idマウスなどの免疫不全マウスの骨髄中に 従来の尾静脈注入移植では生着せず、 直接注入法で移植すると生着するといぅ特 徴を有する。 生着の有無は、 細胞を免疫不全マウスの骨髄腔内に移植し、 移植 12 週間後に細胞を移植した骨または別の骨の骨髄腔内に移植した細胞に由来するヒ ト血液細胞が存在しているかどうかを例えば CD45抗原の存在を指標に確認すれば よい。 本発明の細胞は、 CD34陰性 SRC (sc id-repopul at ing ce l l) 細胞とも呼ぶ。 NOD/Shi- scidマウスは (財) 実験動物中央研究所から入手することができる。 さらに、本発明の細胞は、 CD34陽性細胞に発現する、 CXCR4等のケモカイン受容 体の発現が認められないという特徴を有し、 同様に CD34陽性細胞には発現する CD3 L CD49d、 CD54、 CD62L, CD106等の接着因子が発現していないという特徴を有 する。 蛍光色素で標識したこれらに対する抗体を用いて、 免疫染色を行うことに より、 発現の有無を確認することができる。 The cells of the present invention also have the characteristic that they do not survive in the bone marrow of immunodeficient mice such as NOD / Shi-scid mice by conventional tail vein injection transplantation, but survive when transplanted by direct injection. The presence or absence of engraftment was determined by transplanting the cells into the bone marrow cavity of immunodeficient mice, and 12 weeks after transplantation, the cells derived from the cells transplanted into the bone marrow cavity of the bone or another bone. The presence or absence of blood cells may be confirmed using, for example, the presence of the CD45 antigen as an index. The cells of the present invention are also referred to as CD34-negative SRC (scid-repopul ating cell) cells. NOD / Shi-scid mice can be obtained from the Central Laboratory for Experimental Animals. Furthermore, the cells of the present invention have a feature that expression of chemokine receptors such as CXCR4, which is expressed on CD34-positive cells, is not observed, and CD3L, CD49d, CD54, CD62L, which are similarly expressed on CD34-positive cells. It has the feature that no adhesion factor such as CD106 is expressed. The presence or absence of expression can be confirmed by performing immunostaining using antibodies against these labeled with a fluorescent dye.
さらに、 本発明の細胞は、 造血前駆細胞コロニー形成能を有しないという特性 を有する。 すなわち、 in vi troで至適濃度の SCF、 IL- 3、 GM-CSF, G- CSF、 エリス ロポェチンと培養した場合にコロニーを形成しない。  Furthermore, the cells of the present invention have the property of not having the ability to form hematopoietic progenitor cell colonies. That is, no colonies are formed when cultured in vitro with optimal concentrations of SCF, IL-3, GM-CSF, G-CSF, and erythropoietin.
さらに、本発明の細胞は、 胸腺、 脾臓および肝臓において移植後 12週の時点で T リンパ球へ分化しないという特徴を有する。 また、 肝臓、 脾臓における生着率が CD34陽性細胞より低いという特徴を有する。  Furthermore, the cells of the invention are characterized in that they do not differentiate into T lymphocytes in the thymus, spleen and liver at 12 weeks after transplantation. It also has the characteristic that the engraftment rate in the liver and spleen is lower than that of CD34-positive cells.
さらに本発明の細胞は CD34陽性細胞よりも遊走能力が有意に高いという特性を 有する。遊走能力とは、細胞がある組織から別の組織へと移動し得る能力をいい、 本発明の細胞の場合、 特定の骨の骨髄腔内に移植した場合に、 一定期間経過後に 他の骨の骨髄腔内に移動し得る能力をいう。 遊走能については、 Nagasawa T e t al, Nature 382 : 635, 1996、 MaQ e t al, PNAS 95 : 9448, 1998、 Zou Y - R et al, Nature 393 : 595, 1998、Peled A et al, Sc ience 283 : 845, 1999、 Voermans C et al. Exp Hematol 27 : 1806, 1999に詳細に記載されている。  Furthermore, the cells of the present invention have the property that their migration ability is significantly higher than that of CD34-positive cells. The migration ability refers to the ability of cells to migrate from one tissue to another.In the case of the cells of the present invention, when transplanted into the medullary cavity of a specific bone, the cells can migrate to another bone after a certain period of time. The ability to move into the medullary cavity. For migratory ability, Nagasawa T et al, Nature 382: 635, 1996, MaQ et al, PNAS 95: 9448, 1998, Zou Y-R et al, Nature 393: 595, 1998, Peled A et al, Science 283 : 845, 1999, Voermans C et al. Exp Hematol 27: 1806, 1999.
上述の本発明の細胞の単離方法に用いた技法により、 ある細胞が本発明の細胞 であるか否か、 ある細胞集団が本発明の細胞を含むか否かを決定することができ る。 本発明の細胞と決定された細胞を以下に述べるように種々の用途に適用する ことができる。 この決定方法も本発明の範囲に包含される。 さらに、 本発明の細 胞の単離方法に用いた技法により、 ある細胞集団中の本発明の細胞を分析、 すな わちある細胞集団中に本発明の細胞が含まれるか否か、 どの程度の割合で含まれ るかどうか、 等について分析することができる。 この分析の結果を利用して被分 析細胞から本発明の細胞を単離することができるし、 またその細胞集団を以下に 述べる種々な用途にそのまま適用できるか否か等も評価することができる。 この 分析方法も本発明の範囲に包含される。 By the technique used in the above-described method for isolating the cells of the present invention, it is possible to determine whether or not a certain cell is the cell of the present invention and whether or not a certain cell population contains the cell of the present invention. The cells determined as the cells of the present invention can be applied to various uses as described below. This determination method is also included in the scope of the present invention. Furthermore, the cells of the present invention in a certain cell population are analyzed by the technique used in the method for isolating cells of the present invention, that is, whether or not the cells of the present invention are contained in a certain cell population. It can be analyzed whether it is included at a certain ratio, etc. Utilizing the results of this analysis, the cells of the present invention can be isolated from the cells to be analyzed. It can also be evaluated whether or not it can be directly applied to the various uses described. This analysis method is also included in the scope of the present invention.
2 . 本発明の細胞の利用  2. Use of the cells of the present invention
本発明の細胞をヒト臍帯血、 骨髄または末梢血から集めて、 または種々の方法 により増殖させて利用することができる。 例えば、 ストローマ細胞層上で増殖さ せることができる。  The cells of the present invention can be collected from human umbilical cord blood, bone marrow or peripheral blood, or expanded by various methods. For example, it can be grown on a stromal cell layer.
また、 本発明の細胞を免疫不全マウスに移植し、 8〜16週間後にマウス骨髄か ら未分化の本発明の細胞を回収し、 さらに回収した該細胞を再び免疫不全マウス に再移植する。 この移植および回収を繰り返すことにより、 他の細胞の混入のな い純度の高い細胞を大量に得ることができる。  The cells of the present invention are transplanted into immunodeficient mice, and after 8 to 16 weeks, undifferentiated cells of the present invention are recovered from mouse bone marrow, and the recovered cells are transplanted again into immunodeficient mice. By repeating this transplantation and collection, a large amount of highly pure cells free of other cells can be obtained.
本発明のマウスを用いて得られたヒト幹細胞を、 ェクソ · ビポで増殖させ、 白 血病等の治療のためにヒトに移植することが可能であるし、 また肝臓等の再生医 療のための組織形成のための幹細胞として用いることもできる。  The human stem cells obtained using the mouse of the present invention can be expanded in exo-vipo and transplanted into humans for the treatment of leukemia and the like, and for regenerative medical treatment of the liver and the like. It can also be used as a stem cell for tissue formation.
さらに、 本発明の細胞を SCF、 IL-3、 GM-CSF, G- CSF、 エリスロポエチン、 FLT3 リガンド、 TP0、 IL- 6、 s IL- 6レセプ夕一、 IL- 6/s IL- 6レセプ夕一の融合タンパク 質 (例えば、 W0 00/01731、 W0 97/32891、 W0 99/02552参照) 等の生理活性物質と ともに培養し、 成熟させ、 増殖させ特定の造血細胞を得ることができる。  Furthermore, the cells of the present invention were transformed into SCF, IL-3, GM-CSF, G-CSF, erythropoietin, FLT3 ligand, TP0, IL-6, s IL-6 receptor, IL-6 / s IL-6 receptor. A specific hematopoietic cell can be obtained by culturing with a physiologically active substance such as one fusion protein (see, for example, WO 00/01731, WO 97/32891, WO 99/02552), maturing and proliferating.
本発明の細胞に外来遺伝子を導入し、 ヒト造血幹細胞を標的とした遺伝子治療 に用いることもできる。 幹細胞への遺伝子導入は、 レンチウィルスベクター、 レ トロウィルスベクター、 アデノウイルスベクター、 アデノ随伴ウィルスベクター 等のウィルスベクタ一を用いて行うことができる。 ここで用いる遺伝子として例 えば、 アデノシンデァミナーゼ (ADA) 欠損症患者に対して ADA遺伝子等が挙げら れる。  A foreign gene can be introduced into the cells of the present invention and used for gene therapy targeting human hematopoietic stem cells. Gene transfer into stem cells can be performed using a virus vector such as a lentivirus vector, a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, and the like. Examples of the gene used herein include the ADA gene for adenosine deaminase (ADA) deficiency patients.
さらに、 本発明の細胞は l iifCD45lMCD34—で特徴づけられる未分化な幹細胞であ り、 本発明の細胞を新しい幹細胞のマーカ一の探索のために用いることも可能で ある。 図面の簡単な説明 Furthermore, the cells of the present invention are undifferentiated stem cells characterized by liifCD45 LMCD34- , and the cells of the present invention can also be used for searching for a new stem cell marker. BRIEF DESCRIPTION OF THE FIGURES
図 1は、臍帯血由来 l iiT細胞の各種 l in抗体 (FITC標識)、 CD34抗体 (PE標識)、 CD45 抗体 (PC5標識)による三重染色後の scat tergramを示す図である。 Figure 1 shows various lin antibodies (FITC-labeled), CD34 antibodies (PE-labeled), and CD45 of cord blood-derived liiT cells. FIG. 3 is a view showing a scat tergram after triple staining with an antibody (PC5 label).
図 2は、 分画 A〜Cの細胞のサイトスピン標本(May- Giemsa染色)を示す写真であ る。  FIG. 2 is a photograph showing cytospin specimens (May-Giemsa staining) of cells of fractions A to C.
図 3は、 分画 A〜Dの造血前駆細胞コロニー形成能を示す図である。  FIG. 3 is a diagram showing the hematopoietic progenitor cell colony forming ability of fractions A to D.
図 4は、 臍帯血由来の CD34陽性、 CD34陰性細胞における CXCR4、 各種接着因子の 発現を示す図である。  FIG. 4 shows the expression of CXCR4 and various adhesion factors in CD34-positive and CD34-negative cells derived from cord blood.
図 5は、 マウス脛骨骨髄腔内直接移植法による分画 Aおよび分画 Cの移植成績を 従来の尾静脈よりの移植成績と比較して示す図である。  FIG. 5 is a diagram showing the results of transplantation of fractions A and C by direct transplantation into the bone marrow cavity of the mouse tibia in comparison with the results of transplantation from a conventional tail vein.
図 6は、分画 A移植後のマウス骨髄中のヒト由来細胞の多血球系統解析の結果を 示す図である。  FIG. 6 is a diagram showing the results of multi-blood cell lineage analysis of human-derived cells in mouse bone marrow after fraction A transplantation.
図 7は、分画 C移植後のマウス骨髄中のヒト由来細胞の多血球系統解析の結果を 示す図である。  FIG. 7 is a diagram showing the results of multi-blood cell lineage analysis of human-derived cells in mouse bone marrow after transplantation of fraction C.
図 8は、 分画 Aおよび Cを移植後のマウス骨髄内ヒト CD45陽性細胞(全細胞)中の 各種抗原発現細胞の比較の結果を示す図である。  FIG. 8 shows the results of comparison of various antigen-expressing cells in human CD45-positive cells (all cells) in mouse bone marrow after transplantation of fractions A and C.
図 9は、 分画 A (CD34陽性 SRC)移植後の胸腺、 脾臓、 肝臓に存在するリンパ球系 細胞を示す図である。  FIG. 9 shows lymphocyte cells present in the thymus, spleen, and liver after transplantation of Fraction A (CD34-positive SRC).
図 1 0は、 分画 A、 分画 C細胞移植後のマウス骨髄中のヒト CD45陽性細胞の経時 的な解析の結果を示す図である。  FIG. 10 is a diagram showing the results of a time-dependent analysis of human CD45-positive cells in mouse bone marrow after transplantation of Fraction A and Fraction C cells.
図 1 1は、 分画 A (CD34陽性 SRC)と分画 C (CD34陰性 SRC)の遊走能力の比較の結果 を示す図である。  FIG. 11 shows the results of a comparison of the migration ability between fraction A (CD34-positive SRC) and fraction C (CD34-negative SRC).
図 1 2八は、臍帯血由来1 —細胞の各種 1 in抗体 (FITC標識)、 CD34抗体 (PE標識)、 及び CD45抗体(PC5標識)による 3重染色後のスキヤッ夕グラムを示し、 Bは、臍帯血 由来 l iiT細胞の各種 l in抗体 (PE標識) , CD34抗体 (PC5標識),及び CD45抗体 (FITC標 識)による 3重染色後のスキヤッタグラムを示す図である。  Figure 12-28 shows the scanogram of cord blood-derived 1-cells after triple staining with various 1-in antibodies (FITC-labeled), CD34 antibody (PE-labeled), and CD45 antibody (PC5-labeled). FIG. 3 is a view showing skutterograms of cord blood-derived liiT cells after triple staining with various lin antibodies (PE labeling), CD34 antibody (PC5 labeling), and CD45 antibody (FITC labeling).
図 1 3は、 限外希釈法による臍帯血由来 l in—LN細胞における CD34negSRCの頻度を 示す図である。 臍帯血に由来する l in—LN細胞の 5, 000、 20, 000、 40, 000個/マウス を 8週齢の NOD/shi- s c idマウスの左脛骨中に IBMI法で移植した。 12週後にマウス を犠牲死させて、骨髄中のヒ卜 CD45陽性細胞の割合を FACSで解析した(0. 1%以上を 陽性と判定)。 CD34negSRCの頻度はポアソン解析により計算した。 図 1 4は、臍帯血由来 CD34陽性 SRCのマウス骨髄中の生着率を示す。 LiifCD34high 細胞を 1250, 5000, 20000, 50000個/マウスで移植し、 12週間後の N0D/SCIDマウス骨 髄中のヒト CD45陽性細胞の割合を FACSで測定した。 図より明らかなように、 5000 個ノマウス以上移植したすべてのマウスで生着が認められた。 しかし、 20000個/ マウス以上移植した場合には、 生着率がブラト一レベルに達することが明らかに なった。 *Pく 0. 02 く 0. 01 FIG. 13 is a diagram showing the frequency of CD34 neg SRC in cord blood-derived lin-LN cells by the ultradilution method. 5,000, 20,000, and 40,000 lin-LN cells / mouse from cord blood were transplanted into the left tibia of an 8-week-old NOD / shi-scid mouse by the IBMI method. After 12 weeks, the mice were sacrificed and the proportion of human CD45-positive cells in the bone marrow was analyzed by FACS (0.1% or more was determined to be positive). The frequency of CD34 neg SRC was calculated by Poisson analysis. FIG. 14 shows the engraftment rate of cord blood-derived CD34-positive SRC in mouse bone marrow. LiifCD34 high cells were transplanted at 1250, 5000, 20000, and 50,000 cells / mouse, and the percentage of human CD45-positive cells in the bone marrow of N0D / SCID mice after 12 weeks was measured by FACS. As is clear from the figure, engraftment was observed in all mice transplanted with 5,000 or more mice. However, it was found that the engraftment rate reached a blat level when more than 20000 cells / mouse were transplanted. * P * 0.02 * 0.01
図 1 5は、 1個の CD34陽性あるいは CD34陰性 SRCの産生する血液細胞数を示す図 である。 図 1 5中、 a ) は CD45陽性細胞数を示し、 b ) は CD34陽性細胞数を示す。 発明を実施するための最良の形態  FIG. 15 is a diagram showing the number of blood cells produced by one CD34-positive or CD34-negative SRC. In FIG. 15, a) shows the number of CD45-positive cells, and b) shows the number of CD34-positive cells. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明を説明するが、 本発明はこれらの実施例により限定 されない。  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
〔実施例 1〕 新規な幹細胞の純化  [Example 1] Purification of new stem cells
本発明の幹細胞は、 満期正常分娩児由来のヒト臍帯血より単離した。  The stem cells of the present invention were isolated from human umbilical cord blood from normal term infants.
臍帯血としては、 臍帯血バンクに提供されたものの移植用に登録されなかった 場合には、 研究用または廃棄処分となる旨の文書によるィンフォームドコンセン トを取った上で、 協力病院において採取されたものを使用した。  If the cord blood was donated to the cord blood bank but was not registered for transplantation, the informed consent was given to the research hospital or to the disposal to dispose of it. The collected one was used.
ヒト臍帯血の採取、 凍結保存および解凍は以下のようにして行った。  Collection, cryopreservation and thawing of human cord blood were performed as follows.
実験に用いた臍帯血は、 すべて満期正常分娩児に由来する。 すなわち、 児娩出 後に臍帯動脈の拍動が停止した後に臍帯を胎児に近い部位で 2ケ所クランプし、 その中間で切断する。 次に、 断端を消毒用のアルコール綿で拭き、 さらにポピド ンョード液にて十分に消毒する。 ポピドンョード液が乾燥してから臍帯静脈を臍 帯血採取用バッグ(ACD入り、 テルモ社製) に付いている 17ゲージ採血針で穿刺し て、 臍帯血を自然落下によりバッグ内に採取する。 採取した臍帯血から liydroxye thyl s tarc (HES、 二プロ)を加えることで赤血球を除去し、 バフィーコ ート細胞を回収する。 この細胞を RPMI 1640培地(Gibco)に浮遊させ、 細胞密度を 2 All cord blood used in the experiments was derived from normal term infants. That is, after the umbilical cord artery stops beating after delivery, the umbilical cord is clamped at two locations near the fetus and cut in between. Next, wipe the stump with alcoholic cotton for disinfection, and further disinfect it with Popidedon's solution. After the popidone odor solution has dried, the umbilical cord vein is punctured with a 17-gauge blood collection needle attached to an umbilical cord blood collection bag (with ACD, manufactured by Terumo Corporation), and the umbilical cord blood is collected by gravity flow into the bag. Red blood cells are removed from the collected cord blood by adding liydroxye thyl starch (HES, Nipro), and buffy coat cells are collected. Suspend the cells in RPMI 1640 medium (Gibco) and increase cell density to 2
〜10 X 107個 /mlに調製する。 25 %ヒト血清アルブミン添加 CP-1 (極東製薬) を等 量加えて氷上で穏やかに混和し、 凍結保存用のバッグに注入する。 プログラムフ リーザ一あるいは簡易凍結法を用いてサンプルの温度を- 80°Cまで下げた後に、液 体窒素中に保存した。 使用時には、 バッグを 37Cの恒温糟中に浸して、 サンプル を急速融解して以下の実験に用いた。 Adjust to ~ 10 x 10 7 / ml. Add an equal volume of CP-1 (Kyokuto Pharmaceutical) with 25% human serum albumin, mix gently on ice, and inject into a cryopreservation bag. After lowering the sample temperature to -80 ° C using a program freezer or the simple freezing method, Stored in body nitrogen. At the time of use, the bag was immersed in a 37C thermostat, and the sample was rapidly thawed and used in the following experiments.
解凍した臍帯血はひ- MEM培地(Gibco)で洗浄後に、適当量の QJ-MEM培地(Gibco) に再浮遊させ、 Ficoll-Paaue (Pharmacia, Piscataway, NJ, USA)比重遠心法 (1500rpm, 30分) を用いて単核細胞 (以下 MNCと略) を分離した。  The thawed cord blood was washed with spike-MEM medium (Gibco), resuspended in an appropriate amount of QJ-MEM medium (Gibco), and centrifuged by Ficoll-Paaue (Pharmacia, Piscataway, NJ, USA) by specific gravity centrifugation (1500 rpm, 30 rpm). ) Was used to separate mononuclear cells (hereinafter abbreviated as MNC).
既報 (Minamiguchi et al, Br J Haematol 110:327, 2000) の如く、 MNCより 9 種類のモノクローナル抗体(CD2, CD3, CD 14, CD16, CD19, CD24, CD56, CD66b, GPA) と免疫磁気ビーズ(StemSep, Stem Cell Technology, Vancouver, BC, Canada)を 用いて、 分化抗原陰性 (以下 liifと略) 細胞を分離した。  As previously reported (Minamiguchi et al, Br J Haematol 110: 327, 2000), nine types of monoclonal antibodies (CD2, CD3, CD14, CD16, CD19, CD24, CD56, CD66b, GPA) and immunomagnetic beads (GPA) were obtained from MNC. StemSep, Stem Cell Technology, Vancouver, BC, Canada) was used to separate differentiation antigen-negative (hereinafter abbreviated as liif) cells.
この lin—細胞を抗ヒト CD2, CD3, CD4, CD7, CD 10, CD14, CD 16, CD19, CD20, CD23, CD24, CD41, CD56, GPA (FIK標識, Coulter, Becton Dickinson, DAK0, Nichirei)と抗ヒト CD34抗体(PE標識, Becton Dickinson) , および抗ヒト CD45抗体 (PC5 標識, I匪 unotecli)で三重染色後、 FACS Vantageを用いてソーティングする ことにより、 lin— CD45lM CD34—細胞を純化した (図 lb の分画 Cの細胞である) 。 免疫染色法は、 既報の方法 (Kimura et al, Blood 90:4767, 1997; Minamiguchi et al, Br J Haematol 110:327, 2000) に従った。 本細胞における CD34、 CM5の発現 レベルの定義については後述する。 本細胞は、 May- Giemsa染色所見では These lin-cells were combined with anti-human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20, CD23, CD24, CD41, CD56, GPA (FIK label, Coulter, Becton Dickinson, DAK0, Nichirei). Purified lin-CD45 lM CD34-cells by triple staining with anti-human CD34 antibody (PE-labeled, Becton Dickinson) and anti-human CD45 antibody (PC5-labeled, I-band unotecli) and sorting using FACS Vantage (Figure lb of fraction C cells). Immunostaining was performed according to a previously reported method (Kimura et al, Blood 90: 4767, 1997; Minamiguchi et al, Br J Haematol 110: 327, 2000). The definition of the expression levels of CD34 and CM5 in this cell will be described later. This cell is based on May- Giemsa staining findings.
完全な芽球様細胞であり、 その純度は〉 98%であった (図 2C参照) 。 May- Giemsa 染色は、 通常の方法に従って行った。すなわち、 May- Grunwald液で 5分間染色後に 水で洗浄し、 5%Giemsa液 (pH6.4リン酸バッファーで調製) で 30分間染色し、 検 鏡と写真撮影を行った。 It was a complete blastoid cell with a purity of> 98% (see Figure 2C). May-Giemsa staining was performed according to the usual method. That is, the cells were stained with May-Grunwald solution for 5 minutes, washed with water, stained with 5% Giemsa solution (prepared with a pH 6.4 phosphate buffer) for 30 minutes, and examined with a microscope and photographs.
臍帯血中に認められる各種造血幹 (前駆) 細胞分画の結果は以下の通りであつ た。  The results of fractionation of various hematopoietic stem (progenitor) cells found in cord blood were as follows.
臍帯血 lin— 細胞を前述したように 14種類の lineage抗体(FITC標識)、 CD34抗体 (PE標識), CD45抗体(PC5標識)で三重染色すると、 図 lbに示すように A〜!)の 4つの 分画に分かれることが明らかになった。分画 Aと Bは、 CD34抗原の発現レベルが各々 high (蛍光強度 max〜15%)、 low (同 10〜1%)であり、 全細胞数に対する比率が約 80%、約 5%である。一方、 CD34抗原陰性(蛍光強度 maxの 0.5%以下)細胞は、 CD45 の発現レベルにより分画 Cと分画 Dに分けられた。 分画 Dと ま、 CD45抗原の発現レ ベルが各々 high (蛍光強度 max〜15%)、 low (同 10〜1%)であり、全細胞数に対する 比率が約 5%、 約 0.5%である。 図 1 b中の細胞の正確な頻度は、 bに示されてい る細胞全体の中で A;79.7%、 B;4.7%、 C;0.5¾, D;5.2%であった。 Umbilical cord blood lin- Cells were triple-stained with 14 lineage antibodies (FITC-labeled), CD34 antibody (PE-labeled), and CD45 antibody (PC5-labeled) as described above. ) Was divided into four fractions. Fractions A and B have high CD34 antigen expression levels (maximum fluorescence intensity ~ 15%) and low expression levels (10-1%), and their ratio to total cell number is about 80% and about 5%, respectively. . On the other hand, cells negative for the CD34 antigen (0.5% or less of the fluorescence intensity max) were divided into fraction C and fraction D according to the expression level of CD45. Fraction D and CD45 antigen expression level The bells are high (fluorescence intensity max ~ 15%) and low (10 ~ 1%), respectively, and the ratio to the total cell number is about 5% and about 0.5%. The exact frequency of cells in FIG. 1b was A; 79.7%, B; 4.7%, C; 0.5%, D; 5.2% of the total cells shown in b.
図 1に臍帯血由来 liiT細胞の FITCで標識した各種 lin抗体、 PEで標識した CD34 抗体、 PC5で標識した CD45抗体による三重染色後のスキヤッタグラム Figure 1 shows the scattergram of cord blood liiT cells after triple staining with FITC-labeled lin antibodies, PE-labeled CD34 antibodies, and PC5-labeled CD45 antibodies.
(scattergram)を示す。図 laはコントロールを、図 1 bは三重染色後のスキヤッタ グラムを示す。 図 1 bには分画 A〜!)のソーティングウィンドウ (sorting window) を示してあるが、 分画 Cの細胞が本発明の liifCD451("CD34—細胞である。 図 2には、 May- Giemsa染色細胞の写真を示す。 図 2 Cが本発明の細胞の写真である。 (scattergram). Figure la shows the control, and Figure 1b shows the scattergram after triple staining. Figure 1b shows fractions A ~! ) Shows the sorting window, and the cells of fraction C are liifCD45 1 ( "CD34-cells" of the present invention. FIG. 2 shows a photograph of May-Giemsa-stained cells. C is a photograph of the cells of the present invention.
May- Giemsa染色による形態学的な所見は、 図 2に示すように分画 A〜Cはいずれ も芽球様(核網は繊細、 数個の核小体が認められ、 核細胞比は大きい)の細胞であ る。 図 2中の A、 Bおよび Cは分画を示す。  The morphological findings by May- Giemsa staining showed that fractions A to C were all blast-like (nuclear network was fine, several nucleoli were observed, and the nucleus cell ratio was large as shown in Fig. 2). ) Cells. A, B and C in FIG. 2 indicate fractions.
〔実施例 2〕 臍帯血 1 in—細胞中の分画 A〜Dの造血前駆細胞コロニー形成能 方法は、 既報 (Sonoda et al, Blood 84:4099, 1994; Kimura et al, Blood [Example 2] Hemopoietic progenitor cell colony forming ability of fractions A to D in cord blood 1 in-cell The method was reported previously (Sonoda et al, Blood 84: 4099, 1994; Kimura et al, Blood
90:4767, 1997)のメチルセルロース法により、刺激因子として至適濃度の SCF、 IL-3、90: 4767, 1997), the optimal concentration of SCF, IL-3,
GM-CSF, G-CSF、 エリスロポエチンを添加し、 図 1に示した分画 A〜!)由来細胞の in vitroにおける造血前駆細胞コロニー形成能を調べた。 分画 Cが本発明の細胞であ る。結果を図 3に示す。図 3は培養細胞 200細胞当たりのコロニー数を示してある。 図 3中、 CFU - GMは colony - forming unit-granulocyte/macrop age ¾ ^ BFU - EはGM-CSF, G-CSF and erythropoietin were added, and the fractions A to A shown in Fig. 1! ) The ability of the derived cells to form hematopoietic progenitor cell colonies in vitro was examined. Fraction C is the cells of the present invention. The results are shown in Figure 3. FIG. 3 shows the number of colonies per 200 cultured cells. In Figure 3, CFU-GM is colony-forming unit-granulocyte / macrop age age ^ BFU-E is
Erythroid burst-forming unitを、 CFU - Mixは mixed colony-forming unitを意味 する。 図 3より明らかなように、 分画 Aおよび Bのコロニー形成率は概ね 50%であ る。 分画 Aには、 顆粒球系前駆細胞(CFU- GM)、 赤芽球系前駆細胞(BFU-E)、 さらに 多能性前駆細胞(CFU - Mix)が認められた。分画 Bはその大半が BFIHEであり、赤血球 系に分化した造血前駆細胞集団であることが示された。図には示さないが、分画 A の細胞からは巨核球系前駆細胞(CFU - Meg)由来のコロニーも認められ、全ての系統 の造血前駆細胞集団が含まれることが示された。 CFU- Meg由来のコロニーの形成は、 既報 (Tanimukai et al, EXP Hematol 25:1025, 1997) の如く 10%ヒト血漿存在下 で至適濃度の TP0を添加した。 一方、 分画 C、 Dからはほとんどコロニー形成を認め なかった。 〔実施例 3〕 liiTCD45lfflCD34—細胞の scid- repopulating cell (SRC)活性 NOD/SM- scidマウス ( (財) 実験動物中央研究所より入手) を用いて、 図 1の 分画 A〜Dの scid- reproducing cell (SRC)活性について検討した。 方法は、 Bhatia らの方法 (NatureMed 4:1038, 1998)に準じて行った。 すなわち、 予め 2.5Gyのァ線 照射を行った 8〜12週令の NOD/Shi_scidマウスを用い、 分画 A、 B、 Dに関しては 2Erythroid burst-forming unit, CFU-Mix means mixed colony-forming unit. As is evident from FIG. 3, the colony formation rates of fractions A and B are approximately 50%. Fraction A contained granulocyte progenitor cells (CFU-GM), erythroid progenitor cells (BFU-E), and pluripotent progenitor cells (CFU-Mix). Fraction B was predominantly BFIHE, indicating a hematopoietic progenitor cell population that had differentiated into the erythroid lineage. Although not shown in the figure, colonies derived from megakaryocytic progenitor cells (CFU-Meg) were also observed in the fraction A cells, indicating that all hematopoietic progenitor cell populations of all lineages were included. For the formation of CFU-Meg-derived colonies, as described previously (Tanimukai et al, EXP Hematol 25: 1025, 1997), the optimal concentration of TP0 was added in the presence of 10% human plasma. On the other hand, fractions C and D showed almost no colony formation. [Example 3] liiTCD45 lffl CD34—scid-repopulating cell (SRC) activity of cells Using NOD / SM-scid mice (obtained from Central Research Institute for Experimental Animals), fractions A to D in FIG. The scid-reaction cell (SRC) activity was examined. The method was performed according to the method of Bhatia et al. (NatureMed 4: 1038, 1998). That is, using NOD / Shi_scid mice of 8 to 12 weeks of age previously irradiated with 2.5 Gy of α-ray, fractions A, B, and D were 2
〜5X104個、 分画 Cに関して 2〜5X103個 (一部のマウスでは最大 2X104個) の細胞 を尾静脈より移植した。 移植 8〜12週間後にマウスを犠牲死させ、 無菌的に 大腿骨、 頸骨、 上腕骨を取り出した。 各々の断端を滅菌クーパーにより切断し、 26ゲージ針を用いて -ΜΕΜ培地(Gibco)を注入することにより骨髄細胞を採取し、 単一細胞懸濁液を調製した。 当該細胞懸濁液をナイロンメッシュに通すことによ り細胞凝集塊や破片を除去し、 2%牛胎児血清(FCS, Hyclone)加 PBS—で洗浄し、 以 下の免疫染色を行った。 方法は既報の方法 (Kimura et al, Blood 90:4767, 1997; Minamiguc i et al, Br J Haematol 110:327, 2000) に従った。 ヒト造血細胞の生 着は、細胞懸濁液を PC5標識抗ヒ卜 CD45抗体で染色後に、全骨髄細胞に R1ゲートを かけてヒト CM5陽性細胞を測定することにより確認した。その結果、表 1に示すよ うに分画 Aに由来する細胞を移植したマウスでは、全例で生着(12/12)がみられ、 その CD45陽性細胞率は 3.0〜82.3% (平均 44%) であった。 一方、 分画 B, C, D 由 来の細胞を移植したマウスではいずれもヒト CD45 陽性細胞の生着は認められな かった。 図 5には、 全骨髄 (脛骨、 大腿骨、 上腕骨) 中のヒト CD45陽性細胞の割 合 (%) を示してある。 図 5中、 白丸が尾静脈より移植した場合 (従来法) の結 果を表し、 黒丸は後述の実施例 5の脛骨骨髄腔内に直接移植した場合の結果を表 す。 また、 図 5中横線は平均生着率を示す。 ~5X10 4 pieces, the cells were transplanted through the tail vein (up to 2X10 4 pieces in some mice) 2~5X10 3 or with respect to fractions C. The mice were sacrificed 8 to 12 weeks after the transplantation, and the femur, tibia and humerus were aseptically removed. Each stump was cut with a sterile Cooper, and bone marrow cells were collected by injecting -ΜΕΜ medium (Gibco) using a 26 gauge needle to prepare a single cell suspension. The cell suspension was passed through a nylon mesh to remove cell aggregates and debris, washed with 2% fetal calf serum (FCS, Hyclone) and PBS-, and subjected to the following immunostaining. The method followed the method already reported (Kimura et al, Blood 90: 4767, 1997; Minamiguci et al, Br J Haematol 110: 327, 2000). Engraftment of human hematopoietic cells was confirmed by staining the cell suspension with a PC5-labeled anti-human CD45 antibody, applying an R1 gate to all bone marrow cells, and measuring human CM5-positive cells. As a result, as shown in Table 1, engraftment (12/12) was observed in all mice transplanted with cells derived from fraction A, and the CD45-positive cell ratio was 3.0 to 82.3% (average 44%). ) Met. On the other hand, no engraftment of human CD45-positive cells was observed in any of the mice transplanted with cells derived from fractions B, C, and D. Figure 5 shows the percentage (%) of human CD45-positive cells in the whole bone marrow (tibia, femur, humerus). In FIG. 5, open circles represent the results when transplantation was performed from the tail vein (conventional method), and solid circles represent the results when transplantation was directly performed into the bone marrow cavity of the tibia in Example 5 described later. The horizontal line in Fig. 5 shows the average engraftment rate.
表 1 , 分画 A〜Dの SRC活性(TVI) Table 1, SRC activity of fractions A to D (TVI)
骨髄中の  In the bone marrow
分画 移植マウス数 生着率 ヒ卜 CD45+  Fractionation Number of transplanted mice Survival rate Human CD45 +
細胞(%)  Cells (%)
A 12 12/12 3.0〜 82.3 A 12 12/12 3.0 ~ 82.3
B 8 0/8 B 8 0/8
C 6 0/6 一 C 6 0/6 one
D 4 0/4 分画 A, B, D 2〜5 X 104 cells/mouse;分画 C, 2-5 X 103 ceIls/mouse;TVI D 4 0/4 Fraction A, B, D 2~5 X 10 4 cells / mouse; fraction C, 2-5 X 10 3 ceIls / mouse; TVI
〔実施例 4〕 臍帯血由来 CD34†/—細胞における各種接着分子等の発現 造血幹細胞の骨髄内 nicheへのホーミングには、 CXCR4などのケモカイン受容体 あるいは各種接着分子が重要な役割を果たしていることが多くの報告により知ら れている (Papayannopoulou et al, Blood 91:2231, 1998; Vermeulen et al, Blood 92:894, 1998; Voermans et al, Exp Heniatol 27:1806, 1999; Zanjani et al, Blood 94:2515, 1999; Peled et al, Science 283:845, 1999; Voermans et al, Stem CellsExample 4 Expression of Various Adhesion Molecules in Cord Blood-Derived CD34 † / — Cells In order for homing of hematopoietic stem cells to niche in bone marrow, chemokine receptors such as CXCR4 or various adhesion molecules play an important role. (Papayannopoulou et al, Blood 91: 2231, 1998; Vermeulen et al, Blood 92: 894, 1998; Voermans et al, Exp Heniatol 27: 1806, 1999; Zanjani et al, Blood 94 : 2515, 1999; Peled et al, Science 283: 845, 1999; Voermans et al, Stem Cells
18:435,2000)。 そこで、 臍帯血由来 CD34V—細胞におけるこれらの分子の発現パ夕 —ンについて詳細な解析を行った。 FITC標識抗ヒト CXCR4, CD31, CD54, CD62L,18: 435,2000). Therefore, detailed analysis was performed on the expression patterns of these molecules in cord blood-derived CD34 V cells. FITC-labeled anti-human CXCR4, CD31, CD54, CD62L,
CD106, CD49d, CD49e, CD62P抗体は、 各々 Coulter/Immimotech, Pharmingen,CD106, CD49d, CD49e, and CD62P antibodies were obtained from Coulter / Immimotech, Pharmingen,
Serotecより購入した。 臍帯血由来の 1 iif細胞を既述の如く、 FITC標識抗 CXCR4あ るいは抗各種接着分子抗体、 抗ヒト CD34抗体(PE標識, Becton Dickinson), およ び抗ヒト CD45抗体(PC5 標識, Immunotech)で三重染色後、 FACS Caliburを用いて 解析した。 Purchased from Serotec. One iif cell derived from umbilical cord blood was treated with FITC-labeled anti-CXCR4 or anti-adhesion molecule antibodies, anti-human CD34 antibody (PE label, Becton Dickinson), and anti-human CD45 antibody (PC5 label, Immunotech ), And analyzed using FACS Calibur.
図 4に結果を示す。 図 4中、 (a)〜(! 1)は、 以下の接着分子を示す。 (a)Rlgate、 (b) R2 gate, (c) controK (d) CXCR4、 (e) CD3L (f) CD54、 (g) CD62Lおよび (h) CD106 である。 図 4に示すように、 CXCR4は CD34陽性細胞の一部に発現が認められるが、 一方 CD34陰性細胞には全く発現が見られなかった。 同様に、 CD31, CD54, CD62L.CD106などの接着分子も CD34陽性細胞に有意な発現を認め、 CD34 陰性細胞 には発現されていないことが明らかになった。一方、 CD49dは CD34陽性細胞に弱く 発現していたが、 CD49e, CD62Pなどは両細胞とも明らかな発現を認めなかった。 以上より、分画 Cに未分化な幹細胞が存在していても、尾静脈よりの移植では骨 髄内の nicheにホーミング出来ない可能性が示唆された。  Figure 4 shows the results. In FIG. 4, (a) to (! 1) show the following adhesion molecules. (A) Rlgate, (b) R2 gate, (c) controK, (d) CXCR4, (e) CD3L, (f) CD54, (g) CD62L and (h) CD106. As shown in FIG. 4, CXCR4 was expressed in some CD34-positive cells, whereas no expression was observed in CD34-negative cells. Similarly, it was found that adhesion molecules such as CD31, CD54, CD62L and CD106 also showed significant expression in CD34-positive cells and were not expressed in CD34-negative cells. On the other hand, CD49d was weakly expressed in CD34-positive cells, but CD49e, CD62P, etc. did not clearly express in both cells. The above results suggest that even if undifferentiated stem cells are present in fraction C, transplantation from the tail vein may not be able to home to niche in the bone marrow.
〔実施例 5〕 NOD/Shi- scidマウス脛骨骨髄腔内直接移植法による CD34陰性 SRC の同定  [Example 5] Identification of CD34-negative SRC by direct transplantation into bone marrow cavity of tibia of NOD / Shi-scid mouse
分画 Cの細胞を直接マウス骨髄腔内へ移植する方法を開発し、以下の移植実験を 行った。  We developed a method to transplant the cells of fraction C directly into the bone marrow cavity of mice, and conducted the following transplantation experiments.
( 1 ) マウス脛骨骨髄腔内直接移植法の開発  (1) Development of mouse tibia bone marrow direct implantation method
ネンブタール麻酔を施した 8〜12週令の NOD/Shi- scidマウス(予め 2.5Gyのァ線 照射済み)を仰臥位で固定し、左膝関節周囲を消毒用アルコールで清拭し、剃毛を 行った。その後、 26G針にて膝蓋骨腱経由に左脛骨を穿刺し、 骨髄液の逆流を確認 した。 次に、 予め準備した滅菌 26G八ミルトン針を用いて の培養液中に調製 した移植細胞(分画 A、 B、 Dに関しては 2〜5 X 104個、 分画 Cに関して 2〜5 X 103個、 最大 2 X 104側を脛骨骨髄腔内に直接注入した。穿刺部位はポピドンョ一ド液にて 十分に消毒した。 移植 12週間後に実施例 3に記載の方法で脛骨、 大腿骨、 上腕骨 骨髄中のヒト CD45陽性細胞の比率を測定した。 An 8- to 12-week-old NOD / Shi-scid mouse anesthetized with Nembutal anesthesia (pre-irradiated with 2.5 Gy of A-ray) was fixed in a supine position, and the left knee joint was cleaned with rubbing alcohol and shaved. went. Thereafter, the left tibia was punctured through the patella tendon with a 26G needle, and the reflux of bone marrow fluid was confirmed. Next, transplanted cells (2-5 × 10 4 for fractions A, B, and D, 2-5 × 10 4 for fraction C) prepared in a culture medium using a sterile 26G 8-milton needle prepared in advance. 3, the tibia up to 2 X 10 4 side was injected directly into the tibia bone marrow cavity. puncture site was thoroughly disinfected at Popidonyo one de solution. the method described in example 3 after transplantation 12 weeks, femur, The proportion of human CD45-positive cells in the humeral bone marrow was determined.
( 2 ) 移植成績  (2) Transplant results
実施例 3の尾静脈より移植した場合は、図 5に示すように分画 Aのみが全例生着 (平均生着率 44. 0%) したが、 分画 Cの移植では全例生着しなかった。  In the case of transplantation from the tail vein of Example 3, only fraction A engrafted in all cases (average engraftment rate: 44.0%) as shown in Fig. Did not.
一方、 脛骨骨髄腔内直接移植法を用いると、 分画 Aは同様に全例生着(平均生着 率 54. 9%)したが、 分画 Cの細胞を移植した 7匹のマウス全例においても生着(生着 率範囲 4〜52. 6%、 平均生着率 24. 4%)が認められた (図 5 ) 。  On the other hand, when the tibial bone marrow direct transplantation method was used, fraction A engrafted in all cases (average engraftment rate: 54.9%), but all seven mice transplanted with fraction C cells Also, engraftment (survival rate range 4 to 52.6%, average engraftment rate 24.4%) was observed (Fig. 5).
以上の結果より、 分画 (;、 すなわちヒト臍帯血由来の l iiTCD45lMCD34—細胞中に NOD/Shi- scidマウスにおいてヒトの造血を再構築する未分化幹細胞の存在が初め て直接的に証明された。 The above results directly demonstrate, for the first time, the presence of undifferentiated stem cells that reconstitute human hematopoiesis in NOD / Shi-scid mice in liiTCD45 lM CD34— cells from human cord blood Was done.
従来の唯一の報告(Bhat ia et al, Nature Med 4 : 1038, 1998)では、 臍帯血由来 の l in CD34—細胞の 1 X 105個以上を尾静脈より移植し、 その生着率も大半が 0. 1〜 1%という低率であった。彼らの報告ではヒト CD45陽性細胞の測定時にマウス骨髄 細胞のリンパ球ウィンドウに R1ゲートをかけており、 本実施例の方法 (全骨髄細 胞に R1ゲート)によればその生着率は 0. 1 %以下の低率となる。さらに移植細胞数 と生着率との間に量反応関係も認められないなどその信頼性は低いものと推測さ れた。 Conventional only report (Bhat ia et al, Nature Med 4: 1038, 1998) in a 1 X 10 5 or more of l in CD34- cells derived from umbilical cord blood were transplanted from the tail vein, also the survival rate of the majority Was as low as 0.1-1%. According to their report, R1 gate was applied to the lymphocyte window of mouse bone marrow cells when measuring human CD45-positive cells, and the engraftment rate was 0 according to the method of this example (R1 gate for all bone marrow cells). Low rate of 1% or less. Furthermore, there was no dose-response relationship between the number of transplanted cells and the engraftment rate, indicating that the reliability was low.
そこで、 この未分化幹細胞を CD34陰性 SRCと命名した。  Therefore, this undifferentiated stem cell was named CD34 negative SRC.
〔実施例 6〕 CD34陰性 SRCの多分化能、 CD34陽性 SRCとの比較検討  [Example 6] Pluripotency of CD34 negative SRC, comparative study with CD34 positive SRC
本発明の細胞と従来から知られていた CD34陽性 SRCとの幹細胞特性の違いにつ いて詳細な検討を行った。  A detailed study was made on the difference in stem cell characteristics between the cell of the present invention and a conventionally known CD34-positive SRC.
CD34陰性 SRCの多分化能を明らかにするために、マウス骨髄内に生着したヒト造 血細胞の多血球系統解析を行ない、 CD34陽性 SRCと比較検討した。 方法は、 基本的 に実施例 3で述べた免疫染色法と同様である。 マウス全骨髄 (大腿骨、 脛骨、 上 腕骨)より採取した細胞を抗ヒト CD45抗体(PC5標識、 Immunotech)、抗ヒト CD34 (PE 標識、 Becton Dickinson) , さらに FITC標識抗ヒト CD3, CD 19, CD 14, CD33, CD41, および Glycophorine A (GPA) (eBiosc ience, Coul ter, Nichirei, Becton Dickinson, DAKO) で三重染色し、 FACS Cal iburを用いて測定した。 解析は、 マウスの全骨髄 細胞に R1ゲートをかけてこの中に含まれるヒト CD45陽性細胞を算定した。さらに、 この CD45陽性細胞中の CD34, CD3, CD19, CD14, CD33, CD41陽性細胞の割合を測定 した。 GPA陽性細胞については、 全骨髄細胞(R1ゲート)中の割合を測定した。 To clarify the pluripotency of CD34-negative SRC, multilineage analysis of human hematopoietic cells engrafted in mouse bone marrow was performed and compared with CD34-positive SRC. The method is basically the same as the immunostaining method described in Example 3. Mouse whole bone marrow (femur, tibia, upper Cells collected from the humerus) were analyzed using anti-human CD45 antibody (PC5 label, Immunotech), anti-human CD34 (PE label, Becton Dickinson), and FITC-labeled anti-human CD3, CD19, CD14, CD33, CD41, and Glycophorine A ( (GPA) (eBioscience, Coulter, Nichirei, Becton Dickinson, DAKO) was triple-stained and measured using a FACS Cal ibur. For analysis, all bone marrow cells of mice were subjected to R1 gate and human CD45-positive cells contained therein were counted. Furthermore, the ratio of CD34, CD3, CD19, CD14, CD33, CD41 positive cells in the CD45 positive cells was measured. For GPA-positive cells, the percentage of total bone marrow cells (R1 gate) was measured.
図 6に分画 A (CD34陽性 SRC)の多血球系統解析の結果を示す。 図 6には、 CD45陽 性細胞中の CD3、 CD19、 CD14、 CD33、 CD41の発現率と全細胞中の GPA陽性細胞の割 合を示してある。 このマウスの骨髄細胞中のヒト CD45陽性細胞の比率は 80. 1 %で あり、 15. 6%は CD34陽性細胞で占められていた。 分化マーカー別にみると、 CD19 陽性の B細胞が 49. 1 %と最も多く認められた。 この他、 CD14、 CD33, CD41、 GPA陽 性細胞も認められ、 CD34陽性 SRCの多分化能(Bリンパ球、骨髄球、単球、 巨核球、 赤血球系への分化能) が確認された。  Figure 6 shows the results of multi-blood cell lineage analysis of fraction A (CD34-positive SRC). FIG. 6 shows the expression rates of CD3, CD19, CD14, CD33, and CD41 in CD45-positive cells and the percentage of GPA-positive cells in all cells. The ratio of human CD45-positive cells in the bone marrow cells of this mouse was 80.1%, and 15.6% was occupied by CD34-positive cells. By differentiation marker, CD19-positive B cells were the most common at 49.1%. In addition, CD14, CD33, CD41, and GPA positive cells were also observed, confirming the pluripotency of CD34-positive SRCs (potential for differentiation into B lymphocytes, myeloid cells, monocytes, megakaryocytes, and erythroid cells).
次に、 図 7に分画 C (CD34陰性 SRC)の多血球系統解析の結果を示す。 図 7には、 図 6と同様に CD45陽性細胞中の CD3、 CD19、 CD14、 CD33、 CD41の発現率と全細胞中 の GPA陽性細胞の割合を示してある。このマウスの骨髄細胞中のヒト CD45陽性細胞 の比率は 52. 6%であり、 6. 7%は CD34陽性細胞で占められていた。分化マ一カー別 にみると、 CD19陽性の B細胞が 23. 8%と最も多く認められた。この他、 CD14、 CD33, CD4L GPA陽性細胞も認められ、 CD34陽性 SRCと同様に多分化能を示すことが確認 された。 しかし、 いずれの場合にも CD3陽性の T細胞は認められなかった。すなわ ち、 CD34陰性細胞分画を移植することで、 CD34陽性細胞が出現した。このことは、 CD34陰性 SRCは、 CD34陽性 SRCに比べてより未分化な幹細胞であることを示してい る。  Next, FIG. 7 shows the results of multi-cell lineage analysis of fraction C (CD34-negative SRC). FIG. 7 shows the expression rates of CD3, CD19, CD14, CD33, and CD41 in CD45-positive cells and the proportion of GPA-positive cells in all cells, as in FIG. The proportion of human CD45-positive cells in the bone marrow cells of this mouse was 52.6%, and 6.7% was occupied by CD34-positive cells. Looking at the differentiation markers, the most common CD19-positive B cells were 23.8%. In addition, CD14, CD33, and CD4L GPA-positive cells were also observed, confirming that they exhibited pluripotency similarly to CD34-positive SRC. However, no CD3-positive T cells were found in any case. In other words, CD34-positive cells appeared by transplanting the CD34-negative cell fraction. This indicates that the CD34-negative SRC is a more undifferentiated stem cell than the CD34-positive SRC.
複数のマウスにおける CD34陰性 SRCと CD34陽性 SRCの多血球系統解析の結果を比 較したものが図 8である。 図 8中、 分画 Aの細胞は斜線カラムで、 分画 Cの細胞は 黒塗りカラムで示してある。 CD34、 CD19、 CD33、 CD14、 CD41は各々 CM5陽性細胞 中の比率、 GPAは全細胞中の比率で示してある Pく 0. 05、 **Pく 0. 02、 *«P〈0. 01)。  Figure 8 compares the results of multi-blood cell lineage analysis of CD34-negative SRC and CD34-positive SRC in multiple mice. In FIG. 8, the cells of fraction A are indicated by hatched columns, and the cells of fraction C are indicated by black columns. CD34, CD19, CD33, CD14, and CD41 are shown as percentages in CM5 positive cells, and GPA is shown as a percentage in all cells. P = 0.05, ** P = 0.02, * «P <0.01 ).
CD34陽性細胞の比率は両者間で差がなく、 一方、 CD19、 CD33、 CD14および GPA 陽性細胞の比率は、 CD34陽性 SRCの方が有意に高い値を示した。 The proportion of CD34-positive cells did not differ between the two, while CD19, CD33, CD14 and GPA The ratio of the positive cells was significantly higher in the CD34-positive SRC.
以上の結果より、移植後 12週間でみると CD34陽性 SRCの方が分化した血球細胞を より多く供給できることが示された。このことは換言すると CD34陰性 SRCの方がよ り未分化な幹細胞であることを示唆している。  These results indicate that 12 weeks after transplantation, CD34-positive SRC can supply more differentiated blood cells. This in turn suggests that the CD34-negative SRC is a more undifferentiated stem cell.
〔実施例 7〕 胸腺等における Tリンパ球系細胞への分化能力  [Example 7] Differentiation ability to T lymphocyte cells in thymus etc.
マウス骨髄中では T細胞への分化は認められなかった。 そこで胸腺、 脾臓、 肝 臓における Tリンパ球系細胞への分化能力について検討した。 方法は、 各臓器よ りピンセッ卜とメスを用いて単一細胞懸濁液を作製し、 ナイロンメッシュを通し た後に、 PC5標識抗ヒト CM5抗体(I丽 imotech)、 FITC標識抗ヒト CD3 (Coul ter)、 PE 標識抗ヒ h CD4 (Coul ter) , さらに PE標識抗ヒト CD56 (Nicliire i)で 2重染色し、 FACS Cal iburで解析した。  No differentiation into T cells was observed in mouse bone marrow. Thus, the ability of the thymus, spleen, and liver to differentiate into T lymphocyte cells was examined. A single cell suspension was prepared from each organ using tweezers and a scalpel. After passing through a nylon mesh, PC5-labeled anti-human CM5 antibody (I 丽 imotech) and FITC-labeled anti-human CD3 (Coul ter), PE-labeled anti-human hCD4 (Coul ter), and PE-labeled anti-human CD56 (Nicliire i) were double-stained and analyzed by FACS Cal ibur.
図 9に結果を示す。 図 9中、 aは胸腺中の CD3陽性細胞、 bは脾臓中の CD4陽性細 胞、 cは肝臓中の CD56陽性細胞を示す。 図 9に示すように、 CD34陽性 SRCを移植し た場合には、 胸腺において CD3陽性細胞、 脾臓において CD4陽性細胞、 さらに肝臓 において CD56陽性細胞が認められた。 このことから、 CD34陽性 SRCが T細胞系への 分化能力を保持していると考えられた。  Figure 9 shows the results. In FIG. 9, a shows CD3-positive cells in the thymus, b shows CD4-positive cells in the spleen, and c shows CD56-positive cells in the liver. As shown in FIG. 9, when CD34-positive SRC was transplanted, CD3-positive cells were found in the thymus, CD4-positive cells in the spleen, and CD56-positive cells in the liver. This suggests that CD34-positive SRCs retain the ability to differentiate into T cell lines.
一方、 CD34陰性 SRCを移植した場合には、移植後 12週の時点ではこれらの細胞の 出現はほとんど認められなかった。 この結果は、 本発明の細胞が CD34陽性細胞よ りも未分化なためより深い細胞静止状態にあり、 移植後も各血球に分化するのに 時間を要することを示唆している。  On the other hand, when CD34-negative SRC was transplanted, these cells hardly appeared at 12 weeks after transplantation. This result suggests that the cells of the present invention are more undifferentiated than CD34-positive cells and are in a deeper cell quiescent state, and it takes time to differentiate into each blood cell even after transplantation.
肝臓、 脾臓における生着率と分化能の検討の結果は以下の通りであった。  The results of the examination of the survival rate and differentiation potential in the liver and spleen were as follows.
CD34陽性 SRCの肝臓、脾臓における生着率は各々 10. 3%, 51. 4%であり、主に CD10、 CD19陽性の B細胞系への分化細胞が認められた。 一方、 CD34陰性 SRCの肝臓、 脾臓 における生着率は各々 2. 1 %、 6. 3 %であり、 同様に CD10、 CD19陽性の B細胞系への 分化細胞が主に認められた。  The engraftment rates of CD34-positive SRC in the liver and spleen were 10.3% and 51.4%, respectively, and mainly differentiated cells into CD10 and CD19-positive B cell lines were observed. On the other hand, the engraftment rates of CD34-negative SRC in the liver and spleen were 2.1% and 6.3%, respectively, and similarly, CD10- and CD19-positive differentiated B-cell lines were mainly observed.
〔実施例 8〕 CD34陰性 SRCの階級制(Hierarchy)についての解析  [Example 8] Analysis on CD34-negative SRC hierarchy (Hierarchy)
( 1 ) 経時的な骨髄再構築能の解析  (1) Analysis of bone marrow remodeling ability over time
CD34陰性 SRCの分化段階について、 CD34陽性 SRCと比較検討した。 分画 A (5 X 104 個)および分画 C (5 X 103個)の細胞を脛骨骨髄腔内直接移植法を用いて移植し、 5、 8、 12週間後に経時的に骨髄におけるヒト CD45陽性細胞の比率を測定した。方法は、 既に述べた方法と同様であり、各解析時点で 3匹のマウスを解析してその平均値を 示した。 The differentiation stage of CD34-negative SRC was compared with that of CD34-positive SRC. The cells of the fraction A (5 × 10 4 ) and the fraction C (5 × 10 3 ) were transplanted using a direct transplantation method into the medullary cavity of the tibia. After 8 and 12 weeks, the ratio of human CD45-positive cells in the bone marrow was measured over time. The method was the same as that described above. At each time point, three mice were analyzed and the average value was shown.
結果を図 1 0に示す。 図 1 0中、 黒丸は分画 Aの結果を、 白丸は分画 Cの結果を 示す。 図 1 0に示すように、 移植 5週間後には両分画ともに生着が確認(分画 A〉分 画 C)された。 8週間後では、 CD34陽性 SRCによる生着率が高くなり、 CD34陰性 SRC による骨髄再構築は遅れて起こることが明らかになった。このことは CD34陽性 SRC の方がより分化した幹細胞であり、 CD34陰性 SRCはより深い細胞静止状態にあるこ とを示唆している。  The results are shown in FIG. In FIG. 10, black circles show the results of fraction A, and white circles show the results of fraction C. As shown in FIG. 10, engraftment of both fractions was confirmed 5 weeks after transplantation (fraction A> fraction C). At eight weeks, CD34-positive SRCs had a higher engraftment rate and revealed that bone marrow remodeling with CD34-negative SRCs was delayed. This suggests that the CD34-positive SRC is a more differentiated stem cell and that the CD34-negative SRC is in a deeper cell quiescence.
( 2 ) 幹細胞の遊走能力の解析  (2) Analysis of stem cell migration ability
未分化な幹細胞はより高い遊走能力を示すことが知られている(Nagasawa et al, Nature 382 : 635, 1996 ; MaQ et al, PNAS 95 : 9448, 1998 ; Zou et al, Nature 393 : 595, 1998 ; Peled et al, Science 283 : 845, 1999 ; Voermans et al, Exp Hematol 27 : 1806, 1999)。 そこで CD34陽性および陰性 SRCの遊走能力を in vivoで比較した。 方法は、 前項目と同様に分画 Aおよび分画 Cの細胞を脛骨骨髄腔内直接移植法を用 いて移植し、 12週間後に骨髄におけるヒト CD45陽性細胞の比率を測定した。 その 際に、移植細胞を注入した左脛骨骨髄中の CD34陽性細胞の比率と回収細胞数から、 増殖分化した CD34陽性細胞の絶対数を計算した(A)。 さらに直接注入し  Undifferentiated stem cells are known to show higher migration ability (Nagasawa et al, Nature 382: 635, 1996; MaQ et al, PNAS 95: 9448, 1998; Zou et al, Nature 393: 595, 1998) Peled et al, Science 283: 845, 1999; Voermans et al, Exp Hematol 27: 1806, 1999). Therefore, the migration ability of CD34-positive and negative SRCs was compared in vivo. In the same manner as described above, the cells of the fraction A and the fraction C were transplanted using the direct transplantation method into the bone marrow cavity of the tibia, and the ratio of human CD45-positive cells in the bone marrow was measured 12 weeks later. At that time, the absolute number of proliferating and differentiated CD34-positive cells was calculated from the ratio of CD34-positive cells in the bone marrow of the left tibia to which the transplanted cells were injected and the number of recovered cells (A). Inject further directly
た左脛骨の他に、 右脛骨、 両側の大腿骨と上腕骨について同様の検討を行い、 増 殖分化した CD34陽性細胞の絶対数を計算した(B)。分画 Aあるいは分画 Cの細胞を直 接注入した左脛骨以外の骨髄において生成された CD34陽性細胞は、 注入部位より 遊走した SRCに由来すると考えられる。 そこで B/Aを migrat ion index (MI)として 両分画に由来する SRCの遊走能力を比較した。 In addition to the left tibia, the same study was performed on the right tibia, the femurs on both sides, and the humerus, and the absolute number of expanded and differentiated CD34-positive cells was calculated (B). CD34-positive cells generated in the bone marrow other than the left tibia directly injected with cells of fraction A or fraction C are considered to be derived from SRC that migrated from the injection site. Thus, the migration ability of SRCs derived from both fractions was compared using B / A as the migration index (MI).
図 1 1に代表的な FACS解析結果を示す。図 1 1において、分画 Aを直接移植した 左脛骨骨髄中の CD34陽性細胞の比率は 6. 43%であり、 その他の骨髄中の CD34陽性 細胞の比率は 1. 13%である。 各々の細胞数をかけて CD34陽性細胞の絶対数を計算 すると左脛骨中で 19. 3 X 104偭、 その他の骨髄中で 33· 5 X 104個となり、 Mlは 33. 5/19. 3=1. 74となる。 Figure 11 shows the typical FACS analysis results. In FIG. 11, the proportion of CD34-positive cells in the bone marrow of the left tibia to which fraction A was directly transplanted was 6.43%, and the proportion of CD34-positive cells in the other bone marrow was 1.13%. Absolute number calculation result in the left tibia 19. 3 X 10 4偭of CD34 positive cells multiplied by the respective number of cells, other in the bone marrow becomes 33 · 5 X 10 4 cells, Ml is 33. 5/19. 3 = 1.74.
一方、分画 Cを直接移植した左脛骨骨髄中の CD34陽性細胞の比率は 0. 14%であり、 その他の骨髄中の CD34陽性細胞の比率は 1. 73 %である。 各々の細胞数をかけて CD34陽性細胞の絶対数を計算すると左脛骨中で 0. 13 X 104個、 その他の骨髄中で 30. 8 X 104個となり、 Mlは 30. 8/0. 13=236. 9となる。 On the other hand, the proportion of CD34-positive cells in the bone marrow of the left tibia directly transplanted with fraction C was 0.14%, The percentage of CD34-positive cells in other bone marrow is 1.73%. 0. 13 X 10 4 cells Calculating the absolute number in the left tibia of each cell number over CD34-positive cells, other in the bone marrow 30. becomes 8 X 10 4 cells, Ml is 30. 8/0. 13 = 236.9.
分画 Aの Mlは 1. 7〜41. 7 (中央値 7. 9)であり、 分画 Cの Mlは 23. 7〜236. 9 (中央値 70. 7)であった。 中央値の比(C/A)を取ると、 9となり、 分画 Cすなわち、 CD34陰性 SRCの方が格段に高い遊走能力を示すといえる。  The Ml of fraction A was 1.7-41.7 (median 7.9) and the Ml of fraction C was 23.7-236.9 (median 70.7). Taking the median ratio (C / A) as 9, it can be said that fraction C, that is, the CD34-negative SRC has much higher migration ability.
まとめると、 Mlを比較した場合、 CD34陽性 SRCで 1. 7〜44. 7 (中央値 7. 9)、 一方、 CD34陰性 SRCでは 23. 7〜236. 9 (中央値 70. 7)と中央値で約 9倍に達した。この結果は、 CD34陰性 SRCの遊走能力が、 CD34陽性 SRCに比べて非常に高いことを示している。 これらの結果は、 CD34陰性 SRCは、 CD34陽性 SRCに比べてより未分化な幹細胞であ ることを示している。  In summary, when comparing Ml, the CD34-positive SRC was 1.7 to 44.7 (median 7.9), while the CD34-negative SRC was 23.7 to 236.9 (median 70.7), median The value reached about 9 times. This result indicates that the migration ability of the CD34 negative SRC is much higher than that of the CD34 positive SRC. These results indicate that CD34-negative SRCs are more undifferentiated stem cells than CD34-positive SRCs.
〔実施例 9〕 改良された方法による新規な幹細胞の純化  [Example 9] Purification of novel stem cells by an improved method
幹細胞は、 満期正常分娩児由来のヒト臍帯血より単離した。  Stem cells were isolated from human cord blood from normal term infants.
臍帯血としては、 臍帯血バンクに提供されたものの移植用に登録されなかった 場合には、 研究用または廃棄処分となる旨の文書によるィンフォームドコンセン トを取った上で、 協力病院において採取されたものを使用した。  If the cord blood was donated to the cord blood bank but was not registered for transplantation, the informed consent was given to the research hospital or to the disposal to dispose of it. The collected one was used.
ヒ卜臍帯血の採取、 凍結保存および解凍は実施例 1と同様の方法で行った。 解凍した臍帯血は α - MEM培地(Gibco)で洗浄後に、適当量のひ -MEM培地(Gibco) に再浮遊させ、 Ficol l-Paaue (Pharmac ia, P iscataway, NJ, USA)比重遠心法 ( 1500rpm, 30分) を用いて単核細胞 (以下丽 Cと略) を分離した。  Collection, cryopreservation and thawing of human cord blood were performed in the same manner as in Example 1. The thawed cord blood was washed with α-MEM medium (Gibco), resuspended in an appropriate amount of spike-MEM medium (Gibco), and centrifuged by Ficoll-Paaue (Pharmacia, Piscataway, NJ, USA). Mononuclear cells (hereinafter abbreviated as ΔC) were separated using 1500 rpm for 30 minutes.
既報 (Minamiguchi et al, Br J Haematol 110 : 327, 2000) の如く、 MNCより 9 種類のモノクローナル抗体(CD2, CD3, CD14, CD16, CD19, CD24, CD56, CD66b, GPA) と免疫磁気ビーズ(StemSep, Stem Cel l Technology, Vancouver, BC, Canada)を 用いて、 分化抗原陰性 (以下 l iifと略) 細胞を分離した。  As previously reported (Minamiguchi et al, Br J Haematol 110: 327, 2000), nine types of monoclonal antibodies (CD2, CD3, CD14, CD16, CD19, CD24, CD56, CD66b, GPA) and immunomagnetic beads (StemSep , Stem Cell Technology, Vancouver, BC, Canada) was used to separate differentiation antigen-negative (hereinafter abbreviated as liif) cells.
この l in—細胞を 13種類の PEで標識した抗ヒト CD2, CD3, CD4, CD7, CD10, CD 14, CD 16, CD 19, CD20, CD24, CD41, CD56, GPA モノクローナル抗体(Coul ter, Becton Dickinson, DAK0, Niclii re i)と抗ヒト CD34モノクローナル抗体(PC5標識, Bec ton Dickinson) , および抗ヒト CD45モノクローナル抗体(FITC 標識, I匪 unotech)で 三重染色後、 FACS Vantageを用いてソ一ティングすることにより、 l iifCD45lM CD34" 細胞 (l iif LN) を純化した。 Anti-human CD2, CD3, CD4, CD7, CD10, CD14, CD16, CD19, CD20, CD24, CD41, CD56, GPA monoclonal antibodies (Coulter, Becton) After triple staining with Dickinson, DAK0, Niclii re i), anti-human CD34 monoclonal antibody (PC5 label, Becton Dickinson), and anti-human CD45 monoclonal antibody (FITC label, I-band unotech), sorting using FACS Vantage By doing liifCD45 lM CD34 " Cells (liif LN) were purified.
図 1 2に臍帯血由来 l iif細胞の PEで標識した各種 l in抗体、 PC5で標識した CD34 抗体、 FITCで標識した CD45抗体による三重染色後のスキヤッ夕グラム (scat tergram)を示す。 図 1 2中 aで示すスキヤッ夕グラムは L in—細胞のゲート (R2)を、 図 1 2中 bで示すスキヤッタグラムは三重染色後の L iiTCD34high (R3ゲー ト) 、 1^11 ;1)34 (R4ゲート) 、 および L iiTCD34— (R5ゲート) を示す。 図 1 2中!) において一番下のソーティングウィンドウ (R5) 中に本発明の L iirCD45 l()WCD34一細 胞が含まれている。 FIG. 12 shows scat tergrams of cord blood-derived liif cells after triple staining with various lin antibodies labeled with PE, CD34 antibody labeled with PC5, and CD45 antibody labeled with FITC. The scattergram shown as a in FIG. 12a is the gate of Rin-cell (R2), and the scattergram shown as b in FIG. 12 is LiiTCD34 high (R3 gate) after triple staining, 1 ^ 11; 1) 34 (R4 gate) and LiiTCD34— (R5 gate) are shown. In FIG. 12!), The lowest sorting window (R5) contains the LiirCD45 l () W CD34 cell of the present invention.
本実施例の改良法による純化度(実施例 1に記載の方法との比較) Purification degree by the improved method of this example (comparison with the method described in Example 1)
本 3重染色によって得られる蛍光強度は、分化抗原を染色した PEで最大約 2, 000 チャネル(図 1 2 B-a)であり、実施例 1に示す FITCの場合の最大 200チャネル(図 1 2 A-a)に比べて約 10倍の感度であった。一方、 PC5で染色した CD34と FITCで染色し た CD45の最大蛍光レベルは、各々 , 000および 1, 000チヤネルであり、従来法とほぼ 同等の蛍光強度を示した(図 1 2 A-b, B-b)。以上の結果より、 1)本改良法によつて 従来法では除去出来なかった分化抗原を弱く発現している細胞を除外することが 可能になり > 2)目的とする l in—LN細胞を CD34および CD45抗原の発現強度に関して はほぼ同質の細胞として純化することが可能になった。  The fluorescence intensity obtained by this triple staining is a maximum of about 2,000 channels (Fig. 12 Ba) in PE stained with the differentiation antigen, and a maximum of 200 channels (Fig. 12 Aa in the case of FITC shown in Example 1). ) Was about 10 times as sensitive. On the other hand, the maximum fluorescence levels of CD34 stained with PC5 and CD45 stained with FITC were 000 and 1,000 channels, respectively, showing almost the same fluorescence intensity as the conventional method (Fig. 12 Ab, Bb) . From the above results, 1) This improved method makes it possible to exclude cells that express weakly the differentiation antigen that could not be removed by the conventional method.> 2) The target l in-LN cells were converted to CD34. As for the expression intensity of CD45 antigen, it became possible to purify the cells as cells of almost the same quality.
実施例 1に記載の方法では、 免疫磁気ビーズ法で回収した l in—細胞中の CD34陰 性細胞分画の 20〜 40%が FACS Van t ageを用いてゾーティングする際に 1 in— CD34一細 胞分画として回収されていた(図 1 2 A- a)。一方、 PE標識抗体を用いる本実施例の 改良法では、免疫磁気ビーズ法で回収した l iif細胞中の CD34陰性細胞分画の約 2 % が FACS Vant ageを用いてソーティングする際に i in— CD341田胞分画として回収され た(図 1 2 B-a)  In the method described in Example 1, 20 to 40% of the CD34-negative cell fraction in lin-cells collected by the immunomagnetic bead method was reduced to 1 in-CD34 when zoning using FACS Vantage. It was recovered as a single cell fraction (Figure 12A-a). On the other hand, in the improved method of this example using a PE-labeled antibody, about 2% of the CD34-negative cell fraction in the lif cells collected by the immunomagnetic bead method was used when sorting using FACS Vant age. Collected as CD341 spore fraction (Fig. 12 Ba)
以上より、実施例 1に記載の方法に比べて標的細胞の 10〜20倍の濃縮が可能に なったといえる。  From the above, it can be said that target cells can be concentrated 10 to 20 times as compared with the method described in Example 1.
次に、 実施例 1に記載の方法で得られた l in— CD34— LN細胞における CD34陰性 SRC Next, CD34-negative SRC in lin-CD34-LN cells obtained by the method described in Example 1.
(CD34ae8S C) の頻度を測定した。臍帯血に由来する l in—LN細胞の 5, 000、 20, 000、 40, 000個/マウスを 8週齢の NOD/shi- sc idマウスの左脛骨中に IBMI法で移植した。 (CD34 ae8 SC) frequency was measured. 5,000, 20,000, and 40,000 l-LN cells / mouse from cord blood were transplanted into the left tibia of an 8-week-old NOD / shi-scid mouse by the IBMI method.
12週後にマウスを犠牲死させて、骨髄中のヒト CD45陽性細胞の割合を FACSで解析 した(0. 1%以上を陽性と判定した)。 CD34negSRCの頻度はポアソン解析により計算し た。限外希釈実験により 1/24, 100 (図 1 3 )と計算された。従って、本改良法を用い ることにより、 CD34negSRCの頻度は約 1/1, 200〜2, 400に上昇するものと推測され る。 After 12 weeks, mice are sacrificed and the percentage of human CD45-positive cells in bone marrow analyzed by FACS (0.1% or more was determined to be positive). The frequency of CD34 neg SRC was calculated by Poisson analysis. It was calculated to be 1 / 24,100 (Figure 13) by the ultra dilution experiment. Therefore, it is estimated that the frequency of CD34 neg SRC will increase to about 1/1, 200 to 2,400 by using this improved method.
CD34negSRCをより多く含む(純度の高い)細胞集団を回収することは、本細胞の生 物学的な特性のさらなる解明に有用であるだけでなく、本細胞に特異的に発現し ているマーカー遺伝子の探索にとって極めて有利であると考えられる。 Recovering a cell population that is richer in CD34 neg SRC (higher purity) is not only useful for further elucidation of the biological characteristics of this cell, but also specifically expressed in this cell. It is considered to be extremely advantageous for searching for a marker gene.
〔実施例 1 0〕 本発明の未分化幹細胞の未分化性に関する検討  [Example 10] Examination on undifferentiation of undifferentiated stem cells of the present invention
上記実施例に示すように、 本発明の CD34陰性幹細胞は 1 ) N0D/SCIDマウスに移 植後の増殖状態が CD34陽性 SRCに比べて緩除であることから、より深い細胞静止状 態にあると推測される、 2 ) in vi t roおよび in vivoで CD34陽性 SRCを産生する、 そして 3 )移植した左脛骨より他の骨への遊走能力が CD34陽性 SRCに比べて有意に 高い。 これらは本発明の CD34陰性幹細胞の未分化性を示していた。 本発明の CD34 陰性幹細胞の未分化性についてさらに検討を行った。  As shown in the above examples, the CD34-negative stem cells of the present invention are 1) in a deeper cell quiescent state because the proliferation state after transplantation into N0D / SCID mice is slower than that of CD34-positive SRC. 2) Produces CD34-positive SRC in vitro and in vivo, and 3) The migration ability to other bones from the transplanted left tibia is significantly higher than that of CD34-positive SRC. These indicated that the CD34-negative stem cells of the present invention were undifferentiated. The undifferentiated nature of the CD34-negative stem cells of the present invention was further examined.
ヒト臍帯血に由来する 5xl03個の L in— CD34highあるいは 5xl04個の UITCD34—細胞を 8〜12週齢の雌 N0D/Shi_sc idマウスの左脛骨に IBMI法で移植し、 12週間後にマウス を犠牲死させて解析を行った。 左脛骨とその他の骨の骨髄を別々に採取して、 抗 ヒト CD45, CD34モノクローナル抗体で染色後に FACSで各々の陽性率を測定した。 回収した骨髄生細胞数より各々の細胞の絶対数を計算した。 5xl0 3 Lin-CD34 high or 5xl0 4 UITCD34- cells derived from human umbilical cord blood were transplanted into the left tibia of a female N0D / Shi_scid mouse of 8 to 12 weeks by the IBMI method. Were sacrificed and analyzed. The bone marrow of the left tibia and other bones were separately collected, and after staining with anti-human CD45 and CD34 monoclonal antibodies, the positive rate of each was measured by FACS. The absolute number of each cell was calculated from the number of living bone marrow cells collected.
実験に先立って、 L in_CD34high細胞の至適移植細胞数を決定するために、 CD34陽 性 SRCの repopul at i on能について検討した(図 1 4 )。図に示すように、 L in—CD34high 細胞を 1250, 5000, 20000, 50000個/マウスで移植し、 12週間後のマウス骨髄中のヒ ト CD45陽性細胞の割合を比較した。 その結果、 20000個/マウス以上移植した場合 には、生着率がブラトーレベルに達し、個々の SRCの repopu l at ion能を正確に評価 できないことが明らかになった。 以上の結果に基づいて、 本実験では 5xl03個の L iiTCD34high細胞を移植したマウスにおける CD34陽性 S Cの repopu 1 a t i on能を 5x 104 個の L iifCD34high細胞を移植したマウスにおける CD34陰性 SRCの repopul at ion能と 比較検討した。 Prior to the experiment, the repopulation of CD34-positive SRC was examined in order to determine the optimal number of transplanted Lin_CD34 high cells (FIG. 14). As shown in the figure, Lin-CD34 high cells were transplanted at 1250, 5000, 20000, and 50,000 cells / mouse, and the ratio of human CD45-positive cells in mouse bone marrow after 12 weeks was compared. As a result, it became clear that the engraftment rate reached the plateau level when more than 20000 cells / mouse were transplanted, and the repopulation ability of individual SRCs could not be accurately evaluated. Based on the above results, in the present experiment 5Xl0 3 pieces of L iiTCD34 high cell CD34-negative in mice the repopu 1 ati on ability of CD34-positive SC implanted with 5x 10 4 cells of L iifCD34 high cells in mice implanted with SRC Was compared with the repopul at ion ability.
移植した SRCの数は、既報の限界希釈実験に基づいて計算した。方法の概略を以 下に述べる。 まず、 1匹当たり臍帯血由来の L in_CD34high細胞の 300〜1250個を合計 26匹の 8週齢の NOD/Shi- sc idマウスに移植し、 12週間後にマウス骨髄細胞中に 0. 1 %以上のヒト CD45陽性細胞を認めた場合に生着と判断した。同様に、 Lin"CD34- 細胞の 5000〜40000個を合計 21匹の NOD/Shi- sc idマウスに移植し解析した。 SRCの 頻度は既報(Bhat ia M et al. , PNAS94 : 5320-5325, 1997)に従ってポアソン解析を 行った。 その結果、 CD34陽性 SRCの頻度は 1/1010個、 一方、 CD34陰性 SRCの頻度は 1/24100個と計算された。 以上より、 5xl03個の Lin— CD34highあるいは 5xl04個の LiiTCD34—細胞は、 各々約 5個、 2個の SRCを含むことになる。 The number of transplanted SRCs was calculated based on published limiting dilution experiments. The outline of the method is as follows. It is described below. First, 300-1250 umbilical cord blood-derived L in_CD34 high cells per animal were transplanted into a total of 26 8-week-old NOD / Shi-scid mice, and 0.1% in mouse bone marrow cells 12 weeks later. Engraftment was determined when the above human CD45 positive cells were observed. Similarly, 5000-40000 Lin "CD34- cells were transplanted into a total of 21 NOD / Shi-scid mice and analyzed. The frequency of SRC was reported previously (Bhatia M et al., PNAS94: 5320-5325, 1997) was performed Poisson analysis according. as a result, frequency 1/1010 amino CD34 positive SRC, whereas, CD34 frequency negative SRC was calculated to 1/24100 or. from the above, 5Xl0 3 pieces of Lin- CD34 high or 5Xl0 4 amino LiiTCD34- cells will contain each about five, two SRC.
この検討より以下のことが明らかになった。  From this study, the following became clear.
1 ) 1個の CD34陽性あるいは陰性 SRCが産生するヒト血液細胞数  1) Number of human blood cells produced by one CD34 positive or negative SRC
図 1 5に示すように、 1個の SRCが産生する CD45陽性細胞数は、 CD34陽性 SRCが 53. 6xl04個に対して、 CD34陰性 SRCは 286xl04と有意 (Pく 0. 05)に多かった。 また、 CD34陽性細胞数は、 各々 10. 2xl04個と 15. 5xl04個と CD34陰性 SRCの方がより多くの CD34陽性細胞を産生した(Pく 0. 05)。 As shown in FIG. 1 5, CD45 positive cells in which one SRC is produced, to the 6Xl0 4 pieces 53. is CD34 positive SRC, CD34-negative SRC in 286Xl0 4 and significantly (P rather 0.05) There were many. Further, CD34 positive cells, respectively 10. 2Xl0 4 and 15. 5Xl0 4/5 pieces and CD34-negative SRC has produced more CD34-positive cells (P rather 0.05).
2 ) 一次マウス骨髄に由来する CD34陽性細胞の再移植実験  2) Retransplantation of CD34-positive cells derived from primary mouse bone marrow
5xl03個の Lin—CD34highあるいは 5xl04個の Lin— CD34—細胞を移植した一次マウス骨 髄より、 CD34陽性細胞をソ一ティングにより回収し、各々 5匹の二次マウス左脛骨 中に IBMI法で再移植した。 その結果、 Lin—CD34—細胞に由来する CD34陽性細胞のみ が二次マウス中でヒトの造血を再構築した。以上より、 CD34陽性 SRCと CD34陰性 SRC にはその増殖能力だけでなく、 in vivoにおける CD34陽性 SRCの産生能に関しても 明瞭な差異のあることが明らかになった。 最近、 ヒト骨髄由来の幹細胞で CD34抗原が逆転するという報告(Dao MA e t al. , Blood 101 : 112-118, 2003 ; Zanj ani ED e t al. , Εχρ Hematol 31 : 406 - 412, 2003)が なされているが、本実施例の結果より、 この 2種類の幹細胞がまったく別のクラス の幹細胞であること、 換言すると CD34陰性幹細胞の方がより未分化であることが 判明した。 産業上の有用性 実施例に示すように本発明の l in—CD45ll)lfCD34—未分化幹細胞集団は従来造血幹細 胞であるとされていた CD34陽性細胞よりも未分化な細胞であり、 従来の治療に用 いられていた CD34陽性細胞にとって代わり、 種々の用途に利用でき、 特に、 ヒト の一生涯に渡る長期の造血再構築を考える時、 CD34陽性細胞よりも幹細胞として 有利な効果を奏することが可能である。 5xl0 CD34-positive cells were collected from the bone marrow of the primary mouse transplanted with 3 Lin-CD34 high or 5xl0 4 Lin-CD34 cells by IBMI in the left tibia of 5 secondary mice each. Was reimplanted. As a result, only CD34-positive cells derived from Lin-CD34-cells reconstituted human hematopoiesis in secondary mice. From the above, it became clear that there is a clear difference between the CD34-positive SRC and the CD34-negative SRC not only in their proliferation ability but also in their ability to produce CD34-positive SRC in vivo. Recently, it has been reported that the CD34 antigen is reversed in human bone marrow-derived stem cells (Dao MA et al., Blood 101: 112-118, 2003; Zanjani ED et al., Εχρ Hematol 31: 406-412, 2003). However, the results of this example revealed that these two types of stem cells were completely different classes of stem cells, in other words, CD34-negative stem cells were more undifferentiated. Industrial utility As shown in the Examples, the lin-CD45 ll) lf CD34-undifferentiated stem cell population of the present invention is more undifferentiated than CD34-positive cells, which were conventionally considered to be hematopoietic stem cells. Can replace CD34-positive cells and can be used for various purposes.Especially when considering long-term hematopoietic reconstitution over the life of humans, it can have more advantageous effects as stem cells than CD34-positive cells. It is.
また、 本発明の細胞の単離方法により、 l iifCD451("CD34—未分化幹細胞を効率的 に取得することが可能である。 本明細書に引用されたすベての刊行物は、 その内容の全体を本明細書に取り込 むものとする。 また、 添付の請求の範囲に記載される技術思想および発明の範囲 を逸脱しない範囲内で本発明の種々の変形および変更が可能であることは当業者 には容易に理解されるであろう。 本発明はこのような変形および変更をも包含す ることを意図している。 Further, by the method for isolating cells of the present invention, it is possible to efficiently obtain liifCD451 ( "CD34—undifferentiated stem cells". All publications cited in the present specification are It is to be understood that various modifications and alterations of the present invention are possible without departing from the spirit and scope of the invention as set forth in the appended claims. The present invention is intended to cover such modifications and alterations as will be readily apparent to those skilled in the art.

Claims

請求の範囲 The scope of the claims
1 . ヒ卜臍帯血、 骨髄または末梢血由来の l iiTCD45lMCD34—未分化幹細胞集団。 1. Human cord blood, bone marrow or peripheral blood derived liiTCD45 lM CD34—undifferentiated stem cell population.
2 . ヒト臍帯血、 骨髄または末梢血由来の単核細胞から得られ、 芽球様の形態 学的所見を示す、 請求項 1記載の未分化幹細胞集団。 2. The undifferentiated stem cell population of claim 1, which is obtained from mononuclear cells derived from human umbilical cord blood, bone marrow or peripheral blood, and exhibits blast-like morphological findings.
3 . 蛍光標識抗 CD45抗体で蛍光免疫染色したときの蛍光強度が、 ヒト白血球細 胞集団を蛍光標識抗 CD45抗体で蛍光免疫染色したときに最大蛍光強度を示す細胞 の蛍光強度の 1 %〜10%である、 請求項 1または 2記載の未分化幹細胞集団。 3. The fluorescence intensity when immunofluorescently stained with the fluorescently labeled anti-CD45 antibody is 1% to 10% of the fluorescence intensity of the cell that shows the maximum fluorescence intensity when the human leukocyte cell population is fluorescently immunostained with the fluorescently labeled anti-CD45 antibody. The undifferentiated stem cell population according to claim 1 or 2, wherein
4 . 免疫不全マウスの骨髄中に移植したときに生着し得る、 請求項 1から 3の いずれか 1項に記載の未分化幹細胞集団。 4. The undifferentiated stem cell population according to any one of claims 1 to 3, wherein the undifferentiated stem cell population can be engrafted when transplanted into bone marrow of an immunodeficient mouse.
5 . さらに、 免疫不全マウスの特定の骨の骨髄中に移植したときに他の骨の骨 髄中に移動する遊走能力が CD34+細胞に比較して高い、請求項 4に記載の未分化幹 細胞集団。 5. The undifferentiated stem cell according to claim 4, which further has a higher migration ability to migrate into the bone marrow of another bone when transplanted into the bone marrow of a specific bone of an immunodeficient mouse as compared to CD34 + cells. Collective.
6 . さらに、 造血前駆細胞コロニー形成能を有さない、 請求項 5に記載の未分 化幹細胞集団。 6. The non-differentiated stem cell population according to claim 5, further having no hematopoietic progenitor cell colony forming ability.
7 . ヒ卜臍帯血、 骨髄または末梢血から l in— CD45lfflCD34—未分化幹細胞を単離す る方法であって、 ヒト臍帯血、 骨髄または末梢血由来の単核球と抗ヒト分化抗原 抗体、 抗ヒト CD34抗体および抗ヒト CD45抗体を接触させ、 抗ヒト分化抗原抗体お よび抗ヒト CD34抗体と結合せず、 抗ヒト CD45抗体と弱い結合を示す細胞を分離す ることを含む、 1 in— CD45lMCD34—未分化幹細胞を単離する方法。 7. A method for isolating lin- CD45 lffl CD34-undifferentiated stem cells from human umbilical cord blood, bone marrow or peripheral blood, comprising mononuclear cells derived from human umbilical cord blood, bone marrow or peripheral blood, and anti-human differentiation antigen-antibody Contacting anti-human CD34 antibody and anti-human CD45 antibody, and separating cells that do not bind to anti-human differentiation antigen antibody and anti-human CD34 antibody and show weak binding to anti-human CD45 antibody. — CD45 lM CD34—A method for isolating undifferentiated stem cells.
8 . 抗ヒト CD34抗体および抗ヒト CD45抗体を接触させる前に、 CD2、 CD3、 CD7、 CD10、 CD14、 CD16、 CD19、 CD20、 CD23、 CD24、 CD41、 CD56、 CD66b、 GPAからなる 群から選択される一つ以上の分化抗原と結合する単核球を分離除去する、 請求項8. Before contacting anti-human CD34 antibody and anti-human CD45 antibody, consist of CD2, CD3, CD7, CD10, CD14, CD16, CD19, CD20, CD23, CD24, CD41, CD56, CD66b, GPA Separating and removing monocytes that bind to one or more differentiation antigens selected from the group.
7記載の l iifCD45lQllCD34—未分化幹細胞を単離する方法。 7. liifCD45 lQll CD34—a method for isolating undifferentiated stem cells according to 7.
9 . 蛍光色素で標識されている抗ヒト分化抗原抗体、 抗ヒト CD34抗体および抗 ヒト CD45抗体との結合の有無を標識抗体-細胞結合体の蛍光強度を測定すること により決定する、 請求項 7または 8記載の l iifCD45lMCD34—未分化幹細胞を単離す る方法。 9. The presence or absence of binding to the anti-human differentiation antigen antibody, anti-human CD34 antibody and anti-human CD45 antibody labeled with a fluorescent dye is determined by measuring the fluorescence intensity of the labeled antibody-cell conjugate. Or the liifCD45 LM CD34 of claim 8—a method for isolating undifferentiated stem cells.
1 0 . FACSまたはフローサイトメトリーを用いて、抗ヒト CD34抗体と結合せず、 抗ヒ ト CD45抗体と弱い結合を示す細胞を分離する、 請求項 9記載の l iiTCD45lmfCD34—未分化幹細胞を単離する方法。 10. The liiTCD45 lmf CD34-undifferentiated stem cell according to claim 9, wherein cells that do not bind to the anti-human CD34 antibody and show weak binding to the anti-human CD45 antibody are separated using FACS or flow cytometry. How to isolate.
1 1 . 蛍光標識抗ヒ卜 CD45抗体と接触させたときの抗ヒ卜 CD45抗体と弱い結合 を示す細胞の蛍光強度が、 ヒト白血球細胞集団を蛍光標識抗ヒト CD45抗体と接触 させたときの全白血球細胞中で最大蛍光強度を示す細胞の 1 %〜10%である、 請 求項 9または 1 0記載の l iiTCD45lMCD34—未分化幹細胞を単離する方法。 1 1. The fluorescence intensity of cells that show weak binding to the anti-human CD45 antibody when contacted with the fluorescently-labeled anti-human CD45 antibody shows the total intensity when the human leukocyte cell population is contacted with the fluorescently-labeled anti-human CD45 antibody. 1% to 10% of the cells showing the maximum fluorescence intensity in white blood cells,請Motomeko 9 or 1 0 l iiTCD45 lM CD34- method undifferentiated stem cells isolated according.
1 2 . 抗ヒト分化抗原抗体が PEで標識されている請求項 9〜1 1のいずれか 1 項に記載の方法。 12. The method according to any one of claims 9 to 11, wherein the anti-human differentiation antigen antibody is labeled with PE.
1 3 . 抗ヒト CD34抗体および抗ヒト CD45抗体が FITCまたは Cy5で別々に標識され ている請求項 1 2記載の方法。 13. The method according to claim 12, wherein the anti-human CD34 antibody and the anti-human CD45 antibody are separately labeled with FITC or Cy5.
1 4 . ヒト臍帯血、 骨髄または末梢血由来の細胞が l iiTCD451(WCD34—未分化幹細 胞であるかを決定する方法であって、 該細胞と抗ヒト分化抗原抗体、 抗ヒ卜 CD34 抗体および抗ヒト CD45抗体を接触させ、 該細胞が抗ヒト分化抗原抗体および抗ヒ ト CD34抗体と結合せず、 抗ヒト CD45抗体と弱い結合を示すか否かを決定すること を含む、 細胞が l iifCD451()lfCD34—未分化幹細胞であるかを決定する方法。 14. A method for determining whether cells derived from human umbilical cord blood, bone marrow, or peripheral blood are liiTCD451 ( WCD34—undifferentiated stem cells), comprising the steps of: Contacting a CD34 antibody and an anti-human CD45 antibody, and determining whether the cells do not bind to the anti-human differentiation antigen antibody and anti-human CD34 antibody and show weak binding to the anti-human CD45 antibody. A method for determining whether is a liifCD45 1 () lf CD34—undifferentiated stem cell.
15. 蛍光色素で標識された抗ヒト分化抗原抗体、 抗ヒト CD34抗体および抗ヒ ト CD45抗体を用いる、 請求項 14記載の、 細胞が lirfCD45 CD34—未分化幹細胞で あるかを決定する方法。 15. The method for determining whether a cell is lirfCD45 CD34-undifferentiated stem cell according to claim 14, wherein an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibody labeled with a fluorescent dye are used.
16. FACSまたはフローサイトメトリーを用いる、 請求項 1 5記載の、 細胞が liifCD45l CD34_未分化幹細胞であるかを決定する方法。 16. using FACS or flow cytometry, according to claim 1 5, wherein, a method of cell to determine whether the liifCD45 l CD34_ undifferentiated stem cells.
17. 蛍光標識抗ヒト CD45抗体で蛍光免疫染色したときの蛍光強度が、 ヒト白 血球細胞集団を蛍光標識抗 CD45抗体で蛍光免疫染色したときに最大免疫強度を示 す細胞の蛍光強度の 1 %〜10%である場合に CD45lMであると決定する、 請求項 1 5または 1 6記載の、 細胞が lin— CD45l CD34—未分化幹細胞であるかを決定する方 法。 17.1% of the fluorescence intensity of the cell that shows the maximum immune intensity when the human leukocyte cell population is immunofluorescently stained with the fluorescently labeled anti-CD45 antibody when the fluorescent immunostaining with the fluorescently labeled anti-human CD45 antibody is performed. determining that the CD45 lM if it is 10%, according to claim 1 5 or 1 according 6, how to determine the cell is a lin- CD45 l CD34- undifferentiated stem cells.
18. 抗ヒト分化抗原抗体が PEで標識されている請求項 14〜17のいずれか 1項に記載の方法。 18. The method according to any one of claims 14 to 17, wherein the anti-human differentiation antigen antibody is labeled with PE.
19. 抗ヒト CD34抗体および抗ヒト CD45抗体が FITCまたは Cy5で別々に標識され ている請求項 1 8記載の方法。 19. The method according to claim 18, wherein the anti-human CD34 antibody and the anti-human CD45 antibody are separately labeled with FITC or Cy5.
20. ヒト臍帯血、 骨髄または末梢血由来の細胞集団中の liiTCD45l CD34—未分 化幹細胞を分析する方法であって、該細胞集団と抗ヒト分化抗原抗体、抗ヒト CD34 抗体および抗ヒト CD45抗体を接触させ、 該細胞が抗ヒト分化抗原抗体および抗ヒ ト CD34抗体と結合せず、 抗ヒト CD45抗体と弱い結合を示すか否かを決定すること を含む、 細胞集団中の liifCD45lMCD34—未分化幹細胞を分析する方法。 20. A method for analyzing liiTCD45 l CD34-undivided stem cells in a cell population derived from human umbilical cord blood, bone marrow or peripheral blood, comprising analyzing the cell population and an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45. antibodies contacting the said cell does not bind to the anti-human differentiation antigen antibody and Kohi preparative CD34 antibody comprises determining whether show anti-human CD45 antibody and weak bonds, LiifCD45 lM CD34 in a cell population —A method for analyzing undifferentiated stem cells.
21. 蛍光色素で標識された抗ヒト分化抗原抗体、 抗ヒト CD34抗体および抗ヒ ト CD45抗体を用いる、 請求項 20記載の、 細胞集団中の liiTCD45lMCD34—未分化幹 細胞を分析する方法。 21. The method for analyzing liiTCD45 lM CD34-undifferentiated stem cells in a cell population according to claim 20, wherein an anti-human differentiation antigen antibody, an anti-human CD34 antibody and an anti-human CD45 antibody labeled with a fluorescent dye are used.
22. FACSまたはフローサイトメトリーを用いる、 請求項 2 1記載の、 細胞集 団中の lin—CD45l CD34_未分化幹細胞を分析する方法。 22. using FACS or flow cytometry, according to claim 2 1, wherein, a method of analyzing the lin-CD45 l CD34 _ undifferentiated stem cells in a cell collection group.
2 3. 蛍光標識抗ヒト CD45抗体で蛍光免疫染色したときの蛍光強度が、 ヒト白 血球細胞集団を蛍光標識抗 CD45抗体で蛍光免疫染色したときに最大免疫強度を示 す細胞の蛍光強度の 1 %〜10%である場合に CD45l であると決定する、 請求項 2 1または 2 2記載の、細胞集団中の liiTCD45lfflCD34—未分化幹細胞を分析する方法。 2 3. The fluorescence intensity when fluorescent immunostaining with a fluorescently labeled anti-human CD45 antibody is one of the fluorescence intensities of the cells showing the maximum immune intensity when the human leukocyte cell population is fluorescently immunostained with a fluorescently labeled anti-CD45 antibody. % in the case of 10% determined to be CD45 l, according to claim 2 1, 2 2 wherein, liiTCD45 lffl CD34- method for analyzing the undifferentiated stem cells in a cell population.
24. 抗ヒト分化抗原抗体が PEで標識されている請求項 20〜23のいずれか 1項に記載の方法。 24. The method according to any one of claims 20 to 23, wherein the anti-human differentiation antigen antibody is labeled with PE.
2 5. 抗ヒト CD34抗体および抗ヒト CD45抗体が FITCまたは Cy5で別々に標識され ている請求項 24記載の方法。 25. The method according to claim 24, wherein the anti-human CD34 antibody and the anti-human CD45 antibody are separately labeled with FITC or Cy5.
PCT/JP2003/008562 2002-07-05 2003-07-04 Novel undifferentiated stem cells contained in cord blood, bone marrow, peripheral blood or the like WO2004005496A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003281309A AU2003281309A1 (en) 2002-07-05 2003-07-04 Novel undifferentiated stem cells contained in cord blood, bone marrow, peripheral blood or the like
JP2004519278A JPWO2004005496A1 (en) 2002-07-05 2003-07-04 Novel undifferentiated stem cell population contained in umbilical cord blood, bone marrow, peripheral blood, etc.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002197793 2002-07-05
JP2002-197793 2002-07-05

Publications (1)

Publication Number Publication Date
WO2004005496A1 true WO2004005496A1 (en) 2004-01-15

Family

ID=30112411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008562 WO2004005496A1 (en) 2002-07-05 2003-07-04 Novel undifferentiated stem cells contained in cord blood, bone marrow, peripheral blood or the like

Country Status (3)

Country Link
JP (1) JPWO2004005496A1 (en)
AU (1) AU2003281309A1 (en)
WO (1) WO2004005496A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102250839A (en) * 2011-06-16 2011-11-23 崔慧斐 Universal cell processing kit and application method thereof
JP2016104022A (en) * 2009-10-06 2016-06-09 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Genetically modified mice and engraftment method
US9820476B2 (en) 2012-09-07 2017-11-21 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US9901082B2 (en) 2012-11-05 2018-02-27 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US10123518B2 (en) 2015-04-13 2018-11-13 Regeneron Pharmaceuticals, Inc Genetically modified non-human animals and methods of use thereof
US10463028B2 (en) 2014-05-19 2019-11-05 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals expressing human EPO
US10785966B2 (en) 2011-02-15 2020-09-29 Regeneron Pharmaceuticals, Inc. Humanized M-CSF mice
JP2020202865A (en) * 2015-10-08 2020-12-24 ニューロナ セラピューティクス インコーポレイテッドNeurona Therapeutics Inc. Neural precursor cell populations and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034507A1 (en) * 1998-12-07 2000-06-15 Duke University A method of isolating stem cells
JP2000166541A (en) * 1998-12-03 2000-06-20 Tokai Univ Human undifferentiated hematopoietic stem cell and its separation and separation device
JP2002065250A (en) * 2000-08-31 2002-03-05 Asahi Kasei Corp Cell having hematopoitec supporting ability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166541A (en) * 1998-12-03 2000-06-20 Tokai Univ Human undifferentiated hematopoietic stem cell and its separation and separation device
WO2000034507A1 (en) * 1998-12-07 2000-06-15 Duke University A method of isolating stem cells
JP2002065250A (en) * 2000-08-31 2002-03-05 Asahi Kasei Corp Cell having hematopoitec supporting ability

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104022A (en) * 2009-10-06 2016-06-09 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Genetically modified mice and engraftment method
US10278374B2 (en) 2009-10-06 2019-05-07 Regeneron Pharmaceuticals, Inc. Genetically modified mice and engraftment
US11051499B2 (en) 2009-10-06 2021-07-06 Regeneron Pharmaceuticals, Inc. Genetically modified mice and engraftment
US10785966B2 (en) 2011-02-15 2020-09-29 Regeneron Pharmaceuticals, Inc. Humanized M-CSF mice
CN102250839A (en) * 2011-06-16 2011-11-23 崔慧斐 Universal cell processing kit and application method thereof
US11026408B2 (en) 2012-09-07 2021-06-08 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US9820476B2 (en) 2012-09-07 2017-11-21 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US10433527B2 (en) 2012-09-07 2019-10-08 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US9901082B2 (en) 2012-11-05 2018-02-27 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US9986724B2 (en) 2012-11-05 2018-06-05 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US11778995B2 (en) 2012-11-05 2023-10-10 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US10785968B2 (en) 2012-11-05 2020-09-29 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US10463028B2 (en) 2014-05-19 2019-11-05 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals expressing human EPO
US11766032B2 (en) 2014-05-19 2023-09-26 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals expressing human EPO
US10561126B2 (en) 2015-04-13 2020-02-18 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US11576356B2 (en) 2015-04-13 2023-02-14 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
US10123518B2 (en) 2015-04-13 2018-11-13 Regeneron Pharmaceuticals, Inc Genetically modified non-human animals and methods of use thereof
JP2020202865A (en) * 2015-10-08 2020-12-24 ニューロナ セラピューティクス インコーポレイテッドNeurona Therapeutics Inc. Neural precursor cell populations and uses thereof
JP7138959B2 (en) 2015-10-08 2022-09-20 ニューロナ セラピューティクス インコーポレイテッド Methods of generating neural progenitor cell populations

Also Published As

Publication number Publication date
AU2003281309A1 (en) 2004-01-23
JPWO2004005496A1 (en) 2005-11-04

Similar Documents

Publication Publication Date Title
Walenda et al. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells
Vormoor et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice
To et al. A comparative study of the phenotype and proliferative capacity of peripheral blood (PB) CD34+ cells mobilized by four different protocols and those of steady-phase PB and bone marrow CD34+ cells
Ratajczak et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells
Askenasy et al. Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo
Mayani et al. Biology of human hematopoietic stem and progenitor cells present in circulation
STEEN et al. Comparison of the phenotype and clonogenicity of normal CD34+ cells from umbilical cord blood, granulocyte colony-stimulating factor-mobilized peripheral blood, and adult human bone marrow
KR102534472B1 (en) Population of CD3-negative cells expressing chemokine receptors and cell adhesion molecules, and methods for their use and production
CN103620022A (en) Method for amplifying nk cells
JP6124389B2 (en) In vitro tumor cell model of malignant lymphoma and use thereof
Rosler et al. An in vivo competitive repopulation assay for various sources of human hematopoietic stem cells
WO2010132315A1 (en) Enhanced hematopoietic stem cell engraftment
Smiler et al. Toward the identification of mesenchymal stem cells in bone marrow and peripheral blood for bone regeneration
Sintes et al. Differential expression of CD150 (SLAM) family receptors by human hematopoietic stem and progenitor cells
Howell et al. Hematopoietic potential of murine skeletal muscle–derived CD45− Sca-1+ c-kit− cells
Sugimoto et al. Generation and manipulation of human iPSC-derived platelets
Guo et al. Side-population cells from different precursor compartments
Niemeyer et al. Isolation and characterization of canine hematopoietic progenitor cells
WO2004005496A1 (en) Novel undifferentiated stem cells contained in cord blood, bone marrow, peripheral blood or the like
CN103585179A (en) Pharmaceutical composition and application thereof in preparation of drug for treating bone marrow hematopoietic function disorder
US20080095746A1 (en) Process For Producing Hematopoietic Stem Cells Or Vascular Endothelial Precursor Cells
Abe et al. Lung cells transplanted to irradiated recipients generate lymphohematopoietic progeny
US20100196327A1 (en) Methods for diagnosing biological samples containing stem cells
Yong et al. Fetal haemopoietic cells display enhanced migration across endothelium
Pessa-Morikawa et al. Fetal bovine bone marrow is a rich source of CD34+ hematopoietic progenitors with myelo–monocytic colony-forming activity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004519278

Country of ref document: JP

122 Ep: pct application non-entry in european phase