WO2003098674A1 - Method of inspecting metal film machining residue, inspection apparatus and process for producing thin-film device - Google Patents

Method of inspecting metal film machining residue, inspection apparatus and process for producing thin-film device Download PDF

Info

Publication number
WO2003098674A1
WO2003098674A1 PCT/JP2003/006351 JP0306351W WO03098674A1 WO 2003098674 A1 WO2003098674 A1 WO 2003098674A1 JP 0306351 W JP0306351 W JP 0306351W WO 03098674 A1 WO03098674 A1 WO 03098674A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal film
processing
remaining
film
light
Prior art date
Application number
PCT/JP2003/006351
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Baba
Mineo Nomoto
Takenori Hirose
Masashi Sawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2003098674A1 publication Critical patent/WO2003098674A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Definitions

  • the present invention relates to a method of inspecting metal film residue in a process of manufacturing a thin film device such as a semiconductor device, an inspection apparatus thereof, and a manufacturing method using the same.
  • This technology relates to technology that automatically and accurately inspects the outermost surface film after planarization processing typified by Chemical Mechanical Polishing to improve productivity. Background art
  • a semiconductor device is manufactured by forming a device and a wiring on a silicon wafer by repeating film formation, exposure, and etching. At this time, the surface of the wafer is flattened because irregularities on the surface of the wafer make it difficult to perform exposure that is indispensable for forming wiring and the like.
  • CMP Chemical Mechanical Polishing
  • This CMP is a processing method known in the art.
  • CMP which is a planarization process
  • a film removing process is also used in a film removing process.
  • a contact hole formed in the oxide film 52 by etching is used to form a surplus portion other than a plug portion made of a metal film formed by CVD, sputtering, or the like.
  • the process of removing the metal film by CMP is performed.
  • Such a process is called embedded wiring.
  • This is a process that is also used in the damascene method and the dual damascene method in which wiring and a plug are simultaneously formed. This technique is currently used frequently in semiconductor device manufacturing.
  • film thickness control One of the important issues in the planarization process is film thickness control. Conventionally, this was controlled by the processing time. Generally, the processing rate is calculated from the processing amount obtained by measuring the film thickness before and after the CMP processing and the processing time during which the processing is actually performed, and this is fed back to the next processing time. Things. When measuring the film thickness, a conventional film thickness measurement device formed around the chip, etc., was used to measure a sufficiently large pattern (TEG (Test Element Group) pattern).
  • TAG Transmission Element Group
  • CMP in the film removal process is a process currently performed on, for example, a metal film, and is a process of removing a metal film other than the plug portion by processing, but when processing conditions are not appropriate.
  • the remaining metal film processing 51 remains, and the plug 53 is short-circuited by the remaining metal film processing 51.
  • the remaining metal film processing is inspected. If there is any remaining processing, additional processing must be performed.
  • techniques to measure the metal film thickness with a wide range and high accuracy have been established. However, most of these techniques are suitable for measurement on a metal pattern.
  • the present invention has been made in view of the above points, and an object of the present invention is to automatically and accurately inspect a metal film remaining after flattening a metal thin film to be formed. It is in.
  • the present invention provides a method in which a sample in which an optically transparent thin film and a metal film are mixed is irradiated with light, reflected light generated from the sample by the light irradiation is detected, and the detected reflection is detected.
  • the presence or absence of the metal film remaining after CMP is determined based on the light reflection intensity or reflectance.
  • the remaining film thickness is measured as necessary.
  • the present invention also provides a method in which a sample in which an optically transparent thin film and a metal film are mixed is irradiated with white light, and the spectral reflection intensity or the spectral reflectance generated from the sample by the irradiation of the white light is detected.
  • the detected spectral reflection intensity or spectral reflectance is compared with a judgment threshold value determined based on the film structure (film material, refractive index, extinction coefficient, film thickness, etc.) in the measurement visual field.
  • This is a metal film processing residue inspection method for detecting the presence or absence of metal film residue after planarization.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of a metal film remaining processing inspection apparatus according to the present invention.
  • FIGS. 2A and 2B are explanatory views showing a cross section of a main portion of a chip of a Bragg metal after CMP in a semiconductor device manufacturing process, wherein FIG. 2A shows a state in which a metal film processing residue remains, and FIG. (C) shows the state in which FIG. 4 is a diagram showing a state where the occurrence of the stagnation occurs.
  • FIG. 3 is an explanatory view showing a flow of the metal film processing residual inspection according to the present invention.
  • FIG. 4 is a detection optical system using epi-illumination as a first embodiment of the detection optical system shown in FIG.
  • FIG. 3 is an explanatory diagram illustrating a configuration of a system.
  • FIG. 5 is an explanatory diagram showing a spectral waveform and a threshold used as a criterion for determining whether or not the metal film is left unprocessed.
  • FIG. 6 is an explanatory diagram showing a state of reflection of measurement light in a multilayer model.
  • FIG. 7 is an explanatory diagram showing a difference in reflectance of a metal thin film and an oxide film with respect to wavelength.
  • FIG. 8 is an explanatory diagram showing a configuration of a detection optical system using directional illumination as a second embodiment of the detection optical system shown in FIG.
  • FIG. 9 is an explanatory diagram showing a difference in reflectance with respect to an incident angle between a metal thin film and an oxide film.
  • FIG. 10 is an explanatory diagram showing a configuration of a detection optical system using projection illumination as a third embodiment of the detection optical system shown in FIG.
  • FIG. 11 is an explanatory diagram showing the principle of detection by the detection optical system of FIG. 10.
  • FIG. 12 is an explanatory diagram showing the principle of detection by the detection optical system of FIG.
  • FIG. 13 is an explanatory diagram showing a configuration of a detection optical system using near-field light as a fourth embodiment of the detection optical system shown in FIG.
  • FIG. 14 is an explanatory diagram showing an example of a light emission spectrum in a detection optical system using near-field light.
  • FIG. 15 is an explanatory diagram showing a wafer and a chip formed on the wafer.
  • FIG. 16 is an explanatory diagram showing a method for specifying a remaining area to be processed using an image in a chip. -
  • FIG. 17 is an explanatory diagram showing a difference in pattern area and pattern density of the plug portion.
  • FIG. 18 is an explanatory diagram showing a region where an unprocessed portion is easily formed in an oxide film before a metal film is formed.
  • FIG. 19 is an explanatory diagram showing a display method of a measurement result.
  • FIG. 20 is an explanatory diagram showing the use of the metal film remaining processing inspection method according to the present invention for manufacturing thin film devices.
  • FIG. 1 is a view showing a schematic configuration of an embodiment of a metal film remaining processing inspection apparatus according to the present invention.
  • 1 is a detection optical system
  • 2 is a load port for loading and unloading a wafer
  • 3 is a stage on which a sample 4 is mounted
  • 4 is a sample to be inspected after CMP processing (here, a wafer).
  • 5 is an arithmetic storage device such as a personal computer for controlling the device, performing calculations and storing the calculation results,
  • 6 is an input device such as a key board and a mouse
  • 7 is a monitor for displaying the interface for operating the device and displaying the results
  • 8 is a printer and a floppy disk
  • External output such as MO ⁇ It is a storage device.
  • FIG. 3 is a diagram showing a flow of the metal film remaining processing inspection according to the present invention. No.
  • a wafer (sample) 4 is read from the load port 2 onto the stage 3 (S 1), and the wafer 4 is described in Japanese Patent Application Laid-Open No. 2000-94437. Is accurately aligned (positioned) using the method (S
  • the measurement area for example, the measurement chip
  • the measurement point in the measurement area for example, the measurement chip
  • step S5 measurement is performed (residual film determination S51 and film thickness measurement S52 are performed).
  • step S5 measurement is performed (residual film determination S51 and film thickness measurement S52 are performed).
  • step S5 measurement is performed (residual film determination S51 and film thickness measurement S52 are performed).
  • step S5 measurement is performed (residual film determination S51 and film thickness measurement S52 are performed).
  • the result is displayed on the monitor 7 (S53).
  • the result is output to the outside by the external output device 8 as necessary (S54).
  • the measured wafer 4 is unloaded (S6)
  • FIG. 4 is a diagram showing a configuration of an optical system using epi-illumination as a first embodiment of the detection optical system 1 shown in FIG.
  • an optical system using directional illumination as shown in FIGS. 8 and 10 may be used, as shown in FIG.
  • An optical system that emits such near-field light can be used.
  • FIG. 4 9 is a white light source
  • 10 is an objective lens
  • 11 and 13 are beam splitters
  • 12, 14, and 16 are lenses
  • 15 is a spatial filter
  • 17 is a field stop
  • 18 is detection.
  • Finino 19 is a spectroscope
  • 20 is a CCD camera.
  • a halogen lamp or a xenon lamp having a wide wavelength band is used as the white light source 9.
  • the light emitted from the white light source 9 is applied to the sample 4 via the beam splitter 11 and the objective lens 9.
  • the reflected light from the sample 4 is imaged again by the lens systems 12, 14, and 16.
  • the spatial filter 15 is provided on the Fourier transform surface of the lens systems 12, 14, 16 to provide a sample surface. Removes the scattered light and diffracted light, and passes only the 0th order light.
  • a field stop 17 is installed at the image forming position, and an arbitrary detection area (measurement field of view) is set. The light that has passed through the field stop 17 is incident on the detection fiber 18, and the incident light is separated by the spectroscope 19, and a spectral data can be obtained.
  • the sample 4 is irradiated with white light, and the spectral reflection intensity from the sample 4 is detected by the spectroscope 19.
  • the sample 4 was irradiated with white light when the metal film was completely removed to expose the oxide film 52 and when the metal film processing residue 51 was left. Since the spectral reflection intensity or the spectral reflectance of the sample is different, a certain threshold value is set for the spectral reflection intensity from the sample surface or the peak value of the spectral reflectance, and the threshold value is used as a criterion. Then, the presence or absence of the remaining film 51 is determined.
  • FIG. 5 shows an embodiment of a method of setting a judgment threshold value for judging the presence or absence of a metal film processing residue when detecting the processing residue using the detected spectral reflectance in this epi-illumination optical system. .
  • the maximum value of the reflectance of the spectral waveform 22 when there is no metal film residue is theoretically always on the constant curve 23 regardless of the oxide film thickness. There is no reflection higher than 23.
  • the theoretical waveform 21 when there is a metal film residue 51 on the oxide film 52 shows that the maximum value of the reflectance of the spectral waveform does not fall on the curve 23 according to the theoretical formula.
  • the threshold value Yt on the vein pattern which assumes that the plug occupies the entire field of view, is determined by the interface between the outermost surface and air.
  • the following equation (1) is used, using the reflectance rj + of and the reflectance R j up to the i-th layer.
  • the threshold on the actual pattern needs to consider the area ratio occupied by the plug portion in the measurement field of view, and can be expressed by the following equation (2)
  • the above-mentioned curve 23 as the judgment threshold value is expressed by the ratio of the area occupied by the plug portion within the measurement visual field (the ratio of the area occupied by the portion other than the plug portion (oxide film), irrespective of the plug width at the measurement point). ( ⁇ 2 ), plug metal material (strength reflectance Rm is determined), and film structure of base film and oxide film (reflectance r n
  • the thresholds on the actual pattern can be obtained by using equations (1) and (2).
  • the optical constant of the film structure is determined by determining the threshold value for determining the presence or absence of the unprocessed metal film on the actual pattern by the above formulas (1) and (2). It is necessary to calculate using.
  • the threshold value on the actual pattern is calculated in the arithmetic storage device 5, and the spectrometer 1 of the detection optical system 1
  • the maximum value of the reflectance of the detected spectrum detected from 9 is compared with the calculated determination threshold value (curve) 23 to detect the presence / absence of metal film processing residue.
  • the epi-illumination optical system may also use monochromatic light for illumination, and determine the presence or absence of metal film processing residue by comparing the reflection intensity.
  • the reflectance 31 from the oxide film is higher than the reflectance 30 from the metal film, while the wavelength region 29 is shorter than the wavelength region 29.
  • the reflectance 31 from above the oxide film is lower than the reflectance 30 from the metal film.
  • FIG. 8 is a diagram showing a configuration of an optical system using directional lighting as a second embodiment of the detection optical system 1 in FIG. 1.
  • 101, 102 Is a light source
  • 103 and 104 are photodetectors.
  • a pair of a light source 101, a photodetector 103, a light source 102, A pair of photodetectors 104 constitutes a detection optical system, and white light or monochromatic light is used for the light sources 101 and 102, and photodetectors 103 and 104 are used for the light sources.
  • a phototube, photomultiplier tube (photomultiplier), or a photoelectric converter such as a CCD sensor Use a phototube, photomultiplier tube (photomultiplier), or a photoelectric converter such as a CCD sensor.
  • the angle of incidence of the light source with respect to the sample 4 is such that the magnitude of the reflected light intensity from the light source is reversed depending on the presence or absence of the remaining metal film.For example, the light source 101 is changed to 110 in FIG.
  • the incident angles of the light source 101 and the light source 102 are 1 110 and 1 1 Not limited to 1 angle.
  • 107 is the reflectance from the metal film
  • 108 is the reflectance from the oxide film.
  • the reflectance obtained from the sample irradiated at the incident angle of 110 is detected by the photodetector 103, and the reflectance obtained from the sample irradiated at the incident angle of 110 is detected by the photodetector 104.
  • the reflectance detected by the photodetector 103 is compared with the reflectance detected by the photodetector 104, and the reflectance detected by the photodetector 103 becomes larger. In this case, it can be determined that the metal film remains. In this comparison, it is clear that the reflectance ratio may be taken.
  • the angle of incidence 01 of the illumination is set so that the difference 112 between the reflectance 107 from the metal film and the reflectance 108 from the oxide film is, for example, the maximum.
  • the incident angle is set to 0X, it is possible to distinguish between the reflected light from the metal film and the reflected light from the oxide film, and only one light source may be used. Is most preferable, but it is sufficient if the incident angle is in a range where there is a significant difference between the reflectance 107 from the metal film and the reflectance 108 from the oxide film.
  • 109 represents an incident angle at which the unprocessed portion of the metal film cannot be detected.
  • FIG. 10 is a diagram showing a configuration of another optical system using projection illumination as a third embodiment of the detection optical system 1 in FIG. 1, and FIG. Is a light source, 202 is a p-polarized light filter that passes only the p-polarized light component, and 203 is a photodetector.
  • monochromatic light is used for the light source 201, and the incident angle of the light source 201 with respect to the sample 4 is a pre-use angle with respect to the oxide film and the air. (There is no p-polarized light reflection component of the light.)
  • a photoelectric converter such as a photoelectric tube, a photomultiplier tube (photomultiplier), or a CCD sensor is used.
  • FIG. 13 is a diagram showing a configuration of an optical system for irradiating near-field light as a fourth embodiment of the detection optical system 1 in FIG. 1.
  • a light source, 302 is a beam splitter
  • 303 is a probe for narrowing down the excitation light very finely
  • 304 is a photodetector.
  • the emission spectrum 307 from the sample surface or the reflection light spectrum as shown in Fig. 14 (reflection light spectrum is not shown in the figure). )
  • the material on the sample surface alone can be directly analyzed from its peak position, such as 308. Therefore, in this case, it is possible to more strictly analyze the composition of the sample surface as compared with the above-described case using the epi-illumination or the directional illumination, and it is possible to more strictly detect the unprocessed metal film residue.
  • the inspection area inspection field of view
  • the inspection area can be narrowed down to a local area of 100 nm or less.
  • a plurality of each of the above-described detection optical systems may be provided, or each of the detection optical systems may be appropriately combined so as to meet the inspection needs.
  • the inspection object 4 can be observed by the CCD camera 20, and the thickness of a metal film or an oxide film can be measured.
  • the residual processing of the metal film can be inspected with a relatively simple optical system.
  • the inspection area is submicron. Local inspections are also possible because orders can be narrowed down.
  • the detection optical system shown in FIG. 13 may be used. As described above, each detection optical system has its own features, and the detection optical systems may be appropriately combined to meet the inspection needs.
  • Inspection is basically performed in units of chips 502 in the wafer 501 shown in FIG. 15, and measurement points are also set in units of chips 502 (see FIG. 15).
  • the lower part shows an enlarged chip).
  • a method of setting measurement points when performing in-chip inspection considering that measurement is to be performed in real time, specify in advance an area that is likely to be left unprocessed in the chip, and measure the area.
  • a method of setting points is desirable. Specific examples of the method include a method using image processing, a method using the area ratio of the plug portion, and a method using the thickness of the oxide film before forming the plug metal.
  • color unevenness in the chip 502 having a high possibility of remaining metal film processing is detected by image processing.
  • the entire area in the measurement chip 502 is divided into small areas (divided imaging areas) 504, the captured image of each small area 504 is captured, and the captured divided area image 5
  • the non-uniform color region 507 is detected by comparing 05 with a reference image 506 having no added residue in the corresponding divided image region. The comparison at this time is performed using the lightness difference between the two images 505 and 506, and the measurement points are set for the specified area.
  • the method of using the area ratio data of the plug portion in the chip predicts the area that is likely to be left unprocessed in the chip from the pattern area, pattern density, etc. of the plug 53 by simulation, etc. Then, a measurement point is set in the area specified based on the prediction data.
  • reference numeral 5110 denotes a region of a large pattern area and a pattern density dog
  • 511 denotes a region of a large pattern area and a small pattern density
  • 512 denotes a region of a small pattern area and a large pattern density.
  • Regions, and 5 13 schematically represent regions having a small pattern area and a small pattern density.
  • the method using the thickness distribution data of the oxide film before the plug metal deposition is performed by measuring the thickness distribution data of the oxide film before the plug metal is deposited using the measurement optical system shown in Fig. 4. Sampled in advance by the equipment, and from the distribution data, measurement points are set in the area 5 14 where the metal film with the concave surface of the oxide film 52 is likely to remain unprocessed as shown in Fig. 18 I do.
  • the remaining processing of the metal film is inspected and, if necessary, the remaining processing amount (film thickness) is measured.
  • the measurement result is displayed on the monitor of the measuring device. As shown in FIG. 19, the position of the measurement chip 502 in the wafer 501 is displayed as a matrix 601, and the metal film in the chip 502 is displayed. Display the distribution of the remaining processing of 602. Further, by measuring the total number of chips, it is possible to display the residual processing distribution 603 in the wafer 501. In addition, the area of the unprocessed area is displayed as necessary using the image of the remaining area.
  • the metal film remaining processing inspection method according to the present invention is used for the remaining processing inspection of a metal film after CMP processing, which is currently performed by a worker, the remaining processing that cannot be specified by the visual observation of the worker can be specified. As a result, inspections with higher reliability than before can be performed. In addition, it is possible to accurately determine the additional processing time from the measurement result distribution distribution in the chip as a result of the measurement, and to improve the product yield.
  • the metal film residual processing inspection method according to the present invention is used for the conditions of CMP processing (selection of pads and slurries, determination of processing time), an area where residual processing is likely to occur within the chip from the residual processing distribution data. to find, remaining machining with easy region to work rest is eliminated, it is possible to set the processing conditions (the result, it is possible to improve the ratio Bae condition setting accuracy conventional, additional processing number as failure of processing In addition, the number of mouthouts can be reduced, thereby improving throughput and improving product yield.
  • the metal film remaining processing inspection method according to the present invention was used to determine a QC position (representative position of a film thickness control), an area where the probability of remaining processing was high for each product could be identified by measurement, and the area was identified.
  • the area can be set as the QC position in the product.
  • a wiring pattern which is easy to be processed is specified by using the remaining processing distribution data in the chip and the design data of the wiring pattern. You can arrange this night lb
  • CMP was taken as an example of a metal film flattening method, but other than CMP, such as CMG (Chemical Mechanical Grinding) or CML (Chemical Mechanical Lapping) is used as a flattening method. It is needless to say that the present invention can be applied to such a case.
  • CMG Chemical Mechanical Grinding
  • CML Chemical Mechanical Lapping
  • the remaining metal film after the flattening of the metal film to be patterned can be automatically and accurately inspected. It is possible to specify possible processing residues, thereby improving the yield of products.
  • the unprocessed metal film is displayed.
  • the distribution can be displayed, and this distribution can be used effectively for thin film device manufacturing technology, such as QC after flattening, conditions for flattening, determination of QC position, and wiring pattern design.
  • QC after flattening QC after flattening
  • determination of QC position determination of QC position
  • wiring pattern design QC after flattening

Abstract

A method of inspecting metal film machining residue, comprising exposing a sample composed of a mix of optically transparent thin-film and metal film to white light or monochromatic light, detecting the light reflected by the sample as a result of the exposure to white light or monochromatic light and examining the presence of metal film machining residue after metal film planarizing operation on the basis of the reflection intensity or reflectance of detected reflected light; and a process for producing a thin-film device wherein the metal film is planarized in accordance with the inspection results.

Description

明 細 書 金属膜加工残り検査方法及びその検査装置並びに薄膜デバイスの製造方法 技術分野  Description: Metal film remaining processing inspection method, inspection apparatus thereof, and thin film device manufacturing method
本発明は、 半導体デバイスなどの薄膜デバイスの製造過程における金属 膜加工残りの検査方法及びその検査装置並びにそれを用いた製造方法に係 り、 特に、 パ夕一ン形成される金属薄膜に対する C M P ( Chemical Mechanical Polishing) に代表される平坦化加工処理後に、 最表面膜を自 動的に精度よく検査し、 生産性向上を図るようにした技術に関するもので める。 背景技術  The present invention relates to a method of inspecting metal film residue in a process of manufacturing a thin film device such as a semiconductor device, an inspection apparatus thereof, and a manufacturing method using the same. This technology relates to technology that automatically and accurately inspects the outermost surface film after planarization processing typified by Chemical Mechanical Polishing to improve productivity. Background art
例えば半導体デバイスは、 成膜、 露光、 エッチングを繰り返すことによ つて、 デバイスおよび配線をシリコンウェハ上に形成することにより製造 される。 その際、 ウェハ表面の凹凸は配線等の形成に不可欠な露光を困難 とするため、 ウェハ表面の平坦化が行われる。 この平坦化技術として、 近 年、 化学的および物理的作用により表面を加工して平坦化を実現する C M P ( Chemical Mechanical Polishing) が用いられる。 この C M Pは、 当 該技術分野において既知の加工方法である。  For example, a semiconductor device is manufactured by forming a device and a wiring on a silicon wafer by repeating film formation, exposure, and etching. At this time, the surface of the wafer is flattened because irregularities on the surface of the wafer make it difficult to perform exposure that is indispensable for forming wiring and the like. In recent years, CMP (Chemical Mechanical Polishing), which realizes planarization by processing the surface by chemical and physical actions, has been used as this planarization technology. This CMP is a processing method known in the art.
また、 平坦化加工である C M Pは、 膜除去処理工程にも用いられ、 例え ば第 2図 (a ) の要部断面図に示すように、 例えば A l、 C u等からなる 配線 5 4に接続する例えば W等からなるプラグ 5 3を形成する場合には、 エッチングにより酸化膜 5 2に形成されたコンタク トホールに C V D、 ス パッ夕等で形成された金属膜よりなるプラグ部以外の余剰の金属膜を、 C M Pによって除去する過程をとる。 このような工程は、 埋め込み配線であ るダマシン法、 および配線とブラグを同時に形成するデュアルダマシン法 においても用いられている工程であり、 この技術は、 半導体デバイス製造 において現在多用されている技術である。 In addition, CMP, which is a planarization process, is also used in a film removing process. For example, as shown in a cross-sectional view of a main part in FIG. When forming a plug 53 made of, for example, W, to be connected, a contact hole formed in the oxide film 52 by etching is used to form a surplus portion other than a plug portion made of a metal film formed by CVD, sputtering, or the like. The process of removing the metal film by CMP is performed. Such a process is called embedded wiring. This is a process that is also used in the damascene method and the dual damascene method in which wiring and a plug are simultaneously formed. This technique is currently used frequently in semiconductor device manufacturing.
平坦化処理工程において重要な課題の 1つとして、 膜厚管理が挙げられ る。 従来は、 これを加工時間によって管理していた。 一般的には、 C M P 加工の前後で膜厚を計測することによって求まる加工量と、 実際に加工を 行った加工時間とから、 加工レートを算出し、 これを次の加工時間にフィ ードバックさせるというものである。 膜厚を計測する際は、 チップ周辺等 に形成された従来の膜厚計測装置で、 十分な大きさを持ったパターン (T E G (Test Element Group) パターン) 上を計測していた。  One of the important issues in the planarization process is film thickness control. Conventionally, this was controlled by the processing time. Generally, the processing rate is calculated from the processing amount obtained by measuring the film thickness before and after the CMP processing and the processing time during which the processing is actually performed, and this is fed back to the next processing time. Things. When measuring the film thickness, a conventional film thickness measurement device formed around the chip, etc., was used to measure a sufficiently large pattern (TEG (Test Element Group) pattern).
また、 膜除去処理工程において重要な課題の 1つとして、 加工残りの管 理が挙げられる。 膜除去処理の C M Pは、 上述したように、 現在例えば金 属膜に対して行われる処理であり、 加工によってプラグ部以外の金属膜を 除去する工程であるが、 加工条件が適切でなかった場合には、 第 2図 ( a ) に示すように、 金属膜加工残り 5 1が残存し、 この金属膜加工残り 5 1によってプラグ 5 3間がショートしてしまう。 このため、 C M P後は 金属膜加工残りの検査が行われ、 加工残りがあった場合は、 さらに追加加 ェを行う必要がある。 最近では、 金属膜厚を広レンジかつ高精度で計測す る手法が確立されてきているが、 これらの手法のほとんどはべ夕パターン 上での計測に適し、 C M P後の検査においては、 加工残りの検査よりも、 むしろ C M P後のプラグ状態 (第 2図 (b ) のエロ一ジョン 5 5や、 第 2 図 ( c ) のデイツシング 5 6など) の検査に用いられる。 よって、 金属膜 加工残りの判定は、 作業者が金属顕微鏡等での目視観察で行っている現状 である。 発明の開示 作業者の目視による金属膜加工残りの観察では、 観察部分の色むら等を もとにその判定を行っているが、 この方法では明確な判定が困難な場合が 多々あり、 仮に膜残りが判定できたとしても、 金属膜残りの量は依然とし て不明であるため、 追加加工時間が明確に定まらないといった課題も生じ る。 One of the important issues in the film removal process is the management of the remaining processing. As described above, CMP in the film removal process is a process currently performed on, for example, a metal film, and is a process of removing a metal film other than the plug portion by processing, but when processing conditions are not appropriate. In this case, as shown in FIG. 2 (a), the remaining metal film processing 51 remains, and the plug 53 is short-circuited by the remaining metal film processing 51. For this reason, after CMP, the remaining metal film processing is inspected. If there is any remaining processing, additional processing must be performed. Recently, techniques to measure the metal film thickness with a wide range and high accuracy have been established. However, most of these techniques are suitable for measurement on a metal pattern. It is used to inspect the plug state after CMP (such as the erosion 55 in FIG. 2 (b) and the dating 56 in FIG. 2 (c)) rather than the inspection in FIG. Therefore, it is the present situation that the determination of the remaining metal film processing is performed by a worker by visual observation using a metal microscope or the like. Disclosure of the invention In the observation of the metal film processing residue by the operator's visual observation, the judgment is made based on the color unevenness of the observed part, etc.However, it is often difficult to make a clear judgment with this method, and the film residue is judged temporarily. Even if it can be done, the amount of the remaining metal film is still unknown, so there is a problem that the additional processing time is not clearly determined.
本発明は上記の点に鑑みなされたもので、 その目的とするところは、 パ ターン形成される金属薄膜の平坦化加工後の金属膜加工残りを、 自動的に 的確に検査できるようにすることにある。  The present invention has been made in view of the above points, and an object of the present invention is to automatically and accurately inspect a metal film remaining after flattening a metal thin film to be formed. It is in.
上記目的を達成するために、 本発明は、 光学的に透明な薄膜と金属膜が 混在する試料に光を照射し、 該光の照射により試料から発生する反射光を 検出し、 該検出した反射光の反射強度もしくは反射率に基づいて、 C M P 後の金属膜加工残りの有無を判定する。 さらに、 必要に応じて、 その膜残 り量 (膜厚) の計測を行う。  In order to achieve the above object, the present invention provides a method in which a sample in which an optically transparent thin film and a metal film are mixed is irradiated with light, reflected light generated from the sample by the light irradiation is detected, and the detected reflection is detected. The presence or absence of the metal film remaining after CMP is determined based on the light reflection intensity or reflectance. In addition, the remaining film thickness (film thickness) is measured as necessary.
また、 本発明は、 光学的に透明な薄膜と金属膜が混在する試料に白色光 を落射照射し、 該白色光の照射により前記試料から発生する分光反射強度 もしくは分光反射率を検出し、 該検出した分光反射強度もしくは分光反射 率を、 計測視野内の膜構造 (膜材質、 屈折率、 消衰係数、 膜厚等) に基づ いて決定される判定しきい値と比較して金属膜の平坦化加工後の金属膜加 ェ残りの有無を検出する金属膜加工残り検査方法である。 図面の簡単な説明  The present invention also provides a method in which a sample in which an optically transparent thin film and a metal film are mixed is irradiated with white light, and the spectral reflection intensity or the spectral reflectance generated from the sample by the irradiation of the white light is detected. The detected spectral reflection intensity or spectral reflectance is compared with a judgment threshold value determined based on the film structure (film material, refractive index, extinction coefficient, film thickness, etc.) in the measurement visual field. This is a metal film processing residue inspection method for detecting the presence or absence of metal film residue after planarization. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明による金属膜加工残り検査装置の実施形態の概略構成 を示す説明図である。  FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of a metal film remaining processing inspection apparatus according to the present invention.
第 2図は、 半導体デバイス製造過程におけるブラグ金属の C M P後のチ ップ要部断面を示す説明図で、 (a ) は金属膜加工残りが残存した状態を 示し、 (b ) はエロ一ジョンが生じた状態を示し、 ( c ) はディヅシング が生じた状態を示した図である。 FIGS. 2A and 2B are explanatory views showing a cross section of a main portion of a chip of a Bragg metal after CMP in a semiconductor device manufacturing process, wherein FIG. 2A shows a state in which a metal film processing residue remains, and FIG. (C) shows the state in which FIG. 4 is a diagram showing a state where the occurrence of the stagnation occurs.
第 3図は、 本発明による金属膜加工残り検査の流れを示す説明図である 第 4図は、 第 1図に示す検出光学系の第 1の実施例としての、 落射照明 を用いた検出光学系の構成を示す説明図である。  FIG. 3 is an explanatory view showing a flow of the metal film processing residual inspection according to the present invention. FIG. 4 is a detection optical system using epi-illumination as a first embodiment of the detection optical system shown in FIG. FIG. 3 is an explanatory diagram illustrating a configuration of a system.
第 5図は、 金属膜の加工残り有無判定における、 分光波形および加工残 り判定基準となるしきい値を示した説明図である。  FIG. 5 is an explanatory diagram showing a spectral waveform and a threshold used as a criterion for determining whether or not the metal film is left unprocessed.
第 6図は、 多層モデルにおける計測光の反射の様子を示す説明図である 第 7図は、 金属薄膜と酸化膜の波長に対する反射率の違いを示した説明 図である。  FIG. 6 is an explanatory diagram showing a state of reflection of measurement light in a multilayer model. FIG. 7 is an explanatory diagram showing a difference in reflectance of a metal thin film and an oxide film with respect to wavelength.
第 8図は、 第 1図に示す検出光学系の第 2の実施例としての、 射方照明 を用いた検出光学系の構成を示す説明図である。  FIG. 8 is an explanatory diagram showing a configuration of a detection optical system using directional illumination as a second embodiment of the detection optical system shown in FIG.
第 9図は、 金属薄膜と酸化膜の入射角に対する反射率の違いを示した説 明図である。  FIG. 9 is an explanatory diagram showing a difference in reflectance with respect to an incident angle between a metal thin film and an oxide film.
第 1 0図は、 第 1図に示す検出光学系の第 3の実施例としての、 射方照 明を用いた検出光学系の構成を示す説明図である。  FIG. 10 is an explanatory diagram showing a configuration of a detection optical system using projection illumination as a third embodiment of the detection optical system shown in FIG.
第 1 1図は、 第 1 0図の検出光学系による検出原理を示した説明図であ 第 1 2図は、 第 1 0図の検出光学系による検出原理を示した説明図であ る。  FIG. 11 is an explanatory diagram showing the principle of detection by the detection optical system of FIG. 10. FIG. 12 is an explanatory diagram showing the principle of detection by the detection optical system of FIG.
第 1 3図は、 第 1図に示す検出光学系の第 4の実施例としての、 近接場 光を用いた検出光学系の構成を示す説明図である。  FIG. 13 is an explanatory diagram showing a configuration of a detection optical system using near-field light as a fourth embodiment of the detection optical system shown in FIG.
第 1 4図は、 近接場光を用いた検出光学系における発光スぺク トルの 1 例を示した説明図である。  FIG. 14 is an explanatory diagram showing an example of a light emission spectrum in a detection optical system using near-field light.
第 1 5図は、 ウェハとウェハ上に形成されるチップを示す説明図である < 第 1 6図は、 チップ内画像を用いた加工残り領域の特定方法を示す説明 図である。 - FIG. 15 is an explanatory diagram showing a wafer and a chip formed on the wafer. <FIG. 16 is an explanatory diagram showing a method for specifying a remaining area to be processed using an image in a chip. -
第 1 7図は、 プラグ部のパターン面積、 パターン密度の違いを示した説 明図である。 FIG. 17 is an explanatory diagram showing a difference in pattern area and pattern density of the plug portion.
第 1 8図は、 金属膜の成膜前の酸化膜において加工残りし易い領域を示 した説明図である。  FIG. 18 is an explanatory diagram showing a region where an unprocessed portion is easily formed in an oxide film before a metal film is formed.
第 1 9図は、 計測結果の表示方式を示した説明図である。  FIG. 19 is an explanatory diagram showing a display method of a measurement result.
第 2 0図は、 本発明による金属膜加工残り検査方法の薄膜デバイス製造 への活用を示す説明図である。 発明を実施するための最良の形態  FIG. 20 is an explanatory diagram showing the use of the metal film remaining processing inspection method according to the present invention for manufacturing thin film devices. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を、 図面を用いて説明する。 以下の実施形態 は、 主として、 半導体デバイス製造におけるプラグ部金属形成工程で行わ れる C M P処理後の金属膜加工残りの検査方法および検査装置と、 それを 適用した製造方法などに関するものである。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments mainly relate to an inspection method and an inspection apparatus for a metal film remaining after CMP processing performed in a plug metal forming step in semiconductor device manufacturing, a manufacturing method to which the inspection method is applied, and the like.
第 1図は、 本発明による金属膜加工残り検査装置の実施形態の概略構成 を示す図である。 第 1図において、 1は検出光学系、 2はウェハの出し入 れを行うロードポート、 3は試料 4を載置するステージ、 4は例えば C M P処理後の検査対象となる試料 (ここではウェハ) 、 5は装置の制御及び 演算及び演算結果の記憶を行うパーソナルコンピュータ等の演算記憶装置、 FIG. 1 is a view showing a schematic configuration of an embodiment of a metal film remaining processing inspection apparatus according to the present invention. In FIG. 1, 1 is a detection optical system, 2 is a load port for loading and unloading a wafer, 3 is a stage on which a sample 4 is mounted, and 4 is a sample to be inspected after CMP processing (here, a wafer). 5 is an arithmetic storage device such as a personal computer for controlling the device, performing calculations and storing the calculation results,
6はキ一ボード、 マウス等の入力装置、 7は装置操作用イン夕一フェイス の表示及び結果の表示を行うモニタ、 8はプリン夕、 フロッピ一ディスク、6 is an input device such as a key board and a mouse, 7 is a monitor for displaying the interface for operating the device and displaying the results, 8 is a printer and a floppy disk,
M O等の外部出力 ·記憶装置である。 External output such as MO · It is a storage device.
第 3図は、 本発明による金属膜加工残り検査の流れを示す図である。 第 FIG. 3 is a diagram showing a flow of the metal film remaining processing inspection according to the present invention. No.
3図に示すように、 ロードポート 2からステージ 3上にウェハ (試料) 4 が口一ドされ ( S 1 ) 、 ウェハ 4は、 特開 2 0 0 0— 9 4 3 7号公報で述 ぺられている方法を用いて正確にァライメント (位置決め) される ( SAs shown in FIG. 3, a wafer (sample) 4 is read from the load port 2 onto the stage 3 (S 1), and the wafer 4 is described in Japanese Patent Application Laid-Open No. 2000-94437. Is accurately aligned (positioned) using the method (S
2 ) 。 なお、 この際、 ウェハのァライメントだけではなく、 必要に応じて チップ毎のァライメントを行うことも可能である。 この後、 計測領域 (例 えば計測チップ) の特定 (S 3) 、 例えば計測領域 (例えば計測チップ) 内の計測点の設定 (S 4) をそれそれ行う。 そして、 次に、 ステップ S 5 において、 計測を行い (膜残りの判定 S 5 1および膜厚計測 S 52を行 い) 、 計測終了後、 モニタ 7へ結果を表示し (S 53) 、 また、 必要に応 じて外部出力装置 8によって外部へ結果を出力する (S 54) 。 この後、 計測済みのウェハ 4は、 アンロードされる (S 6) 2). In this case, not only the wafer alignment, but also It is also possible to perform an alignment for each chip. After that, the measurement area (for example, the measurement chip) is specified (S3), and the measurement point in the measurement area (for example, the measurement chip) is set (S4). Then, in step S5, measurement is performed (residual film determination S51 and film thickness measurement S52 are performed). After the measurement, the result is displayed on the monitor 7 (S53). The result is output to the outside by the external output device 8 as necessary (S54). Thereafter, the measured wafer 4 is unloaded (S6)
第 4図は、 第 1図に示す検出光学系 1の第 1の実施例としての、 落射照 明を用いた光学系の構成を示す図である。 なお、 検出光学系 1としては、 落射照明を用いた光学系以外にも、 第 8図、 第 10図に示すような射方照 明を用いた光学系を用いることも、 第 13図に示すような近接場光を照射 する光学系を用いること可能である。  FIG. 4 is a diagram showing a configuration of an optical system using epi-illumination as a first embodiment of the detection optical system 1 shown in FIG. In addition to the optical system using epi-illumination as the detection optical system 1, an optical system using directional illumination as shown in FIGS. 8 and 10 may be used, as shown in FIG. An optical system that emits such near-field light can be used.
まず、 第 4図の落射照明を用いた検出光学系について説明する。 なお、 先の説明で用いた図中の符号と同一のものには、 同一符号を付してその説 明は割愛する (これは、 以下の各図を用いた説明においても同様である) ( 第 4図において、 9は白色光源、 10は対物レンズ、 1 1、 13はビーム スプリヅ夕、 12、 14、 1 6はレンズ、 1 5は空間フィル夕、 17は視 野絞り、 1 8は検出用ファイノ 19は分光器、 20は CCDカメラであ る。  First, the detection optical system using the epi-illumination shown in FIG. 4 will be described. Note that the same reference numerals in the drawings used in the previous description denote the same components, and a description thereof will be omitted (the same applies to the description using the following drawings). In Fig. 4, 9 is a white light source, 10 is an objective lens, 11 and 13 are beam splitters, 12, 14, and 16 are lenses, 15 is a spatial filter, 17 is a field stop, and 18 is detection. Finino 19 is a spectroscope, and 20 is a CCD camera.
白色光源 9としては、 ハロゲンランプ、 もしくは広波長帯域のキセノン ランプ等を用いる。 白色光源 9から出た光は、 ビームスプリツ夕 1 1、 対 物レンズ 9を介して試料 4に照射される。 試料 4からの反射光はレンズ系 12、 14、 1 6によって再び結像されるが、 このときレンズ系 12、 1 4、 1 6のフーリエ変換面に空間フィル夕 15を設けることにより、 試料 表面での散乱光、 回折光を除去し、 0次光のみを通過させる。 また、 結像 位置には視野絞り 17を設置し、 任意の検出領域 (計測視野) を設定する < 視野絞り 1 7を通過した光は検出用ファイバ 1 8に入射し、 入射光は分光 器 1 9により分光され、 分光デ一夕を得ることができる。 As the white light source 9, a halogen lamp or a xenon lamp having a wide wavelength band is used. The light emitted from the white light source 9 is applied to the sample 4 via the beam splitter 11 and the objective lens 9. The reflected light from the sample 4 is imaged again by the lens systems 12, 14, and 16. At this time, the spatial filter 15 is provided on the Fourier transform surface of the lens systems 12, 14, 16 to provide a sample surface. Removes the scattered light and diffracted light, and passes only the 0th order light. Also, a field stop 17 is installed at the image forming position, and an arbitrary detection area (measurement field of view) is set. The light that has passed through the field stop 17 is incident on the detection fiber 18, and the incident light is separated by the spectroscope 19, and a spectral data can be obtained.
この落射照明光学系では、 試料 4に白色光を照射し、 分光器 1 9によつ て試料 4からの分光反射強度を検出する。 第 2図 (a ) に示すように、 金 属膜が完全に除去されて酸化膜 5 2が露出している場合と金属膜加工残り 5 1がある場合とでは、 試料 4に白色光を照射した場合の分光反射強度も しくは分光反射率が異なるため、 試料表面からの分光反射強度または分光 反射率のピーク値に対して一定のしきい値を定め、 そのしきい値を判定基 準にして、 膜残り 5 1の有無の判定を行う。 また、 検出した分光反射率を 用いて、 膜残り 5 1の有無の検査だけではなく、 計測波形と理論波形のフ イツティングにより、 膜残り 5 1の量 (膜厚) を計測することも可能とな る。 この膜残り量 (膜厚) の計測手法については、 本願出願人が先に提案 した前記の特開 2 0 0 0 - 9 4 3 7号公報に、 その詳細が記載されている ので、 必要とあれば参照されたい。 さらに、 白色光源で落射照明を行う第 4図に示した検出光学系では、 同じく特開 2 0 0 0— 9 4 3 7号公報で述 ベられている周波数位相解析法、 または分光反射率のフィッティング法を 用いて、 光学的に透明な薄膜、 例えば配線上の層間絶縁膜の膜厚を、 実パ ターン上で計測することも可能となっている。  In this epi-illumination optical system, the sample 4 is irradiated with white light, and the spectral reflection intensity from the sample 4 is detected by the spectroscope 19. As shown in FIG. 2 (a), the sample 4 was irradiated with white light when the metal film was completely removed to expose the oxide film 52 and when the metal film processing residue 51 was left. Since the spectral reflection intensity or the spectral reflectance of the sample is different, a certain threshold value is set for the spectral reflection intensity from the sample surface or the peak value of the spectral reflectance, and the threshold value is used as a criterion. Then, the presence or absence of the remaining film 51 is determined. In addition to using the detected spectral reflectance to check for remaining film 51, it is also possible to measure the amount (film thickness) of remaining film 51 by fitting measured and theoretical waveforms. It becomes. The method of measuring the film remaining amount (film thickness) is described in detail in the aforementioned Japanese Patent Application Laid-Open No. 2000-93437, which was previously proposed by the present applicant. Please refer if there is. Further, in the detection optical system shown in FIG. 4 that performs epi-illumination using a white light source, the frequency-phase analysis method described in Japanese Patent Application Laid-Open No. 2000-9437 or the spectral reflectance Using the fitting method, it is also possible to measure the thickness of an optically transparent thin film, for example, the thickness of an interlayer insulating film on a wiring, on an actual pattern.
この落射照明光学系において、 検出分光反射率を用いて加工残りの検出 を行う際の、 金属膜加工残りの有無を判定する判定しきい値の設定方法の 一実施例を、 第 5図に示す。  FIG. 5 shows an embodiment of a method of setting a judgment threshold value for judging the presence or absence of a metal film processing residue when detecting the processing residue using the detected spectral reflectance in this epi-illumination optical system. .
金属膜の膜残りがない場合の分光波形 2 2の反射率の極大値は、 酸化膜 の膜厚の如何にかかわらず、 理論上、 常に一定の曲線 2 3にのることが示 され、 曲線 2 3より高い反射率になることはない。 逆に、 酸化膜 5 2上に 金属膜の膜残り 5 1がある場合の分光波形 2 1は、 分光波形の反射率の極 大値が曲線 2 3上に乗らないことが、 理論式より導かれる。 ここで、 第 6図に示すような多層モデルを考えた場合、 プラグ部が計測 視野内を全面にわたって占めているとするベ夕パターン上のしきい値 Yt は、 最表層面と空気との界面の反射率 r j + および: i層までの反射率 R j を用いて、 次の ( 1 ) 式で示される。 It is shown that the maximum value of the reflectance of the spectral waveform 22 when there is no metal film residue is theoretically always on the constant curve 23 regardless of the oxide film thickness. There is no reflection higher than 23. Conversely, the theoretical waveform 21 when there is a metal film residue 51 on the oxide film 52 shows that the maximum value of the reflectance of the spectral waveform does not fall on the curve 23 according to the theoretical formula. I will Here, when considering a multilayer model as shown in Fig. 6, the threshold value Yt on the vein pattern, which assumes that the plug occupies the entire field of view, is determined by the interface between the outermost surface and air. The following equation (1) is used, using the reflectance rj + of and the reflectance R j up to the i-th layer.
Yt ( l ) 式Yt (l) expression
Figure imgf000010_0001
ただし、 実際のパターン上のしきい値は、 これに計測視野内でプラグ部 分が占める面積率を考慮する必要があり、 次の ( 2) 式で表すことができ る
Figure imgf000010_0001
However, the threshold on the actual pattern needs to consider the area ratio occupied by the plug portion in the measurement field of view, and can be expressed by the following equation (2)
Y = a 1R + 2Y t ( 2 ) 式 Y = a 1 R + 2 Y t (2)
Y :パターン上のしきい値  Y: Threshold on pattern
Y t :べ夕パターン上のしきい値  Y t: Threshold on the base pattern
Rm:プラグ金属の強度反射率  Rm: Intensity reflectance of plug metal
a! :計測視野内でのプラグ部分が占める面積率 a! : Area ratio occupied by the plug part in the measurement visual field
2 :計測視野内でのプラグ部分以外 (酸化膜) が占める面積率 従って、 ( ひ 1 + ひ 2= 1 ) となる。  2: Area ratio occupied by (oxide film) other than the plug portion in the measurement field of view Therefore, (Hi 1 + Hi 2 = 1).
よって、 ( 1 ) 、 ( 2 ) 式より導かれる曲線 Yを判定しきい値として設 定することにより、 酸化膜の膜厚差による分光波形の違いを考慮に入れる 必要がなくなり、 金属膜の加工残りの有無判定が可能となる。  Therefore, by setting the curve Y derived from Equations (1) and (2) as the judgment threshold, it is not necessary to take into account the difference in the spectral waveform due to the difference in the thickness of the oxide film. The remaining presence / absence can be determined.
上述した判定しきい値としての曲線 2 3は、 測定箇所のブラグ幅によら ず、 計測視野内でのプラグ部分が占める面積の比率 ( ひ J とプラグ部分 以外 (酸化膜) が占める面積の比率 (α2) 、 プラグ金属の材質 (強度反 射率 Rmが決定される) 並びに下地膜及び酸化膜の膜構造 (上記反射率 r n The above-mentioned curve 23 as the judgment threshold value is expressed by the ratio of the area occupied by the plug portion within the measurement visual field (the ratio of the area occupied by the portion other than the plug portion (oxide film), irrespective of the plug width at the measurement point). (Α 2 ), plug metal material (strength reflectance Rm is determined), and film structure of base film and oxide film (reflectance r n
j + 1および上記反射率 R jが決定される。 ) によって決定される。 j + 1 and the reflectance R j are determined. ).
したがって、 パターン上で計測する場合、 予め計測視野内の面積率デ一 夕 (ひ 1 3 « 2 ) 、 プラグ金属、 並びに下地膜及び酸化膜 (膜構造) の光 学定数デ一夕 (膜材質、 屈折率、 消衰係数、 膜厚等) を取得することが必 要となり、 それらを取得することにより、 ( 1 ) 、 ( 2 ) 式を用いて、 実 際のパターン上でのしきい値を算出することが可能となる。 即ち、 本発明 において、 膜構造の光学定数デ一夕は、 金属膜の加工残りの有無判定をす るための実際のパターン上での判定しきい値を上記 ( 1 ) 式及び ( 2 ) 式 を用いて算出するために必要となる。 Therefore, when measuring on a pattern, the area ratio de one evening in previously measured field of view (ratio 1 3 «2), metal plugs, as well as the base film and the optical science constants de Isseki oxide film (film structure) (film material , The refractive index, the extinction coefficient, the film thickness, etc.), and by obtaining them, the thresholds on the actual pattern can be obtained by using equations (1) and (2). Can be calculated. That is, in the present invention, the optical constant of the film structure is determined by determining the threshold value for determining the presence or absence of the unprocessed metal film on the actual pattern by the above formulas (1) and (2). It is necessary to calculate using.
つまり、 入力装置 6を用いて膜構造の光学定数デ一夕が入力されること により、 演算記憶装置 5において、 実際のパターン上でのしきい値が算出 され、 検出光学系 1の分光器 1 9から検出される検出分光の反射率の極大 値が上記算出された判定しきい値 (曲線) 2 3と比較されて金属膜加工残 りの有無を検出することが可能となる。  That is, by inputting the optical constants of the film structure using the input device 6, the threshold value on the actual pattern is calculated in the arithmetic storage device 5, and the spectrometer 1 of the detection optical system 1 The maximum value of the reflectance of the detected spectrum detected from 9 is compared with the calculated determination threshold value (curve) 23 to detect the presence / absence of metal film processing residue.
また、 上記した第 4図に示した検出光学系では、 照明に白色光を用いた 例を示したが、 第 7図に示すような、 金属膜からの反射率 3 0と酸化膜上 からの反射率 3 1の差が無くなる波長領域 2 9を除けば、 落射照明光学系 においても照明に単色光を用い、 反射強度の比較によって、 金属膜加工残 りの有無の判定を行っても良い。 第 7図の場合、 波長領域 2 9より波長の 短い波長領域 2 9 aでは、 酸化膜上からの反射率 3 1が金属膜からの反射 率 3 0より高く、 他方、 波長領域 2 9より波長の長い波長領域 2 9 bでは、 酸化膜上からの反射率 3 1が金属膜からの反射率 3 0より低い。 このため、 それそれの領域 2 9 a、 2 9 bの短波長を用いることで、 反射率に差が生 じ、 金属膜の加工残りを顕在化することが出来る (この場合には、 反射強 度によって判定を行えるが、 あえて反射強度から反射率を求めて判定を行 うことも可能であり、 これは単色光の反射強度を用いて判定を行う以下の 1Q Also, in the above-described detection optical system shown in FIG. 4, an example using white light for illumination was shown, but as shown in FIG. 7, the reflectance 30 from the metal film and the reflectance from the oxide film Except for the wavelength region 29 where the difference in the reflectance 31 is eliminated, the epi-illumination optical system may also use monochromatic light for illumination, and determine the presence or absence of metal film processing residue by comparing the reflection intensity. In the case of FIG. 7, in the wavelength region 29 a having a wavelength shorter than the wavelength region 29, the reflectance 31 from the oxide film is higher than the reflectance 30 from the metal film, while the wavelength region 29 is shorter than the wavelength region 29. In the long wavelength region 29 b, the reflectance 31 from above the oxide film is lower than the reflectance 30 from the metal film. For this reason, by using the short wavelengths of the respective regions 29a and 29b, a difference occurs in the reflectivity, and the processing residue of the metal film can be made obvious (in this case, the reflection intensity is high). Although the judgment can be made based on the degree of reflection, it is also possible to dare to determine the reflectivity from the reflection intensity and make the judgment. 1Q
説明においても、 同様である) 。 The same applies to the description.)
第 8図は、 第 1図中の検出光学系 1の第 2の実施例としての、 射方照明 を用いた光学系の構成を示す図であり、 同図において、 1 0 1、 1 0 2は 光源、 1 0 3、 1 0 4は光検出器である。  FIG. 8 is a diagram showing a configuration of an optical system using directional lighting as a second embodiment of the detection optical system 1 in FIG. 1. In FIG. 8, 101, 102 Is a light source, 103 and 104 are photodetectors.
第 8図に示した射方照明を用いた検出光学系の 1つの実施例では、 第 8 図に示すように、 光源 1 0 1と光検出器 1 0 3の対と、 光源 1 0 2と光検 出器 1 0 4の対とで検出光学系を構成しており、 光源 1 0 1、 1 0 2には、 白色光もしくは単色光を用い、 光検出器 1 0 3、 1 0 4には、 光電管、 光 電子倍増管 (フォトマル) 、 もしくは C C Dセンサ等の光電変換器を用い る。 そして、 光源の試料 4に対する入射角は、 それそれの光源からの反射 光強度の大小が金属膜残りの有無によって逆転するような角度、 例えば光 源 1 0 1を第 9図の 1 1 0に示す入射角、 光源 1 0 2を第 9図の 1 1 1に 示す入射角に設定する (上記条件を満足すれば、 光源 1 0 1、 光源 1 0 2 の入射角は 1 1 0、 1 1 1の角度に限定されない) 。 1 0 7は金属膜から の反射率であり、 1 0 8は酸化膜の反射率である。 入射角 1 1 0で照射さ れた試料から得られる反射率を光検出器 1 0 3で検出し、 入射角 1 1 0で 照射された試料から得られる反射率を光検出器 1 0 4で検出し、光検出器 1 0 3で検出される反射率と光検出器 1 0 4で検出される反射率とを比較 し、光検出器 1 0 3で検出される反射率の方が大きくなった場合は金属膜 残りと判定することが可能となる。 この比較する場合、 反射率の比率を取 つてもよいことは明らかである。  In one embodiment of the detection optical system using the projection illumination shown in FIG. 8, as shown in FIG. 8, a pair of a light source 101, a photodetector 103, a light source 102, A pair of photodetectors 104 constitutes a detection optical system, and white light or monochromatic light is used for the light sources 101 and 102, and photodetectors 103 and 104 are used for the light sources. Use a phototube, photomultiplier tube (photomultiplier), or a photoelectric converter such as a CCD sensor. The angle of incidence of the light source with respect to the sample 4 is such that the magnitude of the reflected light intensity from the light source is reversed depending on the presence or absence of the remaining metal film.For example, the light source 101 is changed to 110 in FIG. Set the incident angle shown and the light source 102 to the incident angle shown in Figure 11 (If the above conditions are satisfied, the incident angles of the light source 101 and the light source 102 are 1 110 and 1 1 Not limited to 1 angle). 107 is the reflectance from the metal film, and 108 is the reflectance from the oxide film. The reflectance obtained from the sample irradiated at the incident angle of 110 is detected by the photodetector 103, and the reflectance obtained from the sample irradiated at the incident angle of 110 is detected by the photodetector 104. The reflectance detected by the photodetector 103 is compared with the reflectance detected by the photodetector 104, and the reflectance detected by the photodetector 103 becomes larger. In this case, it can be determined that the metal film remains. In this comparison, it is clear that the reflectance ratio may be taken.
光源 1 0 1、 1 0 2から照射された光は、 それそれ試料表面で反射し、 反射光は光検出器 1 0 3、 1 0 4により検出される。 このとき、 金属膜が 残っている場合は、 光源 1 0 1からの反射強度 (または反射率) が光源 1 0 2からの反射強度 (または反射率) よりも大きく、 酸化膜が露出してい る場合は、 その逆となる。 よって、 光源に単色光を用いた場合には、 それ それの光検出器 1 0 3、 1 0 4によってダイレクトに検出された反射光の 強度を比較することにより、 光源に白色光を用いた場合についても、 それ それの光検出器 1 0 3、 1 0 4によって検出された反射光強度を比較する ことにより、 金属膜の加工残りの検出をすることができる。 Light emitted from the light sources 101 and 102 is reflected on the sample surface, respectively, and the reflected light is detected by the photodetectors 103 and 104. At this time, if the metal film remains, the reflection intensity (or reflectance) from the light source 101 is higher than the reflection intensity (or reflectance) from the light source 102, and the oxide film is exposed. If so, the opposite is true. Therefore, when monochromatic light is used as the light source, By comparing the intensity of the reflected light directly detected by the photodetectors 103 and 104, even when white light is used as the light source, the respective photodetectors 103 and 1 By comparing the reflected light intensities detected in step 04, it is possible to detect the unprocessed metal film.
また、 第 8図に示した第 2の実施例である射方照明を用いた検出光学系 では、 光源 (照明) を 2つ用いているが、 第 9図に示すように、 射方照明 を用いた検出光学系であっても、 照明の入射角 0 1を金属膜からの反射率 1 0 7と酸化膜からの反射率 1 0 8との差 1 1 2が例えば最大となるよう に、 例えば入射角 0 Xに設定すると、 金属膜からの反射光と酸化膜からの 反射光の判別が可能となり、 光源は 1つであってもよい (反射率の差 1 1 2が最大である場合が最も好ましいが、 金属膜からの反射率 1 0 7と酸化 膜からの反射率 1 0 8とに有意差がある範囲の入射角であればよい) 。 な お、 第 9図において、 1 0 9は、 金属膜の加工残りが検出不可である入射 角を表している。  Further, in the detection optical system using the projecting illumination according to the second embodiment shown in FIG. 8, two light sources (illumination) are used, but as shown in FIG. Even with the detection optical system used, the angle of incidence 01 of the illumination is set so that the difference 112 between the reflectance 107 from the metal film and the reflectance 108 from the oxide film is, for example, the maximum. For example, if the incident angle is set to 0X, it is possible to distinguish between the reflected light from the metal film and the reflected light from the oxide film, and only one light source may be used. Is most preferable, but it is sufficient if the incident angle is in a range where there is a significant difference between the reflectance 107 from the metal film and the reflectance 108 from the oxide film. In FIG. 9, 109 represents an incident angle at which the unprocessed portion of the metal film cannot be detected.
第 1 0図は、 第 1図中の検出光学系 1の第 3の実施例としての、 射方照 明を用いた他の光学系の構成を示す図であり、 同図において、 2 0 1は光 源、 2 0 2は p偏光成分のみを通過させる p偏光フィル夕、 2 0 3は光検 出器である。  FIG. 10 is a diagram showing a configuration of another optical system using projection illumination as a third embodiment of the detection optical system 1 in FIG. 1, and FIG. Is a light source, 202 is a p-polarized light filter that passes only the p-polarized light component, and 203 is a photodetector.
第 1 0図に示した本第 3の実施例の場合も、 光源 2 0 1には単色光を用 い、 光源 2 0 1の試料 4に対する入射角度は、 酸化膜と空気に対するプリ ユース夕一角 (光の p偏光反射成分がなくなる) に設定する。 光検出器 2 0 3には、 光電管、 光電子倍増管 (フォトマル) 、 C C Dセンサ等の光電 変換器を用いる。  Also in the case of the third embodiment shown in FIG. 10, monochromatic light is used for the light source 201, and the incident angle of the light source 201 with respect to the sample 4 is a pre-use angle with respect to the oxide film and the air. (There is no p-polarized light reflection component of the light.) As the photodetector 203, a photoelectric converter such as a photoelectric tube, a photomultiplier tube (photomultiplier), or a CCD sensor is used.
光源 2 0 1から照射された光は、 偏光フィル夕 2 0 2によって光の p偏 光成分のみが試料 4の表面で反射し、 光検出器 2 0 3によって検出される c このとき、 第 1 1図に示すように、 試料表面に酸化膜 5 2が露出していれ ば、 P偏光成分の光 2 0 6は酸化膜 5 2内へ透過するため ( 2 0 7は透過 光を示す) 、 光検出器 2 0 3では検出できない。 この場合、 仮に下地によ つて P偏光成分の光 2 0 6が反射され光検出器 2 0 3によって検出された としても、 反射強度は非常に低いものとなる。 これに対して、 第 1 2図に 示すように、 試料表面に金属膜 2 0 5 (プラグ 5 3や金属膜加工残り 5 1 ) が存在した場合 (酸化膜 5 2上に金属膜 2 0 5が存在した場合) 、 p 偏向成分の光 2 0 6が、 空気と金属膜表面の界面、 および金属膜を透過し た透過光が金属膜と酸化膜の界面で、 それそれ反射して、 強度の高い反射 光 2 0 8が光検出器 2 0 3によって検出される。 このため、 光検出器 2 0 3での反射光強度を判定基準にすることにより、 金属膜の加工残りの検出 をすることができる。 In the light emitted from the light source 201, only the p-polarized component of the light is reflected on the surface of the sample 4 by the polarization filter 202 and detected by the photodetector 203 . As shown in Fig. 1, if the oxide film 52 is exposed on the sample surface, For example, since the P-polarized component light 206 passes through the oxide film 52 (207 indicates transmitted light), it cannot be detected by the photodetector 203. In this case, even if the P-polarized component light 206 is reflected by the base and detected by the photodetector 203, the reflection intensity is extremely low. On the other hand, as shown in FIG. 12, when the metal film 205 (the plug 53 or the remaining metal film processing 51) exists on the sample surface (the metal film 205 on the oxide film 52). ), The p-polarized component light 206 is reflected at the interface between air and the metal film surface, and the transmitted light transmitted through the metal film at the interface between the metal film and the oxide film. Highly reflected light 208 is detected by the photodetector 203. Therefore, by using the intensity of the reflected light from the photodetector 203 as a criterion, it is possible to detect the unprocessed metal film.
第 1 3図は、 第 1図中の検出光学系 1の第 4の実施例としての、 近接場 光を照射する光学系の構成を示す図であり、 同図において、 3 0 1は励起 用光源、 3 0 2はビ一ムスプリッ夕、 3 0 3は励起光を極微細に絞り込む プローブ、 3 0 4は光検出器である。  FIG. 13 is a diagram showing a configuration of an optical system for irradiating near-field light as a fourth embodiment of the detection optical system 1 in FIG. 1. In FIG. A light source, 302 is a beam splitter, 303 is a probe for narrowing down the excitation light very finely, and 304 is a photodetector.
照明光に近接場光を用いた場合、 第 1 4図に示すような、 試料表面から の発光スぺク トル 3 0 7もしくは反射光スぺク トル (反射光スぺクトルに ついては図示していない) を検出することにより、 そのピーク位置 3 0 8 等から、 試料表面のみの材質を直接分析できる。 よって、 この場合、 前記 した落射照明もしくは射方照明を用いたものと比べて、 より厳密に試料表 面の組成分析をすることが可能となり、 金属膜の加工残りをより厳密に検 出できるとともに、 検査領域 (検査視野) を百 n m以下の局所に絞れる等 のメリッ トがあり、 微小な金属膜の加工残りも高精度に検出できる効果も ある。  When near-field light is used as the illumination light, the emission spectrum 307 from the sample surface or the reflection light spectrum as shown in Fig. 14 (reflection light spectrum is not shown in the figure). ), The material on the sample surface alone can be directly analyzed from its peak position, such as 308. Therefore, in this case, it is possible to more strictly analyze the composition of the sample surface as compared with the above-described case using the epi-illumination or the directional illumination, and it is possible to more strictly detect the unprocessed metal film residue. In addition, it has the advantage that the inspection area (inspection field of view) can be narrowed down to a local area of 100 nm or less.
上述してきた各検出光学系は複数設けてもよいし、 もしくは、 検査二一 ズに合うように各検出光学系を適宜に組み合わせてもよい。 例えば、 第 4 ^ A plurality of each of the above-described detection optical systems may be provided, or each of the detection optical systems may be appropriately combined so as to meet the inspection needs. For example, the fourth ^
図に示した検出光学系においては、 C C Dカメラ 2 0により検査対象 4を 観察でき、 また、 金属膜あるいは酸化膜の膜厚測定も可能である。 また、 第 8図や第 9図に示した検出光学系においては、 比較的単純な光学系で金 属膜の加工残り検査ができ、 光源にレーザ光を用いた場合は、 検査領域を サブミクロンオーダーまで絞れるため、 局所検査も可能となる。 また、 百 n mオーダ以下の局所検査を高精度で行いたい場合には、 第 1 3図に示し た検出光学系を用いればよい。 このように、 各検出光学系にはそれそれ特 長があり、 検査ニーズに合うように各検出光学系を適宜に組み合わせれば よい。 In the detection optical system shown in the figure, the inspection object 4 can be observed by the CCD camera 20, and the thickness of a metal film or an oxide film can be measured. In addition, in the detection optical system shown in FIGS. 8 and 9, the residual processing of the metal film can be inspected with a relatively simple optical system. When laser light is used as the light source, the inspection area is submicron. Local inspections are also possible because orders can be narrowed down. When it is desired to perform a local inspection of the order of 100 nm or less with high accuracy, the detection optical system shown in FIG. 13 may be used. As described above, each detection optical system has its own features, and the detection optical systems may be appropriately combined to meet the inspection needs.
次に、 本発明の検査方法をウェハに適用して行う場合の手法について説 明する。 検査 (計測) は、 基本的に第 1 5図に示すウェハ 5 0 1内のチッ プ 5 0 2単位で実行し、 計測点の設定についてもチップ 5 0 2単位で行う (第 1 5図の下部は、 チップの拡大を示している) 。 チヅプ内検査を実行 する際の計測点の設定方法としては、 計測を実時間内で行うことを考慮し、 チップ内で加工残りし易い領域を予め特定しておき、 その領域に対して計 測点を設定する方法が望ましい。 その具体的方法としては、 画像処理を用 いる方法、 プラグ部の面積率デ一夕を用いる方法、 プラグ金属成膜前の酸 化膜の膜厚デ一夕を用いる方法などが挙げられる。  Next, a method for performing the inspection method of the present invention on a wafer will be described. Inspection (measurement) is basically performed in units of chips 502 in the wafer 501 shown in FIG. 15, and measurement points are also set in units of chips 502 (see FIG. 15). The lower part shows an enlarged chip). As a method of setting measurement points when performing in-chip inspection, considering that measurement is to be performed in real time, specify in advance an area that is likely to be left unprocessed in the chip, and measure the area. A method of setting points is desirable. Specific examples of the method include a method using image processing, a method using the area ratio of the plug portion, and a method using the thickness of the oxide film before forming the plug metal.
計測点を設定するのに画像処理を用いる方法は、 第 1 6図に示すように、 画像処理によって金属膜の加工残りの可能性が高いチップ 5 0 2内の色む らの検出を行う。 この方法では、 計測チップ 5 0 2内の全領域を小領域 (分割撮像領域) 5 0 4に分割して、 各小領域 5 0 4の撮像画像を取り込 み、 撮像した各分割領域画像 5 0 5を、 対応する分割画像領域における加 ェ残りの全くない参照画像 5 0 6と比較することにより、 色むら領域 5 0 7の検出を行う。 この際の比較は、 両画像 5 0 5、 5 0 6の明度差などを 用いて行い、 これにより、 特定された領域に対して計測点を設定する。 チップ内のプラグ部の面積率データを用いる方法は、 第 1 7図に示すよ うに、 プラグ 5 3のパターン面積、 パターン密度等から、 チヅプ内で加工 残りし易い領域をシミユレ一シヨン等によって予測し、 その予測データを もとに特定された領域に計測点を設定する。 なお、 第 1 7図において、 5 1 0はパターン面積大でパターン密度犬の領域を、 5 1 1はパターン面積 大でパターン密度小の領域を、 5 1 2はパターン面積小でパターン密度大 の領域を、 5 1 3はパターン面積小でパターン密度小の領域を、 それそれ 模式的に表している。 In the method of using image processing to set measurement points, as shown in FIG. 16, color unevenness in the chip 502 having a high possibility of remaining metal film processing is detected by image processing. In this method, the entire area in the measurement chip 502 is divided into small areas (divided imaging areas) 504, the captured image of each small area 504 is captured, and the captured divided area image 5 The non-uniform color region 507 is detected by comparing 05 with a reference image 506 having no added residue in the corresponding divided image region. The comparison at this time is performed using the lightness difference between the two images 505 and 506, and the measurement points are set for the specified area. As shown in Fig. 17, the method of using the area ratio data of the plug portion in the chip predicts the area that is likely to be left unprocessed in the chip from the pattern area, pattern density, etc. of the plug 53 by simulation, etc. Then, a measurement point is set in the area specified based on the prediction data. In FIG. 17, reference numeral 5110 denotes a region of a large pattern area and a pattern density dog, 511 denotes a region of a large pattern area and a small pattern density, and 512 denotes a region of a small pattern area and a large pattern density. Regions, and 5 13 schematically represent regions having a small pattern area and a small pattern density.
プラグ金属成膜前の酸化膜の膜厚分布データを用いる方法は、 プラグ金 属が成膜される前の酸化膜の膜厚分布データを、 第 4図に示した計測光学 系を用いた計測装置によって予め採取しておき、 その分布デ一夕から、 第 1 8図に示すような、 酸化膜 5 2の表面が窪んだ金属膜が加工残りし易い 領域 5 1 4に、 計測点を設定する。  The method using the thickness distribution data of the oxide film before the plug metal deposition is performed by measuring the thickness distribution data of the oxide film before the plug metal is deposited using the measurement optical system shown in Fig. 4. Sampled in advance by the equipment, and from the distribution data, measurement points are set in the area 5 14 where the metal film with the concave surface of the oxide film 52 is likely to remain unprocessed as shown in Fig. 18 I do.
なお、 上述した各種の計測点の設定方法を、 必要に応じて適宜に組み合 わせれば、 より高い確率で、 金属膜の加工残りがある、 ないしは生じやす い領域を特定できることとなることは、 言うまでもない。  It should be noted that if the above-described various measurement point setting methods are appropriately combined as needed, it is possible to specify, with a higher probability, a region where the metal film remains or is likely to occur. , Needless to say.
計測点の設定後には、 金属膜の加工残りの検査を行い、 必要に応じて加 ェ残り量 (膜厚) の計測も行う。 検査終了後、 計測装置のモニタ上には計 測結果を表示させる。 この計測結果の表示は、 第 1 9図に示すように、 ゥ ェハ 5 0 1内の計測チヅプ 5 0 2の位置をマトリクス 6 0 1で表示し、 チ ップ 5 0 2内の金属膜の加工残りの分布 6 0 2を表示させる。 さらに、 全 チップ計測により、 ウェハ 5 0 1内の加工残り分布 6 0 3の表示も可能と なる。 この他に、 加工残り箇所の画像等を利用し、 必要に応じて加工残り 領域の面積表示も行う。  After setting the measurement points, the remaining processing of the metal film is inspected and, if necessary, the remaining processing amount (film thickness) is measured. After the inspection, the measurement result is displayed on the monitor of the measuring device. As shown in FIG. 19, the position of the measurement chip 502 in the wafer 501 is displayed as a matrix 601, and the metal film in the chip 502 is displayed. Display the distribution of the remaining processing of 602. Further, by measuring the total number of chips, it is possible to display the residual processing distribution 603 in the wafer 501. In addition, the area of the unprocessed area is displayed as necessary using the image of the remaining area.
次に、 本発明の金属膜加工残り検査方法を活用した半導体デバイスの製 造方法について、 第 2 0図を用いて説明する。 本発明の検査方法の半導体 ^ Next, a method for manufacturing a semiconductor device using the metal film remaining processing inspection method of the present invention will be described with reference to FIG. Semiconductor of inspection method of the present invention ^
デバイス製造への活用方法としては、 C M P後の金属膜の加工残り検査 7 0 1の他に、 第 2 0図に示す各工程において、 C M P加工条件の決定 (平 坦化加工条件の決定) 7 0 2、 Q C位置 (膜厚管理代表位置) の決定 7 0 3、 追加研磨時間の決定 7 0 4、 配線パターンの設計変更 7 0 5等への活 用が挙げられる。 As a method of application to device manufacturing, in addition to the remaining processing inspection of metal films after CMP 701, in each step shown in FIG. 20, determination of CMP processing conditions (determination of flattening processing conditions) 02, determination of QC position (representative position of film thickness control) 703, determination of additional polishing time 704, design change of wiring pattern 705, etc.
本発明による金属膜加工残り検査方法を、 現在作業者が目視で行ってい る C M P加工後の金属膜の加工残り検査に活用した場合、 作業者の目視に よる観察では特定できない加工残りの特定が可能となるため、 従来に比べ 信頼性の高い検査が可能となる。 その他に、 計測結果のチップ内の加工残 り分布デ一夕からは、 追加加工時間を正確に決定することができるように なり、 製品の歩留まり向上を図ることができる。  When the metal film remaining processing inspection method according to the present invention is used for the remaining processing inspection of a metal film after CMP processing, which is currently performed by a worker, the remaining processing that cannot be specified by the visual observation of the worker can be specified. As a result, inspections with higher reliability than before can be performed. In addition, it is possible to accurately determine the additional processing time from the measurement result distribution distribution in the chip as a result of the measurement, and to improve the product yield.
また、 本発明による金属膜加工残り検査方法を、 C M P加工の条件だし (パッ ド、 スラリーの選定、 加工時間の決定) に活用した場合、 加工残り 分布データからチップ内で加工残りし易い領域が判明するため、 加工残り し易い領域で加工残りがなくなるよう、 加工条件を設定することができる ( その結果、 従来に比ぺ条件出し精度を向上させることができるため、 加工 の失敗による追加加工数および口ッ トアウト数を減らし、 スループッ トの 向上および製品の歩留まり向上を図ることができる。 In addition, when the metal film residual processing inspection method according to the present invention is used for the conditions of CMP processing (selection of pads and slurries, determination of processing time), an area where residual processing is likely to occur within the chip from the residual processing distribution data. to find, remaining machining with easy region to work rest is eliminated, it is possible to set the processing conditions (the result, it is possible to improve the ratio Bae condition setting accuracy conventional, additional processing number as failure of processing In addition, the number of mouthouts can be reduced, thereby improving throughput and improving product yield.
また、 本発明による金属膜加工残り検査方法を、 Q C位置 (膜厚管理代 表位置) の決定に活用した場合、 計測によって、 製品毎に加工残りの確率 が高い領域が特定でき、 特定された領域を、 その製品における Q C位置と して設定することができる。 その結果、 計測点を大幅に減らすことができ、 Q C時間の短縮、 つまりはスループッ トの向上を図ることができる。  Also, when the metal film remaining processing inspection method according to the present invention was used to determine a QC position (representative position of a film thickness control), an area where the probability of remaining processing was high for each product could be identified by measurement, and the area was identified. The area can be set as the QC position in the product. As a result, the number of measurement points can be significantly reduced, and the QC time can be reduced, that is, the throughput can be improved.
また、 本発明による金属膜加工残り検査方法を、 配線パターンの設計に 活用した場合、 チップ内の加工残り分布データと配線パターンの設計デ一 夕とを用いて、 加工残りし易い配線パターンが特定でき、 このデ一夕を配 lb In addition, when the metal film remaining processing inspection method according to the present invention is used for designing a wiring pattern, a wiring pattern which is easy to be processed is specified by using the remaining processing distribution data in the chip and the design data of the wiring pattern. You can arrange this night lb
線パターン設計にフィードバックすることができる。 その結果、 配線パ夕 —ン設計時点で加工残りしにくいパターン設計が可能となるため、 追加加 工数が減少し、 スループッ トの向上および製品の歩留まり向上を図ること ができる。 Feedback can be provided to the line pattern design. As a result, it becomes possible to design a pattern that is difficult to be unprocessed at the time of designing a wiring pattern, thereby reducing the number of additional processes, improving throughput and improving product yield.
なお、 上述した説明においては、 金属膜の平坦化加工手法として C M P を例にとったが、 C M P以外の C M G ( Chemical Mechanical grinding) や、 C M L ( Chemical Mechanical Lapping) などを平坦化加工の手法と して採用した場合も、 本発明が適用可能であることは、 言うまでもない。 産業上の利用の可能性  In the above description, CMP was taken as an example of a metal film flattening method, but other than CMP, such as CMG (Chemical Mechanical Grinding) or CML (Chemical Mechanical Lapping) is used as a flattening method. It is needless to say that the present invention can be applied to such a case. Industrial applicability
以上説明したように本発明によれば、 パターン形成される金属膜の平坦 化加工後の金属膜加工残りを、 自動的に的確に検査できるので、 現在の作 業者の目視による観察では、 特定不可能な加工残りの特定が可能となり、 以つて、 製品の歩留まり向上を図ることができる。  As described above, according to the present invention, the remaining metal film after the flattening of the metal film to be patterned can be automatically and accurately inspected. It is possible to specify possible processing residues, thereby improving the yield of products.
また、 本発明によれば、 チップ内の金属膜の加工残り位置および必要に 応じて計測された膜厚値を、 2次元や 3次元のグラフで表示することによ り、 金属膜加工残りの分布表示を行うことができ、 この分布は、 平坦化加 ェ後の Q C、 平坦化加工の条件だし、 Q C位置の決定、 配線パターンの設 計等の、 薄膜デバイスの製造技術に有用に活用でき、 以つて、 製品の歩留 まり向上およびスル一プッ ト向上を図ることができる。  Further, according to the present invention, by displaying the unprocessed position of the metal film in the chip and the film thickness value measured as necessary in a two-dimensional or three-dimensional graph, the unprocessed metal film is displayed. The distribution can be displayed, and this distribution can be used effectively for thin film device manufacturing technology, such as QC after flattening, conditions for flattening, determination of QC position, and wiring pattern design. Thus, it is possible to improve product yield and throughput.

Claims

請求の範囲 The scope of the claims
1 . 光学的に透明な薄膜と金属膜が混在する試料に白色光または単色光を 照射し、 該白色光または単色光の照射により前記試料から発生する反射光 を検出し、 該検出した反射光の反射強度もしくは反射率に基づいて、 金属 膜の平坦化加工後の金属膜加工残りの有無を検出することを特徴とする金 属膜加工残り検査方法。 1. A sample in which an optically transparent thin film and a metal film are mixed is irradiated with white light or monochromatic light, reflected light generated from the sample by the irradiation of the white light or monochromatic light is detected, and the detected reflected light is detected. A metal film remaining processing method, comprising detecting presence or absence of a remaining metal film after flattening a metal film based on the reflection intensity or reflectance of the metal film.
2 . 光学的に透明な薄膜と金属膜が混在する試料に白色光または単色光を 落射照射し、 該白色光または単色光の照射により前記試料から発生する反 射光を検出し、 該検出した反射光の反射強度もしくは反射率に基づいて、 金属膜の平坦化加工後の金属膜加工残りの有無を検出することを特徴とす る金属膜加工残り検査方法。  2. A sample in which an optically transparent thin film and a metal film are mixed is irradiated with incident white light or monochromatic light, and reflected light generated from the sample by the irradiation of the white light or monochromatic light is detected. A metal film remaining processing inspection method, comprising detecting presence or absence of a metal film remaining after a metal film is flattened based on light reflection intensity or reflectance.
3 . 光学的に透朋な薄膜と金属膜が混在する試料に白色光を落射照射し、 該白色光の照射により前記試料から発生する分光反射強度もしくは分光反 射率を検出し、 該検出した分光反射強度もしくは分光反射率を、 計測視野 内の膜構造 (膜材質、 屈折率、 消衰係数、 膜厚等) に基づいて決定される 判定しきい値と比較して金属膜の平坦化加工後の金属膜加工残りの有無を 検出することを特徴とする金属膜加工残り検査方法。  3. A sample in which an optically transparent thin film and a metal film are mixed is irradiated with white light, and the spectral reflection intensity or the spectral reflectance generated from the sample by the irradiation of the white light is detected. Flatten the metal film by comparing the spectral reflection intensity or spectral reflectance with the judgment threshold value determined based on the film structure (film material, refractive index, extinction coefficient, film thickness, etc.) in the measurement field of view A method for inspecting the remaining metal film processing, comprising detecting whether or not the remaining metal film processing remains.
4 . 光学的に透明な薄膜と金属膜が混在する試料に白色光または単色光を 斜方照射し、 該白色光または単色光の照射により前記試料から発生する反 射光を検出し、 該検出した反射光の反射強度もしくは反射率に基づいて、 金属膜の平坦化加工後の金属膜加工残りの有無を検出することを特徴とす る金属膜加工残り検査方法。  4. The sample in which the optically transparent thin film and the metal film are mixed is obliquely irradiated with white light or monochromatic light, and reflected light generated from the sample by the irradiation of the white light or monochromatic light is detected. A metal film processing residue inspection method characterized by detecting the presence or absence of a metal film processing residue after flattening a metal film based on the reflection intensity or reflectance of reflected light.
5 . 光学的に透明な薄膜と金属膜が混在する試料に、 複数の異なる入射角 から白色光または単色光を斜方照射し、 該白色光または単色光の照射によ り前記試料から発生する反射光を検出し、 該検出した反射光の反射強度も しくは反射率に基づいて、 金属膜の平坦化加工後の金属膜加工残りの有無 を検出することを特徴とする金属膜加工残り検査方法。 5. Obliquely irradiate white light or monochromatic light from a plurality of different incident angles to a sample in which an optically transparent thin film and a metal film are mixed, and generate from the sample by the irradiation of the white light or monochromatic light. The reflected light is detected, and the reflection intensity of the detected reflected light is also determined. Or a method for detecting the remaining metal film processing after flattening the metal film based on the reflectance.
6 . 光学的に透明な薄膜と金属膜が混在する試料に、 プリユース夕一角で 単色光を斜方照射し、 該単色光の照射により前記試料から発生する反射光 を検出し、 該検出した反射光の反射強度もしくは反射率に基づいて、 金属 膜の平坦化加工後の金属膜加工残りの有無を検出することを特徴とする金 属膜加工残り検査方法。  6. A sample in which an optically transparent thin film and a metal film are mixed is irradiated obliquely with monochromatic light at a pre-use angle, and reflected light generated from the sample by the irradiation of the monochromatic light is detected. A metal film processing residue inspection method, comprising detecting presence or absence of a metal film remaining after the metal film flattening process based on light reflection intensity or reflectance.
7 . 光学的に透明な薄膜と金属膜が混在する試料に近接場光を照射し、 該 近接場光の照射により前記試料から発生する光を検出し、 該検出した光の 反射強度もしくは反射率に基づいて、 金属膜の平坦化加工後の金属膜加工 残りの有無を検出することを特徴とする金属膜加工残り検査方法。  7. Irradiate near-field light to a sample in which an optically transparent thin film and a metal film coexist, detect light generated from the sample by the irradiation of the near-field light, and determine the reflection intensity or reflectance of the detected light. A metal film processing residual inspection method, wherein the presence or absence of a metal film processing residual after flattening the metal film is detected based on the method.
8 . 請求項 1記載において、  8. In claim 1,
前記金属膜加工残りの候補領域を予測して、 計測位置を設定することを 特徴とする金属膜加工残り検査方法。  A metal film remaining processing inspection method, comprising: predicting the metal film remaining processing candidate area; and setting a measurement position.
9 . 請求項 2記載において、 9. In claim 2,
前記金属膜加ェ残りの候補領域を予測して、 計測位置を設定することを 特徴とする金属膜加工残り検査方法。  A metal film remaining residue inspection method, comprising: predicting the metal film remaining residue candidate region; and setting a measurement position.
1 0 . 請求項 8記載において、  10. In claim 8,
チップ内撮像画像と参照画像の明度値に基づいて、 前記金属膜加工残り の候補領域を予測し、 計測位置を決定することを特徴とする金属膜加工残 り検査方法。  A method for inspecting a residual metal film processing, comprising: predicting the candidate region for the residual metal film processing based on a brightness value of an in-chip captured image and a reference image, and determining a measurement position.
1 1 . 請求項 9記載において、  11 1. In claim 9,
チヅプ内撮像画像と参照画像の明度値に基づいて、 前記金属膜加工残り の候補領域を予測し、 計測位置を決定することを特徴とする金属膜加工残 り検査方法。  A metal film processing residue inspection method, comprising: predicting the metal film processing residue candidate region based on a brightness value of an in-chip captured image and a reference image; and determining a measurement position.
1 2 . 請求項 8記載において、 少なくとも検査対象の回路パターン面積の情報あるいは回路パターン密 度の情報の何れか 1つを含む、 検査対象の回路パターンの設計情報に基づ いて、 シミュレ一シヨンにより前記金属膜加工残りの候補領域を予測し、 計測位置を決定することを特徴とする金属膜加工残り検査方法。 1 2. In claim 8, Based on the design information of the circuit pattern to be inspected, which includes at least one of the information on the area of the circuit pattern to be inspected or the information on the circuit pattern density, the candidate area remaining for the metal film processing is simulated based on the simulation information. A metal film processing residual inspection method characterized by predicting and determining a measurement position.
1 3 . 請求項 9記載において、  1 3. In claim 9,
少なくとも検査対象の回路パターン面積の情報あるいは回路パターン密 度の情報の何れか 1つを含む、 検査対象の回路パターンの設計情報に基づ いて、 シミュレーションにより前記金属膜加工残りの候補領域を予測し、 計測位置を決定することを特徴とする金属膜加工残り検査方法。  Based on the design information of the circuit pattern to be inspected, which includes at least one of the information on the area of the circuit pattern to be inspected and the information on the circuit pattern density, the candidate region remaining for the metal film processing is predicted by simulation. A metal film processing residual inspection method characterized by determining a measurement position.
1 4 . 請求項 8記載において、  14. In claim 8,
前記した光学的に透明な薄膜の平坦化加工後で、 かつ、 前記金属膜の成 膜前の光学的に透明な薄膜の膜厚分布に基づいて、 前記金属膜加工残りの 候補領域を予測し、 計測位置を決定することを特徴とする金属膜加工残り 検査方法。  After the flattening process of the optically transparent thin film and before forming the metal film, the candidate region remaining for the metal film processing is predicted based on the film thickness distribution of the optically transparent thin film. A method for inspecting remaining metal film processing, comprising determining a measurement position.
1 5 . 請求項 9記載において、  1 5. In claim 9,
前記した光学的に透明な薄膜の平坦化加工後で、 かつ、 前記金属膜の成 膜前の光学的に透明な薄膜の膜厚分布に基づいて、 前記金属膜加工残りの 候補領域を予測し、 計測位置を決定することを特徴とする金属膜加工残り 検査方法。  After the flattening process of the optically transparent thin film and before forming the metal film, the candidate region remaining for the metal film processing is predicted based on the film thickness distribution of the optically transparent thin film. A method for inspecting remaining metal film processing, comprising determining a measurement position.
1 6 . 光学的に透明な薄膜と金属薄膜が混在する試料に白色光を落射照射 し、 該白色光の照射により前記試料から発生する反射光を検出し、 該検出 した反射光の反射強度もしくは反射率に基づいて、 金属膜の平坦化加工後 の金属膜加工残りの有無を検出し、 金属膜加工残りがある場合には、 前記 検出した反射光の計測波形と理論波形のフィ ッテングにより加工残りの膜 厚を算出することを特徴とする金属膜加工残り検査方法。  16. A sample in which an optically transparent thin film and a metal thin film are mixed is irradiated with white light, and reflected light generated from the sample by the irradiation of the white light is detected. The reflection intensity of the detected reflected light or Based on the reflectance, the presence or absence of metal film processing residue after the metal film flattening processing is detected, and if there is metal film processing residue, processing is performed by fitting the detected reflected light measurement waveform and theoretical waveform to the fitting. A metal film processing residual inspection method characterized by calculating a remaining film thickness.
1 7 . 請求項 1記載において、 前記した金属膜の平坦化加工は、 C M P ( Chemical Mechanical polishing ) 、 C M G ( Chemical Mechanical grinding ) 、 C M L ( Chemical Mechanical Lapping) の何れか 1つであることを特徴とする 金属膜加工残り検査方法。 1 7. In claim 1, The metal film remaining processing inspection method, wherein the metal film flattening processing is any one of CMP (Chemical Mechanical Polishing), CMG (Chemical Mechanical Grinding), and CML (Chemical Mechanical Lapping).
1 8 . 請求項 2記載において、  18. In claim 2,
前記した金属膜の平坦化加工は、 C M P ( Chemical Mechanical Dolishing j C M ( Chemical Mechanical grinding ) 、 C M L ( Chemical Mechanical Lapping) の何れか 1つであることを特徴とする 金属膜加工残り検査方法。  The metal film remaining processing inspection method according to claim 1, wherein the flattening processing of the metal film is any one of CMP (Chemical Mechanical Lapping) and CMP (Chemical Mechanical Lapping).
1 9 . 請求項 1記載の金属膜加工残り検査方法を実行する手段と、 検査結 果を格納する記憶手段と、 検査結果を表示する手段と、 検査結果を外部に 出力可能な外部出力手段とを、 備えたことを特徴とする金属膜加工残り検  19. A means for executing the metal film remaining processing inspection method according to claim 1, storage means for storing the inspection result, means for displaying the inspection result, and external output means for outputting the inspection result to the outside Metal film processing residual detection characterized by having
2 0 . 請求項 2記載の金属膜加工残り検査方法を実行する手段と、 検査結 果を格納する記憶手段と、 検査結果を表示する手段と、 検査結果を外部に 出力可能な外部出力手段とを、 備えたことを特徴とする金属膜加工残り検 20. Means for executing the metal film remaining processing inspection method according to claim 2, storage means for storing the inspection result, means for displaying the inspection result, and external output means for outputting the inspection result to the outside Metal film processing residual detection characterized by having
2 1 . 請求項 3記載の金属膜加工残り検査方法を実行する手段と、 検査結 果を格納する記憶手段と、 検査結果を表示する手段と、 検査結果を外部に 出力可能な外部出力手段とを、 備えたことを特徴とする金属膜加工残り検 21. Means for executing the metal film remaining processing inspection method according to claim 3, storage means for storing the inspection result, means for displaying the inspection result, and external output means for outputting the inspection result to the outside Metal film processing residual detection characterized by having
2 2 . 請求項 1記載の金属膜加工残り検査方法により得られた金属膜加工 残りデ一夕に基づいて、 金属膜の平坦化加工の加工条件を決定することを 特徴とする薄膜デバイス製造方法。 22. A method for manufacturing a thin film device, comprising: determining processing conditions for flattening a metal film based on the remaining metal film processing obtained by the metal film remaining processing inspection method according to claim 1. .
2 3 . 請求項 2記載の金属膜加工残り検査方法により得られた金属膜加工 残りデ一夕に基づいて、 金属膜の平坦化加工の加工条件を決定することを 特徴とする薄膜デバィス製造方法。 23. Based on the remaining metal film processing obtained by the metal film processing remaining inspection method according to claim 2, determining the processing conditions of the metal film flattening processing. Characteristic thin film device manufacturing method.
2 4 . 請求項 1記載の金属膜加工残り検査方法により得られた金属膜加工 残りデータに基づいて、 金属膜の平坦化加工の追加加工条件を決定するこ とを特徴とする薄膜デバイス製造方法。  24. A method for manufacturing a thin film device, comprising: determining additional processing conditions for flattening a metal film based on remaining metal film processing data obtained by the metal film remaining processing inspection method according to claim 1. .
2 5 . 請求項 2記載の金属膜加工残り検査方法により得られた金属膜加工 残りデータに基づいて、 金属膜の平坦化加工の追加加工条件を決定するこ とを特徴とする薄膜デバイス製造方法。 25. A method for manufacturing a thin film device, comprising: determining additional processing conditions for flattening a metal film based on remaining metal film processing data obtained by the metal film remaining processing inspection method according to claim 2. .
2 6 . 請求項 1記載の金属膜加工残り検査方法により得られた金属膜加工 残りデータに基づいて、 金属膜の平坦化加工後の膜厚品質管理代表点 (Q C点) を決定することを特徴とする薄膜デバイス製造方法。  26. Based on the remaining metal film processing data obtained by the metal film remaining processing inspection method according to claim 1, the quality control representative point (QC point) after the flattening processing of the metal film is determined. Characteristic thin film device manufacturing method.
2 7 . 請求項 2記載の金属膜加工残り検査方法により得られた金属膜加工 残りデータに基づいて、 金属膜の平坦化加工後の膜厚品質管理代表点 (Q C点) を決定することを特徴とする薄膜デバイス製造方法。  27. Based on the remaining metal film processing data obtained by the metal film remaining processing inspection method described in claim 2, it is necessary to determine the representative point of quality control (QC point) of the film thickness after flattening the metal film. Characteristic thin film device manufacturing method.
2 8 . 請求項 1記載の金属膜加工残り検査方法により得られたチップ内の 金属膜加工残り分布データに基づいて、 金属膜加工残りが生じにくい配線 パターンの設計を行うことを特徴とする薄膜デバイス製造方法。 28. A thin film characterized by designing a wiring pattern that hardly causes a remaining metal film processing based on distribution data of a remaining metal film processing in a chip obtained by the method for inspecting a remaining metal film processing according to claim 1. Device manufacturing method.
2 9 . 請求項 2記載の金属膜加工残り検査方法により得られたチップ内の 金属膜如ェ残り分布デ一夕に基づいて、 金属膜加工残りが生じにくい配線 パターンの設計を行うことを特徴とする薄膜デバイス製造方法。  29. A wiring pattern that is less likely to be left unprocessed on the basis of the distribution distribution of the remaining metal film in the chip obtained by the metal film remaining processing inspection method according to claim 2. Thin film device manufacturing method.
3 0 . 請求項 1記載の金属膜加工残り検査方法を実行して、 薄膜デバイス を製造することを特徴とする薄膜デバィス製造方法。 30. A method for manufacturing a thin film device, wherein the method for inspecting remaining metal film processing according to claim 1 is executed to manufacture a thin film device.
3 1 . 請求項 2記載の金属膜加工残り検査方法を実行して、 薄膜デバイス を製造することを特徴とする薄膜デバィス製造方法。 3. A method for manufacturing a thin film device, comprising: performing the metal film remaining processing inspection method according to claim 2 to manufacture a thin film device.
3 2 . 請求項 3記載の金属膜加工残り検査方法を実行して、 薄膜デバイス を製造することを特徴とする薄膜デバィス製造方法。  3. A method for manufacturing a thin film device, comprising: performing the metal film remaining processing inspection method according to claim 3 to manufacture a thin film device.
PCT/JP2003/006351 2002-05-21 2003-05-21 Method of inspecting metal film machining residue, inspection apparatus and process for producing thin-film device WO2003098674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-146372 2002-05-21
JP2002146372A JP4071541B2 (en) 2002-05-21 2002-05-21 Metal film processing residue inspection method and metal film processing residue inspection device

Publications (1)

Publication Number Publication Date
WO2003098674A1 true WO2003098674A1 (en) 2003-11-27

Family

ID=29545127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006351 WO2003098674A1 (en) 2002-05-21 2003-05-21 Method of inspecting metal film machining residue, inspection apparatus and process for producing thin-film device

Country Status (2)

Country Link
JP (1) JP4071541B2 (en)
WO (1) WO2003098674A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515491B1 (en) * 2001-12-07 2005-09-16 다이닛뽕스크린 세이조오 가부시키가이샤 Apparatus and method of inspecting pattern on semiconductor substrate and computer-readable medium
JP2010135484A (en) * 2008-12-03 2010-06-17 Daitron Technology Co Ltd Braking device and method
JP6465345B2 (en) * 2014-12-26 2019-02-06 株式会社荏原製作所 Method and apparatus for measuring surface properties of polishing pad
KR102584066B1 (en) * 2016-03-14 2023-09-27 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, and computer-readable recording medium
JP6713015B2 (en) * 2018-04-13 2020-06-24 株式会社大気社 Automatic polishing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309558A (en) * 1992-05-08 1993-11-22 Komatsu Denshi Kinzoku Kk Polishing method of laminating wafer
US6020968A (en) * 1998-05-19 2000-02-01 Dainippon Screen Mfg. Co., Ltd. Method of and apparatus for inspecting residue of metal film
JP2000310512A (en) * 1999-04-28 2000-11-07 Hitachi Ltd Method and device for measuring film thickness of thin film and method and device for manufacturing thin film device using the same
JP2002043262A (en) * 2000-07-31 2002-02-08 Nikon Corp Polishing condition monitor, measuring apparatus, polishing apparatus, semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309558A (en) * 1992-05-08 1993-11-22 Komatsu Denshi Kinzoku Kk Polishing method of laminating wafer
US6020968A (en) * 1998-05-19 2000-02-01 Dainippon Screen Mfg. Co., Ltd. Method of and apparatus for inspecting residue of metal film
JP2000310512A (en) * 1999-04-28 2000-11-07 Hitachi Ltd Method and device for measuring film thickness of thin film and method and device for manufacturing thin film device using the same
JP2002043262A (en) * 2000-07-31 2002-02-08 Nikon Corp Polishing condition monitor, measuring apparatus, polishing apparatus, semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003338493A (en) 2003-11-28
JP4071541B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
KR102220435B1 (en) Measurement model optimization based on parameter variations across a wafer
US6806970B2 (en) Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
TWI391645B (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
JP4230674B2 (en) Defect inspection apparatus and method
JP4343911B2 (en) Defect inspection equipment
JP4460659B2 (en) Thin film thickness measuring method and apparatus, thin film device manufacturing method and apparatus using the same
US20080243412A1 (en) Apparatus for Inspecting Defect and Method of Inspecting Defect
TWI785216B (en) Combining simulation and optical microscopy to determine inspection mode
TWI734761B (en) System and method for all surface film metrology
US9243886B1 (en) Optical metrology of periodic targets in presence of multiple diffraction orders
JP2018535426A (en) Non-contact thermal measurement of VUV optical elements
JP5506243B2 (en) Defect inspection equipment
WO2003098674A1 (en) Method of inspecting metal film machining residue, inspection apparatus and process for producing thin-film device
JP5784796B2 (en) Surface inspection apparatus and method
JP4652370B2 (en) Defect inspection apparatus and method
JP5325158B2 (en) Defect inspection apparatus and method
JP2010101714A (en) Parameter determining apparatus for inspecting pattern, program and parameter determining method
TWI762356B (en) Wafer inspection system and wafer inspection method
US6842235B2 (en) Optical measurement of planarized features
US7796805B1 (en) Defect detection
Tsuto et al. Advanced through-silicon via inspection for 3D integration
JP5576526B2 (en) Surface inspection apparatus and method
JP4648435B2 (en) Inspection device
JP2000186918A (en) Detection method, membrane thickness measuring method, detecting device, membrane thickness measuring device and polishing device
Hamamatsu et al. Apparatus and method for inspecting defects

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase