WO2003064941A1 - Molded core filter drier - Google Patents

Molded core filter drier Download PDF

Info

Publication number
WO2003064941A1
WO2003064941A1 PCT/US2003/001920 US0301920W WO03064941A1 WO 2003064941 A1 WO2003064941 A1 WO 2003064941A1 US 0301920 W US0301920 W US 0301920W WO 03064941 A1 WO03064941 A1 WO 03064941A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
filter
drier
casing
outlet
Prior art date
Application number
PCT/US2003/001920
Other languages
French (fr)
Inventor
Michael G. Lacey
Stephen P. Pilgram
Original Assignee
Sporlan Valve Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/057,207 external-priority patent/US6852150B2/en
Priority claimed from US10/195,239 external-priority patent/US6835235B2/en
Priority claimed from US10/195,257 external-priority patent/US6835236B2/en
Application filed by Sporlan Valve Company filed Critical Sporlan Valve Company
Priority to EP03734975A priority Critical patent/EP1485662A1/en
Publication of WO2003064941A1 publication Critical patent/WO2003064941A1/en
Priority to HK06100912A priority patent/HK1080931A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/266Drying gases or vapours by filtration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/02Filtering elements having a conical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/40Special measures for connecting different parts of the filter
    • B01D2201/4076Anti-rotational means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/455Gas separation or purification devices adapted for specific applications for transportable use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0431Beds with radial gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems

Definitions

  • This invention relates generally to filter-driers for refrigeration systems and particularly to a casing and a molded filter-drier core having superior structural characteristics of attrition resistance, strength and permeability while being held firmly in place by structural cooperation between the casing and the core.
  • Filter-driers are used in refrigeration systems to filter solid contaminants and to remove soluble contaminants from the refrigerant and lubricant.
  • the three general types of construction of filter-driers are loose fill, compacted bead, and molded core.
  • the desiccant is captured within mesh screens to prevent the desiccant beads from escaping into the system.
  • the beads form a desiccant bed trapped between the shell and mesh screens, however, within the desiccant bed the beads are only loosely held.
  • Flow of refrigerant through the desiccant bed or vibration of the filter-drier shell from other sources results in undesirable movement of the individual beads within the bed.
  • Contact of the desiccant beads with the shell, mesh screens, or other desiccant beads can lead to attrition of the desiccant beads. As attrition of the beads progresses, the desiccant fines escape the mesh screens and circulate in the refrigerating system.
  • Compacted bead designs use desiccant beads similar to the loose fill design but incorporates perforated metal and mesh screens, filter pads, and springs to compact the desiccant bed.
  • the compaction of the desiccant bed restricts the movement of the individual beads compared to a loose fill design and reduces the risk of attrition, however, this design does not eliminate attrition.
  • a molded core unit consists of a molded desiccant block held in place with support screens, filter pads, and springs.
  • the molded core is made of smaller granules of desiccant than the loose fill or compacted bead design.
  • the desiccant granules are bonded together using an organic or inorganic binder to form a solid shape. This design prevents attrition of the desiccants by not allowing movement of the granules.
  • shells to contain the desiccants in a filter-drier are either welded steel shell consisting of steel tubing and/or stamped pieces welded together to form a sealed shell.
  • copper spun shells may be used in which copper tubing is reduced to a specific fitting size.
  • the internal parts consisting components such as perforated screens, mesh screens, filter pads, desiccant, and springs are assembled. The purpose of the screens and springs is to contain the desiccant beads or desiccant core.
  • U.S. Patent No. 2,556,292 discloses a core formed from molded discs and U.S. Patent No. 5,440,898 disclosed a molded core which is strengthened by the use of fibers. In both cases, the core is spaced from an outer metal casing and held in place by a lateral support system at each end.
  • U.S. Patent No. 2,556,892 discloses a core formed from molded discs and U.S. Patent No. 5,440,898 disclosed a molded core which is strengthened by the use of fibers. In both cases, the core is spaced from an outer metal casing and held in place by a lateral support system at each end.
  • 5,562,427 discloses a copper casing with longitudinally spaced grooves formed to hold a preformed solid core. The grooves are formed by the drawing process but are at each end of the core.
  • U.S. Patent No. 2,551 ,426 discloses a preformed block of drying agent which is supported by longitudinally spaced internal protrusions. The present system overcomes the need for support systems for holding the core in place in a manner not disclosed in the known prior art. Summary of the Invention
  • This molded core filter does not require additional parts to hold the core in place within the casing and the core is formed within the casing and held within the casing by structural cooperation between the casing and the core.
  • the binder used in the molded core serves to bind the desiccants together and, in addition, binds the desiccant core to the casing. Thus movement between the core and the casing is prevented thereby substantially eliminating desiccant attrition.
  • This filter-drier is for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, and comprises a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant.
  • the casing includes opposed end portions and an intermediate portion disposed between said end portions.
  • a molded core is provided disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough and holding means is provided between the casing and said core for holding the core in place within the casing.
  • the holding means includes at least one protrusion from the inner surface of the casing engaging the outer surface of the core to inhibit axial movement of the core.
  • the holding means includes bonding means between the inner surface of the casing and the outer surface of the core to inhibit axial movement of the core. It is yet another aspect of this invention to provide that the protrusion is circular and extends into the outer surface of the core.
  • the casing includes a cylindrical intermediate portion and the opposed end portions are funnel shaped.
  • the core includes a cylindrical portion.
  • the core includes a frusto-conical portion and a passage having a closed end proximate the inlet and an open end portion proximate the outlet.
  • the cylindrical portion of the core is bonded to the cylindrical portion of the casing. It is another aspect of this invention to provide that the core is formed from molded desiccant and a binder.
  • This invention provides a method of manufacturing a filter-drier having a tubular casing and a desiccant core between an inlet and an outlet comprising the steps of molding the desiccant core within the tubular casing and providing holding means between the casing and the core for holding the core in place.
  • the method includes the additional step of forming the core with a passage having a closed end adjacent the inlet and an open end adjacent the outlet and another aspect to provide the additional step of forming the indentation as a U-shaped circular groove.
  • the method includes forming the tubular casing from sections of an elongate tube and forming the indentations before cutting the tube into sections, and another aspect to reduce at least one end by metal spinning into a funnel-shaped configuration.
  • a modified filter-drier it is an important aspect of the invention to provide a filter bonded to the core.
  • This modified filter-drier is for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, and comprises a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant.
  • the casing includes opposed end portions and an intermediate portion disposed between said end portions.
  • a molded core including inlet and outlet end portions is provided disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough and holding means is provided between the casing and said core for holding the core in place within the casing and a filter is bonded to the core, as by molding.
  • the core includes a passage having a closed end proximate the inlet portion and an open end proximate the outlet portion; and the passage is lined, at least in part, with.the filter. It is yet another aspect of this invention to provide that the core passage includes inclined sides.
  • the core passage is generally conical.
  • the core passage open end includes an annular portion, and the filter is bonded to said annular portion.
  • a filter-drier comprising a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant.
  • the casing includes opposed end portions and an intermediate portion disposed between said end portions and having an inner surface.
  • a molded core is provided including an outer surface and inlet and outlet end portions disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough ;and holding means is provided between said casing inner surface and said core outer surface for holding the core in place; and a filter media is molded to the core.
  • the holding means includes at least one protrusion from the inner surface of the casing engaging the outer surface of the core to inhibit axial movement of the core. It is still another aspect of this invention to provide that the holding means includes bonding means between the inner surface of the casing and the outer surface of the core to inhibit axial movement of the core.
  • It is an aspect of this invention to provide a method of manufacturing a filter-drier having a tubular casing and a desiccant core between an inlet and an outlet comprising the steps of: providing a tubular mold; providing a mold base associated with the tubular mold; placing a filter media on the mold base; depositing a desiccant/binder mix within the mold and over the filter media to bond the filter media to the core; providing a mold cap over the desiccant core; and removing the mold base and cap when the core has set.
  • Another modified filter-drier for drying refrigerant circulated in a refrigeration system by removing moisture therefrom comprises a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant.
  • the casing includes opposed end portions and an intermediate portion disposed between said end portions.
  • a molded core is provided including inlet and outlet end portions having a through passage therebetween disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough and holding means is provided between the casing and said core for holding the core in place within the casing and a filter is bonded to the core, as by molding.
  • the core passage has opposed open ends and is lined with a filter.
  • the core passage is generally cylindrical. It is yet another aspect of this invention to provide that the core passage open ends include annular portions, and the filter is bonded to said annular portions.
  • a molded core is provided including inlet and outlet end portions having a through passage therebetween said core being disposed in said casing and held in place between said opposed end plates and receiving flow of refrigerant therethrough, said core including opposed inlet and outlet end faces and said passage being cylindrical.
  • a filter media is provided including a cylindrical portion lining said passage and annular end portions, said filter media being molded to said core. It is another aspect of this invention to provide that each end plate includes two openings; one of said openings being aligned with the passage and the other of said openings being offset from the passage.
  • This filter-drier is relatively inexpensive and simple to manufacture and is particularly effective for its intended purpose.
  • FIG. 1 is a diagrammatic view of a refrigeration system utilizing a filter-drier assembly in the liquid line and in the suction line;
  • FIG. 2 is a longitudinal cross-sectional view of the filter-drier assembly
  • FIG. 3 is an enlarged fragmentary view of the holding indentation
  • FIG. 4 is an end view of the filter-drier assembly
  • FIG. 5 is a cross-sectional view taken on line 5-5 of FIG. 2;
  • FIG. 6 is a cross-sectional view taken on line 6-6 of FIG. 2;
  • FIG. 7 is a longitudinal cross-sectional view of a modified filter- drier assembly;
  • FIG. 8 is a cross-sectional view taken on line 8-8 of FIG. 7;
  • FIG. 9 is a longitudinal cross-sectional view of another modified filter-drier assembly
  • FIG. 10 is a cross-sectional view taken on line 10-10 of FIG. 10;
  • FIG. 1 1 is a longitudinal cross-sectional view of another modified filter-drier assembly
  • FIG. 12 is a cross-sectional view taken on line 12-12 of FIG. 1 1 ;
  • FIG. 13 is a cross-sectional view taken on line 13-13 of FIG. 11 ;
  • FIG. 14 is a diagrammatic view of a heat pump utilizing the filter- drier of FIGs. 11 -13 in the reversing liquid line;
  • FIGs. 15-17 are schematics illustrating the first, second and third stages of forming the filter-drier of FIG. 9.
  • FIGs. 18-20 are schematics illustrating the first, second and third stages of forming the core of the filter-drier of FIG. 11. Best Mode for Carrying Out the Invention
  • FIG. 1 it will be understood that one or more filter-drier assemblies 10 are used in a refrigeration system 1 which includes a compressor 2, an evaporator 3, a condenser 4 and an expansion device 5 such as a thermostatic expansion valve.
  • a refrigeration system 1 which includes a compressor 2, an evaporator 3, a condenser 4 and an expansion device 5 such as a thermostatic expansion valve.
  • a hot gas line 6 is provided between the compressor 2 and the condenser 4.
  • a liquid line 7 is provided between the condenser 4 and the expansion device 5 and a suction line 8 is provided between the evaporator 3 and the compressor 2.
  • a first filter-drier assembly 10 is disposed in line 7 between the condenser 4 and the expansion device 5.
  • a second filter-drier assembly 10 is disposed in the suction line 8 between the evaporator 3 and the compressor 2.
  • the filter-drier assembly 10 includes a casing 12 and a molded core 30.
  • the casing 12 includes inlet and outlet nozzle fittings 16 and 18, and a cylindrical intermediate portion 20.
  • the intermediate portion 20 includes an inwardly protruding U-shaped circular indention 22, located closer to the outlet 18 than the inlet 16, in the embodiment shown, and opposed funnel-shaped transition portions 24.
  • the molded core 30 is disposed within the casing 12 and includes a cylindrical portion 32 disposed in engaging relation to the cylindrical casing portion 20.
  • the molded core 30 may also include a frusto-conical portion 34 at the inlet end spaced from the casing and a passage 36 having a closed end 38 and an open end 40 disposed at the outlet end of the casing.
  • the permeable molded desiccant core 30 includes a binder and is molded in place within the casing after formation of the circular indentation 22 but before the transition portions 24 are formed.
  • the relatively short tubular casings 12 may be provided by sections cut from a relatively long copper tube. In this case the indentations may be created in the elongate tube prior to cutting the tube into sections.
  • the tubular casing is formed of spun copper and the transition portions are created by the spinning process.
  • the core 30 is molded in place and the cylindrical portion 32 of the core outer surface is in adhering contact engagement with the inside wall of the cylindrical casing portion 20 after the core is molded.
  • the circular indentation 22 is molded into the core material which is molded in place about the indentation.
  • the casing transition portions 24 are reduced to the generally funnel-shaped configuration shown and the inlet and outlet fittings 16 and 18 are emplaced at opposite ends.
  • the molded core is held in place by bonding between the outer surface of the core and the inner surface of the casing, said bonding constituting a holding means.
  • the provision of the circular indentation 22 holds the core in place mechanically by the tongue and groove effect between the casing 12 and the molded core 30 and constitutes another holding means.
  • the core may be held by one of two holding means or by both holding means.
  • Molding the desiccant core around the indentation utilizes the strength of the molded core and greatly increases the force required to move the core 30 within the casing 12. In the event that the bond between the molded core and the casing, which is provided by the binder, is destroyed during the production process or during installation, the mechanical retention provided by the indentation is sufficient to prevent movement of the core within the casing.
  • the configuration and permeability of the molded core are optimized to ensure sufficient refrigerant flow characteristics, desiccant core weight and filtration performance.
  • refrigerant flowing through the system is received into the casing at the inlet 16, and enters the core 30 at the surface provided by the frusto-conical portion 34.
  • the refrigerant enters the passage 36 through the core frusto-conical portion 34 and the cylindrical portion 32 as indicated by the arrows and is discharged at the outlet 18.
  • the frusto-conical portion 34 has some advantage in that a greater surface area is provided for receiving the refrigerant
  • the core 30 may be formed without a frusto-conical end.
  • a modified filter-drier 110 is shown in FIGs. 7 and 8 which is similar to the filter-drier 10 shown in FIGs. 1-6, in that it includes a casing 1 12 having a molded core 130 held in place by bonding between the inner surface of the casing 1 12 and the outer surface of the core 130, and by the provision of a circular indentation 122 which holds the molded core 130 in place mechanically by the tongue and groove effect between the casing 112 and the core 130. For this reason, similar parts are given similar identification numerals with the addition of a prefix numeral "1 ".
  • the modified filter-drier 110 is different from the filter-drier 10 in that it includes a filter media pad 150 at the outlet of the core 130 bonded to said core. The strength of the bond between the filter pad 150 and the core 120 ensures that the filter pad 150 is held securely in place and eliminates the need for outlet support screens.
  • the refrigeration system, shown in FIG. 1 is unchanged.
  • the filter-drier assembly 1 10 includes a casing 1 12 and a molded core 130.
  • the casing 112 includes inlet and outlet nozzle fittings 116 and 118 and a cylindrical intermediate portion 120.
  • the intermediate portion 120 includes an inwardly protruding indentation 122 located between the outlet 118 and the inlet 116 and the casing 1 12 includes opposed funnel-shaped transition portions 124.
  • the molded core 130 is disposed within the casing 112 and is cylindrical in configuration having generally flat circular ends 138 and 140 providing an inlet and an outlet for the circular core.
  • the permeable molded desiccant core 130 includes a binder and is molded in place within case 1 12 after the formation of the circular indentation 122 but before the transition portions 124 are formed.
  • the core 130 outer surface is in adhering contact engagement with the inside wall after the core 130 is molded.
  • the core 130 may be held in place mechanically by the casing groove 122 or by the adhesive effect of the bond between the molded core 130 and the casing 112 or both.
  • the filter-drier 1 10 includes a circular pad 150 of filter media bonded to the molded core 1 12.
  • this pad 150 is disposed on the flat outlet end 140 of the molded core 130. Because of this preferred arrangement there is no compressive force from the flow of refrigerant on the pad 150 and therefore no tendency for flow to be restricted by an effective reduction of the thickness of the pad, it being understood that compression of a filter pad 150 alters the flow and filtration characteristics. Since the filter pad 150 is not compressed, the original characteristics of the pad are retained.
  • a second modified filter-drier assembly 210 is shown in FIGs. 9 and 10.
  • the reference numerals are similar for similar parts with the addition of the numeral "2".
  • the filter- drier assembly 210 includes a casing 212 similar to that shown in the previous embodiment but the core 230 is different, in that it includes a frusto-conical portion 234 at the inlet end and a recessed conical portion 236 and an annular portion 240 at the outlet end.
  • This arrangement provides that the inlet and outlet areas of the core 230, are increased.
  • the filter media pad 250 conforms to the shape of the recessed conical portion 236 and annular portion 240, which helps to optimize the flow characteristics since the filter pad 250 is not under compression.
  • a third modified filter-drier assembly 310 is shown in FIGs. 1 1-13. This assembly is intended for use in the reversing liquid line of a heat pump of the type shown in simplified form in FIG. 14.
  • the heat pump 300 requires a filter-drier assembly having a reversible construction providing two-way flow capability.
  • the heat pump 300 includes a compressor 301 , an evaporator 302, a condenser 303 and two thermal expansion valve assemblies 304, each having a check valve 305.
  • the reversing liquid line 306 between two thermal expansion valve assemblies 304 includes a heat pump filter-drier which is shown in detail in FIGs. 11-13.
  • the reversible filter-drier 310 includes a two-part casing 320 consisting of opposed half-portions 322 and 324 connected at a joint 326 by welding, or otherwise. Supported within the casing 320 by circular end plates 340 and 341 is a hollow cylindrical core 330 defining a filter lined passage 332.
  • the circular end plates 340 and 341 each includes an axially aligned check valve 342 and an offset check valve 344.
  • the axially aligned check valves include a tubular member 346 welded, or otherwise attached, to a central opening 348 in each end plate 340 and 341.
  • the tubular member 346 includes an annular abutment 360 at the outer end supporting a spring 362 and a coined abutment 364 at the inner end supporting a ball 366.
  • the offset check valves 344 are similar to check valve 342 in that they include a tubular member 346 welded, or otherwise attached, to an offset opening 368 in each end plate 340 and 341.
  • the tubular member 346 includes an annular abutment 360 at the inner end supporting a spring 362 and a coined abutment 364 at the outer end support a ball 366. There is a gap 370 between each inlet and outlet fitting 316 and 318, respectively, and the associated axially aligned tubular member 342 and 344, respectively.
  • the cylindrical core 320 includes a filter media 350 disposed about the core 320 having a tubular portion 352 and annular end portions 354 and 356.
  • the core and filter media combination 320, 350 is supported between the axially aligned check valves 342 and 344.
  • refrigerant enters the inlet 316 and passes radially outwardly through the gap 370 to open check valve 344 and then flows radially inwardly through the tubular core 330 and the filter lining 350 into the passage 332 aligned with the check valves 342 and out through the outlet 318.
  • the procedure is identical with the outlet becoming the inlet.
  • the desiccants most commonly used in filter-driers are molecular sieve, activated alumina and activated carbon. Less commonly used is silica gel. Binders may be organic, typically polymers such as epoxy or phenolic, or inorganic such as phosphates or silicate. The core porosity, as is well known to those skilled in the art, depends upon the particular desiccant and binder selected and the flow rate required and other readily determinable factors.
  • the outlet filter media is typically a woven or wound fiber such fiber glass, polyester and polypropylene. It is desirable to use a filter media material that is manufactured to eliminate loose fibers that could escape into the system rather than a media that contains loose fibers.
  • the filter media is bonded to the desiccant core during the molding process and additional binder is not required.
  • the bonding could be accomplished in a second step but is less desirable because it requires an additional step in the process than when it is molded to the core.
  • filter media is chosen based on factors such as compatibility with refrigerants and lubricants, durability, and filtration characteristics.
  • a filter mesh of 5-80 microns with a pad or filter element depth of about 0.1 inch is satisfactory for most filter-drier purposes but the specific purpose for which the filter media is to be used will enable those skilled in the art to determine the filter mesh and depth appropriate for that purpose.
  • FIGs. 15-17 and FIGs. 18-20 are schematics illustrating stages in the method of forming the filter-driers cores shown in FIGs. 9 and 1 1 , respectively.
  • the mold assembly 400 initially consists of a bottom mold base 402 which determines the shape of the outlet of the core, a side tube 404, having a holding ring 405, which determines the diameter of the core, and a top mold cap 406 which determines the shape of the inlet of the core.
  • the side tube 404 is placed on the mold base 402.
  • a preformed, conical filter media 250 is placed over the mold base prior to adding the desiccant/binder mix to firmly bond the filter media to the core. As shown in FIG.
  • the desiccant/binder mix is deposited into the tube to a level less than that of the frusto-conical outlet.
  • the mold cap 406 is then placed inside the tube and the desiccant mix is compressed, as shown in dotted outline, in FIG. 16 to a marker stop 408 to complete the molded core as shown in FIG. 17 to eliminate unnecessary voids in the core and ensure a good bond with the filter media.
  • the core binder is allowed to set and the mold base 402 and cap 406 are removed from the mold.
  • the side tube 404 becomes the shell and is not removed from the core but rather becomes part of the filter-drier.
  • the reduced transitional end portions of the side tube 404 are formed to complete the filter-drier shell after the base mold 402 and cap mold 406 are removed.
  • the mold assembly 500 initially consists of a mold base 502, a center post 504 and a tubular mold 506. Filter media portions in the form of a tube 352 and an annular end 354 are placed over the mold base 502 and the center post 504 that forms the inner diameter of the core within the tube 506 that forms the outer diameter of the core. As shown in FIG.
  • the desiccant/binder mix 505 is added to a height slightly greater than the finished length of the core and an annular piece of filter media 356 is placed in the mold prior to the fitting of a mold cap 508 which is then compressed to the finished size of the filter-drier core to eliminate unnecessary voids in the core and ensure a good bond with the filter media.
  • the core binder is allowed to set and the mold base 502, the center post 504, the tube 506 and the mold cap 508 are removed leaving the core with the filter media elements in place as shown in FIG. 20, ready for use in the heat pump filter-drier shown in FIG. 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Abstract

This filter-drier (10,110,210,310) for removing moisture from a refrigerant includes a casing (12, 112, 212, 320) having an inlet (16, 116, 216, 316) for receiving refrigerant, an outlet (18, 118, 218, 318) for discharging refrigerant and a molded core (30, 130, 230, 330). In one embodiment (FIG. 1), the molded core (30) includes an outer surface at least in part engaging the inner surface of the casing (12). The core (30) is held within the casing (12) against axial movement by bonding with the casing or by an indentation (22) protruding into the core or both. In another embodiment (FIG. 7), the filter-drier molded core (130) includes a filter media pad (150) bonded to the core. In another embodiment (FIG. 11), the filter-drier (310) suitable for reversible operation includes a hollow cylindrical core (330) defining a filter media lined passage (332) and being held in place by end plates (340, 341) having opposed axial check valves (342) and offset check valves (344). Methods of manufacturing the above filter-driers (10, 110, 210, 310) are described.

Description

MOLDED CORE FILTER-DRIER
Technical Field
This invention relates generally to filter-driers for refrigeration systems and particularly to a casing and a molded filter-drier core having superior structural characteristics of attrition resistance, strength and permeability while being held firmly in place by structural cooperation between the casing and the core.
Background Art
Filter-driers are used in refrigeration systems to filter solid contaminants and to remove soluble contaminants from the refrigerant and lubricant. The three general types of construction of filter-driers are loose fill, compacted bead, and molded core.
In a loose fill design, the desiccant is captured within mesh screens to prevent the desiccant beads from escaping into the system. The beads form a desiccant bed trapped between the shell and mesh screens, however, within the desiccant bed the beads are only loosely held. Flow of refrigerant through the desiccant bed or vibration of the filter-drier shell from other sources results in undesirable movement of the individual beads within the bed. Contact of the desiccant beads with the shell, mesh screens, or other desiccant beads can lead to attrition of the desiccant beads. As attrition of the beads progresses, the desiccant fines escape the mesh screens and circulate in the refrigerating system. Compacted bead designs use desiccant beads similar to the loose fill design but incorporates perforated metal and mesh screens, filter pads, and springs to compact the desiccant bed. The compaction of the desiccant bed restricts the movement of the individual beads compared to a loose fill design and reduces the risk of attrition, however, this design does not eliminate attrition.
A molded core unit consists of a molded desiccant block held in place with support screens, filter pads, and springs. The molded core is made of smaller granules of desiccant than the loose fill or compacted bead design. The desiccant granules are bonded together using an organic or inorganic binder to form a solid shape. This design prevents attrition of the desiccants by not allowing movement of the granules.
Typically, shells to contain the desiccants in a filter-drier are either welded steel shell consisting of steel tubing and/or stamped pieces welded together to form a sealed shell. Alternatively, copper spun shells may be used in which copper tubing is reduced to a specific fitting size. Prior to welding a steel shell or spinning to reduce the diameter of the copper tubing, the internal parts consisting components such as perforated screens, mesh screens, filter pads, desiccant, and springs are assembled. The purpose of the screens and springs is to contain the desiccant beads or desiccant core.
Known filter-drier units having molded cores and incorporated herein by reference, are disclosed in U.S. Patent No. 2,556,292, U.S. Patent No. 5,440,898, U.S. Patent No. 5,562,427 and U.S. Patent No. 2,551 ,426. U.S. Patent No. 2,556,892 discloses a core formed from molded discs and U.S. Patent No. 5,440,898 disclosed a molded core which is strengthened by the use of fibers. In both cases, the core is spaced from an outer metal casing and held in place by a lateral support system at each end. U.S. Patent No. 5,562,427 discloses a copper casing with longitudinally spaced grooves formed to hold a preformed solid core. The grooves are formed by the drawing process but are at each end of the core. U.S. Patent No. 2,551 ,426 discloses a preformed block of drying agent which is supported by longitudinally spaced internal protrusions. The present system overcomes the need for support systems for holding the core in place in a manner not disclosed in the known prior art. Summary of the Invention
This molded core filter does not require additional parts to hold the core in place within the casing and the core is formed within the casing and held within the casing by structural cooperation between the casing and the core. The binder used in the molded core serves to bind the desiccants together and, in addition, binds the desiccant core to the casing. Thus movement between the core and the casing is prevented thereby substantially eliminating desiccant attrition.
This filter-drier is for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, and comprises a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant. The casing includes opposed end portions and an intermediate portion disposed between said end portions. A molded core is provided disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough and holding means is provided between the casing and said core for holding the core in place within the casing.
It is an aspect of this invention to provide that the holding means includes at least one protrusion from the inner surface of the casing engaging the outer surface of the core to inhibit axial movement of the core.
It is another aspect of this invention to provide that the holding means includes bonding means between the inner surface of the casing and the outer surface of the core to inhibit axial movement of the core. It is yet another aspect of this invention to provide that the protrusion is circular and extends into the outer surface of the core.
It is still another aspect of this invention to provide that the casing includes a cylindrical intermediate portion and the opposed end portions are funnel shaped.
It is an aspect of this invention to provide that the core includes a cylindrical portion.
It is another aspect of this invention to provide that the core includes a frusto-conical portion and a passage having a closed end proximate the inlet and an open end portion proximate the outlet.
It is yet another aspect of this invention to provide that the cylindrical portion of the core is bonded to the cylindrical portion of the casing. It is another aspect of this invention to provide that the core is formed from molded desiccant and a binder.
This invention provides a method of manufacturing a filter-drier having a tubular casing and a desiccant core between an inlet and an outlet comprising the steps of molding the desiccant core within the tubular casing and providing holding means between the casing and the core for holding the core in place.
It is an aspect of the invention to provide the method steps of forming an indentation in the tubular casing and molding the desiccant core around the indentation to provide the holding means and another aspect to bond the core to the casing to provide the holding means.
It is an aspect of this invention to provide that the method includes the additional step of forming the core with a passage having a closed end adjacent the inlet and an open end adjacent the outlet and another aspect to provide the additional step of forming the indentation as a U-shaped circular groove.
It is another aspect of the invention to provide that the method includes forming the tubular casing from sections of an elongate tube and forming the indentations before cutting the tube into sections, and another aspect to reduce at least one end by metal spinning into a funnel-shaped configuration.
In a modified filter-drier it is an important aspect of the invention to provide a filter bonded to the core.
This modified filter-drier is for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, and comprises a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant. The casing includes opposed end portions and an intermediate portion disposed between said end portions. A molded core including inlet and outlet end portions is provided disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough and holding means is provided between the casing and said core for holding the core in place within the casing and a filter is bonded to the core, as by molding.
It is an aspect of this invention to provide that the filter is bonded to at least one of said molded core end portions.
It is another aspect of this invention to provide the filter is bonded to said molded core outlet end portion.
It is still another aspect of this invention to provide that the core includes a passage having a closed end proximate the inlet portion and an open end proximate the outlet portion; and the passage is lined, at least in part, with.the filter. It is yet another aspect of this invention to provide that the core passage includes inclined sides.
It is an aspect of this invention to provide that the core passage is generally conical.
It is yet another aspect of this invention to provide that the core passage open end includes an annular portion, and the filter is bonded to said annular portion.
It is an aspect of this invention to provide a filter-drier comprising a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant. The casing includes opposed end portions and an intermediate portion disposed between said end portions and having an inner surface. A molded core is provided including an outer surface and inlet and outlet end portions disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough ;and holding means is provided between said casing inner surface and said core outer surface for holding the core in place; and a filter media is molded to the core.
It is another aspect of this invention to provide that the holding means includes at least one protrusion from the inner surface of the casing engaging the outer surface of the core to inhibit axial movement of the core. It is still another aspect of this invention to provide that the holding means includes bonding means between the inner surface of the casing and the outer surface of the core to inhibit axial movement of the core.
It is an aspect of this invention to provide a method of manufacturing a filter-drier having a tubular casing and a desiccant core between an inlet and an outlet comprising the steps of: providing a tubular mold; providing a mold base associated with the tubular mold; placing a filter media on the mold base; depositing a desiccant/binder mix within the mold and over the filter media to bond the filter media to the core; providing a mold cap over the desiccant core; and removing the mold base and cap when the core has set.
It is another aspect of this invention to provide a method wherein the filter media is disposed at the outlet of the core and to provide the additional step of compressing the desiccant/binder with the cap. It is an aspect of this invention to provide that the filter media is molded to the core.
Another modified filter-drier for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, comprises a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant. The casing includes opposed end portions and an intermediate portion disposed between said end portions. A molded core is provided including inlet and outlet end portions having a through passage therebetween disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough and holding means is provided between the casing and said core for holding the core in place within the casing and a filter is bonded to the core, as by molding.
It is an aspect of this invention to provide that the filter is bonded to both of said molded core end portions.
It is another aspect of this invention to provide that the core passage has opposed open ends and is lined with a filter.
It is still another aspect of this invention to provide that the core passage is generally cylindrical. It is yet another aspect of this invention to provide that the core passage open ends include annular portions, and the filter is bonded to said annular portions.
It is an aspect of this invention to provide a casing having an inlet for receiving refrigerant and an outlet for discharging refrigerant, and opposed end plates each having inlet and outlet openings having check valves defining the direction of the flow. A molded core is provided including inlet and outlet end portions having a through passage therebetween said core being disposed in said casing and held in place between said opposed end plates and receiving flow of refrigerant therethrough, said core including opposed inlet and outlet end faces and said passage being cylindrical. A filter media is provided including a cylindrical portion lining said passage and annular end portions, said filter media being molded to said core. It is another aspect of this invention to provide that each end plate includes two openings; one of said openings being aligned with the passage and the other of said openings being offset from the passage.
It is still another aspect of this invention to provide that the inlet opening is offset and the outlet opening is axially aligned. It is another aspect of this invention to provide a method of manufacturing a filter-drier desiccant core for a heat pump filter-drier having a tubular casing and a two-way valve system to provide two-way flow through the core between an inlet and an outlet comprising the steps of providing a tubular mold to form the outer diameter of the mold; providing a center post within the tubular mold to form the inner diameter of the core; providing a mold base associated with the tubular mold at one end of the core; placing a filter media over the mold base and the center post; depositing a desiccant/binder within the mold and over the filter media; and placing a filter media over the desiccant/binder at the other end of the core to bond the filter media to the core and removing the mold when the core has set. It is another aspect of this invention to compress the desiccant/binder to ensure a good bond with the filter media and another aspect to provide that the filter media is molded to the core.
This filter-drier is relatively inexpensive and simple to manufacture and is particularly effective for its intended purpose. Brief Description of Drawings
FIG. 1 is a diagrammatic view of a refrigeration system utilizing a filter-drier assembly in the liquid line and in the suction line;
FIG. 2 is a longitudinal cross-sectional view of the filter-drier assembly;
FIG. 3 is an enlarged fragmentary view of the holding indentation;
FIG. 4 is an end view of the filter-drier assembly;
FIG. 5 is a cross-sectional view taken on line 5-5 of FIG. 2;
FIG. 6 is a cross-sectional view taken on line 6-6 of FIG. 2; FIG. 7 is a longitudinal cross-sectional view of a modified filter- drier assembly;
FIG. 8 is a cross-sectional view taken on line 8-8 of FIG. 7;
FIG. 9 is a longitudinal cross-sectional view of another modified filter-drier assembly; FIG. 10 is a cross-sectional view taken on line 10-10 of FIG. 10;
FIG. 1 1 is a longitudinal cross-sectional view of another modified filter-drier assembly;
FIG. 12 is a cross-sectional view taken on line 12-12 of FIG. 1 1 ;
FIG. 13 is a cross-sectional view taken on line 13-13 of FIG. 11 ; FIG. 14 is a diagrammatic view of a heat pump utilizing the filter- drier of FIGs. 11 -13 in the reversing liquid line;
FIGs. 15-17 are schematics illustrating the first, second and third stages of forming the filter-drier of FIG. 9; and
FIGs. 18-20 are schematics illustrating the first, second and third stages of forming the core of the filter-drier of FIG. 11. Best Mode for Carrying Out the Invention
Referring now by reference numerals to the drawings and first to
FIG. 1 , it will be understood that one or more filter-drier assemblies 10 are used in a refrigeration system 1 which includes a compressor 2, an evaporator 3, a condenser 4 and an expansion device 5 such as a thermostatic expansion valve.
In the embodiment shown, a hot gas line 6 is provided between the compressor 2 and the condenser 4. A liquid line 7 is provided between the condenser 4 and the expansion device 5 and a suction line 8 is provided between the evaporator 3 and the compressor 2. A first filter-drier assembly 10 is disposed in line 7 between the condenser 4 and the expansion device 5. Also, in the embodiment shown, a second filter-drier assembly 10 is disposed in the suction line 8 between the evaporator 3 and the compressor 2. More specifically, the filter-drier assembly 10 includes a casing 12 and a molded core 30. The casing 12 includes inlet and outlet nozzle fittings 16 and 18, and a cylindrical intermediate portion 20. As shown in FIGs. 3 and 6, the intermediate portion 20 includes an inwardly protruding U-shaped circular indention 22, located closer to the outlet 18 than the inlet 16, in the embodiment shown, and opposed funnel-shaped transition portions 24.
The molded core 30 is disposed within the casing 12 and includes a cylindrical portion 32 disposed in engaging relation to the cylindrical casing portion 20. The molded core 30 may also include a frusto-conical portion 34 at the inlet end spaced from the casing and a passage 36 having a closed end 38 and an open end 40 disposed at the outlet end of the casing.
The permeable molded desiccant core 30 includes a binder and is molded in place within the casing after formation of the circular indentation 22 but before the transition portions 24 are formed. In the embodiment shown, the relatively short tubular casings 12 may be provided by sections cut from a relatively long copper tube. In this case the indentations may be created in the elongate tube prior to cutting the tube into sections. Also, in the embodiment shown, the tubular casing is formed of spun copper and the transition portions are created by the spinning process. The core 30 is molded in place and the cylindrical portion 32 of the core outer surface is in adhering contact engagement with the inside wall of the cylindrical casing portion 20 after the core is molded. Because of this structural arrangement of parts, the circular indentation 22 is molded into the core material which is molded in place about the indentation. Following the core molding procedure the casing transition portions 24 are reduced to the generally funnel-shaped configuration shown and the inlet and outlet fittings 16 and 18 are emplaced at opposite ends.
With the structural arrangement of casing and core parts shown, the molded core is held in place by bonding between the outer surface of the core and the inner surface of the casing, said bonding constituting a holding means. In addition, the provision of the circular indentation 22 holds the core in place mechanically by the tongue and groove effect between the casing 12 and the molded core 30 and constitutes another holding means. Thus, the core may be held by one of two holding means or by both holding means.
Molding the desiccant core around the indentation utilizes the strength of the molded core and greatly increases the force required to move the core 30 within the casing 12. In the event that the bond between the molded core and the casing, which is provided by the binder, is destroyed during the production process or during installation, the mechanical retention provided by the indentation is sufficient to prevent movement of the core within the casing.
The configuration and permeability of the molded core are optimized to ensure sufficient refrigerant flow characteristics, desiccant core weight and filtration performance.
In operation, refrigerant flowing through the system is received into the casing at the inlet 16, and enters the core 30 at the surface provided by the frusto-conical portion 34. The refrigerant enters the passage 36 through the core frusto-conical portion 34 and the cylindrical portion 32 as indicated by the arrows and is discharged at the outlet 18. It will be understood that while the frusto-conical portion 34 has some advantage in that a greater surface area is provided for receiving the refrigerant, the core 30 may be formed without a frusto-conical end.
A modified filter-drier 110 is shown in FIGs. 7 and 8 which is similar to the filter-drier 10 shown in FIGs. 1-6, in that it includes a casing 1 12 having a molded core 130 held in place by bonding between the inner surface of the casing 1 12 and the outer surface of the core 130, and by the provision of a circular indentation 122 which holds the molded core 130 in place mechanically by the tongue and groove effect between the casing 112 and the core 130. For this reason, similar parts are given similar identification numerals with the addition of a prefix numeral "1 ". The modified filter-drier 110 is different from the filter-drier 10 in that it includes a filter media pad 150 at the outlet of the core 130 bonded to said core. The strength of the bond between the filter pad 150 and the core 120 ensures that the filter pad 150 is held securely in place and eliminates the need for outlet support screens. The refrigeration system, shown in FIG. 1 is unchanged.
More specifically, and referring again to the embodiment shown in FIGs. 7 and 8, the filter-drier assembly 1 10 includes a casing 1 12 and a molded core 130. The casing 112 includes inlet and outlet nozzle fittings 116 and 118 and a cylindrical intermediate portion 120. The intermediate portion 120 includes an inwardly protruding indentation 122 located between the outlet 118 and the inlet 116 and the casing 1 12 includes opposed funnel-shaped transition portions 124.
The molded core 130 is disposed within the casing 112 and is cylindrical in configuration having generally flat circular ends 138 and 140 providing an inlet and an outlet for the circular core.
The permeable molded desiccant core 130 includes a binder and is molded in place within case 1 12 after the formation of the circular indentation 122 but before the transition portions 124 are formed. The core 130 outer surface is in adhering contact engagement with the inside wall after the core 130 is molded. As with the previous embodiment, the core 130 may be held in place mechanically by the casing groove 122 or by the adhesive effect of the bond between the molded core 130 and the casing 112 or both.
Distinguishing between the previous embodiment shown in FIGs. 1-6, the filter-drier 1 10 includes a circular pad 150 of filter media bonded to the molded core 1 12. In the embodiment shown, this pad 150 is disposed on the flat outlet end 140 of the molded core 130. Because of this preferred arrangement there is no compressive force from the flow of refrigerant on the pad 150 and therefore no tendency for flow to be restricted by an effective reduction of the thickness of the pad, it being understood that compression of a filter pad 150 alters the flow and filtration characteristics. Since the filter pad 150 is not compressed, the original characteristics of the pad are retained. There is also an advantage in the use of a pad at the inlet end 138, in lieu of or as well as, the outlet end, because, to whichever end of the core it is bonded it eliminates the need for filter pads held in place by metal screen or similar devices. The use of a filter media molded to the desiccant core may be used in the liquid or suction line of the refrigeration system shown in FIG. 1.
A second modified filter-drier assembly 210 is shown in FIGs. 9 and 10. In this embodiment, the reference numerals are similar for similar parts with the addition of the numeral "2". As shown, the filter- drier assembly 210 includes a casing 212 similar to that shown in the previous embodiment but the core 230 is different, in that it includes a frusto-conical portion 234 at the inlet end and a recessed conical portion 236 and an annular portion 240 at the outlet end. This arrangement provides that the inlet and outlet areas of the core 230, are increased. More specifically, the filter media pad 250 conforms to the shape of the recessed conical portion 236 and annular portion 240, which helps to optimize the flow characteristics since the filter pad 250 is not under compression.
A third modified filter-drier assembly 310 is shown in FIGs. 1 1-13. This assembly is intended for use in the reversing liquid line of a heat pump of the type shown in simplified form in FIG. 14. The heat pump 300 requires a filter-drier assembly having a reversible construction providing two-way flow capability. The heat pump 300 includes a compressor 301 , an evaporator 302, a condenser 303 and two thermal expansion valve assemblies 304, each having a check valve 305. The reversing liquid line 306 between two thermal expansion valve assemblies 304 includes a heat pump filter-drier which is shown in detail in FIGs. 11-13.
The reversible filter-drier 310 includes a two-part casing 320 consisting of opposed half-portions 322 and 324 connected at a joint 326 by welding, or otherwise. Supported within the casing 320 by circular end plates 340 and 341 is a hollow cylindrical core 330 defining a filter lined passage 332. The circular end plates 340 and 341 each includes an axially aligned check valve 342 and an offset check valve 344. The axially aligned check valves include a tubular member 346 welded, or otherwise attached, to a central opening 348 in each end plate 340 and 341. The tubular member 346 includes an annular abutment 360 at the outer end supporting a spring 362 and a coined abutment 364 at the inner end supporting a ball 366. The offset check valves 344 are similar to check valve 342 in that they include a tubular member 346 welded, or otherwise attached, to an offset opening 368 in each end plate 340 and 341. The tubular member 346 includes an annular abutment 360 at the inner end supporting a spring 362 and a coined abutment 364 at the outer end support a ball 366. There is a gap 370 between each inlet and outlet fitting 316 and 318, respectively, and the associated axially aligned tubular member 342 and 344, respectively.
The cylindrical core 320 includes a filter media 350 disposed about the core 320 having a tubular portion 352 and annular end portions 354 and 356. The core and filter media combination 320, 350 is supported between the axially aligned check valves 342 and 344.
In operation, in the position shown in FIG. 1 1 , refrigerant enters the inlet 316 and passes radially outwardly through the gap 370 to open check valve 344 and then flows radially inwardly through the tubular core 330 and the filter lining 350 into the passage 332 aligned with the check valves 342 and out through the outlet 318. In the reverse operation, the procedure is identical with the outlet becoming the inlet.
As well-known to those skilled in the art, the desiccants most commonly used in filter-driers are molecular sieve, activated alumina and activated carbon. Less commonly used is silica gel. Binders may be organic, typically polymers such as epoxy or phenolic, or inorganic such as phosphates or silicate. The core porosity, as is well known to those skilled in the art, depends upon the particular desiccant and binder selected and the flow rate required and other readily determinable factors.
The outlet filter media is typically a woven or wound fiber such fiber glass, polyester and polypropylene. It is desirable to use a filter media material that is manufactured to eliminate loose fibers that could escape into the system rather than a media that contains loose fibers.
Preferably, the filter media is bonded to the desiccant core during the molding process and additional binder is not required. The bonding could be accomplished in a second step but is less desirable because it requires an additional step in the process than when it is molded to the core.
As will be readily understood by those skilled in the art the type and density of filter media is chosen based on factors such as compatibility with refrigerants and lubricants, durability, and filtration characteristics. A filter mesh of 5-80 microns with a pad or filter element depth of about 0.1 inch is satisfactory for most filter-drier purposes but the specific purpose for which the filter media is to be used will enable those skilled in the art to determine the filter mesh and depth appropriate for that purpose.
FIGs. 15-17 and FIGs. 18-20 are schematics illustrating stages in the method of forming the filter-driers cores shown in FIGs. 9 and 1 1 , respectively.
Referring first to FIGs. 15-17, it will be understood from FIG. 15 that the mold assembly 400 initially consists of a bottom mold base 402 which determines the shape of the outlet of the core, a side tube 404, having a holding ring 405, which determines the diameter of the core, and a top mold cap 406 which determines the shape of the inlet of the core. In the process of forming the core, the side tube 404 is placed on the mold base 402. In the embodiment shown, a preformed, conical filter media 250 is placed over the mold base prior to adding the desiccant/binder mix to firmly bond the filter media to the core. As shown in FIG. 16, the desiccant/binder mix is deposited into the tube to a level less than that of the frusto-conical outlet. The mold cap 406 is then placed inside the tube and the desiccant mix is compressed, as shown in dotted outline, in FIG. 16 to a marker stop 408 to complete the molded core as shown in FIG. 17 to eliminate unnecessary voids in the core and ensure a good bond with the filter media. The core binder is allowed to set and the mold base 402 and cap 406 are removed from the mold. Where the core is intended to be molded to the shell, the side tube 404 becomes the shell and is not removed from the core but rather becomes part of the filter-drier. As shown in FIG. 17, the reduced transitional end portions of the side tube 404 are formed to complete the filter-drier shell after the base mold 402 and cap mold 406 are removed.
Referring to FIGs. 18-20, it will be understood from FIG. 18 that the mold assembly is for manufacturing a filter-drier desiccant core for a heat pump of the type shown in FIG. 11. The mold assembly 500 initially consists of a mold base 502, a center post 504 and a tubular mold 506. Filter media portions in the form of a tube 352 and an annular end 354 are placed over the mold base 502 and the center post 504 that forms the inner diameter of the core within the tube 506 that forms the outer diameter of the core. As shown in FIG. 19, the desiccant/binder mix 505 is added to a height slightly greater than the finished length of the core and an annular piece of filter media 356 is placed in the mold prior to the fitting of a mold cap 508 which is then compressed to the finished size of the filter-drier core to eliminate unnecessary voids in the core and ensure a good bond with the filter media. The core binder is allowed to set and the mold base 502, the center post 504, the tube 506 and the mold cap 508 are removed leaving the core with the filter media elements in place as shown in FIG. 20, ready for use in the heat pump filter-drier shown in FIG. 11.
The invention has been described by making reference to a preferred filter-drier core construction. However, the details of description are not to be understood as restrictive, numerous variants being possible with the principles disclosed and within the fair scope of the claims hereunto appended. We claim as our invention.

Claims

Claims
1. A filter-drier for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, the filter-drier comprising: a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant, the casing including opposed end portions and an intermediate portion disposed between said end portions; a molded core disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough; and holding means between the casing and said core for holding the core in place.
2. A filter-drier as defined in claim 1, wherein: the holding means includes at least one protrusion from the inner surface of the casing engaging the outer surface of the core to inhibit axial movement of the core.
3. A filter-drier as defined in claim 1 , wherein: the holding means includes bonding means between the inner surface of the casing and the outer surface of the core to inhibit axial movement of the core. .
4. A filter-drier as defined in claim 2, wherein: the protrusion is circular and extends into the outer surface of the core.
5. A filter-drier as defined in claim 1, wherein: the casing includes a cylindrical intermediate portion and the opposed end portions are funnel shaped.
6. A filter-drier as defined in claim 1 , wherein: the core includes a cylindrical portion.
7. A filter-drier as defined in claim 1 , wherein: the core includes a frusto-conical portion and a passage having a closed end proximate the inlet and an open end portion proximate the outlet.
8. A filter-drier as defined in claim 7, wherein: the cylindrical portion of the core is bonded to the cylindrical portion of the casing.
9. A filter-drier as defined in claim 1 , wherein: the core is formed from molded desiccant and a binder.
10. A method of manufacturing a filter-drier having a tubular casing and a desiccant core between an inlet and an outlet comprising the steps of: molding a desiccant core within the tubular casing; and providing holding means between the casing and the core for holding the core in place.
11. A method of manufacturing a filter-drier as defined in claim 10 comprising the step of bonding the core to the casing to provide the holding means.
12. A method of manufacturing a filter-drier having a tubular casing and a desiccant core between an inlet and an outlet comprising the steps of: forming an indentation in the tubular casing, and molding a desiccant core within the tubular casing around the indentation to conform to the configuration of the indentation.
13. A method of manufacturing a filter-drier as defined in claim 12, comprising the additional step of: forming the core with a passage having a closed end adjacent the inlet and an open end adjacent the outlet.
14. A method of manufacturing a filter-drier as defined in claim 12 comprising the additional step of: forming the indentation as a U-shaped circular groove.
15. A method of manufacturing a filter-drier having a tubular casing c and a desiccant core between an inlet and an outlet comprising the steps of: dividing an elongate tube into sections; forming indentations in each section; cutting each section to provide a plurality of tubular casings, having opposed ends; and molding a desiccant core within each tubular casing to conform to the configuration of the indentation.
16. A method of manufacturing a filter-drier as defined in claim 15, comprising the additional step of: reducing at least one of the ends of each tubular section by metal spinning into a funnel shaped configuration.
17. A filter-drier for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, the filter-drier comprising: a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant, the casing including opposed end portions and an intermediate portion disposed between said end portions; a molded core including inlet and outlet end portions disposed in said casing between said casing inlet and outlet and receiving flow of refrigerant therethrough; holding means between said casing and said core for holding the core in place; and a filter bonded to the core.
18. A filter-drier as defined in claim 17, wherein: the filter is bonded to at least one of said molded core end portions.
19. A filter-drier as defined in claim 18, wherein: the filter is bonded to said molded core outlet end portion.
20. A filter-drier as defined in claim 18, wherein: the core includes a passage having a closed end proximate the inlet portion and an open end proximate the outlet portion; and the passage is lined, at least in part, with the filter.
21. A filter-drier as defined in claim 20, wherein: the core passage includes inclined sides.
22. A filter-drier as defined in claim 20, wherein: the core passage is generally conical.
23. A filter-drier as defined in claim 20, wherein: the core passage open end includes an annular portion, and the filter is bonded to said annular portion.
24. A filter-drier for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, the filter-drier comprising: a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant, the casing including opposed end portions and an intermediate portion disposed between said end portions and having an inner surface; a molded core including an outer surface and inlet and outlet end portions disposed in said casing between said inlet and outlet and receiving flow of refrigerant therethrough; holding means between said casing inner surface and said core outer surface for holding the core in place; and a filter media is molded to the core.
25. A filter-drier as defined in claim 24, wherein: the holding means includes at least one protrusion from the inner surface of the casing engaging the outer surface of the core to inhibit axial movement of the core.
26. A filter-drier as defined in claim 24, wherein: the holding means includes bonding means between the inner surface of the casing and the outer surface of the core to inhibit axial movement of the core.
27. A method of manufacturing a filter-drier having a tubular casing and a desiccant core between an inlet and an outlet comprising the steps of: providing a tubular mold; providing a mold base associated with the tubular mold; placing a filter media on the mold base; depositing a desiccant/binder mix within the tubular mold and over the filter media to bond the filter media to the core; providing a mold cap over the desiccant core; and removing the mold base and cap when the core has set.
28. A method of manufacturing a filter-drier as defined in claim 27, wherein: the filter media is disposed at the outlet of the core.
29. A method of manufacturing a filter-drier as defined in claim 27, including the additional step of: compressing the desiccant/binder with the cap.
30. A method of manufacturing a filter-drier as defined in claim 27, wherein: the filter media is molded to the core.
31. A filter-drier for drying refrigerant circulated in a refrigeration system by removing moisture therefrom, the filter-drier comprising: a casing having an inlet for receiving refrigerant, and an outlet for discharging refrigerant, the casing including opposed end portions and an intermediate portion disposed between said end portions; a molded core including inlet and outlet end portions having a through passage therebetween disposed in said casing between said casing inlet and outlet and receiving flow of refrigerant therethrough; holding means between said casing and said core for operatively holding the core in place; and a filter bonded to the core.
32. A filter-drier as defined in claim 31 , wherein: the filter is bonded to both of said molded core end portions.
33. A filter-drier as defined in claim 31 , wherein: the core passage has opposed open ends and the passage is lined with a filter.
34. A filter-drier as defined in claim 31 , wherein: the core passage is generally cylindrical.
35. A filter-drier as defined in claim 33, wherein: the core passage open ends include annular portions, and the filter is bonded to said annular portions.
36. A filter-drier for drying refrigerant circulated in a heat pump refrigeration system by removing moisture therefrom, the filter- drier comprising: a casing having an inlet for receiving refrigerant and an outlet for discharging refrigerant, and opposed end plates each having inlet and outlet openings having check valves defining the direction of the flow; a molded core including inlet and outlet end portions having a through passage therebetween said core being disposed in said casing and held in place between said opposed end plates and receiving flow of refrigerant therethrough, said core including opposed inlet and outlet end faces and said passage being cylindrical; and a filter media including a cylindrical portion lining said passage and annular end portions, said filter media being molded to said core.
37. A filter-drier as defined in claim 36, wherein: each end plate includes two openings; one of said openings being aligned with the passage and the other of said openings being offset from the passage.
38. A filter-drier as defined in claim 37, wherein: the inlet opening is offset and the outlet opening is axially aligned.
39. A method of manufacturing a filter-drier desiccant core for a heat pump filter-drier having a tubular casing and a two-way valve system to provide two-way flow through the core between an inlet and an outlet comprising the steps of: providing a tubular mold to form the outer diameter of the core; providing a center post within the tubular mold to form the inner diameter of the core; providing a mold base associated with the tubular mold at one end of the core; placing a filter media over the mold base and the center post; depositing a desiccant/binder within the mold and over the filter media; placing a filter media over the desiccant/binder to form the other end of the core to bond the filter media to the core; and. removing the mold when the core has set.
40. A method of manufacturing a filter-drier desiccant core as defined in claim 39 including the additional step of compressing the desiccant/binder with a mold cap.
41. A method of manufacturing a filter-drier desiccant core as defined in claim 39, wherein: the filter media is molded to the core.
PCT/US2003/001920 2002-01-25 2003-01-23 Molded core filter drier WO2003064941A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03734975A EP1485662A1 (en) 2002-01-25 2003-01-23 Molded core filter drier
HK06100912A HK1080931A1 (en) 2002-01-25 2006-01-20 Molded core filter drier

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/057,207 2002-01-25
US10/057,207 US6852150B2 (en) 2002-01-25 2002-01-25 Molded core filter drier
US10/195,239 US6835235B2 (en) 2002-01-25 2002-07-15 Molded core filter drier with filter media molded to core for use in heat pump systems
US10/195,257 US6835236B2 (en) 2002-01-25 2002-07-15 Molded core filter drier with filter media molded to core
US10/195,239 2002-07-15
US10/195,257 2002-07-15

Publications (1)

Publication Number Publication Date
WO2003064941A1 true WO2003064941A1 (en) 2003-08-07

Family

ID=27670380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/001920 WO2003064941A1 (en) 2002-01-25 2003-01-23 Molded core filter drier

Country Status (4)

Country Link
EP (1) EP1485662A1 (en)
CN (1) CN1303384C (en)
HK (1) HK1080931A1 (en)
WO (1) WO2003064941A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657508A2 (en) * 2004-11-12 2006-05-17 LG Electronics Inc. Refrigerant filtering apparatus for air conditioners
WO2006121932A1 (en) * 2005-05-08 2006-11-16 3M Innovative Properties Company Filter cartridge and method of construction thereof
FR2886720A1 (en) * 2005-06-06 2006-12-08 Valeo Systemes Thermiques Refrigerant e.g. carbon dioxide, filtration device for motor vehicle air-conditioning circuit, has primary filter, placed near compressor of circuit, to retain refrigerant particles, and safety valve passing refrigerant when filter clogs
CN101275786B (en) * 2007-03-28 2012-07-04 日立空调·家用电器株式会社 Refrigeration cycle apparatus
EP2515054A3 (en) * 2004-09-13 2014-03-12 Carrier Corporation Refrigerant accumulator
EP3657083A4 (en) * 2018-06-27 2020-12-02 GD Midea Heating & Ventilating Equipment Co., Ltd. Filter, manufacturing method for filter and air conditioner
CN115342561A (en) * 2022-08-16 2022-11-15 重庆大学 Dehumidification device, system and method for large-scale air conditioner refrigerant system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1402211B1 (en) * 2010-10-05 2013-08-28 Elbi Int Spa FILTER FOR LIQUIDS, IN PARTICULAR FOR ELECTRICAL SOLENOID VALVES FOR APPLIANCES AND THE LIKE.
CN109529528A (en) * 2018-12-28 2019-03-29 江苏利柏特股份有限公司 Molecular sieve adsorber is used in the production of ice chest module

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2551426A (en) 1948-05-11 1951-05-01 Westinghouse Electric Corp Method of dehydrating and assembling refrigeration apparatus
US2556892A (en) 1949-10-14 1951-06-12 Gen Electric Waffle iron
US2556292A (en) 1949-07-09 1951-06-12 Remco Inc Molded disk refrigerant drier filter unit
DE827653C (en) * 1950-09-16 1952-01-10 Erich Herion Fa Refrigerant dryer and filter
US2659128A (en) * 1950-01-21 1953-11-17 Weatherhead Co Method of making dehydrators
FR1262641A (en) * 1960-04-19 1961-06-05 App Ind Francais Soc D Filter drier for refrigeration circuits and other similar applications
US3025233A (en) * 1961-11-03 1962-03-13 Briggs Filtration Co Filter
US4177145A (en) * 1978-05-03 1979-12-04 Virginia Chemicals Inc. Two-way filter-drier for heat pump systems
US4266408A (en) * 1978-11-20 1981-05-12 Parker-Hannifin Corporation Filter block and method of making the same
US4320000A (en) * 1980-08-15 1982-03-16 Sporlan Valve Company Bidirectional flow filter-drier
US4601179A (en) * 1984-07-12 1986-07-22 Danfoss A/S Dryer for a refrigeration plant
US5097866A (en) * 1990-07-30 1992-03-24 Carrier Corporation Refrigerant metering device
EP0613710A1 (en) * 1988-05-27 1994-09-07 Pall Corporation Filtering apparatus
US5440898A (en) 1994-01-21 1995-08-15 Sporlan Valve Company Filter-dryer unit
JPH0886542A (en) * 1994-09-19 1996-04-02 Sanyo Electric Co Ltd Dryer
JPH08121909A (en) * 1994-10-25 1996-05-17 Sanyo Electric Co Ltd Refrigerating device
US5562427A (en) 1992-10-23 1996-10-08 Matsushita Refrigeration Company Filter arrangement for a refrigerant compressor
US5882517A (en) * 1996-09-10 1999-03-16 Cuno Incorporated Porous structures
US6235192B1 (en) * 1997-03-20 2001-05-22 Parker-Hannifin Corporation Biflow drier with improved filtration
DE19955898A1 (en) * 1999-11-20 2001-05-23 Mann & Hummel Filter Drying box for compressor air has solid drying agent body with shape stability in housing between inflow and oil separator and outflow for light weight and easy installation

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2551426A (en) 1948-05-11 1951-05-01 Westinghouse Electric Corp Method of dehydrating and assembling refrigeration apparatus
US2556292A (en) 1949-07-09 1951-06-12 Remco Inc Molded disk refrigerant drier filter unit
US2556892A (en) 1949-10-14 1951-06-12 Gen Electric Waffle iron
US2659128A (en) * 1950-01-21 1953-11-17 Weatherhead Co Method of making dehydrators
DE827653C (en) * 1950-09-16 1952-01-10 Erich Herion Fa Refrigerant dryer and filter
FR1262641A (en) * 1960-04-19 1961-06-05 App Ind Francais Soc D Filter drier for refrigeration circuits and other similar applications
US3025233A (en) * 1961-11-03 1962-03-13 Briggs Filtration Co Filter
US4177145A (en) * 1978-05-03 1979-12-04 Virginia Chemicals Inc. Two-way filter-drier for heat pump systems
US4266408A (en) * 1978-11-20 1981-05-12 Parker-Hannifin Corporation Filter block and method of making the same
US4320000A (en) * 1980-08-15 1982-03-16 Sporlan Valve Company Bidirectional flow filter-drier
US4601179A (en) * 1984-07-12 1986-07-22 Danfoss A/S Dryer for a refrigeration plant
EP0613710A1 (en) * 1988-05-27 1994-09-07 Pall Corporation Filtering apparatus
US5097866A (en) * 1990-07-30 1992-03-24 Carrier Corporation Refrigerant metering device
US5562427A (en) 1992-10-23 1996-10-08 Matsushita Refrigeration Company Filter arrangement for a refrigerant compressor
US5440898A (en) 1994-01-21 1995-08-15 Sporlan Valve Company Filter-dryer unit
JPH0886542A (en) * 1994-09-19 1996-04-02 Sanyo Electric Co Ltd Dryer
JPH08121909A (en) * 1994-10-25 1996-05-17 Sanyo Electric Co Ltd Refrigerating device
US5882517A (en) * 1996-09-10 1999-03-16 Cuno Incorporated Porous structures
US6235192B1 (en) * 1997-03-20 2001-05-22 Parker-Hannifin Corporation Biflow drier with improved filtration
DE19955898A1 (en) * 1999-11-20 2001-05-23 Mann & Hummel Filter Drying box for compressor air has solid drying agent body with shape stability in housing between inflow and oil separator and outflow for light weight and easy installation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 08 30 August 1996 (1996-08-30) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09 30 September 1996 (1996-09-30) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515054A3 (en) * 2004-09-13 2014-03-12 Carrier Corporation Refrigerant accumulator
EP1657508A2 (en) * 2004-11-12 2006-05-17 LG Electronics Inc. Refrigerant filtering apparatus for air conditioners
EP1657508A3 (en) * 2004-11-12 2007-08-22 LG Electronics Inc. Refrigerant filtering apparatus for air conditioners
WO2006121932A1 (en) * 2005-05-08 2006-11-16 3M Innovative Properties Company Filter cartridge and method of construction thereof
US8246883B2 (en) 2005-05-08 2012-08-21 3M Innovative Properties Company Filter cartridge and method of construction thereof
FR2886720A1 (en) * 2005-06-06 2006-12-08 Valeo Systemes Thermiques Refrigerant e.g. carbon dioxide, filtration device for motor vehicle air-conditioning circuit, has primary filter, placed near compressor of circuit, to retain refrigerant particles, and safety valve passing refrigerant when filter clogs
EP1731855A1 (en) * 2005-06-06 2006-12-13 Valeo Systèmes Thermiques Filtration device for an air conditioning apparatus
CN101275786B (en) * 2007-03-28 2012-07-04 日立空调·家用电器株式会社 Refrigeration cycle apparatus
EP3657083A4 (en) * 2018-06-27 2020-12-02 GD Midea Heating & Ventilating Equipment Co., Ltd. Filter, manufacturing method for filter and air conditioner
US11598553B2 (en) 2018-06-27 2023-03-07 Gd Midea Heating & Ventilating Equipment Co., Ltd. Filter, manufacturing method for filter and air conditioner
CN115342561A (en) * 2022-08-16 2022-11-15 重庆大学 Dehumidification device, system and method for large-scale air conditioner refrigerant system

Also Published As

Publication number Publication date
CN1303384C (en) 2007-03-07
EP1485662A1 (en) 2004-12-15
CN1643315A (en) 2005-07-20
HK1080931A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
US6835235B2 (en) Molded core filter drier with filter media molded to core for use in heat pump systems
US6835236B2 (en) Molded core filter drier with filter media molded to core
US5622537A (en) Filtration arrangement
US4266408A (en) Filter block and method of making the same
WO2003064941A1 (en) Molded core filter drier
US5662728A (en) Particulate filter structure
EP0553255B1 (en) Filtration arrangement and method
US20030121278A1 (en) Receiver-drier for use in an air conditioning system
CA2094943C (en) Receiver dryer
EP0875432A2 (en) Air desiccant canister for an air brake system and its method for fabricating
US7428825B2 (en) Manifold for cooling agent, heat exchanger, cooling agent closed circuit and method for producing a manifold
WO1997030775A1 (en) Desiccant cartridge
KR20050088139A (en) Receiver tank for refrigeration cycle, heat exchanger with the receiver tank, and condensation device for refrigeration cycle
US6852150B2 (en) Molded core filter drier
US6044649A (en) Air conditioner
CA2407971C (en) Integrated filter and absorbent unit for an integrated receiver-dryer and related method of manufacturing
CA2699282C (en) Elongated adsorbent unit with external fluid communication channels
EP1566600A1 (en) Desiccant unit
JP2002536148A (en) Filter media with graded particle retention for cellular filter units
CN217068324U (en) Novel oil-filtering water drying cylinder
US20070051128A1 (en) Internal cage tube bag
EP1249674A2 (en) Receiver/Dryer and Method of Assembly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003734975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038069415

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003734975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP