WO2004001432A1 - Elektromigrations-testvorrichtung und elektromigrations-testverfahren - Google Patents

Elektromigrations-testvorrichtung und elektromigrations-testverfahren Download PDF

Info

Publication number
WO2004001432A1
WO2004001432A1 PCT/DE2003/002112 DE0302112W WO2004001432A1 WO 2004001432 A1 WO2004001432 A1 WO 2004001432A1 DE 0302112 W DE0302112 W DE 0302112W WO 2004001432 A1 WO2004001432 A1 WO 2004001432A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive structure
tested
electromigration
current
test
Prior art date
Application number
PCT/DE2003/002112
Other languages
English (en)
French (fr)
Inventor
Jochen Von Hagen
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to JP2004514570A priority Critical patent/JP2005536871A/ja
Priority to US10/519,659 priority patent/US20060125494A1/en
Priority to EP03740110A priority patent/EP1516195A1/de
Publication of WO2004001432A1 publication Critical patent/WO2004001432A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2856Internal circuit aspects, e.g. built-in test features; Test chips; Measuring material aspects, e.g. electro migration [EM]
    • G01R31/2858Measuring of material aspects, e.g. electro-migration [EM], hot carrier injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2648Characterising semiconductor materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections

Definitions

  • the invention relates to an electromigration test device and an electromigration test method.
  • Electromigration is understood to mean the transport of materials within a conductor track under the influence of the electrical current. The material transport takes place in the direction of the flow of electrons. These entrain the lattice atoms of the conductor material due to the so-called electron wind. This material transport can lead to various types of damage. Damage is, for example, so-called voids, i.e. Gaps within the lattice structure, and resulting breaks in the conductor track. Another example are so-called extrusions, i.e. lateral outflows of conductor material from the actual conductor. These extrusions can lead to short circuits between adjacent conductor tracks and thus to the failure of the component.
  • the size of electromigration is a parameter that determines the lifespan of the electronic component.
  • the strength of the electromigration process depends primarily on the material of the conductor track, the temperature and the electrical current density in the conductor track, the degree of electromigration increasing with increasing temperature and increasing electrical current density.
  • the DC component of electrical current density is crucial.
  • a symmetrical alternating current hardly influences the strength of the electromigration. Electromigration, which is caused by a symmetrical alternating current, occurs 100 to 1000 times slower than electromigration, which is caused by a direct current [1]. It follows from this that, when an alternating current and a direct current are superimposed, the magnitude of the electromigration is dominated by the electrical current density which is produced by means of the direct current. This can be clearly explained by the fact that the so-called electron wind must have a preferred direction so that it can effectively carry the material of the conductive structure with it in one direction. However, a symmetrical alternating current has no such preferred direction of the electron wind.
  • test structures are generally produced together with the actual components on the same substrate and from the same materials as the components.
  • the test structures are therefore subject to the same manufacturing processes and can be used to assess the electromigration strength of similar conductor tracks in the end product.
  • test structures e.g. metal conductor tracks
  • the ceramic housings are put on circuit boards.
  • the boards are then arranged in a measuring setup and, placed in a suitable heating furnace, subjected to electromigration tests.
  • the test structures are exposed to a constant direct current.
  • damage which can be caused by electromigration is, for example, the formation of so-called voids, ie gaps within the lattice structure and resulting interruptions in the conductive structure, for example conductor tracks of an integrated circuit.
  • voids ie gaps within the lattice structure and resulting interruptions in the conductive structure, for example conductor tracks of an integrated circuit.
  • a simple conductor track with its corresponding connections is used, for example.
  • the conductor track is placed under stress, ie increased temperature and increased current density.
  • the time that elapses before the test structure fails is measured. This time provides a measure of the strength of the electromigration processes that a component was subject to.
  • the average life can 'of the structure is calculated under normal operating conditions.
  • a further damage which can be caused by electromigration is, for example, the occurrence of so-called extrusions, ie an outflow of material from the conductor track under the influence of electromigration.
  • the extrusions can short circuit and thus lead to the failure of an electronic circuit located on the wafer.
  • test structures i.e. Conductive structures, whose susceptibility to electromigration is to be investigated, first have to be prepared for the test.
  • the test structures are stated and then reassembled in a test device.
  • These steps are both labor intensive and time consuming and therefore costly.
  • the boards used for the test device must also be heat-resistant. This means that the temperature can only be increased to around 400 ° C, since there are no boards that can withstand a higher temperature without damage. Only a few boards are available for these temperatures, which can withstand this temperature for a long time. This means that temperatures of more than 350 ° C cannot be handled industrially.
  • the stress in other words, the load that can be imposed on the test structure is limited by the limited temperature and thus the tests take a long time until a reliable statement about the extent of electromigration in the test structure can be made.
  • test structures are also known in the prior art. With these test structures exploited that the test structures by means of the direct current, which serves as a stress source for the test structure, heats up because of the ohmic resistance of the conductive structure to be tested. This means that an external heating furnace can be omitted in a self-heating test structure.
  • J.A. Maiz examines the effect of an asymmetrical current on electromigration. The result is that the equivalent direct current of an asymmetrical current is given by the mean value of the current of the signal.
  • the invention is based on the problem of providing a simple test device by means of which the temperature can be regulated without an external oven.
  • the test structure should not undesirably couple the two high temperatures and electrical current density, as occurs in a self-heating test structure according to the prior art.
  • An electromigration test device has a direct current source and an alternating current source. Furthermore, the test device has a circuit. This has at least one conductive structure to be tested, which is electrically conductively connected to the direct current source and the alternating current source. Furthermore, the test device has a measuring device that is set up in such a way that it detects an electrical parameter, which parameter is indicative of electromigration in the test structure.
  • the alternating voltage source is set up in such a way that it exposes the conductive structure to be tested to an alternating current, independently of a direct current from the direct current source.
  • the conductive structure to be tested is heated to a predetermined, preferably adjustable, temperature.
  • a method according to the invention for testing a conductive structure for electromigration has the following steps.
  • a conductive structure to be tested is electrically coupled to an electrical circuit, which electrical circuit is electrically coupled to a direct current source and an alternating current source.
  • the conductive structure to be tested becomes exposed to a direct electrical current, which direct current causes the electromigration within the conductive structure to be tested.
  • the method according to the invention has a heating of the conductive structure to be tested by means of an alternating current generated by the alternating voltage source, the alternating current being independent of the direct current which causes the electromigration within the conductive structure to be tested.
  • the method according to the invention has the step of detecting an electrical parameter, which parameter is indicative of the electromigration within the conductive structure to be tested.
  • a simple test device is provided by means of the device and the method, by means of which the temperature is regulated without using an external oven. This avoids the undesired coupling of the two high temperatures and electrical current density, as occurs in a self-heating test structure according to the prior art.
  • the preferably symmetrical, alternating electrical current which is used to heat the conductive structure to be tested, does not itself cause electromigration in the structure to be tested.
  • the temperature to which the structure to be tested is exposed can be increased to significantly more than 400 ° C., since only the electrically conductive structure to be examined is heated in the device and the method.
  • the circuit board itself is not exposed to an elevated temperature. This also eliminates the problems and restrictions (e.g. heat resistance) that occur with test structures according to the prior art when selecting the boards.
  • Another advantage of the device according to the invention over a device according to the prior art is that the fact that the temperature can be brought to higher values means that the individual tests of the conductive structures to be tested can be carried out in a shorter time.
  • investigations of electromigration in periods in the range of minutes are possible, preferably in a period of 10 minutes to 100 minutes.
  • the short time span enables the tests to be carried out directly on the wafer level. This leads to a further cost saving, since the above-mentioned extensive actions for preparing the conductive structure to be tested are omitted.
  • the electromigration test device according to the invention is described in more detail below. Refinements of the electromigration test device also apply to the method for testing a conductive structure for electromigration.
  • the electrically conductive parameter is preferably an electrical resistance of the conductive structure to be tested.
  • the electromigration test device preferably also has an evaluation unit for determining an electrical power.
  • the evaluation unit preferably has a voltage measuring device and a current measuring device.
  • the voltage measuring device and the current measuring device are introduced into the circuit in such a way that the current measuring device generates an effective electrical current which is passed through the conductive conductor to be tested Structure flows, measures, and that the voltage measuring device detects an effective electrical voltage which is applied to the conductive structure to be tested.
  • the conductive structure to be tested preferably consists of aluminum, copper or an alloy of copper and aluminum or other electrically conductive materials such as gold or silver.
  • the test device according to the invention also preferably has a control device.
  • the control device is set up in such a way that it controls and / or regulates the AC voltage source in such a way that the temperature of the conductive structure to be tested is set and kept constant at a predetermined level.
  • At least some of the components of the test device according to the invention are preferably arranged on a semiconductor wafer.
  • the alternating current source is preferably integrated in a pulse generator.
  • the DC voltage source is preferably also integrated in the pulse generator. That the pulse generator is preferably designed as an AC power source provided with an offset.
  • the alternating voltage source is preferably set up in such a way that it generates an alternating current with a frequency between 1 kHz and 200 kHz, particularly preferably with 5 kHz.
  • the electromigration test device additionally has a heating furnace or heating plate, which is set up in such a way that it heats the conductive structure to be tested.
  • An offset temperature can be set in the heater. This is preferably about 200 ° C to 250 ° C.
  • FIG. 1 shows an electromigration test device according to an exemplary embodiment of the invention
  • FIG. 2 shows a measurement curve of a resistance of a conductive structure over time.
  • the electromigration test device has a wafer 108 with a conductive structure 100 to be tested.
  • the conductive structure to be tested is made of aluminum.
  • the test device has a direct current source 101.
  • the DC power source 101 is electrically conductively connected to the conductive structure 100 to be tested.
  • the DC power source 101 serves to put the conductive structure 100 under stress. Ie the electrically conductive structure 100 is exposed to conditions by means of an applied direct current of the direct current source, which accelerate the electromigration in the conductive structure 100. This stress condition is an increased electrical current density compared to normal operation of an electronic component.
  • the test device has a pulse generator 102. This is connected between the direct current source 101 and the conductive structure 100 to be tested.
  • the pulse generator 102 superimposes a symmetrical alternating current on the direct current, which serves as a stress current.
  • the symmetrical alternating current is used to heat the electrically conductive structure by means of an ohmic resistance of the electrically conductive structure 100. Since the pulse generator provides a symmetrical alternating current, electromigration is hardly influenced by the electrical current density which is caused by the alternating current. The only effect of the alternating current is to heat the conductive structure 100 to be tested.
  • the temperature set in the exemplary embodiment is 262 ° C. In the exemplary embodiment, the temperature is determined by detecting the increase in thermal resistance of the conductive structure. If necessary, the level of the alternating current is readjusted so that a constant temperature and thus constant stress conditions are maintained for the electrically conductive structure.
  • the amount of the alternating current required for heating to this temperature is 23.3 mA.
  • the frequency of the alternating current is 5 kHz.
  • the direct current, which serves as a stress current, is 0.5 mA.
  • the test device has a current measuring device 103.
  • the current measuring device 103 is integrated in a circuit 104, which couples the conductive structure 100 to be tested, the direct current source 101 and the pulse generator 102 in an electrically conductive manner.
  • the effective current which flows through the conductive structure 100 is detected by means of the current measuring device 103.
  • the electrical migration test device has a voltage measuring device 105.
  • the Voltage measuring device 105 detects the effective electrical voltage, which drops between a first voltage tap 106 and a second voltage tap 107, of which one of the voltage taps is arranged in the start area and the other voltage tap in the end area of the conductive structure, on the electrically conductive structure 100.
  • the electromigration test device has a computer (not shown).
  • the computer reads in values detected by the voltage measuring device 105 and the current measuring device 104.
  • the computer uses the detected and read-in values to determine a resistance of the conductive structure 100 to be tested.
  • the temperature of the conductive structure to be tested (stress temperature) is also determined via the resistance determined in this way.
  • the computer is also set up so that it adjusts the level of the alternating current so that the stress temperature is constant.
  • the conductive structure 100 to be tested is arranged directly on the wafer level of a semiconductor wafer.
  • FIG. 2 shows the course over time of the resistance of the electrically conductive structure 100 to be tested, which resistance was determined using the electromigration test device according to the invention.
  • the parameters for determining the resistance were an alternating current of 23.3 mA, which corresponds to a temperature of 262 ° C.
  • the applied stress current is 0.5 mA.
  • the test was carried out over a period of around 10,000 s. A sudden increase 209 in the determined resistance towards the end of the measurement period can be clearly seen.
  • electromigration has caused damage to the electrically conductive structure to be tested, as a result of which one or more voids cause a drastic reduction in the conductive material in the line cross section. This causes the resistance to rise suddenly.
  • a test to examine electromigration preferably lasts until a significant increase in electrical resistance is registered.
  • the invention provides an electromigration test device which enables a quick, simple and inexpensive test of conductive structures to be tested for electromigration.
  • the electromigration test device according to the invention does not require an external heating furnace for heating the conductive structure to be tested.
  • the embodiment according to the invention does not show the disadvantage of the self-heating test structures according to the prior art, that the two parameters temperature and electrical current density, which influence the electromigration in the conductive structure to be tested, are coupled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

Die Erfindung betrifft eine Elektromigrations-Testvorrichtung, welche eine Gleichstromquelle (101) und eine Wechselspannungsquelle (102) aufweist. Ferner weist sie einen Schaltkreis (104) mit einer leitfähigen Struktur (100) auf, welcher mit der Gleichstromquelle (101) und der Wechselspannungsquelle (102) elektrisch gekoppelt ist und eine Messeinrichtung zum Messen eines elektrischen Parameters, welcher für Elektromigration in der leitfähigen Struktur indikativ ist. Die Wechselspannungsquelle (102) ist eingerichtet, dass sie die leitfähige Struktur (100), unabhängig von einem Gleichstrom, einem Wechselstrom aussetzt und so die leitfähige Struktur (100) auf eine vorgegebene Temperatur heizt.

Description

Beschreibung
Elektromigrations-Testvorrichtung und Elektromigrations- Testverfahren
Die Erfindung betrifft eine Elektromigration-Testvorrichtung und ein Elektromigrations-Testverfahren.
Mit den steigenden Ansprüchen an mikroelektronische Bauelemente wird den Tests zum Bestimmen der Leiterbahnzuverlassigkeit zunehmend größere Aufmerksamkeit geschenkt. Ein Mechanismus, welcher Bauelemente schadigen kann ist die Elektromigration. Unter Elektromigration wird der Materialtransport innerhalb einer Leiterbahn unter Einwirkung des elektrischen Stroms verstanden. Der Materialtransport findet in Richtung des Flusses der Elektronen statt. Diese reißen die Gitteratome des Leiterbahnmaterials aufgrund des entstehenden sogenannten Elektronenwindes mit. Dieser Materialtransport kann zu verschiedenen Schädigungen fuhren. Eine Schädigung sind zum Beispiel sogenannte Voids, d.h. Lucken innerhalb der Gitterstruktur, und sich daraus entwickelnde Unterbrechungen in der Leiterbahn. Ein weiteres Beispiel sind sogenannte Extrusionen, d.h. seitliche Ausflusse von Leiterbahnmaterial aus der eigentlichen Leiterbahn. Diese Extrusionen können zu Kurzschlüssen zwischen nebeneinander liegenden Leiterbahnen und damit zum Ausfall des Bauelements fuhren. Die Große der Elektromigration ist ein die Lebensdauer des elektronischen Bauelements bestimmender Parameter.
Die Starke des Elektromigration-Prozesses hangt hauptsachlich von dem Material der Leiterbahn, der Temperatur und der elektrischen Stromdichte in der Leiterbahn ab, wobei der Grad der Elektromigration mit steigender Temperatur und steigender elektrischen Stromdichte zunimmmt . Für die Starke des Elektromigration-Prozesses ist der Gleichstromanteil der elektrischen Stromdichte entscheidend. Ein symmetrischer Wechselstrom beeinflusst die Starke der Elektromigration kaum. Elektromigration, welche durch einen symmetrischen Wechselstrom hervorgerufen wird, tritt 100 bis 1000 mal langsamer auf, als eine Elektromigration, welche mittels eines Gleichstrom hervorgerufen wird [1]. Hieraus ergibt sich, dass bei einer Überlagerung eines Wechselstroms und eines Gleichstroms, die Große der Elektromigration von der elektrischen Stromdichte, welche mittels des Gleichstroms hervorgerufen wird, dominiert wird. Dies kann man sich anschaulich damit erklaren, dass der sogenannte Elektronenwind eine Vorzugsrichtung aufweisen muss, damit er das Material der leitfahigen Struktur effektiv in eine Richtung mitreißen kann. Ein symmetrischer Wechselstrom besitzt jedoch keine solche Vorzugsrichtung des Elektronenwinds.
Für moderne Zuverlassigkeitstests werden wahrend der Produktion von integrierten elektronischen Schaltungen Tests an speziellen Teststrukturen durchgeführt. Die Teststrukturen werden im Allgemeinen zusammen mit den eigentlichen Bauelementen auf den gleichen Substrat und aus den gleichen Materialien wie die Bauelemente hergestellt. Die Teststrukturen unterliegen somit dem gleichen Herstellungsprozessen und können dazu dienen die Elektromigration-Festigkeit ähnlicher Leiterbahnen im Endprodukt zu beurteilen.
Gemäß dem Stand der Technik wird für jeden möglichen Schadigungsmechanismus, der an einer leitfahigen Struktur durch Elektromigration hervorgerufen wird, eine spezielle Teststruktur verwendet, welche dann im Test einer erhöhten Belastung (Stress) unterworfen wird, indem Parameter, welche die Elektromigration beeinflussen, kunstlich beeinflusst werden, so dass die Elektromigration verstärkt wird. Somit können innerhalb kurzer Zeit Aussagen über die Elektromigration-Festigkeit erhalten werden.
Zum Untersuchen der Große der Elektromigration werden die Teststrukturen (z.B. Metallleiterbahnen) aus dem Wafer ausgesagt und in Keramikgehause montiert. Die Keramikgehause werden auf Platinen gesteckt. Nachfolgend werden die Platinen in einem Messaufbau angeordnet und, in geeigneten Heizofen eingebracht, Elektromigrationstests unterworfen. Hierzu werden die Teststrukturen einem konstanten Gleichstrom ausgesetzt .
Eine Schädigung, welche durch Elektromigration hervorgerufen werden kann, ist wie oben erwähnt zum Beispiel die Ausbildung von sogenannten Voids, d.h. Lucken innerhalb der Gitterstruktur und daraus erwachsender Unterbrechungen der leitfahigen Struktur z.B. Leiterbahnen einer integrierten Schaltung. Zum Untersuchen solcher Schädigungen, wird z.B. eine einfache Leiterbahn mit ihren entsprechenden Anschlüssen verwendet. Die Leiterbahn wird unter Stress, d.h. erhöhter Temperatur und erhöhter Stromdichte, gesetzt. Hierbei wird die Zeit, welche bis zum Versagen der Teststruktur vergeht, gemessen. Diese Zeit liefert ein Maß für die Starke der Elektromigration-Prozesse, denen ein Bauteil unterlag. Mittels der Zeit bis zum Versagen der Struktur und der Blackschen Gleichung kann 'die durchschnittliche Lebensdauer der Struktur unter normalen Betriebsbedingungen berechnet werden.
Eine weitere Schädigung, welche durch Elektromigration hervorgerufen werden kann, ist wie erwähnt zum Beispiel ein Auftreten von sogenannten Extrusionen, d.h. ein Ausfluss von Material aus der Leiterbahn unter Einwirkung der Elektromigration. Die Extrusionen können zu Kurzschlüssen und damit zum Ausfall einer auf dem Wafer sich befindenden elektronischen Schaltung fuhren.
Ein Nachteil der Testvorrichtungen gemäß dem Stand der Technik liegt darin, dass die Teststrukturen, d.h. leitfahige Strukturen, deren Anfälligkeit für Elektromigration untersucht werden soll, erst für den Test präpariert werden müssen. Die Teststrukturen werden ausgesagt und nachfolgend in einer Testvorrichtung wieder montiert. Diese Schritte sind sowohl arbeitsaufwendig als auch zeitaufwendig und damit auch kostenintensiv. Die verwendeten Platinen für die Testvorrichtung müssen des Weiteren auch hitzbestandig sein. Dies fuhrt dazu, dass die Temperatur nur bis etwa 400 °C erhöht werden kann, da es keine Platinen gibt, welche eine höhere Temperatur unbeschadet überstehen. Auch für diese Temperaturen stehen nur wenige Platinen bereit, welche dieser Temperatur einer längeren Zeit widerstehen. Damit sind Temperaturen von mehr als 350°C industriell nicht handhabbar.
Weiterhin ist der Stress, anders ausgedruckt, die Belastung, welcher der Teststruktur auferlegt werden kann, durch die begrenzte Temperatur beschrankt und somit benotigen die Tests eine längere Zeit, bis eine stichhaltige Aussage über das Ausmaß der Elektromigration in der Teststruktur getroffen werden kann.
Ein weiterer Nachteil ist die Notwenigkeit eines externen Ofens zum Heizen der Platine bzw. der Teststruktur. Die verwendeten Heizofen sind kompliziert und deren Verwendung verursacht zusatzliche Kosten beim Durchfuhren der Untersuchung der Elektromigration.
Im Stand der Technik sind auch sogenannte selbstheizende Teststrukturen bekannt. Bei diesen Teststrukturen wird ausgenutzt, dass sich die Teststrukturen mittels des Gleichstroms, welcher als Stressquelle für die Teststruktur dient, wegen des ohmschen Widerstands der zu testenden leitfahigen Struktur aufheizt. Hierdurch kann bei einer selbstheizenden Teststruktur ein externer Heizofen entfallen.
Diese selbstheizenden Teststrukturen, weisen jedoch den Nachteil auf, dass bei Ihnen zwei der Großen, welche die Elektromigration beeinflussen, miteinander gekoppelt sind. Es ist nicht möglich, die elektrische Stromdichte in der leitfahigen Struktur unabhängig von der Temperatur zu erhohen. Jede Erhöhung der elektrischen Stromdichte fuhrt auch zu einer Erhöhung der Temperatur der leitfahigen Teststruktur. Dies fuhrt zu einer Einschränkung des Parameterraumes der zu untersuchenden Großen, welche Einschränkung nicht hinnehmbar ist.
In J.A. Maiz [2] wird die Auswirkung eines asymmetrischen Stroms auf die Elektromigration untersucht. Als Ergebnis ergibt sich, dass der äquivalente Gleichstrom eines asymmetrischen Stroms durch den Mittelwert des Stroms des Signals gegeben ist.
Aus US 4,739,258 eine Elektromigrations-Testvorrichtung bekannt, bei welcher auf der Waferebene eine Anzahl von integrierten Schaltkreisen implementiert sind, welche jeder eine Dunnfilm-Leiterbahn aufweist. Die Testvorrichtung wird mittels eines externen Heizers geheizt und die Änderung des Widerstandes der Dunnfilm-Leiterbahn wird über der Temperatur aufgetragen.
Der Erfindung liegt das Problem zugrunde, eine einfache Testvorrichtung bereitzustellen, mittels derer ohne einen externen Ofen die Temperatur geregelt werden kann. Bei der Teststruktur soll jedoch keine unerwünschte Koppelung der beiden Großen Temperatur und elektrischer Stromdichte, wie sie bei einer selbstheizenden Teststruktur gemäß dem Stand der Technik auftritt, auftreten.
Das Problem wird durch eine Elektromigrations-Testvorrichtung und ein Elektromigrations-Testverfahren mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelost.
Eine erfindungsgemaße Elektromigrations-Testvorrichtung weist eine Gleichstromquelle und eine Wechselstromquelle auf. Weiterhin weist die Testvorrichtung einen Schaltkreis auf. Dieser weist mindestens eine zu testende leitfahige Struktur auf, welche mit der Gleichstromquelle und der Wechselstromquelle elektrisch leitend verbunden ist. Ferner weist die Testvorrichtung eine Messeinrichtung auf, die derart eingerichtet ist, dass sie einen elektrischen Parameter erfasst, welcher Parameter für eine Elektromigration in der Teststruktur indikativ ist. In der Elektromigrations- Testanordnung ist die Wechselspannungsquelle derart eingerichtet, dass sie die zu testende leitfahige Struktur, unabhängig von einem Gleichstrom der Gleichstromquelle, einem Wechselstrom aussetzt. Mittels des von der
Wechselspannungsquelle erzeugten Wechselstroms wird die zu testende leitfahige Struktur auf eine vorgebbare, vorzugsweise einstellbare, Temperatur aufgeheizt.
Ein erfindungsgemaßes Verfahren zum Testen einer leitfahigen Struktur auf Elektromigration weist folgende Schritte auf. Eine zu testende leitfahige Struktur wird an einen elektrischen Schaltkreis elektrisch gekoppelt, welcher elektrische Schaltkreis mit einer Gleichstromquelle und einer Wechselstromquelle elektrisch gekoppelt ist. In einem zusatzlichen Schritt wird die zu testende leitfahige Struktur einem elektrischen Gleichstrom ausgesetzt, welcher Gleichstrom die Elektromigration innerhalb der zu testenden leitfahigen Struktur bewirkt. Ferner weist das erfindungsgemaße Verfahren ein Heizen der zu testenden leitfahigen Struktur mittels eines von der Wechselspannungsquelle erzeugten Wechselstroms auf, wobei der Wechselstrom unabhängig von dem Gleichstrom ist, welcher die Elektromigration innerhalb der zu testenden leitfahigen Struktur verursacht. Ferner weist das erfindungsgemaße Verfahren den Schritt eines Erfassens eines elektrischen Parameters auf, welcher Parameter für die Elektromigration innerhalb der zu testenden leitfahigen Struktur indikativ ist.
Mittels der Vorrichtung und dem Verfahren wird eine einfache Testvorrichtung bereitgestellt, mittels derer ohne Verwenden eines externen Ofens die Temperatur geregelt wird. Dadurch wird die unerwünschte Koppelung der beiden Großen Temperatur und elektrischer Stromdichte, wie sie bei einer selbstheizenden Teststruktur gemäß dem Stand der Technik auftritt, umgangen. Der vorzugsweise symmetrische, elektrische Wechselstrom, welcher dem Heizen der zu testenden leitfahigen Struktur dient, ruft selber keine Elektromigration in der zu testenden Struktur hervor. Mit der erfindungsge aßen Teststruktur kann die Temperatur, welcher die zu testende Struktur ausgesetzt wird, auf deutlich mehr als 400°C erhöht werden, da bei der Vorrichtung und dem Verfahren nur die zu untersuchende elektrisch leitfahige Struktur geheizt wird. Die Platine selber wird keiner erhöhten Temperatur ausgesetzt. Hierdurch entfallen auch die Probleme und Einschränkungen (z.B. Hitzebestandigkeit) , welche bei Teststrukturen gemäß dem Stand der Technik bei der Auswahl der Platinen auftreten.
Ein weiterer Vorteil der erfindungsgemaßen Vorrichtung gegenüber einer Vorrichtung gemäß dem Stand der Technik ist es, dass dadurch, dass die Temperatur auf höhere Werte gebracht werden kann, die einzelnen Tests der zu testenden leitfahigen Strukturen in einer kürzeren Zeit durchgeführt werden können. Mittels der erfindungsgemaßen Testvorrichtung sind Untersuchungen der Elektromigration in Zeiträumen im Minutenbereich vorzugsweise in einem Zeitraum von 10 Minuten bis 100 Minuten möglich. Die Kurze der Zeitspannen ermöglicht es, dass die Tests direkt auf der Scheibenebene (Wafer) durchgeführt werden können. Dies fuhrt zu einer weiteren Kosteneinsparung, da die oben erwähnten umfangreichen Aktionen zum Präparieren der zu testenden leitfahigen Struktur entfallen.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhangigen Ansprüchen.
Im Weiteren wird die erfindungsgemaße Elektromigrations- Testvorrichtung naher beschrieben. Ausgestaltungen der Elektromigrations-Testvorrichtung gelten auch für das Verfahren zum Testen einer leitfahigen Struktur auf Elektromigration.
In der erfindungsgemaßen Elektromigrations-Testvorrichtung ist der elektrisch leitfahige Parameter vorzugsweise ein elektrischer Widerstand der zu testenden leitfahigen Struktur.
Die erfindungsgemaße Elektromigrations-Testvorrichtung weist vorzugsweise ferner eine Auswerteeinheit zum Ermitteln einer elektrischen Leistung auf. Die Auswerteeinheit weist vorzugsweise eine Spannungsmesseinrichtung und eine Strommesseinrichtung auf. Die Spannungsmesseinrichtung und die Strommesseinrichtung werden so in den Schaltkreis eingebracht, dass die Strommesseinrichtung einen elektrischen Effektivstrom, welcher durch die zu testende leitfahige Struktur fließt, misst, und dass die Spannungsmesseinrichtung eine elektrische Effektivspannung erfasst, welche an der zu testenden leitfähigen Struktur anliegt. Die zu testende leitfähige Struktur besteht vorzugsweise aus Aluminium, Kupfer oder einer Legierung aus Kupfer und Aluminium oder anderen elektrisch leitfähigen Materialien wie z.B. Gold oder Silber.
Die erfindungsgemäße Testvorrichtung weist ferner vorzugsweise eine Steuerungseinrichtung auf. Die Steuerungseinrichtung ist derart eingerichtet, dass sie die Wechselspannungsquelle derart steuert und/oder regelt, dass die Temperatur der zu testenden leitfähigen Struktur eingestellt und konstant auf einem vorgegebenen Niveau gehalten wird.
Zumindest ein Teil der Komponenten der erfindungsgemäßen Testvorrichtung sind vorzugsweise auf einem Halbleiterwafer angeordnet .
Vorzugsweise ist die Wechselstromquelle in einem Pulsgenerator integriert. In den Pulsgenerator ist vorzugsweise auch die Gleichspannungsquelle integriert. D.h. der Pulsgenerator ist vorzugsweise als eine mit einem Offset versehene Wechselstromquelle ausgebildet.
Vorzugsweise ist die Wechselspannungsquelle derart eingerichtet, dass sie einen Wechselstrom erzeugt mit einer Frequenz zwischen 1 kHz und 200 kHz, besonders bevorzugt mit 5 kHz.
Weiter vorzugsweise weist die erfindungsgemäße Elektromigrations-Testvorrichtung zusätzlich einen Heizofen oder Heizplatte auf, welcher derart eingerichtet, dass er die zu testende leitfähige Struktur heizt. Mittels dieses Heizofens kann eine Offsettemperatur eingestellt werden. Diese betragt vorzugsweise ungefähr 200°C bis 250°C.
Ein Ausfuhrungsbeispiel der Erfindung ist in den Figuren dargestellt und wird im Weiteren naher erläutert.
Es zeigen:
Figur 1 eine Elektromigrations-Testvorrichtung gemäß einem Ausfuhrungsbeispiel der Erfindung;
Figur 2 eine Messkurve eines Widerstandes einer leitfahigen Struktur über die Zeit.
Bezugnehmend auf Figur 1 wird eine Elektromigrations- Testvorrichtung gemäß einem Ausfuhrungsbeispiel der Erfindung naher beschrieben.
. Die Elektromigrations-Testvorrichtung weist einen Wafer 108 mit einer zu testenden leitfahigen Struktur 100 auf. Die zu testende leitfahige Struktur besteht aus Aluminium.
Ferner weist die Testvorrichtung eine Gleichstromquelle 101 auf. Die Gleichstromquelle 101 ist mit der zu testenden leitfahigen Struktur 100 elektrisch leitend verbunden. Die Gleichstromquelle 101 dient dazu, die leitfahigen Struktur 100 unter Stress zu setzen. D.h. die elektrisch leitfahige Struktur 100 wird mittels eines angelegten Gleichstroms der Gleichstromquelle Bedingungen ausgesetzt, welche die Elektromigration in der leitfahigen Struktur 100 beschleunigen. Diese Stressbedingung ist eine gegenüber einem Normalbetrieb eines elektronischen Bauteils erhöhte elektrische Stromdichte. Weiterhin weist die Testvorrichtung einen Pulsgenerator 102 auf. Dieser ist zwischen die Gleichstromquelle 101 und die zu testende leitfahige Struktur 100 geschaltet. Der Pulsgenerator 102 überlagert dem Gleichstrom, welcher als Stressstrom dient, einen symmetrischen Wechselstrom. Der symmetrische Wechselstrom wird verwendet, um mittels eines ohmschen Widerstandes der elektrisch leitfahigen Struktur 100 die elektrisch leitfahige Struktur aufzuheizen. Da der Pulsgenerator einen symmetrischen Wechselstrom zur Verfugung stellt, wird die Elektromigration kaum durch die elektrische Stromdichte, welche durch den Wechselstrom bewirkt wird, beeinflusst. Die einzige Wirkung des Wechselstroms ist das Aufheizen der zu testenden leitfahigen Struktur 100. Die im Ausfuhrungsbeispiel eingestellte Temperatur ist 262°C. Die Temperatur wird im Ausfuhrungsbeispiel mittels Erfassens der thermischen Widerstandserhohung der leitfahigen Struktur ermittelt. Gegebenenfalls wird die Hohe des Wechselstromes nachgeregelt, so dass eine konstante Temperatur und damit konstante Stressbedingungen für die elektrisch leitfahige Struktur beibehalten werden. Die Hohe des für das Heizen auf diese Temperatur benotigten Wechselstromes betragt 23,3 mA. Die Frequenz des Wechselstroms betragt 5 kHz. Der Gleichstrom, welcher als Stressstrom dient betragt 0,5 mA.
Ferner weist die Testvorrichtung eine Strommesseinrichtung 103 auf. Die Strommesseinrichtung 103 ist in einem Schaltkreis 104 integriert, welcher die zu testende leitfahige Struktur 100, die Gleichstromquelle 101 und den Pulsgenerator 102 elektrisch leitend koppelt. Mittels der Strommesseinrichtung 103 wird der Effektivstrom erfasst, welcher durch die leitfahige Struktur 100 fließt.
Weiterhin weist die erfindungsgemaße Elektro igrations- Testvorrichtung eine Spannungsmesseinrichtung 105 auf. Die Spannungsmesseinrichtung 105 erfasst die elektrische Effektivspannung, welche zwischen einem ersten Spannungsabgriff 106 und einem zweiten Spannungsabgriff 107, von denen einer der Spannungsabgriffe im Anfangsbereich und der andere Spannungsabgriff im Endbereich der leitfahigen Struktur angeordnet sind, an der elektrisch leitfahigen Struktur 100 abfallt.
Weiterhin weist die erfindungsgemaße Elektromigrations- Testvorrichtung einen Computer (nicht gezeigt) auf. Der Computer liest von der Spannungsmesseinrichtung 105 und der Strommesseinrichtung 104 erfasste Werte ein. Mittels der erfassten und eingelesenen Werte bestimmt der Computer einen Widerstand der zu testenden leitfahigen Struktur 100. Über den so bestimmten Widerstand wird auch die Temperatur der zu testenden leitfahigen Struktur (Stresstemperatur) bestimmt. Ferner ist der Computer so eingerichtet, dass er die Hohe des Wechselstromes so nachregelt, dass die Stresstemperatur konstant ist.
Die zu testende leitfahige Struktur 100 ist direkt auf der Scheibenebene eines Halbleiterwafers angeordnet.
Figur 2 zeigt den zeitlichen Verlauf des mittels der erfindungsgemaßen Elektromigrations-Testvorrichtung bestimmten Widerstands der zu testenden elektrisch leitfahigen Struktur 100. Die Parameter für die Bestimmung des Widerstandes waren ein Wechselstrome von 23,3 mA, dies entspricht einer Temperatur von 262°C. Der auferlegte Stressstrom ist 0,5 mA. Der Test wurde über einen Zeitraum von rund 10.000 s durchgeführt. Es ist deutlich ein sprunghafter Anstieg 209 des bestimmten Widerstandes gegen Ende der Messperiode zu erkennen. Zu diesem Zeitpunkt hat die Elektromigration eine Schädigung der zu testenden elektrisch leitfahigen Struktur verursacht, in deren Folge ein oder mehrere Voids eine drastische Verringerung des leitenden Materials im Leitungsquerschnitt hervorrufen. Dadurch steigt der Widerstand schlagartig an. . Ein Test zum Untersuchen der Elektromigration dauert vorzugsweise solange bis eine signifikante Erhöhung des elektrische Widerstandes registriert wird.
Zusammenfassend schafft die Erfindung eine Elektromigrations- Testvorrichtung, welche einen schnellen, einfachen und kostengünstigen Test von auf Elektromigration zu testenden leitfahigen Strukturen ermöglicht. Die erfindungsgemaße Elektromigrations-Testvorrichtung benotigt einerseits keinen externen Heizofen zum Heizen der zu testenden leitfahigen Struktur. Andererseits zeigt die erfindungsgemaße Ausfuhrungsform aber auch nicht den Nachteil der selbstheizenden Teststrukturen gemäß dem Stand der Technik, dass die beiden Parameter Temperatur und elektrische Stromdichte, welche die Elektromigration in der zu testenden leitfahigen Struktur beeinflussen, gekoppelt sind.
In diesem Dokument ist folgendes Dokument zitiert:
[1] Electromigration under Time-Varying Current Stress,
T. Jiang et al., Microelectronics Reliability 38(3) (1998) pp. 295-308
[2] Characterization of Electromigration under Bidirectional (BC) and Pulsed Unidirectional (PDC) Currents, J.A. Maiz, Reliability Physics Symposium, 27th Annual Proceedings, April 1989, pp. 220-228
Bezugszeichenliste
100 zu testende leitfahige Struktur
101 Gleichstromquelle
102 Pulsgenerator
103 Strommesseinrichtung
104 Stromkreis
105 Spannungsmesseinrichtung
106 ersten Spannungsabgriff
107 zweiter Spannungsabgriff
108 Wafer
209 sprunghafter Anstieg des Widerstandes

Claims

Patentansprüche
1. Elektromigrations-Testvorrichtung, welche aufweist: eine Gleichstromquelle; eine Wechselspannungsquelle; einen Schaltkreis mit mindestens einer zu testenden leitfahigen Struktur, welcher mit der Gleichstromquelle und der Wechselspannungsquelle elektrisch gekoppelt ist; und eine Messeinrichtung, die derart eingerichtet ist, dass sie einen elektrischer Parameter, welcher für eine Elektromigration in der zu testenden leitfahigen Struktur indikativ ist, erfasst; wobei die Wechselspannungsquelle derart eingerichtet ist, dass sie die zu testende leitfahige Struktur, unabhängig von einem Gleichstrom der Gleichstromquelle, einem Wechselstrom aussetzt und so die zu testende leitfahige Struktur auf eine vorgegebene einstellbare Temperatur heizt .
2. Vorrichtung gemäß Anspruch 1, wobei der elektrische Parameter ein Widerstand der zu testenden leitfahigen Struktur ist.
3. Vorrichtung gemäß Anspruch 1 oder 2, welche weiterhin eine Auswerteeinheit zum Ermitteln einer elektrischen Leistung aufweist, wobei die Auswerteeinheit eine Spannungsmesseinrichtung und eine Strommesseinrichtung aufweist, welche so in den Schaltkreis implementiert sind, dass mittels dieser ein Effektivstrom durch die zu testende leitfahige Struktur und eine Effektivspannung, welche an der zu testenden leitfahigen Struktur anliegt, erfassbar sind.
4. Vorrichtung gemäß einem der Ansprüche 1 bis 3, wobei eine Steuerungseinrichtung vorgesehen ist, welche derart eingerichtet ist, dass die Steuerungseinrichtung die Wechselspannungsquelle derart steuert, dass die Temperatur der zu testenden leitfähigen Struktur konstant gehalten werden kann.
5. Vorrichtung gemäß einem der Ansprüche 1 bis 4, wobei die zu testende leitfähige Struktur auf oder in einem Halbleiterwafer angeordnet ist.
6. Vorrichtung gemäß einem der Ansprüche 1 bis 5, wobei die Wechselstromquelle und die Gleichstromquelle in einen Pulsgenerator integriert sind.
7. Vorrichtung gemäß einem der Ansprüche 1 bis 6, welche weiterhin einen Heizofen aufweist, der derart eingerichtet ist, dass er die zu testende leitfähige Struktur heizt.
8. Verfahren zum Testen einer leitfähigen Struktur auf Elektromigration, welches folgende Schritte aufweist: elektrisches Koppeln einer zu testenden leitfähigen Struktur mit einem elektrischen Schaltkreis, welcher mit einer Gleichstromquelle und einer Wechselstromquelle elektrisch gekoppelt ist;
Versorgen der zu testenden leitfähigen Struktur mit einem
Gleichstrom, welcher die Elektromigration innerhalb der zu testenden leitfähigen Struktur verursacht;
Heizen der zu testenden leitfähigen Struktur mittels des
Wechselstroms, wobei der Wechselstrom unabhängig von einem
Gleichstrom ist, welcher Gleichstrom die Elektromigration innerhalb der zu testenden leitfähigen Struktur bewirkt; und
Erfassen eines elektrischen Parameters, welcher für die Elektromigration innerhalb der zu testenden leitfahigen Struktur indikativ ist.
9. Verfahren gemäß Anspruch 8, wobei als elektrischer Parameter ein Widerstand der zu testenden leitfahigen Struktur erfasst wird.
10. Verfahren gemäß Anspruch 8 oder 9, bei dem als weitere Schritte ein Effektivstrom in der zu testenden leitfahigen Struktur und eine Effektivspannung, welche an der zu testenden leitfahigen Struktur anliegt, erfasst werden und daraus eine elektrische Leistung bestimmt wird.
11. Verfahren gemäß einem der Ansprüche 8 bis 10, wobei mittels der Auswerteeinheit die Temperatur der zu testenden leitfahigen Struktur auf einen konstanten Wert geregelt wird.
12. Verfahren gemäß einem der Ansprüche 8 bis 11, wobei die zu testende leitfahige Struktur auf oder in einem Halbleiterwafer gebildet wird.
PCT/DE2003/002112 2002-06-25 2003-06-25 Elektromigrations-testvorrichtung und elektromigrations-testverfahren WO2004001432A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004514570A JP2005536871A (ja) 2002-06-25 2003-06-25 エレクトロマイグレーション試験装置およびその方法
US10/519,659 US20060125494A1 (en) 2002-06-25 2003-06-25 Electromigration test device and electromigration test method
EP03740110A EP1516195A1 (de) 2002-06-25 2003-06-25 Elektromigrations-testvorrichtung und elektromigrations-testverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10228284.6 2002-06-25
DE10228284 2002-06-25

Publications (1)

Publication Number Publication Date
WO2004001432A1 true WO2004001432A1 (de) 2003-12-31

Family

ID=29795873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002112 WO2004001432A1 (de) 2002-06-25 2003-06-25 Elektromigrations-testvorrichtung und elektromigrations-testverfahren

Country Status (6)

Country Link
US (1) US20060125494A1 (de)
EP (1) EP1516195A1 (de)
JP (1) JP2005536871A (de)
CN (1) CN100412561C (de)
TW (1) TWI221908B (de)
WO (1) WO2004001432A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1978371A1 (de) * 2007-04-02 2008-10-08 Nxp B.V. Vorrichtungen und Verfahren zur Überprüfung und Bewertung von Elektromigration
CN107063891A (zh) * 2017-04-10 2017-08-18 河南科技大学 一种用于热电复合场下电迁移的装置及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187160B2 (en) * 2005-07-26 2007-03-06 Higgins James C Systems and methods for measuring an RMS voltage
CN101295002B (zh) * 2007-04-24 2010-09-29 中芯国际集成电路制造(上海)有限公司 互连线失效检测方法
CN101493497B (zh) * 2008-01-24 2011-04-20 中芯国际集成电路制造(上海)有限公司 一种可提高测试效率的应力迁移测试方法
JP2012043924A (ja) * 2010-08-18 2012-03-01 Sharp Corp Ledの信頼性評価方法および評価用チップ
CN102955121B (zh) * 2012-10-30 2014-11-19 工业和信息化部电子第五研究所 一种电迁移失效的剩余寿命预测方法和装置
US10732216B2 (en) * 2012-10-30 2020-08-04 Fifth Electronics Research Institute Of Ministry Of Industry And Information Technology Method and device of remaining life prediction for electromigration failure
US9851397B2 (en) * 2015-03-02 2017-12-26 Globalfoundries Inc. Electromigration testing of interconnect analogues having bottom-connected sensory pins
US9753076B2 (en) 2016-01-28 2017-09-05 International Business Machines Corporation Voltage rail monitoring to detect electromigration
CN106449460B (zh) * 2016-10-26 2019-09-17 上海华力微电子有限公司 恒温电迁移测试中的电流加速因子评估方法
CN107064571B (zh) * 2017-04-10 2023-03-14 河南科技大学 一种方便装卸测试式样的导电装置及恒温电迁移实验装置
DE102020204733A1 (de) * 2020-04-15 2021-10-21 Robert Bosch Gesellschaft mit beschränkter Haftung Testvorrichtung, Steuergerätesystem und Verfahren zum Testen
CN113327864B (zh) * 2021-04-28 2022-06-07 长江存储科技有限责任公司 一种应力迁移的可靠性评估方法、装置及***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291142A (en) * 1992-05-08 1994-03-01 Tadahiro Ohmi Method and apparatus for measuring the resistance of conductive materials due to electromigration

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483629A (en) * 1983-01-05 1984-11-20 Syracuse University Dynamic testing of electrical conductors
US5625288A (en) * 1993-10-22 1997-04-29 Sandia Corporation On-clip high frequency reliability and failure test structures
EP0907085A1 (de) * 1997-10-03 1999-04-07 Interuniversitair Microelektronica Centrum Vzw Verfahren zum Messen von Wiederstandsänderungen durch Elektromigration
US6223686B1 (en) * 1998-02-06 2001-05-01 Shimadzu Corporation Apparatus for forming a thin film by plasma chemical vapor deposition
JP2002026099A (ja) * 2000-07-12 2002-01-25 Nec Kyushu Ltd エレクトロマイグレーション評価回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291142A (en) * 1992-05-08 1994-03-01 Tadahiro Ohmi Method and apparatus for measuring the resistance of conductive materials due to electromigration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JONES, ROBERT E., SMITH, LARRY D.: "A new wafer isothermal Joule-heated electromigration test for rapid testing of integrated-circuit interconnect", JOURNAL OF APPLIED PHYSICS, vol. 61, 1 May 1987 (1987-05-01), New York, USA, pages 4670 - 4678, XP002263291 *
MAIZ J A: "Characterization of electromigration under bidirectional (BC) and pulsed unidirectional (PDC) currents", IEEE, 11 April 1989 (1989-04-11), pages 220 - 228, XP010080614 *
TAO J ET AL: "ELECTROMIGRATION UNDER TIME-VARYING CURRENT STRESS", MICROELECTRONICS AND RELIABILITY, ELSEVIER SCIENCE LTD, GB, vol. 38, no. 3, 1998, pages 295 - 308, XP008025212, ISSN: 0026-2714 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1978371A1 (de) * 2007-04-02 2008-10-08 Nxp B.V. Vorrichtungen und Verfahren zur Überprüfung und Bewertung von Elektromigration
WO2008120151A1 (en) 2007-04-02 2008-10-09 Nxp B.V. Electromigration testing and evaluation apparatus and methods
US8237458B2 (en) 2007-04-02 2012-08-07 Nxp B.V. Electromigration testing and evaluation apparatus and methods
CN107063891A (zh) * 2017-04-10 2017-08-18 河南科技大学 一种用于热电复合场下电迁移的装置及方法
CN107063891B (zh) * 2017-04-10 2023-04-11 河南科技大学 一种用于热电复合场下电迁移的装置及方法

Also Published As

Publication number Publication date
TWI221908B (en) 2004-10-11
CN1662823A (zh) 2005-08-31
JP2005536871A (ja) 2005-12-02
US20060125494A1 (en) 2006-06-15
TW200403441A (en) 2004-03-01
EP1516195A1 (de) 2005-03-23
CN100412561C (zh) 2008-08-20

Similar Documents

Publication Publication Date Title
WO2004001432A1 (de) Elektromigrations-testvorrichtung und elektromigrations-testverfahren
DE69925878T2 (de) Verfahren und Vorrichtung zur "Flip-Chip" Montage eines elektronischen Bauteils
DE60114730T2 (de) Inspektionsverfahren und -vorrichtung durch Sinterung
DE69323270T2 (de) Verfahren und Apparat zum Belasten, Einbrennen und Reduzieren des Leckstromes elektronischer Anordnungen unter Gebrauch von Mikrowellenstrahlung
DE602004010116T2 (de) Verfahren und vorrichtung zum testen elektrischer eigenschaften eines zu prüfenden objekts
EP0795756A2 (de) Verfahren zur Abschätzung der Lebensdauer eines Leistungshalbleiter-Bauelements
EP3631976B1 (de) Verfahren zur erkennung eines kontaktfehlers in einer photovoltaikanlage
DE102006057538A1 (de) Flüssigkeitszustands-Detektionselement und Flüssigkeitszustands-Detektionssensor
DE10255378A1 (de) Teststruktur zum Bestimmen der Stabilität elektronischer Vorrichtungen die miteinander verbundene Substrate umfassen
DE102010006130A1 (de) Verfahren und Anordnung zur Qualitätsbestimmung einer Drahtbondverbindung
DE69431233T2 (de) Bestimmung des Oberflächenisolationswiderstands von Leiterplatten
DE102005043270B4 (de) Vorrichtung zur Temperaturüberwachung von planaren Feldeffekttransistoren sowie zugehöriges Herstellungsverfahren
DE112013007417T5 (de) Schaltelement, Halbleiteranordnung und Verfahren zum Herstellen einer Halbleiteranordnung
DE69104248T2 (de) Elektromigrationsüberwachungseinrichtung für integrierte Schaltungen.
DE102014102476A1 (de) Heizungssteuerungs-verfahren und heizungssteuerungs-vorrichtung für gassensoren
DE102023111492A1 (de) Verfahren zur frühen detektion von thermischem durchgehen durch interpretieren einer aufladungsantwort auf zellenebene
EP1577676A1 (de) Verfahren und Schaltung zum Schutz von Prüfkontakten bei der Hochstrom-Messung von Halbleiter-Bauelementen
DE19833453C2 (de) Vorrichtung und Betriebsverfahren an/in geheizten Gassensoren zur Minimierung von Leckstrom-Einflüssen
DE112010003726T5 (de) Inline-Charakteriserung
DE102013203451B4 (de) Ankopplungsschaltung für ein Isolationsüberwachungsgerät und Isolationsüberwachungsgerät
DE10211569A1 (de) Elektromigration-Teststruktur, Substrat, Elektromigration-Testanordnung und Verfahren zum Ermitteln von Elektromigration
WO2004048985A1 (de) Vorrichtung und verfahren zur erfassung von stressmigrations-eigenschaften
DE10216017A1 (de) Halbleiterbauelement
DE102019212028A1 (de) Verfahren zum Ermittelneines Zustands einer Lötstelle, Messgerät
DE69515956T2 (de) Verfahren und Vorrichtung zum gleichzeitigen Messen des Ausbreitungsgrades und der Temperatur eines Risses in der Oberfläche eines leitfähigen Festkörpers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003740110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004514570

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038148048

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003740110

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006125494

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519659

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10519659

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003740110

Country of ref document: EP