WO2003078671A1 - Method for recovering useful element from rare earth - transition metal alloy scrap - Google Patents

Method for recovering useful element from rare earth - transition metal alloy scrap Download PDF

Info

Publication number
WO2003078671A1
WO2003078671A1 PCT/JP2003/003238 JP0303238W WO03078671A1 WO 2003078671 A1 WO2003078671 A1 WO 2003078671A1 JP 0303238 W JP0303238 W JP 0303238W WO 03078671 A1 WO03078671 A1 WO 03078671A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
scrap
precipitate
mineral acid
acid
Prior art date
Application number
PCT/JP2003/003238
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Ohrai
Hideo Yokoi
Original Assignee
Santoku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corporation filed Critical Santoku Corporation
Priority to JP2003576661A priority Critical patent/JP4287749B2/en
Priority to AU2003221047A priority patent/AU2003221047A1/en
Publication of WO2003078671A1 publication Critical patent/WO2003078671A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering useful elements that can economically and safely recover useful elements such as rare earth elements from rare earth transition alloy scrap.
  • rare earth-transition metal alloys include rare earth-copartite and rare earth-iron-boron permanent magnets.
  • the magnet usually contains, for example, about 30 to 35% by weight of a rare earth element such as Nd, Pr, and Dy, about 60 to 65% by weight of iron, and 1 to 2% by weight of boron.
  • An alloy containing A1 etc. (hereinafter sometimes referred to as a rare-earth iron-based alloy) is used as a raw material, compacted after pulverization and then sintered to form a sintered magnet, or kneaded with resin. I have.
  • scraps such as a large amount of alloy scraps and polishing scraps in the process of powder frame, molding, sintering, cutting or grinding unnecessary parts, inspection etc. Occurs and accounts for 30-40% of the product weight.
  • a scrap in which powder such as polishing waste is in a slurry state with a polishing liquid or water is hereinafter referred to as sludge in particular.
  • waste is inevitably generated in terms of the loss of the molten slag, the production yield, and the milling yield. Approximately 30% by weight of these scrap components are expensive and useful rare earth elements, and their recovery is strongly demanded from the viewpoints of effective use of resources and economy.
  • the (1) acid dissolving method is a method of dissolving the entire amount of scrap with an acid and recovering a rare earth compound in the form of rare earth fluoride, rare earth oxalate or the like from the solution.
  • a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid at a high concentration and in an amount equivalent to the scrap.
  • the scrap is a solid solid such as a truncated portion during magnet molding or a defective magnet body, or a sludge mixed with such a solid solid
  • acid mist, hydrogen gas, and NOx gas are generated, so there is also a problem in working environment safety.
  • a scrap is once burned and oxidized to an oxide, and a rare earth element is mainly eluted using a strong acid, and the form of rare earth oxalate, rare earth carbonate or the like is extracted from the solid oxide.
  • This is a method for recovering rare earth compounds.
  • the scrap is ignitable sludge such as abrasive waste
  • the oxidation can proceed if it is once ignited by a heating / combustion device after drying.
  • the drying and firing of the sludge is costly in terms of equipment and energy, and the work efficiency is low, such as the need to grind oxides after firing.
  • it is not easy to oxidize the core of the scrap containing the solid solid it is necessary to separately perform preliminary pulverization, which further lengthens the working process.
  • the (3) pH-controlled monoacid leaching method is a method in which sludge is introduced into hydrochloric acid or the like, and the pH is maintained at 3 to 5 to elute rare earth elements (Japanese Patent Publication No. 7-72312), or the pH is 5 or more.
  • This is a method of eluting a rare earth element with dilute nitric acid while maintaining the temperature (JP-A-9-217132).
  • Pre-grinding process is indispensable if lumpy solids are mixed.
  • the conventional chemical separation / recovery method requires a large amount of high-concentration acid, regardless of which method is used.
  • sludge containing solid matter cannot be handled as it is, and pre-sorting and preliminary powder framing are required, making it difficult to implement large-scale treatment in terms of cost. Disclosure of the invention
  • a rare earth transition alloy scrap is immersed in a mineral acid ammonium H solution (hereinafter referred to as MAS 7) (A), and the MAS water in step (A) is immersed.
  • a step of passing a gas containing oxygen and oxidizing the scrap to obtain a precipitate containing a powder containing at least one of oxides and hydroxides and a step (B).
  • Recovery of useful elements from rare earth-transition metal alloy scrap including a step (C) of separating the precipitate from the MAS ⁇ solution and a step (D) of recovering the rare earth element from the precipitate separated in step (C)
  • a method is provided.
  • FIG. 1 is a graph showing the relationship between the solids remaining rate and the immersion time depending on the type of the MAS 7 solution in the oxidation treatments performed in Test Examples 1 to 5.
  • FIG. 2 is a graph showing the relationship between the immersion temperature and the time until the residual ratio of solids becomes 10% or less in the oxidation treatment performed in Test Example 6.
  • FIG. 3 is a graph showing the results of X-ray diffraction measurement of the oxide powder prepared in Test Example 6.
  • FIG. 4 is a graph showing the relationship between the concentration of ammonium sulfate and the immersion time until the residual ratio of solids becomes 10% or less in the oxidation treatments performed in Test Examples 7 and 8.
  • the rare earth-transition metal alloy to be recovered includes a rare earth-cobalt permanent magnet alloy, a rare earth-iron-boron permanent magnet alloy, and a rare earth-iron-boron permanent magnet alloy.
  • Typical magnetic materials include permanent magnet alloys in which boron has been replaced with carbon, nitrogen, etc., rare earth-iron-cobalt alloys for forming magneto-optical recording thin films, and sputtering target materials, and are usually contained in these alloys.
  • the rare earth element may be any of light rare earth elements such as Nd, Pr and Sm, heavy rare earth elements such as Gd, Tb and Dy, or a mixture thereof.
  • the form of the scrap to be subjected to the recovery process is as follows: a solid compact such as a compact, a sintered body, or a waste magnet body that is cut off in the process of being processed into a magnetic material such as a magnet from the above alloy; Sludge, which is a suspended waste of alloy powder such as, and polishing liquid, water, oil, etc .; sludge mixed with lumpy solids is mainly used.
  • solid substances such as dissolved slag derived in the raw metal production process are also included in the scope of the present invention.
  • the present inventors have proposed a method for recovering active elements at a high rate without using a large amount of acid, A simple collection method that eliminates the pre-selection and pre-grinding of the massive solids, which has been a major obstacle to the conventional collection process, and can be dealt with only by a chemical process that requires little human and equipment load.
  • scraps such as sludge, massive solids, or sludge mixed with both are reacted with MAS water under specific conditions to reduce oxides and / or hydroxides as a whole.
  • these powders are collectively abbreviated as oxide powder), and useful elements such as rare earth elements can be easily recovered from the oxide powder. And completed the present invention.
  • ammonium salt of a mineral acid in the MAS film examples include ammonium chloride (NH 4 C1), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium nitrate (NH 4 NO 3 ), and ammonium hydrogen fluoride (NH 4 NO 3 ). NH 4 HF2), etc. Of these, ammonium sulfate is the most effective in promoting the oxidation and disintegration of scrap.
  • the concentration of MAS 7W ⁇ 3 ⁇ 4 can be appropriately determined depending on the form of the scrap, the ease of oxidative degradation, and the allowable reaction time. Usually, it is 0.1 to 2.0 molZl, preferably 0.2 to 1.5 molZl. If the concentration is less than 0.1 molZl, the reaction rate is too slow to be practical, and if it exceeds 2.0 mol / l, no further improvement in the reaction rate is observed, which is not preferable. If the scrap is sludge, the MAS water concentration is the concentration after dilution with the water in the sludge.
  • the scrap can be immersed in the MAS 7 solution by, for example, containing the MAS ⁇ solution having the above concentration and an appropriate amount of scrap in a reaction vessel. At this time, if the scrap is sludge, it can be stored after removing the water and oil from the supernatant if necessary.
  • a material which is hardly contaminated such as FRP is suitably used.
  • the amount of scrap contained in the container and the amount of MAS 7j solution, the amount of scrap relative to the total amount, that is, the concentration of scrap is not particularly limited, and the scrap is immersed in the aqueous solution and agitated simultaneously with aeration or aeration described later. If the gas containing oxygen and MAS 7_ ⁇ ⁇ can be sufficiently corroded with the scrap when performing the The concentration of the tip is acceptable. Although the mechanism is not fully understood, the ammonium salt of the mineral acid in MAS 7 used in the present invention probably acts as a reaction promoter or catalyst when the scrap is oxidized by air, and the conventional scrap is directly converted into a metal.
  • the step (B) of passing a gas containing oxygen through the MAS 7) in the step (A) to oxidize the scrap to obtain a precipitate containing an oxide powder is performed.
  • the gas containing oxygen air can be usually used, but it is not particularly limited as long as it is a gas containing an amount of oxygen enough to obtain a desired oxide powder.
  • the method of flowing such a gas through the MAS aqueous solution is not particularly limited.
  • the method can be performed by a method of publishing the gas.
  • gas containing oxygen and MAS water may be mixed using known stirring means and mixing means. The scythe may be in sufficient contact with the scrap.
  • the temperature of the MAS water at the time of oxidizing the scrap to obtain the oxide powder that is, the temperature at the time of the oxidation reaction of the scrap may be room temperature or more, but the reaction is further accelerated. From the viewpoint, 40 to 90 ° C is preferable. Therefore, in the step (B), it is desirable to maintain the temperature of the MAS water in the above-mentioned preferable temperature range at least when oxidizing the scrap. At this time, if the temperature of the MAS 7 solution is lower than 40 ° C., the effect of promoting the reaction is small. On the other hand, if the temperature exceeds 90 ° C., no particular effect of promoting the reaction can be expected. As such a temperature maintaining means, for example, a throwing heater or direct blowing of steam is preferred because it is simple.
  • the time required for the oxidation reaction varies depending on the form of the scrap, the easiness of the oxidation / disintegration reaction, the concentration of MAS water and the temperature, etc., but is usually about 12 to 96 hours, and the size of the solid matter in the scrap It can be further or extended depending on the situation.
  • the reaction is preferably terminated at a stage where almost all the solid in the scrap collapses and the particle size of the powder contained in the precipitate becomes 1 mm or less.
  • Such a step can be easily determined, for example, by visual inspection or by searching the bottom of the container with a rod or the like.
  • the particle size of the oxide powder at the stage when the solids in the scrap have almost completely collapsed is usually several tens of meters or less, but the particle size of the powder contained in the obtained precipitate is not limited to this. .
  • the separation and recovery efficiency of useful elements is sufficient in the step (D) described below, it is not necessary to completely make the scrap into a low-level powder with a small particle size, and a solid having a particle size of about several mm or less remains. May be.
  • the oxidation Depending on the reaction time or the like, there is a possibility that a solid having such a particle size is included.
  • the step (C) of separating the precipitate containing the oxide powder obtained in the step (B) from the MAS water is performed.
  • the separation can be performed by separating a precipitate phase and an aqueous phase.
  • the separation method can be carried out by a known method such as a gradient method or a filter press method.
  • the ammonium salt of a mineral acid adsorbed on the separated precipitate can be washed with water. The precipitate after washing does not need to be particularly dried.
  • the ammonium salt of the mineral acid in the MAS 7 solution acts as a catalyst as described above, and hardly changes after the reaction in the step (B), so that the water after the separation remains unchanged or If necessary, specific gravity measurement etc. will be performed to adjust the concentration of the ammonium salt of mineral acid, and the next patch will be used for recycling.
  • the oxide powder is a powder mainly composed of an oxide and azo or hydroxide.
  • all of the iron in the scrap is iron oxyhydroxide ( FeO (OH)) and ferric hydroxide or ferric hydroxide (Fe (OH) 3 ), with more than 90% of the rare earth elements possibly contained in the powder as R (OH) 3 . Therefore, by analyzing the precipitate separated in the step (C), it can be confirmed that the precipitate obtained in the step (B) contains the desired oxide powder in the present invention.
  • the step (D) of recovering the rare earth element from the precipitate separated in the step (C) is performed.
  • the method of recovering the rare earth element from the precipitate containing the oxide powder separated in the step (C) is not particularly limited, and can be performed by referring to a known acid leaching method or the like. .
  • Leaching may be employed particularly advantageously in the present invention, but is not limited thereto.
  • the reason that such an acid leaching method is preferable is that the iron in the alloy has already been converted into iron oxyhydroxide, ferric hydroxide or the like by the step (B) in the present invention as described above. This is because when the oxide powder is subsequently reacted with an acid, elution of iron is almost completely suppressed, and the rare earth element can be selectively eluted with a small amount of acid.
  • the rare earth element is dissolved from the precipitate containing the oxide powder by the acid leaching method.
  • the rare earth compound can be recovered from the solution in which the rare earth element has been eluted by a known precipitation forming method or the like.
  • a soluble precipitation agent such as fluoride, oxalate, and carbonate is added to the scythe to form an insoluble precipitate of rare earth salts such as rare earth fluoride, rare earth oxalate, and rare earth carbonate. It can be recovered by a method of separating and drying, or a method of further baking to form a rare earth oxide.
  • the conditions of the acid leaching method and the precipitation forming method that can be employed in the step (D) are not particularly limited, and can be appropriately determined in consideration of known conditions and the like for achieving the object.
  • a precipitate containing the oxide powder obtained in the step (C) is dispersed in water, and a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid having a desired concentration is added dropwise while aeration is performed. be able to.
  • the temperature of the solution containing the precipitate at the time of the dropwise addition is at least room temperature, preferably about 40 to 60 ° C.
  • the amount and time of addition of the mineral acid can be selected as appropriate, and the end of the reaction can be determined by measuring the pH of the solution.
  • the alloy of the rare earth-transition metal alloy scrap contains other useful metals, for example, copult.
  • copult When the oxidation by MAS water in step (B) is performed, 90% by weight or more of the copult is an oxide. Since it remains in the powder, cobalt can be recovered together with the rare earth element according to the aforementioned acid leaching method that can be employed in the step (D), particularly the method described in JP-A-9-217132.
  • the step (B) of passing a gas containing oxygen through the MAS aqueous solution and oxidizing the scrap to obtain a precipitate containing a specific oxide powder is performed, so that the rare earth transition ⁇
  • Useful elements such as elements can be economically, safely, and efficiently recovered without consuming a large amount of acid and without the need for pre-sorting and pre-milling of scrap forms. .
  • Test Example 1 was repeated except that a 0.5 mol Zl aqueous solution of ammonium sulfate was used as the MAS water, and the temperature of the water was changed to 25 ° C, 40 ° C, 60 ° C, 80 ° C, and 100 ° C.
  • the scrap material which is a massive solid, was oxidized.
  • the time required for the residual ratio of the solid to become 10% or less was measured. The result is shown in figure 2.
  • the precipitate was collected by filtration from a sample that had completely collapsed by treatment at 60 ° C for 72 hours, and the powder dried at 100 ° C was examined by X-ray diffraction. The results are shown in Figure 3.
  • the generated powder has strong diffraction peaks such as Fe (OH) 3 and FeO (OH).
  • the peak of the rare earth compound is not always clear, probably due to its presence as a low crystalline hydroxide.
  • the powdered ground sludge (dry weight: 119.7 g) containing six cut-out parts (about 17 g / piece) derived from the manufacturing process of the rare earth-iron-boron based sintered magnet with the composition shown in Table 1 It was immersed in 500 ml of a 0.8 mol / l ammonium sulfate aqueous solution. Subsequently, the resultant was subjected to an oxidation treatment at 70 ° C. for 30 hours with stirring and aeration, whereby a precipitate of oxide powder was formed from the sludge. The powder of this acidified product was separated by filtration and dried to obtain 192.5 g. A part was sampled and analyzed for composition. Table 1 shows the results.
  • Table 1 shows that the obtained powder contains 98% or more of the rare earth elements in the sludge and 93% or more of Co.
  • R in Tables 1 and 2 indicates a mixture of (1, Pr and Dy, and “Others” in Table 1 indicates gas components such as oxygen, hydrogen, carbon, and sulfur.
  • a rare earth element and coparte can be selectively recovered by a precipitation generation method or a solvent extraction method performed by adding an aqueous solution of fluoride, oxalate, z-oxide, carbonate, or the like to the filtrate.
  • Example 2 350 g (dry weight: 175 g) of sludge containing grinding chips derived from the production process of the rare-earth iron-boron sintered magnet having the same composition as in Example 1 was immersed in 500 ml of a 0.2 mol / l ammonium sulfate aqueous solution. Subsequently, an oxidizing treatment was performed at 70 ° C. for 12 hours with stirring and aeration, and the generated oxide powder was filtered and separated. Next, the whole amount of the obtained oxide powder was dispersed in 200 ml of water, and a 5N aqueous nitric acid solution was added dropwise with stirring and aeration. The temperature was kept at 40-50 ° C.
  • the pH gradually decreased from around 7, and the dropping was completed when the pH reached 3.
  • the total amount dropped was 140 ml and the required time was 8 hours.
  • the precipitate was filtered, and the obtained precipitate was washed with water.
  • the filtrate and the water from which the precipitate was washed were mixed to make a nitric acid leached filtrate 1000 ml, and the filtrate was analyzed.
  • the content of the rare earth element in the sludge was 31.5 g
  • the content of the rare earth element in the filtrate for nitric acid leaching was 30.9 g
  • the recovery rate of the rare earth element was 98.0%.
  • Example 2 350 g (dry weight: 175 g) of the same sludge as used in Example 2 was not subjected to oxidation treatment with an aqueous solution of ammonium sulfate, and a 5N aqueous nitric acid solution was added dropwise while stirring and aeration. The temperature was maintained at 40-50 ° C. As the reaction progressed, the pH gradually decreased from around 11, and the dropping was completed when the pH reached 3. The total dripping amount was 300 ml and the required time was 30 hours. Next, the precipitate was filtered, and the obtained precipitate was washed with water.
  • the filtrate and the water from which the precipitate was washed were mixed together to make a nitric acid leached filtrate 1000 ml, and the filtrate was analyzed.
  • the content of the rare earth element in the sludge was 31.5 g
  • the content of the rare earth element in the nitric acid leaching filtrate was 25.2 g
  • the recovery rate of the rare earth element was 80.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method for recovering useful elements from a rare earth - transition metal alloy scrap, which comprises a step (A) of immersing the rare earth - transition metal alloy scrap in an aqueous solution of an ammonium salt of a mineral acid, a step (B) of passing a gas containing oxygen through said solution, to thereby oxidize the scrap and produce a precipitate comprising a powder containing oxides, hydroxides and the like as main components, a step (C) of separating said precipitate, and a step (D) of recovering rare earth elements from the separated precipitate. The method allows the economical and safe recovery of useful elements such as rare earth elements without the consumption of a large amount of acid and the need for the advance selection with respect to the form of a scrap or a preliminary crushing step.

Description

明細書  Specification
希土類一遷^^属合金スクラップからの有用元素の回収方法 技術分野  Recovery of useful elements from rare earth transition ^^ group alloy scrap
本発明は、希土類一遷 ^属合金スクラップから希土類元素等の有用元素を経済的、 且つ安全に回収することができる有用元素の回収方法に関する。  TECHNICAL FIELD The present invention relates to a method for recovering useful elements that can economically and safely recover useful elements such as rare earth elements from rare earth transition alloy scrap.
背景技術 Background art
希土類一遷移金属合金の分野で実用化されている代表的な製品に、 希土類一コパル ト系及ぴ希土類一鉄一ホウ素系の永久磁石がある。 特に後者は優れた磁気特性を示す ことからその使用量が近年著しく増加してきている。 該磁石は、 通常、 例えば Nd、 Pr、 Dy等の希土類元素を約 30〜35重量%、 鉄を約 60〜65重量%、 ホウ素を 1〜2 重量%含有し、 必要に応じて、 Co、 A1等を含む合金 (以下、 希土類一鉄系合金という ことがある)を原料とし、粉碎後に成形 '焼結して焼結磁石とするカゝ、或いは樹脂と混 練 ·射出成形によりボンド磁石としている。  Representative products that have been put into practical use in the field of rare earth-transition metal alloys include rare earth-copartite and rare earth-iron-boron permanent magnets. In particular, since the latter has excellent magnetic properties, its use has increased remarkably in recent years. The magnet usually contains, for example, about 30 to 35% by weight of a rare earth element such as Nd, Pr, and Dy, about 60 to 65% by weight of iron, and 1 to 2% by weight of boron. An alloy containing A1 etc. (hereinafter sometimes referred to as a rare-earth iron-based alloy) is used as a raw material, compacted after pulverization and then sintered to form a sintered magnet, or kneaded with resin. I have.
ところで、希土類一遷^^属合金を用いて磁石を製造する^^、粉枠、成形、焼結、 不要部の切除又は研削、 検査等の工程で大量の合金屑や研磨屑等のスクラップが発生 し、その量は製品重量の 30〜40%にも及ぶ。 ここで、研磨屑等の粉末が研磨液や水等 でスラリー状態にあるスクラップを、 以下特にスラッジという。 また、 原料合金の製 造過程においても、 溶解スラグのロスゃ铸造歩留まり、 粉碎歩留まりの面から不可避 的に屑が発生する。 これらスクラップ成分の約 30重量%は、 高価かつ有用な希土類 元素であり、 その回収は資源の有効利用の観点からも、 経済性の観点からも強く要請 されている。  By the way, manufacturing of magnets using rare earth transition ^^ alloys ^^, scraps such as a large amount of alloy scraps and polishing scraps in the process of powder frame, molding, sintering, cutting or grinding unnecessary parts, inspection etc. Occurs and accounts for 30-40% of the product weight. Here, a scrap in which powder such as polishing waste is in a slurry state with a polishing liquid or water is hereinafter referred to as sludge in particular. Also, in the production process of the raw material alloy, waste is inevitably generated in terms of the loss of the molten slag, the production yield, and the milling yield. Approximately 30% by weight of these scrap components are expensive and useful rare earth elements, and their recovery is strongly demanded from the viewpoints of effective use of resources and economy.
そこで、磁石合金からの希土類元素の化学的な分離'回収法について、 (1)酸溶解法 (特開昭 62-187112号公報、 特開昭 63-4028号公報)、 (2)燃焼酸化一酸浸出法 (特公平 5-14777号公報)、(3)pH制御一酸浸出法 ( ^平 7-72312号公報、特開平 9-217132号 公報)が提案されている。  Therefore, regarding the chemical separation and recovery of rare earth elements from magnet alloys, (1) acid dissolution method (JP-A-62-187112 and JP-A-63-4028), (2) combustion oxidation An acid leaching method (Japanese Patent Publication No. 5-14777) and (3) a pH-controlled monoacid leaching method (^ Hei 7-72312, Japanese Patent Application Laid-Open No. 9-217132) have been proposed.
前記 (1)酸溶解法は、 スクラップの全量を酸で溶解し、溶解液からフッ化希土、 シュ ゥ酸希土等の形で希土類化合物を回収する方法である。 しかし、 該方法では、 初めの 溶解過程において、 硫酸、 塩酸、 硝酸等の鉱酸を高濃度で且つスクラップに対して当 量以上に投入する必要がある。 特に、 スクラップが磁石成形時の切り捨て部分や不良 磁石体等の塊状の固形物であるか、 それら塊状の固形物が混在したスラッジである場 合には、 鉱酸に極めて溶解し難く更に高濃度の酸を多く投入する力、 予めスクラップ 形態の選別又はスクラップの粉砕工程を組入れる必要がある。 またスクラップの溶解 過程においては、酸ミスト、水素ガス、 NOxガスが生じるため、作業環境上の安全性 の問題もある。 The (1) acid dissolving method is a method of dissolving the entire amount of scrap with an acid and recovering a rare earth compound in the form of rare earth fluoride, rare earth oxalate or the like from the solution. However, in this method, in the initial dissolution process, it is necessary to add a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid at a high concentration and in an amount equivalent to the scrap. In particular, if the scrap is a solid solid such as a truncated portion during magnet molding or a defective magnet body, or a sludge mixed with such a solid solid, In such a case, it is necessary to incorporate a power to supply much more high-concentration acid, which is extremely difficult to dissolve in mineral acid, and to incorporate in advance a scrap form sorting or scrap grinding step. Also, in the process of dissolving scrap, acid mist, hydrogen gas, and NOx gas are generated, so there is also a problem in working environment safety.
前記 (2)燃焼酸化一酸浸出法は、 スクラップを一旦燃焼酸化して酸化物とし、 強酸を 用いて主に希土類元素を溶出させ、 その^ ¾からシユウ酸希土、 炭酸希土等の形で希 土類化合物を回収する方法である。 該方法においては、 スクラップが、 発火性を有す る研磨屑等のスラッジである場合、 乾燥後に加熱 ·燃焼装置で一旦着火すれば酸化を 進行させることができる。 しかし、 該スラッジの乾燥 ·焼成は、 設備、 エネルギーの 点でコストがかさみ、 焼成後に酸化物の粉碎が必要になる等作業効率も低い。 また塊 状の固形物を含有するスクラップの^ \ 該固形物の芯まで酸化させることは容易で ないため、 別途予備粉砕が必要であり、 作業工程が更に長くなる。  In the above (2) combustion oxidation monoacid leaching method, a scrap is once burned and oxidized to an oxide, and a rare earth element is mainly eluted using a strong acid, and the form of rare earth oxalate, rare earth carbonate or the like is extracted from the solid oxide. This is a method for recovering rare earth compounds. In this method, if the scrap is ignitable sludge such as abrasive waste, the oxidation can proceed if it is once ignited by a heating / combustion device after drying. However, the drying and firing of the sludge is costly in terms of equipment and energy, and the work efficiency is low, such as the need to grind oxides after firing. Further, since it is not easy to oxidize the core of the scrap containing the solid solid, it is necessary to separately perform preliminary pulverization, which further lengthens the working process.
前記 (3)pH制御一酸浸出法は、 スラッジを塩酸等に投入し、 pHを 3〜5に維持して 希土類元素を溶出させる方法 (特公平 7-72312号公報)、 或いは pHを 5以上に維持し つつ希硝酸で希土類元素を溶出させる方法 (特開平 9-217132号公報)である。これらの 方法では、 空気を吹き込むことにより、鉄を水酸化鉄として固相に残すため、 前記 (1) 酸溶解法に比べて酸の使用量は減る力 その効果は十分でなく、 やはりこの場合も塊 状の固形物が混在すると、 予備粉砕工程が不可欠となる。  The (3) pH-controlled monoacid leaching method is a method in which sludge is introduced into hydrochloric acid or the like, and the pH is maintained at 3 to 5 to elute rare earth elements (Japanese Patent Publication No. 7-72312), or the pH is 5 or more. This is a method of eluting a rare earth element with dilute nitric acid while maintaining the temperature (JP-A-9-217132). In these methods, since air is blown into the iron to leave iron in the solid phase as iron hydroxide, the effect of reducing the amount of acid used compared to the above (1) acid dissolution method is not sufficient. Pre-grinding process is indispensable if lumpy solids are mixed.
以上のように、 従来提案されている化学的な分離 ·回収法では、 いずれを採用する 場合であっても、 多量に高濃度の酸を必要とし、 特に塊状の固形物からなるスクラッ プ或いは塊状の固形物の混在するスラッジに対しては、 そのまま対応できず、 事前選 別や予備粉枠工程が必要となるためコスト面からも大量処理の実施を困難としている。 発明の開示  As described above, the conventional chemical separation / recovery method requires a large amount of high-concentration acid, regardless of which method is used. However, sludge containing solid matter cannot be handled as it is, and pre-sorting and preliminary powder framing are required, making it difficult to implement large-scale treatment in terms of cost. Disclosure of the invention
本発明の目的は、 希土類一鉄系、 希土類一コバルト系、 希土類一鉄一コバルト系等 の希土類一遷移金属合金、 特に希土類一鉄一ホウ素系永久磁石合金等を含むスクラッ プから希土類元素等の有用元素を、 多量の酸を消費することなく、 また、 スクラップ 形態の事前選別や予備粉碎工程を必要とせずに、 経済的、 且つ安全に有用元素を回収 しうる回収方法を提供することにある。  It is an object of the present invention to provide a rare earth-transition metal alloy such as rare earth-iron-iron, rare earth-cobalt-based, rare earth-iron-cobalt-based, etc. It is an object of the present invention to provide a method for recovering useful elements economically and safely without consuming a large amount of acid, and without requiring a pre-sorting of a scrap form or a preliminary grinding step. .
本突明によれば、 希土類一遷 ^属合金スクラップを、 .鉱酸のアンモニゥム H ?容 液 (以下、 MAS 7赚という)に浸漬する工程 (A)と、 工程 (A)における MAS水赚に 酸素を含む気体を流通させ、 スクラップを酸化させて酸化物及び水酸化物の少なくと も 1種を主体とする粉末を含む沈澱物を得る工程 (B)と、工程 (B)で得られた沈澱物を、 MAS τΚ溶液から分離する工程 (C)と、工程 (C)で分離した沈澱物から希土類元素を回収 する工程 (D)とを含む希土類一遷移金属合金スクラップからの有用元素の回収方法が 提供される。 According to the present invention, a rare earth transition alloy scrap is immersed in a mineral acid ammonium H solution (hereinafter referred to as MAS 7) (A), and the MAS water in step (A) is immersed. To A step of passing a gas containing oxygen and oxidizing the scrap to obtain a precipitate containing a powder containing at least one of oxides and hydroxides, and a step (B). Recovery of useful elements from rare earth-transition metal alloy scrap including a step (C) of separating the precipitate from the MAS τΚ solution and a step (D) of recovering the rare earth element from the precipitate separated in step (C) A method is provided.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、試験例 1〜5で行った酸化処理において、 MAS 7溶液の種類の相違による、 固形物残存率と浸漬時間との関係を示すグラフである。  FIG. 1 is a graph showing the relationship between the solids remaining rate and the immersion time depending on the type of the MAS 7 solution in the oxidation treatments performed in Test Examples 1 to 5.
図 2は、試験例 6で行った酸化処理において、固形物の残存率が 10%以下になるま での浸漬温度と時間との関係を示すダラフである。  FIG. 2 is a graph showing the relationship between the immersion temperature and the time until the residual ratio of solids becomes 10% or less in the oxidation treatment performed in Test Example 6.
図 3は、試験例 6で調製した酸化物粉 5^料の X線回折の測: ¾果を示すグラフで める。  FIG. 3 is a graph showing the results of X-ray diffraction measurement of the oxide powder prepared in Test Example 6.
図 4は、 試験例 7及ぴ 8で行った酸化処理において、 固形物の残存率が 10%以下 になるまでの硫酸アンモニゥムの濃度と浸漬時間との関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the concentration of ammonium sulfate and the immersion time until the residual ratio of solids becomes 10% or less in the oxidation treatments performed in Test Examples 7 and 8.
発明の好ましい実施の態様 Preferred embodiments of the invention
以下本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明の回収方法において、 回収の対象とされる希土類一遷移金属合金としては、 希土類一コバルト系永久磁石合金、 希土類一鉄一ホウ素系永久磁石合金、 該希土類一 鉄—ホウ素系永久磁石合金のホウ素を炭素、 窒素等で置換した永久磁石合金、 光磁気 記録薄膜形成用希土類一鉄一コバルト系合金、 スパッタリングターゲット材等の磁性 材料が代表的であり、 これら合金に通常含有されることがある Al、 Ti、 V、 Cr、 Mn、 Ni、 Cu、 Zr、 Hf、 Nb、 Ta、 Mo、 Ge、 Sb、 Sn、 Bi、 W等の少なくとも 1種、 並ぴ に不可避的な不純物元素が含有されたものであっても良い。 希土類元素は、 Nd、 Pr、 Sm等の軽希土類、 Gd、 Tb、 Dy等の重希土類又はこれらの混合物のいずれでもよい。 回収処理に供されるスクラップの形態としては、 上記合金から磁石等の磁性材料に 加工される過程で切り捨てられた圧粉体、焼結体、又は廃棄磁石体等の塊状の固形物; 研磨屑等の合金粉末と研磨液、 水、 油等との懸濁廃棄物であるスラッジ;塊状の固形 物が混在するスラッジ等が主に拳げられる。 また、 原 金製造過程で派生した溶解 スラグ等の固形物も本発明の対象に含まれる。  In the recovery method of the present invention, the rare earth-transition metal alloy to be recovered includes a rare earth-cobalt permanent magnet alloy, a rare earth-iron-boron permanent magnet alloy, and a rare earth-iron-boron permanent magnet alloy. Typical magnetic materials include permanent magnet alloys in which boron has been replaced with carbon, nitrogen, etc., rare earth-iron-cobalt alloys for forming magneto-optical recording thin films, and sputtering target materials, and are usually contained in these alloys. At least one of Al, Ti, V, Cr, Mn, Ni, Cu, Zr, Hf, Nb, Ta, Mo, Ge, Sb, Sn, Bi, W, etc., which generally contains unavoidable impurity elements May be used. The rare earth element may be any of light rare earth elements such as Nd, Pr and Sm, heavy rare earth elements such as Gd, Tb and Dy, or a mixture thereof. The form of the scrap to be subjected to the recovery process is as follows: a solid compact such as a compact, a sintered body, or a waste magnet body that is cut off in the process of being processed into a magnetic material such as a magnet from the above alloy; Sludge, which is a suspended waste of alloy powder such as, and polishing liquid, water, oil, etc .; sludge mixed with lumpy solids is mainly used. In addition, solid substances such as dissolved slag derived in the raw metal production process are also included in the scope of the present invention.
本発明者らは、 多量の酸を使用することなく、 有効元素を高率で回収する方法、 ま た従来回収処理を実施するうえで大きな障害となっていた前記塊状の固形物の予備選 別及び予備粉砕を省略し、 人的、 設備的負荷の少ない化学プロセスのみで対処し得る 簡便な回収方法を追求した結果、 スラッジ、 塊状の固形物又は両者が混在するスラッ ジ等のスクラップを、 特定条件の下で MAS水 と反応させることにより、 スクラ ップ全体を、酸化物及び/又は水酸化物を主体とする粉末 (以下、 これらの粉末をまと めて酸化物粉末と略記する)に変化させ得ることができ、この酸化物粉末から希土類元 素等の有用元素を容易に回収しうることを見出し、 本発明を完成させた。 The present inventors have proposed a method for recovering active elements at a high rate without using a large amount of acid, A simple collection method that eliminates the pre-selection and pre-grinding of the massive solids, which has been a major obstacle to the conventional collection process, and can be dealt with only by a chemical process that requires little human and equipment load. As a result of the pursuit of the above, scraps such as sludge, massive solids, or sludge mixed with both are reacted with MAS water under specific conditions to reduce oxides and / or hydroxides as a whole. (Hereinafter, these powders are collectively abbreviated as oxide powder), and useful elements such as rare earth elements can be easily recovered from the oxide powder. And completed the present invention.
スクラップが上述の酸化物粉末に変ィ匕するのは、 スクラップを浸漬した MAS水溶 液中に酸素を含む気体を吹き込みながら (以下、 エアレーシヨンという)反応させるこ とにより、スクラップが次第に表面から酸化され固形物が崩壊するためと考えられる。 本発明の回収方法では、 まず、 希土類一遷 ^属合金スクラップを、 MAS水溶液 に浸漬する工程 (A)を行う。  The reason why the scrap is transformed into the above-mentioned oxide powder is that the scrap is gradually oxidized from the surface by reacting while blowing a gas containing oxygen into the MAS aqueous solution in which the scrap is immersed (hereinafter referred to as “air rate”). This is probably because the solids collapse. In the recovery method of the present invention, first, a step (A) of immersing rare earth transition alloy scrap in an MAS aqueous solution is performed.
前記 MASフ における鉱酸のアンモニゥム塩としては、 例えば、 塩化アンモニ ゥム (NH4C1)、 硫酸アンモニゥム ((NH4)2SO4)、 硝酸アンモニゥム (NH4NO3)、 フッ化 水素アンモニゥム (NH4HF2)等が举げられる。これらのうち硫酸ァンモユウムがスクラ ップの酸化 ·崩壊反応を促進する上で最も効果が大きい。 Examples of the ammonium salt of a mineral acid in the MAS film include ammonium chloride (NH 4 C1), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium nitrate (NH 4 NO 3 ), and ammonium hydrogen fluoride (NH 4 NO 3 ). NH 4 HF2), etc. Of these, ammonium sulfate is the most effective in promoting the oxidation and disintegration of scrap.
MAS 7W^¾の濃度は、 スクラップの形態、 酸化'崩壊のし易さ、 許容できる反応時 間等により適宜決定できる。通常 0.1〜2.0molZl、好ましくは 0.2〜1.5molZlである。 該濃库が O.lmolZl未満では反応速度が遅く実用的でなく、 2.0mol/lを超えてもそ れ以上の反応速度の向上は認められないので好ましくない。 スクラップがスヲッジの 場合、 MAS水^ ¾濃度とは、 スラッジ中の水分により希釈された後の濃度である。 工程 (A)において、 スクラップを MAS 7溶液に浸漬するには、 例えば、 上記濃度の MAS τ溶液と適量のスクラップとを反応容器に収容して行うことができる。 この際、 スクラップがスラッジの場合は、 必要によりその上澄み部分の水分、 油分を除去して から収容できる。 前記反応容器としては FRP製等の汚染され難い材料の使用が適し ている。  The concentration of MAS 7W ^ ¾ can be appropriately determined depending on the form of the scrap, the ease of oxidative degradation, and the allowable reaction time. Usually, it is 0.1 to 2.0 molZl, preferably 0.2 to 1.5 molZl. If the concentration is less than 0.1 molZl, the reaction rate is too slow to be practical, and if it exceeds 2.0 mol / l, no further improvement in the reaction rate is observed, which is not preferable. If the scrap is sludge, the MAS water concentration is the concentration after dilution with the water in the sludge. In step (A), the scrap can be immersed in the MAS 7 solution by, for example, containing the MAS τ solution having the above concentration and an appropriate amount of scrap in a reaction vessel. At this time, if the scrap is sludge, it can be stored after removing the water and oil from the supernatant if necessary. As the reaction vessel, a material which is hardly contaminated such as FRP is suitably used.
前記容器に収容するスクラップの量と MAS 7j溶液量どの合計量に対するスクラッ プの量、即ち、スクラップの濃度は特に限定されず、スクラップが該水溶液に浸され、 後述するエアレーション、 又はエアレーションと同時に攪拌を行った時に酸素を含む 気体及び MAS 7_ ί ^がスクラップと十分に接蝕が可能であれば、 広い範囲のスクラ ップの濃度が許容される。 その機構は十分に明らかでないが、 本発明に用いる MAS 7 における鉱酸のアンモニゥム塩が、 恐らくスクラップが空気酸化される際の反 応促進剤、 或いは触媒として作用し、 従来のスクラップを直^ S酸に溶解する の ような化学量論的に進行する反応とは異なる反応が生じているためと考えられる。 本発明では、前記工程 (A)における MAS 7) に酸素を含む気体を流通させ、スク ラップを酸化して酸化物粉末を含む沈澱物を得る工程 (B)を行う。 The amount of scrap contained in the container and the amount of MAS 7j solution, the amount of scrap relative to the total amount, that is, the concentration of scrap is not particularly limited, and the scrap is immersed in the aqueous solution and agitated simultaneously with aeration or aeration described later. If the gas containing oxygen and MAS 7_ ί ^ can be sufficiently corroded with the scrap when performing the The concentration of the tip is acceptable. Although the mechanism is not fully understood, the ammonium salt of the mineral acid in MAS 7 used in the present invention probably acts as a reaction promoter or catalyst when the scrap is oxidized by air, and the conventional scrap is directly converted into a metal. This is probably because a reaction different from a stoichiometric reaction such as dissolution in an acid has occurred. In the present invention, the step (B) of passing a gas containing oxygen through the MAS 7) in the step (A) to oxidize the scrap to obtain a precipitate containing an oxide powder is performed.
前記酸素を含む気体としては、 通常空気を使用できるが、 所望の酸化物粉末が得ら れる程度の酸素量を含む気体であれば特に限定されない。 このような気体を MAS水 溶液中に流通させる方法は特に限定されず、 例えば、 該気体をパブリングする方法に より実施できる。 この際、 必要に応じて公知の攪拌手段、 混合手段を用いて酸素を含 む気体及ぴ MAS水?鎌がスクラップと十分に接触するようにしても良い。  As the gas containing oxygen, air can be usually used, but it is not particularly limited as long as it is a gas containing an amount of oxygen enough to obtain a desired oxide powder. The method of flowing such a gas through the MAS aqueous solution is not particularly limited. For example, the method can be performed by a method of publishing the gas. At this time, if necessary, gas containing oxygen and MAS water may be mixed using known stirring means and mixing means. The scythe may be in sufficient contact with the scrap.
工程 (B)において、スクラップを酸化させて酸化物粉末を得る際の MAS水^ ¾の温 度、 即ち、 スクラップの酸化反応時の温度は、 室温以上であれば良いが、 反応を更に 促進させる点から 40〜90°Cが好ましい。従って、工程 (B)においては、 MAS水 の 温度を少なくともスクラップを酸化させる際に上記好ましい温度範囲に保持すること が望ましい。 この際、 MAS 7溶液の温度が 40°C未満では反応促進効果が小さく、 ― 方、 90°Cを超えても更に特段の反応促進効果は望めず、加熱負荷が増すのでメリット は少ない。 このような温度保持手段としては、 例えば、 投げ込みヒーター、 スチーム の直接吹き込みが簡便で好ましい。  In the step (B), the temperature of the MAS water at the time of oxidizing the scrap to obtain the oxide powder, that is, the temperature at the time of the oxidation reaction of the scrap may be room temperature or more, but the reaction is further accelerated. From the viewpoint, 40 to 90 ° C is preferable. Therefore, in the step (B), it is desirable to maintain the temperature of the MAS water in the above-mentioned preferable temperature range at least when oxidizing the scrap. At this time, if the temperature of the MAS 7 solution is lower than 40 ° C., the effect of promoting the reaction is small. On the other hand, if the temperature exceeds 90 ° C., no particular effect of promoting the reaction can be expected. As such a temperature maintaining means, for example, a throwing heater or direct blowing of steam is preferred because it is simple.
前記酸化反応に要する時間は、 スクラップの形態、 酸化 ·崩壊反応のし易さ、 MAS 水赚の濃度及ぴ温度等により変わるが、 通常 12〜96時間程度であり、 スクラップ 中の固形物の大きさ等により更に 或いは延長することができる。 塊状の固形物を 含有するスクラップの場合、反応の終了は、スクラップ中の固形物がほぼ全量崩壊し、 沈澱物に含まれる粉末の粒径が 1mm以下となる段階が好ましい。このような段階は、 例えば、 目視或いは容器の底を棒等で探ることにより容易に判定できる。 ' 前記スクラップ中の固形物がほぼ全量崩壊した段階における酸化物粉末の粒径は、 通常、 数 10 m以下であるが、 得られる沈澱物中含まれる粉末の粒径はこれに限定 されなレヽ。要するに、後述する工程 (D)において有用元素の分離 ·回収効率が十分であ れば、 必ずしもスクラップを完全に粒度の低レヽ粉末にさせる必要はなく、 粒径数 mm 以下程度の固形物が残存していても良い。 工業的な実用レベルにおいては、 前記酸化 反応の時間等によってこのような粒径の固形物が含まれる可能性が生じる。 このよう な粒径の固形物の割合は少ない方が好ましいが、後述する工程 (D)における酸の使用量 や条件を適宜選択することにより有用元素を効率良く回収することは可能である。 本発明では、 工程 (B)で得られた酸化物粉末を含む沈澱物を、 MAS水赚から分離 する工程 (C)を行う。該分離は、沈澱物相と水 相とを分離することにより行うこと ができる。 分離方法は、 傾斜法、 フィルタープレス法等の公知の方法で実施でき、 好 ましくは分離した沈澱物に吸着している鉱酸のアンモニゥム塩を水で洗浄することが できる。 洗浄後の沈澱物は特に乾燥する必要を要しない。 The time required for the oxidation reaction varies depending on the form of the scrap, the easiness of the oxidation / disintegration reaction, the concentration of MAS water and the temperature, etc., but is usually about 12 to 96 hours, and the size of the solid matter in the scrap It can be further or extended depending on the situation. In the case of scrap containing a lump solid, the reaction is preferably terminated at a stage where almost all the solid in the scrap collapses and the particle size of the powder contained in the precipitate becomes 1 mm or less. Such a step can be easily determined, for example, by visual inspection or by searching the bottom of the container with a rod or the like. 'The particle size of the oxide powder at the stage when the solids in the scrap have almost completely collapsed is usually several tens of meters or less, but the particle size of the powder contained in the obtained precipitate is not limited to this. . In short, if the separation and recovery efficiency of useful elements is sufficient in the step (D) described below, it is not necessary to completely make the scrap into a low-level powder with a small particle size, and a solid having a particle size of about several mm or less remains. May be. At the industrial practical level, the oxidation Depending on the reaction time or the like, there is a possibility that a solid having such a particle size is included. It is preferable that the proportion of the solid having such a particle size is small, but it is possible to efficiently collect useful elements by appropriately selecting the amount and conditions of the acid used in the step (D) described below. In the present invention, the step (C) of separating the precipitate containing the oxide powder obtained in the step (B) from the MAS water is performed. The separation can be performed by separating a precipitate phase and an aqueous phase. The separation method can be carried out by a known method such as a gradient method or a filter press method. Preferably, the ammonium salt of a mineral acid adsorbed on the separated precipitate can be washed with water. The precipitate after washing does not need to be particularly dried.
本発明において MAS 7溶液中の鉱酸のアンモニゥム塩は、 前述のように触媒的な 働きをし、工程 (B)における反応後もほとんど変化しないため、分離後の水^ ¾はその まま、 或いは必要により比重測定等を行って鉱酸のアンモニゥム塩の濃度調整を行つ て次のパツチにリサイクノレ使用される。  In the present invention, the ammonium salt of the mineral acid in the MAS 7 solution acts as a catalyst as described above, and hardly changes after the reaction in the step (B), so that the water after the separation remains unchanged or If necessary, specific gravity measurement etc. will be performed to adjust the concentration of the ammonium salt of mineral acid, and the next patch will be used for recycling.
前記分離された沈澱物は、 そのほとんどがスクラップ中の金属元素を含む酸化物粉 末である。 該酸化物粉末は、 酸化物及ひゾ又は水酸化物を主体とする粉末であり、 具 体的には後述する実施例に示すように、 スクラップ中の鉄はその全てがォキシ水酸化 鉄 (FeO(OH))及ひブ又は水酸化第二鉄 (Fe(OH)3)として含有され、 希土類元素の 90% 以上が恐らく R(OH)3として該粉末中に含有されている。 従って、 工程 (C)において分 離された沈澱物を分析することにより、工程 (B)において得られた沈澱物が、本発明に おける所望の酸化物粉末を含んでいることが確認できる。 Most of the separated precipitate is an oxide powder containing a metal element in scrap. The oxide powder is a powder mainly composed of an oxide and azo or hydroxide. Specifically, as shown in Examples described later, all of the iron in the scrap is iron oxyhydroxide ( FeO (OH)) and ferric hydroxide or ferric hydroxide (Fe (OH) 3 ), with more than 90% of the rare earth elements possibly contained in the powder as R (OH) 3 . Therefore, by analyzing the precipitate separated in the step (C), it can be confirmed that the precipitate obtained in the step (B) contains the desired oxide powder in the present invention.
本発明では、 工程 (C)で分離した沈澱物から希土類元素を回収する工程 (D)を行う。 工程 (D)において、 工程 (C)で分離した酸化物粉末を含む沈澱物から希土類元素を回 収する方法は、特に限定されず、従 知の酸浸出法等を参照して行うことができる。 例えば、特公平 5-14777号公報に記載された燃焼酸化一酸浸出法における燃焼酸化を 除いた方法、 特公平 7-72312号公報又は特開平 9-217132号公報に示された pH制御 一酸浸出法が、 本発明に特に有利に採用し得るがこれに限定されない。 このような酸 浸出法が好ましい理由は、本発明における工程 (B)によって前述のとおり合金中の鉄は、 既にォキシ水酸化鉄、 水酸化第二鉄等に変ィ匕しているため、 該酸化物粉末を引き続い て酸と反応させる際に鉄の溶出がほぼ完全に抑制され、 少ない量の酸で希土類元素を 選択的に溶出させうるからである。  In the present invention, the step (D) of recovering the rare earth element from the precipitate separated in the step (C) is performed. In the step (D), the method of recovering the rare earth element from the precipitate containing the oxide powder separated in the step (C) is not particularly limited, and can be performed by referring to a known acid leaching method or the like. . For example, a method excluding combustion oxidation in the combustion oxidation monoacid leaching method described in Japanese Patent Publication No. 5-14777, a pH control monoacid disclosed in Japanese Patent Publication No. 7-72312 or Japanese Patent Application Laid-Open No. 9-217132. Leaching may be employed particularly advantageously in the present invention, but is not limited thereto. The reason that such an acid leaching method is preferable is that the iron in the alloy has already been converted into iron oxyhydroxide, ferric hydroxide or the like by the step (B) in the present invention as described above. This is because when the oxide powder is subsequently reacted with an acid, elution of iron is almost completely suppressed, and the rare earth element can be selectively eluted with a small amount of acid.
工程 (D)において、上記酸浸出法により酸化物粉末を含む沈澱物から希土類元素の溶 出を行った後、 該希土類元素が溶出した溶液から希土類化合物を回収するには、 公知 の沈澱生成法等により行うことができる。例えば、前記 ί鎌にフッ化物、 シユウ酸塩、 炭酸塩等の可溶†生沈澱剤を添加し、 フッ化希土、 シユウ酸希土、 炭酸希土等の希土類 塩類の不溶性沈澱を生成させ、 分離'乾燥する方法、 或いは更に焼成を加えて希土類 酸化物とする方法等により回収できる。 In step (D), the rare earth element is dissolved from the precipitate containing the oxide powder by the acid leaching method. After the extraction, the rare earth compound can be recovered from the solution in which the rare earth element has been eluted by a known precipitation forming method or the like. For example, a soluble precipitation agent such as fluoride, oxalate, and carbonate is added to the scythe to form an insoluble precipitate of rare earth salts such as rare earth fluoride, rare earth oxalate, and rare earth carbonate. It can be recovered by a method of separating and drying, or a method of further baking to form a rare earth oxide.
工程 (D)において採用しうる、前記酸浸出法及び沈澱生成法の条件は特に限定されず、 目的達成のために公知の条件等を勘案して適宜決定することができる。  The conditions of the acid leaching method and the precipitation forming method that can be employed in the step (D) are not particularly limited, and can be appropriately determined in consideration of known conditions and the like for achieving the object.
例えば、酸浸出法の場合、工程 (C)で得られた酸化物粉末を含む沈澱物を水に分散し、 エアレーシヨンしながら所望濃度の硫酸、 塩酸、 硝酸等の鉱酸を滴下する方法により 行うことができる。 この際、 滴下時の沈澱物を含む溶液の温度は、 室温以上、 好まし くは 40〜60°C程度である。鉱酸の滴下量や滴下時間は適宜選択でき、反応の終了は溶 液の pH測定等により決定できる。  For example, in the case of the acid leaching method, a precipitate containing the oxide powder obtained in the step (C) is dispersed in water, and a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid having a desired concentration is added dropwise while aeration is performed. be able to. At this time, the temperature of the solution containing the precipitate at the time of the dropwise addition is at least room temperature, preferably about 40 to 60 ° C. The amount and time of addition of the mineral acid can be selected as appropriate, and the end of the reaction can be determined by measuring the pH of the solution.
本発明において、 希土類一遷移金属合金スクラップの合金中にその他の有用金属、 例えば、 コパルトが含有されている 、 工程 (B)の MAS水謹による酸化により、 コパルトもその 90重量%以上が酸化物粉末中に残留するので、 工程 (D)において採用 しうる前述の酸浸出法、 特に特開平 9-217132号公報に記載の方法に準じて前記希土 類元素と共にコバルトをも回収できる。  In the present invention, the alloy of the rare earth-transition metal alloy scrap contains other useful metals, for example, copult. When the oxidation by MAS water in step (B) is performed, 90% by weight or more of the copult is an oxide. Since it remains in the powder, cobalt can be recovered together with the rare earth element according to the aforementioned acid leaching method that can be employed in the step (D), particularly the method described in JP-A-9-217132.
本発明では、 特に、 MAS水溶液に酸素を含む気体を流通させ、 スクラップを酸化 して特定の酸化物粉末を含む沈澱物を得る工程 (B)を行うので、希土類一遷 ^属合金 スクラップから希土類元素等の有用元素を、 多量の酸を消費することなく、 またスク ラップ形態の事前選別や予備粉碎工程を必要としないで、 経済的且つ安全に、 しかも 効率良く有用元素を回収することができる。  In the present invention, in particular, the step (B) of passing a gas containing oxygen through the MAS aqueous solution and oxidizing the scrap to obtain a precipitate containing a specific oxide powder is performed, so that the rare earth transition ^ Useful elements such as elements can be economically, safely, and efficiently recovered without consuming a large amount of acid and without the need for pre-sorting and pre-milling of scrap forms. .
実施例 Example
以下、 試験例及び実施例により本発明を更に詳細に説明するが、 本発明はこれらに 限定されるものではない。 尚、 例中の%は 「重量%」 を示す。  Hereinafter, the present invention will be described in more detail with reference to Test Examples and Examples, but the present invention is not limited thereto. In addition,% in an example shows "weight%."
試験例 1〜5  Test examples 1 to 5
塊状の固形物であるスクラッ: 7°^料として、寸法: 20.5mm X 52.5mm X約 2.2mm, 成分:希土類元素 ( d+Pr+Dy)31.8%、 Fe65.9%、 Bl.05%. CoO.90%の希土一鉄一 ホウ素系焼結磁石の切り捨て部を用意した。 ポリ容器に 0.5mol/lの MAS水溶液 400mlと約 17〜:8 gのスクラップ試料 (W^l個を入れ、攪拌機にて攪拌、エアーボン プにてエアレーションしながら室温 (25〜30°C)にて ¾gし酸ィヒ処理を行った。 24時間 毎に試料の未崩壊部の量 (W2)を秤量し、
Figure imgf000009_0001
IOO)を求めた。 残 存率の時間変化を図 1に示す。
Scratch which is a lump solid: 7 ° ^ As a material, dimensions: 20.5mm X 52.5mm X about 2.2mm, component: rare earth element (d + Pr + Dy) 31.8%, Fe65.9%, Bl.05%. A cut-off portion of a rare earth-iron-boron based sintered magnet of 90% CoO was prepared. 400 ml of 0.5 mol / l MAS aqueous solution and approx. 17 ~: 8 g of scrap sample in a plastic container The mixture was treated with acid at room temperature (25 to 30 ° C) while being aerated with an air filter. Weigh the amount of undisintegrated part (W 2 ) of the sample every 24 hours,
Figure imgf000009_0001
IOO). Figure 1 shows the change over time in the survival rate.
ここで、 MAS として、塩化アンモニゥム (NH4C1)水 を用いた例を試験例 1、 硫酸アンモニゥム ((NH4)2S04)水溶液を用いた例を試験例 2、 硝酸アンモニゥム ( H4N03)7]溶液を用いた例を試験例 3、 フッ化水素アンモニゥム (NH4HF2)z溶液を 用いた例を試験例 4、 MAS 7_K溶液を用いずに純水を用いた例を試験例 5とする。 図 1より、 MAS水溶液の使用により、 スクラップの酸化'崩壌が促進される傾向 が明らかであり、 時間の経過と共に試料は表面から酸化'崩壊し、 容器の底に褐色粉 末として拡がってゆく状況が見られた。 中でも硫酸アンモニゥム水溶液を用いた試験 例 2の効果が大きいことが判る。 Here, as MAS, Examples Test examples using Anmoniumu chloride (NH 4 C1) water 1, Anmoniumu sulfate ((NH 4) 2 S0 4 ) Test example using an aqueous solution Example 2, nitrate Anmoniumu (H 4 N0 3 ) 7) Test using the solution, Test Example 3 using ammonium hydrogen fluoride (NH 4 HF 2 ) z solution Test example 4, Test the example using pure water without using the MAS 7_K solution Example 5. From Fig. 1, it is clear that the use of the MAS aqueous solution promotes the oxidative decay of scrap, and the sample oxidizes and decay from the surface over time, and spreads as brown powder at the bottom of the container. The situation was seen. Above all, it can be seen that the effect of Test Example 2 using an aqueous solution of ammonium sulfate was great.
試験例 6  Test example 6
MAS水赚として、 0.5molZlの硫酸アンモニゥム水溶液を用い、該水、嫌の温度 を 25°C、 40°C、 60°C、 80°C及ぴ 100°Cに代えた以外は、試験例 1〜4と同様にして塊 状の固形物であるスクラツ^;料を酸化処理した。 各温度について固形物の残存率が 10%以下になるまでの時間を測定した。 結果を図 2に示す。 また 60°C、 72時間処理 により完全に崩壌した試料について、 沈澱物をろ過して回収し、 100°Cで乾燥した粉 末を X線回折で調査した。 結果を図 3に示す。  Test Example 1 was repeated except that a 0.5 mol Zl aqueous solution of ammonium sulfate was used as the MAS water, and the temperature of the water was changed to 25 ° C, 40 ° C, 60 ° C, 80 ° C, and 100 ° C. In the same manner as in Nos. 1 to 4, the scrap material, which is a massive solid, was oxidized. At each temperature, the time required for the residual ratio of the solid to become 10% or less was measured. The result is shown in figure 2. The precipitate was collected by filtration from a sample that had completely collapsed by treatment at 60 ° C for 72 hours, and the powder dried at 100 ° C was examined by X-ray diffraction. The results are shown in Figure 3.
図 2より、 MAS 7j溶液の温度を 40°C以上に上昇させると、 顕著に反応力 S促進され ることが分かる。  From FIG. 2, it can be seen that when the temperature of the MAS 7j solution is raised to 40 ° C. or higher, the reaction force S is remarkably promoted.
図 3より、生成した粉末には Fe(OH)3、 FeO(OH)等の強い回折ピークが存在する。 希土類化合物のピークは必ずしも明瞭でないが、 これは恐らく結晶性の低い水酸化物 として存在するためであると考えられる。 According to FIG. 3, the generated powder has strong diffraction peaks such as Fe (OH) 3 and FeO (OH). The peak of the rare earth compound is not always clear, probably due to its presence as a low crystalline hydroxide.
試験例 7及ぴ 8  Test example 7 and 8
硫酸アンモニゥム水溶液の濃度を、 0.1〜2.0molZlの範囲で変化させ、 fig 60°C— 定とした以外は、 試験例 1〜4 と同様にして塊状の固形物であるスクラップ試料を酸 化処理した。用いた硫酸アンモニゥム水溶液の各濃度について固形物の残存率が 10% 以下になるまでの時間を測定した (試験例 7)。 また、 試験例 8として、 温度 60°C—定 とし、エアレーシヨン無しの条件とした以外は試験例 2と同様にしてスクラッ 7¾料 を酸化処理した。この際の固形物の残存率が 10%以下になるまでの時間を測定した。 これらの結果を図 4に示す。 伹し、 試験例 8の結果のみ図中 X印で示す。 Except that the concentration of the aqueous ammonium sulfate solution was changed in the range of 0.1 to 2.0 mol Zl and the fig was fixed at 60 ° C, the scrap sample as a solid mass was oxidized in the same manner as in Test Examples 1 to 4. . For each concentration of the aqueous ammonium sulfate solution used, the time required for the residual ratio of solids to be 10% or less was measured (Test Example 7). Further, in Test Example 8, the scraper 7 was oxidized in the same manner as in Test Example 2, except that the temperature was fixed at 60 ° C. and the conditions without the air rate were used. At this time, the time until the residual ratio of the solid material became 10% or less was measured. Figure 4 shows these results. However, only the results of Test Example 8 are indicated by X in the figure.
図 4から、 硫酸アンモニゥム水溶液を用いた場合、 その濃度は、 0.2mol/l以上で 酸化'崩謝足進効果が得られ、 濃度上昇につれて効果が増し、 1.5〜2.0molZl付近で 飽和に及ぶこと、 またエアレーションを行わない試験例 8では著しく反応が遅れるこ とが分力ゝる。  From Fig. 4, it can be seen that when an aqueous solution of ammonium sulfate is used, its concentration is 0.2 mol / l or more, and the effect of promoting oxidation is obtained, the effect increases as the concentration increases, and reaches saturation at around 1.5 to 2.0 mol Zl. In Test Example 8 in which no aeration was performed, the reaction was significantly delayed.
実施例 1  Example 1
表 1に示す組成の希土類一鉄一ホウ素系焼結磁石の製造過程で派生した切り捨て部 (約 17 g /個) 6個が混在する粉末状の研肖頓含有スラッジ (乾燥重量 119.7g)を、 濃度 0.8mol/lの硫酸ァンモユウム水 500mlに浸漬した。 続いて、 攪拌及ぴエアレー シヨンしつつ 70°Cにて 30時間の酸化処理を行つたところ、 該スラッジから酸化物粉 末の沈澱物が生成した。 この酸ィ匕物粉末をろ過分離し、 乾燥したところ 192.5gであ つた。 その一部を採取して組成を分析した。 結果を表 1に示す。  The powdered ground sludge (dry weight: 119.7 g) containing six cut-out parts (about 17 g / piece) derived from the manufacturing process of the rare earth-iron-boron based sintered magnet with the composition shown in Table 1 It was immersed in 500 ml of a 0.8 mol / l ammonium sulfate aqueous solution. Subsequently, the resultant was subjected to an oxidation treatment at 70 ° C. for 30 hours with stirring and aeration, whereby a precipitate of oxide powder was formed from the sludge. The powder of this acidified product was separated by filtration and dried to obtain 192.5 g. A part was sampled and analyzed for composition. Table 1 shows the results.
表 1より、 得られた粉末中には、 該スラッジ中の希土類元素の 98%以上、 また Co の 93%以上が していることが判る。  Table 1 shows that the obtained powder contains 98% or more of the rare earth elements in the sludge and 93% or more of Co.
尚、 表 1及び表 2中の Rは (1、 Pr及び Dyの混合物を示し、表 1の 「その他」 は 酸素、 水素、 炭素、 硫黄等のガス成分を示す。  In addition, R in Tables 1 and 2 indicates a mixture of (1, Pr and Dy, and “Others” in Table 1 indicates gas components such as oxygen, hydrogen, carbon, and sulfur.
表 1  table 1
Figure imgf000010_0001
Figure imgf000010_0001
次いで、硝酸を用いた酸浸出法により、前記粉末からの希土類元素の回収を試みた。 前記酸化物粉末 170.0gを水 200mlに分散させ、 エアレーションしながら 5Nの硝酸 7 ^ を滴下した。温度は 40〜50°Cに保持した。反応の進行と共に pHは 7付近から 次第に低下し、 pH5.3となった時点で滴下を終了した。 総滴下量は 370ml、 所要時間 は 8時間であった。 得られた液をろ過 ·洗浄し、 沈澱物と溶液に分離した。 ろ液の分 析結果を表 2に示す。 表 2より、 酸化物粉末中の希土類元素の 98.9%、 Coの 88.0% がろ液中に樹,していることが判る。 表 2 Next, an attempt was made to recover rare earth elements from the powder by an acid leaching method using nitric acid. 170.0 g of the oxide powder was dispersed in 200 ml of water, and 5N nitric acid 7 ^ was added dropwise while aeration was performed. The temperature was kept at 40-50 ° C. As the reaction progressed, the pH gradually decreased from around 7, and the dropping was completed when the pH reached 5.3. The total dripping amount was 370 ml and the required time was 8 hours. The obtained liquid was filtered and washed, and separated into a precipitate and a solution. Table 2 shows the analysis results of the filtrate. Table 2 shows that 98.9% of the rare earth elements and 88.0% of Co in the oxide powder were found in the filtrate. Table 2
Figure imgf000011_0001
Figure imgf000011_0001
上記ろ液に、 フッ化物、 蓚酸塩、 z酸化物、 炭酸塩等の水溶液を添加して行う沈澱 生成法又は溶媒抽出法等により、 希土類元素とコパルトを選択的に回収することがで きる。  A rare earth element and coparte can be selectively recovered by a precipitation generation method or a solvent extraction method performed by adding an aqueous solution of fluoride, oxalate, z-oxide, carbonate, or the like to the filtrate.
実施例 2  Example 2
実施例 1と同組成の希土類一鉄一ホウ素系焼結磁石の製造過程で派生した研削屑を 含有したスラッジ 350g (乾燥重量 175g)を濃度 0.2mol/lの硫酸アンモニゥム水溶液 500mlに浸漬した。 続いて、 攪拌 ·エアレーションをしつつ 70°Cにて 12時間の酸ィ匕 処理を行い、 生成した酸化物粉末をろ過 ·分離した。 次いで、 得られた酸化物粉末の 全量を水 200mlに分散させ、攪拌 ·エアレーションしながら 5Nの硝酸水溶液を滴下 した。温度は 40〜50°Cに保持した。反応の進行と共に pHは 7付近から次第に低下し、 pH3となった時点で滴下を終了した。総滴下量は 140ml、所要時間は 8時間であった。 次いで、 沈澱物をろ過し、 得られた沈澱物を水で洗浄した。 ろ液と沈澱物を洗浄した 水を混合し、 硝酸浸出ろ液 1000mlとし、 ろ液の分析を行った。 スラッジ中の希土類 元素含有量は 31.5g、 前記硝酸浸出ろ液中の希土類元素含有量は 30.9gであり、 希土 類元素の回収率は 98.0%であった。 350 g (dry weight: 175 g) of sludge containing grinding chips derived from the production process of the rare-earth iron-boron sintered magnet having the same composition as in Example 1 was immersed in 500 ml of a 0.2 mol / l ammonium sulfate aqueous solution. Subsequently, an oxidizing treatment was performed at 70 ° C. for 12 hours with stirring and aeration, and the generated oxide powder was filtered and separated. Next, the whole amount of the obtained oxide powder was dispersed in 200 ml of water, and a 5N aqueous nitric acid solution was added dropwise with stirring and aeration. The temperature was kept at 40-50 ° C. As the reaction progressed, the pH gradually decreased from around 7, and the dropping was completed when the pH reached 3. The total amount dropped was 140 ml and the required time was 8 hours. Next, the precipitate was filtered, and the obtained precipitate was washed with water. The filtrate and the water from which the precipitate was washed were mixed to make a nitric acid leached filtrate 1000 ml, and the filtrate was analyzed. The content of the rare earth element in the sludge was 31.5 g , the content of the rare earth element in the filtrate for nitric acid leaching was 30.9 g, and the recovery rate of the rare earth element was 98.0%.
比較例 1  Comparative Example 1
実施例 2で用いたのと同じスラッジ 350g (乾燥重量 175g)を硫酸ァンモニゥム水溶 液での酸化処理を行わず、 攪拌 ·エアレーションしながら 5Nの硝酸水溶液を滴下し た。 温度は 40〜50°Cを保持した。 反応の進行と共に p Hは 11付近から次第に低下し、 pH3となった時点で滴下を終了した。総滴下量は 300mlで、所要時間は 30時間であ つた。 次いで、 沈澱物をろ過し、 得られた沈澱物を水で洗浄した。 ろ液と沈澱物を洗 浄した水を混合し、 硝酸浸出ろ液 1000mlとし、 ろ液の分析を行った。 スラッジ中の 希土類元素含有量は 31.5g、前記硝酸浸出ろ液中の希土類元素含有量は 25.2gであり、 希土類元素の回収率は 80.0%であった。 350 g (dry weight: 175 g) of the same sludge as used in Example 2 was not subjected to oxidation treatment with an aqueous solution of ammonium sulfate, and a 5N aqueous nitric acid solution was added dropwise while stirring and aeration. The temperature was maintained at 40-50 ° C. As the reaction progressed, the pH gradually decreased from around 11, and the dropping was completed when the pH reached 3. The total dripping amount was 300 ml and the required time was 30 hours. Next, the precipitate was filtered, and the obtained precipitate was washed with water. The filtrate and the water from which the precipitate was washed were mixed together to make a nitric acid leached filtrate 1000 ml, and the filtrate was analyzed. The content of the rare earth element in the sludge was 31.5 g , the content of the rare earth element in the nitric acid leaching filtrate was 25.2 g , and the recovery rate of the rare earth element was 80.0%.

Claims

請求の範囲 The scope of the claims
1 . 希土類一遷移金属合金スクラップを、 鉱酸のアンモニゥム複水溶液に浸漬する.ェ 程 (A)と、工程 (A)における鉱酸のアンモニゥム^溶液に酸素を含む気体を流通さ せ、スクラップを酸化させて酸化物及び水酸化物の少なくとも 1種を主体とする粉 末を含む沈澱物を得る工程 (B)と、 工程 (B)で得られた沈澱物を、鉱酸のアンモ-ゥ ム^ から分離する工程 )と、工程 (C)で分離した沈澱物から希土類元素を回 収する工程 CD)とを含む希土類一遷移金属合金スクラップからの有用元素の回収方 法。  1. Immerse the rare earth-transition metal alloy scrap in a double aqueous solution of mineral acid in step (A) and pass the gas containing oxygen through the ammonia solution of mineral acid in step (A). A step (B) of oxidizing to obtain a precipitate containing a powder mainly composed of at least one of an oxide and a hydroxide, and converting the precipitate obtained in the step (B) into an aqueous solution of a mineral acid. A method for recovering useful elements from rare earth-transition metal alloy scrap, comprising: a step of separating rare earth elements from the precipitate separated in step (C)) and a step of recovering rare earth elements from the precipitate separated in step (C).
2. スクラップが、 磁性材料の製 程で派生する希土類一鉄系合金、 希土類ーコパ ルト系合金、及び希土類一鉄一コバルト系合金からなる群より選択される 1種又は 2種以上の合金を含むスクラップである請求の範囲 1の回収方法。  2. The scrap contains one or more alloys selected from the group consisting of rare earth-iron-iron alloys, rare earth-cobalt alloys, and rare earth-iron-iron-cobalt alloys derived from the production of magnetic materials The collection method according to claim 1, which is a scrap.
3 . 鉱酸のアンモニゥム塩水溶液が、 塩化アンモニゥム、 硫酸アンモニゥム、 硝酸ァ ンモニゥム及ぴフッ化水素ァンモニゥムからなる群より選択された 1種又は 2種以 上の塩の水 である請求の範囲 1の回収方法。  3. The aqueous solution of an ammonium salt of a mineral acid is water of one or more salts selected from the group consisting of ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium hydrogen fluoride. Collection method.
4. 鉱酸のアンモニゥム塩水溶液が、 硫酸アンモニゥム水溶液である請求の範囲 1の 回収方法。  4. The method according to claim 1, wherein the aqueous solution of an ammonium salt of a mineral acid is an aqueous solution of ammonium sulfate.
5 . 工程 (A)における鉱酸のアンモニゥム塩水溶液の濃度が 0.:!〜 2.0mol/lであり、 且つ工程 (B)において、 鉱酸のアンモニゥム ^τΚ溶液の? を少なくともスクラッ プを酸ィヒさせる際に 40〜90°Cに保持する請求の範囲 1の回収方法。  5. The concentration of the aqueous ammonium salt solution of the mineral acid in step (A) is 0 :! 2. The method according to claim 1, wherein in the step (B), the temperature of the ammonium acid solution of the mineral acid is kept at 40 to 90 ° C. at least when the scrap is acidified in the step (B). .
6 . 工程 (D)を、 鉱酸を用いた酸浸出法により行う請求の範囲 1の回収方法。  6. The method according to claim 1, wherein step (D) is performed by an acid leaching method using a mineral acid.
PCT/JP2003/003238 2002-03-19 2003-03-18 Method for recovering useful element from rare earth - transition metal alloy scrap WO2003078671A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003576661A JP4287749B2 (en) 2002-03-19 2003-03-18 Method for recovering useful elements from rare earth-transition metal alloy scrap
AU2003221047A AU2003221047A1 (en) 2002-03-19 2003-03-18 Method for recovering useful element from rare earth - transition metal alloy scrap

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002076054 2002-03-19
JP2002-76054 2002-03-19

Publications (1)

Publication Number Publication Date
WO2003078671A1 true WO2003078671A1 (en) 2003-09-25

Family

ID=28035405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003238 WO2003078671A1 (en) 2002-03-19 2003-03-18 Method for recovering useful element from rare earth - transition metal alloy scrap

Country Status (4)

Country Link
JP (1) JP4287749B2 (en)
CN (1) CN100339495C (en)
AU (1) AU2003221047A1 (en)
WO (1) WO2003078671A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469116C1 (en) * 2011-03-14 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" Processing method of micro production wastes of constant magnets
RU2574543C1 (en) * 2014-11-17 2016-02-10 Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method for processing grinding wastes from production of permanent magnets
JP2017115175A (en) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 Method to collect rare earth elements from rare earth magnet
KR101867739B1 (en) * 2016-12-23 2018-06-15 주식회사 포스코 Method for manufacturing nickel concentrate
JP2020125521A (en) * 2019-02-05 2020-08-20 信越化学工業株式会社 Method of manufacturing acidic slurry, and method of recovering rare earth element
US11155898B2 (en) * 2016-06-03 2021-10-26 Brgm Method for extracting rare earth elements contained in permanent magnets
JP2022060262A (en) * 2019-02-05 2022-04-14 信越化学工業株式会社 Manufacturing method of acidic slurry and recover method of rare earth elements
US11764416B2 (en) 2019-08-02 2023-09-19 Iowa State Univerity Research Foundation, Inc. Chemical dismantling of permanent magnet material and battery material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325911B (en) * 2009-02-27 2014-04-09 国立大学法人大阪大学 Method for recovering rare earth elements from RE-TM-based mixture
CN102127646B (en) * 2011-03-07 2012-09-12 福建省长汀金龙稀土有限公司 Method for reprocessing rare earth slag by acid composition
US8940256B2 (en) * 2011-12-07 2015-01-27 Xylon Technical Ceramics, Inc. Method for recycling of rare earth and zirconium oxide materials
CN104169471A (en) 2012-07-19 2014-11-26 吉坤日矿日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy
CN104232905B (en) * 2014-06-16 2015-08-12 赣州力赛科新技术有限公司 A kind of containing iron oxide based raw material of high value element hydrogen and uses thereof
CN115261610B (en) * 2022-08-03 2023-08-22 中国科学院赣江创新研究院 Method for separating rare earth element and transition metal element in waste nickel-metal hydride battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187112A (en) * 1986-02-13 1987-08-15 Santoku Kinzoku Kogyo Kk Method for recovering rare earth element from rare earth element-iron type magnet material
JPS634028A (en) * 1986-06-23 1988-01-09 Sumitomo Metal Mining Co Ltd Treatment for scrap containing rare earth element and iron
JPH0514777B2 (en) * 1985-10-08 1993-02-25 Santoku Metal Ind
JPH0790394A (en) * 1993-09-22 1995-04-04 Sumitomo Metal Ind Ltd Dezincification method of ferroscrap and its device
EP0790321A1 (en) * 1996-02-13 1997-08-20 Santoku Metal Industry Co., Ltd. Method for recovering reusable elements from rare earth-iron alloy scrap containing cobalt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101311A (en) * 1986-06-06 1988-02-17 李久成 Extracting rubidium caesium process program from acid-basicity magmatite weathering crust or ion adsorption type rare earth ore
JPH0772312B2 (en) * 1991-05-17 1995-08-02 住友金属鉱山株式会社 Rare earth element recovery method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514777B2 (en) * 1985-10-08 1993-02-25 Santoku Metal Ind
JPS62187112A (en) * 1986-02-13 1987-08-15 Santoku Kinzoku Kogyo Kk Method for recovering rare earth element from rare earth element-iron type magnet material
JPS634028A (en) * 1986-06-23 1988-01-09 Sumitomo Metal Mining Co Ltd Treatment for scrap containing rare earth element and iron
JPH0790394A (en) * 1993-09-22 1995-04-04 Sumitomo Metal Ind Ltd Dezincification method of ferroscrap and its device
EP0790321A1 (en) * 1996-02-13 1997-08-20 Santoku Metal Industry Co., Ltd. Method for recovering reusable elements from rare earth-iron alloy scrap containing cobalt

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469116C1 (en) * 2011-03-14 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" Processing method of micro production wastes of constant magnets
RU2574543C1 (en) * 2014-11-17 2016-02-10 Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method for processing grinding wastes from production of permanent magnets
JP2017115175A (en) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 Method to collect rare earth elements from rare earth magnet
US11155898B2 (en) * 2016-06-03 2021-10-26 Brgm Method for extracting rare earth elements contained in permanent magnets
KR101867739B1 (en) * 2016-12-23 2018-06-15 주식회사 포스코 Method for manufacturing nickel concentrate
JP2020125521A (en) * 2019-02-05 2020-08-20 信越化学工業株式会社 Method of manufacturing acidic slurry, and method of recovering rare earth element
JP7044082B2 (en) 2019-02-05 2022-03-30 信越化学工業株式会社 Method for producing acidic slurry and method for recovering rare earth elements
JP2022060262A (en) * 2019-02-05 2022-04-14 信越化学工業株式会社 Manufacturing method of acidic slurry and recover method of rare earth elements
JP7151916B2 (en) 2019-02-05 2022-10-12 信越化学工業株式会社 Method for producing acidic slurry and method for recovering rare earth elements
US11764416B2 (en) 2019-08-02 2023-09-19 Iowa State Univerity Research Foundation, Inc. Chemical dismantling of permanent magnet material and battery material

Also Published As

Publication number Publication date
JP4287749B2 (en) 2009-07-01
CN100339495C (en) 2007-09-26
CN1656239A (en) 2005-08-17
JPWO2003078671A1 (en) 2005-07-14
AU2003221047A1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
JP3220674B2 (en) Manufacturing method of neodymium / iron / boron permanent magnet alloy
Önal et al. Recycling of NdFeB magnets using sulfation, selective roasting, and water leaching
Önal et al. Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery
JP5146658B2 (en) Recovery method of rare earth elements
US4988487A (en) Process for recovering metal values such as scandium, iron and manganese from an industrial waste sludge
CA2101495C (en) Recovery of precious metal values from refractory ores
WO2003078671A1 (en) Method for recovering useful element from rare earth - transition metal alloy scrap
US5180563A (en) Treatment of industrial wastes
US5129945A (en) Scrap treatment method for rare earth transition metal alloys
CN108751259B (en) Method and device for producing ammonium metatungstate by tungsten-containing waste
US5961938A (en) Method for recovering reusable elements from rare earth-iron alloy
Tao et al. Recovery of rare earth and cobalt from Co-based magnetic scraps
Belfqueh et al. Evaluating organic acids as alternative leaching reagents for rare earth elements recovery from NdFeB magnets
US20180237887A1 (en) Selective sulfation roasting of rare earth magnet waste
JP2004002927A (en) Method for processing super hard alloy scrap
AU742616B2 (en) Methods for treating ores
JPH06322452A (en) Method for classifying and recovering valuable metal from used secondary lithium battery
CN104404255B (en) A kind of easy method that pre-treatment Ore Leaching is carried out to neodymium iron boron waste material
JP7044082B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
EP0467180A2 (en) Rare earth/transition metal alloy scrap treatment method
CA2775051A1 (en) Molybdenum refining method
Kim et al. Preparation of uranium oxide powder for nuclear fuel pellet fabrication with uranium peroxide recovered from uranium oxide scraps by using a carbonate–hydrogen peroxide solution
JP7151916B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
JP3245926B2 (en) Method for producing Mn-Zn ferrite
JPH08291346A (en) Method for recovering rare earth element from scrap and production of rare earth-transition metal alloy powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003576661

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1-2004-501451

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 20038115158

Country of ref document: CN

122 Ep: pct application non-entry in european phase