WO2003095958A1 - Detecteur d'ultraviolets - Google Patents

Detecteur d'ultraviolets Download PDF

Info

Publication number
WO2003095958A1
WO2003095958A1 PCT/JP2003/005653 JP0305653W WO03095958A1 WO 2003095958 A1 WO2003095958 A1 WO 2003095958A1 JP 0305653 W JP0305653 W JP 0305653W WO 03095958 A1 WO03095958 A1 WO 03095958A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
detectors
voltage
detector
discharge tube
Prior art date
Application number
PCT/JP2003/005653
Other languages
English (en)
French (fr)
Inventor
Kazuo Seki
Satoshi Kadoya
Giichi Nishino
Kenjiro Tanaka
Tetsuya Yamada
Keisuke Sumiyoshi
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to AU2003235842A priority Critical patent/AU2003235842A1/en
Publication of WO2003095958A1 publication Critical patent/WO2003095958A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Definitions

  • the present invention relates to an ultraviolet ray detection device for accurately and efficiently detecting ultraviolet rays generated from a flame in a combustion furnace, for example.
  • the furnace wall temperature has been increasing (600 ° C to 900 ° C), and it has been increasingly used.
  • visible light is radiated not only from the flame in the furnace but also from the furnace wall, so that the measurement and detection device based on visible light cannot measure the air-fuel ratio correctly as described above. Therefore, it is conceivable to detect ultraviolet rays in the region where the wavelength is shorter than visible light (shorter than 400 nm) emitted from the flame, and measure the air-fuel ratio based on that.
  • discharge tube type a photoelectric tube type or a Geiger-Muller type ultraviolet detector
  • semiconductor type ultraviolet detector a semiconductor ultraviolet detector
  • the ultraviolet light emitted from the flame as described above is relatively weak, a semiconductor ultraviolet detector with low sensitivity cannot be used, and a high-sensitivity discharge tube ultraviolet detector must be used.
  • Conventional discharge tube type ultraviolet detectors are constructed by placing a pair of electrodes (anode and cathode) in a discharge tube through which ultraviolet light can pass, and filling the discharge tube with an ionizable gas (penning gas). ing. Neon monohydrogen, helium as the penning gas A mixed gas of monohydrogen or neon-argon-hydrogen is used. Then, when a voltage of about 300 volts is applied between the small electrodes, ultraviolet rays can be detected (on state), and when ultraviolet rays hit the cathode, they are discharged.
  • penning gas ionizable gas
  • the materials of the electrodes used in this type of discharge tube are tungsten (W), nickel (Ni), molybdenum (Mo), copper (Cu), iron (Fe), gold (Au), Silver (Ag), tantalum (T a), carbon (C), etc.
  • the detectable wavelength range is determined by the material of the cathode (force sword).
  • Such discharge tube type ultraviolet detectors have a limited range of detectable ultraviolet rays depending on the material of their electrodes, but can detect the presence or absence of ultraviolet rays, so that means for monitoring the flame in the combustion furnace is used. It is used as
  • a detector whose detectable ultraviolet region is determined by the electrode material as described above Must be prepared for each wavelength region including those components.
  • a plurality of discharge tube type ultraviolet detectors having different detectable wavelength ranges be arranged in close proximity to a predetermined place so that ultraviolet light emitted from the flame in the furnace can be detected under the same conditions. And requires space for their placement.
  • adjacent detectors may have an adverse effect upon detection. It is an object of the present invention to provide an ultraviolet detector that can be configured to be relatively small without any.
  • a first aspect of the present invention is an ultraviolet detector configured by placing an anode and a cathode in a discharge tube through which ultraviolet light can pass, and filling the discharge tube with an ionizable gas. Are placed on the UV light incident side, and when a predetermined voltage is supplied to the electrodes of each UV detector, the time is shifted so that adjacent UV detectors are not supplied simultaneously. It is characterized by applying the voltage.
  • the ultraviolet detector of this aspect it is preferable to apply voltages to the electrodes of the plurality of ultraviolet detectors in order.
  • Another embodiment of the present invention is directed to a discharge tube through which ultraviolet light can pass, an ionizable gas sealed in the discharge tube, one anode installed in the discharge tube, and an anode facing the same. And a voltage supply circuit for applying a predetermined voltage to the electrode portion, wherein the voltage supply circuit is at least adjacent to the plurality of cathodes. It is characterized in that the voltage is applied to the cathodes not at the same time but at different times.
  • the application time of the voltage supplied from the voltage supply circuit to each electrode unit and the magnitude of the applied voltage are made variable according to the material of the electrode. This makes it possible to compensate for differences in sensitivity due to differences in electrode materials. You.
  • a predetermined voltage is applied to a plurality of ultraviolet detectors having different cathode materials from each other so that the adjacent ultraviolet detectors are not simultaneously supplied with a predetermined voltage. Adjacent detectors do not adversely affect each other at the time of discharge, and electromagnetic shielding and other additional structures are not required.
  • an electrode portion is constituted by one (common) anode and a plurality of cathodes made of different materials in one discharge tube, that is, a plurality of types of detectors are integrated. Since a single discharge tube covers a plurality of UV detection areas, the whole is made smaller and the handling is convenient because it is a single device.
  • the air-fuel ratio can be calculated by detecting the ultraviolet rays emitted from the combustion flame, and it can be determined whether the state of the flame is normal or abnormal. Therefore, an ultraviolet detector suitable for various uses such as diagnosis of the condition of a combustion furnace used for quenching and detection of fire in various facilities is provided.
  • FIG. 1 is a diagram showing an ultraviolet detector according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a drive circuit for detecting ultraviolet rays by applying a predetermined voltage to three ultraviolet detectors in the embodiment of FIG.
  • FIG. 3 is a diagram showing an operation of detecting ultraviolet rays by sequentially turning the three ultraviolet detectors of FIG. 1 into an ON state.
  • FIG. 4 is a view showing a light emission spectrum in a wavelength region where components such as NO, OH, and CH in a flame to be detected appear.
  • Figure 5 is a graph showing the correlation between the emission ratio of the components generated by combustion and the air ratio.
  • FIG. 6 shows that among the three ultraviolet detectors shown in Fig. 1, the kazode is made of Cu and Ag.
  • FIG. 7 is a diagram showing a change in the wavelength region of ultraviolet light detected by the detector provided with the low-pass filter of FIG.
  • FIG. 8 is a diagram showing an ultraviolet detector according to a second embodiment of the present invention.
  • FIG. 9 is a flowchart showing a procedure of a flame detection process using the ultraviolet detector of the embodiment.
  • FIG. 1 shows the configuration of an ultraviolet detecting device according to a first embodiment of the present invention.
  • This detection device is configured by arranging a plurality of (three in the illustrated case) discharge tube type ultraviolet detectors 1, 2, and 3 toward the ultraviolet light incident side.
  • Each of the ultraviolet detectors 1, 2, and 3 has a pair of electrodes (anode 11 and cathode 12) placed in parallel in a discharge tube 10 made of ultraviolet transmitting glass at a predetermined interval.
  • the discharge tube 10 is filled with an ionizable gas (pening gas) in common, the cathode (force source) 12 of each detector is made of a different material (W, Cu in the illustrated case). , A g).
  • the anode (anode) 11 is made of a mesh-like metal material (for example, Mo, Ni, or W). By forming the anode 11 in a mesh shape, the ultraviolet rays enter the inside from the upper end of the discharge tube 1 ⁇ and hit the force sword 12. As described above, this type of ultraviolet detector is in a discharged state when ultraviolet light hits a cathode while a voltage of about 300 volts is applied between a pair of electrodes (on state). Ultraviolet light can be measured by detecting the resulting current.
  • a mesh-like metal material for example, Mo, Ni, or W.
  • a pair of electrodes namely, the anode 11 and the force sword 12 are discharged by the metal rod-shaped support members 13 and 14 connected to each other. It is supported in parallel close proximity to the upper inside of tube 10.
  • Each of the ultraviolet detectors 1, 2, and 3 is driven by, for example, a drive circuit shown in FIG.
  • This drive circuit is configured to sequentially drive the ultraviolet detectors 1, 2, and 3 having the cathodes 12 made of different materials as described above to the ON state.
  • Each detector is in a discharge state by receiving ultraviolet rays in the on state, and the anode 1 1 To generate a pulse current from the power source 12 to the power source 12.
  • the circuit shown in Fig. 2 is connected to the output side of the voltage circuit including the parallel circuit of the capacitor 21 and the diode 22 and the resistor 23 and the capacitor 24 connected to the secondary side of the transformer 20.
  • the devices 1, 2, and 3 are connected in parallel, and a parallel circuit of a resistor 23 and a capacitor 24 is connected via a switch circuit 25 provided on each force source 12 side.
  • the switch circuit 25 applies a predetermined voltage in the order of the ultraviolet detectors 1, 2, and 3 or changes the voltage depending on the situation (for example, when the amount of ultraviolet light from the flame is large, the voltage is reduced. ),
  • a predetermined time for example, several tens of microseconds to several tens of milliseconds
  • mechanical switching means having a movable contact 28 that can be sequentially switched at predetermined time intervals may be used.
  • the secondary voltage is set to 136V
  • the capacitor 21 is set to 4 x F
  • the resistor 23 is set to 5100 ⁇
  • the capacitor 24 is set to F
  • the voltage of the capacitor 21 is 110V.
  • the impedance of the detector 1, 2 or 3 connected to the movable contact 28 of the switch circuit 25 becomes extremely high, Current flows first through diode 22 and charges capacitor 21 during the first half cycle. In the next half cycle, little or no current will flow through this circuit. When the voltage is reversed again, only the leakage current flows through the diode 22 and the capacitor 21 is maintained in a charged state. This leakage current is insufficient to produce the output current.
  • the detector In the presence of ultraviolet light, the detector conducts during the half-cycle of the alternating current applied to the transformer 20 and the capacitor 21 connects to the detector and the resistor 26 and the capacitor 27. Discharge through a parallel circuit. When the next half cycle of polarity reversal appears in transformer 20, capacitor 21 is recharged via diode 22.
  • capacitor 21 alternates between charging and discharging, producing a current through diode 22 every other half cycle. This causes a voltage drop across resistor 23, which is maintained in series with it, which charges capacitor 24 and produces a voltage across it. During this time, the voltage across capacitor 27 is very small. If a short circuit occurs in the detector, its impedance becomes extremely small, so that the capacitor 21 is charged to a relatively high voltage via the diode 29 connected in parallel with this. That is, the extremely high charging voltage of the capacitor 21 reverse biases the diode 22 every other half cycle to reduce its conductivity. Therefore, the current flowing through the resistor 23 becomes extremely small or zero, and the charge of the capacitor 24 is reduced or becomes zero. When the capacitor 24 becomes uncharged, the voltage across it becomes zero. As long as ultraviolet light is incident, the detector turns off and charges the capacitor 21 in a half cycle, and the detector turns on and discharges the capacitor 21 in the next half cycle .
  • the short circuit protection means is constituted by a parallel circuit of the resistor 26 and the capacitor 27 and the diode 29.
  • a predetermined force is applied to a pair of electrodes in each discharge tube in the order of the ultraviolet detectors 1, 2, and 3 made of the power source 12 power W, Cu, and Ag.
  • each of the ultraviolet detectors 1, 2, and 3 is sequentially turned on (operating) as shown in FIG. .
  • an ultraviolet voltage strikes a force source while an AC voltage as shown in Fig. 3 is applied to a pair of terminals connected to the anode and cathode of each of the ultraviolet detectors 1, 2, and 3, respectively.
  • Discharge occurs approximately every half cycle of the AC voltage.
  • a signal current as shown is obtained.
  • the terminal voltage becomes as shown by the broken line.
  • FIG. 4 shows an emission spectrum (wavelength characteristic) in a wavelength region where components such as N ⁇ , OH, and CH appear in the flame to be detected according to the present invention.
  • This Asechire down nitrous oxide (N 2 0) on the burner are examples of the flame.
  • CH and CN in the region of approximately 310-400 (nm) respectively. It appears strongly.
  • the work function ( ⁇ ) and the wavelength are classified as follows according to the type (material) of the electrodes of the discharge tube type detector as described above.
  • ⁇ 2 3.85 to 4.38 eV (Cu), 4.04 to 4.77 eV (F e), 4.0 to 4.58 eV (Au), 4.07 to 419 eV (T a), 4.39 e V (C)
  • ⁇ 3 3.08 to 3.56 eV (Ag), 2.98 to 4.43 eV (A 1), 2.24 e V (C a
  • the work function ⁇ 1 corresponding to the electrode material mainly captures NO groups
  • the work function ⁇ 2 captures OH and NO
  • the work function ⁇ 3 captures N ⁇ , ⁇ H, CH, CN, C, etc. I can say.
  • each force sword is made of a different material (eg, W, C u, Ag) to detect ultraviolet rays with multiple UV detectors, to obtain emission spectrum in the wavelength range corresponding to those materials, and to detect components such as NO and CH in the flame (The ratio of their intensities) can be calculated.
  • a different material eg, W, C u, Ag
  • the emission intensity due to combustion and the air ratio have a certain relationship as shown in FIG. This is due to the spectrum intensity of NO, OH and CH groups in the mixed gas of CH 4 (methane) and air generated when air is supplied and burned using natural gas as fuel. And the equivalent ratio (the reciprocal of the air ratio).
  • the air ratio is the minimum amount of air (that is, oxygen) required for complete combustion of fuel (that is, 1). In theory, this is the required amount of air.
  • the air may not mix well with the fuel, and as described above, more air is supplied to burn at higher temperatures. That is, the target air ratio is set higher than 1. At the time of combustion, it is necessary to detect the actual air ratio in order to control the supply amount of air or fuel so that the air ratio takes a target value.
  • the emission intensity ratio of NO and CH in the flame is calculated by the ultraviolet ray detection device of the present invention as described above, the air ratio is obtained from the calculation result based on the above relationship.
  • Fig. 6 shows the detection device consisting of a plurality of ultraviolet detectors shown in Fig. 1, and the light input sections of the ultraviolet detectors 2 and 3 in which the power source 12 is made of Cu and Ag (Fig. 1).
  • a low-pass filter or a band-pass filter that passes only the longer ultraviolet rays from a predetermined wavelength (hereinafter, a case where a “low-pass filter” is used) 15 is used. Shows what was provided.
  • the wavelength regions detected by the ultraviolet detectors 2 and 3 are respectively predetermined wavelengths (for example, 250 nm for Cu and 280 nm for Ag). The following parts are cut.
  • a band-pass filter or a low-pass filter 15 is provided.
  • the ultraviolet ray detectors 2 and 3 detect, it is possible to perform detection in the ultraviolet ray region classified according to the characteristics of each detector.
  • spectra of components such as NO, OH, and CH Appears in each of the divided areas as described above, and therefore those components can be reliably detected by the detector corresponding to each area.
  • spectroscopy has the effect of improving the accuracy of detection or analysis of the ultraviolet detector.
  • FIG. 8 shows an ultraviolet detector according to a second embodiment of the present invention.
  • This detector is common to the first embodiment in that an ionizable gas (pening gas) is filled in a discharge tube 30 made of ultraviolet transmission glass.
  • a single anode (anode) 3 made of a mesh-like metal material placed inside and a cathode (force sword) 32 made of a plurality of (again, three) different materials are placed so as to face 1 1
  • This embodiment differs from the first embodiment in that two discharge tube type detectors are formed.
  • the three cathodes 32 are made of W, Cu, and Ag. Between the common anode 31 constituting the electrode section and each cathode 32, for example, a driving circuit shown in FIG. A voltage is applied to adjacent cathodes 32 not at the same time but at different times by a configured voltage supply circuit (not shown).
  • the upper end face of the discharge tube 30 is extended from a predetermined wavelength at a position corresponding to the force source 32 made of Cu and A inside the discharge tube.
  • the ultraviolet detection device of the above embodiment is not limited to the flame in the combustion furnace, but detects the abnormality of the flame in a cooking place or a cooking place using a fire, detects the state of the ignition flame in an automobile engine, or detects a fire in advance. It can also be suitably used for flame detection and the like in order to prevent the occurrence of fire.
  • the ultraviolet ray detecting device not the light but the ultraviolet ray emitted from the fire which can develop into a fire is detected, so that the occurrence of a flame which causes a fire can be detected at an early stage.
  • FIG. 9 is a flowchart illustrating an example of a flame detection method when the ultraviolet detection device of the above embodiment is used for fire prevention.
  • the signal current generated by the three types of force swords made of W, Cu, and Ag
  • FIG. 9 first, it is determined whether or not a flame is a flame based on whether or not a detector having a power source made of any of W, Cu, and Ag has detected ultraviolet rays. That is, it is checked in ST1 whether or not it has been detected with a force sword made of W. If it is "Yes", the signal amount (the amount of ultraviolet rays) is measured (ST2), and in the next ST3, C is detected. Check if it is detected with a u-made force sword, this is also
  • the signal amount (the amount of ultraviolet rays) is measured (ST4), and in the next ST5, it is checked whether or not it was detected with an Ag force sword. If this is also "Yes", For example, the signal amount (the amount of ultraviolet rays) is measured (ST6). In the above case, since all detectors detected ultraviolet light, it is determined that the flame was present (ST7). Then, based on the signal amount detected and measured by each of the detectors, an operation for calculating the aforementioned “air ratio” is performed (ST8), and it is determined whether or not the obtained air ratio is within the set value.
  • the ultraviolet detection signal is not zero, but is small (detection If the detection is insufficient or if the detection is intermittent, such as when the value is lower than the judgment threshold, it is possible to temporarily determine that there is “flame”. Specifically, as shown by the dashed block in FIG. 9, the signal amount measured in each of the above ST2, ST4, and ST6 is smaller than a predetermined value (upper threshold) for judging “flame”. Check if the detector is at a provisionally usable level (greater than the lower threshold), and if it is between the upper and lower thresholds, it is considered “provisionally usable”.
  • the detector If it is less than or equal to the threshold value, it is determined that it is not a flame (ST11). As a result, it is possible to set the detector to be usable until a predetermined time limit has come even if the detector has a slightly deteriorated ultraviolet ray detection capability.
  • the present invention is not limited to this, and an arbitrary configuration can be adopted by using a discharge tube type detector having a different detectable region depending on the material of the electrode. For example, reliability can be improved by preparing a plurality of sets of three types of discharge tubes as one set.
  • an abnormal value of a discharge tube eg, an Ag electrode
  • the wall temperature of the combustor is abnormally high.
  • the occurrence of a phenomenon in which the temperature becomes abnormally high periodically can be detected.
  • the output from the multiple discharge tubes is a predetermined value, but the output of the high-temperature flame
  • the combustion furnace wall may become abnormally high due to flickering or the like.
  • the combustion furnace wall or the bin blade of a gas turbine rotating at the exit of the combustion furnace deteriorates and becomes extremely hot
  • only the discharge tube of the Ag electrode detects the abnormally high temperature.
  • the output will fluctuate periodically.
  • the ones with the same electrode eg, Ag
  • the abnormally high temperature can be detected.
  • the voltage applied to the electrodes may be alternating current, direct current, or rectangular wave.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

明 細 書
紫外線検出装置 技術分野
本発明は、 例えば燃焼炉内の火炎から発生する紫外線を正確に且つ効率良く検 出するための紫外線検出装置に関する。 背景技術
燃焼炉においては、 所望の温度を達成し維持するために空気或いは燃料の供給 量を調整する温度制御が行われているが、 その一方で、 有害な酸化窒素 (N Ox ) や一酸化炭素 (C O) 等の発生を抑えると共に燃焼効率を高めることが要請さ れている。 そこで、 空燃比 (空気と燃料との混合割合を示す比率) を検出し、 そ れに基づいて燃焼を制御することが考えられている。 そのための手段として、 火 炎から出る可視光を受光するカメラとこれで得られた画像から空燃比を算出する 画像処理装置とを含む火炎内空燃比分布の画像計測検出装置が提案されている。 一方、 上記の要請に応えるため、 炉壁の温度が高く (600°C〜900°C) 運用され ることが多くなつてきた。 そのような高温では、 炉内の火炎だけでなく炉壁から も可視光が放射されるので、 上記のように可視光に基づく計測検出装置では、 空 燃比を正しく測定することができない。 そこで、 火炎から放射される、 可視光よ りも波長が短い (400 n mより短い) 領域の紫外線を検出し、 それに基づいて空 燃比を計測することが考えられる。 そのため紫外線を検出する手段としては、 放 電管型、 光電管型或いはガイガーミュラ一型の紫外線検出器 (以下では、 これら を「放電管型」と称する) の紫外線検出器と半導体型の紫外線検出器が知られてい るが、 上記のような火炎から出る紫外線は比較的弱いため、 感度の低い半導体型 の紫外線検出器では対応できず、 高感度の放電管型紫外線検出器を用いる必要が ある。
従来の放電管型紫外線検出器は、 紫外線が透過し得る放電管の中に 1対の電極 (陽極と陰極) を設置すると共に放電管内にイオン化可能なガス (ぺニングガス ) を充填して構成されている。 ぺニングガスとしては、 ネオン一水素、 ヘリウム 一水素、 或いはネオン一アルゴン一水素の混合ガスが用いられる。 そして、 は寸 の電極の間に 300ポルト程度の電圧が印加されたとき、 紫外線を検出できる状態 (オン状態) となり、 紫外線が陰極に当ると放電状態になる。
これによつて検出される火炎からの紫外線のスぺクトル分布では、 火炎中の N 0、 〇H、 C H等の各成分に対応した波形が表れるが、 それらの波形が表れる波 長領域が検出可能かどうかは、 放電管内の電極の材質による。 すなわち、 この種 の放電管に用いられる電極の材料は、 タングステン (W) 、 ニッケル (N i ) 、 モリブデン (M o ) 、 銅 (C u ) 、 鉄 (F e ) 、 金 (A u ) 、 銀 (A g ) 、 タン タル (T a ) 、 炭素 ( C) 等であるが、 陰極 (力ソード) がどの材料で作られて いるかによって、 検出可能な波長領域が決められる。
このような放電管型の紫外線検出器は、 その電極の材質によって検出可能な紫 外線の領域が限定されるものの、 紫外線の有無は検知できるので、 燃焼炉内の火 炎を監視するための手段として用いられている。
しかしながら、 近年の燃焼炉に対する要請に応じるためには、 火炎中の N O、 OH、 C H等の成分を正しく検出する必要があり、 火炎から放射された紫外線を 検出する手段として従来の放電管型紫外線検出器を用いるならば、 次のような問 題点が生ずる。
まず、 火炎中の N〇、 O H、 C H等の各成分が表われる波長領域で検出するた めには、 上記のように電極の材料によつて検出可能な紫外線領域が決められてい る検出器をそれらの成分を含む波長領域毎に、 従って複数種類、 用意しなければ ならない。 そして、 それら検出可能な波長領域の異なる複数個の放電管型紫外線 検出器は、 炉内の火炎から放射される紫外線を同じ条件で検出できるように定め た場所に密接して配置することが要求され、 それらの配置のスペースを必要とす る。
また、 複数個の放電管型紫外線検出器を密接して配置すると、 一の検出器が紫 外線の入射によって放電を生じたとき、 その放電に伴って電磁場が生じると共に 当該検出器それ自体からも紫外線が発生する。 それらの電磁場及び紫外線により 、 隣接する検出器が悪影響を受けることがあり、 火炎からの紫外線について正確 な検出が困難になる。 上記のように隣接する検出器同士で互いに悪影響を及ぼし合うのを防止するた め、 各検出器には炉内の火炎からの紫外線のみが入射するように、 放電管の壁面 に可視光や紫外線の反射を阻止する処理を施したり、 電磁気的な遮蔽 (シールド ) を強化することが考えられる。 しかし、 そのような処理やシールドで、 隣接す る検出器同士で悪影響を完全に除去しょうとすると、 炉内の火炎検出部の全体が 大型化せざるを得ない。 発明の開示
本発明は、 上記のように検出可能な波長領域が異なる複数種類の放電管型紫外 線検出器を用いて火炎からの紫外線を検出する場合、 隣接する検出器同士で検出 時に悪影響を及ぼし合うことがなく、 比較的小型に構成できる紫外線検出装置を 提供することを目的とする。
本発明の第 1の態様は、 紫外線が透過し得る放電管の中に陽極及び陰極を設置 すると共に該放電管内にイオン化可能なガスを充填して構成した紫外線検出器で あって前記陰極の材質が互いに異なる複数の紫外線検出器を、 紫外線の入射側に 配置し、 各紫外線検出器の電極に所定の電圧を供給するとき、 隣接する紫外線検 出器には同時に供給されないように時間をずらして当該電圧を印加することを特 徴とする。
この態様の紫外線検出装置においては、 複数の紫外線検出器の電極には電圧を 順番に印加することが好適である。
本発明のもう 1つの態様は、 紫外線が透過し得る放電管と、 該放電管の中に封 入されたイオン化可能ガスと、 該放電管の内部に設置された 1つの陽極及びこれ に対向するように配置された複数の異なる材料から成る陰極で構成した電極部と 、 該電極部に所定の電圧を印加する電圧供給回路とを備え、 該電圧供給回路は、 複数の陰極のうち少なくとも隣接する陰極同士では同時でなく、 時間をずらして 電圧を印加することを特徴とする。
この態様の紫外線検出装置においては、 電圧供給回路から各電極部に供給され る電圧の印加時間や印加電圧の大きさを電極の材質に応じて可変にすることが好 ましい。 これにより、 電極の材質の違いによる感度の違いを補正することができ る。
第 1の態様によれば、 陰極の材質が互いに異なる複数の紫外線検出器に対し、 隣接する紫外線検出器では同時に供給されないように時間をずらして、 所定の電 圧を印加するようにしたので、 隣接する検出器同士で放電時に悪影響を及ぼし合 うことがなく、 また、 電磁気的な遮蔽その他の付加的な構造が不要であるから、 全体が比較的小型に構成できる。
もう 1つの態様によれば、 1つの放電管の中で 1つの (共通) 陽極と複数の異 なる材料から成る陰極とで電極部を構成した、 すなわち、 複数種類の検出器を一 体化して 1つの放電管で複数の紫外線検出領域をカバーするようにしたので、 全 体がより小型に形成されると共に、 単体の装置であるから取扱いも便利である。 本発明によれば、 上記のどの態様であっても、 燃焼火炎から放射される紫外線 を検出することで空燃比を算定し、 火炎の状態が正常か異常かを判定することが できる。 従って、 焼入れ等に用いられる燃焼炉の状態診断や各種施設における火 災検知など、 種々の用途に適した紫外線検出装置が提供される。
また、 複数の検出器 (特に、 陰極と放電管) のうちのどれかが破損したとき、 他の検出器で一時的に代替し、 限られた時間、 暫定的に燃焼が維持されるように 補うことができる。 図面の簡単な説明
図 1は、 本発明の第 1実施例の紫外線検出装置を示す図。
図 2は、 図 1の実施例において 3つの紫外線検出器に対して所定の電圧を印加 することで紫外線を検出するための駆動回路の一例を示す図。
図 3は、 図 1の 3個の紫外線検出器が順次 O N状態になることで紫外線を検出 する動作を示す図。
図 4は、 検出対象の火炎中の N O , O H, C H等の成分が表れる波長領域の発 光スぺクトルを示す図。
図 5は、 燃焼によって発生する成分の発光強度と空気比との相関関係を示すグ ラフ。
図 6は、 図 1に示した 3個の紫外線検出器のうちカゾードが C u, A gで作ら れた検出器の入光部の前にローパスフィル夕を設けた場合の構成を示す図。 図 7は、 図 6のローパスフィルタを設けた検出器によって検出される紫外線の 波長領域の変化を示す図。
図 8は、 本発明の第 2実施例の紫外線検出装置を示す図。
図 9は、 実施例の紫外線検出装置を用いた火炎検出処理の手順を示すフローチ ヤー卜。 発明を実施するための最良の形態
図 1は、 本発明の第 1実^例の紫外線検出装置の構成を示す。 この検出装置は 、 複数 (図示の場合、 3個) の放電管型紫外線検出器 1 , 2 , 3を紫外線の入射 側に向けて配置して構成されている。
各紫外線検出器 1 , 2 , 3は、 紫外線透過ガラスで作られた放電管 1 0の中に 1対の電極 (陽極 1 1と陰極 1 2 ) を所定の間隔をとつて平行に設置すると共に 放電管 1 0内にイオン化可能なガス (ぺニングガス) を充填している構成は共通 であるが、 各検出器の陰極 (力ソード) 1 2は互いに異なる材料 (図示の場合、 W、 C u、 A g ) で作られている。
なお、 陽極 (アノード) 1 1は、 網目状の金属材料 (例えば、 M o、 N i、 又 は W) で作られている。 アノード 1 1を網目状にすることにより、 紫外線は放電 管 1◦の上端から内部に入り、 力ソード 1 2に当る。 このタイプの紫外線検出器 は、 前述のように、 1対の電極の間に 300ポルト程度の電圧が印加された状態 ( オン状態) で紫外線が陰極に当ると放電状態になる。 それによつて生じた電流を 検出することにより、 紫外線を計測できる。
図 1の各紫外線検出器 1, 2, 3において、 1対の電極、 すなわちアノード 1 1と力ソード 1 2は、 それぞれに接続した金属製の棒状支持部材 1 3と 1 4によ つて、 放電管 1 0の内側上部に平行に近接した関係で支持されている。
各紫外線検出器 1, 2, 3は、 例えば図 2に示す駆動回路によって駆動される 。 この駆動回路は、 上記のように異なる材料で作られたカゾード 1 2を有する各 紫外線検出器 1 , 2 , 3を順次オン状態に駆動するように構成されている。 各検 出器は、 オン状態で紫外線を受けることによって放電状態となり、 アノード 1 1 から力ソード 1 2へのパルス電流を生ずる。
図 2の回路は、 変圧器 2 0の二次側に接続したコンデンサ 2 1とダイオード 2 2、 及び抵抗 2 3とコンデンサ 2 4との並列回路を含む電圧回路の出力側に、 上 記紫外線検出器 1, 2 , 3を並列に、 そして各々の力ソード 1 2側に設けたスィ ツチ回路 2 5を介して、 抵抗 2 3とコンデンサ 2 4との並列回路を接続して構成 されている。
スィッチ回路 2 5は、 後述のように、 紫外線検出器 1, 2, 3の順番に所定の 電圧を、 或いは状況により電圧を変えて (例えば、 火炎からの紫外線の量が多い ときは電圧を下げて) 、 所定時間 (例えば、 数十マイクロ秒〜数十ミリ秒) ずつ 周期的に (交流又は矩形の波形で) 印加するため、 例えば、 各紫外線検出器 1, 2 , 3のカソード側の端子に所定時間間隔で順次接続するように切り替えられる 可動接点 2 8を有する機械的な切替手段でもよい。
図 2の回路において、 変圧器 2 0の二次卷線の下側端子が +であるとき、 電流 は、 この下側端子から抵抗 2 3及びダイオード 2 2を経て、 コンデンサ 2 1を図 示の極性に充電するように流れる。 変圧器 2 0の二次側電圧は、 交流の次の半サ ィクルにおいて、 コンデンサ 2 1の電圧に加えられ、 スィッチ回路 2 5の可動接 点 2 8と接続した紫外線検出器のアノード 1 1に正電圧を印加する。
図示の例では、 二次電圧は 136V、 コンデンサ 2 1は 4 x F、 抵抗 2 3は 5100 Ω、 コンデンサ 2 4は Fに、 それぞれ設定され、 コンデンサ 2 1の電圧は 11 0Vである。
変圧器 2 0へ交流電圧が印加された状態で、 紫外線が存在しなければ、 スイツ チ回路 2 5の可動接点 2 8が接続した検出器 1 , 2又は 3のインピーダンスは極 めて高くなり、 最初ダイオード 2 2を経て電流が流れ、 初めの半サイクル中、 コ ンデンサ 2 1を充電する。 次の半サイクルにおいては、 この回路には殆ど或いは 全く電流が流れない。 再び電圧が反転すると、 ダイオード 2 2には単に漏洩電流 だけが流れ、 コンデンサ 2 1を充電状態に維持する。 この漏洩電流は、 出力電流 を生ずるには不充分である。
紫外線が存在すると、 上記検出器は、 変圧器 2 0に加えられた交流の半サイク ルの間導電し、 コンデンサ 2 1はその検出器、 及び抵抗 2 6とコンデンサ 2 7の 並列回路を経て放電する。 変圧器 2 0に極性が反転した次の半サイクルが現れる と、 コンデンサ 2 1はダイオード 2 2を経て再充電される。
上記検出器が導通状態を持続しているならば、 コンデンサ 2 1は充電と放電を 交互に行い、 1つおきの半サイクル毎にダイォード 2 2を通る電流が生ずる。 そ のため、 これに直列に持続された抵抗 2 3に電圧降下を生じ、 この電圧降下がコ ンデンサ 2 4を充電し、 その両端に電圧を生ずる。 この時間中、 コンデンサ 2 7 の両端の電圧は極めて小である。 検出器に短絡が起これば、 そのインピーダンス が極めて小となるので、 コンデンサ 2 1は、 これと並列に接続したダイオード 2 9を経て、 比較的高い電圧まで充電されることになる。 即ち、 コンデンサ 2 1の 極めて高い充電電圧が、 1つおきの半サイクル毎にダイオード 2 2に逆バイアス を与えてその導通度を低下させる。 従って、 抵抗 2 3を流れる電流は極めて少な くなるか或いはゼロになるので、 コンデンサ 2 4の電荷量が低下し或いは無電荷 になる。 コンデンサ 2 4が無電荷状態になれば、 その両端電圧はゼロになる。 紫外線が入射される限り、 半サイクルにおいて検出器はオフ状態になってコン デンサ 2 1が充電され、 次の半サイクルにおいては検出器がオン状態となってコ ンデンサ 2 1から電荷が放電される。
なお、 抵抗 2 6とコンデンサ 2 7との並列回路及びダイオード 2 9により、 短 絡保護手段が構成されている。
図 2のスィッチ回路 2 5により、 例えば、 力ソード 1 2力W、 C u、 A gで作 られている紫外線検出器 1 , 2, 3の順番に、 各放電管内の 1対の電極に所定の 電圧を一定時間ずつ印加することにより、 図 3に示すように、 各紫外線検出器 1 , 2 , 3は順次 O N (動作) 状態となり、 それぞれ検出可能な波長領域の紫外線 を検出することができる。 具体的には、 各紫外線検出器 1, 2 , 3のアノードと カソードにそれぞれ接続した 1対の端子に、 図 3に示したような交流電圧を印加 した状態で、 紫外線が力ソードに当ると、 当該交流電圧の略半サイクル毎に放電 が行われる。 この放電により、 図示のような信号電流が得られる。 このとき、 端 子電圧は破線で示すようになる。
なお、 カソードの材質が異なる複数の紫外線検出器に供給する電圧の印加時間
(O N状態) は、 図 3のように、 紫外線検出器同士で互いに重ならず、 かつ、 1 つの検出器の ONの後どの検出器も ONでない (OFF) 状態をとつてから別の 検出器を ON状態にすることが好ましい。
図 4は、 本発明の検出対象である火炎中の N〇, OH, CH等の成分が表れる 波長領域の発光スペクトル (波長特性) を示す。 これは、 バーナー上のァセチレ ン一酸化二窒素 (N2 0) 火炎の例である。 図示のように、 波長が凡そ 260 (n m) 以下の領域では NO、 凡そ 260〜310 (nm) の領域では〇H、 凡そ 310〜400 (nm) の領域では CH及び CN等の成分が、 それぞれ強く表れる。
一方、 上記のような放電管型検出器の電極の種類 (材料) に応じて、 仕事関数 (Φ) と波長は次のように分類される。
Φ1 - 4.52e V (W) , 4· 61〜5.24eV (N i) , 4.2e V (Mo) 波長 = 270 , 270〜236 , 294 (nm)
Φ2 = 3.85〜4.38eV (Cu) , 4.04〜4.77eV (F e) , 4.0〜4.58eV (Au) , 4.07〜4 19eV (T a) , 4.39 e V (C)
波長 = 320〜280 , 306〜260 , 309〜270 , 303〜295 , 281 (nm)
Φ3 = 3.08〜3.56eV (Ag) , 2.98〜4.43eV (A 1 ) , 2.24e V (C a
)
波長 = 400〜347 , 414〜279 , 551 (nm)
従って、 図 4の発光スぺクトルにおいて、
火炎中の NOに関しては、 200〜250nmの波長領域で検出するため、 仕事関数 Φ1の電極で、 出力は Fl= f l ( 1) .
火炎中の〇Hに関しては、 260〜310nmの波長領域で検出するため、 仕事関数 Φ2の電極で、 出力は F2= f 2(Φ2)— kl · Fl. [klは補正係数]
火炎中の CHに関しては、 314〜390nmの波長領域で検出するため、 仕事関数 Φ3の電極で、 出力は F3= f 3(Φ3)— k2 · F2_k3 · Fl. [k2, k3は補正 係数]
以上から、 電極材料に応じた仕事関数 Φ1は主に NO基を捉え、 仕事関数 Φ2は OHと NOを捉え、 仕事関数 Φ3は N〇、 〇H、 CH、 CN、 Cなどを捉えるも のといえる。
従って、 上記実施例のように、 各々の力ソードが異なる材料 (例えば、 W、 C u、 A g ) で作られた複数の紫外線検出器で紫外線を検出することにより、 それ らの材料に応じた波長領域の発光スぺクトルを得て、 火炎中の N Oや C H等の成 分の量 (それらの強度比) を算出できる。
一方、 燃焼による発光強度と空気比は、 図 5に示すような一定の関係を有する 。 これは、 例えば天然ガスを燃料として、 空気を供給し燃焼させたときに発生す る C H 4 (メタン) と空気の混合気体に.おける N O、 OH及び C H基のスぺクト ル強度 (比) と当量比 (空気比の逆数) との関係を表わしている。 ここで、 空気 比とは、 燃料を完全燃焼させるのに最低限必要な空気 (つまり酸素) の量 (これ を 1とする) であり、 理論上はこれが必要な空気量であるが、 実際には燃料に対 して空気が充分混合しないことがあり、 また前述のように、 より高温で燃焼させ るため、 空気が多めに供給される。 すなわち、 目標値とする空気比は 1より高く 設定される。 そして、 燃焼時には、 空気比が目標値をとるように空気又は燃料の 供給量を制御するため、 実際の空気比を検知することが必要である。
従って、 本発明の紫外線検出装置により、 上記のように火炎中の N Oや C Hの 発光強度比が算出されるので、 その算出結果から上記の関係に基づいて空気比が 得られる。
次に、 他の実施例について説明する。
図 6は、 図 1に示した複数の紫外線検出器で構成される検出装置において、 力 ソード 1 2が C u, A gで作られた紫外線検出器 2, 3の入光部 (図 1の各放電 管 1 0の上端面) の前に、 所定の波長から長い方の紫外線のみを通すローパスフ ィル夕又はバンドパスフィルタ (以下では 「ローパスフィルタ」 を用いた場合で 説明する) 1 5を設けたものを示す。
この構成によれば、 図 7に示すように、 紫外線検出器 2 , 3で検出される波長 領域は、 それぞれ所定の波長 (例えば、 C uの場合は 250 n m、 A gの場合は 280 n m) 以下の部分がカットされる。 これにより、 短波長側の紫外線領域では、 力 ソード 1 2が Wで作られた紫外線検出器 1のみが検出すると共に、 それより大き い波長領域では、 バンドパスフィルタ或いはローパスフィルタ 1 5を設けた紫外 線検出器 2 , 3が検出するというように、 各検出器の特性に応じて区分された紫 外線領域での検出が可能となる。 一方、 N O、 O H、 C H等の成分のスペクトル は、 上記のように区分された領域毎に分かれて表れるので、 それらの成分を各領 域に対応した検出器で確実に検出できる。 すなわち、 このような分光によって、 紫外線検出装置の検出ないし分析の精度が向上するという効果が得られる。
図 8は、 本発明の第 2実施例の紫外線検出装置を示す。 この検出装置は、 紫外 線透過ガラスで作られた放電管 3 0の中にイオン化可能なガス (ぺニングガス) を充填している点は第 1実施例と共通であるが、 放電管 3 0の内部に設置された 網目状の金属材料から成る 1つの陽極 (アノード) 3 1と対向するように複数 ( この場合も 3個) の異なる材料から成る陰極 (力ソード) 3 2を配置して 1つの 放電管型検出器を形成している点が、 第 1実施例と異なる。
3個の陰極 3 2は W、 C u、 A gで作られており、 電極部を構成する 1つの共 通陽極 3 1と各陰極 3 2との間には、 例えば図 2の駆動回路で構成される電圧供 給回路 (図示省略) によって、 隣接する陰極 3 2同士は同時でなく時間をずらし て電圧が印加される。
また、 図 6に示したものと同様の目的で、 放電管 3 0の上端面には、 その内部 の C u, A で作られた力ソード 3 2と対応する位置にそれぞれ所定の波長から 長い方の紫外線のみを通す口一パスフィル夕 1 5が配置されている。
上記実施例の紫外線検出装置は、 燃焼炉内の火炎に限らず、 火を使う調理場や 炊事場での炎の異常検知、 自動車のエンジンにおける点火の炎の状態検出、 或い は火災を未然に防ぐための火炎検知等にも、 好適に用いることができる。
例えば、 火災防止用としては、 赤外線ストーブを使用し或いは溶接を行うよう な作業場においては、 ストーブや溶接個所から相当量の光が出るので、 通常の光 検出器では誤検出が生じるが、 上記の紫外線検出装置によれば、 それらの光では なく、 火災に発展し得る火焰から出る紫外線を検出するので、 火災の原因となる 火炎の発生を早期に発見することができる。
図 9は、 火災の予防に上記実施例の紫外線検出装置を用いた場合の火炎検知方 法の例を示すフローチャートである。 この方法は、 上記第 1実施例又は第 2実施 例において紫外線が入射されたときに放電する 3種類の力ソード (W、 C u、 A gで作られている) によって生ずる信号電流をコンピュータその他の処理装置で 処理することによって実施される。 具体的には、 図 9において、 初めに、 W、 Cu、 A gのいずれかで作られた力 ソードを持つ検出器が紫外線を検出したかどうかによつて火炎か火炎でないかを 判定する。 すなわち、 ST 1において W製の力ソードで検出したかどうかをチェ ックし、 "Ye s" であれば、 その信号量 (紫外線の量) を計測し (ST2) 、 次の ST 3において C u製の力ソードで検出したかどうかをチェックし、 これも
"Ye s" であれば、 その信号量 (紫外線の量) を計測し (ST4) 、 次の ST 5において Ag製の力ソードで検出したかどうかをチェックし、 これも "Ye s " であれば、 その信号量 (紫外線の量) を計測する (ST6) 。 以上の場合は、 いずれの検出器でも紫外線を検出したのであるから、 火炎と判定する (ST7) 。 そして、 各検出器で検出し計測した信号量に基づいて、 前述の 「空気比」 を算 出する演算を行い (ST8) 、 得られた空気比が設定値内にあるか否かを判定し
(ST9) 、 "Ye s" であれば適正な火炎と判断して初めの待機状態に戻る。 一方、 得られた空気比が設定値内にないときは、 異常と判断して警報を出す (S T10) 。 また、 上記検出器のいずれにおいても紫外線を検出しなければ、 火炎 でないと判定して (ST11) 、 初めの待機状態に戻る。
なお、 上記の火炎判定において、 各検出器で検出したとき (上記 ST1, ST 3、 ST 5の各々で判定が "Ye s " のとき) 、 紫外線検出信号がゼロではない が、 小さい (検出と判定する閾値より低い) 場合など、 検出が不充分か、 或いは 検出が間欠的な場合は、 暫定的に 「火炎あり」 と判断することも可能である。 具 体的には、 図 9に破線のブロックで示すように、 上記 ST2, ST4、 ST 6 の各々で計測した信号量が、 「火炎」 と判断する所定値 (上の閾値) より小さい が、 当該検出器が暫定使用可能なレベル (下の閾値よりは大きい) か否かをチェ ックし、 上の閾値と下の閾値の間である場合は 「暫定使用可能」 であるとし、 下 の閾値以下である場合に 「火炎でない」 と判定する (ST11) ようにする。 こ れにより、 紫外線検出能力が多少劣化した検出器でも、 所定の期限が到来するま で使用可能に設定することができる。
以上、 実施例について説明したが、 本発明はこれに限らず、 電極の材料によつ て検出可能な領域が異なる放電管型検出器を用いて任意の構成をとることができ る。 例えば、 3種類の放電管を一セットとして複数セット用意することで、 信頼性 を高めることもできる。
本発明の装置をタービンその他の燃焼炉に用いる場合、 波長が最も長い紫外線 を検出する放電管 (例: A g電極) の異常値を検出して、 燃焼器壁面温度が異常 高温になっていること、 或いは周期的に異常高温になる現象が生じることを検出 することができる。 詳細には、 燃焼している火炎の空気比が正常であれば、 複数 の放電管 (電極の例: W、 C u、 A g ) からの出力は所定の値であるが、 高温の 火炎のゆらめき等によって燃焼炉壁が異常高温になる場合がある。 例えば、 燃焼 炉壁や、 燃焼炉の出口で回転しているガスタービンの夕一ビンブレードなどが劣 化し、 異常高温になり易くなつた場合、 A g電極の放電管だけが異常高温を検知 し、 出力が周期的に変動することになる。 これに対し、 複数セットの放電管があ る場合は、 同じ電極 (例: A g ) のものが全て同じ出力ではなく、 視野角の違い
(異常高温が視野に入っている割合) で出力値が異なる等の現象が生ずるので、 異常高温を検知できる。
また、 電極に印加する電圧は、 交流でも直流でも、 或いは矩形波でもよい。

Claims

請求の範囲
1 . 紫外線が透過し得る放電管の中に陽極及び陰極を設置すると共に該放電管 内にイオン化可能なガスを充填して構成した紫外線検出器であって前記陰極の材 質が互いに異なる複数の紫外線検出器を、 紫外線の入射側に配置し、 各紫外線檢 出器の電極に所定の電圧を供給するとき、 隣接する紫外線検出器には同時に供給 されないように時間をずらして当該電圧を印加することを特徴とする紫外線検出
2 . 請求項 1記載の紫外線検出装置において、 前記複数の紫外線検出器の電極 には前記電圧を順番に印加することを特徴とする紫外線検出装置。
3 . 紫外線が透過し得る放電管と、 該放電管の中に封入されたイオン化可能ガ スと、 該放電管の内部に設置された 1つの陽極及びこれに対向するように配置さ れた複数の異なる材料から成る陰極で構成した電極部と、 該電極部に所定の電圧 を印加する電圧供給回路とを備え、
該電圧供給回路は、 前記複数の陰極のうち少なくとも隣接する陰極同士では同 時でなく時間をずらして前記電圧を印加することを特徴とする紫外線検出装置。
PCT/JP2003/005653 2002-05-07 2003-05-06 Detecteur d'ultraviolets WO2003095958A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003235842A AU2003235842A1 (en) 2002-05-07 2003-05-06 Ultraviolet detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-131691 2002-05-07
JP2002131691A JP4521153B2 (ja) 2002-05-07 2002-05-07 紫外線検出装置

Publications (1)

Publication Number Publication Date
WO2003095958A1 true WO2003095958A1 (fr) 2003-11-20

Family

ID=29416617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005653 WO2003095958A1 (fr) 2002-05-07 2003-05-06 Detecteur d'ultraviolets

Country Status (4)

Country Link
JP (1) JP4521153B2 (ja)
CN (1) CN100414271C (ja)
AU (1) AU2003235842A1 (ja)
WO (1) WO2003095958A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439451A1 (de) * 2010-10-08 2012-04-11 BFI Automation Dipl.-Ing. Kurt-Henry Mindermann GmbH Vorrichtung zur Erkennung des Vorhandenseins einer Flamme

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122102A (ja) * 2008-11-20 2010-06-03 East Japan Railway Co 紫外線検出装置及び離線検出記録計
JP2013029453A (ja) * 2011-07-29 2013-02-07 Azbil Corp 火炎センサ
JP5832948B2 (ja) * 2012-03-30 2015-12-16 アズビル株式会社 火炎検出装置
KR20150034035A (ko) * 2013-09-25 2015-04-02 한국생산기술연구원 광센서를 포함하는 공연비 계측시스템
JP6815291B2 (ja) * 2017-07-14 2021-01-20 アズビル株式会社 カソード電極選定支援方法および装置
JP7139198B2 (ja) * 2018-08-30 2022-09-20 アズビル株式会社 紫外線センサ
KR102195375B1 (ko) * 2019-03-28 2020-12-24 한국표준과학연구원 자외선 및 적외선의 동시측정이 가능한 화재감지센서
JP6948679B1 (ja) * 2020-11-16 2021-10-13 東京瓦斯株式会社 空気比推定システム、空気比推定方法及びプログラム
JP6948678B1 (ja) * 2020-11-16 2021-10-13 東京瓦斯株式会社 空気比調整方法、空気比調整システム及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49855U (ja) * 1972-04-03 1974-01-07
JPH0750149A (ja) * 1993-06-02 1995-02-21 Hamamatsu Photonics Kk 光電陰極、光電管および光検出装置
JP2001196023A (ja) * 2000-01-06 2001-07-19 Hamamatsu Photonics Kk 光電子増倍管
JP2001343280A (ja) * 2000-06-02 2001-12-14 Yamatake Corp 火炎検出装置
JP2002033071A (ja) * 2000-07-14 2002-01-31 Mitsubishi Electric Corp 電離箱検出器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487266A (en) * 1992-05-05 1996-01-30 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
JPH0750249A (ja) * 1993-08-06 1995-02-21 Toshiba Corp 電子ビーム描画装置
EP0809792B1 (de) * 1995-02-14 2002-06-12 GTA Sensorik GmbH Einrichtung zur bestimmung der uv-strahlungsstärke und -dosis mittels uv-empfindlicher sensoren
JP2001329862A (ja) * 2000-05-19 2001-11-30 Mitsubishi Heavy Ind Ltd ガスタービンの火炎検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49855U (ja) * 1972-04-03 1974-01-07
JPH0750149A (ja) * 1993-06-02 1995-02-21 Hamamatsu Photonics Kk 光電陰極、光電管および光検出装置
JP2001196023A (ja) * 2000-01-06 2001-07-19 Hamamatsu Photonics Kk 光電子増倍管
JP2001343280A (ja) * 2000-06-02 2001-12-14 Yamatake Corp 火炎検出装置
JP2002033071A (ja) * 2000-07-14 2002-01-31 Mitsubishi Electric Corp 電離箱検出器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439451A1 (de) * 2010-10-08 2012-04-11 BFI Automation Dipl.-Ing. Kurt-Henry Mindermann GmbH Vorrichtung zur Erkennung des Vorhandenseins einer Flamme

Also Published As

Publication number Publication date
AU2003235842A1 (en) 2003-11-11
JP2003322562A (ja) 2003-11-14
JP4521153B2 (ja) 2010-08-11
CN100414271C (zh) 2008-08-27
CN1653318A (zh) 2005-08-10

Similar Documents

Publication Publication Date Title
US7382140B2 (en) Method and device for flame monitoring
US9746181B2 (en) Flame detecting system
CN108088558B (zh) 火焰检测***
JP7067875B2 (ja) 火炎検出システム及び劣化指標算出装置
WO2003095958A1 (fr) Detecteur d'ultraviolets
US10247417B2 (en) Flame detecting system
US4823114A (en) Flame scanning system
CN1781014B (zh) 火焰检测方法及火焰检测装置
US11280672B2 (en) Flame detection system, discharge probability calculating method, and received light quantity measuring method
US9170020B2 (en) Monitoring of the presence of two flames in a fuel combustion device
JP2013210284A (ja) 火炎検出装置
US11428575B2 (en) Flame detection system and received light quantity measuring method
KR102574676B1 (ko) 광검출 시스템, 방전 확률 산출 방법 및 수광량 측정 방법
US7576331B2 (en) UV gas discharge tubes
CN113340437A (zh) 光检测***、放电概率算出方法及受光量测定方法
US20230235880A1 (en) Inspection device
US20210255283A1 (en) Light detection system and discharge probability calculating method
US11346711B2 (en) Light detection system, discharge probability calculating method, and received light quantity measuring method
US20230235883A1 (en) Flame monitor
JP2023106773A (ja) 診断装置
CN102625949A (zh) 用于监视放电灯性能的方法和***以及相应的灯
JP3950220B2 (ja) ガスタービン着火検出装置
JP2021131255A (ja) 光検出システムおよび受光量測定方法
JP2021131250A (ja) 光検出システムおよび放電確率算出方法
JP2021131251A (ja) 光検出システムおよび受光量測定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003810220X

Country of ref document: CN

122 Ep: pct application non-entry in european phase