WO2003087750A1 - Stress sensor - Google Patents

Stress sensor Download PDF

Info

Publication number
WO2003087750A1
WO2003087750A1 PCT/JP2003/003569 JP0303569W WO03087750A1 WO 2003087750 A1 WO2003087750 A1 WO 2003087750A1 JP 0303569 W JP0303569 W JP 0303569W WO 03087750 A1 WO03087750 A1 WO 03087750A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
substrate
post
stress sensor
adhesive
Prior art date
Application number
PCT/JP2003/003569
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuomi Inukai
Fumiaki Karasawa
Original Assignee
K-Tech Devices Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K-Tech Devices Corp. filed Critical K-Tech Devices Corp.
Priority to AU2003221051A priority Critical patent/AU2003221051A1/en
Priority to JP2003584647A priority patent/JP4136947B2/en
Publication of WO2003087750A1 publication Critical patent/WO2003087750A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/162Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/223Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to joystick controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/006Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing

Definitions

  • the variation in the sensitivity of the stress sensor means the variation in each stress sensor when a large number of stress sensors are manufactured, and the variation in each unit stress sensor when a single stress sensor has a plurality of strain gauges. Includes both variations in gauge sensitivity.
  • the problem to be solved by the present invention is to reduce the variation in the sensitivity of the stress sensor due to the presence of an adhesive for fixing the post and a fixing member such as a substrate. Disclosure of the invention
  • the stress sensor of the present invention is configured such that a strain gauge 4 disposed on the substrate 3 is stimulated by applying stress to the post 2 fixed to the substrate 3 with the adhesive 1,
  • the stress sensor according to the present invention which obtains information on the stress from the change in the characteristic value of the gauge 4, has means for retaining an excess amount of the adhesive 1 around the post 2 in a predetermined area.
  • a stress sensor functions as a stress sensor only when there is a control unit that detects and calculates the electrical characteristics of the strain gauge 4 and the like.
  • a portion excluding the control unit is referred to as a “stress sensor” for convenience.
  • the strain gauge 4 can be, for example, a resistance element, a capacitor element, a piezoelectric element, or the like. Among these, it is considered preferable to use a resistance element from the viewpoints of ease of manufacturing and control and cost.
  • the adhesive 1 an epoxy resin type, an acrylic resin type or the like can be selected. However, considering various properties such as moisture resistance and impact resistance after curing, an epoxy resin adhesive excellent in those properties is considered to be suitable. '
  • FIG. 1 shows an outline of a configuration example of the stress and sensor of the present invention.
  • A is a longitudinal sectional view of the stress sensor of the present invention, and
  • (b) is a top view of (a).
  • a strain gauge 4 is provided on one surface of the substrate 3, and a bottom surface of the boss 2 is fixed to the other surface of the substrate 3 by an adhesive 1.
  • the substrate 3 is often opaque, but for convenience, the substrate 3 is treated as translucent, and the positional relationship between the post 2 and the dam member 5 and the strain gauge 4 is clearly illustrated. This is the same for Figs. 2 (d) and 4.
  • a convex damming member 5 is formed continuously (in a frame shape) on the surface of the substrate 3 around the post 2. Due to the presence of the damming member 5, the excess amount of the adhesive 1 We control outflow.
  • the positional relationship between the damming member 5 and each of the four strain gauges 4 is substantially the same.
  • FIG. 3A shows a state in which no stress is applied to the post 2.
  • the adhesive 1 exists between the bottom side surface of the post 2 and the surface of the substrate 3 in a cured state.
  • FIG. 3D which is a top view of the main part of FIG.
  • the outflow distance of the adhesive 1 to the left side is longer than that of the right side of the post 2.
  • the area in which the adhesive 1 covers the strain gauge 4 via the substrate 3 greatly differs between the left and right strain gauges 4 of the post 2.
  • the substrate 3 on the left side of the post 2 bends compared to the right side of the post 2. It becomes difficult. Accordingly, the strain gauge 4 at the corresponding position becomes hard to be distorted.
  • the cured adhesive 1 substantially increases the thickness of the substrate 3. The thicker the substrate 3 is, the harder the substrate 3 is bent. Such difficulty in bending the substrate 3 also occurs when stress is applied to the post 2 so as to press the top surface of the post 2 shown in FIG. 3C, that is, when stress is applied in the z direction.
  • the degree of the adhesive 1 contributing to the suppression of the strain on the strain gauge 4 becomes substantially the same, and the variation in the sensitivity of the stress sensor can be reduced. Even if there is a possibility that the adhesive 1 mainly flows to the left as shown in Fig. 2 (d) at the stage where the adhesive 1 can flow, the adhesive 1 having fluidity that has contacted the damming member 5 will not It flows along the blocking member 5 in the inner region without flowing out beyond the blocking member 5. It is considered that the adhesive 1 flowing in the region also flows to the right side in the figure, and the adhesive 1 approximates to the state shown in FIG. 1 (b).
  • the bottom surface of the post 2 is fixed to the surface of the substrate 3 opposite to the surface on which the strain gage 4 is arranged, and the contour of the bottom surface of the post 2 and the strain gauge Reference numeral 4 denotes a stress sensor located at a corresponding position via the substrate 3. It is particularly preferable to apply the configuration of the stress sensor of the present invention to a stress sensor having such a configuration. The reason is that when stress is applied to the post 2, the stress concentrates most on the contour of the bottom of the post 2, but if there is excess adhesive 1 around the post 2, the concentration of the stress is dispersed. This is because it is considered that this greatly affects the sensitivity variation of the stress sensor.
  • a stress sensor in which the strain gauge 4 is arranged only in the region of the substrate 3 outside the bottom contour of the boss 2 a stress sensor in which the post 2 and the strain gauge 4 are arranged on the same substrate 3,
  • the application of the configuration of the stress sensor of the present invention is effective in reducing the variation in the sensitivity of the stress sensor.
  • the strain gauge 4 is stimulated by applying stress to the stress sensor of the present invention having a different configuration from the above-described present invention, for example, to the boss 2 fixed to the fixing member by the adhesive 1, and Strain gauge 4
  • a stress sensor that obtains information on the stress from a change in the characteristic value, wherein the stress sensor further includes means for retaining an excess of the adhesive 1 in a predetermined area.
  • a stress sensor having a configuration in which a plurality of strain gauges 4 are arranged on the side surface of a boss 2 fixed to a fixing member such as an electronic device housing and the stress 2 is applied to the post 2 to change the characteristic value of the strain gauge 4 It is.
  • the fixing member may be provided with means for retaining an excess of the adhesive 1 in a predetermined area.
  • the stress sensor having the configuration of the present invention described above, and in which the strain gauge 4 is stimulated as the substrate 3 is bent by applying stress to the post 2 as shown in FIG.
  • the stress sensor is made of a material containing:
  • the sticking reduction is particularly remarkable, and the advantage of the application of the present invention is great.
  • the rigidity of the substrate 3 and that of the adhesive 1 are equal, and it is considered that the adhesive 1 has a high contribution to hindering the bending of the substrate 2.
  • the material of the substrate 3 containing a resin include a fiber-reinforced resin such as an epoxy resin mixed with glass fibers.
  • the means for retaining the excess of the adhesive 1 around the post 2 in a predetermined area is, for example, a continuous or intermittent convex portion on the surface of the substrate 3 around the post 2. Or forming a concave portion for storing the excess adhesive 1 on the surface of the substrate 3 around the post 2.
  • the protrusion is, for example, a damming member 5 shown in FIG.
  • the projections are continuous in the figure, they may be discontinuous projections.
  • the portions corresponding to the four corners of the top square in Fig. 1 (b) are far from the location of the strain gauge 4, and it is considered that the presence of the adhesive 1 does not significantly affect the sensitivity of the stress sensor.
  • the convex portion may be omitted.
  • the protrusions of the damming member 5 and the like can be obtained by removing a part of the metal layer disposed on the surface of the substrate 3 and printing the remaining portion or by printing a thick film on the surface of the substrate 3.
  • the former can be obtained by a patterning technique such as a subtractive method in a known printed circuit board manufacturing process.
  • the latter can be obtained, for example, by screen printing techniques.
  • the damming member 5 and the other components can be simultaneously formed by the patterning process. There is an advantage that the addition of the components of the damming member 5 does not complicate the production.
  • the recess is formed by, for example, excavating or pressing the substrate 3 at the position where the damming member 5 shown in FIG. 1 is present (including pressing in the molding step when the molded body is used as the substrate 3). Since the adhesive 1 in a flowing state, which is likely to flow out, accumulates in the concave portion, the flow-out of the adhesive 1 is prevented. This recess is also allowed to be present intermittently for the same reason that the above-mentioned part is allowed to be present intermittently. BRIEF DESCRIPTION OF THE FIGURES
  • the wiring for obtaining the electrical characteristics of the strain gauge 4 described later and the damming member 5 are simultaneously formed by etching the copper foil 6 by a known subtractive method (FIG. 3 (b)).
  • the later-described strain gauge 4 is formed on the lower surface of the substrate 3. Therefore, in order to realize conduction between the upper and lower surfaces of the substrate 3, through holes are formed in necessary portions of the substrate 3, and electroless copper plating for forming a conductor is performed on the inner wall surface of the through hole. Due to the electroless copper plating, copper is also deposited on the upper surface of the damming member 5, and its height becomes about 40 m.
  • the illustration of the wiring formed on the lower surface of the substrate 3 for extracting the electrical characteristics of the strain gauge 4 is omitted.
  • the adhesive 1 is supplied to each strain gauge 4 and the center position of the damming member 5 and to the upper surface of the substrate 3 (FIG. 3 (d)).
  • the adhesive 1 a commercially available epoxy resin-based adhesive was used.
  • a dispenser having a shape and function without a syringe needle is used, and a constant amount of adhesive 1 can be supplied by adjusting the air pressure.
  • FIG. 5 shows an outline of an example of an input / output state of an electric signal in the stress sensor of the present invention.
  • the resistance element as the four strain gauges 4 forms a bridge circuit.
  • the damming member 5 was formed simultaneously with the wiring on the upper and lower surfaces of the substrate 3 as described above, and was formed as the remaining portion of the copper foil 6 that was etched.
  • this forming method has an advantage that the same number of steps as when the main damming member 5 is not formed is sufficient.
  • the formation of the damming member 5 by the screen printing technique described above is somewhat disadvantageous in that the number of steps increases by one.
  • a trimmable chip resistor for adjusting the resistance value of the resistance element for example, as the strain gauge 4 is arranged on the upper surface of the substrate 3 of the stress sensor, it is difficult to perform screen printing thereafter.
  • FIG. 4 shows another embodiment of the stress sensor of the present invention.
  • the positional relationship among the post 2, the strain gauge 4, and the damming member 5, and the variations of these shapes are shown as top views.
  • the longitudinal sectional views of these stress sensors are basically the same as those in FIG. 1 (a).
  • FIG. 4A is an example in which the shape of the blocking member 5 in which the four corners of the square blocking member 5 in FIG. 1B are omitted is adopted.
  • This configuration is considered to be advantageous when, for example, a material having high rigidity is selected as the material of the damming member 5, and the presence of the damming member 5 itself may degrade the stress sensor sensitivity balance. This is because the damming member 5 is provided only in the direction orthogonal to the direction of the stress applied to the post 2, and it can be said that the arrangement does not hinder the transmission of the stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Force In General (AREA)

Abstract

A stress sensor in which the application of a stress to a post(2) being fixed to a substrate (3) by an adhesive (1) stimulates a strain gage (4) disposed at said substrate (3), and the information about said stress is obtained from the change of a characteristic value of said strain gage (4), characterized in that it has a means for holding a surplus of the adhesive (1) within a specific region. The means is, for example, a continuous or intermittent convex portion (a member (5) for holding back) formed on the surface of the substrate (3) around the post (2) or a concave portion capable of receiving a surplus of the adhesive (1) formed on the surface of the substrate (3) around the post (2). The stress sensor is reduced with respect to the variation in its sensitivity resulting from the presence of the adhesive (1) fixing the post (2) to a fixed member such as the substrate (3).

Description

明 細 書  Specification
応力センサ 技術分野 Stress sensor technical field
本発明は、 応力センサに関し、 特にパーソナルコンピュータ用ポインティ ング ディバイスや、 携帯電話等の各種電子機器用多機能 · 多方向スィッチ等に用いる ことができる応力センサに関するものである。 背景技術  The present invention relates to a stress sensor, and more particularly to a stress sensor that can be used for a pointing device for a personal computer and a multifunctional / multidirectional switch for various electronic devices such as a mobile phone. Background art
接着剤にて基板と固着されるポス トへの応力付与により、 当該基板に配された 歪ゲージが刺激され、 当該歪ゲージ特性値変化から当該応力に関する情報を得る 応力センサについては、 特開 2 0 0 0 - 2 6 7 8 0 3号公報にその開示がある ( 図 6 ) 。 同図では図示が省略されているが、 同公報の明細書にはポス ト 3 0 と基 板 2 1 とは別部材であり、 それが接着剤により固着されている旨の記載がある。  Stress is applied to a post fixed to a substrate by an adhesive to stimulate a strain gauge disposed on the substrate, and a stress sensor that obtains information about the stress from the change in the characteristic value of the strain gauge is disclosed in Japanese Unexamined Patent Application Publication No. 2005-122,086. The disclosure is disclosed in Japanese Patent Application Publication No. 00-0-26673 (FIG. 6). Although not shown in the figure, the specification of the publication states that the post 30 and the substrate 21 are separate members and are fixed by an adhesive.
ここで、 接着剤により固着されたポス トへ応力付与される形態の応力センサに あっては、 一定の固着強度が要求されることとなる。 かかる一定の固着強度は、 前記応力付与によっても固着状態が損なわれない程度の強度である。 従ってボス ト底面のみと、 基板上面のみといつた、 限られた固着領域では固着強度が不十分 となる場合がある。 そこでかかる固着強度を高めるため、 ポス ト周面の一部 (ポ ス ト底面に近い部分) と基板上面との間にも接着剤を存在させる場合がある。 かかる場合において、 ポス ト周面の一部と基板上面との間に存在し、 外観から 「余剰分」 とも見える接着剤の存在は、 少なからず応力センサの感度に影響を与 える。 従ってその存在状態を一定にしなければ、 応力センサ感度のばらつきが予 想される。 尚、 当該応力センサ感度のばらつきとは、 多数個の応力センサを作製 したときの各々の応力センサにおけるばらつき、 及び応力センサ単体が複数の歪 ゲージを有する場合における、 単位応力センサ内の各々の歪ゲージ感度のばらつ きの双方を含む。 そこで本発明が解決しょうとする課題は、 'ポストと基板等の固定部材とを固着 させる接着剤の存在に起因する、 応力センサ感度のばらつきを低減することであ る。 発明の開示 Here, in a stress sensor in which stress is applied to a post fixed by an adhesive, a fixed fixing strength is required. Such a fixed fixing strength is such that the fixed state is not impaired even by the stress application. Therefore, the bonding strength may be insufficient in a limited bonding area such as only the bottom surface of the boss and only the top surface of the substrate. Therefore, in order to increase the fixing strength, an adhesive may be present between a part of the post peripheral surface (a part close to the post bottom surface) and the upper surface of the substrate. In such a case, the presence of the adhesive that is present between a part of the post peripheral surface and the upper surface of the substrate and that is also seen as an “excess” from the external appearance affects the sensitivity of the stress sensor to a considerable extent. Therefore, if the existence state is not kept constant, variations in the sensitivity of the stress sensor are expected. The variation in the sensitivity of the stress sensor means the variation in each stress sensor when a large number of stress sensors are manufactured, and the variation in each unit stress sensor when a single stress sensor has a plurality of strain gauges. Includes both variations in gauge sensitivity. The problem to be solved by the present invention is to reduce the variation in the sensitivity of the stress sensor due to the presence of an adhesive for fixing the post and a fixing member such as a substrate. Disclosure of the invention
上記課題を解決するため、 本発明の応力センサは、 接着剤 1にて基板 3と固着 されるポスト 2への応力付与により、 当該基板 3に配された歪ゲージ 4が刺激さ れ、 当該歪ゲージ 4特性値変化から当該応力に関する情報を得る本発明の応力セ ンサは、 前記ポスト 2周囲の接着剤 1の余剰分を所定領域内に留める手段を有す ることを特徴とする。  In order to solve the above-mentioned problem, the stress sensor of the present invention is configured such that a strain gauge 4 disposed on the substrate 3 is stimulated by applying stress to the post 2 fixed to the substrate 3 with the adhesive 1, The stress sensor according to the present invention, which obtains information on the stress from the change in the characteristic value of the gauge 4, has means for retaining an excess amount of the adhesive 1 around the post 2 in a predetermined area.
一般的に応力センサは、 上記歪ゲージ 4の電気特性等を検知、 演算等する制御 部があってはじめて応力センサとして機能する。 しかし本明細書では、 便宜上前 記制御部を除いた部分について 「応力センサ」 と表現することとする。 また上記 歪ゲージ 4は、 例えば抵抗素子、 コンデンサ素子、 圧電素子等とすることができ る。 これらの中では、 製造 .制御のし易さ、 コスト面から、 抵抗素子とすること が好ましいと考えられる。 また上記接着剤 1は、 エポキシ樹脂系、 アクリル樹脂 系等を選択することができる。 但し、 硬化後の耐湿性、 耐衝撃性等の諸特性を考 慮すると、 それら諸特性に優れるエポキシ樹脂系の接着剤が好適であると考えら れる。 '  In general, a stress sensor functions as a stress sensor only when there is a control unit that detects and calculates the electrical characteristics of the strain gauge 4 and the like. However, in this specification, a portion excluding the control unit is referred to as a “stress sensor” for convenience. The strain gauge 4 can be, for example, a resistance element, a capacitor element, a piezoelectric element, or the like. Among these, it is considered preferable to use a resistance element from the viewpoints of ease of manufacturing and control and cost. Further, as the adhesive 1, an epoxy resin type, an acrylic resin type or the like can be selected. However, considering various properties such as moisture resistance and impact resistance after curing, an epoxy resin adhesive excellent in those properties is considered to be suitable. '
図 1には上記本発明の応力,センサの構成例の概要を示している。 ( a ) は上記 本発明の応力センサの縦断面図、 (b ) は ( a ) の上面図を示している。 基板 3 の一方の面に歪ゲージ 4が配されており、 基板 3の他方の面にはボスト 2底面が 接着剤 1により固着されている。 実際には基板 3は不透明であることが多いが、 便宜上基板 3を半透明と取扱い、 ポスト 2及び堰き止め部材 5と、 歪みゲージ 4 との位置関係を明確に図示している。 このことは図 2 ( d ) 、 図 4についても同 じである。 更にポスト 2周囲の基板 3面上には凸状の堰き止め部材 5が連続的に (枠状に) 形成されている。 この堰き止め部材 5の存在により接着剤 1の過剰な 流出を抑制している。 また堰き止め部材 5と 4つの各々の歪ゲージ 4との位置関 係は略同様である。 FIG. 1 shows an outline of a configuration example of the stress and sensor of the present invention. (A) is a longitudinal sectional view of the stress sensor of the present invention, and (b) is a top view of (a). A strain gauge 4 is provided on one surface of the substrate 3, and a bottom surface of the boss 2 is fixed to the other surface of the substrate 3 by an adhesive 1. In practice, the substrate 3 is often opaque, but for convenience, the substrate 3 is treated as translucent, and the positional relationship between the post 2 and the dam member 5 and the strain gauge 4 is clearly illustrated. This is the same for Figs. 2 (d) and 4. Further, a convex damming member 5 is formed continuously (in a frame shape) on the surface of the substrate 3 around the post 2. Due to the presence of the damming member 5, the excess amount of the adhesive 1 We control outflow. The positional relationship between the damming member 5 and each of the four strain gauges 4 is substantially the same.
ここで図 2を参照しながら、 本発明により応力センサ感度ばらつきを低減する ことができる理由を説明する。 同図 ( a ) は、 ポスト 2に応力が付与されていな い状態を示している。 ここでポスト 2底部側面と基板 3面間には接着剤 1が硬化 した状態で存在している。 例えば当該接着剤 1の存在状態が、 同図 ( a ) の要部 上面図である同図 (d ) に示す状態であった場合を考えてみる。 同図 (d ) では ポスト 2の右側に比して左側への接着剤 1の流出距離が長いことがわかる。 その 結果、 接着剤 1が歪みゲージ 4を基板 3を介して覆う面積が、 ポスト 2の左右の 歪みゲージ 4で大きく違うこととなる。 すると同図 (b ) のように、 ポスト 2に 対し x 、 y方向 (任意の横方向) に応力付与がされた場合、 前記ポスト 2の右側 に比してポスト 2の左側の基板 3が撓みにくくなる。 それに伴い対応位置にある 歪みゲージ 4が歪みにく くなる。 この理由は硬化した接着剤 1が実質的に基板 3 厚みを厚くしているためである。 基板 3厚みが厚くなればなる程基板 3は撓みに くくなる。 このような基板 3の撓みにくさは、 同図 (c ) に示すポスト 2頂面を 押下するようにポス ト 2へ応力付与した場合、 つまり z方向に応力付与した場合 も同様に起こる。  Here, the reason why the present invention can reduce the variation in sensitivity of the stress sensor will be described with reference to FIG. FIG. 3A shows a state in which no stress is applied to the post 2. Here, the adhesive 1 exists between the bottom side surface of the post 2 and the surface of the substrate 3 in a cured state. For example, let us consider a case where the adhesive 1 is present in the state shown in FIG. 3D, which is a top view of the main part of FIG. In the same figure (d), it can be seen that the outflow distance of the adhesive 1 to the left side is longer than that of the right side of the post 2. As a result, the area in which the adhesive 1 covers the strain gauge 4 via the substrate 3 greatly differs between the left and right strain gauges 4 of the post 2. Then, as shown in FIG. 3B, when stress is applied to the post 2 in the x and y directions (arbitrary lateral directions), the substrate 3 on the left side of the post 2 bends compared to the right side of the post 2. It becomes difficult. Accordingly, the strain gauge 4 at the corresponding position becomes hard to be distorted. The reason for this is that the cured adhesive 1 substantially increases the thickness of the substrate 3. The thicker the substrate 3 is, the harder the substrate 3 is bent. Such difficulty in bending the substrate 3 also occurs when stress is applied to the post 2 so as to press the top surface of the post 2 shown in FIG. 3C, that is, when stress is applied in the z direction.
しかし図 1に示す上記堰き止め 材 5の存在により、 接着剤 1の歪ゲ一ジ 4へ の歪み抑制に寄与する度合いが略同じとなり、 応力センサ感度ばらつきを低減す ることができる。 仮に接着剤 1が流動可能な段階で、 図 2 ( d ) に示すように主 に左側へ流動する蓋然性があったとしても、 堰き止め部材 5に接触した流動性あ る接着剤 1は、 堰き止め部材 5を超えて流出することなく、 堰き止め部材 5に沿 つてその内側領域内で流動する。 当該領域内で流動した接着剤 1は、 同図右側へ も流動し、 結局図 1 ( b ) に近似した接着剤 1の存在状態となると考えられる。 図 1、 図 2では、 上記本発明の応力センサにおいて、 ポスト 2底面が、 歪ゲー ジ 4の配される面とは反対側の基板 3面に固着され、 当該ポスト 2底面の輪郭と 歪ゲージ 4とが、 基板 3を介して対応する位置にある応力センサを示している。 このような構成の応力センサに上記本発明の応力センサの構成を適用するの 、 特に好適である。 その理由は、 ポス ト 2へ応力が付与されるとポス ト 2底面の輪 郭に最も応力が集中するが、 ボス ト 2周囲の余剰分の接着剤 1が存在すると当該 応力の集中を分散させ、 応力センサ感度ばらつきに大きく影響を与えると考えら れるためである。 However, due to the presence of the dam member 5 shown in FIG. 1, the degree of the adhesive 1 contributing to the suppression of the strain on the strain gauge 4 becomes substantially the same, and the variation in the sensitivity of the stress sensor can be reduced. Even if there is a possibility that the adhesive 1 mainly flows to the left as shown in Fig. 2 (d) at the stage where the adhesive 1 can flow, the adhesive 1 having fluidity that has contacted the damming member 5 will not It flows along the blocking member 5 in the inner region without flowing out beyond the blocking member 5. It is considered that the adhesive 1 flowing in the region also flows to the right side in the figure, and the adhesive 1 approximates to the state shown in FIG. 1 (b). 1 and 2, in the above-described stress sensor of the present invention, the bottom surface of the post 2 is fixed to the surface of the substrate 3 opposite to the surface on which the strain gage 4 is arranged, and the contour of the bottom surface of the post 2 and the strain gauge Reference numeral 4 denotes a stress sensor located at a corresponding position via the substrate 3. It is particularly preferable to apply the configuration of the stress sensor of the present invention to a stress sensor having such a configuration. The reason is that when stress is applied to the post 2, the stress concentrates most on the contour of the bottom of the post 2, but if there is excess adhesive 1 around the post 2, the concentration of the stress is dispersed. This is because it is considered that this greatly affects the sensitivity variation of the stress sensor.
しかし上記本発明の応力センサにおけるその他の構成であっても、 応力センサ 感度ばらつき低減に効果があることは言うまでもない。 その理由は、 応力センサ を動作させるためには、 その構成部材を変形させるのが通常であるところ、 硬化 した余剰分の接着剤 1が偏在すると、 当該硬化した接着剤 1 の変形に要する応力 が応力付与方向により異なるためである。  However, it goes without saying that other configurations of the stress sensor of the present invention described above are also effective in reducing the variation in sensitivity of the stress sensor. The reason is that, in order to operate the stress sensor, it is usual to deform its constituent members.However, if the excess adhesive 1 that is hardened is unevenly distributed, the stress required for deformation of the hardened adhesive 1 is reduced. This is because it differs depending on the stress application direction.
従って、 例えばボス ト 2底面輪郭より も外側の基板 3領域のみに歪ゲージ 4が 配される応力センサや、 ポス ト 2 と歪ゲージ 4とが同一基板 3面に配される応力 センサや、 ポス ト 2底面が基板 3を介さずに歪ゲージ 4を押圧 ·刺激する構成の 応力センサについても、 上記本発明の応力センサの構成を適用することで応力セ ンサ感度ばらつき低減に効果があることとなる。  Therefore, for example, a stress sensor in which the strain gauge 4 is arranged only in the region of the substrate 3 outside the bottom contour of the boss 2, a stress sensor in which the post 2 and the strain gauge 4 are arranged on the same substrate 3, (2) With respect to a stress sensor having a configuration in which the bottom surface presses and stimulates the strain gauge 4 without passing through the substrate 3, the application of the configuration of the stress sensor of the present invention is effective in reducing the variation in the sensitivity of the stress sensor. Become.
同様の理由から、 上記本発明とは別の構成を有する本発明の応力センサ、 例え ば固定部材へ接着剤 1 により固着されたボス ト 2への応力付与により、 歪ゲージ 4が刺激され、 当該歪ゲージ 4特性値変化から当該応力に関する情報を得る応力 センサにおいて、 前記接着剤 1 の余剰分を所定領域内に留める手段を有すること を特徴とする応力センサであっても、 応力センサ感度ばらつき低減に効果がある 。 例えば電子機器筐体等の固定部材へ固着されたボス ト 2の側面に歪ゲージ 4が 複数配され、 ポス ト 2 に応力を付与することにより当該歪ゲージ 4特性値が変化 する構成の応力センサである。 このような構成の場合、 固定部材に接着剤 1 の余 剩分を所定領域内に留める手段を設ける等する。  For the same reason, the strain gauge 4 is stimulated by applying stress to the stress sensor of the present invention having a different configuration from the above-described present invention, for example, to the boss 2 fixed to the fixing member by the adhesive 1, and Strain gauge 4 A stress sensor that obtains information on the stress from a change in the characteristic value, wherein the stress sensor further includes means for retaining an excess of the adhesive 1 in a predetermined area. Is effective. For example, a stress sensor having a configuration in which a plurality of strain gauges 4 are arranged on the side surface of a boss 2 fixed to a fixing member such as an electronic device housing and the stress 2 is applied to the post 2 to change the characteristic value of the strain gauge 4 It is. In the case of such a configuration, the fixing member may be provided with means for retaining an excess of the adhesive 1 in a predetermined area.
上記本発明の構成を有し、 且つ図 2に示すような、 ポス ト 2への応力付与によ り基板 3が撓むことに伴い歪ゲージ 4が刺激される応力センサにおいて、 基板 3 が樹脂を含む材料からなる場合には、 本発明の効果である、 応力センサ感度ばら つき低減が特に顕著となり、 本発明適用の利点が大きい。 通常かかる場合は、 基 板 3と接着剤 1の剛性が同等となり、 接着剤 1が基板 2の撓みを阻害する寄与度 が高いと考えられるためである。 樹脂を含む基板 3材料は、 例えばガラス繊維を 混入させたエポキシ樹脂等の繊維強化樹脂が挙げられる。 In the stress sensor having the configuration of the present invention described above, and in which the strain gauge 4 is stimulated as the substrate 3 is bent by applying stress to the post 2 as shown in FIG. In the case where the stress sensor is made of a material containing: The sticking reduction is particularly remarkable, and the advantage of the application of the present invention is great. Usually, in such a case, the rigidity of the substrate 3 and that of the adhesive 1 are equal, and it is considered that the adhesive 1 has a high contribution to hindering the bending of the substrate 2. Examples of the material of the substrate 3 containing a resin include a fiber-reinforced resin such as an epoxy resin mixed with glass fibers.
一方、 アルミナ等のセラミックを基板 3材料とする場合であっても、 本発明適 用の利点があることは言うまでもない。 接着剤 1の存在状態によっては応力セン サ感度のばらつきは生じ得るためである  On the other hand, needless to say, even when ceramic such as alumina is used as the substrate 3 material, there is an advantage in applying the present invention. This is because stress sensor sensitivity may vary depending on the state of adhesive 1.
また上記本発明の構成を有する応力センサにおける、 ポスト 2周囲の接着剤 1 の余剰分を所定領域内に留める手段は、 例えばポス ト 2周囲の基板 3面上に連続 した又は断続的な凸部を形成すること、 若しくはポスト 2周囲の基板 3面に余剰 接着剤 1を溜める凹部を形成することである。 前記凸部は、 例えば図 1に示す堰 き止め部材 5である。 同図では連続した凸部となっているが、 断続した凸部とな つていてもよい。 例えば図 1 ( b ) の上面四角形の四隅に相当する部分は、 歪ゲ ージ 4の存在位置とは離れており、 接着剤 1の存在によって応力センサ感度に大 きく影響しないと考えられるため、 凸部を省略しても構わないと考えられる。 か かる省略をする場合において、 歪ゲージ 4に近接する部分の省略は避けるのが好 ましいと考えられる。 接着剤 1の当該部分から外側への流出によって、 応力セン サ感度への影響が無視できなくなる場合があると考えられるためである。 但し当 該影響が無視できる程度の省略であれば許容されるのは言うまでもない。  In the stress sensor having the configuration of the present invention described above, the means for retaining the excess of the adhesive 1 around the post 2 in a predetermined area is, for example, a continuous or intermittent convex portion on the surface of the substrate 3 around the post 2. Or forming a concave portion for storing the excess adhesive 1 on the surface of the substrate 3 around the post 2. The protrusion is, for example, a damming member 5 shown in FIG. Although the projections are continuous in the figure, they may be discontinuous projections. For example, the portions corresponding to the four corners of the top square in Fig. 1 (b) are far from the location of the strain gauge 4, and it is considered that the presence of the adhesive 1 does not significantly affect the sensitivity of the stress sensor. It is considered that the convex portion may be omitted. When making such an abbreviation, it is preferable to avoid omitting the portion near the strain gauge 4. This is because it is considered that the influence of the adhesive 1 on the stress sensor sensitivity may not be ignored due to the outflow from the relevant portion. However, it is needless to say that the effect can be omitted if it can be ignored.
堰き止め部材 5等の凸部は、 基板 3面に配された金属層の一部を除去処理し、 その残部として、 又は基板 3面への厚膜印刷等により得ることができる。 前者は 、 例えば公知の印刷回路板製造工程におけるサブストラク ト法等のパターニング 技術により得ることができる。 後者は、 例えばスクリーン印刷技術により得るこ とができる。 当該パターニング技術により基板 3面の配線等、 他の構成部材を形 成し得る応力センサにあっては、 当該パターエング工程によって、 堰き止め部材 5及び当該他の構成部材を同時に形成することができ、 堰き止め部材 5の構成部 材の增加が、 製造を煩雑にしない利点がある。 また上記凹部は、 例えば図 1の堰き止め部材 5存在位置の基板 3の掘削加工や プレス加工 (成形体を基板 3として用いる場合の、 当該成形工程におけるプレス を含む) 等で形成される。 流出の蓋然性のある流動状態の接着剤 1が当該凹部に 溜まることにより、 それよりも外側への流出が防止される。 この凹部についても 、 上記 ΰ部が断続的に存在することが許容されるのと同様の理由から、 断続的に 存在することが許容される。 図面の簡単な説明 The protrusions of the damming member 5 and the like can be obtained by removing a part of the metal layer disposed on the surface of the substrate 3 and printing the remaining portion or by printing a thick film on the surface of the substrate 3. The former can be obtained by a patterning technique such as a subtractive method in a known printed circuit board manufacturing process. The latter can be obtained, for example, by screen printing techniques. In the case of a stress sensor capable of forming other components such as wiring on the surface of the substrate 3 by the patterning technique, the damming member 5 and the other components can be simultaneously formed by the patterning process. There is an advantage that the addition of the components of the damming member 5 does not complicate the production. The recess is formed by, for example, excavating or pressing the substrate 3 at the position where the damming member 5 shown in FIG. 1 is present (including pressing in the molding step when the molded body is used as the substrate 3). Since the adhesive 1 in a flowing state, which is likely to flow out, accumulates in the concave portion, the flow-out of the adhesive 1 is prevented. This recess is also allowed to be present intermittently for the same reason that the above-mentioned part is allowed to be present intermittently. BRIEF DESCRIPTION OF THE FIGURES
図 1の ( a) は本発明の応力センサの一例の縦断面図、 (b) は当該応力セン ザの上面図の概略を示している。 ( b ) における基板 3は、 便宜上半透明として 図示している。 図 2の ( a) は、 応力センサの一例の静止状態、 (b) は ( a) の応力センサのポストに対し、 x、 y方向 (横方向) の応力を付与した状態、 ( c ) は ( a ) .の応力センサのポストに対し、 z方向 (下方向) の応力を付与した 状態、 (d) は ( a) の上面の概略を示す図である。 (d) における基板 3は、 便宜上半透明として図示している。 図 3の ( a) 〜 (e ) は、 本発明の応力セン ザの一例の製造過程の概略を縦断面図として示す図である。 図 4の ( a) 、 (b ) は、 本発明の応力センサの他の実施の形態の概略を示す図である。 基板 3は、 便宜上半透明として図示している。 図 5は、 本発明の応力センサにおける、 電気 信号入出力の状態の概要の一例を示す図である。 図 6は、 従来の応力センサの概 略を示す図である。 これらの図面に付した符号は、 1…接着剤、 2…ポスト、 3 …基板、 4…歪ゲージ、 5…堰き止め部材、 6…銅箔、 2 1…基板、 2 2…歪ゲ ージ、 3 0…ポスト、 3 0 b. ポスト底面の輪郭、 3 1…印刷回路板、 である。 発明を実施するための最良の形態  FIG. 1A is a longitudinal sectional view of an example of the stress sensor of the present invention, and FIG. 1B is a schematic top view of the stress sensor. The substrate 3 in (b) is shown as translucent for convenience. (A) in Fig. 2 shows a stationary state of an example of the stress sensor, (b) shows a state in which stress is applied to the post of the stress sensor in (a) in the x and y directions (lateral direction), and (c) shows (A) A state in which a stress in the z-direction (downward) is applied to the post of the stress sensor of (a). (D) is a diagram schematically showing the upper surface of (a). The substrate 3 in (d) is shown as translucent for convenience. (A) to (e) of FIG. 3 are views schematically showing a manufacturing process of an example of the stress sensor of the present invention as a longitudinal sectional view. (A) and (b) of FIG. 4 are diagrams schematically showing another embodiment of the stress sensor of the present invention. The substrate 3 is illustrated as being translucent for convenience. FIG. 5 is a diagram showing an example of an outline of an electric signal input / output state in the stress sensor of the present invention. FIG. 6 is a diagram schematically showing a conventional stress sensor. The symbols attached to these drawings are: 1 ... adhesive, 2 ... post, 3 ... substrate, 4 ... strain gauge, 5 ... damping member, 6 ... copper foil, 2 1 ... substrate, 2 2 ... strain gauge , 30… post, 30 b. Post bottom contour, 31… printed circuit board. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態の例を、 図面を参照しながら以下に述べる。  Embodiments of the present invention will be described below with reference to the drawings.
まず図 3 ( a) に示すように、 通常の印刷回路板用基板に用いられるガラス繊 維混入エポキシ樹脂をプレス成型した基板 3上面に、 銅箔 6を貼付したものを用 意する。 ここで基板 3厚みは約 0 . 8 mm、 銅箔 6厚みは 1 8 / mである。 First, as shown in Fig. 3 (a), a board with a copper foil 6 attached to the upper surface of a board 3 press-molded with epoxy resin mixed with glass fiber used for a board for a normal printed circuit board is used. I mean. Here, the thickness of the substrate 3 is about 0.8 mm, and the thickness of the copper foil 6 is 18 / m.
次に公知のサブストラク ト法により、 銅箔 6をエッチング処理して後述する歪 ゲージ 4の電気特性を得るための配線と、 堰き止め部材 5を同時形成する (図 3 ( b ) ) 。 後述する歪ゲージ 4は、 基板 3下面に形成する。 そこで基板 3上下面 の導通を実現するため、 基板 3の必要部分にスルーホールを開け、 当該スルーホ ール内壁面に導体形成するための無電解銅めつきを施す。 当該無電解銅めつきに より前記堰き止め部材 5上面にも銅が析出し、 その高さが約 4 0 mとなる。 尚 、 図 3の各図では、 基板 3下面に形成する、 歪ゲージ 4の電気特性を取り出すた めの配線,の図示を省略している。  Next, the wiring for obtaining the electrical characteristics of the strain gauge 4 described later and the damming member 5 are simultaneously formed by etching the copper foil 6 by a known subtractive method (FIG. 3 (b)). The later-described strain gauge 4 is formed on the lower surface of the substrate 3. Therefore, in order to realize conduction between the upper and lower surfaces of the substrate 3, through holes are formed in necessary portions of the substrate 3, and electroless copper plating for forming a conductor is performed on the inner wall surface of the through hole. Due to the electroless copper plating, copper is also deposited on the upper surface of the damming member 5, and its height becomes about 40 m. In addition, in each drawing of FIG. 3, the illustration of the wiring formed on the lower surface of the substrate 3 for extracting the electrical characteristics of the strain gauge 4 is omitted.
次いで、 歪ゲージ 4を形成する (図 3 ( c ) ) 。 歪ゲージ 4には抵抗素子を用 いる。 従って上記電気特性は抵抗値となる。 当該抵抗素子は、 上記配線と同材質 で且つ同時に形成された対となる電極と、 当該対の電極間ヘスクリーン印刷法に より配されたカーボン · レジン系の抵抗体ペーストを加熱硬化したものから構成 される。 また更に当該抵抗体を保護するための保護膜を樹脂ペーストのスクリ一 ン印刷により得る。 歪ゲージ 4と上記堰き止め部材 5 との位置関係は、 図 1 ( b ) と同様である。  Next, a strain gauge 4 is formed (FIG. 3 (c)). A resistance element is used for the strain gauge 4. Therefore, the above-mentioned electric characteristics are resistance values. The resistive element is composed of a pair of electrodes formed of the same material and at the same time as the above-mentioned wiring and formed by heating and curing a carbon-resin-based resistor paste disposed between the pair of electrodes by screen printing. It is composed. Further, a protective film for protecting the resistor is obtained by screen printing of a resin paste. The positional relationship between the strain gauge 4 and the dam member 5 is the same as in FIG. 1 (b).
各々の歪ゲージ 4と、 上記堰き止め部材 5の中心位置で、 且つ基板 3上面に接 着剤 1を供給する (図 3 ( d ) ) 。 当該接着剤 1には市販のエポキシ樹脂系接着 剤を用いた。 かかる供給作業には、 注射器の注射針を無く した形状及び機能のデ イスペンサを用い、, エアー圧の調整により一定量の接着剤 1の供給を可能ならし めている。  The adhesive 1 is supplied to each strain gauge 4 and the center position of the damming member 5 and to the upper surface of the substrate 3 (FIG. 3 (d)). As the adhesive 1, a commercially available epoxy resin-based adhesive was used. For such a supply operation, a dispenser having a shape and function without a syringe needle is used, and a constant amount of adhesive 1 can be supplied by adjusting the air pressure.
その後接着剤 1が硬化する前に、 セラミック製のポスト 2底面と基板 3上面と が接するように実装する (図 3 ( e ) ) 。 ポスト 2が接着剤 1を押しのけた結果 、 余剰分の接着剤 1はポスト 2の周囲に寄せられる。 しかし堰き止め部材 5の存 在により、 接着剤 1が堰き止められ、 それを超えて流動することはなかった。 そ の後 1 5 0 °C、 2 0分の加熱工程を経て、 接着剤 1が硬化される。 以上の過程を 経て本発明の応力センサを得ることができる。 図 5は本発明の応力センサにおける、 電気信号入出力の状態の一例の概要を示 している。 4つの歪ゲージ 4としての抵抗素子がプリッジ回路を構成している。 このブリッジ回路の電圧印加端子 (V c c ) - ( G N D ) 間には所定の電圧が印 加されている。 また同図左側の抵抗素子及び Y端子 (Y o u t ) により Y軸方向 の応力センサが構成され、 更に同図右側の抵抗素子と X端子 (X o u t ) により X軸方向の応力センサが構成される。 これによりポスト 2に付与された応力の方 向と大きさとを把握し得ることとなる。 その結果当該応力センサは、 パーソナル コンピュータ用ポインティングディバイスや、 携帯電話等の各種電子機器用多機 能 ·多方向スィッチ等に好適に用いることができる。 Thereafter, before the adhesive 1 is cured, the mounting is performed so that the bottom surface of the ceramic post 2 and the upper surface of the substrate 3 are in contact with each other (FIG. 3 (e)). As a result of the post 2 displacing the adhesive 1, the surplus adhesive 1 is brought around the post 2. However, due to the presence of the blocking member 5, the adhesive 1 was blocked and did not flow beyond it. Thereafter, the adhesive 1 is cured through a heating step at 150 ° C. for 20 minutes. Through the above steps, the stress sensor of the present invention can be obtained. FIG. 5 shows an outline of an example of an input / output state of an electric signal in the stress sensor of the present invention. The resistance element as the four strain gauges 4 forms a bridge circuit. A predetermined voltage is applied between the voltage application terminals (Vcc) and (GND) of this bridge circuit. The resistance element and Y terminal (Y out) on the left side of the figure constitute a stress sensor in the Y-axis direction, and the resistance element on the right side of the figure and the X terminal (X out) constitute a stress sensor in the X-axis direction. . As a result, the direction and magnitude of the stress applied to the post 2 can be grasped. As a result, the stress sensor can be suitably used for a pointing device for a personal computer, a multifunctional / multidirectional switch for various electronic devices such as a mobile phone.
しかし本発明の適用分野はこれらに限定されない。 例えば構成要素としての歪 ゲージ 4がーつであり、 応力の大きさのみを感知する応力センサにも本発明は適 用できる。 このような応力センサであっても、 ポスト 2と基板 3等の固定部材と を固着させる接着剤 1 の存在に起因する応力センサ感度ばらつきを低減する効果 を有する。  However, the application field of the present invention is not limited to these. For example, the present invention can be applied to a stress sensor which has only one strain gauge 4 as a constituent element and senses only the magnitude of stress. Even such a stress sensor has an effect of reducing the variation in sensitivity of the stress sensor due to the presence of the adhesive 1 for fixing the post 2 and the fixing member such as the substrate 3.
本例では堰き止め部材 5を、 上記のように基板 3上下面の配線と同時に形成さ れ,る銅箔 6のエッチング残部として形成した。 この形成法は、 上述したように、 本堰き止め部材 5を形成しないとした場合と同じ工程数で足りる利点がある。 こ れに対し、 上述したスクリーン印刷技術による堰き止め部材 5の形成は、 工程数 がーつ増える点で多少不利であるといえる。 また応力センサの基板 3上面に、 例 えば歪ゲージ 4としての抵抗素子の抵抗値を調整するためのトリマブルチップ抵 抗器等が配されている場合にあっては、 その後のスクリーン印刷が困難になる点 で不利である。 スクリーンがトリマブルチップ抵坊器にぶっかり、 良好な印刷状 態が得られな.いことが予想されるためである。 但し本例によるエッチング残部と しての堰き止め部材 5形成法は、 本例のようにその後の無電解銅めつき工程を経 ることでその高さが変化するため、 一定の高さを得ることが困難と考えられる。 その点はスクリーン印刷技術の採用が有利である。 堰き止め部材 5の高さ調整が スクリーン印刷技術によると比較的容易だからである。 また本例における堰き止め部材 5の存在が応力センサの感度バランスに影響を 与えることはなかった。 各々の歪ゲージ 4との位置関係が同じだからであると考 えられる。 銅箔 6の当初の厚みを 3 とし、 無電解銅めつき後の堰き止め部 材 5の高さが約 7 O ^ mとなった場合も同様に、 その存在が応力センサの感度バ ランスに影響を与えることはなかった。 但し堰き止め部材 5の高さが 7 0 mを 超えると、 その高さを一定にすることが困難となる場合がある。 従って堰き止め 部材 5の高さは 7 0 /i m以下であることが好ましい。 In this example, the damming member 5 was formed simultaneously with the wiring on the upper and lower surfaces of the substrate 3 as described above, and was formed as the remaining portion of the copper foil 6 that was etched. As described above, this forming method has an advantage that the same number of steps as when the main damming member 5 is not formed is sufficient. On the other hand, it can be said that the formation of the damming member 5 by the screen printing technique described above is somewhat disadvantageous in that the number of steps increases by one. Also, if a trimmable chip resistor for adjusting the resistance value of the resistance element, for example, as the strain gauge 4, is arranged on the upper surface of the substrate 3 of the stress sensor, it is difficult to perform screen printing thereafter. This is disadvantageous in that This is because it is expected that the screen will hit the trimmer chip and the good printing condition will not be obtained. However, in the method of forming the damming member 5 as the remaining portion of the etching according to the present example, the height changes due to the subsequent electroless copper plating step as in the present example, so that a constant height is obtained. It is considered difficult. In that respect, the adoption of the screen printing technique is advantageous. This is because the height adjustment of the damming member 5 is relatively easy according to the screen printing technique. Further, the presence of the damming member 5 in this example did not affect the sensitivity balance of the stress sensor. It is considered that this is because the positional relationship with each strain gauge 4 is the same. Similarly, when the initial thickness of the copper foil 6 is set to 3 and the height of the damming member 5 after the electroless copper plating is about 7 O ^ m, the presence also affects the sensitivity balance of the stress sensor. Had no effect. However, if the height of the damming member 5 exceeds 70 m, it may be difficult to keep the height constant. Therefore, the height of the damming member 5 is preferably 70 / im or less.
図 4には本発明の応力センサの他の実施の形態例を示している。 同図では、 ポ スト 2と、 歪ゲージ 4と、 堰き止め部材 5との位置関係及び、 これらの形状のバ リエ一シヨンを上面図として示している。 これら応力センサの縦断面図は、 基本 的に図 1 ( a ) と同様である。  FIG. 4 shows another embodiment of the stress sensor of the present invention. In the figure, the positional relationship among the post 2, the strain gauge 4, and the damming member 5, and the variations of these shapes are shown as top views. The longitudinal sectional views of these stress sensors are basically the same as those in FIG. 1 (a).
図 4 ( a ) は、 図 1 ( b ) における上面正方形の堰き止め部材 5の四隅を省略 した堰き止め部材 5形状を採用した例である。 本構成では、 堰き止め部材 5の材 質に剛性の高いものを選択し、 その存在自体によって応力センサ感度パランスが 狂うおそれがある場合等に有利であると考えられる。 ポス ト 2に付与された応力 の方向と直交する方向のみに堰き止め部材 5があり、 その応力の伝達を阻害しな い配置であると言えるためである。  FIG. 4A is an example in which the shape of the blocking member 5 in which the four corners of the square blocking member 5 in FIG. 1B are omitted is adopted. This configuration is considered to be advantageous when, for example, a material having high rigidity is selected as the material of the damming member 5, and the presence of the damming member 5 itself may degrade the stress sensor sensitivity balance. This is because the damming member 5 is provided only in the direction orthogonal to the direction of the stress applied to the post 2, and it can be said that the arrangement does not hinder the transmission of the stress.
図 4 ( b ) は図 1 ( b ) における堰き止め部材 5形状を上面円形とした例であ る。 本構成でも、 堰き止め部材' 5の材質に剛性の高いものを選択し、 その存在自 体によって応力センサ感度バランスが狂うおそれがある場合等に有利であると考 えられる。 円形は角部がないため正方形に比して一般に形成物形状の再現性が高 く、 堰き止め部材 5の形状ばらつきに起因した応力センサ感度バランスの狂いを 抑えることができる。 このことは特に堰き止め部材 5をスクリーン印刷技術で形 成した場合に有効である。 スクリーン印刷技術では、 流動性あるペーストを用い 、 その外形形状 (特に角部) が特に一定になりにくいためである。  FIG. 4 (b) is an example in which the shape of the damming member 5 in FIG. 1 (b) is a circular upper surface. This configuration is also considered to be advantageous when, for example, a material having high rigidity is selected as the material of the damming member '5, and there is a possibility that the sensitivity balance of the stress sensor may be lost due to its existence. Since a circle has no corners, the reproducibility of the formed shape is generally higher than that of a square, and it is possible to suppress the imbalance in the sensitivity of the stress sensor due to the variation in the shape of the damming member 5. This is particularly effective when the damming member 5 is formed by screen printing technology. This is because, in screen printing technology, a fluid paste is used, and its external shape (especially corners) is particularly difficult to be constant.
図 4 ( c ) 及び (d ) は、 ポスト 2底面を約 4 5 ° 回転させた以外は図 4 ( a ) 及ぴ (b ) とそれぞれ同じ構成である。 従って得られる効果も図 4 ( a ) 及び ( b ) とそれぞれ同様である。 伹しポスト 2底面を約 4 5 ° 回転することにより 、 ポスト 2底面の角部が歪みゲージ 4と対応する位置となる。 すると当該角部へ の応力集中が歪ゲージ 4へ伝播することとなり、 大きな応力センサ出力 (歪ゲ一 ジ 4特性値変化量) が得られる利点がある。 尚、 ポスト 2上部は図 4 ( a ) 及び ( b ) と同じ角度としているのは、 ポスト 2を基板 3へ実装する際にポスト 2先 端を挟持し易くするためである。 これは通常の実装装置が、 基板 3外形の片と同 じ角度で部品を挟持するようになっていることによる。 FIGS. 4 (c) and (d) have the same configurations as FIGS. 4 (a) and (b), respectively, except that the bottom surface of the post 2 is rotated by about 45 °. Therefore, the effect obtained is also shown in Fig. 4 (a) and Same as (b). By rotating the bottom surface of the post 2 by about 45 °, the corner of the bottom surface of the post 2 becomes a position corresponding to the strain gauge 4. Then, the stress concentration at the corner is propagated to the strain gauge 4, and there is an advantage that a large stress sensor output (a change in the characteristic value of the strain gauge 4) can be obtained. The reason why the upper portion of the post 2 has the same angle as in FIGS. 4A and 4B is to make it easier to hold the tip of the post 2 when mounting the post 2 on the substrate 3. This is due to the fact that the normal mounting device is configured to hold the component at the same angle as that of the piece of the outer shape of the board 3.
このように歪ゲージ 4に対する応力集中が大きい構成の応力センサにあっては 、 堰き止め部材 5が担う応力センサ感度バランス維持作用は、 相対的に小さくな ると考えられる。 余剰分の接着剤の存在状態により、 応力センサ感度バランスの 狂う要因が歪ゲージ 4に与える影響に比べ、 当該応力集中により歪ゲージ 4に与 える影響が大きいと考えられるためである。  In such a stress sensor having a large stress concentration on the strain gauge 4, it is considered that the blocking effect of the damming member 5 on the stress sensor sensitivity balance is relatively small. This is because it is considered that the influence on the strain gauge 4 due to the stress concentration is greater than the influence on the strain gauge 4 due to the imbalance of the stress sensor sensitivity due to the presence of the excess adhesive.
従って、 仮に堰き止め部材 5の効果が十分に現れ難い構成とせざるを得ない応 力センサにあっては、 図 4 ( c ) 〜 ( e ) に示すようにポスト 2底面を約 4 5 ° 回転させる等して歪ゲージ 4に対する応力集中の大きい構成を採用することが好 ましい。  Therefore, in the case of a stress sensor in which the effect of the damming member 5 cannot be sufficiently exhibited, it is necessary to rotate the bottom surface of the post 2 by about 45 ° as shown in FIGS. 4 (c) to 4 (e). For example, it is preferable to adopt a configuration in which the stress concentration on the strain gauge 4 is large.
図 4 ( e ) は図 4 ( c ) において、 堰き止め部材 5の形状をポス ト 2の角部に 合わせた構成である。 この場合堰き止め部材 5がポスト 2の基板 3への固着位置 の目印となる利点がある。 また堰き止め部材 5を固着位置の目視検査、 画像処理 による検査の基準位置とすることで、 これらの検査を容易にし得る利点がある。 図 4 ( f ) は図 4 ( e ) の構成において、 堰き止め部材 5にかかる凸部を連続 させた形態である。 余剰分の接着剤 1は、 主にポス ト 2底部周囲の角部以外の頜 域に流出することから、 その流出分を堰き止めるに有効である。 産業上の利用可能性  FIG. 4 (e) shows a configuration in which the shape of the damming member 5 in FIG. 4 (c) matches the corner of the post 2. In this case, there is an advantage that the damming member 5 serves as a mark of a position where the post 2 is fixed to the substrate 3. In addition, there is an advantage that these inspections can be facilitated by setting the damming member 5 as a reference position for visual inspection of the fixing position and inspection by image processing. FIG. 4 (f) shows a configuration in which the projections of the damming member 5 are continuous in the configuration of FIG. 4 (e). The excess adhesive 1 mainly flows out to the area other than the corners around the bottom of the post 2, and is therefore effective in blocking the outflow. Industrial applicability
以上のように、 本発明により、 接着剤にて基板等の固定部材と固着されるボス トへの応力付与により、 当該基板等の固定部材に配された歪ゲージが刺激され、 当該歪ゲージ特性値変化から当該応力に関する情報を得る応力センサにおいて、 ポストと基板等の固定部材とを固着させる接着剤の存在に起因する応力センサ感 度ばらつきを低減することができた。 As described above, according to the present invention, by applying stress to a boss fixed to a fixing member such as a substrate with an adhesive, a strain gauge disposed on the fixing member such as the substrate is stimulated, In the stress sensor that obtains information on the stress from the change in the strain gauge characteristic value, the variation in sensitivity of the stress sensor due to the presence of the adhesive for fixing the post and the fixing member such as the substrate could be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1 . 固定部材へ接着剤により固着されたポストへの応力付与により、 歪ゲージ が刺激され、 当該歪ゲージ特性値変化から当該応力に関する情報を得る応力セン サにおいて、 1. A strain sensor is stimulated by applying stress to the post fixed to the fixing member with an adhesive, and a stress sensor that obtains information on the stress from the change in the characteristic value of the strain gauge.
前記接着剤の余剰分を所定領域内に留める手段を有することを特徴とする応力 センサ。  A stress sensor comprising means for retaining an excess of the adhesive in a predetermined area.
2 . 接着剤にて基板と固着されるポストへの応力付与により、 当該基板に配さ れた歪ゲージが刺激され、 当該歪ゲージ特性値変化から当該応力に関する情報を 得る応力センサにおいて、 2. Stress is applied to the post fixed to the substrate with the adhesive, so that the strain gauge arranged on the substrate is stimulated, and the stress sensor obtains information on the stress from the change in the characteristic value of the strain gauge.
前記ボスト周囲の接着剤の余剰分を所定領域内に留める手段を有することを特 徴とする応力センサ。  A stress sensor having means for retaining an excess amount of the adhesive around the bost within a predetermined area.
3 . ポスト底面が、 歪ゲージの配される面とは反対側の基板面に固着きれ、 当 該ポスト底面の輪郭と歪ゲージとが、 基板を介して対応位置にあることを特徴と する請求の範囲第 2項記載の応力センサ。 3. The bottom surface of the post is fixedly attached to the substrate surface opposite to the surface on which the strain gauge is arranged, and the contour of the bottom surface of the post and the strain gauge are located at corresponding positions via the substrate. 3. The stress sensor according to item 2, wherein
4 . ポス トへの応力付与により、 当該基板が撓むことに伴い歪ゲージが刺激さ れる応力センサであって、 基板が樹脂を含む材料からなることを特徴とする請求 の範囲第 2項又は 3項に記載の応力センサ。 4. A stress sensor in which a strain gauge is stimulated by bending of the substrate due to stress applied to the post, wherein the substrate is made of a material containing resin. The stress sensor according to item 3.
5 . ポスト周囲の接着剤の余剰分を所定領域内に留める手段が、 ポスト周囲の 基板面上に連続した又は断続的な ώ部を形成すること、 若しくはポスト周囲の基 板面に余剰接着剤を溜める凹部を形成することである請求の範囲第 2〜 4項のい ずれかに記載の応力センサ。 5. Means for retaining the excess of adhesive around the post in a predetermined area is to form a continuous or intermittent ridge on the board surface around the post, or to add excess adhesive to the board surface around the post. The stress sensor according to any one of claims 2 to 4, wherein the stress sensor is formed with a concave portion for storing the pressure.
6 . 凸部が、 基板面の金属層の一部を除去処理し、 その残部として得られるも の、 又は基板面への厚膜印刷により得たものであることを特徵とする請求の範囲 第 5項記載の応力センサ。 6. The claim wherein the convex portion is obtained by removing a part of the metal layer on the substrate surface and obtaining the remaining portion or by thick film printing on the substrate surface. The stress sensor according to item 5.
PCT/JP2003/003569 2002-04-15 2003-03-25 Stress sensor WO2003087750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003221051A AU2003221051A1 (en) 2002-04-15 2003-03-25 Stress sensor
JP2003584647A JP4136947B2 (en) 2002-04-15 2003-03-25 Stress sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002112230 2002-04-15
JP2002-112230 2002-04-15

Publications (1)

Publication Number Publication Date
WO2003087750A1 true WO2003087750A1 (en) 2003-10-23

Family

ID=29243311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003569 WO2003087750A1 (en) 2002-04-15 2003-03-25 Stress sensor

Country Status (3)

Country Link
JP (1) JP4136947B2 (en)
AU (1) AU2003221051A1 (en)
WO (1) WO2003087750A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051703A1 (en) * 2016-09-14 2018-03-22 国立大学法人神戸大学 Force sensor and force sensor production method
CN110987265A (en) * 2019-12-13 2020-04-10 哈尔滨工程大学 Seal type multi-section combined strain gauge pasting device and method
WO2022184690A1 (en) * 2021-03-01 2022-09-09 Hahn-Schickard-Gesellschaft Für Angewandte Forschung E. V. Device for measuring deformations, stresses, forces and/or torques in a plurality of axes
CN115030943A (en) * 2022-06-29 2022-09-09 安徽蓝海之光科技有限公司 A paste device for resistance strain gauge
CN115111243A (en) * 2021-03-19 2022-09-27 河北雷萨重型工程机械有限责任公司 Strain gauge pasting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390004B (en) * 2020-11-05 2022-05-03 哈工大机器人(合肥)国际创新研究院 Automatic sensor chip mounting assembly line and chip mounting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844584A2 (en) * 1996-11-25 1998-05-27 CTS Corporation Pointing device
JPH10300771A (en) * 1997-04-25 1998-11-13 Miyota Co Ltd Acceleration sensor
JP2000267803A (en) * 1999-03-19 2000-09-29 Kooa T & T Kk Pointing device
JP6052202B2 (en) * 2014-02-27 2016-12-27 三菱電機株式会社 Holder, packaging body and electrical equipment packaging body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844584A2 (en) * 1996-11-25 1998-05-27 CTS Corporation Pointing device
JPH10300771A (en) * 1997-04-25 1998-11-13 Miyota Co Ltd Acceleration sensor
JP2000267803A (en) * 1999-03-19 2000-09-29 Kooa T & T Kk Pointing device
JP6052202B2 (en) * 2014-02-27 2016-12-27 三菱電機株式会社 Holder, packaging body and electrical equipment packaging body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051703A1 (en) * 2016-09-14 2018-03-22 国立大学法人神戸大学 Force sensor and force sensor production method
JPWO2018051703A1 (en) * 2016-09-14 2019-07-25 国立大学法人神戸大学 Force sensor and method of manufacturing force sensor
US11243130B2 (en) 2016-09-14 2022-02-08 National University Corporation Kobe University Force sensor and force sensor manufacturing method
CN110987265A (en) * 2019-12-13 2020-04-10 哈尔滨工程大学 Seal type multi-section combined strain gauge pasting device and method
CN110987265B (en) * 2019-12-13 2021-07-09 哈尔滨工程大学 Seal type multi-section combined strain gauge pasting device and method
WO2022184690A1 (en) * 2021-03-01 2022-09-09 Hahn-Schickard-Gesellschaft Für Angewandte Forschung E. V. Device for measuring deformations, stresses, forces and/or torques in a plurality of axes
CN115111243A (en) * 2021-03-19 2022-09-27 河北雷萨重型工程机械有限责任公司 Strain gauge pasting device
CN115030943A (en) * 2022-06-29 2022-09-09 安徽蓝海之光科技有限公司 A paste device for resistance strain gauge

Also Published As

Publication number Publication date
JPWO2003087750A1 (en) 2005-08-18
AU2003221051A1 (en) 2003-10-27
JP4136947B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US7262682B2 (en) Resistor element, stress sensor, and method for manufacturing them
JP2007127612A (en) Humidity sensor device and its manufacturing method
WO2003087750A1 (en) Stress sensor
US6993982B2 (en) Stress sensor for electronic devices
US7040182B2 (en) Stress sensor
JP2000267803A (en) Pointing device
US20200240856A1 (en) Force sensor
JP2004184127A (en) Stress sensor
JP4271447B2 (en) Stress sensor and manufacturing method thereof
JP3691821B2 (en) Stress sensor
JP2009130107A (en) Electronic apparatus
JP2004212047A (en) Stress sensor
KR20080009093A (en) Micromechanical pressure/force sensor and corresponding production method
JP2004150886A (en) Stress sensor
JP2002157063A (en) Multi-directional switch system for electronic equipment, and electronic equipment using the same
JP2009229450A (en) Acceleration sensor device and method for manufacturing acceleration sensor device
JP3691842B1 (en) Stress sensor
JPWO2003074986A1 (en) Stress sensor
JP2010197286A (en) Acceleration sensor and method of manufacturing acceleration sensor
JP4322016B2 (en) Manufacturing method of stress sensor
KR20010022088A (en) Method of manufacturing sensor and resistor element
JP4336757B2 (en) Stress sensor device and manufacturing method thereof
JP3284251B2 (en) Capacitive force sensor
JPH10189627A (en) Element, semiconductor circuit board and sensor
CN117642052A (en) Piezoelectric transducer and pressure sensing key

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003584647

Country of ref document: JP

122 Ep: pct application non-entry in european phase