WO2003095693A1 - High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof - Google Patents

High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof Download PDF

Info

Publication number
WO2003095693A1
WO2003095693A1 PCT/JP2002/004493 JP0204493W WO03095693A1 WO 2003095693 A1 WO2003095693 A1 WO 2003095693A1 JP 0204493 W JP0204493 W JP 0204493W WO 03095693 A1 WO03095693 A1 WO 03095693A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
wire
cold drawing
rod
stainless steel
Prior art date
Application number
PCT/JP2002/004493
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Takano
Kazuhisa Takeuchi
Yoshinori Tada
Yoshinori Tanimoto
Takayuki Akizuki
Original Assignee
Nippon Steel Corporation
Nippon Seisen Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Nippon Seisen Co., Ltd. filed Critical Nippon Steel Corporation
Priority to JP2004503681A priority Critical patent/JP4212553B2/en
Priority to CNB02813737XA priority patent/CN1263880C/en
Priority to PCT/JP2002/004493 priority patent/WO2003095693A1/en
Priority to KR1020047000223A priority patent/KR100566142B1/en
Publication of WO2003095693A1 publication Critical patent/WO2003095693A1/en
Priority to HK05101661A priority patent/HK1069190A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Definitions

  • the present invention relates to a high-strength stainless steel wire, and more particularly to a technique for improving ductility (ductility, toughness) and rigidity of a high-strength austenitic stainless steel wire by cold drawing.
  • the ausforming method of cooling austenite structure after hot or warm working and then transforming it into martensite has long been studied for carbon steel.
  • this method is hardly restricted because it must be quenched immediately after processing the austenitic structure in a hot or warm region, and is hardly used industrially.
  • the prior art does not discuss measures to improve the ductility (ductility and toughness) and rigidity of stainless steel wires used for springs.
  • the torsion value is important as an indicator of the toughness of the high-strength steel wire.Prevention of breakage during use of high-strength stainless steel springs, and stable and lightweight by increasing the spring constant Of high-strength stainless steel wire from the viewpoint of Improvement of toughness (torsion value) and rigidity is the most important issue.
  • an object of the present invention is to control ductility and toughness by using the toughening effect of ausform by grain refinement and cold drawing in addition to regulation of basic components and cleanliness (oxygen and sulfur).
  • An object of the present invention is to provide a high-strength stainless steel wire having a significantly improved rigidity, and a method for manufacturing the same. Disclosure of the invention
  • the present inventors have conducted various studies to solve the above-mentioned problems.
  • the structure, strength and cooling of o-senitic stainless steel have been investigated.
  • the present invention has been made based on this finding.
  • the gist of the present invention is as follows.
  • the present invention has a mass of 0 /. And C: 0.03-0.14%, Si: 0 ⁇ ! ⁇ 4.0%, Mn: 0.1 ⁇ 5.0%, Ni: 5.0 ⁇ 9.0%, Cr: 14.0 ⁇ 19.0%, N: 0.005 ⁇ 0.20%, O: 0.001 ⁇ 0.01%, S: 0.0001 ⁇ 0.012%,
  • the balance consists of Fe and unavoidable impurities, and 2C + N is 0.17 to 0.32%, the Ni equivalent (%) in the following formula (1) is 20 to 24, and the ductility and elasticity are H ⁇ 4 ppm. High strength stainless steel wire with excellent efficiency.
  • Ni equivalent (mass 0 / o) Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
  • steel wire of the present invention may further contain one or more of the following A, B and C in mass%.
  • the steel wire of the present invention preferably has a GI (%) value of the following formula (2) of 30 or less.
  • GI (%) 16C - ( - 2 Mn + 9 Ni- 3 Cr + 8 Mo + 15N (2) Further, the present invention is a mass 0/0, C: 0.03 ⁇ 0.14% , Si: 0.:! ⁇ 4.0% , Mn: 0.1 ⁇ 5.0%, Ni: 5.0 ⁇ 9.0%, Cr: 14.0 ⁇ 19.0%, N: 0.005 ⁇ 0.20%, O: 0.001 ⁇ 0.01%, S: 0.0001 ⁇ 0.012% And the balance consists of Fe and unavoidable impurities, and 2C + N is 0.17 to 0.32%, and the Ni equivalent (%) value of the following formula (1) is 20 to 24.
  • Ni equivalent (%) Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
  • a Q is the cross-sectional area of rod or rough wire before cold drawing.
  • the present invention has a mass of 0 /. So, C: 0.03-0.14%, Si: 0.:! ⁇ 4.0%, Mn: 0.1 ⁇ 5.0%, Ni: 5.0 ⁇ 9.0%, Cr: 14.0 ⁇ 19.0%, N: 0.005 ⁇ 0.20%, O: 0.001 ⁇ 01-01%, S: 0.0001 ⁇ 0.012% , And 2C + N is 0.17 to 0.32%, Ni equivalent of formula (1) (%) Is from 20 to 24, and the balance is made of steel consisting of Fe and unavoidable impurities, hot-rolled to form a rod and solution-treated, or this rod is subjected to solution treatment and cooling at least once.
  • Ni equivalent Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
  • a Q is the cross-sectional area of rod or rough wire before cold drawing.
  • the steel, rod, or coarse wire may further have a mass 0 /. And may contain one or more selected from the group consisting of A, B, and C below.
  • A Any one or more of Al, Nb, Ti, Zr, Ta, and W: 0.01 to 30%
  • the austenite average crystal grain size before cold drawing of the rod or the rough wire is 30 ⁇ or less.
  • C is added with N in an amount of 0.03% or more in order to obtain high strength after cold drawing.
  • the upper limit was set to 0.14%.
  • Mn is added in an amount of 0.1% or more for deoxidation and for adjusting the Ni equivalent. However, if the content exceeds 5.0%, the rigidity decreases, so the upper limit was set to 5.0%.
  • Ni is added in an amount of 5.0% or more to ensure ductility and adjust the Ni equivalent. However, if the content exceeds 9.0%, the rigidity decreases, so the upper limit was made 9.0 °.
  • N is added together with C in an amount of 0.055% or more to obtain high strength after cold drawing.
  • the upper limit was 0.20%.
  • O is regulated to 0.01% or less to secure the torsion value.
  • the content is 0.001% or less, the cost becomes industrially high and the cost performance deteriorates. Therefore, the lower limit is made 0.001%.
  • S is limited to 0.012% or less to secure the torsion value. However, if the content is less than 0.0001%, the cost is industrially high, and the cost performance is high. The lower limit is set to 0.0001% because the performance is worse.
  • Hydrogen in steel should be less than 4 ppm to ensure ductility. In particular, it is desirable to keep it below 1.5 ppm.
  • Al, Nb, Ti, Zr, Ta, and W form fine carbonitrides, stabilize the austenite crystal grains after solution treatment of steel wire, and improve the ductility. If necessary, add one or two or more of each in an amount of 0.01% or more. However, even if added in an amount of 0.30% or more, the effect saturates, and not only is it not economical, but also lowers the ductility, so the upper limit is set to 0.3%.
  • A1 and Nb are effective because they improve hot workability and contribute to high strength due to the precipitation strengthening effect.
  • V like Al, Nb, Ti, Zr, Ta and W, forms fine carbonitrides and stably refines austenite crystal grains after solution treatment of copper wire to improve ductility. Add 0.1% or more as necessary to improve the performance. However, even if 0.5% or more is added, the effect is saturated and, conversely, the ductility is reduced, so the upper limit is set to 0.5%.
  • Mo is effective for corrosion resistance, so if necessary, add 0.2% or more. However, even if added over 3.0%, the effect saturates and conversely, the elastic modulus decreases, so the upper limit is set to 3.0%. In particular, it is preferably set to 2.0% or less.
  • Cu is desirably reduced to 0.8% or less as necessary in order to suppress work hardening of the austenitic structure and reduce the strength of the steel wire after cold drawing.
  • P is an element that lowers the toughness, it is desirable to reduce P to 0.02% or less as necessary.
  • the strength of the steel wire after cold drawing and the amount of work-induced martensite will be described. If the tensile strength of the steel wire after cold drawing is less than 1700 NZmm 2 , the effect of the present invention will not be remarkably exhibited since the ductility is basically high. On the other hand, when the tensile strength of the steel wire after cold drawing becomes a high-strength material of 1700 N / mm 2 or more, the ductility decreases, and the effects of the present invention such as grain refinement and ausformation are reduced. Becomes clear. Therefore, it is desirable to limit the tensile strength of the steel wire after cold drawing to 1700 N / mm 2 or more. In particular, it is preferable to set it to 1900 N / mm 2 or more, but it is better to keep the upper limit to 2800 N / mm 2 .
  • the amount of work induced martensite is 20% or more.
  • the amount of work-induced martensite after cold drawing exceeds 80%, the amount of ausformed tough martensite itself decreases and the ductility decreases. Therefore, it is desirable to set the upper limit to 80%.
  • the amount of work-induced martensite in the steel wire after cold drawing is preferable to set to 40% to 70%.
  • the amount of the work-induced martensite (volume 0 /.) Can be measured, for example, from the saturation magnetic flux density using a DC magnetization characteristic measuring device or the like. Further, when measuring with a simple ferrite meter or the like, correction is required depending on the wire diameter.
  • 2 C + N (%) was obtained as a result of investigating the effect of C and N on the tensile strength of steel wire after cold drawing.
  • Steel after cold drawing In order to secure a tensile strength of the wire of 1700 N / mm 2 or more, 2 C + N is made 0.17 (%) or more. However, if it exceeds 0.32 (%), the toughness decreases, so the upper limit was set to 0.32 (%).
  • the content be 0.20 (%) or more and 0.30 (%) or less.
  • the Ni equivalent in equation (1) was obtained as a result of investigating the effect of each element on the ductility of the steel wire after cold drawing, and has an effect on the ductility. It shows the elements and the degree of influence.
  • Ni equivalent (%) Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N)... (1)
  • the Ni equivalent value exceeds 24 (%), the amount of induced martensite in the steel wire after cold drawing is reduced, the strength is reduced, and the effect of the present invention is diminished. And on the other hand, if the Ni equivalent value is less than 20 (%), the ausformed martensite itself of the steel wire after cold drawing is reduced and the ductility is reduced, so the lower limit is set to 20 (%). did . In particular, in order to maximize the toughness of the ausform by ordinary cold drawing, the Ni equivalent is preferably 21 (%) to 23 (%).
  • GI (%) in equation (2) is obtained as a result of investigating the effect of each element on the stiffness after cold drawing. And the degree of influence.
  • GI (%) 16C + 2Mn + 9Ni-3Cr + 8Mo + 15N (2) If necessary, set the value of GI to 30 (%) or less. If the value of GI exceeds 30 (%), the rigidity after cold drawing decreases, so it is desirable to set the upper limit to 30 (%). In particular, it is preferable to be 25% or less.
  • the steel wire of the present invention is manufactured by one of the following steps (1) and (2).
  • the steel adjusted to the required composition is hot-rolled into a stainless steel rod, which is subjected to solution treatment (including continuous processing after rolling), and then (1) the steel is finished by cold drawing. (2) If the difference between the final steel wire diameter and the stainless rod diameter is large, cold-draw the solution-treated stainless rod one or more times. Processing and annealing (solution treatment) are repeated to form a rough wire (strand), and this rough wire is subjected to strand annealing (solution treatment), followed by finish cold drawing to form a steel wire. (Final product).
  • the solution treatment (including the strand annealing) may be performed in an atmosphere containing hydrogen gas or in an atmosphere not containing hydrogen gas. In the present invention, as described later, At least the final solution treatment is performed in an atmosphere that does not contain hydrogen gas, and finish cold drawing under specific conditions.
  • the solution treatment refers to bringing a carbide into a solid solution state.
  • dehydrogenation is performed in an atmosphere containing no hydrogen, and the finish cold drawing is performed under specific conditions.
  • Equation (3) shows the amount of rod or rough wire that has been cold-drawn after solution treatment
  • equation (4) shows the range.
  • a 0 Cross section of rod or rough wire before cold drawing
  • the ductility indicates the dependence of the hydrogen content of the steel wire as described above. If solution treatment is performed in a reducing gas atmosphere containing hydrogen gas, the steel will contain more than 4 ppm of hydrogen due to the absorption of hydrogen, and the ductility will deteriorate. For this reason, at least the last solution treatment in the above-mentioned process is performed in an atmosphere such as Ar gas, nitrogen gas, or air that does not contain hydrogen gas, and the hydrogen content in steel is set to 4 ppm or less. In particular, an atmosphere such as an Ar gas is preferable because surface oxidation is prevented.
  • one of the steps in the series of steps described above is, for example, cold drawing to roughen rods before and after solution treatment.
  • Dehydrogenation treatment is performed before and after solution treatment for processing, or before and after solution treatment for finish cold drawing. That is, when the dehydrogenation treatment is performed in an atmosphere containing no hydrogen gas at 200 to 600 ° C., the ductility is improved. At this time, the effect is not clear below 200 ° C, and when it exceeds 600 ° C, the oxide scale becomes thick and the manufacturability deteriorates. Therefore, it is desirable to carry out the dehydrogenation treatment in an atmosphere of 200 to 600 ° C., preferably 200 to 400 ° C., such as an Ar gas, a nitrogen gas, or the atmosphere that does not contain hydrogen gas.
  • the conditions for solution treatment of rods or rough wires before cold drawing are, for example, from a temperature range of 950 ° C to 1150 ° C with a cooling rate of 5 ° C Adjust the average grain size of the austenite structure to 30 ⁇ m or less by quenching to below C.
  • the present invention includes a Riwake, cold wire drawing after as the target characteristics of the steel wire, the tensile strength is 1700 NZ mm 2 or more, twisting value is an important factor for extending the toughness of spring steel wire
  • the stiffness modulus an important factor in the elastic modulus of the spring steel wire, was 63 GPa or more.
  • An important factor of the elastic modulus is the Young's modulus, but in the present invention, the rigidity is defined as a representative value.
  • the test material of the example was melted in a normal stainless steel wire manufacturing process, rod-rolled hot to ⁇ 5.5 mm, and finished rolling at 1000 ° C.
  • the obtained rod was subjected to a heat treatment (solution treatment) at about 1050 ° C. for 5 min, followed by water cooling. After that, a part was subjected to dehydrogenation treatment and intermediate cold drawing was performed to obtain a rough wire. After that, the rough wire was subjected to a solution treatment at 1050 ° C in an Ar gas atmosphere in a strand furnace, and then cold-drawn for finishing to obtain a steel wire.
  • the average crystal grain size of the austenite of the rough wire before the finish cold drawing (after solution treatment), the hydrogen content of the steel wire after the finish cold drawing, the amount of work-induced martensite, and the tensile strength The strength, twist value, and rigidity were investigated.
  • the average grain size of coarse-wire austenite before cold drawing is determined by performing cross-section electrolysis in a 10% nitric acid solution on the cross-section of the coarse wire, and then calculating the cross-sectional area of each crystal by image analysis. The average diameter of 10 points of the converted diameter (d) obtained by converting this area is shown. The amount of hydrogen was measured by taking out a sample from the steel wire after cold drawing, and using the inert gas fusion-thermal conduction method.
  • the amount of work-induced martensite of steel wire after cold drawing is the
  • the saturation magnetization was measured using a BH tracer.
  • the tensile strength of the copper wire after cold drawing was measured by a tensile test of JIS Z2241.
  • the torsion value of the steel wire after cold drawing was evaluated by conducting a torsion test and evaluating the number of twists until breaking.
  • the rigidity of the copper wire after cold drawing was measured by the torsion pendulum method.
  • the sample material was subjected to hot rod rolling and solution treatment, and then the intermediate rod was subjected to intermediate cold drawing to ⁇ 3.4 mm to form a coarse wire.
  • the steel wire was subjected to solution treatment in an atmosphere, and then cold-drawn to a finish of 1.6 mm.
  • Table 1 shows the basic components of the examples and the characteristics of the steel wires.
  • Inventive Examples No. 1 to No. 19 and Comparative Examples No. 20 to No. 32 are the components of the matrix that affect the properties of the steel wire; C, Si, Mn, P, S, Ni, Cr , Mo, Cu, O, and N were investigated.
  • the present invention is the tensile strength of all the steel wire 1700 NZ mm 2 or more, twisting value more than 10 times, modulus of not less than 63GPa, twisting value high strength, and excellent modulus of elasticity Was.
  • the twist value was improved by decreasing P.
  • Comparative Example No. 22 since the N content was high and material defects such as blow holes occurred, the torsion value was inferior. In Comparative Example No. 23, the Si content was high and the torsion value was inferior.
  • the effects of the grain refinement and the addition of the grain refinement element of the present invention will be described.
  • the rod after hot rod rolling and solution treatment was subjected to intermediate cold drawing to ⁇ 3.4 mm to form a coarse wire, followed by Ar Solution treatment was performed in an atmosphere. Then, the rough wire was subjected to cold drawing to finish to 1.6 mm in diameter to obtain a steel wire.
  • Table 2 shows the basic components of the examples and the characteristics of the steel wires.
  • Inventive Examples No. 33 to No. 44 and Comparative Examples No. 45 and No. 46 investigated the effects of grain refinement and the addition of a grain refinement element on the twist value of a steel wire. .
  • Example Nos. 34 to 44 of the present invention Al, Nb, Ti, Zr, Ta, W, and V were added to refine the crystal grains, so that the average crystal grain size became about 10 ⁇ m.
  • the torsion value was clearly further improved as compared with Inventive Example No. 33.
  • the effect of high torsion value on grain refinement is clear.
  • examples in Table 2 ⁇ ⁇ 34 to 44 all Ni equivalents are 21.7 to 22.1%
  • No.3 tensile strength is 2000NZmm 2 or more, 11, 12, 18 twisting value (their respective 13 times, 13 times, 11 times, 13 times) by comparing the
  • No.3 tensile strength is 2000NZmm 2 or more, 11, 12, 18 twisting value (their respective 13 times, 13 times, 11 times, 13 times) by comparing the
  • the effect of the addition of the grain refining element is clear.
  • Table 3 shows the manufacturing conditions and characteristics of the examples.
  • steel type A in Table 1 was hot-rolled and solution-treated, and then a part of the rod was dehydrogenated under the conditions shown in Table 3. Then, intermediate cold drawing to ⁇ 3.4 mm is performed to form a rough wire, and then strand annealing (solution treatment) is performed under the conditions of each atmospheric gas in Table 3, and thereafter, the rough wire is formed.
  • the wire was cold-drawn to a diameter of 1.6 mm to form a steel wire.
  • Examples Nos. 47 to 55 of the present invention and Comparative Examples Nos. 56 and 57 investigated the effects of grain refinement and the addition of grain refinement elements on the twist value of steel wire. .
  • the torsion value was high because the amount of hydrogen was low.
  • the twist value was further improved. The effect of increasing the torsion value by reducing hydrogen is clear.
  • Comparative Examples No. 56 and No. 57 were annealed in an atmosphere containing hydrogen gas.
  • the torsion value was inferior due to the high amount of hydrogen in the material.
  • Table 4 shows the cold drawing conditions and characteristics of the examples.
  • steel type AH in Table 2 and steel type I and steel type L in Table 1 were hot-rolled and solution-treated, and then this rod was subjected to intermediate cold elongation to 3.4 mm in diameter.
  • the wire was subjected to wire working to obtain a rough wire, followed by strand annealing (solution treatment) in an Ar atmosphere gas, and then the finished wire was subjected to cold drawing in the amount of cold drawing shown in Table 4
  • the steel wire was formed by hot drawing.
  • Table 4 also shows the range of the optimum cold drawing amount calculated from Eqs. (3) and (4).
  • Invention Examples No. 58 to No. 66 and Comparative Examples No. 67 to No. 72 were obtained by investigating the effects of the amount of cold drawing on the tensile strength, torsion value, and rigidity of the steel wire. is there.
  • Comparative Examples No. 67, No. 69 and No. 71 since the amount of cold drawing was low, the tensile strength was low and the effect of the high torsion value of the present invention was not clear. The amount of work-induced martensite was low and the rigidity was poor. Comparative Examples No. 68, No. 70 and No. 72 were inferior in torsion value because the cold drawing amount was too high and the amount of work-induced martensite was large.
  • the high-strength stainless copper wire having excellent toughness and rigidity of the present invention in addition to the regulation of the basic components and the cleanliness (oxygen and sulfur) of the base material of the austenitic stainless steel wire,
  • the structure, strength and drawing conditions and using the effects of grain refinement and ausform toughening it is possible to stabilize a high-strength stainless steel wire with significantly improved ductility and rigidity. Can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high strength stainless steel wire excellent in ductility-toughness and modulus of rigidity, which has a chemical composition, in mass %, C: 0.03 to 0.14 %, Si: 0.1 to 4.0 %, Mn: 0.1 to 5.0 %, Ni: 5.0 to 9.0 %, Cr: 14.0 to 19.0 %, N: 0.005 to 0.20 %, O: 0.001 to 0.01 %, S: 0.0001 to 0.012 % and balance: Fe and inevitable impurities, provided that the value of (2C + N) is 0.17 to 0.32 %, that the value of Ni equivalent of the following formula (1): Ni equivalent (%) = Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6(C + N) (1) is 20 to 24, and that H ≤ 4 ppm. The production of the high strength stainless steel wire is achieved through the control of the amounts of basic components, oxygen, hydrogen and sulfur as mentioned above, the formation of finer crystal grains, and the toughness improving effect of ausforming by cold wire drawing.

Description

明 細 書 延靱性 . 剛性率に優れる高強度ステンレス鋼線およびその製造方法 技術分野  Description High-strength stainless steel wire with excellent ductility and rigidity and method for producing the same
本発明は高強度ステンレス鋼線に関わり、 さらに詳しくは高強度 オーステナイ ト系ステンレス鋼線の冷間伸線加工による延靱性 (延 性、 靱性) と剛性率向上技術に関するものである。 背景技術  The present invention relates to a high-strength stainless steel wire, and more particularly to a technique for improving ductility (ductility, toughness) and rigidity of a high-strength austenitic stainless steel wire by cold drawing. Background art
従来、 ばね用等の高強度ステンレス鋼線は、 冷間伸線加工時の縦 割れ (時効割れ) が問題であり、 これを成分、 水素量や伸線加工後 の加工誘起マルテンサイ ト量を規制して防止する技術が提案されて いる (特開平 10— 121208号公報) 。  Conventionally, high-strength stainless steel wires for springs, etc., have had a problem of longitudinal cracking (aging cracking) during cold drawing, and regulate this component, the amount of hydrogen, and the amount of work-induced martensite after drawing. There has been proposed a technique for preventing such a phenomenon (JP-A-10-121208).
また、 鉄鋼材料の強靱化技術 (延靱性改善技術) に関して、 熱間 または温間でオーステナイ ト組織を加工後に冷却させてマルテンサ ィ ト変態させるオースフォーム手法が、 炭素鋼で古くから検討され てきた (例えば、 日本金属学会会報第 27卷第 8号、 1988年、 P 623 〜639 )。 しかし、 この手法は、 熱間や温間域でオーステナイ ト組織 を加工した直後に焼入れしなければならないため、 制約が大きく、 工業的には殆ど普及していない。  As for the toughening technology for steel materials (technique for improving toughness), the ausforming method of cooling austenite structure after hot or warm working and then transforming it into martensite has long been studied for carbon steel. (For example, The Japan Institute of Metals Vol. 27, No. 8, 1988, pp. 623-639). However, this method is hardly restricted because it must be quenched immediately after processing the austenitic structure in a hot or warm region, and is hardly used industrially.
従来技術では、 ばね用等に使用されるステンレス鋼線の延靱性 ( 延性と靱性) と剛性率の向上策について検討されていない。 と りわ け、 高強度ばね用鋼線の延靱性の指標と して、 捻回値が重要である 高強度ステンレスばねの使用中の折損事故防止や、 ばね定数を高 めて安定して軽量化するという観点から高強度ステンレス鋼線の延 靱性 (捻回値) や剛性率の向上は最も重要な課題となる。 The prior art does not discuss measures to improve the ductility (ductility and toughness) and rigidity of stainless steel wires used for springs. In particular, the torsion value is important as an indicator of the toughness of the high-strength steel wire.Prevention of breakage during use of high-strength stainless steel springs, and stable and lightweight by increasing the spring constant Of high-strength stainless steel wire from the viewpoint of Improvement of toughness (torsion value) and rigidity is the most important issue.
そこで、 本発明の目的は、 基本成分や清浄度 (酸素、 硫黄) の規 制に加え、 結晶粒微細化や冷間伸線加工によるオースフォームの強 靱化効果を使う ことで、 延靱性と剛性率を著しく向上させた高強度 ステンレス鋼線、 およびその製造方法を提供することにある。 発明の開示  Therefore, an object of the present invention is to control ductility and toughness by using the toughening effect of ausform by grain refinement and cold drawing in addition to regulation of basic components and cleanliness (oxygen and sulfur). An object of the present invention is to provide a high-strength stainless steel wire having a significantly improved rigidity, and a method for manufacturing the same. Disclosure of the invention
本発明者らは、 上記課題を解決するために種々検討した結果、 ォ —ステナイ ト系ステンレス鋼において、 母材の基本成分、 清浄度 ( 酸素、 硫黄) の規制に加え、 組織、 強度と冷間伸線加工条件を限定 して、 結晶粒微細化とオースフォームの強靱化の効果を使う ことで 、 延靱性と剛性率を著しく向上させた高強度ステンレス鋼線を安定 して得ることができることを見出した。 本発明は、 この知見に基づ いてなされたものである。  The present inventors have conducted various studies to solve the above-mentioned problems. As a result, in addition to the regulation of the basic components of the base metal and the cleanliness (oxygen and sulfur), the structure, strength and cooling of o-senitic stainless steel have been investigated. By using the effects of grain refinement and toughening of ausform by limiting the conditions of cold drawing, it is possible to stably obtain a high-strength stainless steel wire with significantly improved ductility and rigidity. Was found. The present invention has been made based on this finding.
すなわち、 本発明の要旨とするところは以下の通りである。  That is, the gist of the present invention is as follows.
本発明は、 質量0 /。で、 C : 0.03〜0.14%、 Si : 0·:!〜 4.0%、 Mn : 0.1〜 5.0%、 Ni : 5.0〜 9.0%、 Cr: 14.0~19.0%, N : 0.0 05〜0.20%、 O : 0.001〜0.01%、 S : 0.0001〜 0.012%を含有し 、 残部が Feおよび不可避的不純物からなり、 かつ、 2 C + Nが 0.17 ~0.32%、 下記 ( 1 ) 式の Ni当量 (%) の値が 20〜24、 H≤ 4 ppm である延靱性 · 弾性率に優れる高強度ステンレス鋼線である。 The present invention has a mass of 0 /. And C: 0.03-0.14%, Si: 0 ·! ~ 4.0%, Mn: 0.1 ~ 5.0%, Ni: 5.0 ~ 9.0%, Cr: 14.0 ~ 19.0%, N: 0.005 ~ 0.20%, O: 0.001 ~ 0.01%, S: 0.0001 ~ 0.012%, The balance consists of Fe and unavoidable impurities, and 2C + N is 0.17 to 0.32%, the Ni equivalent (%) in the following formula (1) is 20 to 24, and the ductility and elasticity are H≤4 ppm. High strength stainless steel wire with excellent efficiency.
Ni当量 (質量0 /o) = Ni + 0.65Cr + 0.98Mo + 1.06Mn+ 0.35Si + 12.6 ( C + N) ( 1 ) Ni equivalent (mass 0 / o) = Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
また、 本発明の前記鋼線は、 さらに、 質量%で、 以下の A, B, Cのいずれか 1種以上を含有しても良い。  Further, the steel wire of the present invention may further contain one or more of the following A, B and C in mass%.
A : Al, Nb, Ti, Zr, Ta, Wの何れか 1種または 2種以上をそれ ぞれ : 0.01〜0.30% B : V : 0.:!〜 0.5% A: Any one or more of Al, Nb, Ti, Zr, Ta and W: 0.01 to 0.30% B: V: 0 .:! ~ 0.5%
C : Mo: 0.2〜 3.0%  C: Mo: 0.2-3.0%
また、 本発明の前記鋼線は、 下記 ( 2 ) 式の GI (%) の値が 30以 下であることが好ましい。  Further, the steel wire of the present invention preferably has a GI (%) value of the following formula (2) of 30 or less.
GI (%) = 16C -(- 2 Mn+ 9 Ni- 3 Cr+ 8 Mo+ 15N ( 2 ) また、 本発明は、 質量0 /0で、 C : 0.03〜0.14%、 Si : 0.:!〜 4.0 %、 Mn: 0.1~ 5.0% , Ni : 5.0〜 9· 0%、 Cr : 14· 0〜 19· 0%、 N : 0.005〜0.20%、 O : 0.001〜0.01%、 S : 0.0001〜 0.012%を 含有し、 残部が Feおよび不可避的不純物からなり、 かつ、 2 C +N が0.17〜0.32%、 下記 ( 1 ) 式の Ni当量 (%) の値が 20〜24である 鋼を熱間圧延してロ ッ ドと し、 溶体化処理した後、 或いはこの口 ッ ドを 1回以上溶体化処理および冷間伸線加工をして粗線と した後、 仕上げの冷間加工を施して鋼線とする一連の工程において、 少く と も最後の溶体化処理を水素ガスを含有しない雰囲気中で行い、 鋼中 の Hを 4ppm 以下と し、 ( 3 ) 式で示される伸線加工量 : ε が、 ( 4 ) 式の範囲内となるように仕上げの冷間伸線加工を行なう延靱性 • 弾性率に優れる高強度ステンレス鋼線の製造方法である。 GI (%) = 16C - ( - 2 Mn + 9 Ni- 3 Cr + 8 Mo + 15N (2) Further, the present invention is a mass 0/0, C: 0.03~0.14% , Si: 0.:!~ 4.0% , Mn: 0.1 ~ 5.0%, Ni: 5.0 ~ 9.0%, Cr: 14.0 ~ 19.0%, N: 0.005 ~ 0.20%, O: 0.001 ~ 0.01%, S: 0.0001 ~ 0.012% And the balance consists of Fe and unavoidable impurities, and 2C + N is 0.17 to 0.32%, and the Ni equivalent (%) value of the following formula (1) is 20 to 24. After the rod is subjected to solution treatment, or after the solution is subjected to solution treatment and cold drawing at least once to form a rough wire, it is subjected to finish cold working to form a steel wire. In a series of steps to be performed, at least the final solution treatment is performed in an atmosphere containing no hydrogen gas, the H in the steel is set to 4 ppm or less, and the wire drawing amount: ε expressed by the equation (3) is: (4) The cold-drawing process is performed within the range of Eq. (4). Toughness • This is a method of manufacturing high-strength stainless steel wire with excellent elastic modulus.
Ni当量 (%) = Ni + 0.65Cr + 0.98Mo+ 1.06Mn+ 0.35Si + 12.6 ( C + N) ( 1 )  Ni equivalent (%) = Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
ε =ln (A。 /A) ( 3 ) 但し、 AQ : 冷間伸線加工前のロ ッ ドまたは粗線の断面積 ε = ln (A. / A) (3) where A Q is the cross-sectional area of rod or rough wire before cold drawing.
A : 冷間伸線加工後の鋼線の断面積  A: Cross section of steel wire after cold drawing
0.15X (Ni当量) — 2· 28≤ ε ≤0.15X (Ni当量) —0.88 ( 4 ) また、 本発明は、 質量0 /。で、 C : 0.03〜0.14%、 Si : 0.:!〜 4.0 %、 Mn: 0.1〜 5.0%、 Ni : 5.0〜 9.0%、 Cr: 14.0~19.0% , N : 0.005〜0.20%、 O : 0.001〜0- 01%、 S : 0.0001〜 0.012%を 含有し、 かつ、 2 C + Nが 0.17〜0.32%、 ( 1 ) 式の Ni当量 (%) の値が 20〜24であり、 残部が Feおよび不可避的不純物からなる鋼を 熱間圧延してロ ッ ドと し溶体化処理した後、 或いはこのロ ッ ドを 1 回以上溶体化処理および冷間伸線加工して粗線と した後、 仕上の冷 間伸線加工を施して鋼線にする一連の工程中の一工程と して、 水素 ガスを含有しない雰囲気中で脱水素処理を施して鋼中の Hを 4 ppm 以下と し、 ( 3 ) 式で示される伸線加工量 : ε が、 ( 4 ) 式の範囲 内となるように仕上の冷間伸線加工を行う延靱性 · 弾性率に優れる 高強度ステンレス銅線の製造方法である。 0.15X (Ni equivalent) — 2.28 ≤ ε ≤0.15X (Ni equivalent) —0.88 (4) Also, the present invention has a mass of 0 /. So, C: 0.03-0.14%, Si: 0.:! ~ 4.0%, Mn: 0.1 ~ 5.0%, Ni: 5.0 ~ 9.0%, Cr: 14.0 ~ 19.0%, N: 0.005 ~ 0.20%, O: 0.001 ~ 01-01%, S: 0.0001 ~ 0.012% , And 2C + N is 0.17 to 0.32%, Ni equivalent of formula (1) (%) Is from 20 to 24, and the balance is made of steel consisting of Fe and unavoidable impurities, hot-rolled to form a rod and solution-treated, or this rod is subjected to solution treatment and cooling at least once. After a wire drawing process to make a rough wire, as one of a series of processes to make a cold drawn wire finish to a steel wire, a dehydrogenation treatment is performed in an atmosphere containing no hydrogen gas. H in steel is set to 4 ppm or less, and the toughness for cold wire drawing of the finish so that the amount of wire drawing expressed by formula (3): ε is within the range of formula (4) This is a method for manufacturing high-strength stainless copper wire with excellent elastic modulus.
Ni当量 = Ni + 0.65Cr + 0.98Mo+ 1.06Mn+0.35Si + 12.6 ( C + N) ( 1 )  Ni equivalent = Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
ε =ln (A。 /A) ( 3 ) 但し、 AQ : 冷間伸線加工前のロ ッ ドまたは粗線の断面積 ε = ln (A. / A) (3) where A Q is the cross-sectional area of rod or rough wire before cold drawing.
A : 冷間伸線加工後の鋼線の断面積  A: Cross section of steel wire after cold drawing
0.15X (Ni当量) 一 2· 28≤ ε ≤0· 15X (Ni当量) —0.88 ( 4 ) また、 本発明の製造方法において、 前記鋼、 ロ ッ ドまたは粗線は 、 さ らに、 質量0 /。で、 下記の A, B, Cのいずれかから選ばれた 1 種以上を含有してもよい。 0.15X (Ni equivalent) 1-228≤ε≤0.15X (Ni equivalent) -0.88 (4) In the production method of the present invention, the steel, rod, or coarse wire may further have a mass 0 /. And may contain one or more selected from the group consisting of A, B, and C below.
A : Al, Nb, Ti, Zr, Ta, Wのいずれか 1種または 2種以上をそ れぞれ : 0.01〜 30%  A: Any one or more of Al, Nb, Ti, Zr, Ta, and W: 0.01 to 30%
B : V : 0.:!〜 0.5%  B: V: 0.:! ~ 0.5%
C : Mo: 0.2〜 3.0%  C: Mo: 0.2-3.0%
また、 本発明の製造方法において、 前記ロ ッ ドまたは粗線の冷間 伸線加工前のオーステナイ ト平均結晶粒径を 30 μ πι以下とすること が好ましい。 発明を実施するための最良の形態  Further, in the production method of the present invention, it is preferable that the austenite average crystal grain size before cold drawing of the rod or the rough wire is 30 μπι or less. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 本発明のステンレス鋼線の成分範囲について述べる。 なお 、 以下の説明において、 %は特に断りのない限り、 全て質量%を示 す。 First, the component range of the stainless steel wire of the present invention will be described. Note that In the following description, all percentages indicate mass% unless otherwise specified.
Cは、 Nと合わせて冷間伸線加工後に高強度を得るために、 0.03 %以上を添加する。 しかし、 0.14%を超えて添加すると、 粒界に Cr 炭化物が析出し、 延靱性が低下することから、 上限を 0.14%と した  C is added with N in an amount of 0.03% or more in order to obtain high strength after cold drawing. However, if added in excess of 0.14%, Cr carbides precipitate at the grain boundaries and the ductility decreases, so the upper limit was set to 0.14%.
Siは、 脱酸のため、 0.1%以上添加する。 しかし、 4.0%を超え て添加するとその効果は飽和するばかり力、、 製造性が悪く、 また、 逆に延靱性が劣化するため、 上限を 4.0%と した。 Add 0.1% or more of Si for deoxidation. However, if added in excess of 4.0%, the effect will only be saturated and the power and manufacturability will be poor, and on the contrary, the toughness will deteriorate, so the upper limit was set to 4.0%.
Mnは脱酸のため、 また、 Ni当量を調整するため、 0.1%以上添加 する。 しかし、 5.0%を超えて添加すると、 剛性率が低下するため 、 上限を 5.0%と した。  Mn is added in an amount of 0.1% or more for deoxidation and for adjusting the Ni equivalent. However, if the content exceeds 5.0%, the rigidity decreases, so the upper limit was set to 5.0%.
Niは、 延靱性を確保し、 Ni当量を調整するため、 5.0%以上添加 する。 しかし、 9.0%を超えて添加すると、 剛性率が低下するため 、 上限を 9.0° と した。  Ni is added in an amount of 5.0% or more to ensure ductility and adjust the Ni equivalent. However, if the content exceeds 9.0%, the rigidity decreases, so the upper limit was made 9.0 °.
Crは、 耐食性を確保し、 Ni当量を調整するために、 14.0%以上を 添加する。 しかし、 19.0%を超えて添加すると、 延靱性が劣化する ため、 上限を 19.0%と した。  Cr is added at 14.0% or more to ensure corrosion resistance and adjust the Ni equivalent. However, if added in excess of 19.0%, the toughness deteriorates, so the upper limit was set to 19.0%.
Nは、 Cと合わせて冷間伸線加工後に高強度を得るために、 0.0 05%以上添加する。 しかし、 0· 20%を超えて添加すると、 製造時に ブローホールが生成し、 製造性を著しく劣化させるため、 上限を 0. 20%と した。  N is added together with C in an amount of 0.055% or more to obtain high strength after cold drawing. However, if added in excess of 0.2%, blowholes are produced during production, which significantly reduces manufacturability, so the upper limit was 0.20%.
Oは、 捻回値を確保するために、 0.01%以下に規制する。 しかし 、 0.001%以下にすると工業的にコス ト高になり、 コス トパフォ一 マンスが悪く なるため、 下限を 0.001%とする。  O is regulated to 0.01% or less to secure the torsion value. However, if the content is 0.001% or less, the cost becomes industrially high and the cost performance deteriorates. Therefore, the lower limit is made 0.001%.
Sは、 捻回値を確保するために、 0.012%以下に限定する。 しか し、 0.0001%以下にすると工業的にコス ト高になり、 コス トパフォ 一マンスが悪くなるため、 下限を 0. 0001 %とする。 S is limited to 0.012% or less to secure the torsion value. However, if the content is less than 0.0001%, the cost is industrially high, and the cost performance is high. The lower limit is set to 0.0001% because the performance is worse.
鋼中の水素は、 延靭性を確保するために、 4 ppm 以下とする。 と りわけ、 1. 5ppm以下にすることが望ましい。  Hydrogen in steel should be less than 4 ppm to ensure ductility. In particular, it is desirable to keep it below 1.5 ppm.
Al , Nb, Ti, Zr, Ta, Wは、 微細な炭窒化物を形成し、 鋼線の溶 体化処理後のオーステナイ ト結晶粒を安定的に微細化させて延靱性 を向上させるため、 必要に応じ、 いずれか 1種または 2種以上をそ れぞれ 0. 01 %以上添加する。 しかし、 0. 30%以上添加してもその効 果は飽和し、 経済的でないばかり力、、 逆に延靱性を低下させるため 、 上限を 0. 3%とする。  Al, Nb, Ti, Zr, Ta, and W form fine carbonitrides, stabilize the austenite crystal grains after solution treatment of steel wire, and improve the ductility. If necessary, add one or two or more of each in an amount of 0.01% or more. However, even if added in an amount of 0.30% or more, the effect saturates, and not only is it not economical, but also lowers the ductility, so the upper limit is set to 0.3%.
特に、 A1および Nbは、 熱間加工性を向上させると ともに、 析出強 化効果による高強度化に寄与することから有効である。  In particular, A1 and Nb are effective because they improve hot workability and contribute to high strength due to the precipitation strengthening effect.
Vは、 Al, Nb, Ti, Zr, Ta, Wと同様に、 微細な炭窒化物を形成 、 銅線の溶体化処理後のオーステナィ ト結晶粒を安定的に微細化さ せて延靱性を向上させるため、 必要に応じ、 0. 1 %以上添加する。 しかし、 0. 5%以上添加してもその効果は飽和し、 逆に延靱性を低 下させるため、 上限を 0. 5%とする。  V, like Al, Nb, Ti, Zr, Ta and W, forms fine carbonitrides and stably refines austenite crystal grains after solution treatment of copper wire to improve ductility. Add 0.1% or more as necessary to improve the performance. However, even if 0.5% or more is added, the effect is saturated and, conversely, the ductility is reduced, so the upper limit is set to 0.5%.
Moは、 耐食性に有効であるため、 必要に応じ、 0. 2 %以上添加す る。 しかし、 3. 0%を超えて添加してもその効果は飽和し、 逆に弾 性率が低下するため、 上限を 3. 0 %とする。 と りわけ、 2. 0%以下 とすることが好ましい。  Mo is effective for corrosion resistance, so if necessary, add 0.2% or more. However, even if added over 3.0%, the effect saturates and conversely, the elastic modulus decreases, so the upper limit is set to 3.0%. In particular, it is preferably set to 2.0% or less.
Cuは、 オーステナイ ト組織の加工硬化を抑制し、 冷間伸線加工後 の鋼線の強度を低減させるため、 必要に応じて 0. 8%以下に低減す ることが望ましい。  Cu is desirably reduced to 0.8% or less as necessary in order to suppress work hardening of the austenitic structure and reduce the strength of the steel wire after cold drawing.
Pは、 延靱性を低下させる元素であるため、 必要に応じ、 0. 02 % 以下に低減することが望ましい。  Since P is an element that lowers the toughness, it is desirable to reduce P to 0.02% or less as necessary.
次に、 冷間伸線加工後の鋼線の強度および加工誘起マルテンサイ ト量について説明する。 冷間伸線加工後の鋼線の引張強さが 1700NZmm2 未満の場合、 基 本的に延靱性が高いため、 本発明の効果が顕著に現れない。 それに 対し、 冷間伸線加工後の鋼線の引張強さが 1700N/mm2 以上の高強 度材になると、 延靱性が低下するため、 結晶粒微細化やオースフォ —ム等の本発明の効果が明確となる。 そのため、 冷間伸線加工後の 鋼線の引張強さが 1700N/mm2 以上に限定することが望ましい。 と りわけ、 1900N/mm2 以上にすることが好ましいが、 上限値は 2800 N/mm2 にとどめるのが良い。 Next, the strength of the steel wire after cold drawing and the amount of work-induced martensite will be described. If the tensile strength of the steel wire after cold drawing is less than 1700 NZmm 2 , the effect of the present invention will not be remarkably exhibited since the ductility is basically high. On the other hand, when the tensile strength of the steel wire after cold drawing becomes a high-strength material of 1700 N / mm 2 or more, the ductility decreases, and the effects of the present invention such as grain refinement and ausformation are reduced. Becomes clear. Therefore, it is desirable to limit the tensile strength of the steel wire after cold drawing to 1700 N / mm 2 or more. In particular, it is preferable to set it to 1900 N / mm 2 or more, but it is better to keep the upper limit to 2800 N / mm 2 .
また、 冷間伸線加工後の鋼線の加工誘起マルテンサイ ト量が 20% 未満の場合、 通常の冷間伸線加工後の鋼線の引張強さが 1700NZmm 2 未満となり、 本発明の高延靱性の効果が顕著に現れないし、 また 、 剛性率も低くなる。 そのため、 加工誘起マルテンサイ ト量が 20% 以上であることが望ましい。 一方、 冷間伸線加工後の加工誘起マル テンサイ ト量が 80%を超えるとオースフォームされた強靭なマルテ ンサイ ト量自体が減少して、 延靱性を低下させる。 そのため、 上限 を 80%にすることが望ましい。 と りわけ、 オースフォームによる強 靱化と高剛性率を最大限に引き出すためには、 冷間伸線加工後の鋼 線の加工誘起マルテンサイ ト量を 40%〜 70%とすることが好ましい なお、 この加工誘起マルテンサイ ト量 (体積0/。) の測定は、 例え ば、 直流磁化特性の測定装置などによる飽和磁束密度から求めるこ とができる。 また、 簡易的なフェライ トメータ等で測定する場合は 、 線径によ り補正が必要である。 Also, if the deformation-induced martensite of the steel wire after cold drawing is below 20%, the tensile strength of the steel wire after normal cold wire drawing becomes less than 1700NZmm 2, high extension of the present invention The effect of toughness does not appear remarkably, and the rigidity decreases. Therefore, it is desirable that the amount of work induced martensite is 20% or more. On the other hand, when the amount of work-induced martensite after cold drawing exceeds 80%, the amount of ausformed tough martensite itself decreases and the ductility decreases. Therefore, it is desirable to set the upper limit to 80%. In particular, in order to maximize the toughness and high rigidity of ausform, it is preferable to set the amount of work-induced martensite in the steel wire after cold drawing to 40% to 70%. The amount of the work-induced martensite (volume 0 /.) Can be measured, for example, from the saturation magnetic flux density using a DC magnetization characteristic measuring device or the like. Further, when measuring with a simple ferrite meter or the like, correction is required depending on the wire diameter.
次に、 本発明で規定した 2 C + N量 (%) および ( 1 ), ( 2 ) 式 について説明する。  Next, the 2C + N amount (%) and the expressions (1) and (2) specified in the present invention will be described.
2 C + N (%) は冷間伸線加工後の鋼線の引張強さに及ぼす C, Nの影響を調査した結果得られたものである。 冷間伸線加工後の鋼 線の引張強さを 1700N/mm2 以上確保するため 2 C + Nを 0.17 (% ) 以上にする。 しかし、 0.32 (%) を超えると延靱性を低下させる ため、 上限を 0.32 (%) と した。 と りわけ、 安定した高強度化 (引 張強さ≥ 1900NZmm2 ) と高延靱性の観点から、 0.20 (%) 以上、 0.30 (%) 以下とすることが望ましい。 2 C + N (%) was obtained as a result of investigating the effect of C and N on the tensile strength of steel wire after cold drawing. Steel after cold drawing In order to secure a tensile strength of the wire of 1700 N / mm 2 or more, 2 C + N is made 0.17 (%) or more. However, if it exceeds 0.32 (%), the toughness decreases, so the upper limit was set to 0.32 (%). In particular, from the viewpoints of stable high strength (tensile strength ≥ 1900 NZmm 2 ) and high ductility, it is desirable that the content be 0.20 (%) or more and 0.30 (%) or less.
次に、 ( 1 ) 式の Ni当量は、 冷間伸線加工した後の鋼線の延靱性 に及ぼす各元素の影響を調査した結果得られたもので、 延靱性に対 し、 効果のある元素と影響度を示すものである。  Next, the Ni equivalent in equation (1) was obtained as a result of investigating the effect of each element on the ductility of the steel wire after cold drawing, and has an effect on the ductility. It shows the elements and the degree of influence.
Ni当量 (%) = Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 ( C + N) … ( 1 )  Ni equivalent (%) = Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N)… (1)
Ni当量の値が 24 (%) を超えると冷間伸線加工後の鋼線の加工誘 起マルテンサイ ト量が減り、 強度が低下し、 本発明の効果が薄れる こ とから 24 (%) 以下と した。 一方、 Ni当量の値が 20 (%) 未満で あると冷間伸線加工後の鋼線のオースフォームされたマルテンサイ ト 自体が減少して延靱性を低下させるため、 下限を 20 (%) と した 。 と りわけ、 通常の冷間伸線加工によりオースフォームの強靱化を 最大限に引き出すには、 Ni当量で 21 (%) 〜23 (%) とすることが 好ましい。  If the Ni equivalent value exceeds 24 (%), the amount of induced martensite in the steel wire after cold drawing is reduced, the strength is reduced, and the effect of the present invention is diminished. And On the other hand, if the Ni equivalent value is less than 20 (%), the ausformed martensite itself of the steel wire after cold drawing is reduced and the ductility is reduced, so the lower limit is set to 20 (%). did . In particular, in order to maximize the toughness of the ausform by ordinary cold drawing, the Ni equivalent is preferably 21 (%) to 23 (%).
また、 ( 2 ) 式の GI (%) は、 冷間伸線加工した後の剛性率に及 ぼす各元素の影響を調査した結果得られたもので、 剛性率に対し、 効果のある元素と影響度を示すものである。  GI (%) in equation (2) is obtained as a result of investigating the effect of each element on the stiffness after cold drawing. And the degree of influence.
GI (%) = 16C + 2 Mn+ 9 Ni - 3 Cr+ 8 Mo+ 15N … ( 2 ) 必要に応じて、 GIの値を 30 (%) 以下とする。 GIの値が 30 (%) を超えると冷間伸線加工後の剛性率が低くなることから、 上限を 30 (%) とするのが望ましい。 と りわけ、 25 (%) 以下とすることが 好ましい。  GI (%) = 16C + 2Mn + 9Ni-3Cr + 8Mo + 15N (2) If necessary, set the value of GI to 30 (%) or less. If the value of GI exceeds 30 (%), the rigidity after cold drawing decreases, so it is desirable to set the upper limit to 30 (%). In particular, it is preferable to be 25% or less.
次に、 本発明の鋼線の製造工程の概要について説明する。 本発明の鋼線は、 以下の①、 ②のいずれかの工程によ り製造され る。 Next, the outline of the manufacturing process of the steel wire of the present invention will be described. The steel wire of the present invention is manufactured by one of the following steps (1) and (2).
すなわち、 所要の成分に調整した鋼を熱間圧延してステンレス口 ッ ドと し、 これを溶体化処理 (圧延後の連続処理も含む) 後、 ①仕 上げ冷間伸線加工によ り鋼線 (最終製品) とする力、、 ②最終の鋼線 径とステンレスロ ッ ド径との差が大きい場合は、 前記溶体化処理さ れたステンレスロ ッ ドを 1回以上の冷間伸線加工、 焼鈍 (溶体化処 理) を繰返して粗線 (ス トランド) と し、 この粗線にス トランド焼 鈍 (溶体化処理) を施した後、 仕上げ冷間伸線加工を施して鋼線 ( 最終製品) とする。 この一連の工程中において溶体化処理 (ス トラ ンド焼鈍を含む) は、 水素ガスを含有する雰囲気中、 水素ガスを含 有しない雰囲気中のいずれでもよいが、 本発明においては後述する ように、 少く とも最後の溶体化処理は、 水素ガスを含有しない雰囲 気中で行ない、 特定の条件下で仕上の冷間伸線加工を行なう。 なお 、 こ こで溶体化処理とは炭化物を固溶状態にすることをいう。  In other words, the steel adjusted to the required composition is hot-rolled into a stainless steel rod, which is subjected to solution treatment (including continuous processing after rolling), and then (1) the steel is finished by cold drawing. (2) If the difference between the final steel wire diameter and the stainless rod diameter is large, cold-draw the solution-treated stainless rod one or more times. Processing and annealing (solution treatment) are repeated to form a rough wire (strand), and this rough wire is subjected to strand annealing (solution treatment), followed by finish cold drawing to form a steel wire. (Final product). In this series of steps, the solution treatment (including the strand annealing) may be performed in an atmosphere containing hydrogen gas or in an atmosphere not containing hydrogen gas. In the present invention, as described later, At least the final solution treatment is performed in an atmosphere that does not contain hydrogen gas, and finish cold drawing under specific conditions. Here, the solution treatment refers to bringing a carbide into a solid solution state.
また、 本発明においては、 上述の一連の工程中の一工程と して水 素を含有しない雰囲気中で脱水素処理を行ない、 特定の条件下で仕 上げの冷間伸線加工を行う。  In the present invention, as one of the above-described series of steps, dehydrogenation is performed in an atmosphere containing no hydrogen, and the finish cold drawing is performed under specific conditions.
次に、 冷間伸線加工条件について説明する。  Next, cold drawing conditions will be described.
( 3 ) 式は溶体化処理後のロ ッ ドまたは、 粗線の冷間伸線加工量 、 ( 4 ) 式はその範囲を示したものである。  Equation (3) shows the amount of rod or rough wire that has been cold-drawn after solution treatment, and equation (4) shows the range.
ε = In ( A0 / A) … ( 3 )ε = In (A 0 / A)… (3)
A0 : 冷間伸線加工前のロ ッ ドまたは粗線の断面積 A 0 : Cross section of rod or rough wire before cold drawing
A : 冷間伸線加工後の鋼線の断面積  A: Cross section of steel wire after cold drawing
0.15X (Ni当量) — 2.28≤ ε ≤0.15X (Ni当量) 一 0.88··· ( 4 ) 室温で一般の冷間伸線加工を施す場合、 ( 3 ) 式で規定した冷間 伸線加工量 ; ε の値が ( 4 ) 式で規定した範囲に入るようにする。 ( 4 ) 式の範囲よ りも小さい場合、 冷間伸線加工後の鋼線の引張強 さが低下し、 また、 剛性率も低くなる。 一方、 ( 4 ) 式の範囲よ り も大きく なると、 冷間伸線加工後の鋼線のマルテンサイ ト量が増加 し、 延靱性が低下する。 そのため、 ( 3 ) , ( 4 ) 式で溶体化処理後 の冷間伸線加工量を限定する。 0.15X (Ni equivalent) — 2.28≤ ε ≤0.15X (Ni equivalent)-0.88 ··· (4) When performing general cold drawing at room temperature, cold drawing specified by equation (3) Quantity; The value of ε should be within the range specified by equation (4). If the value is smaller than the range of the expression (4), the tensile strength of the steel wire after cold drawing decreases, and the rigidity also decreases. On the other hand, if it exceeds the range of Eq. (4), the amount of martensite of the steel wire after cold drawing increases, and the ductility decreases. Therefore, the amount of cold drawing after solution treatment is limited by equations (3) and (4).
次に、 ロ ッ ド又は粗線の溶体化処理 (ス トランド焼紙を含む) お よび脱水素処理条件について説明する。  Next, the solution treatment of rods or coarse wires (including strand paper) and dehydrogenation treatment conditions are described.
延靱性は、 前述したように鋼線の水素含有量の依存性を示す。 水 素ガスを含有する還元ガス雰囲気中で溶体化処理すると水素の吸収 によ り、 鋼が 4 ppm を超える水素を含有して、 延靱性が劣化する。 そのため、 前述の工程中の少く とも最後の溶体化処理時は、 水素ガ スを含有しない Arガス、 窒素ガス、 大気等の雰囲気で行ない、 鋼中 水素含有量を 4 ppm 以下とする。 特に Arガスなどの雰囲気では、 表 面酸化が防止されるので好ましい。  The ductility indicates the dependence of the hydrogen content of the steel wire as described above. If solution treatment is performed in a reducing gas atmosphere containing hydrogen gas, the steel will contain more than 4 ppm of hydrogen due to the absorption of hydrogen, and the ductility will deteriorate. For this reason, at least the last solution treatment in the above-mentioned process is performed in an atmosphere such as Ar gas, nitrogen gas, or air that does not contain hydrogen gas, and the hydrogen content in steel is set to 4 ppm or less. In particular, an atmosphere such as an Ar gas is preferable because surface oxidation is prevented.
また、 鋼中の水素量を 4 ppm 以下とするために、 前述の一連のェ 程中の一工程と して、 例えば、 ロ ッ ドを溶体化処理する前後、 粗線 にする冷間伸線加工のための溶体化処理の前後、 あるいは仕上げ冷 間伸線加工するための溶体化処理の前後などにおいて、 脱水素処理 を施す。 すなわち、 200〜 600°Cの水素ガスを含有しない雰囲気中 で脱水素処理を施すと、 延靱性が向上する。 この時、 200°C以下で はその効果が明確でなく、 600°Cを超えると酸化スケールが厚くな り、 製造性が劣化する。 そのため、 200〜 600°C、 好ましく は、 2 00〜 400°C、 の水素ガスを含まない Arガス、 窒素ガス、 大気等の雰 囲気中で脱水素処理することが望ましい。  In addition, in order to reduce the amount of hydrogen in steel to 4 ppm or less, one of the steps in the series of steps described above is, for example, cold drawing to roughen rods before and after solution treatment. Dehydrogenation treatment is performed before and after solution treatment for processing, or before and after solution treatment for finish cold drawing. That is, when the dehydrogenation treatment is performed in an atmosphere containing no hydrogen gas at 200 to 600 ° C., the ductility is improved. At this time, the effect is not clear below 200 ° C, and when it exceeds 600 ° C, the oxide scale becomes thick and the manufacturability deteriorates. Therefore, it is desirable to carry out the dehydrogenation treatment in an atmosphere of 200 to 600 ° C., preferably 200 to 400 ° C., such as an Ar gas, a nitrogen gas, or the atmosphere that does not contain hydrogen gas.
次に、 口 ッ ド又は粗線の冷間伸線加工前のオーステナイ ト組織の 結晶粒径について説明する。  Next, the crystal grain size of the austenitic structure before the cold drawing of the mouth or coarse wire will be described.
冷間伸線加工前の口 ッ ドまたは粗線のオーステナイ ト組織の平均 結晶粒径が 30 μ mを超える場合、 冷間伸線加工後の鋼線の延靱性が 低下する。 そのため、 必要に応じ、 冷間伸線加工前のロ ッ ドまたは 粗線の溶体化処理条件を、 例えば 950°C〜1150°Cの温度域から平均 5 °C Z s以上の冷却速度で 500°C以下まで急冷するなどによって、 調整してオーステナイ ト組織の平均結晶粒径を 30 μ m以下とする。 実施例 Average of austenite microstructure of a hole or rough wire before cold drawing If the crystal grain size exceeds 30 μm, the ductility of the steel wire after cold drawing decreases. For this reason, if necessary, the conditions for solution treatment of rods or rough wires before cold drawing are, for example, from a temperature range of 950 ° C to 1150 ° C with a cooling rate of 5 ° C Adjust the average grain size of the austenite structure to 30 µm or less by quenching to below C. Example
以下に本発明の実施例に基いてさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically based on examples.
本発明は、 と りわけ、 冷間伸線加工後の鋼線の目標特性と して、 引張強さが 1700 N Z mm2 以上、 ばね用鋼線の延靱性の重要な因子で ある捻回値が 10回以上、 ばね用鋼線の弾性率の重要な因子である剛 性率が 63GPa 以上と した。 弾性率の重要な因子と してヤング率もあ るが、 本発明では剛性率をその代表値と して規定する。 The present invention includes a Riwake, cold wire drawing after as the target characteristics of the steel wire, the tensile strength is 1700 NZ mm 2 or more, twisting value is an important factor for extending the toughness of spring steel wire However, the stiffness modulus, an important factor in the elastic modulus of the spring steel wire, was 63 GPa or more. An important factor of the elastic modulus is the Young's modulus, but in the present invention, the rigidity is defined as a representative value.
実施例の供試材は、 通常のステンレス線材の製造工程で溶製し、 熱間で φ 5. 5mmまでロ ッ ド圧延を行い、 1000°Cで圧延を終了した。 得られたロ ッ ドを約 1050°Cで 5 m in の熱処理 (溶体化処理) を施し 、 水冷した。 その後、 一部は脱水素処理を施して、 中間の冷間伸線 加工を行い粗線と した。 その後この粗線を、 ス トランド炉にて Arガ ス雰囲気で 1050°Cの溶体化処理を施した後、 仕上げの冷間伸線加工 を施し鋼線と した。  The test material of the example was melted in a normal stainless steel wire manufacturing process, rod-rolled hot to φ5.5 mm, and finished rolling at 1000 ° C. The obtained rod was subjected to a heat treatment (solution treatment) at about 1050 ° C. for 5 min, followed by water cooling. After that, a part was subjected to dehydrogenation treatment and intermediate cold drawing was performed to obtain a rough wire. After that, the rough wire was subjected to a solution treatment at 1050 ° C in an Ar gas atmosphere in a strand furnace, and then cold-drawn for finishing to obtain a steel wire.
そして、 この仕上げ冷間伸線加工前 (溶体化処理後) の粗線のォ ーステナイ トの平均結晶粒径と仕上冷間伸線加工後の鋼線の水素量 、 加工誘起マルテンサイ ト量、 引張強さ、 捻回値、 剛性率を調査し た。  The average crystal grain size of the austenite of the rough wire before the finish cold drawing (after solution treatment), the hydrogen content of the steel wire after the finish cold drawing, the amount of work-induced martensite, and the tensile strength The strength, twist value, and rigidity were investigated.
冷間伸線加工前の粗線オーステナイ ト平均結晶粒径は、 粗線の横 断面を 10%硝酸溶液中で電解エッチングを行い、 その後、 画像解析 によ り、 各結晶毎の断面積を求め、 この面積を換算した換算径 ( d ) の 10点の平均値で示している。 水素量は、 冷間伸線加工後の鋼線から試料を取り出し、 不活性ガ ス溶融一熱伝導側定法によ り測定した。 The average grain size of coarse-wire austenite before cold drawing is determined by performing cross-section electrolysis in a 10% nitric acid solution on the cross-section of the coarse wire, and then calculating the cross-sectional area of each crystal by image analysis. The average diameter of 10 points of the converted diameter (d) obtained by converting this area is shown. The amount of hydrogen was measured by taking out a sample from the steel wire after cold drawing, and using the inert gas fusion-thermal conduction method.
冷間伸線加工後の鋼線の加工誘起マルテンサイ ト量は、 直流式の The amount of work-induced martensite of steel wire after cold drawing is the
BHト レーサーにて飽和磁化を測定して求めた。 The saturation magnetization was measured using a BH tracer.
冷間伸線加工後の銅線の引張強さは、 J I S Z2241の引張試験によ り測定した。  The tensile strength of the copper wire after cold drawing was measured by a tensile test of JIS Z2241.
冷間伸線加工後の鋼線の捻回値は、 ねじり試験を行い、 破断する までのねじれ回数にて評価した。  The torsion value of the steel wire after cold drawing was evaluated by conducting a torsion test and evaluating the number of twists until breaking.
冷間伸線加工後の銅線の剛性率は、 ねじり振り子法によ り測定し た。  The rigidity of the copper wire after cold drawing was measured by the torsion pendulum method.
まず、 本発明の基本成分の効果について述べる。 供試材は、 熱間 でのロ ッ ド圧延と溶体化処理を施した後の口 ッ ドを φ 3. 4mmまで中 間の冷間伸線加工を施して粗線と し、 続いて Ar雰囲気で溶体化処理 を施して、 その後、 φ 1. 6mmまで仕上げの冷間伸線加工を施して鋼 線とた。 表 1 に実施例の基本成分と鋼線の特性を示す。  First, the effects of the basic components of the present invention will be described. The sample material was subjected to hot rod rolling and solution treatment, and then the intermediate rod was subjected to intermediate cold drawing to φ3.4 mm to form a coarse wire. The steel wire was subjected to solution treatment in an atmosphere, and then cold-drawn to a finish of 1.6 mm. Table 1 shows the basic components of the examples and the characteristics of the steel wires.
本発明例 No. 1〜No. 19と比較例 No. 20〜No. 32は、 鋼線の各特性に 及ぼすマ ト リ ックスの成分 ; C, S i , Mn, P , S, Ni, Cr , Mo , Cu , O, Nの影響を調査したものである。  Inventive Examples No. 1 to No. 19 and Comparative Examples No. 20 to No. 32 are the components of the matrix that affect the properties of the steel wire; C, Si, Mn, P, S, Ni, Cr , Mo, Cu, O, and N were investigated.
本発明例は、 全ての鋼線の引張強さが 1700 N Z mm2 以上であり、 捻回値が 10回以上、 剛性率が 63GPa 以上であり、 高強度で捻回値、 弾性率に優れていた。 また、 本発明例の No. 1 と No. 19との比較に おいて、 Pを下げることで捻回値が向上していた。 Examples The present invention is the tensile strength of all the steel wire 1700 NZ mm 2 or more, twisting value more than 10 times, modulus of not less than 63GPa, twisting value high strength, and excellent modulus of elasticity Was. In addition, in the comparison between No. 1 and No. 19 of the present invention, the twist value was improved by decreasing P.
しかし、 比較例 No. 20では、 C量が低く、 捻回値と弾性率は低く ないが、 強度が低いため、 本発明の効果が明確でなかった。  However, in Comparative Example No. 20, although the C content was low and the torsion value and the elastic modulus were not low, the effect of the present invention was not clear because the strength was low.
比較例 No. 21では、 C量が高く、 捻回値に劣っていた。  In Comparative Example No. 21, the C content was high and the torsion value was inferior.
比較例 No. 22では、 N量が高く、 ブローホール等の材料欠陥が発 生したため、 捻回値に劣っていた。 比較例 No. 23では、 S i量が高く、 捻回値に劣っていた。 In Comparative Example No. 22, since the N content was high and material defects such as blow holes occurred, the torsion value was inferior. In Comparative Example No. 23, the Si content was high and the torsion value was inferior.
比較例 No . 24では、 Mn量が高く、 捻回値に劣っていた。  In Comparative Example No. 24, the Mn content was high and the torsion value was inferior.
比較例 No . 25では、 Ni量が高く、 加工誘起マルテンサイ ト量が低 く、 剛性率に劣る。  In Comparative Example No. 25, the amount of Ni was high, the amount of work-induced martensite was low, and the rigidity was poor.
比較例 No. 26では、 Ni量が低く、 加工誘起マルテンサイ ト量が高 く、 捻回値に劣っていた。  In Comparative Example No. 26, the amount of Ni was low, the amount of work-induced martensite was high, and the torsion value was poor.
比較例 No. 27では、 Cr量が低く、 加工誘起マルテンサイ ト量が高 く、 捻回値に劣っていた。  In Comparative Example No. 27, the Cr content was low, the work-induced martensite content was high, and the torsion value was poor.
比較例 No. 28では、 Cr量が高く、 捻回値に劣るばかり力 、 加工誘 起マルテンサイ ト量が低く、 剛性率にも劣っていた。  In Comparative Example No. 28, the Cr content was high, the twisting value was inferior, the force was low, the work-induced martensite amount was low, and the rigidity was poor.
比較例 No . 29では、 Mo量が高く、 剛性率に劣っていた。  In Comparative Example No. 29, the amount of Mo was high and the rigidity was poor.
比較例 No. 30では、 Cu量が高く、 引張強さが低いため、 本発明の 高捻回値の効果が明確でないばかり力 、 加工誘起マルテンサイ ト量 が低く、 剛性率にも劣っていた。  In Comparative Example No. 30, since the Cu content was high and the tensile strength was low, the effect of the high torsion value of the present invention was not clear, but the force, the amount of work-induced martensite was low, and the rigidity was poor.
比較例 No. 31, Νο· 32では、 Ο量および S量がそれぞれ高く、 捻回 値に劣つていた。  In Comparative Examples No. 31 and No. 32, the amount of S and the amount of S were respectively high, and the torsion value was inferior.
次に、 本発明の結晶粒微細化と結晶粒微細化元素添加の効果につ いて述べる。 供試材は、 熱間でのロ ッ ド圧延と溶体化処理を施した 後のロ ッ ドを、 φ 3. 4mmまで中間の冷間伸線加工を施して粗線と し 、 続いて Ar雰囲気で溶体化処理を施した。 そして、 その後、 この粗 線に φ 1. 6mmまで仕上げの冷間伸線加工を施し鋼線と した。 表 2に 実施例の基本成分と鋼線の特性を示す。  Next, the effects of the grain refinement and the addition of the grain refinement element of the present invention will be described. For the test material, the rod after hot rod rolling and solution treatment was subjected to intermediate cold drawing to φ3.4 mm to form a coarse wire, followed by Ar Solution treatment was performed in an atmosphere. Then, the rough wire was subjected to cold drawing to finish to 1.6 mm in diameter to obtain a steel wire. Table 2 shows the basic components of the examples and the characteristics of the steel wires.
本発明例 No. 33〜Νο· 44と比較例 No. 45, No. 46は、 鋼線の捻回値に 及ぼす結晶粒微細化と結晶粒微細化元素の添加の効果を調査したも のである。  Inventive Examples No. 33 to No. 44 and Comparative Examples No. 45 and No. 46 investigated the effects of grain refinement and the addition of a grain refinement element on the twist value of a steel wire. .
本発明例 No. 34〜No. 44において、 結晶粒微細化のために Al , Nb, Ti, Zr, Ta, W, Vが添加されて、 平均結晶粒径が約 10 μ mとなつ ており、 本発明例 No.33に比べ捻回値が明らかにさらに向上した。 結晶粒微細化の高捻回値の効果は明らかである。 さらに、 表 2の本 発明例 Νο· 34〜44 (Ni当量はすべて 21· 7〜22.1%) のうち、 引張強 さが 2000N/mm2 以上である No.35, 36, 38, 44の捻回値 (それぞ れ 29回、 25回、 32回、 25回) と、 表 1 の結晶粒微細化元素の添加の ない本発明例 No.:!〜 No.19 のうちで、 Ni当量が 21.7〜22.1%かつ、 引張強さが 2000NZmm2 以上である No.3, 11, 12, 18の捻回値 (そ れぞれ 13回、 13回、 11回、 13回) とを比較しても、 結晶粒微細化元 素の添加の効果は明らかである。 In Example Nos. 34 to 44 of the present invention, Al, Nb, Ti, Zr, Ta, W, and V were added to refine the crystal grains, so that the average crystal grain size became about 10 μm. As a result, the torsion value was clearly further improved as compared with Inventive Example No. 33. The effect of high torsion value on grain refinement is clear. Furthermore, of the present invention examples in Table 2 Νο · 34 to 44 (all Ni equivalents are 21.7 to 22.1%), the twist of Nos. 35, 36, 38, and 44 with a tensile strength of 2000 N / mm 2 or more Among the round values (29 times, 25 times, 32 times, and 25 times, respectively), and among the examples of the present invention No .:! 21.7 to 22.1% and, No.3 tensile strength is 2000NZmm 2 or more, 11, 12, 18 twisting value (their respective 13 times, 13 times, 11 times, 13 times) by comparing the However, the effect of the addition of the grain refining element is clear.
し力、し、 比較例 No.45, No.46においては、 A1や Nbが過剰に添加さ れているため逆に捻回値が低下した。  In Comparative Examples No. 45 and No. 46, the torsion value decreased because A1 and Nb were excessively added.
次に本発明の水素量を低減した効果、 および、 水素低減を図るた めの製造方法の効果について述べる。 表 3に実施例の製造条件と特 性を示す。 供試材について、 表 1の鋼種 Aを熱間でロ ッ ド圧延し溶 体化処理後、 このロ ッ ドの一部を表 3中の条件にて脱水素処理を施 した。 そして、 φ 3.4mmまで中間の冷間伸線加工を施して粗線と し 、 続いて表 3中の各雰囲気ガスの条件でス トランド焼鈍 (溶体化処 理) を施して、 その後、 この粗線を φ 1.6mmまで仕上げの冷間伸線 加工を施して鋼線と した。  Next, the effect of the present invention in reducing the amount of hydrogen and the effect of the manufacturing method for reducing hydrogen will be described. Table 3 shows the manufacturing conditions and characteristics of the examples. For the test material, steel type A in Table 1 was hot-rolled and solution-treated, and then a part of the rod was dehydrogenated under the conditions shown in Table 3. Then, intermediate cold drawing to φ 3.4 mm is performed to form a rough wire, and then strand annealing (solution treatment) is performed under the conditions of each atmospheric gas in Table 3, and thereafter, the rough wire is formed. The wire was cold-drawn to a diameter of 1.6 mm to form a steel wire.
本発明例 No.47〜No.55と比較例 No, 56, No.57は、 鋼線の捻回値に 及ぼす結晶粒微細化と結晶粒微細化元素の添加の効果を調査したも のである。  Examples Nos. 47 to 55 of the present invention and Comparative Examples Nos. 56 and 57 investigated the effects of grain refinement and the addition of grain refinement elements on the twist value of steel wire. .
本発明例 No.47〜No.55において、 水素量が低いため捻回値が高い 。 特に、 本発明例 No.50〜No.55は、 脱水素処理を施し、 水素量を更 に低減しているため、 捻回値が更に向上した。 水素低減による高捻 回値化の効果は明らかである。  In Examples Nos. 47 to 55 of the present invention, the torsion value was high because the amount of hydrogen was low. In particular, in Examples Nos. 50 to 55 of the present invention, since the dehydrogenation treatment was performed to further reduce the amount of hydrogen, the twist value was further improved. The effect of increasing the torsion value by reducing hydrogen is clear.
しかし、 比較例 No.56, No.57は水素ガスを含む雰囲気中で焼鈍し ており、 材料中の水素量が高いため、 捻回値に劣っていた。 However, Comparative Examples No. 56 and No. 57 were annealed in an atmosphere containing hydrogen gas. The torsion value was inferior due to the high amount of hydrogen in the material.
次に本発明の冷間伸線加工方法の効果について述べる。 表 4に実 施例の冷間伸線条件と特性を示す。 供試材については、 表 2の鋼種 AH、 表 1の鋼種 Iおよび鋼種 Lを熱間で口 ッ ド圧延し溶体化処理し た後、 このロ ッ ドに φ 3.4mmまで中間の冷間伸線加工を施して粗線 と し、 続いて Ar雰囲気ガス中でス トランド焼鈍 (溶体化処理) を施 して、 その後、 この粗線に表 4中の冷間伸線加工量で仕上げの冷間 伸線加工を施し、 鋼線と した。 また、 表 4には、 ( 3 ), ( 4 ) 式か ら計算される最適な冷間伸線加工量の範囲も示す。  Next, the effect of the cold drawing method of the present invention will be described. Table 4 shows the cold drawing conditions and characteristics of the examples. For the test material, steel type AH in Table 2 and steel type I and steel type L in Table 1 were hot-rolled and solution-treated, and then this rod was subjected to intermediate cold elongation to 3.4 mm in diameter. The wire was subjected to wire working to obtain a rough wire, followed by strand annealing (solution treatment) in an Ar atmosphere gas, and then the finished wire was subjected to cold drawing in the amount of cold drawing shown in Table 4 The steel wire was formed by hot drawing. Table 4 also shows the range of the optimum cold drawing amount calculated from Eqs. (3) and (4).
本発明例 No.58〜No.66と比較例 No.67〜No.72は、 鋼線の引張強さ 、 捻回値、 剛性率に及ぼす冷間伸線加工量の効果を調査したもので ある。  Invention Examples No. 58 to No. 66 and Comparative Examples No. 67 to No. 72 were obtained by investigating the effects of the amount of cold drawing on the tensile strength, torsion value, and rigidity of the steel wire. is there.
本発明例 No.58〜No.66は、 冷間伸線加工量が適正であるため、 引 張強さが高く、 且つ、 高い捻回値と剛性率を示す。  In the present invention examples No. 58 to No. 66, the tensile strength is high and the torsion value and the rigidity are high because the cold drawing amount is appropriate.
しかし、 比較例 No.67, No.69, No.71は、 冷間伸線加工量が低い ため、 引張強さが低く、 本発明の高捻回値の効果が明確でないばか り力、、 加工誘起マルテンサイ ト量が低く、 剛性率にも劣っていた。 比較例 No.68, No.70, No.72は、 冷間伸線加工量が高過ぎ、 加工 誘起マルテンサイ ト量が多いため、 捻回値に劣っていた。  However, in Comparative Examples No. 67, No. 69 and No. 71, since the amount of cold drawing was low, the tensile strength was low and the effect of the high torsion value of the present invention was not clear. The amount of work-induced martensite was low and the rigidity was poor. Comparative Examples No. 68, No. 70 and No. 72 were inferior in torsion value because the cold drawing amount was too high and the amount of work-induced martensite was large.
以上の実施例からわかるように、 本発明の高強度ステンレス鋼線 は、 捻回値 (延靱性) と剛性率において極めて優れていることは明 らかである。 〔表 1〕 As can be seen from the above examples, it is clear that the high-strength stainless steel wire of the present invention is extremely excellent in twist value (ductility) and rigidity. 〔table 1〕
Figure imgf000018_0001
Figure imgf000018_0001
*; 本発明範囲から外れているもの。 *; Out of the scope of the present invention.
〔表 2〕 (Table 2)
Figure imgf000019_0001
Figure imgf000019_0001
*; 本発明範囲から外れているもの *; Out of the scope of the present invention
〔表 3〕 (Table 3)
0000
Figure imgf000020_0001
Figure imgf000020_0001
* : 本発明範囲から外れているもの。 *: Deviated from the scope of the present invention.
〔表 4〕 O(Table 4) O
Figure imgf000021_0001
Figure imgf000021_0001
* : 本発明範囲から外れているもの *: Out of the scope of the present invention
産業上の利用可能性 Industrial applicability
本発明の延靱性 · 剛性率に優れる高強度ステンレス銅線およびそ の製造方法によれば、 オーステナイ ト系ステンレス鋼線の母材の基 本成分、 清浄度 (酸素、 硫黄) の規制に加え、 組織、 強度と伸線加 ェ条件を限定して、 結晶粒微細化とオースフォームの強靱化の効果 を使う ことで、 延靱性と剛性率を著しく向上させた高強度ステンレ ス鋼線を安定して得ることができる。  According to the high-strength stainless copper wire having excellent toughness and rigidity of the present invention and the method for producing the same, in addition to the regulation of the basic components and the cleanliness (oxygen and sulfur) of the base material of the austenitic stainless steel wire, By limiting the structure, strength and drawing conditions and using the effects of grain refinement and ausform toughening, it is possible to stabilize a high-strength stainless steel wire with significantly improved ductility and rigidity. Can be obtained.

Claims

求 の 囲 Request box
1 . 質量0 /oで、 C : 0· 03〜0, 14%、 Si : 0.1〜 4.0%、 Mn: 0.1 〜 5.0%、 Ni : 5.0〜 9.0%、 Cr: 14.0〜: 19.0%、 N : 0.005~0. 20%、 O : 0.001〜0.01%、 S : 0.0001〜 0.012%を含有し、 残部 が Feおよび不可避的不純物からなり、 かつ、 2 C + Nが 0.17〜0.32 %、 下記 ( 1 ) 式の Ni当量 (%) の値が 20〜24、 H≤ 4 ppm である ことを特徴とする延靱性 · 剛性率に優れる高強度ステンレス鋼線。 1. Mass 0 / o, C: 03 ~ 0, 14%, Si: 0.1 ~ 4.0%, Mn: 0.1 ~ 5.0%, Ni: 5.0 ~ 9.0%, Cr: 14.0 ~: 19.0%, N: 0.005 ~ 0.20%, O: 0.001 ~ 0.01%, S: 0.0001 ~ 0.012%, the balance consists of Fe and unavoidable impurities, and 2C + N is 0.17 ~ 0.32%, the following (1) A high-strength stainless steel wire with excellent ductility and rigidity, characterized in that the Ni equivalent (%) value in the formula is 20 to 24 and H≤4 ppm.
Ni当量 (%) =Ni + 0.65Cr + 0.98Mo+l.06Mn+0.35Si + 12.6 ( C + N) ( 1 )  Ni equivalent (%) = Ni + 0.65Cr + 0.98Mo + l.06Mn + 0.35Si + 12.6 (C + N) (1)
2. 前記鋼線は、 さ らに、 質量%で、 下記の A, B , Cのいずれ か 1種以上含有することを特徴とする請求の範囲第 1項に記載の延 靭性 · 剛性率に優れる高強度ステンレス鋼線。  2. The ductility and rigidity according to claim 1, wherein the steel wire further contains at least one of the following A, B, and C in mass%. Excellent high-strength stainless steel wire.
A : Al, Nb, Ti, Zr, Ta, Wの何れか 1種または 2種以上をそれ ぞれ : 0.01〜0.30%  A: Any one or more of Al, Nb, Ti, Zr, Ta, and W: 0.01 to 0.30%
B : V : 0.1〜 0.5%  B: V: 0.1 to 0.5%
C : Mo: 0.2〜 3.0%  C: Mo: 0.2-3.0%
3. 前記鋼線の下記 ( 2 ) 式の GI (%) の値が 30以下であること を特徴とする請求の範囲第 1項または第 2項に記載の延靱性 · 剛性 率に優れる高強度ステンレス鋼線。  3. The high strength excellent in ductility and rigidity according to claim 1 or 2, wherein the steel wire has a GI (%) value of the following formula (2) of 30 or less. Stainless steel wire.
GI (%) =16C + 2 Mn+ 9 Ni - 3 Cr + 8 Mo + 15N ( 2 ) GI (%) = 16C + 2 Mn + 9 Ni-3 Cr + 8 Mo + 15N (2)
4. 重量0 /oで、 C : 0.03〜0.14%、 Si : 0.1〜 4.0%、 Mn: 0.1 〜4. Weight 0 / o, C: 0.03 ~ 0.14%, Si: 0.1 ~ 4.0%, Mn: 0.1 ~
5.0%、 Ni : 5.0~ 9.0%、 Cr : 14.0〜19· 0%、 N : 0.005〜0. 20%、 O : 0.001-0.01%, S : 0.0001〜 0.012%を含有し、 残部 が Feおよび不可避的不純物からなり、 かつ、 2 C + Nが 0.17〜0.32 %、 下記 ( 1 ) 式の Ni当量 (%) の値が 20〜24である鋼を熱間圧延 してロ ッ ドと し、 溶体化処理した後、 或いはこのロ ッ ドを 1回以上 溶体化処理および冷間伸線加工をして粗線とした後、 仕上げの冷間 伸線加工を施して鋼線とする一連の工程において、 少く とも最後の 溶体化処理を水素ガスを含有しない雰囲気中で行ない、 銅中の Hを 4 ppm 以下と し、 ( 3 ) 式で示される冷間伸線加工量 : ε 力 ( 4 ) 式の範囲内となるよ うに仕上げの冷間伸線加工を行なう ことを特 徴とする延靱性 · 剛性率に優れる高強度ステンレス鋼線の製造方法 5.0%, Ni: 5.0 ~ 9.0%, Cr: 14.0 ~ 19.0%, N: 0.005 ~ 0.20%, O: 0.001 ~ 0.01%, S: 0.0001 ~ 0.012%, the balance being Fe and inevitable Steel with 2C + N of 0.17 to 0.32% and Ni equivalent (%) of 20 to 24 in the following formula (1) is hot-rolled into a rod, Or after loading this rod at least once At least a final solution treatment does not contain hydrogen gas in a series of steps to form a steel wire by performing a solution treatment and cold drawing to a rough wire and then performing a cold drawing process to finish. Performed in an atmosphere, the H in copper is set to 4 ppm or less, and the amount of cold drawing shown by formula (3): ε force Cold drawn to finish within the range of formula (4) Of high-strength stainless steel wire with excellent ductility and rigidity
Ni当量 (%) =Ni + 0.65Cr + 0.98Mo+ 1.06Mn+ 0.35Si + 12.6 ( C + N) ( 1 ) Ni equivalent (%) = Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
ε = ln ( A0 /A ) ( 3 ) 但し、 A。 : 冷間伸線加工前のロ ッ ドまたは粗線の断面積 ε = ln (A 0 / A) (3) where A. : Cross section of rod or rough wire before cold drawing
A : 冷間伸線加工後の鋼線の断面積  A: Cross section of steel wire after cold drawing
0.15X (Ni当量) 一 2· 28≤ ε ≤0.15X (Ni当量) — 0.88 ( 4 ) 5. 質量0 /0で、 C : 0.03〜0.14%、 Si : 0.1~ 4.0%、 Mn: 0.1 〜 5.0%、 Ni : 5.0〜 9.0%、 Cr: 14.0〜19.0%、 N : 0.005〜0. 20%、 O : 0.001〜0.01%、 S : 0.0001〜 0.012%を含有し、 かつ 、 2 C + Nが 0.17〜0.32%、 ( 1 ) 式の Ni当量 (%) の値が 20〜24 であり、 残部が Feおよび不可避的不純物からなる鋼を熱間圧延して ロ ッ ドと し溶体化処理した後、 或いはこのロ ッ ドを 1回以上溶体化 処理および冷間伸線加工して粗線と した後、 仕上の冷間伸線加工を 施して鋼線にする一連の工程中の一工程として、 水素ガスを含有し ない雰囲気中で脱水素処理を施して鋼中の Hを 4 ppm 以下と し、 ( 3 ) 式で示される伸線加工量 : ε が、 ( 4 ) 式の範囲内となるよ う に仕上の冷間伸線加工を行う ことを特徴とする延靱性 · 弾性率に優 れる高強度ステンレス鋼線の製造方法。 0.15X (Ni eq) Single 2 · 28≤ ε ≤0.15X (Ni eq) - 0.88 (4) 5. Weight 0/0, C: 0.03~0.14% , Si: 0.1 ~ 4.0%, Mn: 0.1 ~ 5.0%, Ni: 5.0 ~ 9.0%, Cr: 14.0 ~ 19.0%, N: 0.005 ~ 0.20%, O: 0.001 ~ 0.01%, S: 0.0001 ~ 0.012%, and 2C + N 0.17 to 0.32%, the Ni equivalent (%) value in equation (1) is 20 to 24, and the balance is made of steel consisting of Fe and unavoidable impurities. Alternatively, this rod is subjected to solution treatment and cold drawing at least once to form a rough wire, and then subjected to finish cold drawing to form a steel wire. Dehydrogenation is performed in an atmosphere that does not contain hydrogen gas to reduce H in steel to 4 ppm or less, and the wire drawing amount: ε expressed by equation (3) falls within the range of equation (4) Toughness characterized by cold-drawing the finish · A method for manufacturing high-strength stainless steel wire with excellent elastic modulus.
Ni当量 = Ni + (K 65Cr + 0.98Mo + l.06Mn+ 0.35Si + 12- 6 ( C + N ) Ni equivalent = Ni + (K 65Cr + 0.98Mo + l.06Mn + 0.35Si + 12-6 (C + N)
( 1 ) ε =ln (A0 /A) ( 3 ) 但し、 AQ : 冷間伸線加工前のロ ッ ドまたは粗線の断面積 (1) ε = ln (A 0 / A) (3) where A Q is the cross-sectional area of the rod or rough wire before cold drawing.
A : 冷間伸線加工後の鋼線の断面積  A: Cross section of steel wire after cold drawing
0.15X (Ni当量) —2, 28≤ ε 15X (Ni当量) 一0.88 ( 4 ) 0.15X (Ni equivalent) —2, 28≤ ε 15X (Ni equivalent) One 0.88 (4)
6 , 前記鋼、 ロ ッ ドまたは粗線は、 さ らに、 質量%で、 下記の A , B , Cのいずれか 1種以上を含有することを特徴とする請求の範 囲第 4項または第 5項に記載の延靱性 · 剛性率に優れる高強度ステ ンレス鋼線の製造方法。 6. The steel according to claim 4, wherein said steel, rod or coarse wire further contains, by mass%, one or more of the following A, B and C. Item 5. The method for producing a high-strength stainless steel wire having excellent ductility and rigidity according to Item 5.
A : Al, Nb, Ti, Zr, Ta, Wのいずれか 1種または 2種以上をそ れぞれ : 0.01〜0.30%  A: One or more of Al, Nb, Ti, Zr, Ta, and W: 0.01 to 0.30%
B : V : 0.:!〜 0.5%  B: V: 0.:! ~ 0.5%
C : Mo: 0.2〜 3.0%  C: Mo: 0.2-3.0%
7. 前記ロ ッ ドまたは粗線の冷間伸線加工前のオーステナイ ト平 均結晶粒径が 30 μ πι以下であることを特徴とする請求の範囲第 4項 または第 5項に記載の延靱性 · 弾性率に優れる高強度ステンレス鋼 線の製造方法。  7. The roll according to claim 4, wherein the rod or coarse wire has an austenite average crystal grain size of 30 μπι or less before cold drawing. A method for producing high-strength stainless steel wire with excellent toughness and elastic modulus.
8. 前記鋼、 ロ ッ ドまたは粗線は、 さ らに、 質量%で、 下記の A , B , Cのいずれか 1種以上を含有し、  8. The steel, rod or coarse wire further contains, by mass%, one or more of the following A, B and C;
かつ、 前記ロ ッ ドまたは粗線の冷間伸線加工前のオーステナイ ト平 均結晶粒径が 30 μ m以下であることを特徴とする請求の範囲第 4項 または第 5項に記載の延靱性 · 剛性率に優れる高強度ステンレス鋼 線の製造方法。 The rod according to claim 4 or 5, wherein the rod or the coarse wire has an austenite average crystal grain size of 30 μm or less before cold drawing. A method for producing high-strength stainless steel wire with excellent toughness and rigidity.
A : Al, Nb, Ti, Zr, Ta, Wのいずれか 1種または 2種以上をそ れぞれ : 0.01〜 30%  A: Any one or more of Al, Nb, Ti, Zr, Ta, and W: 0.01 to 30%
B : V : 0.1〜 0.5%  B: V: 0.1 to 0.5%
C : Mo: 0.2〜 3.0%、  C: Mo: 0.2-3.0%,
PCT/JP2002/004493 2002-05-08 2002-05-08 High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof WO2003095693A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004503681A JP4212553B2 (en) 2002-05-08 2002-05-08 High-strength stainless steel wire with excellent twist value and rigidity and manufacturing method thereof
CNB02813737XA CN1263880C (en) 2002-05-08 2002-05-08 High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof
PCT/JP2002/004493 WO2003095693A1 (en) 2002-05-08 2002-05-08 High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof
KR1020047000223A KR100566142B1 (en) 2002-05-08 2002-05-08 High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof
HK05101661A HK1069190A1 (en) 2002-05-08 2005-02-28 High strength stainless steel wire excellent in frequency of torque and modulus of rigidity and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/004493 WO2003095693A1 (en) 2002-05-08 2002-05-08 High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof

Publications (1)

Publication Number Publication Date
WO2003095693A1 true WO2003095693A1 (en) 2003-11-20

Family

ID=29416517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004493 WO2003095693A1 (en) 2002-05-08 2002-05-08 High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof

Country Status (5)

Country Link
JP (1) JP4212553B2 (en)
KR (1) KR100566142B1 (en)
CN (1) CN1263880C (en)
HK (1) HK1069190A1 (en)
WO (1) WO2003095693A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
JP2007092116A (en) * 2005-09-28 2007-04-12 Nippon Seisen Co Ltd Ferromagnetic net
JP2008045177A (en) * 2006-08-18 2008-02-28 Daido Steel Co Ltd High strength high elasticity stainless steel and stainless steel wire
JP2008248271A (en) * 2007-03-29 2008-10-16 Daido Steel Co Ltd High strength stainless steel and high strength stainless steel wire using the same
JP2011026650A (en) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd High-strength stainless-steel wire superior in hydrogen embrittlement resistance and formed product of stainless steel using the same
JP2011047008A (en) * 2009-08-27 2011-03-10 Nippon Metal Ind Co Ltd Austenitic stainless steel for spring
WO2011158464A1 (en) * 2010-06-15 2011-12-22 住友金属工業株式会社 Cold drawing method for metal pipe, and process for production of metal pipe utilizing the method
WO2012000638A1 (en) * 2010-06-28 2012-01-05 Stahlwerk Ergste Westig Gmbh Chromium-nickel steel, martensitic wire and method for producing same
JP2012097350A (en) * 2010-10-07 2012-05-24 Nippon Steel & Sumikin Stainless Steel Corp Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and production method therefor
JP2015508453A (en) * 2011-12-28 2015-03-19 ポスコ High strength austenitic stainless steel and method for producing the same
WO2015156179A1 (en) * 2014-04-08 2015-10-15 株式会社神戸製鋼所 Thick steel plate having exceptional haz toughness at very low temperatures
CN105112803A (en) * 2015-09-18 2015-12-02 巢湖市南特精密制造有限公司 Abrasion-resistant alloy material for refrigerator compressor crank shaft and preparation method of abrasion-resistant alloy material
JP2016527394A (en) * 2013-07-05 2016-09-08 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Stainless steel having delayed crack resistance and method for producing the same
CN113699461A (en) * 2021-08-30 2021-11-26 南通普创医疗科技有限公司 High-strength stainless steel wire for interventional medical treatment and preparation method thereof
US11268177B2 (en) * 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129175B1 (en) * 2004-12-24 2012-03-26 주식회사 포스코 Finishing wire rolling method for reducing the duplex grain structures in 304H stainless steel wire
CN100447286C (en) * 2005-09-09 2008-12-31 洛阳双瑞特钢科技有限公司 High strength anti-corrosion easy processing and low magnetic cast steel for manufacturing ship weldable structure
JP5098217B2 (en) * 2005-09-28 2012-12-12 新日鐵住金株式会社 Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
KR101401625B1 (en) * 2010-10-07 2014-06-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Precipitation hardening metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
BR112013017180A2 (en) 2011-01-28 2016-09-20 Exxonmobil Upstream Res Co High hardness welding metals with superior ductile tear strength
CN102534412B (en) * 2011-12-31 2013-11-27 戴初发 Corrosion-resistant steel pipe for high-pressure boiler
JP6259579B2 (en) * 2012-03-29 2018-01-10 新日鐵住金ステンレス株式会社 High-strength stainless steel wire, high-strength spring, and method of manufacturing the same
US9637843B2 (en) 2013-06-06 2017-05-02 Toyota Boshoku Kabushiki Kaisha Fabric material
CN104233849A (en) * 2013-06-08 2014-12-24 丰田纺织株式会社 Cloth material
US10414003B2 (en) * 2013-09-30 2019-09-17 Liburdi Engineering Limited Welding material for welding of superalloys
CN104451424A (en) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 Cr-Ni elastomer material for weighing sensors
CN105483502A (en) * 2015-12-03 2016-04-13 浙江腾龙精线有限公司 Production method for spring wire
CN106906428B (en) * 2015-12-23 2020-07-14 宝钢德盛不锈钢有限公司 Hard austenitic stainless steel for conveyor belt and manufacturing method and application thereof
KR102139255B1 (en) * 2016-03-28 2020-07-29 닛폰세이테츠 가부시키가이샤 Steel wire with excellent delay resistance
CN105839030B (en) * 2016-04-28 2017-06-06 交通运输部公路科学研究所 Bridge stainless steel wire hot-cast anchor cable and its drag-line used
CN107099653B (en) * 2017-04-13 2019-04-05 邢台钢铁有限责任公司 A kind of production method of high silicon stainless steel wire rod
CN108130491A (en) * 2017-12-19 2018-06-08 浙江腾龙精线有限公司 The processing method of engine fuel oil system rod iron
CN108998748A (en) * 2018-09-05 2018-12-14 合肥久新不锈钢厨具有限公司 A kind of excellent weak remanent magnetism low nickel stainless steel of processing characteristics
CN109536854A (en) * 2019-01-09 2019-03-29 河北五维航电科技股份有限公司 A kind of manufacturing method of 600 DEG C of grades and following steam turbine blade root gasket
CN110819898B (en) * 2019-11-18 2021-08-31 燕山大学 High-strength corrosion-resistant zirconium-containing stainless steel and preparation method thereof
CN112853209B (en) * 2020-12-31 2021-12-24 江苏永钢集团有限公司 Zr-containing welding wire steel hot-rolled wire rod and production process thereof
CN113481439B (en) * 2021-07-06 2022-04-08 中国工程物理研究院机械制造工艺研究所 Nitrogen-containing stainless steel, and preparation method and application of component
CN114318145A (en) * 2021-12-24 2022-04-12 浦项(张家港)不锈钢股份有限公司 Stainless steel strip blank for ultra-long precision spring, precision stainless steel strip and application
CN117210771B (en) * 2023-08-24 2024-05-14 鞍钢股份有限公司 Thick high-performance nitrogen-containing austenitic stainless steel for nuclear power and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166319A (en) * 1980-05-27 1981-12-21 Nippon Steel Corp Manufacture of nonrefined steel
JPH02236218A (en) * 1989-03-08 1990-09-19 Sumitomo Metal Ind Ltd Method for diffusing and removing hydrogen in steel in on-line
JPH05287456A (en) * 1992-04-09 1993-11-02 Nippon Steel Corp High strength martensitic stainless steel wire excellent in rust resistance
JPH05295486A (en) * 1992-04-16 1993-11-09 Nippon Steel Corp High-strength and nonmagnetic stainless steel wire rod
EP0330752B1 (en) * 1988-02-29 1994-03-02 Kabushiki Kaisha Kobe Seiko Sho Superhigh-strength superfine wire, and reinforcing materials and composite materials incorporating the same
JPH06212358A (en) * 1992-12-28 1994-08-02 Nippon Steel Corp Nonmagnetic pc steel wire and its production
JPH06306551A (en) * 1993-04-28 1994-11-01 Nippon Steel Corp High strength martensitic stainless steel and its production
JPH08246106A (en) * 1995-03-10 1996-09-24 Nippon Steel Corp Austenitic stainless steel wire, excellent in stress corrosion cracking resistance and having high strength and high proof stress, and its production
JPH10121208A (en) * 1996-10-15 1998-05-12 Nippon Steel Corp High strength stainless steel wire excellent in wire drawing longitudinal crack resistance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166319A (en) * 1980-05-27 1981-12-21 Nippon Steel Corp Manufacture of nonrefined steel
EP0330752B1 (en) * 1988-02-29 1994-03-02 Kabushiki Kaisha Kobe Seiko Sho Superhigh-strength superfine wire, and reinforcing materials and composite materials incorporating the same
JPH02236218A (en) * 1989-03-08 1990-09-19 Sumitomo Metal Ind Ltd Method for diffusing and removing hydrogen in steel in on-line
JPH05287456A (en) * 1992-04-09 1993-11-02 Nippon Steel Corp High strength martensitic stainless steel wire excellent in rust resistance
JPH05295486A (en) * 1992-04-16 1993-11-09 Nippon Steel Corp High-strength and nonmagnetic stainless steel wire rod
JPH06212358A (en) * 1992-12-28 1994-08-02 Nippon Steel Corp Nonmagnetic pc steel wire and its production
JPH06306551A (en) * 1993-04-28 1994-11-01 Nippon Steel Corp High strength martensitic stainless steel and its production
JPH08246106A (en) * 1995-03-10 1996-09-24 Nippon Steel Corp Austenitic stainless steel wire, excellent in stress corrosion cracking resistance and having high strength and high proof stress, and its production
JPH10121208A (en) * 1996-10-15 1998-05-12 Nippon Steel Corp High strength stainless steel wire excellent in wire drawing longitudinal crack resistance

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519543B2 (en) * 2004-07-01 2010-08-04 新日鐵住金ステンレス株式会社 Low cost stainless steel wire having magnetism with excellent corrosion resistance, cold workability and toughness, and method for producing the same
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
JP2007092116A (en) * 2005-09-28 2007-04-12 Nippon Seisen Co Ltd Ferromagnetic net
JP2008045177A (en) * 2006-08-18 2008-02-28 Daido Steel Co Ltd High strength high elasticity stainless steel and stainless steel wire
JP2008248271A (en) * 2007-03-29 2008-10-16 Daido Steel Co Ltd High strength stainless steel and high strength stainless steel wire using the same
JP2011026650A (en) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd High-strength stainless-steel wire superior in hydrogen embrittlement resistance and formed product of stainless steel using the same
JP2011047008A (en) * 2009-08-27 2011-03-10 Nippon Metal Ind Co Ltd Austenitic stainless steel for spring
US9120136B2 (en) 2010-06-15 2015-09-01 Nippon Steel & Sumitomo Metal Corporation Drawing method of metallic tube and producing method of metallic tube using same
WO2011158464A1 (en) * 2010-06-15 2011-12-22 住友金属工業株式会社 Cold drawing method for metal pipe, and process for production of metal pipe utilizing the method
JP4849194B1 (en) * 2010-06-15 2012-01-11 住友金属工業株式会社 Metal tube drawing method and metal tube manufacturing method using the same
WO2012000638A1 (en) * 2010-06-28 2012-01-05 Stahlwerk Ergste Westig Gmbh Chromium-nickel steel, martensitic wire and method for producing same
JP2012097350A (en) * 2010-10-07 2012-05-24 Nippon Steel & Sumikin Stainless Steel Corp Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and production method therefor
JP2015508453A (en) * 2011-12-28 2015-03-19 ポスコ High strength austenitic stainless steel and method for producing the same
KR101623290B1 (en) 2011-12-28 2016-05-20 주식회사 포스코 High strength austenitic stainless steel, and preparation method thereof
JP2016527394A (en) * 2013-07-05 2016-09-08 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Stainless steel having delayed crack resistance and method for producing the same
WO2015156179A1 (en) * 2014-04-08 2015-10-15 株式会社神戸製鋼所 Thick steel plate having exceptional haz toughness at very low temperatures
JP2015199983A (en) * 2014-04-08 2015-11-12 株式会社神戸製鋼所 Thick steel plate having excellent haz toughness at very low temperatures
CN105112803A (en) * 2015-09-18 2015-12-02 巢湖市南特精密制造有限公司 Abrasion-resistant alloy material for refrigerator compressor crank shaft and preparation method of abrasion-resistant alloy material
US11268177B2 (en) * 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel
CN113699461A (en) * 2021-08-30 2021-11-26 南通普创医疗科技有限公司 High-strength stainless steel wire for interventional medical treatment and preparation method thereof

Also Published As

Publication number Publication date
KR20040013124A (en) 2004-02-11
JPWO2003095693A1 (en) 2005-09-15
KR100566142B1 (en) 2006-03-30
JP4212553B2 (en) 2009-01-21
CN1526032A (en) 2004-09-01
CN1263880C (en) 2006-07-12
HK1069190A1 (en) 2005-05-13

Similar Documents

Publication Publication Date Title
WO2003095693A1 (en) High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP5744678B2 (en) Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
WO2013146876A1 (en) High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same
WO2010150537A1 (en) HIGH-STRENGTH Zn-Al-PLATED STEEL WIRE FOR BRIDGES WHICH HAS EXCELLENT CORROSION RESISTANCE AND FATIGUE PROPERTIES, AND PROCESS FOR PRODUCTION THEREOF
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
EP1734143A1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
JP6232324B2 (en) Stabilizer steel and stabilizer with high strength and excellent corrosion resistance, and method for producing the same
JP4319083B2 (en) Metastable austenitic stainless steel wire for high strength steel wire for springs with excellent rigidity
JP6782601B2 (en) High-strength stainless steel wire with excellent warmth relaxation characteristics, its manufacturing method, and spring parts
KR101401625B1 (en) Precipitation hardening metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
KR101536402B1 (en) Titanium alloy product having high strength and excellent cold rolling property
JP5154122B2 (en) High strength stainless steel and high strength stainless steel wire using the same
JP4790539B2 (en) High-strength, high-elasticity stainless steel and stainless steel wire
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP2002256395A (en) High strength and low thermal expansion alloy having excellent twisting and alloy wire thereof
WO2003025239A1 (en) Invar alloy wire excellent in strength and turning characteristics and method for production thereof
JP4850444B2 (en) High-strength, high-corrosion-resistant, inexpensive austenitic stainless steel wire with excellent ductility
JP2019123905A (en) Two-phase stainless steel wire for prestressed concrete tendon, two-phase stainless steel wire, and prestressed concrete tendon
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP2022155180A (en) Austenitic stainless steel and method for producing the same
JP7274062B1 (en) High strength stainless steel wire and spring
JP2001234284A (en) Steel excellent in crystal grain size characteristic and its producing method
JP5494173B2 (en) Steel for torsion bar and torsion bar of seat belt retractor with excellent torsional fracture characteristics
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2004503681

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 1020047000223

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002813737X

Country of ref document: CN