WO2003067690A1 - Carbon black for electrode of cell or electric double-layer capacitor - Google Patents

Carbon black for electrode of cell or electric double-layer capacitor Download PDF

Info

Publication number
WO2003067690A1
WO2003067690A1 PCT/JP2002/012586 JP0212586W WO03067690A1 WO 2003067690 A1 WO2003067690 A1 WO 2003067690A1 JP 0212586 W JP0212586 W JP 0212586W WO 03067690 A1 WO03067690 A1 WO 03067690A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
battery
electric double
electrode
micropore
Prior art date
Application number
PCT/JP2002/012586
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Maeno
Masaaki Mizuta
Original Assignee
Ketchen Black International Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ketchen Black International Company filed Critical Ketchen Black International Company
Priority to AU2002349680A priority Critical patent/AU2002349680A1/en
Publication of WO2003067690A1 publication Critical patent/WO2003067690A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to primary batteries such as lithium batteries, manganese batteries, and alkaline manganese batteries, lithium ion batteries, lithium polymer batteries, air zinc batteries, nickel metal hydride batteries, polymer batteries, sodium sulfur batteries, zinc bromine batteries, and the like.
  • the present invention relates to a power pump rack used as an electrode composition of a secondary battery and an electric double layer capacitor. Background art
  • Batteries can be divided into single-use primary batteries and secondary batteries that can be used repeatedly by charging.
  • Examples of the former include organic electrolyte batteries (such as lithium primary batteries) using light metals and manganese dioxide, manganese primary batteries, and alkaline manganese primary batteries. The latter use hydrogen-absorbing alloys.
  • Rechargeable lithium battery nickel-hydrogen secondary battery, etc.
  • non-aqueous electrolyte secondary battery using lithium compound lithium ion secondary battery, etc.
  • lithium polymer secondary battery air zinc secondary battery
  • high Molecular secondary batteries sodium-sulfur secondary batteries, zinc-bromine secondary batteries, and the like.
  • the capacitor examples include an electric double-layer capacitor that retains and uses electric charges on the surface of an activated carbon-based carbon material. As part of higher performance, efficiently transport electrons generated from compounds used as active materials in various batteries and electric double layer capacitors to current collectors Black is often used as a carrier material. As an example, a case of a lithium ion secondary battery will be described.
  • Lithium-ion secondary battery as a positive electrode active material, lithium-containing composite oxide of a transition metal, i.e. L i M 2 0 4 with L i M_ ⁇ 2 or spinel Le structure having a layered structure (where, M is a transition metal , For example, cobalt, manganese, nickel, or iron), etc., and a carbon material that absorbs lithium ions and forms an intercalation compound as a negative electrode material, and one of them is released between the positive electrode and the negative electrode.
  • Charging and discharging are performed by a reversible reaction in which the other side absorbs lithium ions. Research is underway to further increase the capacity of lithium-ion secondary batteries and improve heavy-load characteristics.
  • the lithium composite oxide used as the positive electrode material has low performance as an electron carrier material, it is common to use an electronic carrier material such as a force pump rack for use as a positive electrode. .
  • carbon black electronic carrier materials such as acetylene black
  • acetylene black which have been widely used in the past, can achieve higher capacities than those not using carbon black and have improved heavy load characteristics, but are still satisfactory. Performance has not been reached.
  • Japanese Patent Application Laid-Open No. H11-140139 discloses a specific dibutyl phthalate (DBP) oil absorption amount and a specific resistance of 10 ⁇ when pressed in a dry state.
  • DBP dibutyl phthalate
  • A force pump rack limited to less than cm has been proposed.
  • the specific resistance pressed in the dry state is an index of the conductivity of the pump rack itself, but does not reflect the conductivity when a certain amount of carbon black is contained in the system. At present, there is no direct link to improvement.
  • JP-A-201-167767 carbon black having a DBP oil absorption of 100 to 1000 mlZg is used as a positive electrode mixture component.
  • a method has been proposed to improve the capacity and cycle characteristics at high temperatures, satisfactory performance has not yet been achieved.
  • Japanese Patent Laid-Open Publication No. HEI 7-264 proposes a method for increasing discharge voltage by using carbon black having a graphitized structure as a conductive material in a positive electrode mixture.
  • Japanese Patent Application Publication No. 2000-123238 discloses a method for producing an electrode having excellent rapid discharge characteristics by using a crushed force pump rack as a conductive agent. Proposed.
  • Japanese Patent Laid-Open No. 5-32632 / 27 discloses that a kneaded body of activated carbon monosulfuric acid is accommodated in a conductive rubber plate-like bag, and the bag is used as a current collector to form electrodes.
  • a method has been proposed for forming an electric double layer capacitor with low internal resistance by forming it and inserting it into a plastic battery case with partition walls.
  • Japanese Patent Application Laid-Open No. Hei 9-275501 discloses a method for increasing the capacity by forming a polarizable electrode using carbon black having a specific surface area of 100 On ⁇ Zg or more.
  • the present invention solves the above-mentioned problems in the conventional technology, and is a carbon black used as an electrode composition of a battery or an electric double layer capacitor, which has good capacity, heavy load characteristics and cycle characteristics. It is an object of the present invention to provide a power black capable of manufacturing a simple battery or an electric double layer capacitor. Disclosure of the invention
  • the present inventors have proposed a method for achieving the above object, which is used in the present invention.
  • the power pump rack of the present invention is a carbon black used as an electrode composition of a battery or an electric double layer type capacitor, and has a microcapsule derived from a relation curve between micropore volume and micropore width.
  • the micropore width at which the pore volume has the maximum value is in the range of 4.0 to 8.0 angstrom, and the maximum value of the micropore volume is 0.060 to 0.135m1. / Angstrom / g.
  • the maximum value of the micropore volume of carbon black is preferably from 0.075 to 0.135 m1 / angstrom / g, and more preferably from 0.090 to 0.90. It should be 135 m1 / angstrom / g.
  • the total pore volume is preferably 3.5 to 5.0 m 1 / g, and the total pore volume is 4.0 to 5.0 ml / g. More preferred.
  • the ratio of volatiles carbon monoxide / carbon dioxide (hereinafter, "CO / C0 2") is, 6. 0: the L 0. 0 It is preferably within the range.
  • the capacity, heavy load characteristics, and cycle characteristics of the battery and the electric double layer capacitor can be improved.
  • the micropore width is in the range of 4.5 to 7.5 angstroms, and Maximum 0.0 9 5-0 volumes.
  • the total pore volume 4. 1 ⁇ 4.
  • the micropore width is in the range of 5.0 to 7.0 on dastrom, and the maximum value of the micropore volume is 0.10 to 0.125 m1 / angstrom / g, More preferably, the pore volume is 4.2 to 4.8 m 1 / g, and the ratio of the carbon monoxide to the carbon dioxide is 7.0 to 9.0.
  • the carbon black of the present invention is preferably used as an electrode of a primary battery or a secondary battery among battery electrodes.
  • the carbon black for an electrode of the battery or electric double layer capacitor of the present invention has a micropore having a maximum pore volume at a maximum value derived from a relation curve between the pore volume and the micropore width.
  • the width is in the range of 4.0-8.0 on dastroms.
  • the micropore width is 4.0 ⁇ or more, the affinity with the electrolytic solution becomes good, and as a result, the performance of the battery and the capacitor can be improved.
  • the micropore width is 8.0 angstrom or less, the dispersibility of carbon black is improved, and as a result, the performance of a battery or a capacitor can be improved.
  • the maximum value of the micropore volume is in the range of 0.060 ml / angstrom / g or more and 0.135 m1 / angstrom / g or less.
  • the maximum value of the micropore volume is 0.060 ml / angstrom—m / g or more, the affinity with the electrolytic solution becomes good, and as a result, the battery performance is improved and the When it is less than 35 m 1 / angstrom / g, the dispersibility of carbon black is improved, and as a result, the performance of the battery and the capacitor can be improved.
  • Maximum micropore volume Is preferably from 0.075 to 0.135 m1 / angstrom / g, more preferably from 0.090 to 0.135 m1 / angstrom / g.
  • the micropore width at which the micropore volume, which is derived from the relationship curve between the micropore volume and the micropore width of carbon black, becomes the maximum is 4.5 to 7
  • it is within the range of 5 ⁇ and the maximum value of the micropore volume is from 0.095 to 0.130 ml / ⁇ / g.
  • the micropore width is in the range of 5.0 to 7.0 angstroms, and the maximum value of the micropore volume is 0.100 to 0.125 m1 / angstrom / m g is preferred.
  • the relationship curve between the micropore volume and the micropore width in the present invention was obtained by using an auto soap 11-MP type (or a device having an equivalent function) manufactured by Cantachrome as follows. Is the value measured.
  • micropore volume and the micropore width are determined by adsorbing nitrogen gas at a liquid nitrogen temperature to a sample previously dried at 200: for 12 hours or more, and applying a nitrogen adsorption equilibrium pressure to the sample.
  • the adsorption / desorption isotherm is determined from the amount of gas adsorbed on the surface, and the value on the adsorption side of the obtained isotherm is analyzed by the HK method to calculate the relationship between the micropore width and the micropore volume. Ask by doing.
  • micropore width refers to the width of carbon black in which micropores having a diameter of 20 ⁇ or less are present, and the HK method assumes that these fine pores are slits.
  • the total pore volume is preferably 3.5 to 5.Oml / g, more preferably 4.0. ⁇ 5. Oml / g. All pores When the volume is 3.5 ml / g or more, the affinity with the electrolyte becomes good, and as a result, the performance of the battery and the capacitor can be improved. In addition, when it is not more than 5. Oml / g, the dispersibility of the force pump rack becomes good, and as a result, the performance of the battery and the capacitor can be improved. To further increase the electric capacity, the total pore volume is 4.:! It is preferably from 4.9 m 1 / g, particularly preferably from 4.2 to 4.8 ml / g.
  • the surface characteristics of carbon black vary depending on the types and abundances of the surface functional groups of carbon black in addition to the pore characteristics described above. Therefore, in the present invention, the volatile matter (oxygen, hydrogen, carbon monoxide, carbon dioxide, etc.) generated when carbon black is heated at a constant temperature is examined in detail, and the volatile matter and the surface characteristics of carbon black are determined. I found a close relationship. In particular, when used for an electrode of a battery or an electric double layer capacitor, it is preferable that the CO 2 / CO 2 of the volatile matter of carbon black at 950 ° C. is in the range of 6.0 to 10.0.
  • the carbon black of the present invention is obtained by incompletely burning hydrocarbons such as a gas furnace method, an oil furnace method, a degas gas furnace method, an acetylene method, a thermal method, a channel method, a Texaco method, and a shell method. It can be produced by using a general method of producing black and arbitrarily selecting the furnace temperature, pressure, and gas components. Further, carbon black having properties other than the present invention produced by these methods can also be produced by performing a secondary treatment such as water vapor or high temperature.
  • liquid hydrocarbons which is a mixture of aromatic liquid hydrocarbons and carbon black, heavy fuel oil A, heavy fuel oil C, or thermally decomposed oil of naphtha, are used as raw material oils.
  • furnace pressure 10 to 80 kg / cm 2
  • the amount of steam supplied to the furnace is obtained by operating at 200 to 1300 kg per ton of liquid hydrocarbon.
  • a method is preferred in which the carbon black obtained by this method is subjected to a secondary treatment at 200 to 900 ° C. in an inert atmosphere to produce the carbon black.
  • the carbon black of the present invention is used as an electrode composition for batteries and electric double layer capacitors.
  • primary batteries such as lithium batteries, manganese batteries, and alkaline manganese batteries, lithium ion batteries, lithium polymer batteries, zinc air batteries, nickel metal hydride batteries, polymer batteries, sodium sulfur batteries, zinc bromine batteries, etc.
  • Secondary batteries and electric double-layer capacitors are used as secondary batteries and electric double-layer capacitors.
  • the use amount of the power pump rack of the present invention is not particularly limited, but is preferably 0.1 to 25.0 parts by mass, more preferably 0.2 to 100 parts by mass of the positive or negative electrode active material. 220.0 parts by mass.
  • a dispersion of carbon black is prepared in advance, and an active material, a binder, and various additives are added to the dispersion to further disperse. Coating on body and drying, Carbon black, active material, binder and various additives are simultaneously dispersed in solution, coating on current collector and drying, carbon black, active material, binder, various The additives are dispersed by a dry mixer, and are combined with the current collector by pressure such as compression molding. For example, a method of attaching is used.
  • the disperser a known disperser such as a pole mill, a sand mill, a three-roll mill, a high-speed disperser, and a dry mixer such as a Henschel mixer and a planetary pole mill can be used.
  • a known disperser such as a pole mill, a sand mill, a three-roll mill, a high-speed disperser, and a dry mixer such as a Henschel mixer and a planetary pole mill can be used.
  • a dry mixer such as a Henschel mixer and a planetary pole mill
  • Furnace temperature 1400 ° (:, Furnace pressure: 30 Kg / cm 2 , Raw material hydrocarbon under the condition that the amount of steam supplied to the furnace is 500 kgZ ton with respect to raw material hydrocarbon Was reacted to obtain carbon black B-1.
  • Furnace temperature 150 ° C
  • Furnace pressure 30 Kg / cm 2
  • the amount of steam supplied to the furnace was 800 kgZ ton for the raw material hydrocarbons.
  • the hydrogen was reacted to obtain carbon black B_2.
  • Furnace temperature 125 ° C
  • Furnace pressure 30 KgZcm 2
  • the amount of steam supplied to the furnace is made to react with the raw material hydrocarbon under the conditions of 800 kgZ ton.
  • carbon black B-3 was obtained.
  • Furnace temperature 150 ° C
  • furnace pressure 30 Kg / cm 2
  • the amount of steam supplied to the furnace was reduced to 100 kg kg ton with respect to raw material hydrocarbons.
  • carbon black B-5 carbon black
  • Furnace temperature 1400 ° C
  • Furnace pressure 3 O Kg / cm 2
  • the amount of steam supplied to the furnace was 800 k ton against the raw material hydrocarbons, and the raw hydrocarbons were reacted. You got Riki Bon Black B-6.
  • Furnace temperature 1400 ° C
  • Furnace pressure 3 O Kg / cm 2
  • Raw material carbonization under the condition that the amount of steam supplied to the furnace is 110 kg kg ton with respect to raw material hydrocarbons By reacting hydrogen, carbon black B-7 was obtained.
  • Furnace temperature 125 ° C
  • Furnace pressure 3 O Kg / cm 2
  • Reacted hydrocarbon reacts under the condition of 800 kg tons of steam supplied to the furnace Then, a power pump rack was obtained.
  • This pump rack was treated in an N 2 atmosphere at 600 ° C. for 5 hours to obtain carbon black B-8.
  • Tables 1 and 2 show the properties of the obtained carbon black.
  • the maximum micropore width (angstrom) and the maximum micropore volume (m1 / angstrom / g) where the micropore volume is the maximum value are determined by the Autosoap 1-1 MP type manufactured by Kantachrome. From the nitrogen adsorption isotherm using the HK method was calculated and plotted. The total pore volume (ml / g) was determined from a nitrogen adsorption isotherm.
  • Denka Black manufactured by Electrochemical which is acetylene black
  • Table 3 shows the properties of acetylene black (referred to as carbon black B-9).
  • the pore width means the width of the micropore at the point where the micropore volume has the maximum value.
  • Example 1 Lithium ion secondary battery
  • a positive electrode of a lithium ion secondary battery was produced as follows.
  • 0.1 is a positive active material; lithium manganate having a particle size distribution of from about m to 1 0 0 / xm (L i Mn 2 0 4) 1 0 0 parts by weight
  • Table 4 various forces one carbon black And the composition shown in Table 5.
  • 10 parts by mass of polyvinylidene fluoride resin (PVDF) as a binder was added, and 200 parts by mass of N-methylpyrrolidone (NMP) as a dispersion solvent was added and kneaded.
  • PVDF polyvinylidene fluoride resin
  • NMP N-methylpyrrolidone
  • the negative electrode was produced as described below. To the graphite powder, 10 parts by weight of PVDF as a binder was added to 100 parts by weight of graphite, and 100 parts of NMP was added as a dispersing solvent, and the dispersed slurry was collected with a two-dimensional current collector. A negative electrode having a thickness of 130 m was obtained by applying it to both sides of a rolled copper foil having a thickness of 10 im, followed by drying, pressing and cutting.
  • the positive electrode and the negative electrode produced by the above method were wound, and the wound group was housed in a cylindrical battery container via a polyethylene separator having a thickness of 25 m to obtain a lithium ion secondary battery.
  • Solution using a mixture of ethylene carbonate and dimethyl carbonate with a L i PF 6 dissolved 1 mol ZL is the electrolysis, the upper lid forces caulking, after sealing, pouring a predetermined amount injected the electrolytic solution from the port, and sealing.
  • the battery capacity of the design value of this battery is 1300 mAh.
  • the discharge capacity and heavy load characteristics of the batteries (Nos. 1 to 13) manufactured as described above were measured.
  • the battery was charged at a constant current for 8 hours at an 8-hour rate (1Z8C), and then discharged at 1Z8C to a final voltage of 3.2V.
  • Table 4 shows the discharge capacity of each battery under these conditions.
  • the discharge capacity is shown in Table 4 as a ratio (%) when the discharge capacity of the embodiment (No. 1) is 100%.
  • the heavy load characteristics are constant current after the initial capacity test Charge at 1 Z8 C for 8 hours, discharge at 1Z8 C, discharge voltage (3.2 V) when performed at 3.2 V, and discharge at 12 hour rate (2 C) in the same manner.
  • the discharge capacity (Y) at a voltage of 3.2 V was measured.
  • Tables 4 and 5 show the ratio of 2 C discharge capacity to 1/8 C discharge, YZX (%), as an index of heavy load characteristics. It can be said that the larger this value is, the more excellent the heavy load characteristic is.
  • the lithium ion secondary batteries (Nos. 1 to 9 and No. 11) containing the power pump rack of the present invention in the positive electrode have both high discharge capacity and heavy load characteristics. Are better.
  • the lithium ion secondary batteries (No. 10 and ⁇ . 12 to 13) containing carbon black in the positive electrode other than the present invention have inferior discharge capacity and heavy load characteristics.
  • a negative electrode of a nickel-metal hydride secondary battery was produced as follows. And misch metal nickel alloy (AB 5 type alloy) powder powder 1 0 0 part by mass as a hydrogen absorbing alloy as an active material, various kinds shown in Tables 6 and 7 carbon blacks and Po Li tetrafluoropropoxy O b Ethylene (PTFE) 1.5 parts by mass of the dispersion in solid content and 0.5 parts by mass of carboxymethyl cellulose (CMC) were dispersed in 200 parts by mass of water to prepare a paste. The obtained paste was applied to a nickel-plated punching metal as a current collector, dried at 80, adjusted in thickness by a roll press, and cut into a predetermined size to produce a negative electrode.
  • misch metal nickel alloy ABS 5 type alloy
  • PTFE Li tetrafluoropropoxy O b Ethylene
  • CMC carboxymethyl cellulose
  • a positive electrode of a nickel-metal hydride secondary battery was produced as follows. 100 parts by mass of nickel hydroxide powder, 6 parts by mass of cobalt oxide, 3.0 parts by mass of PTF E disperse as solids, and 1.0 part by mass of CMC dispersed in 200 parts of water to produce paste did. The obtained paste was applied and impregnated into a foamed metal as a current collector, dried, and then cut into a predetermined size to produce a positive electrode.
  • a nylon nonwoven fabric separator is sandwiched between the positive electrode and the negative electrode, spirally wound and inserted into an AA battery can.
  • 100 OmAh sealed cylindrical batteries (Nos. 17 to 29) were produced. After charging the test battery at 150% at 1 C, set the cutoff voltage to 1.0 V, discharge at 1 C, and reduce the discharge capacity. The same charge / discharge was repeated up to 50,000 times, and the number of discharges until the capacity reached the initial 70% (70 OmAh) was measured and used as the value of the cycle characteristics. Tables 6 and 7 show the measurement results. The cycle characteristics of the battery that could maintain 70% or more at the time of 500 times were marked with ⁇ , and the cycle characteristics of the battery that decreased to 50% or less were marked with X. The discharge capacity is shown in Table 6 as a ratio (%) when the discharge capacity of the embodiment (No. 17) is set to 100%.
  • the nickel-metal hydride batteries (Nos. 17 to 25 and No. 27) containing the carbon black of the present invention in the negative electrode have excellent cycle characteristics as well as high discharge capacity.
  • the nickel hydrogen batteries (No. 26, No. 28-29) containing carbon black in the negative electrode other than the present invention are inferior in both discharge capacity and cycle characteristics.
  • Phenol solvent as active material Activated carbon powder treated with KOH (specific surface area: 1950 m 2 / g> average particle size: 10 m), various pressure pump racks and polytetrafluoroethylene (PTFE) 1 5 parts by mass of ethanol was added to the mixture consisting of 0 parts by mass, kneaded, and roll-rolled to obtain a sheet having a width of 10 cm, a length of 10 cm, and a thickness of 0.65 mm. And dried for 2 hours.
  • KOH specific surface area: 1950 m 2 / g> average particle size: 10 m
  • PTFE polytetrafluoroethylene
  • the polarizable electrode obtained by punching the sheet into a diameter of 12 mm was adhered to a case and a lid of a stainless steel 316 container with a graphite-based conductive adhesive, and used as a positive electrode and a negative electrode.
  • the lid and case to which the polarizable electrode was attached were dried under a reduced pressure of 300 t for 4 hours, then transferred to a glove box under an argon atmosphere, and 1 mol / l of tetraethylammonium tetrafluoroporate was added.
  • the electrode was impregnated with a propylene force monoponate solution containing, and both electrodes were opposed to each other via a polypropylene nonwoven fabric separator, and the container was caulked and sealed using a polypropylene insulating gasket.
  • the obtained coin-type electric double layer capacitor has a diameter of 18.3 mm and a thickness of 2.0 mm.
  • Tables 8 and 9 show that the use of the carbon black of the present invention provides an electric double layer capacitor having excellent capacitance and cycle characteristics.
  • Example 4 Lithium-manganese dioxide primary battery
  • 100 parts by mass of electrolytic manganese dioxide, various car pump racks and 5 parts by mass of polytetrafluoroethylene (PTFE) were kneaded to prepare a positive electrode mixture.
  • PTFE polytetrafluoroethylene
  • metal lithium was cut out to a size of 15 mm in diameter and 0.25 mm in thickness to obtain a negative electrode body.
  • a positive electrode mixture described above in a stainless steel positive electrode can be clamped by, thereon, after placing the polypropylene nonwoven as Isseki separator, dehydrated i C 10 4 to wherein a concentration of 1 mol / L A non-aqueous electrolyte dissolved in a mixed solvent of propylene nitrate and 1,2-dimethoxyethane (volume ratio 1: 1) was impregnated.
  • the above-mentioned negative electrode body was placed to constitute a power generating element, and a lithium monomanganese dioxide primary battery (No. 43 to 55) was produced.
  • the battery was discharged at a constant resistance of 1 k ⁇ , and the discharge capacity was determined.
  • the results are shown in Tables 10 and 11.
  • the discharge capacity is shown as a ratio (%) when the discharge capacity of the embodiment (No. 43) in Table 10 is set to 100%. (Table 10)
  • Tables 10 and 11 show that the use of the carbon black of the present invention can provide a lithium manganese dioxide primary battery having excellent discharge capacity.
  • the micropore width at which the micropore volume derived from the relationship curve between the micropore volume and the micropore width of the force pump rack reaches a maximum value is within a certain range.
  • a specific carbon black with a maximum micropore volume within a certain range as the electrode composition of a battery or an electric double layer capacitor, it has excellent capacity, heavy load characteristics, and cycle characteristics. A battery or an electric double layer capacitor can be obtained.

Abstract

A carbon black for an electrode of an electric cell or a double-layer capacitor, used to produce a cell having favorable capacitance, heavy-load characteristics, and cycle characteristics or a double-layer capacitor. The carbon black is used as an electrode composition of a cell or an electric double-layer capacitor. The micropore width for which the micropore volume determined from a curve representing the relation between the micropore volume and the micropore width is maximum lies in the range from 4.0 to 8.0 angstroms, and the maximum of the micropore volume lies in the range from 0.060 to 0.135 ml/angstrom/g.

Description

明 細 書 電池、 電気二重層型キャパシター電極用カーボンブラック 技術分野  Description Carbon black for electrodes of batteries and electric double layer capacitors
本発明は、 リチウム電池、 マンガン電池、 アルカリマンガン電池等の 一次電池や、 リチウムイオン電池、 リチウムポリマー電池、 空気亜鉛電 池、 ニッケル水素電池、 高分子型電池、 ナトリウム硫黄電池、 亜鉛臭素 電池等の二次電池、 および電気二重層型キャパシターの電極組成として 使用される力一ポンプラックに関する。 背景技術  The present invention relates to primary batteries such as lithium batteries, manganese batteries, and alkaline manganese batteries, lithium ion batteries, lithium polymer batteries, air zinc batteries, nickel metal hydride batteries, polymer batteries, sodium sulfur batteries, zinc bromine batteries, and the like. The present invention relates to a power pump rack used as an electrode composition of a secondary battery and an electric double layer capacitor. Background art
近年、 電子機器の小型軽量化、 多機能化、 コードレス化の要求に伴い 、 高性能電池および高性能キャパシターの開発が積極的に進められてい る。 電池は、 使い切りタイプの一次電池と、 充電により繰り返し使用が 可能な二次電池に分けることができる。 前者の例としては、 軽金属およ び二酸化マンガンを用いた有機電解液電池 (リチウム一次電池等) 、 マ ンガン一次電池、 アルカリマンガン一次電池などが挙げられ、 後者の例 としては水素吸蔵合金を用いたアル力リニ次電池 (ニッケル水素二次電 池等) 、 リチウム化合物を用いた非水電解液二次電池 (リチウムイオン 二次電池等) 、 リチウムポリマー二次電池、 空気亜鉛二次電池、 高分子 型二次電池、 ナトリウム硫黄二次電池、 亜鉛臭素二次電池等が挙げられ る。 また、 キャパシターとしては、 活性炭系の炭素材料の表面に電荷を 保持、 利用するタイプの電気二重層型キャパシターが挙げられる。 高性能化の一環として、 各種電池や電気二重層型キャパシターの活物 質として使用される化合物から発生する電子を集電体まで効率的に運ぶ ためのキャリア一材として、 カーボンブラックがしばしば用いられる。 例としてリチウムイオン二次電池の場合を挙げる。 In recent years, development of high performance batteries and high performance capacitors has been actively promoted in accordance with demands for smaller, lighter, multifunctional, and cordless electronic devices. Batteries can be divided into single-use primary batteries and secondary batteries that can be used repeatedly by charging. Examples of the former include organic electrolyte batteries (such as lithium primary batteries) using light metals and manganese dioxide, manganese primary batteries, and alkaline manganese primary batteries. The latter use hydrogen-absorbing alloys. Rechargeable lithium battery (nickel-hydrogen secondary battery, etc.), non-aqueous electrolyte secondary battery using lithium compound (lithium ion secondary battery, etc.), lithium polymer secondary battery, air zinc secondary battery, high Molecular secondary batteries, sodium-sulfur secondary batteries, zinc-bromine secondary batteries, and the like. Examples of the capacitor include an electric double-layer capacitor that retains and uses electric charges on the surface of an activated carbon-based carbon material. As part of higher performance, efficiently transport electrons generated from compounds used as active materials in various batteries and electric double layer capacitors to current collectors Black is often used as a carrier material. As an example, a case of a lithium ion secondary battery will be described.
リチウムイオン二次電池は、 正極活物質として、 遷移金属のリチウム 含有複合酸化物、 すなわち層状構造を有する L i M〇2あるいはスピネ ル構造を有する L i M204 (ただし、 Mは遷移金属、 例えばコバルト 、 マンガン、 ニッケル、 鉄のいずれか) 等を用いると共に、 負極物質と してリチウムイオンを吸蔵して層間化合物を形成する炭素材料を用い、 正極と負極との間で一方が放出したリチウムイオンを他方が吸蔵すると いう可逆反応によって充放電を行うものである。 リチウムイオン二次電 池の更なる高容量化、 重負荷特性向上のための研究が進められている。 ここで上記正極物質として用いられるリチウム複合酸化物は、 電子のキ ャリァー材としての性能が低いため、 力一ポンプラックなどの電子キヤ リァ一材を含有させて正極として用いるのが一般的である。 Lithium-ion secondary battery, as a positive electrode active material, lithium-containing composite oxide of a transition metal, i.e. L i M 2 0 4 with L i M_〇 2 or spinel Le structure having a layered structure (where, M is a transition metal , For example, cobalt, manganese, nickel, or iron), etc., and a carbon material that absorbs lithium ions and forms an intercalation compound as a negative electrode material, and one of them is released between the positive electrode and the negative electrode. Charging and discharging are performed by a reversible reaction in which the other side absorbs lithium ions. Research is underway to further increase the capacity of lithium-ion secondary batteries and improve heavy-load characteristics. Here, since the lithium composite oxide used as the positive electrode material has low performance as an electron carrier material, it is common to use an electronic carrier material such as a force pump rack for use as a positive electrode. .
しかし、 従来多用されている力一ボンブラック系の電子キヤリァ一材 (アセチレンブラック等) は、 カーボンブラックを使用しない系よりは 高容量化が図れ、 また重負荷特性が向上するが、 未だ満足する性能には 至っていない。  However, carbon black electronic carrier materials (such as acetylene black), which have been widely used in the past, can achieve higher capacities than those not using carbon black and have improved heavy load characteristics, but are still satisfactory. Performance has not been reached.
この解決のために、 例えば特開平 1 1一 40 1 3 9号公報には、 特定 のジブチルフタレート (DB P) 吸油量を有し、 且つ、 乾燥状態で加圧 された比抵抗が 1 0 Ω · cm以下に限定された力一ポンプラックが提案 されている。 しかし、 乾燥状態で加圧された比抵抗は力一ポンプラック そのものの導電性の指標ではあるが、 系中に一定量カーボンブラックを 含む場合の導電性が反映されておらず、 上記問題点の改善には直接繋が つていないのが現状である。  In order to solve this problem, for example, Japanese Patent Application Laid-Open No. H11-140139 discloses a specific dibutyl phthalate (DBP) oil absorption amount and a specific resistance of 10 Ω when pressed in a dry state. · A force pump rack limited to less than cm has been proposed. However, the specific resistance pressed in the dry state is an index of the conductivity of the pump rack itself, but does not reflect the conductivity when a certain amount of carbon black is contained in the system. At present, there is no direct link to improvement.
また、 特開 20 0 1— 1 67 7 6 7号公報には、 正極合剤成分として 、 DB P吸油量が 1 00〜 1 0 00m l Z gのカーボンブラックを使用 し、 容量や高温下でのサイクル特性を改善する方法を提案しているが、 未だ満足する性能には至っていない。 In JP-A-201-167767, carbon black having a DBP oil absorption of 100 to 1000 mlZg is used as a positive electrode mixture component. However, although a method has been proposed to improve the capacity and cycle characteristics at high temperatures, satisfactory performance has not yet been achieved.
リチウムイオン二次電池以外の電池、 電気二重層型キャパシターでも 同様であり、 例えば、 リチウム一二酸化マンガン電池では、 特開昭 6 3 - 9 6 0号公報、 特開平 2 - 1 5 5 1 6 8号公報に、 正極合剤における 導電材として黒鉛化構造の発達したカーボンブラックを用い、 放電電圧 を高める方法が提案されている。 また、 ニッケル水素二次電池では、 特 開 2 0 0 0— 1 2 3 8 3 2号公報に、 粉碎した力一ポンプラックを導電 剤として用い、 急放電特性の優れた電極を作製する方法が提案されてい る。  The same applies to batteries other than lithium-ion secondary batteries and electric double-layer capacitors. For example, in lithium monomanganese dioxide batteries, see JP-A-63-960 and JP-A-2-1551568. Japanese Patent Laid-Open Publication No. HEI 7-264 proposes a method for increasing discharge voltage by using carbon black having a graphitized structure as a conductive material in a positive electrode mixture. For nickel-metal hydride rechargeable batteries, Japanese Patent Application Publication No. 2000-123238 discloses a method for producing an electrode having excellent rapid discharge characteristics by using a crushed force pump rack as a conductive agent. Proposed.
さらに、 電気二重層型キャパシ夕一では、 特開平 5— 3 2 6 3 2 7号 公報に、 導電ゴムの平板状袋に活性炭一硫酸混練体を収容し、 この袋を 集電体として電極を形成し、 隔壁をもつプラスチック電槽に挿入するこ とで、 内部抵抗の小さい電気二重層コンデンサーを作製する方法が提案 されている。 また、 特開平 9一 2 7 5 0 4 1号公報には、 比表面積が 1 0 0 O n^ Z g以上のカーボンブラックを用いて分極性電極を形成する ことで、 高容量化する方法が提案されているが、 更なる容量、 重負荷特 性、 サイクル特性の向上が望まれている。  Further, in the electric double-layer type capacitor, Japanese Patent Laid-Open No. 5-32632 / 27 discloses that a kneaded body of activated carbon monosulfuric acid is accommodated in a conductive rubber plate-like bag, and the bag is used as a current collector to form electrodes. A method has been proposed for forming an electric double layer capacitor with low internal resistance by forming it and inserting it into a plastic battery case with partition walls. In addition, Japanese Patent Application Laid-Open No. Hei 9-275501 discloses a method for increasing the capacity by forming a polarizable electrode using carbon black having a specific surface area of 100 On ^ Zg or more. Although proposed, further improvements in capacity, heavy load characteristics, and cycle characteristics are desired.
そこで、 本発明は、 上記のような従来技術における問題点を解決し、 電池または電気二重層型キャパシターの電極組成として用いられる力一 ボンブラックであって、 容量、 重負荷特性、 サイクル特性の良好な電池 または電気二重層型キャパシターを製造することができる力一ボンブラ ックを提供することを目的とする。 発明の開示  Thus, the present invention solves the above-mentioned problems in the conventional technology, and is a carbon black used as an electrode composition of a battery or an electric double layer capacitor, which has good capacity, heavy load characteristics and cycle characteristics. It is an object of the present invention to provide a power black capable of manufacturing a simple battery or an electric double layer capacitor. Disclosure of the invention
本発明者らは、 前記目的を達成するため、 本用途に用いられる力一ポ ンブラックとして、 どのような性状を有することが相応しいかに関し、 カーボンブラックの細孔や表面官能基に起因する揮発分組成に着目し鋭 意検討を重ねた結果、 特定のミクロ細孔形状、 細孔容積を有するカーボ ンブラックが電池、 キャパシター性能を向上させることを見出し、 本発 明を完成させるに至った。 The present inventors have proposed a method for achieving the above object, which is used in the present invention. As a result of intensive studies on the characteristics of carbon black that are suitable for use, focusing on the volatile components resulting from the pores and surface functional groups of carbon black, the results of specific micropore shapes and specific We have discovered that carbon black with a pore volume improves the performance of batteries and capacitors, and completed the present invention.
すなわち、 本発明の力一ポンプラックは、 電池または電気二重層型キ ャパシターの電極組成として用いられるカーボンブラックであって、 ミ ク口細孔容積とミクロ細孔幅の関係曲線から導かれるミク口細孔容積が 最大値となるところのミクロ細孔幅が 4. 0〜8. 0オングストローム の範囲内にあり、 かつミクロ細孔容積の最大値が 0. 0 6 0〜0. 1 3 5m 1 /オングストロ一ム /gであることを特徴とする。  That is, the power pump rack of the present invention is a carbon black used as an electrode composition of a battery or an electric double layer type capacitor, and has a microcapsule derived from a relation curve between micropore volume and micropore width. The micropore width at which the pore volume has the maximum value is in the range of 4.0 to 8.0 angstrom, and the maximum value of the micropore volume is 0.060 to 0.135m1. / Angstrom / g.
前記においては、 カーボンブラックのミクロ細孔容積の最大値が、 0 . 0 7 5〜0. 1 3 5 m 1 /オングストローム/ gであることが好ましく 、 より好ましくは 0. 0 9 0〜0. 1 3 5m 1 /オングストローム/ gで あるのがよい。  In the above, the maximum value of the micropore volume of carbon black is preferably from 0.075 to 0.135 m1 / angstrom / g, and more preferably from 0.090 to 0.90. It should be 135 m1 / angstrom / g.
また、 前記電極用カーボンブラックにおいては、 全細孔容積が 3. 5 〜 5. 0m 1 /gであることが好ましく、 全細孔容積が 4. 0〜 5. 0 m l /gであることがより好ましい。  Further, in the carbon black for an electrode, the total pore volume is preferably 3.5 to 5.0 m 1 / g, and the total pore volume is 4.0 to 5.0 ml / g. More preferred.
また、 前記力一ボンブラックの 9 50°Cにおおては、 揮発分の一酸化 炭素/二酸化炭素の比 (以下、 「CO/C02」 ) が、 6. 0〜: L 0. 0 の範囲内にあることが好ましい。 Further, leading to the 9 50 ° C of the force one carbon black, the ratio of volatiles carbon monoxide / carbon dioxide (hereinafter, "CO / C0 2") is, 6. 0: the L 0. 0 It is preferably within the range.
このように細孔特性および表面官能基特性を規定することで、 電池お よび電気二重層型キャパシターの容量、 重負荷特性、 サイクル特性を高 めることができる。  By defining the pore characteristics and surface functional group characteristics in this manner, the capacity, heavy load characteristics, and cycle characteristics of the battery and the electric double layer capacitor can be improved.
従って上記観点からは、 カーボンブラック特性としては、 ミクロ細孔 幅が 4. 5〜7. 5オングストロームの範囲内にあり、 かつミクロ細孔 容積の最大値が 0. 0 9 5〜0. 1 3 0 m 1 /オングストローム/ gで、 全細孔容積が 4. 1〜4. 9m l /gで、 C〇/C〇2が 6. 5〜 9. 5 であることが一層好ましい。 特に、 ミクロ細孔幅が 5. 0〜7. 0オン ダストロームの範囲内にあり、 かつミクロ細孔容積の最大値が 0. 1 0 0〜0. 1 2 5m 1 /オングストローム/ gで、 全細孔容積が 4. 2〜4 . 8m 1 /gで、 前記一酸化炭素 Z二酸化炭素の比が 7. 0〜 9. 0で あることがより一層好ましい。 Therefore, from the above point of view, as the carbon black characteristics, the micropore width is in the range of 4.5 to 7.5 angstroms, and Maximum 0.0 9 5-0 volumes. In 1 3 0 m 1 / angstrom / g, the total pore volume 4. 1~4. 9m l / g, C_〇 / C_〇 2 6. More preferably, it is 5 to 9.5. In particular, the micropore width is in the range of 5.0 to 7.0 on dastrom, and the maximum value of the micropore volume is 0.10 to 0.125 m1 / angstrom / g, More preferably, the pore volume is 4.2 to 4.8 m 1 / g, and the ratio of the carbon monoxide to the carbon dioxide is 7.0 to 9.0.
本発明の力一ボンブラックは、 電池電極の中でも一次電池又は二次電 池の電極に好ましく用いられる。 発明を実施するための最良の形態  The carbon black of the present invention is preferably used as an electrode of a primary battery or a secondary battery among battery electrodes. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の電池または電気二重層型キャパシターの電極用カーボンブラ ックは、 ミク口細孔容積とミクロ細孔幅の関係曲線から導かれるミク口 細孔容積が最大値となるところのミクロ細孔幅が、 4. 0〜8. 0オン ダストロームの範囲内にある。 前記ミクロ細孔幅が 4. 0オングスト口 —ム以上であれば、 電解液との親和性が良好となるため、 結果として電 池、 キャパシター性能の向上を図ることができる。 また、 前記ミクロ細 孔幅が 8. 0オングストローム以下であれば、 カーボンブラックの分散 性が向上するため、 結果として電池、 キャパシタ一性能の向上を図るこ とができる。 この場合、 ミクロ細孔容積の最大値は、 0. 0 6 0 m l / オングストローム/ g以上 0. 1 3 5 m 1 /オングストローム/ g以下の 範囲にある。 ミクロ細孔容積の最大値が 0. 0 6 0 m l /オングスト口 —ム /g以上であれば、 電解液との親和性が良好となるため、 結果とし て電池性能が向上し、 0. 1 3 5m 1 /オングストローム/ g以下であれ ば、 カーボンブラックの分散性が向上するため、 結果として電池および キャパシター性能の向上を図ることができる。 ミクロ細孔容積の最大値 は、 好ましくは 0. 0 7 5〜0. 1 3 5 m 1 /オングストローム/ gであ り、 より好ましくは 0. 0 9 0〜0. 1 3 5 m 1 /オングストローム/ g である。 The carbon black for an electrode of the battery or electric double layer capacitor of the present invention has a micropore having a maximum pore volume at a maximum value derived from a relation curve between the pore volume and the micropore width. The width is in the range of 4.0-8.0 on dastroms. When the micropore width is 4.0 Å or more, the affinity with the electrolytic solution becomes good, and as a result, the performance of the battery and the capacitor can be improved. Further, when the micropore width is 8.0 angstrom or less, the dispersibility of carbon black is improved, and as a result, the performance of a battery or a capacitor can be improved. In this case, the maximum value of the micropore volume is in the range of 0.060 ml / angstrom / g or more and 0.135 m1 / angstrom / g or less. When the maximum value of the micropore volume is 0.060 ml / angstrom—m / g or more, the affinity with the electrolytic solution becomes good, and as a result, the battery performance is improved and the When it is less than 35 m 1 / angstrom / g, the dispersibility of carbon black is improved, and as a result, the performance of the battery and the capacitor can be improved. Maximum micropore volume Is preferably from 0.075 to 0.135 m1 / angstrom / g, more preferably from 0.090 to 0.135 m1 / angstrom / g.
より一層電池容量を高める観点からは、 カーボンブラックのミクロ細 孔容積とミクロ細孔幅の関係曲線から導かれるミク口細孔容積が最大値 となるところのミクロ細孔幅が 4. 5〜 7. 5オングストロームの範囲 内にあり、 かつミクロ細孔容積の最大値が 0. 0 9 5〜0. 1 3 0m l /オングストローム/ gであることが好ましい。 特に、 前記ミクロ細孔幅 が 5. 0〜7. 0オングストロームの範囲内にあり、 かつミクロ細孔容 積の最大値が 0. 1 00〜0. 1 2 5 m 1 /オングスト口一ム /gである ことが好ましい。  From the viewpoint of further increasing the battery capacity, the micropore width at which the micropore volume, which is derived from the relationship curve between the micropore volume and the micropore width of carbon black, becomes the maximum is 4.5 to 7 Preferably, it is within the range of 5 Å and the maximum value of the micropore volume is from 0.095 to 0.130 ml / Å / g. In particular, the micropore width is in the range of 5.0 to 7.0 angstroms, and the maximum value of the micropore volume is 0.100 to 0.125 m1 / angstrom / m g is preferred.
本発明におけるミクロ細孔容積とミクロ細孔幅の関係曲線は、 以下の ようにして、 カンタークロム社製のオートソープ 1一 MP型 (またはそ れと同等の機能を有する装置でもよい) を使用して測定された値である 。  The relationship curve between the micropore volume and the micropore width in the present invention was obtained by using an auto soap 11-MP type (or a device having an equivalent function) manufactured by Cantachrome as follows. Is the value measured.
ミク口細孔容積及びミクロ細孔幅は、 予め 2 0 0 :で 1 2時間以上乾 燥させた試料に、 液体窒素温度下で窒素ガスを吸着させ、 窒素の吸着平 衡圧の下、 試料表面に吸着しているガス量から吸着 ·脱離等温線を求め 、 得られた等温線の吸着側の値を HK法で解析して、 ミクロ細孔幅とミ クロ細孔容積の関係を算出することにより求める。 ミクロ細孔幅とは、 カーボンブラックには 20オングストローム以下のミクロ孔が存在して いる場合があり、 HK法によりこの微細な細孔をスリットと仮定した場 合の幅を意味する。  The micropore volume and the micropore width are determined by adsorbing nitrogen gas at a liquid nitrogen temperature to a sample previously dried at 200: for 12 hours or more, and applying a nitrogen adsorption equilibrium pressure to the sample. The adsorption / desorption isotherm is determined from the amount of gas adsorbed on the surface, and the value on the adsorption side of the obtained isotherm is analyzed by the HK method to calculate the relationship between the micropore width and the micropore volume. Ask by doing. The term “micropore width” refers to the width of carbon black in which micropores having a diameter of 20 Å or less are present, and the HK method assumes that these fine pores are slits.
また、 本発明の電池または電気二重層型キャパシターの電極用カーボ ンブラックにあっては、 全細孔容積が 3. 5〜 5. Om l /gであるこ とが好ましく、 より好ましくは 4. 0〜 5. Om l /gである。 全細孔 容積が 3. 5m l /g以上の場合は、 電解液との親和性が良好となり、 結果として電池およびキャパシタ一性能の向上を図ることができる。 ま た、 5. Om l /g以下の場合は、 力一ポンプラックの分散性が良好と なり、 結果として電池およびキャパシター性能の向上を図ることができ る。 さらに電気容量を高めるためには、 全細孔容積は 4. :!〜 4. 9 m 1 /gであることが好ましく、 特に好ましくは 4. 2〜4. 8m l /gで ある。 Further, in the carbon black for an electrode of the battery or the electric double layer capacitor of the present invention, the total pore volume is preferably 3.5 to 5.Oml / g, more preferably 4.0. ~ 5. Oml / g. All pores When the volume is 3.5 ml / g or more, the affinity with the electrolyte becomes good, and as a result, the performance of the battery and the capacitor can be improved. In addition, when it is not more than 5. Oml / g, the dispersibility of the force pump rack becomes good, and as a result, the performance of the battery and the capacitor can be improved. To further increase the electric capacity, the total pore volume is 4.:! It is preferably from 4.9 m 1 / g, particularly preferably from 4.2 to 4.8 ml / g.
力一ボンブラックの表面特性は、 前述した細孔特性のほか、 カーボン ブラックの表面官能基の種類や存在量によっても異なると考えられる。 そこで、 本発明では、 カーボンブラックを一定温度で加熱した際に発生 する揮発分 (酸素、 水素、 一酸化炭素、 二酸化炭素等) について詳細な 検討を行い、 揮発分とカーボンブラックの表面特性とは密接な関係があ ることを見出した。 特に、 電池または電気二重層型キャパシターの電極 用に用いる場合は、 カーボンブラックの 9 5 0 °Cにおける揮発分の CO /C02が、 6. 0〜 1 0.0の範囲内にあることが好ましい。 CO/CO 2を 6. 0以上とすることで、 電池やキャパシターに用いられるフッ化 ビニリデン樹脂ゃテトラフルォロエチレン等の結着剤との親和性が良好 となり、 電池および電気二重層型キャパシターの高容量化を図ることが できる。 一方、 C〇/C〇2を 1 0. 0以下とすることで、 カーボンブラ ックの分散性が向上するため、 結果として電池およびキャパシター性能 の向上を図ることができる。 さらなる高容量化を図るためには、 CO/ C〇2は、 より好ましくは 6. 5〜 9. 5、 特に好ましくは 7. 0〜 9 . 0の範囲内にあるのがよい。 It is considered that the surface characteristics of carbon black vary depending on the types and abundances of the surface functional groups of carbon black in addition to the pore characteristics described above. Therefore, in the present invention, the volatile matter (oxygen, hydrogen, carbon monoxide, carbon dioxide, etc.) generated when carbon black is heated at a constant temperature is examined in detail, and the volatile matter and the surface characteristics of carbon black are determined. I found a close relationship. In particular, when used for an electrode of a battery or an electric double layer capacitor, it is preferable that the CO 2 / CO 2 of the volatile matter of carbon black at 950 ° C. is in the range of 6.0 to 10.0. By setting CO / CO 2 to 6.0 or more, the affinity with binders such as vinylidene fluoride resin and tetrafluoroethylene used for batteries and capacitors is improved, and batteries and electric double layer capacitors are used. Capacity can be increased. On the other hand, C_〇 / C_〇 2 With 1 0.0 or less, in order to improve the dispersibility of the carbon black-click, it is possible to improve the battery and capacitor performance as a result. Additional in order to increase the capacity of the CO / C_〇 2, more preferably 6.5 to 9.5, particularly preferably from 7.0 to 9. Better to be within the range of 0.
本発明のカーボンブラックは、 ガスファーネス法、 オイルファーネス 法、 デグサガスファーネス法、 アセチレン法、 サーマル法、 チャンネル 法、 テキサコ法、 シェル法等、 炭化水素類を不完全燃焼させてカーボン ブラックを生成する一般的な方法を用い、 炉内温度、 圧力、 およびガス 成分を任意選定することにより製造することができる。 また、 これら方 法により作製された本発明以外の性状を有するカーボンブラックを、 水 蒸気や高温等の二次処理を施すことにより製造することもできる。 The carbon black of the present invention is obtained by incompletely burning hydrocarbons such as a gas furnace method, an oil furnace method, a degas gas furnace method, an acetylene method, a thermal method, a channel method, a Texaco method, and a shell method. It can be produced by using a general method of producing black and arbitrarily selecting the furnace temperature, pressure, and gas components. Further, carbon black having properties other than the present invention produced by these methods can also be produced by performing a secondary treatment such as water vapor or high temperature.
中でも、 芳香族系液状炭化水素にカーボンブラックを混合した液状炭 化水素 (カーボンオイル) 、 A重油、 C重油、 あるいはナフサの熱分解 油を原料油として用い、 炉内温度: 1 2 00〜 1 6 0 0で、 炉内圧力 : 1 0〜 8 0 k g/c m2、 炉内へ供給される水蒸気の量がその液状炭化 水素 1 トン当たり 20 0〜 1 300 k gの条件で運転して得る方法や、 この方法によって得られたカーボンブラックを不活性雰囲気内 20 0〜 9 00 °Cで二次処理して作製する方法が好ましい。 Among them, liquid hydrocarbons (carbon oil), which is a mixture of aromatic liquid hydrocarbons and carbon black, heavy fuel oil A, heavy fuel oil C, or thermally decomposed oil of naphtha, are used as raw material oils. 600, furnace pressure: 10 to 80 kg / cm 2 , the amount of steam supplied to the furnace is obtained by operating at 200 to 1300 kg per ton of liquid hydrocarbon. Alternatively, a method is preferred in which the carbon black obtained by this method is subjected to a secondary treatment at 200 to 900 ° C. in an inert atmosphere to produce the carbon black.
本発明のカーボンブラックは、 電池、 電気二重層型キャパシターの電 極組成として用いられる。 具体的には、 リチウム電池、 マンガン電池、 アルカリマンガン電池等の一次電池、 リチウムイオン電池、 リチウムポ リマー電池、 空気亜鉛電池、 ニッケル水素電池、 高分子型電池、 ナトリ ゥム硫黄電池、 亜鉛臭素電池等の二次電池および電気二重層型キャパシ ターが挙げられる。  The carbon black of the present invention is used as an electrode composition for batteries and electric double layer capacitors. Specifically, primary batteries such as lithium batteries, manganese batteries, and alkaline manganese batteries, lithium ion batteries, lithium polymer batteries, zinc air batteries, nickel metal hydride batteries, polymer batteries, sodium sulfur batteries, zinc bromine batteries, etc. Secondary batteries and electric double-layer capacitors.
本発明の力一ポンプラックの使用量は特に限定されないが、 好ましく は、 正あるいは負極活物質 1 00質量部に対して 0. 1〜2 5. 0質量 部であり、 さらに好ましくは 0. 2〜2 0. 0質量部である。  The use amount of the power pump rack of the present invention is not particularly limited, but is preferably 0.1 to 25.0 parts by mass, more preferably 0.2 to 100 parts by mass of the positive or negative electrode active material. 220.0 parts by mass.
また、 本発明のカーボンブラックを用いた電極の作製法としては、 予 めカーボンブラックの分散液を作製し、 この分散液に活物質、 結着剤、 各種添加剤を加え更に分散させ、 集電体に塗布後乾燥する方法、 カーボ ンブラック、 活物質、 結着剤、 各種添加剤を同時に溶液に分散させ、 集 電体に塗布後乾燥する方法、 カーボンブラック、 活物質、 結着剤、 各種 添加剤を乾式混合機により分散させ、 圧縮成形等加圧により集電体に結 着させる方法などが用いられる。 As a method for producing an electrode using the carbon black of the present invention, a dispersion of carbon black is prepared in advance, and an active material, a binder, and various additives are added to the dispersion to further disperse. Coating on body and drying, Carbon black, active material, binder and various additives are simultaneously dispersed in solution, coating on current collector and drying, carbon black, active material, binder, various The additives are dispersed by a dry mixer, and are combined with the current collector by pressure such as compression molding. For example, a method of attaching is used.
. なお、 分散機としては、 ポールミル、 サンドミル、 三本ロール、 高速 デイスパーザー等塗料作製時に使用される分散機や、 ヘンシェルミキサ 一、 遊星ポールミル等の乾式混合機等公知の分散機が使用できる。 次に、 実施例を挙げて本発明をより具体的に説明する。 ただし、 本発 明はそれらの実施例のみに限定されるものではない。  As the disperser, a known disperser such as a pole mill, a sand mill, a three-roll mill, a high-speed disperser, and a dry mixer such as a Henschel mixer and a planetary pole mill can be used. Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.
(力一ポンプラックの調製)  (Preparation of power pump rack)
初留温度: 1 8 0〜1 9 0°C、 1 0 %留出温度: 2 0 5〜 2 1 5 °C、 5 0 %留出温度: 2 5 0〜2 6 0°C、 97 %留出温度: 320〜 340 °Cである炭化水素を原料油として用いた。  Initial distillation temperature: 180 ~ 190 ° C, 10% distillation temperature: 205 ~ 215 ° C, 50% Distillation temperature: 250 ~ 260 ° C, 97% Distillation temperature: A hydrocarbon having a distillation temperature of 320 to 340 ° C was used as a feed oil.
<カーボンブラック B— 1 >  <Carbon black B-1>
炉内温度: 1 40 0 ° (:、 炉内圧力 : 3 0 Kg/cm2、 炉内へ供給す る水蒸気の量を原料炭化水素に対して 50 0 k gZトンの条件下で原料 炭化水素を反応させ、 カーボンブラック B— 1を得た。 Furnace temperature: 1400 ° (:, Furnace pressure: 30 Kg / cm 2 , Raw material hydrocarbon under the condition that the amount of steam supplied to the furnace is 500 kgZ ton with respect to raw material hydrocarbon Was reacted to obtain carbon black B-1.
<力一ポンプラック B _ 2 >  <Power pump rack B_2>
炉内温度: 1 5 0 0 °C、 炉内圧力 : 3 0 K g / c m2、 炉内へ供給す る水蒸気の量を原料炭化水素に対して 80 0 k gZトンの条件下で原料 炭化水素を反応させ、 カーボンブラック B _ 2を得た。 Furnace temperature: 150 ° C, Furnace pressure: 30 Kg / cm 2 , and the amount of steam supplied to the furnace was 800 kgZ ton for the raw material hydrocarbons. The hydrogen was reacted to obtain carbon black B_2.
<力一ポンプラック B— 3 >  <Power pump rack B-3>
炉内温度: 1 2 5 0 °C、 炉内圧力 : 3 0 KgZcm2、 炉内へ供給す る水蒸気の量を原料炭化水素に対して 800 k gZトンの条件下で原料 炭化水素を反応させ、 カーボンブラック B— 3を得た。 Furnace temperature: 125 ° C, Furnace pressure: 30 KgZcm 2 , The amount of steam supplied to the furnace is made to react with the raw material hydrocarbon under the conditions of 800 kgZ ton. Thus, carbon black B-3 was obtained.
<カーボンブラック B— 4>  <Carbon black B-4>
炉内温度: 1 3 0 0 °C、 炉内圧力 : 3 0 K gノ c m2、 炉内へ供給す る水蒸気の量を原料炭化水素に対して 1 00 0 k gZトンの条件下で原 料炭化水素を反応させ、 力一ポンプラック Β·— 4を得た。 <カーボンブラック B— 5 > Furnace temperature: 1300 ° C, Furnace pressure: 30 Kg / cm 2 , and the amount of steam supplied to the furnace was reduced to 100,000 kgZ ton with respect to raw material hydrocarbons. Reacted hydrocarbons were reacted to obtain a power pump rack II-4. <Carbon black B—5>
炉内温度: 1 5 0 0 °C、 炉内圧力 : 3 0 Kg/cm2、 炉内へ供給す る水蒸気の量を原料炭化水素に対して 1 0 0 0 k gZトンの条件下で原 料炭化水素を反応させ、 カーボンブラック B— 5を得た。 Furnace temperature: 150 ° C, furnace pressure: 30 Kg / cm 2 , and the amount of steam supplied to the furnace was reduced to 100 kg kg ton with respect to raw material hydrocarbons. And carbon black B-5.
<力一ボンブラック B— 6 >  <Power Bon Black B-6>
炉内温度: 140 0 °C、 炉内圧力 : 3 O Kg/cm2, 炉内へ供給す る水蒸気の量を原料炭化水素に対して 800 k トンの条件下で原料 炭化水素を反応させ、 力一ボンブラック B— 6を得た。 Furnace temperature: 1400 ° C, Furnace pressure: 3 O Kg / cm 2 , The amount of steam supplied to the furnace was 800 k ton against the raw material hydrocarbons, and the raw hydrocarbons were reacted. You got Riki Bon Black B-6.
ぐカーボンブラック B— 7>  Carbon black B— 7>
炉内温度: 140 0 °C、 炉内圧力 : 3 O Kg/cm2, 炉内へ供給す る水蒸気の量を原料炭化水素に対して 1 1 0 0 k gZトンの条件下で原 料炭化水素を反応させ、 カーボンブラック B— 7を得た。 Furnace temperature: 1400 ° C, Furnace pressure: 3 O Kg / cm 2 , Raw material carbonization under the condition that the amount of steam supplied to the furnace is 110 kg kg ton with respect to raw material hydrocarbons By reacting hydrogen, carbon black B-7 was obtained.
<カーボンブラック B— 8 >  <Carbon black B-8>
炉内温度: 1 2 5 0 °C、 炉内圧力 : 3 O Kg/cm2, 炉内へ供給す る水蒸気の量を原料炭化水素に対して 800 k g トンの条件下で原料 炭化水素を反応させ、 力一ポンプラックを得た。 この力一ポンプラック を N2雰囲気下 6 0 0 °C、 5時間処理することによりカーボンブラック B - 8を得た。 Furnace temperature: 125 ° C, Furnace pressure: 3 O Kg / cm 2 , Reacted hydrocarbon reacts under the condition of 800 kg tons of steam supplied to the furnace Then, a power pump rack was obtained. This pump rack was treated in an N 2 atmosphere at 600 ° C. for 5 hours to obtain carbon black B-8.
得られたカーボンブラックの性状を表 1および表 2に示す。  Tables 1 and 2 show the properties of the obtained carbon black.
なお、 一酸化炭素 /二酸化炭素の比 (CO/C〇2) は、 カーボンブラ ックを減圧下 9 5 0 °Cに加熱し、 発生したガスをガスクロマトグラフィ —で定量することにより求めた。 The ratio of carbon monoxide / carbon dioxide (CO / C_〇 2) heats the carbon black click to vacuum at 9 5 0 ° C, the generated gas Gas chromatography - was determined by quantifying with.
また、 ミクロ細孔容積が最大値となるところのミクロ細孔幅 (オング ストローム) およびミクロ細孔容積の最大値 (m 1 /オングストローム/ g) は、 カンタークロム社製のオートソープ 1一 MP型を用い、 窒素吸 着等温線より、 HK法によりミク口細孔幅とミク口細孔容積の関係曲線 を算出、 プロットすることにより求めた。 また、 全細孔容積 (m l /g ) は窒素吸着等温線より求めた。 The maximum micropore width (angstrom) and the maximum micropore volume (m1 / angstrom / g) where the micropore volume is the maximum value are determined by the Autosoap 1-1 MP type manufactured by Kantachrome. From the nitrogen adsorption isotherm using the HK method Was calculated and plotted. The total pore volume (ml / g) was determined from a nitrogen adsorption isotherm.
(表 1 ) (table 1 )
Figure imgf000013_0001
(表 2)
Figure imgf000013_0001
(Table 2)
Figure imgf000013_0002
また、 アセチレンブラックである電気化学製デンカブラックを比較例 として用いた。 アセチレンブラック (カーボンブラック B— 9とする) の性状を表 3に示す。
Figure imgf000013_0002
In addition, Denka Black manufactured by Electrochemical, which is acetylene black, was used as a comparative example. Table 3 shows the properties of acetylene black (referred to as carbon black B-9).
(表 3 ) (Table 3)
Figure imgf000013_0003
なお、 表 1〜表 3中、 細孔幅はミクロ細孔容積が最大値となるところ のミク口細孔幅を意味する。
Figure imgf000013_0003
In Tables 1 to 3, the pore width means the width of the micropore at the point where the micropore volume has the maximum value.
(実施例 1 : リチウムイオン二次電池) リチウムイオン二次電池の正極を下記の通りに作製した。 正極活物質 である 0. 1; m程度から 1 0 0 /xmまでの粒径分布を持つマンガン酸 リチウム (L i Mn 204) 1 0 0質量部に、 各種力一ボンブラックを表 4及び表 5に示すような組成で添加した。 これに、 結着剤としてのポリ フッ化ビニリデン樹脂 (PVDF) を 1 0質量部添加し、 これに分散溶 媒として N—メチルピロリ ドン (NMP) 2 0 0質量部を添加、 混練し た活物質合剤スラリーを厚み 2 0 の二次元集電体であるアルミニゥ ム箔の両面に塗布、 その後乾燥、 プレス、 断裁することにより厚み 20 0 mの正極を得た。 (Example 1: Lithium ion secondary battery) A positive electrode of a lithium ion secondary battery was produced as follows. 0.1 is a positive active material; lithium manganate having a particle size distribution of from about m to 1 0 0 / xm (L i Mn 2 0 4) 1 0 0 parts by weight Table 4 various forces one carbon black And the composition shown in Table 5. To this, 10 parts by mass of polyvinylidene fluoride resin (PVDF) as a binder was added, and 200 parts by mass of N-methylpyrrolidone (NMP) as a dispersion solvent was added and kneaded. The mixture slurry was applied to both sides of an aluminum foil as a two-dimensional current collector having a thickness of 20 and then dried, pressed and cut to obtain a positive electrode having a thickness of 200 m.
負極は下記の通りに作製した。 グラフアイト粉末に結着剤としての P VDFをグラフアイト 1 00質量部に対して 1 0質量部添加し、 これに 分散溶媒として NMPを 1 00部添加、 分散したスラリーを二次元集電 体である厚み 1 0 imの圧延銅箔の両面に塗布、 その後乾燥、 プレス、 断裁することにより厚み 1 3 0 mの負極を得た。  The negative electrode was produced as described below. To the graphite powder, 10 parts by weight of PVDF as a binder was added to 100 parts by weight of graphite, and 100 parts of NMP was added as a dispersing solvent, and the dispersed slurry was collected with a two-dimensional current collector. A negative electrode having a thickness of 130 m was obtained by applying it to both sides of a rolled copper foil having a thickness of 10 im, followed by drying, pressing and cutting.
上記の方法により作製された正極 ·負極を捲回し、 この捲回群を厚み 2 5 mのポリエチレン製セパレ一夕を介して円筒形の電池容器に収納 し、 リチウムイオン二次電池を得た。 電解液には L i P F6を 1モル Z L溶解させたエチレンカーボネートとジメチルカーボネートの混合液を 用い、 上蓋を力シメ、 封口後、 注液口より上記電解液を所定量注入、 封 口した。 この電池の設計値の電池容量は 1 3 0 0 mA hである。 The positive electrode and the negative electrode produced by the above method were wound, and the wound group was housed in a cylindrical battery container via a polyethylene separator having a thickness of 25 m to obtain a lithium ion secondary battery. Solution using a mixture of ethylene carbonate and dimethyl carbonate with a L i PF 6 dissolved 1 mol ZL is the electrolysis, the upper lid forces caulking, after sealing, pouring a predetermined amount injected the electrolytic solution from the port, and sealing. The battery capacity of the design value of this battery is 1300 mAh.
以上のように作製した電池 (N o. 1〜 1 3) について、 放電容量及 び重負荷特性を測定した。 放電容量試験は、 定電流で 8時間率 ( 1Z8 C) で 8時間充電した後、 1Z8 Cで終電圧 = 3. 2 Vまで放電した。 この条件での各々の電池の放電容量を表 4に示す。 放電容量は表 4の実 施例 (No. 1) の放電容量を 1 0 0 %としたときの比率 (%) で示し た。 重負荷特性は、 初期容量試験後、 充放電効率が安定した後、 定電流 で 1 Z8 Cで 8時間充電し、 放電を 1Z8 C、 終止電圧 = 3. 2 Vで実 施したときの放電容量 (X) と、 同様に 1 2時間率 (2 C) で放電し 、 終止電圧 = 3. 2 Vで実施したときの放電容量 (Y) を測定した。 1 / 8 C放電に対する 2 C放電容量比率、 YZX (%) を重負荷特性の指 標として表 4及び表 5に示す。 この値が大きいほど、 重負荷特性に優れ ると言うことが出来る。 The discharge capacity and heavy load characteristics of the batteries (Nos. 1 to 13) manufactured as described above were measured. In the discharge capacity test, the battery was charged at a constant current for 8 hours at an 8-hour rate (1Z8C), and then discharged at 1Z8C to a final voltage of 3.2V. Table 4 shows the discharge capacity of each battery under these conditions. The discharge capacity is shown in Table 4 as a ratio (%) when the discharge capacity of the embodiment (No. 1) is 100%. The heavy load characteristics are constant current after the initial capacity test Charge at 1 Z8 C for 8 hours, discharge at 1Z8 C, discharge voltage (3.2 V) when performed at 3.2 V, and discharge at 12 hour rate (2 C) in the same manner. The discharge capacity (Y) at a voltage of 3.2 V was measured. Tables 4 and 5 show the ratio of 2 C discharge capacity to 1/8 C discharge, YZX (%), as an index of heavy load characteristics. It can be said that the larger this value is, the more excellent the heavy load characteristic is.
(表 4)  (Table 4)
Figure imgf000015_0001
Figure imgf000015_0001
3 表 4及び表 5から明らかなように、 本発明の力一ポンプラックを正極 に含むリチウムイオン二次電池 (No. 1〜9、 No. 1 1) は、 高い放 電容量とともに重負荷特性に優れている。 これに対して、 本発明以外の カーボンブラックを正極に含むリチウムイオン二次電池 (N o. 1 0、 Νο. 1 2〜 1 3) は放電容量、 重負荷特性ともに劣ることがわかる。 Three As is clear from Tables 4 and 5, the lithium ion secondary batteries (Nos. 1 to 9 and No. 11) containing the power pump rack of the present invention in the positive electrode have both high discharge capacity and heavy load characteristics. Are better. On the other hand, it can be seen that the lithium ion secondary batteries (No. 10 and Νο. 12 to 13) containing carbon black in the positive electrode other than the present invention have inferior discharge capacity and heavy load characteristics.
(実施例 2 :ニッケル水素二次電池)  (Example 2: Nickel metal hydride secondary battery)
ニッケル水素二次電池の負極を下記の通りに作製した。 活物質である 水素吸蔵合金としてミッシュメタルニッケル系合金 (AB5系合金) 粉 末 1 0 0質量部と、 表 6及び表 7に示す各種カーボンブラックおよびポ リテトラフルォロエチレン (PTFE) のデイスパージョンを固形分で 1. 5質量部、 カルポキシメチルセルロース (CMC) 0. 5質量部を 水 2 0 0質量部に分散し、 ぺ一ストを作製した。 得られたペーストを集 電体であるニッケルメツキされたパンチングメタルに塗布し、 8 0 で 乾燥、 ロールプレスで厚さを調整した後、 所定の大きさに切断して負極 電極を作製した。 A negative electrode of a nickel-metal hydride secondary battery was produced as follows. And misch metal nickel alloy (AB 5 type alloy) powder powder 1 0 0 part by mass as a hydrogen absorbing alloy as an active material, various kinds shown in Tables 6 and 7 carbon blacks and Po Li tetrafluoropropoxy O b Ethylene (PTFE) 1.5 parts by mass of the dispersion in solid content and 0.5 parts by mass of carboxymethyl cellulose (CMC) were dispersed in 200 parts by mass of water to prepare a paste. The obtained paste was applied to a nickel-plated punching metal as a current collector, dried at 80, adjusted in thickness by a roll press, and cut into a predetermined size to produce a negative electrode.
ニッケル水素二次電池の正極を下記の通りに作製した。 水酸化ニッケ ル粉末 1 00質量部、 酸化コバルト 6質量部、 PTF Eのデイスパージ ョンを固形分で 3. 0質量部、 CMC 1. 0質量部を水 2 0 0部に分散 、 ペーストを作製した。 得られたペーストを集電体である発泡メタルに 塗布含浸させ、 乾燥した後、 所定の大きさに切断して正極電極を作製し た。  A positive electrode of a nickel-metal hydride secondary battery was produced as follows. 100 parts by mass of nickel hydroxide powder, 6 parts by mass of cobalt oxide, 3.0 parts by mass of PTF E disperse as solids, and 1.0 part by mass of CMC dispersed in 200 parts of water to produce paste did. The obtained paste was applied and impregnated into a foamed metal as a current collector, dried, and then cut into a predetermined size to produce a positive electrode.
正極と負極との間に、 ナイロン不織布製セパレー夕を挟み、 渦巻き状 に捲き、 単 3サイズの電池缶に挿入した後、 電解液として 3 1質量%の 水酸化カリウム水溶液を注入し、 定格容量 1 00 OmAhの密閉型円筒 電池 (No. 1 7〜 2 9 ) を作製した。 試験電池を 1 Cで 1 5 0 %充電 した後、 カットオフ電圧を 1. 0 Vにして 1 Cで放電させ、 放電容量を 測定し、 さらに同様の充放電を最大 5 0 0回繰り返し、 容量が初期の 7 0 % ( 7 0 OmAh) になるまでの放電回数を測定し、 サイクル特性の 値とした。 これらの測定結果を表 6及び表 7に示す。 なお、 5 0 0回時 点で 7 0 %以上を維持できた電池のサイクル特性は〇、 5 0 %以下まで 低下した電池のサイクル特性は Xとして記した。 また、 放電容量は表 6 の実施例 (No. 1 7) の放電容量を 1 0 0 %としたときの比率 (%) で示した。 A nylon nonwoven fabric separator is sandwiched between the positive electrode and the negative electrode, spirally wound and inserted into an AA battery can. 100 OmAh sealed cylindrical batteries (Nos. 17 to 29) were produced. After charging the test battery at 150% at 1 C, set the cutoff voltage to 1.0 V, discharge at 1 C, and reduce the discharge capacity. The same charge / discharge was repeated up to 50,000 times, and the number of discharges until the capacity reached the initial 70% (70 OmAh) was measured and used as the value of the cycle characteristics. Tables 6 and 7 show the measurement results. The cycle characteristics of the battery that could maintain 70% or more at the time of 500 times were marked with 〇, and the cycle characteristics of the battery that decreased to 50% or less were marked with X. The discharge capacity is shown in Table 6 as a ratio (%) when the discharge capacity of the embodiment (No. 17) is set to 100%.
(表 6)  (Table 6)
Figure imgf000017_0001
Figure imgf000017_0001
5 表 6及び表 7から明らかなように、 本発明のカーボンブラックを負極 に含むニッケル水素電池 (No. l 7〜2 5、 No.2 7) は、 高い放電 容量とともにサイクル特性に優れている。 これに対して、 本発明以外の カーボンブラックを負極に含むニッケル水素電池 (No.26、 No.2 8〜2 9) は放電容量、 サイクル特性ともに劣ることがわかる。 Five As is clear from Tables 6 and 7, the nickel-metal hydride batteries (Nos. 17 to 25 and No. 27) containing the carbon black of the present invention in the negative electrode have excellent cycle characteristics as well as high discharge capacity. On the other hand, it can be seen that the nickel hydrogen batteries (No. 26, No. 28-29) containing carbon black in the negative electrode other than the present invention are inferior in both discharge capacity and cycle characteristics.
(実施例 3 :電気二重層型キャパシター)  (Example 3: Electric double layer capacitor)
活物質であるフエノール系の溶媒 K O H賦活処理活性炭粉末 (比表面 積 1 9 5 0 m2/g> 平均粒径 1 0 m) 、 各種力一ポンプラック及び ポリテトラフルォロエチレン (PTFE) 1 0質量部からなる混合物に 5質量部のエタノールを加えて混練し、 ロール圧延して幅 1 0 c m、 長 さ 1 0 c m、 厚さ 0. 6 5 mmのシートとしこれを 2 0 0 °Cで 2時間乾 燥した。 Phenol solvent as active material Activated carbon powder treated with KOH (specific surface area: 1950 m 2 / g> average particle size: 10 m), various pressure pump racks and polytetrafluoroethylene (PTFE) 1 5 parts by mass of ethanol was added to the mixture consisting of 0 parts by mass, kneaded, and roll-rolled to obtain a sheet having a width of 10 cm, a length of 10 cm, and a thickness of 0.65 mm. And dried for 2 hours.
上記シートを直径 1 2 mmに打ち抜いて得た分極性電極を、 黒鉛系導 電性接着剤でステンレス 3 1 6製容器のケース及び蓋に接着し、 これを 正極および負極とした。 分極性電極が張り付けられた蓋とケースを 3 0 0 t の減圧下で 4時間乾燥後、 アルゴン雰囲気下のグローブボックス中 に移し、 1モル/リットルのテトラェチルアンモニゥムテトラフルォロ ポレートを含むプロピレン力一ポネート溶液を電極に含浸し、 ポリプロ ピレン製不織布のセパレータを介して両極を対向させ、 ポリプロピレン 製絶縁ガスケットを用いて容器中にかしめ封口した。 得られたコイン型 電気二重層キャパシターは、 直径 1 8. 3mm、 厚さ 2. 0mmのもの である。  The polarizable electrode obtained by punching the sheet into a diameter of 12 mm was adhered to a case and a lid of a stainless steel 316 container with a graphite-based conductive adhesive, and used as a positive electrode and a negative electrode. The lid and case to which the polarizable electrode was attached were dried under a reduced pressure of 300 t for 4 hours, then transferred to a glove box under an argon atmosphere, and 1 mol / l of tetraethylammonium tetrafluoroporate was added. The electrode was impregnated with a propylene force monoponate solution containing, and both electrodes were opposed to each other via a polypropylene nonwoven fabric separator, and the container was caulked and sealed using a polypropylene insulating gasket. The obtained coin-type electric double layer capacitor has a diameter of 18.3 mm and a thickness of 2.0 mm.
得られたコイン型電気二重層キャパシター (No. 3 0〜42) を印 可電圧 2. 5 (V) で充電し、 約 0. 5mAで放電したときの初期の静 電容量 (F) を測定した。 さらに同様の充放電を最大 1 000回繰り返 し、 容量が初期の 7 0 %になるまでの放電回数を測定し、 サイクル特性 の値とした。 これらの測定結果を表 8及び表 9に示す。 なお、 1 0 0 0 回時点で 7 0 %以上を維持できた電池のサイクル特性は〇、 5 0 %以下 まで低下した電気二重層キャパシターのサイクル特性は Xを記した。 (表 8) Measure the initial capacitance (F) when the obtained coin-type electric double layer capacitor (No. 30 to 42) is charged at an applied voltage of 2.5 (V) and discharged at about 0.5 mA. did. The same charge / discharge is repeated up to 1 000 times, and the number of discharges until the capacity reaches the initial 70% is measured. Value. Tables 8 and 9 show the measurement results. In addition, the cycle characteristics of the battery that could maintain 70% or more at the time of 1000 times were indicated by 〇, and the cycle characteristics of the electric double layer capacitor that decreased to 50% or less were indicated by X. (Table 8)
Figure imgf000019_0001
表 8及び表 9より、 本発明のカーボンブラックを用いることで、 静電 容量とサイクル特性に優れる電気二重層型キャパシターが得られること がわかる。 (実施例 4 : リチウム一二酸化マンガン一次電池) 電解二酸化マンガン 1 0 0質量部、 各種カーポンプラックおよびポリ テトラフルォロエチレン (PTFE) 5質量部を混練し、 正極合剤を作 製した。 また、 金属リチウムを直径 1 5 mm、 厚み 0. 2 5mmの大き さに切り抜いて負極体とした。
Figure imgf000019_0001
Tables 8 and 9 show that the use of the carbon black of the present invention provides an electric double layer capacitor having excellent capacitance and cycle characteristics. (Example 4: Lithium-manganese dioxide primary battery) 100 parts by mass of electrolytic manganese dioxide, various car pump racks and 5 parts by mass of polytetrafluoroethylene (PTFE) were kneaded to prepare a positive electrode mixture. Also, metal lithium was cut out to a size of 15 mm in diameter and 0.25 mm in thickness to obtain a negative electrode body.
また、 ステンレス鋼製の正極缶に上記した正極合剤を着設し、 その上 に、 セパレ一夕としてのポリプロピレン不織布を載置した後、 そこにし i C 104を濃度 1モル/ Lで脱水プロピレン力一ポネートと 1, 2— ジメトキシェタンの混合溶媒 (体積比 1 : 1) に溶解せしめた非水電解 液を含浸せしめた。 その上に、 上記負極体を載置して発電要素を構成し 、 リチウム一二酸化マンガン一次電池 (No. 43〜 5 5) を作製した Further, a positive electrode mixture described above in a stainless steel positive electrode can be clamped by, thereon, after placing the polypropylene nonwoven as Isseki separator, dehydrated i C 10 4 to wherein a concentration of 1 mol / L A non-aqueous electrolyte dissolved in a mixed solvent of propylene nitrate and 1,2-dimethoxyethane (volume ratio 1: 1) was impregnated. On top of that, the above-mentioned negative electrode body was placed to constitute a power generating element, and a lithium monomanganese dioxide primary battery (No. 43 to 55) was produced.
この電池について、 1 k Ωの定抵抗放電を行い、 放電容量を求めた。 結果を表 1 0及び表 1 1に示す。 なお、 放電容量は表 1 0の実施例 (N o. 43) の放電容量を 1 0 0 %としたときの比率 (%) で示した。 (表 1 0) The battery was discharged at a constant resistance of 1 kΩ, and the discharge capacity was determined. The results are shown in Tables 10 and 11. The discharge capacity is shown as a ratio (%) when the discharge capacity of the embodiment (No. 43) in Table 10 is set to 100%. (Table 10)
正極組成 (質量部) 放電容量  Positive electrode composition (parts by mass) Discharge capacity
No.  No.
B - 4 B-5 B-6 B-7 B-8 活物質 PTFE (%)  B-4 B-5 B-6 B-7 B-8 Active material PTFE (%)
43 5 100 5 100 43 5 100 5 100
44 5 100 5 102  44 5 100 5 102
45 10 100 5 107  45 10 100 5 107
46 5 100 5 97  46 5 100 5 97
47 5 100 5 111  47 5 100 5 111
48 5 100 5 108  48 5 100 5 108
49 15 100 5 108  49 15 100 5 108
50 3 100 5 95 (表 1 1 ) 50 3 100 5 95 (Table 11)
Figure imgf000021_0001
表 1 0及び表 1 1より、 本発明のカーボンブラックを用いることで、 放電容量に優れるリチウム一二酸化マンガン一次電池が得られることが わかる。 産業上の利用の可能性
Figure imgf000021_0001
Tables 10 and 11 show that the use of the carbon black of the present invention can provide a lithium manganese dioxide primary battery having excellent discharge capacity. Industrial applicability
以上説明したとおり、 本発明によれば、 力一ポンプラックのミクロ細 孔容積とミクロ細孔幅の関係曲線から導かれるミクロ細孔容積が最大値 となるところのミクロ細孔幅が一定範囲内にあり、 かつミクロ細孔容積 の最大値が一定範囲内にある特定のカーボンブラックを、 電池または電 気二重層型キャパシターの電極組成として用いることよって、 容量、 重 負荷特性、 サイクル特性に優れた電池または電気二重層型キャパシター を得ることができる。  As described above, according to the present invention, the micropore width at which the micropore volume derived from the relationship curve between the micropore volume and the micropore width of the force pump rack reaches a maximum value is within a certain range. By using a specific carbon black with a maximum micropore volume within a certain range as the electrode composition of a battery or an electric double layer capacitor, it has excellent capacity, heavy load characteristics, and cycle characteristics. A battery or an electric double layer capacitor can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. 電池または電気二重層型キャパシターの電極組成として用いられ るカーボンブラックであって、 ミク口細孔容積とミクロ細孔幅の関係曲 線から導かれるミクロ細孔容積が最大値となるところのミクロ細孔幅が 4. 0〜8. 0オングストロームの範囲内にあり、 かつミクロ細孔容積 の最大値が 0. 0 6 0〜0. 1 3 5 m 1 /オングストローム/ gであるこ とを特徴とする電池または電気二重層型キャパシターの電極用カーボン ブラック。 1. Carbon black used as an electrode composition for batteries or electric double layer capacitors, where the micropore volume derived from the relationship between the micropore volume and the micropore width has a maximum value. The micropore width is in the range of 4.0 to 8.0 angstroms, and the maximum value of the micropore volume is 0.060 to 0.135 m1 / angstrom / g. Carbon black for electrodes of batteries or electric double layer capacitors.
2. 前記ミクロ細孔容積の最大値が、 0. 0 7 5〜0. 1 3 5m l / オングストロ一ム /gである請求項 1に記載の電池または電気二重層型 キャパシターの電極用力一ボンブラック。 2. The electrode for a battery or an electric double layer capacitor according to claim 1, wherein the maximum value of the micropore volume is 0.075 to 0.135 ml / angstrom / g. black.
3. 前記ミクロ細孔容積の最大値が、 0. 0 9 0〜0. 1 3 5m l / オングストローム /gである請求項 1に記載の電池または電気二重層型 キャパシ夕一の電極用力一ボンブラック。  3. The battery for an electrode of a battery or an electric double layer type capacitor according to claim 1, wherein the maximum value of the micropore volume is 0.090 to 0.135 ml / angstrom / g. black.
4. 全細孔容積が、 3. 5〜 5. 0 m 1 /gである請求項 1〜 3のい ずれかに記載の電池または電気二重層型キャパシターの電極用カーボン ブラック。  4. The carbon black for an electrode of a battery or an electric double layer capacitor according to any one of claims 1 to 3, wherein the total pore volume is 3.5 to 5.0 m1 / g.
5. 全細孔容積が、 4. 0〜 5. 0 m 1 /gである請求項 1〜 3のい ずれかに記載の電池または電気二重層型キャパシターの電極用カーボン ブラック。  5. The carbon black for an electrode of a battery or an electric double layer capacitor according to any one of claims 1 to 3, wherein the total pore volume is 4.0 to 5.0 m1 / g.
6. 9 50 における揮発分の一酸化炭素 Z二酸化炭素の比が、 6. The ratio of volatile carbon monoxide and carbon dioxide at 950 is 6.
0〜 1 0. 0である請求項 1〜 5のいずれかに記載の電池または電気二 重層型キャパシターの電極用力一ボンブラック。 6. The carbon black for an electrode of a battery or an electric double layer capacitor according to claim 1, which is 0 to 10.0.
7. 前記ミクロ細孔幅が 4. 5〜 7. 5オングストロームの範囲内に あり、 かつミクロ細孔容積の最大値が 0. 0 9 5〜0. 1 3 0m l /ォ ングストローム/ gで、 前記全細孔容積が 4. 1〜4. 9m l /gで、 前 記一酸化炭素 Z二酸化炭素の比が 6. 5〜9. 5である請求項 1〜6の いずれかに記載の電池または電気二重層型キャパシターの電極用カーボ ンブラック。 7. The micropore width is in the range of 4.5 to 7.5 angstroms, and the maximum value of the micropore volume is 0.095 to 0.130 ml / o. The total pore volume is 4.1 to 4.9 ml / g, and the ratio of the carbon monoxide Z carbon dioxide is 6.5 to 9.5. Carbon black for an electrode of the battery or the electric double layer capacitor according to any one of the above.
8. 前記ミクロ細孔幅が 5. 0〜 7. 0オングストロームの範囲内に あり、 かつミクロ細孔容積の最大値が 0. 1 0 0〜 0. 1 2 5m l /ォ ングストローム/ gで、 前記全細孔容積が 4. 2〜4. 8m l /gで、 前 記一酸化炭素/二酸化炭素の比が 7. 0〜9. 0である請求項 1〜6の いずれかに記載の電池または電気二重層型キャパシターの電極用力一ポ ンブラック。  8. The micropore width is in the range of 5.0 to 7.0 angstroms and the maximum value of the micropore volume is 0.1100 to 0.125 ml / ngstrom / g. The total pore volume is 4.2 to 4.8 ml / g, and the carbon monoxide / carbon dioxide ratio is 7.0 to 9.0, according to any one of claims 1 to 6. One point black for electrode of battery or electric double layer capacitor.
9. 電池が一次電池又は二次電池である請求項 1〜 8のいずれかに記 載の電池または電気二重層型キャパシターの電極用力一ポンプラック。  9. The power pump rack for electrodes of a battery or an electric double layer capacitor according to any one of claims 1 to 8, wherein the battery is a primary battery or a secondary battery.
2 Two
PCT/JP2002/012586 2002-02-08 2002-12-02 Carbon black for electrode of cell or electric double-layer capacitor WO2003067690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002349680A AU2002349680A1 (en) 2002-02-08 2002-12-02 Carbon black for electrode of cell or electric double-layer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002032890A JP4179583B2 (en) 2002-02-08 2002-02-08 Battery or electric double layer capacitor using carbon black as electrode composition
JP2002-32890 2002-02-08

Publications (1)

Publication Number Publication Date
WO2003067690A1 true WO2003067690A1 (en) 2003-08-14

Family

ID=27677984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012586 WO2003067690A1 (en) 2002-02-08 2002-12-02 Carbon black for electrode of cell or electric double-layer capacitor

Country Status (3)

Country Link
JP (1) JP4179583B2 (en)
AU (1) AU2002349680A1 (en)
WO (1) WO2003067690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3506402A4 (en) * 2016-08-24 2019-07-03 Denka Company Limited Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180000343A (en) 2008-02-19 2018-01-02 캐보트 코포레이션 Mesoporous carbon black and processes for making same
WO2013145110A1 (en) * 2012-03-26 2013-10-03 株式会社 東芝 Electrode for non-aqueous electrolyte rechargeable battery, non-aqueous electrolyte rechargeable battery, and battery pack
JPWO2013145110A1 (en) * 2012-03-26 2015-08-03 株式会社東芝 Nonaqueous electrolyte secondary battery electrode, nonaqueous electrolyte secondary battery and battery pack

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345130A (en) * 1991-04-11 1993-12-27 Kenji Hashimoto Carbonaceous shape-selective catalyst and production thereof
JPH09259883A (en) * 1996-03-22 1997-10-03 Kanebo Ltd Carbon negative electrode material for lithium ion secondary battery
JPH09293507A (en) * 1996-04-26 1997-11-11 Kanebo Ltd Lithium ion secondary battery
JPH10279303A (en) * 1997-03-31 1998-10-20 Kyocera Corp Caked activated carbon
JPH10287412A (en) * 1997-04-15 1998-10-27 Kyocera Corp Solid active carbon
JPH1111921A (en) * 1997-06-26 1999-01-19 Kyocera Corp Solid activated carbon
JPH11293527A (en) * 1998-04-07 1999-10-26 Petoca Ltd Optically isotropic pitch-based activated carbon fiber and electric double layer capacitor using the same
JP2000007314A (en) * 1998-06-23 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
JP2000007316A (en) * 1998-06-29 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
JP2001266640A (en) * 2000-03-23 2001-09-28 Osaka Gas Co Ltd Active polycyclic aromatic hydrocarbon material and method of manufacturing the same
JP2001274044A (en) * 2000-03-23 2001-10-05 Osaka Gas Co Ltd Capacitor using nonaqueous electrolyte

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345130A (en) * 1991-04-11 1993-12-27 Kenji Hashimoto Carbonaceous shape-selective catalyst and production thereof
JPH09259883A (en) * 1996-03-22 1997-10-03 Kanebo Ltd Carbon negative electrode material for lithium ion secondary battery
JPH09293507A (en) * 1996-04-26 1997-11-11 Kanebo Ltd Lithium ion secondary battery
JPH10279303A (en) * 1997-03-31 1998-10-20 Kyocera Corp Caked activated carbon
JPH10287412A (en) * 1997-04-15 1998-10-27 Kyocera Corp Solid active carbon
JPH1111921A (en) * 1997-06-26 1999-01-19 Kyocera Corp Solid activated carbon
JPH11293527A (en) * 1998-04-07 1999-10-26 Petoca Ltd Optically isotropic pitch-based activated carbon fiber and electric double layer capacitor using the same
JP2000007314A (en) * 1998-06-23 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
JP2000007316A (en) * 1998-06-29 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
JP2001266640A (en) * 2000-03-23 2001-09-28 Osaka Gas Co Ltd Active polycyclic aromatic hydrocarbon material and method of manufacturing the same
JP2001274044A (en) * 2000-03-23 2001-10-05 Osaka Gas Co Ltd Capacitor using nonaqueous electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3506402A4 (en) * 2016-08-24 2019-07-03 Denka Company Limited Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery
US11098201B2 (en) 2016-08-24 2021-08-24 Denka Company Limited Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery

Also Published As

Publication number Publication date
JP2003234104A (en) 2003-08-22
JP4179583B2 (en) 2008-11-12
AU2002349680A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP5065901B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and negative electrode and non-aqueous electrolyte secondary battery
KR101267874B1 (en) Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
US8673490B2 (en) High energy lithium ion batteries with particular negative electrode compositions
US6007947A (en) Mixed lithium manganese oxide and lithium nickel cobalt oxide positive electrodes
EP2894703B1 (en) Nonaqueous electrolyte secondary battery
JP5229598B2 (en) Lithium secondary battery and manufacturing method thereof
KR100769567B1 (en) Anode For Hybrid Capacitor, Manufacturing Method thereof and Hybrid Capacitor
EP3076416B1 (en) Lithium ion capacitor
WO2002054512A1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JPH10158005A (en) Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
CN111052457B (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH09274920A (en) Nonaqueous electrolyte battery
JP5168535B2 (en) Lithium secondary battery and manufacturing method thereof
WO2020194385A1 (en) Electrode, battery and battery pack
JP4179583B2 (en) Battery or electric double layer capacitor using carbon black as electrode composition
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP2014022210A (en) Carbon material for metal air secondary battery, positive electrode member for metal air secondary battery including the same, and metal air secondary battery
JP2003168420A (en) Electrode for lithium battery and lithium battery
KR101102654B1 (en) The Composite Electrode Materials Showing Higher Power and Higher Energy
JP4833276B2 (en) Carbon material for lithium battery and lithium battery
TWI238557B (en) Non-aqueous electrolyte battery
JP4750929B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase