WO2003081791A1 - Transmission power control apparatus and method thereof - Google Patents

Transmission power control apparatus and method thereof Download PDF

Info

Publication number
WO2003081791A1
WO2003081791A1 PCT/JP2003/002571 JP0302571W WO03081791A1 WO 2003081791 A1 WO2003081791 A1 WO 2003081791A1 JP 0302571 W JP0302571 W JP 0302571W WO 03081791 A1 WO03081791 A1 WO 03081791A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
amplitude
power control
transmission
unit
Prior art date
Application number
PCT/JP2003/002571
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuo Maezawa
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2003081791A1 publication Critical patent/WO2003081791A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Definitions

  • the present invention relates to a transmission power control apparatus and a transmission power control method, and more particularly to a transmission power control method having an over-output protection function of a transmission 1g apparatus in a CDMA (Code D i s i s i n s).
  • CDMA Code D i s i s i n s
  • Fig. 11 shows an example of a conventional transmission power control device for over-output protection in a CDMA mobile communication radio system.
  • the signal processing unit 2 includes multiplexing units 5 i and 5 q for multiplexing each of the I-phase and Q-phase signals of each channel subjected to the spread processing, and an amplitude for limiting the multiplexed output.
  • the limiting parts 6 i, 6 q, the Nyquist theory roll-off coefficient corresponding to the operation system, and the mono-filters 7 i, 7 q that attenuate harmonics and the I-phase and Q-phase baseband signals It comprises a quadrature modulation section 8 for performing quadrature modulation, and a DZA conversion section 9 for converting a quadrature-modulated baseband signal into an IF signal.
  • the radio unit 3 transmits the signal from the frequency conversion unit 10 that converts the IF signal input from the signal processing unit 2 into an RF signal, the variable amplifier 11 that changes the power of the RF signal, and the antenna 5.
  • the transmission amplifier 12 amplifies the RF signal to a specified power with a fixed gain.
  • the conventional over-output protection circuit is composed of the amplitude limiters 6i and 6q.
  • transmission power control is performed for each channel, so the total signal of multiple channels is multiplexed.
  • the transmission power may be set to a power exceeding the transmission power limit value of the transmission amplification device 12.
  • the RF signal distortion may cause the communication quality to deteriorate, or in the worst case, the transmission power unit Since the failure or the circuit for protecting the failure may stop operating, the communication system may stop as a result.
  • the amplitude limiters 6 i and 6 q limit the power to a certain limit value, thereby increasing the power consumption due to the instantaneous power and causing distortion of the transmission amplification device 12. It protects against leakage power, degradation of intermodulation distortion characteristics, and failure due to instantaneous power input to the transmission amplifier 12.
  • the modulation accuracy was set to 2 [%] or less so that the modulation accuracy did not deteriorate even when the amplitude limit was set.
  • the current situation is overdesign.
  • a transmission power control device includes: a combining unit that combines transmission data orthogonal to each other in a plurality of channels for each phase; an amplitude limiting unit that limits the amplitude of a combined signal for each of these phases;
  • a transmission power control device including a quadrature modulation means for quadrature modulating an output of the transmission signal, and a transmission power control means for transmitting the quadrature modulation output by performing power control, and transmitting from the amplitude information of the combined signal.
  • a transmission power control apparatus includes: combining means for combining transmission data orthogonal to each other in a plurality of channels for each phase; amplitude limiting means for limiting the amplitude of a combined signal for each of these phases; A quadrature modulating means for quadrature modulating the output of the amplitude limiting means; What is claimed is: 1.
  • a transmission power control device for a transmission device comprising: a transmission power control unit that performs power control on an intermodulation output and transmits the intermodulation output.
  • Control means for variably controlling the amplitude limiting value of the amplitude limiting means in accordance with the transmission power when is greater than or equal to a predetermined threshold value, and controlling the transmission power control means to perform gain control. I do.
  • a transmission power control method comprises: combining means for combining transmission data orthogonal to each other in a plurality of channels for each phase; amplitude limiting means for limiting the amplitude of a combined signal for each of these phases;
  • a transmission power control method in a transmission apparatus comprising: a quadrature modulation unit for quadrature modulating an output of the transmission signal; and a transmission power control unit for transmitting the quadrature modulation output by performing power control.
  • Another transmission power control method comprises: combining means for combining transmission data orthogonal to each other in a plurality of channels for each phase; amplitude limiting means for limiting the amplitude of a combined signal for each of these phases;
  • a transmission power control method in a transmission device comprising: a quadrature modulation unit that performs quadrature modulation on an output of the amplitude limiting unit; and a transmission power control unit that transmits the quadrature modulation output by performing power control. Detecting transmission power from signal amplitude information; and, when the transmission power is equal to or greater than a predetermined threshold, variably controlling an amplitude limit value of the amplitude limiting means in accordance with the transmission power. And a control step of controlling to perform the gain control.
  • the power detector detects the transmission power from the amplitude information of the baseband signal output from the amplitude limiter, and controls the gain of the variable amplifier in the radio unit and the limit value of the amplitude limiter in the signal amplifier. By doing so, the transmission amplifier is protected.
  • the transmission power is detected from the amplitude information of the multiplexed combined signal, and when the transmission power is equal to or higher than the first threshold, the amplitude limit of the amplitude limiter is released, and the variable amplifier is used. Performs gain control of a certain transmission power control unit.In this state, if the transmission power falls below the second threshold, the amplitude limitation of the amplitude limiting unit and the gain of the transmission power control unit are returned to the initial settings. It is controlled as follows. Further, as another example, when the transmission power is equal to or higher than a predetermined threshold, the amplitude limit value of the amplitude limiting unit is variably controlled according to the transmission power, and at the same time, the gain control of the transmission power control unit is controlled. This achieves the above objectives. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.
  • FIG. 2 is a block diagram showing details of the configuration of one embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of data after spreading of data input from a higher-level device.
  • FIG. 4 is a diagram showing an example of data after multiplexing.
  • FIG. 5 is a diagram showing an example of data subjected to amplitude limitation.
  • FIG. 6 is a flowchart showing the operation of one embodiment of the present invention.
  • FIG. 7 is a graph showing an example of modulation accuracy and adjacent channel leakage power with respect to control of the amplitude limiter.
  • FIG. 8 is a block diagram showing a configuration of another embodiment of the present invention.
  • FIG. 9 is a flowchart showing the operation of another embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a table in a memory according to another embodiment of the present invention.
  • FIG. 11 is a block diagram showing a conventional configuration.
  • FIG. 12 is a graph showing an example of the modulation accuracy and the adjacent channel leakage power with respect to the limit value of the conventional amplitude limiter.
  • reference numeral 1 indicates a radio base station.
  • Reference numeral 2 indicates a signal processing unit.
  • Reference numeral 3 indicates a radio unit.
  • Reference numeral 4 indicates a control unit.
  • Reference numeral 5 indicates a multiplexing unit.
  • Reference numeral 6 indicates an amplitude limiting unit.
  • Reference numeral 7 denotes a roll-off filter.
  • Reference numeral 8 denotes a quadrature modulation unit.
  • Reference numerals 9 and 15 indicate a DZA converter.
  • Reference numeral 10 indicates a frequency conversion unit.
  • Reference numeral 11 indicates a variable amplifier.
  • Reference numeral 12 indicates a transmission amplifier.
  • Reference numeral 13 denotes an amplitude value calculation (power detection) unit.
  • Reference numeral 14 indicates a transmission power control unit.
  • Reference numeral 16 denotes a memory.
  • FIG. 1 is a diagram schematically showing a radio base station to which an embodiment of the present invention is applied.
  • a radio base station 1 spreads and multiplexes data input from a higher-level device, performs quadrature modulation and outputs the signal, and an intermediate frequency signal input from the signal processing unit 2 (hereinafter, referred to as Radio signal 3 that converts the IF signal into a high frequency (hereinafter referred to as RF signal) used for system operation and outputs the signal, and signal processing from the transmission power value calculated from the amplitude value of the baseband signal of the signal processing unit 2. It comprises an amplitude limit value of the section 2 and a control section 4 for controlling the gain of the radio section 3. 5 is an antenna.
  • FIG. 2 is a block diagram showing details of each unit in FIG.
  • the signal processing unit 2 includes a multiplexing unit 5 i and 5 q for multiplexing the spread channel data for each of the I and Q phases, and limiting the instantaneous power generated by the multiplexing to a set limit value.
  • the amplitude limiters 6 i and 6 q that guarantee the increase in power consumption due to the instantaneous power and the distortion of the transmission amplifier 12 and the Nyquist theory roll-off coefficient corresponding to the operation system and satisfy harmonics Consists of attenuating roll-off filters 7i, 7q, quadrature modulator 8 for quadrature modulating I-phase and Q-phase baseband signals, and DZA converter 9 for converting quadrature-modulated baseband signals to IF signals Is done.
  • the radio unit 3 includes a frequency conversion unit 10 that converts an IF signal input from the signal processing unit 2 into an RF signal, a variable amplifier 11 that varies the power of the RF signal by a control voltage from the control unit 4, It comprises a transmission amplifying device 12 and a power for amplifying an RF signal with a fixed gain to a specified power for transmission from the antenna 5.
  • the control unit 4 includes a power detection unit 13 that detects a power value transmitted from the antenna 5 from the amplitude information of the baseband signal input from the signal processing unit 3, and a variable amplifier 11 based on the power value.
  • a transmission power control unit 14 that changes the gain and limits the amplitude limiters 6 i and 6 q, and converts control data from the power control unit 14 to a value and outputs it to the variable amplifier 11 D / A conversion unit 15 and force.
  • FIGS. Fig. 3 shows an example of the data after spreading
  • Fig. 4 shows an example of the data after multiplexing
  • Fig. 5 shows the amplitude limitation
  • Fig. 6 shows a flow chart showing the operation of this embodiment
  • Fig. 6 shows an example of the characteristics of modulation accuracy and power consumption when the limit value is set and when the limit value is released FIG.
  • the signal processing unit 2 spreads data from a higher-level device (it is omitted in FIG. 2 because it is not directly related to the present invention), and the multiplexing units 5 i and 5 q transmit the I and Q phases. Multiplex each time. By multiplexing the data input to the multiplexing units 5 i and 5 q shown in FIG. 3, it is converted into a multiplexed signal shown in FIG.
  • the amplitude limiters 6 i and 6 q output the hatched portions as signals by limiting the instantaneous power generated in the multiplexed signal to the limit value indicated by the dotted line in FIG.
  • the I / Q quadrature modulation is performed, and the D / A converter 8 converts it to an IF signal to generate a CDMA modulated wave. Output to wireless unit 3.
  • the radio section 3 converts the IF signal output from the DZA conversion section 9 of the signal processing section 2 into an RF signal by the frequency conversion section 10 and controls the variable amplifier 11 and the transmission amplifier 12 whose gain is controlled by the control section 4.
  • the signal is amplified by and transmitted from antenna 5 to each terminal.
  • control unit 4 first detects the amplitude values of the I and Q phase baseband signals after the amplitude limiting units 6 i and 6 q in the power detection unit 13 (step A 1), and calculates the equation.
  • step A2 the transmission power control unit 14 determines whether the transmission power A [dBm] is equal to or greater than Y [dBm]. If A [d Bm] does not exceed Y [dBm], this operation is repeated (step A3). This state is referred to as normal operation. I do.
  • step A3 the transmission power A [d Bm] becomes equal to or more than Y [d Bm] from the above power.
  • step A4 the control of the amplitude limiters 6 i and 6 q is performed. Release the limit value and change it so that it can pass the instantaneous power as it is (step A4). Then, the following formula
  • the gain of the variable amplifier 11 is calculated, and the control data is output to the DZA converter 15.
  • the voltage is converted into a voltage value by the D / A conversion unit 15 and the gain of the variable amplification unit 11 is changed (step A5).
  • the state where the transmission power is suppressed by the variable amplifier 11 is the over-output state.
  • the transmission power is calculated by taking in the amplitude value of the baseband signal (steps A6 and A7). If the power is equal to or higher than Z [dBm] (step A8), the gain of the variable amplifier 11 is changed (step A5), and the operation is repeated.
  • step A8 if the transmission power A [d Bm] becomes less than Z [d Bm] (step A8), the limiting values of the amplitude limiting units 6i and 6q and the variable amplifier 11 Return the gain to the initial value (Steps A9 and A10), and return to the acquisition of the amplitude value (Step A1).
  • FIG. 7 is a diagram showing an example of the characteristics of the modulation accuracy and the adjacent channel leakage power when the limit value is set and when the limit value is cancelled.
  • the limit value is set (normal state)
  • the modulation accuracy deteriorates because it is limited by the amplitude limiters 6i and 6q. If it exceeds 46 [dBm], the modulation accuracy will exceed 17.5 [%] specified by 3GPP and will fall below the specified value, degrading the communication quality.
  • the modulation accuracy was improved to 5% by removing the amplitude limit.
  • the adjacent channel leakage power deteriorates from 52 [dB] to 46 [dB], but the adjacent channel leakage power specified in 3GPP satisfies 45 [dB] or more, so the communication quality deteriorates. Can be prevented.
  • control is performed while trying to trade off between adjacent channel leakage power and modulation accuracy. In this case, the standard point is stored and the control is performed dynamically.
  • the initial gain (G [dB]) of the variable amplifier 11 is 10 [dB]
  • the correction value (X [dB]) of the difference from the actual transmission power of the power detector 13 is 20 [dB].
  • the switching power from the normal state to the over-output state (Y [dBm]) is 45 [dBm]
  • the switching power from the over-output state to the normal state (Z [dBm]) is 43 [dBm].
  • the power detection unit 13 determines that the transmission power is 41.5 [dBm] from Equation (1). It is calculated (steps A1, A2). Since this power is less than 45 [dBm], it returns to signal acquisition again (step A3).
  • the power detector 13 detects 46.3 [dBm] of the transmission power (steps A 1 and A 2). Since it is not less than 45 [dBm] (step A3), the limit values of the amplitude limiters 6i and 6q are released (step A4). Further, the control voltage from the DZA converter 15 is set so that the gain of the variable amplifier 11 becomes 8.7 [dB] according to the formula (3) (step A5). Then, it switches to the over-output state.
  • Step A6 and A7 when the average of the amplitude values of the baseband signal fluctuates to “400” for both the I and Q phases, a transmission power of 47.5 [dBm] is detected (steps A6 and A7), and the transmission power becomes 43 dB. Since it is equal to or greater than [dBm] (Step A8), the D / A converter 15 is set so that the gain of the variable amplifier 11 is 7.5 [dB] according to the calculation formula (3) with the control value released. The control voltage is output (step A5).
  • step A6 when the average of the amplitude of the baseband signal fluctuates to “120” for both the I and Q phases, a transmission power of 42.3 [dBm] is detected (steps A6 and A7), and the transmission power becomes 43 [dBm].
  • dBm] step A8, the control value, the variable amplifier 1 1 The initial gain to the initial value (steps A9, A10). Then, it switches to the normal state.
  • FIG. 8 is a block diagram showing the configuration of another embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • a memory 16 is provided in the control unit 4, and the other configuration is the same as the example of FIG.
  • FIG. 9 is a flow chart showing the operation
  • FIG. 10 is a graph showing a setting table of the limit values of the amplitude limiters 6 i and 6 q in the memory 16 shown in the figure.
  • Another embodiment of the present invention suppresses deterioration of modulation accuracy by dynamically changing the limit values of the amplitude limiters 6i and 6q.
  • the control unit 4 first detects the amplitude ⁇ : of the baseband signal of the 1-phase and the Q-phase after the amplitude limiting units 6 i and 6 by the power detection unit 13 (step A 1 in FIG. 9), and As in the example, obtain the transmission power (step A2).
  • the transmission power control unit 14 determines whether the transmission power A [dBm] is equal to or greater than Y [dBm]. If the transmission power A is less than Y [dBm], the limit value of the amplitude limiting unit and the variable increase are determined. Initialize the gain of the amplifier 11 and detect the amplitude directly again. If the transmission power A [dBm] does not exceed Y [dBm], repeat this operation (step A3). When the transmission power A [dBm] is equal to or greater than Y [dBm], the limit corresponding to the power detected for the limit ⁇ ⁇ of the amplitude limiters 6i and 6q is read from the table in the memory 16 and set (step A). Four) .
  • step A5 the gain of the variable amplifier 11 is calculated and the control data is output to the DZA conversion unit 15 in order to suppress the transmission power of the transmission amplification device 12 to Y [dBm] from Expression (1) (step A5).
  • step A6 the above operation is repeated.
  • a first effect of the present invention is that the transmission amplifier can be protected from distortion and failure, and as a result, the communication system can be prevented from being stopped. The reason is that the transmission power can be detected and the output of the transmission power amplifying device can be suppressed to a certain constant power by using a variable amplifier.
  • the second effect is that communication quality can be prevented from deteriorating.
  • the reason is that under normal transmission power conditions, the amplitude is limited and the instantaneous power is suppressed, thereby suppressing the increase in power consumption due to the Bhun-shun power, and the adjacent channel leakage power due to the distortion of the transmission amplifier.
  • the output power of the transmission amplifier is suppressed to a constant power by a variable amplifier and the limit value of the amplitude limiter is released. This is because communication quality can be prevented from deteriorating by preventing deterioration of modulation accuracy and distortion of the transmission amplifier.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A CDMA signal transmission power control method for appropriately compensating for a trouble of a transmission amplifying apparatus and a characteristic degradation thereof caused by distortion, without degrading the modulation performance, at occurrence of an instantaneous power during a channel signal multiplexing, or in an excess output state of transmission power caused by a trouble of the system. An amplitude value calculating part (13) determines a transmission power from amplitude information of a multiplex-combined signal. When the determined transmission power is equal to or greater than a first threshold value, the amplitude limitation of an amplitude limiting part (6) is canceled, and the gain of a variable amplifier (11) is controlled. When the determined transmission power is less than a second threshold value, the amplitude limitation of the amplitude limiting part (6) and the gain of the variable amplifier (11) are caused to return to their respective initial set values.

Description

明細書 送信電力制御装置及びその方法 技術分野  TECHNICAL FIELD Transmission power control apparatus and method
本発明は送信電力制御装置及びその方法に関し、 特に CDMA (Co d e D i v i s i on Mu l t i p l e Ac c e s s) 通 1目方式における送 1g装置 の過出力保護機能を有する 言電力制御方式に関するものである。 従来技術  The present invention relates to a transmission power control apparatus and a transmission power control method, and more particularly to a transmission power control method having an over-output protection function of a transmission 1g apparatus in a CDMA (Code D i s i s i n s). Conventional technology
CDMA方式の移動通信無線システムの従来の過出力保護のための送信電力制 御装置の一例を図 1 1に示す。 図 11を参照すると、 信号処理部 2は、 拡散処理 された各チャネルの I相及び Q相の各信号を多重化する多重部 5 i , 5 qと、 こ れ等多重出力を振幅制限する振幅制限部 6 i , 6 qと、 運用システムに対応した ナイキスト理論のロールオフ係数を満たし、 かつ高調波を減衰する口一ルォフフ ィルタ 7 i, 7 qと、 I相及び Q相のベースバンド信号を直交変調する直交変調 部 8と、 直交変調したベースバンド信号を I F信号に変換する DZ A変換部 9と から構成されている。  Fig. 11 shows an example of a conventional transmission power control device for over-output protection in a CDMA mobile communication radio system. Referring to FIG. 11, the signal processing unit 2 includes multiplexing units 5 i and 5 q for multiplexing each of the I-phase and Q-phase signals of each channel subjected to the spread processing, and an amplitude for limiting the multiplexed output. The limiting parts 6 i, 6 q, the Nyquist theory roll-off coefficient corresponding to the operation system, and the mono-filters 7 i, 7 q that attenuate harmonics and the I-phase and Q-phase baseband signals It comprises a quadrature modulation section 8 for performing quadrature modulation, and a DZA conversion section 9 for converting a quadrature-modulated baseband signal into an IF signal.
また、 無線部 3は、 信号処理部 2より入力される I F信号を RF信号へ変換す る周波数変換部 10と、 RF信号の電力を可変させる可変増幅器 1 1と、 アンテ ナ 5から送信するために R F信号を固定の利得で規定の電力まで増幅する送信増 幅装置 12とから構成されている。 発明が解決しょうとする課題  Also, the radio unit 3 transmits the signal from the frequency conversion unit 10 that converts the IF signal input from the signal processing unit 2 into an RF signal, the variable amplifier 11 that changes the power of the RF signal, and the antenna 5. The transmission amplifier 12 amplifies the RF signal to a specified power with a fixed gain. Problems to be solved by the invention
従来の過出力保護回路は、 振幅制限部 6 i, 6 qにて構成されており、 CDM A方式では、 各チャネル毎に送信電力制御が行われるため、 複数のチャネルを多 重した信号の総送信電力は、 送信増幅装置 12の送信電力の限界値を超えた電力 に設定される可能性がある。 送信電力装置 12の限界を超えた送信状態では、 R F信号の歪みによって、 通信品質の劣化が生じたり、 最悪の場合、 送信電力装置 1 2の故障や故障を保護するための回路が動作停止する可能性があるため、 その 結果、 通信システムが停止してしまう場合がある。 The conventional over-output protection circuit is composed of the amplitude limiters 6i and 6q. In the CDMA method, transmission power control is performed for each channel, so the total signal of multiple channels is multiplexed. The transmission power may be set to a power exceeding the transmission power limit value of the transmission amplification device 12. In the transmission state exceeding the limit of the transmission power unit 12, the RF signal distortion may cause the communication quality to deteriorate, or in the worst case, the transmission power unit Since the failure or the circuit for protecting the failure may stop operating, the communication system may stop as a result.
また、 C DMA方式では、 複数のチャネルを多重するため、 多数の瞬時電力が 発生する。 そのために、 瞬時電力が発生した場合、 振幅制限部 6 i , 6 qにて、 一定の制限値に制限することにより、 瞬時電力による消費電力の増大、 送信増幅 装置 1 2の歪みから生じる ¾チャネル漏洩電力、 相互変調歪み特性の劣化、 送 信増幅装置 1 2への瞬時電力の入力による故障を保護している。  In the CDMA method, a large number of instantaneous powers are generated because a plurality of channels are multiplexed. Therefore, when instantaneous power is generated, the amplitude limiters 6 i and 6 q limit the power to a certain limit value, thereby increasing the power consumption due to the instantaneous power and causing distortion of the transmission amplification device 12. It protects against leakage power, degradation of intermodulation distortion characteristics, and failure due to instantaneous power input to the transmission amplifier 12.
そのために、 従来では、 図 1 2の従来の変調精度の特性の一例に示すように、 振幅制限の設定時においても変調精度が劣化しないように、 変調精度が 2 [%] 以下になるような過剰な設計をしているのが現状である。  For this reason, in the past, as shown in the example of the conventional modulation accuracy characteristics in Fig. 12, the modulation accuracy was set to 2 [%] or less so that the modulation accuracy did not deteriorate even when the amplitude limit was set. The current situation is overdesign.
本発明の目的は、 チャネル信号の多重時に発生する瞬時電力の発生時やシステ ム上の不具合による送信電力の過出力状態において、 変調精度を劣化させずに送 信増幅装置の歪みによる特性の劣化や故障を、 適切に保護することを可能とした 送信電力制御装置及びその方法を提供することである。 発明の開示  It is an object of the present invention to provide a method for deteriorating characteristics due to distortion of a transmission amplifying apparatus without deteriorating modulation accuracy when instantaneous power is generated when channel signals are multiplexed or when transmission power is excessively output due to a system failure. And to provide a transmission power control device and a method thereof capable of appropriately protecting a power supply and a failure. Disclosure of the invention
本発明による送信電力制御装置は、 複数チャネルの互いに直交する送信データ を各相毎に合成する合成手段と、 これ等各相毎の合成信号を振幅制限する振幅制 限手段と、 この振幅制限手段の出力を直交変調する直交変調手段と、 この直交変 調出力を電力制御を行って送信する送信電力制御手段とを含む送信装置における 送信電力制御装置であって、 前記合成信号の振幅情報から送信電力を検出する手 段と、 この送信電力が第一の閾値以上の場合に前記振幅制限手段の振幅制限を解 除すると共に、 前記送信電力制御手段の利得制御をなし、 この状態において、 前 記送信電力が第二の閾値未満となった場合に前記振幅制限手段の振幅制限及び前 記送信電力制御手段の利得を初期設定値に復帰させるよう制御する制御手段とを 含むことを特徴とする。  A transmission power control device according to the present invention includes: a combining unit that combines transmission data orthogonal to each other in a plurality of channels for each phase; an amplitude limiting unit that limits the amplitude of a combined signal for each of these phases; A transmission power control device including a quadrature modulation means for quadrature modulating an output of the transmission signal, and a transmission power control means for transmitting the quadrature modulation output by performing power control, and transmitting from the amplitude information of the combined signal. Means for detecting power, and when the transmission power is equal to or greater than a first threshold, the amplitude limitation of the amplitude limiting means is released, and the gain control of the transmission power control means is performed. In this state, Control means for controlling the amplitude limitation of the amplitude limiting means and controlling the gain of the transmission power control means to return to the initial set value when the transmission power becomes less than the second threshold value. And it features.
本発明による他の送信電力制御装置は、 複数チャネルの互いに直交する送信デ —タを各相毎に合成する合成手段と、 これ等各相毎の合成信号を振幅制限する振 幅制限手段と、 この振幅制限手段の出力を直交変調する直交変調手段と、 この直 交変調出力を電力制御を行って送信する送信電力制御手段とを含む送信装置にお ける送信電力制御装置であって、 前記合成信号の振幅情報から送信電力を検出す る手段と、 この送信電力が所定閾値以上の場合に前記振幅制限手段の振幅制限値 を前記送信電力に応じて可変制御すると同時に、 前記送信電力制御手段の利得制 御をなすよう制御する制御手段とを含むことを特徴とする。 Another transmission power control apparatus according to the present invention includes: combining means for combining transmission data orthogonal to each other in a plurality of channels for each phase; amplitude limiting means for limiting the amplitude of a combined signal for each of these phases; A quadrature modulating means for quadrature modulating the output of the amplitude limiting means; What is claimed is: 1. A transmission power control device for a transmission device, comprising: a transmission power control unit that performs power control on an intermodulation output and transmits the intermodulation output. Control means for variably controlling the amplitude limiting value of the amplitude limiting means in accordance with the transmission power when is greater than or equal to a predetermined threshold value, and controlling the transmission power control means to perform gain control. I do.
本発明による送信電力制御方法は、 複数チャネルの互いに直交する送信データ を各相毎に合成する合成手段と、 これ等各相毎の合成信号を振幅制限する振幅制 限手段と、 この振幅制限手段の出力を直交変調する直交変調手段と、 この直交変 調出力を電力制御を行つて送信する送信電力制御手段とを含む送信装置における 送信電力制御方法であって、 前記合成信号の振幅情報から送信電力を検出するス テツプと、 この送信電力が第一の閾値以上の場合に前記振幅制限手段の振幅制限 を解除すると共に、前記送信電力制御手段の利得制御をなし、 この状態において、 前記送信電力が第二の閾値未満となつた場合に前記振幅制限手段の振幅制限及び 前記送信電力制御手段の利得を初期設定値に復帰させるよう制御する制御ステツ プとを含むことを特徴とする。  A transmission power control method according to the present invention comprises: combining means for combining transmission data orthogonal to each other in a plurality of channels for each phase; amplitude limiting means for limiting the amplitude of a combined signal for each of these phases; A transmission power control method in a transmission apparatus, comprising: a quadrature modulation unit for quadrature modulating an output of the transmission signal; and a transmission power control unit for transmitting the quadrature modulation output by performing power control. A step of detecting power; and, when the transmission power is equal to or more than a first threshold, canceling the amplitude limitation of the amplitude limiting means and performing gain control of the transmission power control means. A control step of controlling the amplitude of the amplitude limiting means and the gain of the transmission power control means to return to the initial set value when the value of the transmission power control means becomes smaller than the second threshold value. It is characterized by the following.
本発明による他の送信電力制御方法は、 複数チャネルの互いに直交する送信デ 一タを各相毎に合成する合成手段と、 これ等各相毎の合成信号を振幅制限する振 幅制限手段と、 この振幅制限手段の出力を直交変調する直交変調手段と、 この直 交変調出力を電力制御を行って送信する送信電力制御手段とを含む送信装置にお ける送信電力制御方法であって、 前記合成信号の振幅情報から送信電力を検出す るステップと、 この送信電力が所定閾値以上の場合に前記振幅制限手段の振幅制 限値を前記送信電力に応じて可変制御すると同時に、 前記送信電力制御手段の利 得制御をなすよう制御する制御ステップとを含むことを特徴とする。  Another transmission power control method according to the present invention comprises: combining means for combining transmission data orthogonal to each other in a plurality of channels for each phase; amplitude limiting means for limiting the amplitude of a combined signal for each of these phases; A transmission power control method in a transmission device, comprising: a quadrature modulation unit that performs quadrature modulation on an output of the amplitude limiting unit; and a transmission power control unit that transmits the quadrature modulation output by performing power control. Detecting transmission power from signal amplitude information; and, when the transmission power is equal to or greater than a predetermined threshold, variably controlling an amplitude limit value of the amplitude limiting means in accordance with the transmission power. And a control step of controlling to perform the gain control.
本発明の作用を述べる。 振幅制限部から出力されるベースバンド信号の振幅情 報から電力検出部にて送信電力を検出し、無線部内の可変増幅器の利得の制御と、 信号増幅部内の振幅制限部の制限値の制御を行うことによって、 送信増幅装置の 保護を実現する。  The operation of the present invention will be described. The power detector detects the transmission power from the amplitude information of the baseband signal output from the amplitude limiter, and controls the gain of the variable amplifier in the radio unit and the limit value of the amplitude limiter in the signal amplifier. By doing so, the transmission amplifier is protected.
具体的には、 多重合成信号の振幅情報から送信電力を検出してこの送信電力が 第一の閾直以上の場合に振幅制限部の振幅制限を解除すると共に、 可変増幅器で ある送信電力制御部の利得制御をなし、 この状態において、 送信電力が第二の閾 ί直未満となつた場合に振幅制限部の振幅制限及び送信電力制御部の利得を初期設 定値に復帰させるよう制御するのである。 また、 他の例としては、 送信電力が所 定閾値以上の場合に、 振幅制限部の振幅制限値を送信電力に応じて可変制御する と同時に、 送信電力制御部の利得制御をなすよう制御することで、 上記目的を達 成する。 図面の簡単な説明 Specifically, the transmission power is detected from the amplitude information of the multiplexed combined signal, and when the transmission power is equal to or higher than the first threshold, the amplitude limit of the amplitude limiter is released, and the variable amplifier is used. Performs gain control of a certain transmission power control unit.In this state, if the transmission power falls below the second threshold, the amplitude limitation of the amplitude limiting unit and the gain of the transmission power control unit are returned to the initial settings. It is controlled as follows. Further, as another example, when the transmission power is equal to or higher than a predetermined threshold, the amplitude limit value of the amplitude limiting unit is variably controlled according to the transmission power, and at the same time, the gain control of the transmission power control unit is controlled. This achieves the above objectives. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施例の概略構成を示すプロック図である。  FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.
図 2は、 本発明の一実施例の構成の詳細を示すブロック図である。  FIG. 2 is a block diagram showing details of the configuration of one embodiment of the present invention.
図 3は、上位装置より入力されたデータの拡散後のデータ例を示した図である。 図 4は、 多重後のデータ例を示した図である。  FIG. 3 is a diagram showing an example of data after spreading of data input from a higher-level device. FIG. 4 is a diagram showing an example of data after multiplexing.
図 5は、 振幅制限を行ったデータ例を示した図である。  FIG. 5 is a diagram showing an example of data subjected to amplitude limitation.
図 6は、 本発明の一実施例の動作を示すフローチヤ一トである。  FIG. 6 is a flowchart showing the operation of one embodiment of the present invention.
図 7は、 振幅制限部の制陋直に対する変調精度と隣接チャネル漏洩電力の一例 を示すグラフである。  FIG. 7 is a graph showing an example of modulation accuracy and adjacent channel leakage power with respect to control of the amplitude limiter.
図 8は、 本発明の他の実施例の構成を示すブロック図である。  FIG. 8 is a block diagram showing a configuration of another embodiment of the present invention.
図 9は、 本発明の他の実施例の動作を示すフローチヤ一トである。  FIG. 9 is a flowchart showing the operation of another embodiment of the present invention.
図 1 0は、 本発明の他の実施例のメモリ内のテーブルを示すダラフである。 図 1 1は、 従来の構成を示すブロック図である。  FIG. 10 is a diagram illustrating a table in a memory according to another embodiment of the present invention. FIG. 11 is a block diagram showing a conventional configuration.
図 1 2は、 従来の振幅制限部の制限値に対する変調精度と隣接チャネル漏洩電 力の一例を示すグラフである。  FIG. 12 is a graph showing an example of the modulation accuracy and the adjacent channel leakage power with respect to the limit value of the conventional amplitude limiter.
なお、 符号 1は、 無線基地局を示す。 符号 2は、 信号処理部を示す。 符号 3は、 無線部を示す。 符号 4は、 制御部を示す。 符号 5は、 多重部を示す。 符号 6は、 振幅制限部を示す。 符号 7は、 ロールオフフィルタを示す。 符号 8は、 直交変調 部を示す。 符号 9, 1 5は、 DZA変換部を示す。 符号 1 0は、 周波数変換部を 示す。 符号 1 1は、 可変増幅部を示す。 符号 1 2は、 送信増幅装置を示す。 符号 1 3は、 振幅値算出 (電力検出) 部を示す。 符号 1 4は、 送信電力制御部を示す。 符号 1 6は、 メモリを示す。 発明を実施するための最良の形態 Note that reference numeral 1 indicates a radio base station. Reference numeral 2 indicates a signal processing unit. Reference numeral 3 indicates a radio unit. Reference numeral 4 indicates a control unit. Reference numeral 5 indicates a multiplexing unit. Reference numeral 6 indicates an amplitude limiting unit. Reference numeral 7 denotes a roll-off filter. Reference numeral 8 denotes a quadrature modulation unit. Reference numerals 9 and 15 indicate a DZA converter. Reference numeral 10 indicates a frequency conversion unit. Reference numeral 11 indicates a variable amplifier. Reference numeral 12 indicates a transmission amplifier. Reference numeral 13 denotes an amplitude value calculation (power detection) unit. Reference numeral 14 indicates a transmission power control unit. Reference numeral 16 denotes a memory. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 図面を参照しつつ本発明の実施例につき詳述する。 図 1は本発明の実 施例が適用される無線基地局の概略を示す図である。 図 1において、 無線基地局 1は、 その上位装置から入力されたデータを拡散、 多重を行い、 直交変調し出力 する信号処理部 2と、 信号処理部 2から入力された中間周波数信号 (以後、 I F 信号とする) をシステム運用に用いる高周波 (以後、 R F信号とする) へ周波数 変換し出力する無線部 3と、 信号処理部 2のベースバンド信号の振幅値から算出 した送信電力値から信号処理部 2の振幅制限値と、 無線部 3の利得を制御する制 御部 4とから構成される。 なお、 5はアンテナである。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram schematically showing a radio base station to which an embodiment of the present invention is applied. In FIG. 1, a radio base station 1 spreads and multiplexes data input from a higher-level device, performs quadrature modulation and outputs the signal, and an intermediate frequency signal input from the signal processing unit 2 (hereinafter, referred to as Radio signal 3 that converts the IF signal into a high frequency (hereinafter referred to as RF signal) used for system operation and outputs the signal, and signal processing from the transmission power value calculated from the amplitude value of the baseband signal of the signal processing unit 2. It comprises an amplitude limit value of the section 2 and a control section 4 for controlling the gain of the radio section 3. 5 is an antenna.
図 2は図 1の各部の詳細を示すブロック図である。 図 2において、 信号処理部 2は、 拡散された各チャネルデータを I相、 Q相毎に多重する多重部 5 i , 5 q と、 多重によって生じる瞬時電力を設定された制限値に制限することによって、 瞬時電力による消費電力の増加や送信増幅装置 1 2の歪みを保障する振幅制限部 6 i , 6 qと、 運用システムに対応したナイキス卜理論のロールオフ係数を満た し、 かつ高調波を減衰するロールオフフィルタ 7 i, 7 qと、 I相、 Q相のベー スパンド信号を直交変調する直交変調部 8と、 直交変調したベースバンド信号を I F信号に変換する DZA変換部 9とから構成される。  FIG. 2 is a block diagram showing details of each unit in FIG. In FIG. 2, the signal processing unit 2 includes a multiplexing unit 5 i and 5 q for multiplexing the spread channel data for each of the I and Q phases, and limiting the instantaneous power generated by the multiplexing to a set limit value. Thus, the amplitude limiters 6 i and 6 q that guarantee the increase in power consumption due to the instantaneous power and the distortion of the transmission amplifier 12 and the Nyquist theory roll-off coefficient corresponding to the operation system and satisfy harmonics Consists of attenuating roll-off filters 7i, 7q, quadrature modulator 8 for quadrature modulating I-phase and Q-phase baseband signals, and DZA converter 9 for converting quadrature-modulated baseband signals to IF signals Is done.
無線部 3は、 信号処理部 2より入力される I F信号を R F信号へ変換する周波 数変換部 1 0と、 制御部 4からの制御電圧によって R F信号の電力を可変させる 可変増幅器 1 1と、 アンテナ 5から送信するために R F信号を固定の利得で、 規 定の電力まで増幅する送信増幅装置 1 2と力 ら構成される。  The radio unit 3 includes a frequency conversion unit 10 that converts an IF signal input from the signal processing unit 2 into an RF signal, a variable amplifier 11 that varies the power of the RF signal by a control voltage from the control unit 4, It comprises a transmission amplifying device 12 and a power for amplifying an RF signal with a fixed gain to a specified power for transmission from the antenna 5.
制御部 4は、 信号処理部 3から入力されたベースバンド信号の振幅情報から、 アンテナ 5より送信する電力値を検出する電力検出部 1 3と、 その電力値によつ て可変増幅器 1 1の利得を変更し、 かつ振幅制限部 6 i , 6 qの制限値を変更す る送信電力制御部 1 4と、 言電力制御部 1 4からの制御データを 値に変換 し可変増幅器 1 1へ出力する D/A変換部 1 5と力 ら構成される。  The control unit 4 includes a power detection unit 13 that detects a power value transmitted from the antenna 5 from the amplitude information of the baseband signal input from the signal processing unit 3, and a variable amplifier 11 based on the power value. A transmission power control unit 14 that changes the gain and limits the amplitude limiters 6 i and 6 q, and converts control data from the power control unit 14 to a value and outputs it to the variable amplifier 11 D / A conversion unit 15 and force.
本実施例の動作にっレ、て図 2〜図 7を参照して説明する。 図 3は拡散後のデー タ例を示した図、 図 4は多重後のデータ例を示した図、 図 5は振幅制限を行った データ例を示した図、 図 6は本実施例の動作を示すフローチャート、 図 7は制限 値を設定している場合と、 解除している場合の変調精度と消費電力の特性の一例 を示した図である。 The operation of the present embodiment will be described with reference to FIGS. Fig. 3 shows an example of the data after spreading, Fig. 4 shows an example of the data after multiplexing, and Fig. 5 shows the amplitude limitation. Fig. 6 shows a flow chart showing the operation of this embodiment, Fig. 6 shows an example of the characteristics of modulation accuracy and power consumption when the limit value is set and when the limit value is released FIG.
まず、 信号処理部 2は上位装置からのデータを拡散し (図 2中には、 本発明と 直接関係するものではないので省略) 、 多重部 5 i, 5 qにて、 I相、 Q相毎に 多重を行う。 図 3に示す多重部 5 i , 5 qに入力されるデータが多重されること によって、 図 4に示す多重信号に変換される。 振幅制限部 6 i , 6 qは、 多重信 号に生じる瞬時電力を図 5の点線で示す制限値に制限することによって、 斜線部 分を信号として出力する。  First, the signal processing unit 2 spreads data from a higher-level device (it is omitted in FIG. 2 because it is not directly related to the present invention), and the multiplexing units 5 i and 5 q transmit the I and Q phases. Multiplex each time. By multiplexing the data input to the multiplexing units 5 i and 5 q shown in FIG. 3, it is converted into a multiplexed signal shown in FIG. The amplitude limiters 6 i and 6 q output the hatched portions as signals by limiting the instantaneous power generated in the multiplexed signal to the limit value indicated by the dotted line in FIG.
その後、 ロールオフフィルタ 7 i, 7 qを通過した後、 I相、 Q相の直交変調 を行い D/A変換部 8にて、 I F信号に変換することによって、 CDMA方式の 変調波を生成し無線部 3に出力する。  Then, after passing through the roll-off filters 7 i and 7 q, the I / Q quadrature modulation is performed, and the D / A converter 8 converts it to an IF signal to generate a CDMA modulated wave. Output to wireless unit 3.
次に、 図 2に示す無線部 3の動作を説明する。 無線部 3は、 信号処理部 2の D ZA変換部 9が出力した I F信号を周波数変換部 10で RF信号に周波数変換し、 制御部 4によって利得制御された可変増幅器 1 1と送信増幅装置 12にて増幅さ れ、 アンテナ 5より各端末に送信を行う。  Next, the operation of the radio unit 3 shown in FIG. 2 will be described. The radio section 3 converts the IF signal output from the DZA conversion section 9 of the signal processing section 2 into an RF signal by the frequency conversion section 10 and controls the variable amplifier 11 and the transmission amplifier 12 whose gain is controlled by the control section 4. The signal is amplified by and transmitted from antenna 5 to each terminal.
次に、 図 2の制御部 4の動作を図 6のフローチャートを交え説明する。 制御部 4は、 まず電力検出部 13にて、 振幅制限部 6 i, 6 q後の I及び Q相のベース バンド信号の振幅値を検出し (ステップ A 1) 、 計算式である  Next, the operation of the control unit 4 in FIG. 2 will be described with reference to the flowchart in FIG. The control unit 4 first detects the amplitude values of the I and Q phase baseband signals after the amplitude limiting units 6 i and 6 q in the power detection unit 13 (step A 1), and calculates the equation.
f (I c h2 + Qc h2) …… (1) f (I ch 2 + Qc h 2 ) …… (1)
から振幅値を算出し、 振幅値を 1 o g値に変換した値と、 実際に送信している電 力との差分 [XdB] の補 ΙΕΛ[Ιえ送信電力 A [dBm] を、 計算式である Calculate the amplitude value from the following formula, and calculate the difference between the value obtained by converting the amplitude value to 1 og value and the actual transmitted power [XdB]. is there
送信電力 A [dBm] =10X 1 o g (振幅値) +XdB …… (2) により計算する。  Transmission power A [dBm] = 10X 1 og (amplitude value) + XdB Calculated from (2).
この動作を任意の回数行い、 その平均をとることによって、 精度の高い送信電 力を得る (ステップ A 2) 。 次に、 送信電力制御部 14にて、 送信電力 A [dB m] が Y [dBm] 以上かどうか判定を行い、 Y [dBm] 未満の場合には、 再 度データの取り込みを行い、 送信電力 A [d Bm] が Y [dBm] 以上にならな ければ、 この動作を繰り返す (ステップ A 3) 。 この状態を通常状態での運用と する。 This operation is performed an arbitrary number of times, and the average is taken to obtain highly accurate transmission power (step A2). Next, the transmission power control unit 14 determines whether the transmission power A [dBm] is equal to or greater than Y [dBm]. If A [d Bm] does not exceed Y [dBm], this operation is repeated (step A3). This state is referred to as normal operation. I do.
次に、 通常状態において、 上記電力から送信電力 A [d Bm] が Y [d Bm] 以上になった場合 (ステップ A 3 ) 、 図 5のように、 振幅制限部 6 i , 6 qの制 限値を解除し、瞬時電力をそのまま通過できるように変更する (ステップ A4)。 その後、 次の計算式である  Next, in the normal state, if the transmission power A [d Bm] becomes equal to or more than Y [d Bm] from the above power (step A3), as shown in FIG. 5, the control of the amplitude limiters 6 i and 6 q is performed. Release the limit value and change it so that it can pass the instantaneous power as it is (step A4). Then, the following formula
Y [d Bm] —A [d Bm] +G [d B] …… (3)  Y [d Bm] —A [d Bm] + G [d B] …… (3)
(ここに、 G =可変増幅器 1 1の初期利得)  (Where, G = initial gain of variable amplifier 1 1)
から送信増幅装置 12の送信電力を Y [d Bm] に抑えるために、 可変増幅器 1 1の利得を算出し、 制御データを DZA変換部 15へ出力する。 Dノ A変換部 1 5にて電圧値に変換され可変増幅部 1 1の利得を変更する (ステップ A 5) 。 可 変増幅器 1 1で送信電力を抑える状態を過出力状態とする。 In order to suppress the transmission power of the transmission amplifier 12 to Y [d Bm], the gain of the variable amplifier 11 is calculated, and the control data is output to the DZA converter 15. The voltage is converted into a voltage value by the D / A conversion unit 15 and the gain of the variable amplification unit 11 is changed (step A5). The state where the transmission power is suppressed by the variable amplifier 11 is the over-output state.
再び、 ベースバンド信号の振幅値を取り込み送信電力を算出する (ステップ A 6, A 7) 。 上記電力が Z [d Bm] 以上の状態の場合 (ステップ A 8) 、 上記 と同様に、 可変増幅器 1 1の利得を変更し (ステップ A 5) 、 この動作を繰り返 す。  Again, the transmission power is calculated by taking in the amplitude value of the baseband signal (steps A6 and A7). If the power is equal to or higher than Z [dBm] (step A8), the gain of the variable amplifier 11 is changed (step A5), and the operation is repeated.
次に、 過出力状態において、 送信電力 A [d Bm] が Z [d Bm] 未満になつ た場合 (ステップ A 8) 、 振幅制限部 6 i, 6 qの制限値と、 可変増幅器 1 1の 利得を初期値に戻し (ステップ A9, A10) 、 振幅値の取り込みに戻る (ステ ップ A1) 。  Next, in the overpower state, if the transmission power A [d Bm] becomes less than Z [d Bm] (step A8), the limiting values of the amplitude limiting units 6i and 6q and the variable amplifier 11 Return the gain to the initial value (Steps A9 and A10), and return to the acquisition of the amplitude value (Step A1).
上記動作のステップ A 3, A 8では、 運用状態を切り替える電力に差を持たせ ることから、 連続的な切り替え動作が起こさないために、 システムの通信品質の 劣化を抑えることができる。 また、 ステップ A4, A9の振幅制限部 6 i, 6 q の制限値を制御について、 図 7を用いて説明する。 図 7は制限値を設定している 場合と、 解除している場合の変調精度と隣接チャネル漏洩電力の特性の一例を示 した図である。 制限値を設定している場合 (通常状態) には、 送信電力が高くな るほど、振幅制限部 6 i, 6 qによって制限されるために、変調精度が悪化する。 46 [dBm]以上となると、変調精度が 3GPPで規定されている 17. 5 [%] 以上となり、 規定値を割ることから、 通信品質が劣化する。  In steps A3 and A8 of the above operation, since there is a difference in the power for switching the operation state, continuous switching operation does not occur, so that deterioration of the communication quality of the system can be suppressed. The control of the limit values of the amplitude limiters 6 i and 6 q in steps A4 and A9 will be described with reference to FIG. FIG. 7 is a diagram showing an example of the characteristics of the modulation accuracy and the adjacent channel leakage power when the limit value is set and when the limit value is cancelled. When the limit value is set (normal state), as the transmission power increases, the modulation accuracy deteriorates because it is limited by the amplitude limiters 6i and 6q. If it exceeds 46 [dBm], the modulation accuracy will exceed 17.5 [%] specified by 3GPP and will fall below the specified value, degrading the communication quality.
そのために、 振幅制限を解除することによって、 変調精度を 5 [%] へ改善さ せる。 ただし、 隣接チャネル漏洩電力が 52 [dB] から 46 [dB] に劣化す るが、 3 GP Pで規定されている隣接チャネル漏洩電力は 45 [dB] 以上を満 足するので、 通信品質が劣化することを防止することが可能となる。 以上のよう に、 隣接チャネル漏洩電力と変調精度のトレードオフを図りながら制御する。 こ の場合、 標準点を記憶しておきダイナミックに制御を行う。 Therefore, the modulation accuracy was improved to 5% by removing the amplitude limit. Let However, the adjacent channel leakage power deteriorates from 52 [dB] to 46 [dB], but the adjacent channel leakage power specified in 3GPP satisfies 45 [dB] or more, so the communication quality deteriorates. Can be prevented. As described above, control is performed while trying to trade off between adjacent channel leakage power and modulation accuracy. In this case, the standard point is stored and the control is performed dynamically.
以下、 図 2、 図 6を併せ参照して、 本実施例による過出力の動作の具体例を説 明する。 各ブロックの特性として、 可変増幅器 1 1の初期利得 (G [dB] ) を 10 [dB] 、 電力検出部 13の実際の送信電力との差分の補正値 (X [dB] ) を 20 [dB] 、 通常状態から過出力状態への切り替え電力 (Y [dBm] ) を 45 [dBm] 、 過出力状態から通常状態への切り戻し電力 (Z [dBm] ) を 43 [dBm] とする。  Hereinafter, a specific example of the over-output operation according to the present embodiment will be described with reference to FIGS. As the characteristics of each block, the initial gain (G [dB]) of the variable amplifier 11 is 10 [dB], and the correction value (X [dB]) of the difference from the actual transmission power of the power detector 13 is 20 [dB]. ], The switching power from the normal state to the over-output state (Y [dBm]) is 45 [dBm], and the switching power from the over-output state to the normal state (Z [dBm]) is 43 [dBm].
まず、通常状態において、ベースバンド信号の振幅値の平均が I相、 Q相共に" 1 00"の場合、 電力検出部 13にて、 式 (1) より送信電力が 41. 5 [dBm] と算出される (ステップ A 1, A2) 。 この電力は、 45 [dBm] 以下である ために、 再び信号の取り込みに戻る (ステップ A 3) 。  First, in the normal state, when the average of the amplitude values of the baseband signal is “100” for both the I-phase and the Q-phase, the power detection unit 13 determines that the transmission power is 41.5 [dBm] from Equation (1). It is calculated (steps A1, A2). Since this power is less than 45 [dBm], it returns to signal acquisition again (step A3).
次に、 ベースバンド信号の振幅 の平均が I相、 Q相共に" 300"へ変動した 場合、 電力検出部 13にて送信電力 46. 3 [dBm] が検出され (ステップ A 1, A2) 、 45 [dBm]以上であるので (ステップ A3) 、 振幅制限部 6 i , 6 qの制限値を解除する (ステップ A 4) 。 また、 計算式 (3) より可変増幅器 1 1の利得を 8. 7 [dB] になるように、 DZA変換部 15からの制御電圧に 設定される (ステップ A 5) 。 そして、 過出力状態に切り替わる。  Next, when the average of the amplitude of the baseband signal fluctuates to “300” for both the I and Q phases, the power detector 13 detects 46.3 [dBm] of the transmission power (steps A 1 and A 2). Since it is not less than 45 [dBm] (step A3), the limit values of the amplitude limiters 6i and 6q are released (step A4). Further, the control voltage from the DZA converter 15 is set so that the gain of the variable amplifier 11 becomes 8.7 [dB] according to the formula (3) (step A5). Then, it switches to the over-output state.
次に、 ベースバンド信号の振幅値の平均が I相、 Q相共に" 400"へ変動した 場合、 送信電力 47. 5 [dBm] が検出され (ステップ A6, A 7) 、 送信電 力が 43 [dBm] 以上であるために (ステップ A8) 、 制御値は解除のまま、 可変増幅器 1 1の利得を計算式 (3) より 7. 5 [dB] になるように、 D/A 変換部 15より制御電圧を出力する (ステップ A5) 。  Next, when the average of the amplitude values of the baseband signal fluctuates to “400” for both the I and Q phases, a transmission power of 47.5 [dBm] is detected (steps A6 and A7), and the transmission power becomes 43 dB. Since it is equal to or greater than [dBm] (Step A8), the D / A converter 15 is set so that the gain of the variable amplifier 11 is 7.5 [dB] according to the calculation formula (3) with the control value released. The control voltage is output (step A5).
次に、 ベースバンド信号の振幅 の平均が I相、 Q相共に" 120"へ変動した 場合、 送信電力 42. 3 [dBm] が検出され (ステップ A6, A 7) 、 送信電 力が 43 [dBm] 未満であるので (ステップ A 8) 、 制御値、 可変増幅器 1 1 の利得を初期 ί直へ戻す (ステップ A 9, A 10) 。 そして、 通常状態に切り替え るのである。 Next, when the average of the amplitude of the baseband signal fluctuates to “120” for both the I and Q phases, a transmission power of 42.3 [dBm] is detected (steps A6 and A7), and the transmission power becomes 43 [dBm]. dBm] (step A8), the control value, the variable amplifier 1 1 The initial gain to the initial value (steps A9, A10). Then, it switches to the normal state.
図 8は本発明の他の実施例の構成を示すプロック図であり、 図 1と同等部分は 同一符号にて示している。 図 8に示すように、 本実施例では、 制御部 4にメモリ 16を設けており、 他の構成は図 1の例と同じである。 図 9はその動作を示すフ ローチャート、 図 10は図に示したメモリ 16内の振幅制限部 6 i, 6 qの制限 値の設定テーブルを示すグラフである。本発明の他の実施例は、振幅制限部 6 i, 6 qの制限値をダイナミックに変動させることにより、 変調精度の劣化を抑止し たものである。  FIG. 8 is a block diagram showing the configuration of another embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 8, in the present embodiment, a memory 16 is provided in the control unit 4, and the other configuration is the same as the example of FIG. FIG. 9 is a flow chart showing the operation, and FIG. 10 is a graph showing a setting table of the limit values of the amplitude limiters 6 i and 6 q in the memory 16 shown in the figure. Another embodiment of the present invention suppresses deterioration of modulation accuracy by dynamically changing the limit values of the amplitude limiters 6i and 6q.
制御部 4は、 まず電力検出部 13にて、 振幅制限部 6 i, 6 後の1相、 Q相 のベースバンド信号の振幅^:を検出し (図 9のステップ A 1) 、 先の実施例と同 様に、 送信電力を得る (ステップ A2) 。  The control unit 4 first detects the amplitude ^: of the baseband signal of the 1-phase and the Q-phase after the amplitude limiting units 6 i and 6 by the power detection unit 13 (step A 1 in FIG. 9), and As in the example, obtain the transmission power (step A2).
次に、 送信電力制御部 14にて、 送信電力 A [dBm] が Y [d Bm] 以上か どう力判定を行い、 Y [dBm] 未満の場合には、 振幅制限部の制限値、 可変増 幅器 1 1の利得を初期化し、 再度振幅イ直の検出を行い、 送信電力 A [dBm] が Y [dBm] 以上にならなければ、 この動作を繰り返す (ステップ A3) 次に、 上記電力から送信電力 A [dBm] が Y [dBm] 以上になった場合、 振幅制限部 6 i, 6 qの制限^ ίを検出した電力に対応した制限 をメモリ 16内 のテーブルから読み込み設定する (ステップ A 4) 。 その後、 式 (1) から送信 増幅装置 12の送信電力を Y [dBm] に抑えるために、 可変増幅器 11の利得 を算出し、 制御データを DZA変換部 15へ出力する (ステップ A5) 。 再びス テツプ A 6に戻り、 上記動作を繰り返す。  Next, the transmission power control unit 14 determines whether the transmission power A [dBm] is equal to or greater than Y [dBm]. If the transmission power A is less than Y [dBm], the limit value of the amplitude limiting unit and the variable increase are determined. Initialize the gain of the amplifier 11 and detect the amplitude directly again. If the transmission power A [dBm] does not exceed Y [dBm], repeat this operation (step A3). When the transmission power A [dBm] is equal to or greater than Y [dBm], the limit corresponding to the power detected for the limit ^ ί of the amplitude limiters 6i and 6q is read from the table in the memory 16 and set (step A). Four) . After that, the gain of the variable amplifier 11 is calculated and the control data is output to the DZA conversion unit 15 in order to suppress the transmission power of the transmission amplification device 12 to Y [dBm] from Expression (1) (step A5). Returning to step A6, the above operation is repeated.
メモリ 16内のテ一ブノレを使用することによって、 高速の送信電力制御が可能 となり、 かつメモリ 16内のテーブルによって、 通過させる瞬時電力を任意の電 力に設定できるため、 隣接チャネル漏洩電力と変調精度のトレードオフを図りな がら制御することが可能となる。 この場合、 標準点を記憶しておき、 テーブルを 持ってダイナミックに制御する。 産業上の利用可能性 本発明による第 1の効果は、送信増幅装置の歪みや故障から保護し、その結果、 通信システムが停止することを防ぐことができることである。 その理由は、 送信 電力を検出し、 可変増幅器を用いて、 送信電力増幅装置の出力をある一定の電力 に抑えることができるためである。 By using the table in the memory 16, high-speed transmission power control is possible, and the instantaneous power to be passed can be set to any power by the table in the memory 16, so that adjacent channel leakage power and modulation It is possible to control while trying to trade off accuracy. In this case, the standard point is stored and the table is dynamically controlled with a table. Industrial applicability A first effect of the present invention is that the transmission amplifier can be protected from distortion and failure, and as a result, the communication system can be prevented from being stopped. The reason is that the transmission power can be detected and the output of the transmission power amplifying device can be suppressed to a certain constant power by using a variable amplifier.
また、 第 2の効果は、 通信品質の劣化を防止することができることである。 そ の理由は、 通常の送信電力の状態では、 振幅制限を行い瞬時電力を抑止すること によって、 B舜時電力による消費電力の増加を抑止し、 また、 送信増幅装置の歪み による隣接チャネル漏洩電力や相互変調歪み特性の劣化を防止し、 送信電力の過 出力状態では、 可変増幅器にて送信増幅装置の出力電力を一定の電力に抑えると 共に、 振幅制限部の制限値を解除することによって、 変調精度の劣化や、 送信増 幅装置の歪みを防止することによって、 通信品質の劣化を防止することが可能で となるからである。  The second effect is that communication quality can be prevented from deteriorating. The reason is that under normal transmission power conditions, the amplitude is limited and the instantaneous power is suppressed, thereby suppressing the increase in power consumption due to the Bhun-shun power, and the adjacent channel leakage power due to the distortion of the transmission amplifier. In the case of transmission power over-output, the output power of the transmission amplifier is suppressed to a constant power by a variable amplifier and the limit value of the amplitude limiter is released. This is because communication quality can be prevented from deteriorating by preventing deterioration of modulation accuracy and distortion of the transmission amplifier.

Claims

請求の範囲 The scope of the claims
1 . 複数チャネルの互いに直交する送信データを各相毎に合成する合成手 段と、 これ等各相毎の合成信号を振幅制限する振幅制限手段と、 この振幅制限手 段の出力を直交変調する直交変調手段と、 この直交変調出力を電力制御を行って 送信する送信電力制御手段とを含む送信装置における送信電力制御装置であって、 前記合成信号の振幅情報から送信電力を検出する手段と、 1. Combining means for combining the mutually orthogonal transmission data of a plurality of channels for each phase, amplitude limiting means for limiting the amplitude of the combined signal for each of these phases, and quadrature modulating the output of the amplitude limiting means A quadrature modulation unit, a transmission power control device in a transmission device including a transmission power control unit that performs power control and transmits the quadrature modulation output, and a unit that detects transmission power from amplitude information of the combined signal;
この送信電力が第一の閾値以上の場合に前記振幅制限手段の振幅制限を解除す ると共に、 前記送信電力制御手段の利得制御をなし、 この状態において、 前記送 信電力が第二の閾値未満となった場合に前記振幅制限手段の振幅制限及び前記送 信電力制御手段の利得を初期設定値に復帰させるよう制御する制御手段と、 を含むことを特徴とする送信電力制御装置。  When the transmission power is equal to or higher than the first threshold, the amplitude limit of the amplitude limiter is released, and the gain control of the transmission power controller is performed. In this state, the transmission power is lower than the second threshold. Control means for controlling the amplitude limitation of the amplitude limiting means and the gain of the transmission power control means to return to an initial set value when the following condition is satisfied.
2 . 前記第一の閾値と第二の閾値とは異なる値に設定されていることを特 徴とする請求項 1記載の送信電力制御装置。  2. The transmission power control device according to claim 1, wherein the first threshold value and the second threshold value are set to different values.
3 . 前記制御手段は、 送信電力が一定となるよう前記送信電力制御手段の 利得制御を行うことを特徴とする請求項 1または 2記載の送信電力制御装置。  3. The transmission power control device according to claim 1, wherein the control unit performs gain control of the transmission power control unit so that transmission power is constant.
4 . 複数チャネルの互レ、に直交する送信データを各相毎に合成する合成手 段と、 これ等各相毎の合成信号を振幅制限する振幅制限手段と、 この振幅制限手 段の出力を直交変調する直交変調手段と、 この直交変調出力を電力制御を行って 送信する送信電力制御手段とを含む送信装置における送信電力制御装置であって、 前記合成信号の振幅情報から送信電力を検出する手段と、  4. A synthesizing means for synthesizing transmission data orthogonal to each other for each phase for each phase, an amplitude limiting means for limiting the amplitude of a synthesized signal for each phase, and an output of the amplitude limiting means. What is claimed is: 1. A transmission power control apparatus for a transmission apparatus, comprising: a quadrature modulation unit for performing quadrature modulation; and a transmission power control unit for performing power control on the quadrature modulation output and transmitting the quadrature modulation output. Means,
この送信電力が所定閾値以上の場合に前記振幅制限手段の振幅制限値を前記送 信電力に応じて可変制御すると同時に、 前記送信電力制御手段の利得制御をなす よう制御する制御手段と、  Control means for variably controlling the amplitude limit value of the amplitude limiting means according to the transmission power when the transmission power is equal to or greater than a predetermined threshold, and controlling the transmission power control means to perform gain control;
を含むことを特徴とする送信電力制御装置。 A transmission power control device comprising:
5 . 前記制御手段は、 前記振幅制限手段の振幅制限値の制御を、 予め定め られたテーブルを参照しつつなすようにしたことを特徴とする請求項 4記載の送 信電力制御装置。  5. The transmission power control device according to claim 4, wherein the control unit controls the amplitude limit value of the amplitude limit unit while referring to a predetermined table.
6 . 前記送信データは C DMA通信方式のデータであることを特徴とする 請求項 1から 5いずれか記載の送信電力制御装置。 6. The transmission data is data of a CDMA communication system. The transmission power control device according to any one of claims 1 to 5.
7 . 請求項 1から 6いずれか記載の送信電力制御装置を含むことを特徴と する C DMA送信装置。  7. A CDMA transmission device comprising the transmission power control device according to any one of claims 1 to 6.
8 . 複数チャネルの互いに直交する送信データを各相毎に合成する合成手 段と、 これ等各相毎の合成信号を振幅制限する振幅制限手段と、 この振幅制限手 段の出力を直交変調する直交変調手段と、 この直交変調出力を電力制御を行って 送信する送信電力制御手段とを含む送信装置における送信電力制御方法であって、 前記合成信号の振幅情報から送信電力を検出するステップと、  8. Combining means for combining mutually orthogonal transmission data of a plurality of channels for each phase, amplitude limiting means for limiting the amplitude of the combined signal for each of these phases, and quadrature modulating the output of the amplitude limiting means A transmission power control method in a transmission device, comprising: a quadrature modulation unit; and a transmission power control unit that performs power control and transmits the quadrature modulation output, wherein a step of detecting transmission power from amplitude information of the combined signal;
この送信電力が第一の閾値以上の場合に前記振幅制限手段の振幅制限を解除す ると共に、 前記送信電力制御手段の利得制御をなし、 この状態において、 前記送 信電力が第二の閾値未満となった場合に前記振幅制限手段の振幅制限及び前記送 信電力制御手段の利得を初期設定値に復帰させるよう制御する制御ステップとを 含むことを特徴とする送信電力制御方法。  When the transmission power is equal to or higher than the first threshold, the amplitude limit of the amplitude limiter is released, and the gain control of the transmission power controller is performed. In this state, the transmission power is lower than the second threshold. And a control step of controlling the amplitude of the amplitude limiting means and the gain of the transmission power control means to return to an initial set value when the following condition is satisfied.
9 . 前記第一の閾値と第二の閾値とは異なる値に設定されていることを特 徴とする請求項 8記載の送信電力制御方法。  9. The transmission power control method according to claim 8, wherein the first threshold and the second threshold are set to different values.
1 0 . 前記制御ステップは、 送信電力が一定となるよう前記送信電力制御 手段の利得制御を行うことを特徴とする請求項 8または 9記載の送信電力制御方 法。  10. The transmission power control method according to claim 8, wherein the control step performs gain control of the transmission power control means so that transmission power is constant.
1 1 . 複数チャネルの互いに直交する送信データを各相毎に合成する合成 手段と、 これ等各相毎の合成信号を振幅制限する振幅制限手段と、 この振幅制限 手段の出力を直交変調する直交変調手段と、 この直交変調出力を電力制御を行つ て送信する送信電力制御手段とを含む送信装置における送信電力制御方法であつ て、  11. Synthesizing means for synthesizing mutually orthogonal transmission data of a plurality of channels for each phase, amplitude limiting means for limiting the amplitude of a synthesized signal for each of these phases, and quadrature for orthogonally modulating the output of the amplitude limiting means A transmission power control method in a transmission device, comprising: a modulation unit; and a transmission power control unit configured to transmit the quadrature modulation output by performing power control,
前記合成信号の振幅情報から送信電力を検出するステップと、  Detecting transmission power from the amplitude information of the synthesized signal;
この送信電力が所定閾値以上の場合に前記振幅制限手段の振幅制限値を前記送 信電力に応じて可変制御すると同時に、 前記送信電力制御手段の利得制御をなす よう制御する制御ステップと、  A control step of variably controlling the amplitude limit value of the amplitude limiting means according to the transmission power when the transmission power is equal to or greater than a predetermined threshold, and controlling the gain control of the transmission power control means.
を含むことを特徴とする送信電力制御方法。 A transmission power control method comprising:
1 2 . 前記送信データは C DMA通信方式のデータであることを特徴とす る請求項 8から 1 1いずれか記載の送信電力制御方法。 1 2. The transmission data is data of a CDMA communication system. The transmission power control method according to any one of claims 8 to 11, wherein
PCT/JP2003/002571 2002-03-06 2003-03-05 Transmission power control apparatus and method thereof WO2003081791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-059645 2002-03-06
JP2002059645A JP3662888B2 (en) 2002-03-06 2002-03-06 Transmission power control apparatus and method

Publications (1)

Publication Number Publication Date
WO2003081791A1 true WO2003081791A1 (en) 2003-10-02

Family

ID=28449042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002571 WO2003081791A1 (en) 2002-03-06 2003-03-05 Transmission power control apparatus and method thereof

Country Status (2)

Country Link
JP (1) JP3662888B2 (en)
WO (1) WO2003081791A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953452B2 (en) * 2003-10-21 2007-08-08 松下電器産業株式会社 Nonlinear circuit, wireless communication apparatus, and nonlinear amplification method
JP3978433B2 (en) 2004-02-12 2007-09-19 松下電器産業株式会社 Transmission power control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136210A (en) * 1997-10-31 1999-05-21 Kokusai Electric Co Ltd Transmission peak factor suppression circuit
JP2001119371A (en) * 1999-10-18 2001-04-27 Hitachi Kokusai Electric Inc Cdma transmitter
JP2001285088A (en) * 2000-03-31 2001-10-12 Oki Electric Ind Co Ltd Transmitter
JP2001333044A (en) * 2000-03-13 2001-11-30 Matsushita Electric Ind Co Ltd Transmitter and gain compensating method
JP2002044054A (en) * 2000-07-25 2002-02-08 Hitachi Kokusai Electric Inc Combination carrier transmission circuit with limiter circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136210A (en) * 1997-10-31 1999-05-21 Kokusai Electric Co Ltd Transmission peak factor suppression circuit
JP2001119371A (en) * 1999-10-18 2001-04-27 Hitachi Kokusai Electric Inc Cdma transmitter
JP2001333044A (en) * 2000-03-13 2001-11-30 Matsushita Electric Ind Co Ltd Transmitter and gain compensating method
JP2001285088A (en) * 2000-03-31 2001-10-12 Oki Electric Ind Co Ltd Transmitter
JP2002044054A (en) * 2000-07-25 2002-02-08 Hitachi Kokusai Electric Inc Combination carrier transmission circuit with limiter circuit

Also Published As

Publication number Publication date
JP2003258654A (en) 2003-09-12
JP3662888B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP4824246B2 (en) Dynamic bias for RF power amplifiers
KR100367433B1 (en) Transmitter
US7039373B2 (en) Wireless communication apparatus and transmission power control method thereof
KR100649290B1 (en) Cdma signal transmission control
KR20020048990A (en) Multicarrier transmitter and multicarrier transmission method
JP2001044929A (en) Base station transmitter and cdma mobile communication system using the same
AU713355B2 (en) Apparatus for eliminating external interference signals in code division multiple access mobile phone and method therefor
JP3834299B2 (en) Transmitting apparatus, radio base station, and clipping method
WO2003081791A1 (en) Transmission power control apparatus and method thereof
WO2006065462A2 (en) A transmitter, a transceiver and a method of controlling a transmit power therefor
EP1569350B1 (en) Power limit device and digital radio transmitter using the same
JP2017011390A (en) Radio equipment and radio transmission method
US7653365B2 (en) Method for controlling signal power in transmitter of radio system by weighting, and transmitter therefor
JP2003198264A (en) Method of optimizing efficiency in amplifier for amplifying plurality of modulated carriers simultaneously
JP3322307B2 (en) Transmitter
JP3585808B2 (en) Multiplex communication system
EP1280270A2 (en) Base-station amplifier device
JP2004527140A (en) Adjusting the bias current in the first integrated circuit based on the signal gain of the second integrated circuit
JP3426991B2 (en) Transmission power control circuit
JP3921408B2 (en) Transmitting apparatus and instantaneous amplitude suppression method
JP2010154321A (en) Transmitter
KR100849760B1 (en) Apparatus and method for transmitting signals
JP2001077791A (en) Power controller for cdma and power control method therefor
JP2000286656A (en) Level detecting circuit for radio equipment and radio equipment
JP3027433B2 (en) Modulation output monitor circuit of wireless device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase