WO2003062903A1 - Optical filter and its production method - Google Patents

Optical filter and its production method Download PDF

Info

Publication number
WO2003062903A1
WO2003062903A1 PCT/JP2003/000468 JP0300468W WO03062903A1 WO 2003062903 A1 WO2003062903 A1 WO 2003062903A1 JP 0300468 W JP0300468 W JP 0300468W WO 03062903 A1 WO03062903 A1 WO 03062903A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
layer
birefringent
forming material
filter
Prior art date
Application number
PCT/JP2003/000468
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuichi Machida
Masuhiro Shouji
Original Assignee
Kureha Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Kagaku Kogyo Kabushiki Kaisha filed Critical Kureha Kagaku Kogyo Kabushiki Kaisha
Priority to JP2003562704A priority Critical patent/JPWO2003062903A1/en
Publication of WO2003062903A1 publication Critical patent/WO2003062903A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • Patent application title Optical filter and manufacturing method thereof
  • the present invention relates to an optical image processing apparatus including an image sensor including a CCD element (charge-coupled element) and a MOS element (metal-oxide-semiconductor-semiconductor element), and optical devices used in other optical devices. More specifically, the present invention relates to an optical filter having a birefringent functional layer composed of a birefringent polymer film, and a method for producing the same.
  • an imaging optical system using an imaging element such as a CCD element or a MOS element
  • a high spatial frequency component of subject light is limited, and the light generated by the subject due to the generation of a pseudo signal is In order to remove different color light components, it is necessary to use an optical low-pass filter. '
  • an optical low-pass filter As such an optical low-pass filter, a birefringent type using, for example, quartz or the like, which utilizes optical low-pass characteristics by separating an ordinary ray and an extraordinary ray in a birefringent substance, is often used.
  • the polymer film when such a polymer film is put to practical use as one element of a filter, the polymer film usually has two thicknesses because it has a small thickness, is flexible and has no self-retaining property. It has been practiced to sandwich a glass plate between two glass plates to form a filter.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a birefringent functional layer composed of a birefringent polymer film so that the whole is thin and various optical devices are provided.
  • An object of the present invention is to provide an optical filter which can be suitably applied to the optical filter.
  • Another object of the present invention is to provide a method capable of easily manufacturing the above optical filter.
  • the optical filter of the present invention comprises a transparent substrate having non-deformability, and a birefringent polymer film integrally provided on at least one surface of the transparent substrate via a cured adhesive layer.
  • the birefringent functional layer may be formed of a single birefringent polymer film, or a plurality of optical films including at least one birefringent polymer film may be integrally laminated with each other via a cured adhesive layer. Formed by the film laminate
  • the surface of the protective layer is an optical plane.
  • the method for producing an optical filter according to the present invention comprises the steps of: forming a birefringent functional layer forming material including a birefringent polymer film having an optical low-pass function on at least one surface of a non-deformable transparent substrate; A filter-precursor forming step of forming a filter precursor in which a protective layer forming material layer made of an ultraviolet curable resin is formed on the surface of the birefringent functional layer forming material, while being arranged via an adhesive layer. And an optical plane transfer member arranging step of arranging an optical plane transfer member having an optical plane with respect to the filter precursor so that the optical plane is in contact with the surface of the protective layer forming material layer.
  • the protective layer forming material layer is cured to form a protective layer having an optical plane, Between the birefringent functional layer forming material and the transparent substrate Curing treatment step of curing the adhesive layer to form a cured adhesive layer;
  • a plurality of optical films including a birefringent polymer film having at least one optical low-pass function are formed on at least one surface of a non-deformable transparent substrate.
  • the birefringent functional layer forming material laminated via the adhesive layer is arranged via the ultraviolet curable adhesive layer, and the surface of the birefringent functional layer forming material is formed of an ultraviolet curable resin.
  • the protective layer forming material layer is cured to form a protective layer having an optical plane
  • a cured adhesive layer is formed by curing the adhesive layer between the optical films constituting the birefringent functional layer forming material and the adhesive layer between the birefringent functional layer forming material and the transparent substrate. Curing process and
  • the birefringent polymer film is composed of a liquid crystalline monomer component composed of a monomer exhibiting a liquid crystal phase at room temperature, and a polyfunctional monomer copolymerized with the monomer of the liquid crystalline monomer component. It is preferable that the polymerizable liquid crystal composition obtained by polymerizing a polymerizable liquid crystal composition containing a crosslinkable monomer component having a thickness of 50 to 200 and a haze value of 1.5 or less is obtained. .
  • the transparent substrate a substrate having an infrared non-transmission property and / or a visibility correction function can be used.
  • the curing treatment step can be performed in a state where tension is applied to each of the birefringent polymer film constituting the filter precursor, and when other optical films are used. It is.
  • the birefringent functional layer composed of the birefringent polymer film is provided integrally on a non-deformable transparent substrate, for example, as an optical low-pass filter
  • the birefringent functional layer has a plurality of birefringent polymer films or has another optical film having appropriate optical characteristics together with the birefringent polymer film, An optical filter that exhibits desired optical characteristics as a whole can be easily provided according to the configuration.
  • the surface of the protective layer can easily obtain the optical flatness similar to the optical flatness of glass usually obtained by polishing, etc., by transfer, so that the scattering of incident light and light scattering due to irregular reflection can be obtained. Excellent performance can be obtained in that loss is small and distortion applied to the processed image is small.
  • the birefringent functional layer is integrally provided on a non-deformable transparent substrate, it can be handled as a single optical filter as a whole, so it can be applied or mounted to various optical devices. It is convenient in doing.
  • the birefringent polymer film produced by a method of polymerizing a liquid crystalline monomer component and a crosslinkable monomer component has a small thickness and a low haze value by selecting the type of each monomer. It has small features. According to the configuration of the present invention, by forming the birefringent functional layer using such a birefringent polymer film, the purpose of the present invention can be achieved without impairing the features of the birefringent polymer film. An optical filter having the following optical performance can be reliably obtained.
  • an optical element that is difficult to realize only with the birefringent functional layer alone is used.
  • An optical filter having characteristics easily and weighted can be provided.
  • the birefringent polymer film and the other optical film constituting the birefringent functional layer have a flat plate shape extending along a plane, and have a local shape such as wrinkles.
  • the joining of the birefringent functional layer forming material to the transparent substrate and the optical Since the formation of the protective layer having a flat surface can be achieved at the same time, the intended optical filter can be manufactured very easily.
  • the formation of the birefringent functional layer is performed by bonding the birefringent functional layer to the transparent substrate. Since it can be achieved at the same time as the formation of the protective layer, the intended optical filter can be produced very easily.
  • FIG. 1 is an explanatory cross-sectional view schematically showing a configuration of an example of the optical filter of the present invention.
  • FIG. 2 is a cross-sectional view for explaining a state in which a lower adhesive layer is provided on a transparent substrate in a process of manufacturing the optical filter of FIG.
  • FIG. 3 is a cross-sectional view for explaining an optical plane transfer member disposing step and a curing step in the production of the optical filter of FIG.
  • FIG. 4 is an explanatory sectional view showing an example of a preferred method for producing a birefringent polymer film.
  • FIG. 5 is an explanatory diagram of an alignment treatment of liquid crystal molecules of a liquid crystal compound in a photopolymerizable liquid crystal composition.
  • FIG. 1 is an explanatory cross-sectional view schematically showing the configuration of an example of the optical filter of the present invention.
  • the optical filter 10 of this example is an optical filter having a laminated birefringent functional layer formed by laminating three optical films.
  • This optical filter 10 is provided with a birefringent functional layer integrally formed on a surface of a transparent substrate 12 via a cured adhesive layer 14 via a film laminate 20 having a configuration described later.
  • a protective layer 30 On the surface of the film laminate 20, a protective layer 30 whose exposed surface 31 is an optical plane is formed.
  • the transparent substrate 12 is a non-deformable or rigid plate-like member, and an organic material or an inorganic material can be used as the material.
  • organic materials include polyethylene terephthalate, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, polyethylene, polychlorinated butyl, polytetrafluoroethylene, polychlorofluoroethylene, polyarylate, polysnoreon, senorelose, Resin materials such as polyetherenothenoketone can be used.
  • specific examples of the inorganic material include quartz, lithium niobate, transparent birefringent materials such as rutile and calcite, glass, and silicon.
  • the thickness of the transparent substrate 12 varies depending on the type of the material, but it is necessary that the transparent substrate 12 have a certain thickness or more in order to obtain sufficient non-deformability, for example, 0.2 to 1.2. O mm thickness.
  • the film laminate 20 is formed by joining the second optical film F2 to the surface of the first optical film F1 via the first interlayer cured adhesive layer B1 and the second optical film F1.
  • the third optical film F3 is joined to the surface of the second through a second interlayer cured adhesive layer B2, and is an integral unit.
  • the first optical film F1 and the third optical film F3 are birefringent polymer films having the same orientation angle but different orientation directions.
  • Film F 2 is a 1 Z 4 wave plate.
  • the “orientation angle” is the angle formed by the optical axis with respect to the film surface
  • the “orientation direction” is the direction of image separation that exhibits an optical low-pass filter effect. At the angle between the specific reference side and the liquid crystal skeleton.
  • each optical film constituting the birefringent functional layer is not particularly limited, and varies depending on the type. However, it is preferable that the thickness be small in order to ensure high transparency.
  • the range is 0 0 // m.
  • the cured adhesive layer 14 is for integrally bonding the film laminate 20 to the transparent substrate 12 and preferably has high transparency.
  • any of the interlayer cured adhesive layers integrally bond the related optical films. Things. That is, the first interlayer cured adhesive layer B1 joins the first optical film F1 and the second optical film F2, and the second interlayer cured adhesive layer B2 forms the second optical film F2. And the third optical film F3. It is preferable that these interlayer cured adhesive layers have high transparency.
  • the protective layer 30 is made of a resin or a polymer formed in a layer on the surface of the uppermost optical film, that is, in the illustrated example, the third optical film F3, and its exposed surface 31 is formed. It is an optical plane. It is preferable that the protective layer 30 also has high transparency.
  • optical plane refers to a surface having high flatness such that the number of Newton rings observed per unit area (1 cm 2 ) is 10 or less.
  • a glass plate can be usually used as an optical plane transfer member used to obtain an optical plane.However, an optical polishing is performed according to the required flatness. It can be properly used up to the glass level.
  • the second interlayer cured adhesive layer B 2) and the protective layer 30 made of resin are formed by curing an optical adhesive.
  • an ultraviolet-curable adhesive whose cured product has excellent light transmittance
  • an epoxy-based adhesive for example, an epoxy-based adhesive, a urethane-based adhesive, or an acryl-based adhesive
  • an adhesive it is preferable to use an adhesive.
  • optical adhesive examples include, for example, “Hard Rock OP” series and “Hard Rock UV” series (manufactured by Denki Kagaku Kogyo Co., Ltd.), and others.
  • the birefringent functional layer needs to include at least one birefringent polymer film.
  • at least one or two of the optical films are used.
  • At least one birefringent polymer film It is necessary that As long as this condition is satisfied, the number and types of other optical films are not particularly limited, and therefore all optical films are birefringent polymer films, and Any one of combinations of one or more birefringent polymer films and another optical film may be used.
  • the birefringent functional layer has a plurality of birefringent polymer films
  • the birefringent polymer films have the same optical characteristics but also have different optical characteristics. It may be.
  • optical film other than the birefringent polymer film include, for example, a 1Z 4 wavelength plate, a bandpass filter, a color capture plate, and a polymer film having other optical characteristics. it can.
  • the birefringent functional layer is constituted by the optical film including the birefringent polymer film, so that a single or a plurality of birefringent polymer films are formed.
  • Optical properties due to optical anisotropy or birefringence, such as the function of an optical low-pass filter, or the optical properties of a birefringent polymer film and another optical film in parallel Can provide an optical filter having practical optical characteristics as a whole because their optical characteristics are related to each other.
  • the incident light rays are directed in the horizontal direction and the vertical direction, respectively, by the two birefringent polymer films of the first optical film F1 and the third optical film F3.
  • the performance as an optical low-pass filter is exhibited, and the 1Z4 wavelength plate is combined as the second optical film F2, so that the first The polarization state of the light beam that has passed through the optical film F1 and separated into the ordinary light beam and the extraordinary light beam can be obtained as circularly polarized light. Therefore, according to the optical filter of this example, the incident light beam is By separating four points in the vertical direction, an optical low-pass filter action is exerted in the horizontal and vertical directions.
  • a 1Z4 wavelength plate is used. Because of its circular polarization conversion function, the beam separation distance in the horizontal direction and the vertical direction can be controlled independently of each other, so that the cut-off spatial frequency state of the optical low-pass filter can be controlled in the horizontal and vertical directions respectively. It can be realized independently.
  • the surface of the protective layer 30 is an optical plane 3OA, it is possible to obtain excellent performance such that light loss due to scattering or irregular reflection of incident light and image distortion are small.
  • the film laminate 20 is integrally provided on the non-deformable transparent substrate 12, it can be handled as one member as a whole. It is very convenient to apply or attach this to various optical devices.
  • Example 2 as the second optical film F2, a birefringent polymer film having an orientation angle of 45 degrees, an orientation direction of 45 degrees, a thickness of 70 ⁇ m, and a light separation distance of 2.5 m was used. Using.
  • the optical filter having the above configuration can be manufactured, for example, as follows.
  • a transparent substrate 12 is prepared, and a lower adhesive layer 14a made of an ultraviolet-curable adhesive is formed thereon, and a first light is formed on the lower adhesive layer 14a. Place the study film F1.
  • a first interlayer adhesive layer B 1 a made of an ultraviolet-curable adhesive is formed on the first optical film F 1, and the first eyebrow adhesive layer B is formed.
  • a second optical film F2 is arranged on 1a, and a second inter-brows adhesive layer B2a made of an ultraviolet curable adhesive is formed on the second optical film F2.
  • the third optical film F3 is arranged on the inter-layer adhesive layer B2a. Then, on the third optical film F3, a protective layer forming material layer 30a made of an ultraviolet-curable adhesive is formed.
  • a film laminate forming material 20 a On the surface of the transparent substrate 12, through the lower adhesive layer 14 a, three optical films (Fl, F 2 and F 3) and two interlayer adhesive layers ( B 1 a and B 2 a) are laminated to form a film laminate forming material 20 a, whereby a protective layer forming material layer 30 a is formed on the surface of the film laminate forming material 20 a.
  • the formed filter precursor 10a is formed.
  • optical plane transfer member 40 made of a glass plate having an optical plane 42 is placed on the surface of the protective layer forming material layer 30a with respect to the filter precursor 10a. Placed in contact with each other (optical plane transfer member arranging step), and the upper surface of the protective layer forming material layer 30a of the filter precursor 10a is pressed downward by the optical plane transfer member 40. In this state, ultraviolet rays are irradiated through one or both of the transparent substrate 12 and the optical plane transfer member 40 (curing process). It is preferable that the optical flat surface 42 of the above-mentioned optical flat surface transfer member 40 is subjected to an appropriate release treatment.
  • the lower adhesive layer 14a is cured to form the cured adhesive layer 14, and the two interlayer adhesive layers (Bla and B2a) are cured to form two cured adhesive layers.
  • the layers (B1 and B2) are formed, and the protective layer forming material layer 30a is cured to form the protective layer 30.
  • the film laminate 20 in a state where the three optical films (Fl, 2 ⁇ 3) are integrally bonded to each other by the two eyebrow curing adhesive layers (B1 and B2) is cured and adhered.
  • the shape of the optical plane 42 of the optical plane transfer member 40 is transferred.
  • the surface of the protective layer 30 is an optical flat surface, and an optical filter having the intended laminated birefringent functional layer is manufactured.
  • the film laminate forming material 20 a in the filter precursor 10 a is pressed downward between the transparent substrate 12 by the optical planar transfer member 40, that is, the film laminate Since the curing process by irradiation with ultraviolet light is performed in a state where the local displacement of each optical film (Fl, F2 and F3) forming the forming material 20a is suppressed, each optical film is effectively (F1, F2 and F3) in the same state as when tension is applied, the adhesive layer in contact with both sides of each optical film (Fl,? 2 ⁇ ?
  • each optical film (Fl, F2 and F3) can be reliably maintained in the desired flat state and parallel state.
  • each adhesive layer (lower adhesive layer 14a, interlayer adhesive layers B1a and B2a, and protective layer forming material layer 30a) flows during the curing process. It is preferable that the state with low property is maintained.
  • the adhesive has a high fluidity, the possibility of local deformation of the optical film increases due to the local flow of the adhesive as curing proceeds. Therefore, if sufficient bonding properties can be obtained, an adhesive sheet which has been subjected to a preliminary or primary curing treatment called a so-called green sheet can be preferably used.
  • the birefringent function The layer is composed of an optical film made of a birefringent polymer film.
  • the birefringent polymer film preferably has high transparency, and specifically, preferably has a thickness of 50 to 200 ⁇ m and a haze value of 1.5 or less. '
  • Such a birefringent polymer film includes, for example, a liquid crystalline monomer component composed of a monomer that exhibits a liquid crystal phase at room temperature, and a polyfunctional copolymerizable with the monomer of the liquid crystalline monomer component.
  • a photopolymerizable liquid crystal composition is prepared by using a crosslinkable monomer component composed of a monomer, and the photopolymerizable liquid crystal composition is formed inside a casting glass cell having a molding space formed by a flat gap.
  • An object is filled to form a thin layer, and a parallel magnetic field having a high intensity of, for example, 3 Tesla or more, preferably 5 to 10 Tesla at room temperature (for example, 25 ° C.), and
  • the liquid crystal molecules of the liquid crystalline monomer component are aligned to obtain a state in which the liquid crystal molecules of the liquid crystalline monomer component are aligned.
  • the direction of the parallel magnetic field with respect to the thin layer of the photopolymerizable liquid crystal composition is, for example, 45 degrees with respect to the surface of the thin layer or in the vicinity thereof in order to obtain a polymer film having high birefringence.
  • the direction of the parallel magnetic field with respect to the thin layer of the photopolymerizable liquid crystal composition is, for example, 45 degrees with respect to the surface of the thin layer or in the vicinity thereof in order to obtain a polymer film having high birefringence.
  • the direction of the parallel magnetic field with respect to the thin layer of the photopolymerizable liquid crystal composition is, for example, 45
  • the monomer constituting the liquid crystalline monomer component of the photopolymerizable liquid crystal composition for example, a monofunctional acrylate compound or a monofunctional methacrylate compound which exhibits a liquid crystal phase at room temperature is preferably used.
  • a polyfunctional acrylate compound having three or more benzene nuclei in the molecule or a polyfunctional methacrylate compound is preferably used.
  • the polybenzene nuclei constituting the crosslinkable monomer component are subjected to the alignment treatment by the parallel magnetic field. Since the contained compound exerts an action of alleviating the degree to which the orientation state of the liquid crystalline monomer component is disturbed, the finally obtained birefringent polymer film should have extremely high transparency. Become.
  • the birefringent polymer film preferably has a large birefringence, that is, a large anisotropy of the refractive index.
  • the lower limit of the anisotropy of the refractive index is the same as that of quartz.
  • the refractive index is preferably larger than the anisotropy (0.009), for example, 0.01 or more, particularly preferably 0.02 or more. According to those satisfying such conditions, for example, when the target optical filter is an optical low-pass filter, the thickness can be sufficiently reduced, which is suitable as an optical low-pass filter for an imaging device. It will be.
  • the upper limit of the anisotropy of the refractive index is preferably not more than 0.35, particularly preferably not more than 0.3 from the viewpoint of the stability of the liquid crystal.
  • a birefringent polymer film with an appropriate correction plate, a composite optical filter with the characteristics that the intensity of the ordinary light and the extraordinary light of the subject light becomes equal You can get As such a correction plate, a general quarter-wave plate can be used, but it is also effective to use a depolarizing plate in order to make it non-polarized.
  • these wave plates for example, polycarbonate, polyvinyl alcohol, a cycloolefin polymer commercially available as "ARTON" (trade name) or "ZONEX" (trade name), or a plate made of other materials may be used. Can be.
  • the birefringent polymer film and other optical films used in the present invention are non-reflective on one or both of the two surfaces of the film by a vacuum deposition method, a dive method, or the like in order to increase the light transmittance.
  • a coating layer may be formed.
  • the surface of the completed optical filter can be provided with an anti-reflection coating by a vacuum evaporation method or a dive method as required.
  • the transparent substrate for example, a substrate having optical characteristics such as infrared non-transparency and visibility correction function can be used. In this case, the optical characteristics of the birefringent functional layer are reduced. In addition, since the optical characteristics of the transparent substrate are exhibited at the same time, a more practical optical filter can be obtained in practical use.
  • Examples of a device having a visibility correction function include a phosphoric acid glass in which copper ions are introduced, and a near-infrared blocking interference filter formed by laminating an optical multilayer film on a glass substrate surface by a vacuum evaporation method.
  • plastics for example, a copolymer obtained by polymerizing a mixed monomer composed of a phosphoric acid group-containing acrylic monomer and a monomer copolymerizable therewith.
  • a metal salt mainly composed of a copper salt see Japanese Patent Application Laid-Open No. HEI 6-118282
  • the optical filter according to the present invention has a birefringent functional layer integrally provided on a transparent substrate by a cured adhesive layer, and the surface of a protective layer forming an exposed surface is an optical flat surface. Therefore, it exhibits practically useful optical characteristics including the function of the birefringent polymer film in the birefringent functional layer, that is, the function as an optical low-pass filter due to birefringence, and has a small thickness. And very lightweight Therefore, the present invention can be very suitably applied to a device using an image sensor such as a CCD device and a MOS device such as a video camera.
  • the birefringent functional layer is a laminated type having a plurality of optical films. That is not essential. That is, in the present invention, the birefringent functional layer can be constituted by only a single birefringent polymer film.
  • the birefringent polymer film was integrally bonded on the transparent substrate via the cured adhesive layer, and the protective layer was formed on the surface of the birefringent polymer film. Configuration.
  • the optical filter 1 having such a configuration can be manufactured by a method according to the method for manufacturing an optical filter in which the birefringent functional layer is a laminated type, and the same effect can be obtained.
  • two molding substrates 52, 52 each made of glass having a diameter of 40 mm and a thickness of 3 mm were opposed to each other in parallel with a gap of 0.1 mm.
  • a sealing tape 54 in common over the outer peripheral surfaces of the two molding substrates 52, 52, a circular sealed molding space having a diameter of 40 mm and a thickness of 0.1 mm is formed.
  • a glass cell 50 for casting was produced.
  • the glass plate used here has been subjected to a plasma cleaning treatment after normal cleaning.
  • the photopolymerizable liquid crystal composition was injected into the molding space of the casting glass cell 50 warmed to 50 ° C. to form a thin layer L of the photopolymerizable liquid crystal composition.
  • the inlet was sealed with a sealing tape, and then heated to 50 ° C. in a light-shielded atmosphere.
  • the glass cell 50 for casting in which the photopolymerizable liquid crystal composition was sealed was placed in a parallel magnetic field having a strength of 5 Tesla, and the direction of the magnetic field lines with respect to the surface of the molding substrate 52 was measured. (Indicated by the arrow J in FIG. 5.)
  • the glass cell 50 for casting was placed on and supported by a cell table (not shown) that was held at an angle of 0 to 45 degrees.
  • the liquid crystal molecules M in the photopolymerizable liquid crystal composition were aligned by holding the liquid for 4 minutes while cooling so that the liquid crystal composition was maintained at a temperature of ° C. Thereafter, an intensity of 16 mW / cm 2 was obtained using an ultraviolet radiation lamp. Ultraviolet rays were irradiated at room temperature for 60 seconds to perform photopolymerization of the photopolymerizable liquid crystal composition.
  • the molding composite obtained as described above was left in an oven at a temperature of 85 ° C for 15 hours to perform post-polymerization treatment, and then cooled to room temperature.
  • the glass cell was disassembled to obtain a polymer film FA having a thickness of 100 ⁇ .
  • This polymer film F exhibits birefringence, and the image separation amount is 3.7 m.
  • the haze value was 1.2, indicating a very high transparency.
  • polymer film FB a film having the same shape and characteristics produced by the same method as that of the above-mentioned polymer film FA was used.
  • a transparent glass plate having a thickness of 0.5 mm is used as a transparent substrate, and a lower adhesive layer 14a is formed on the upper surface thereof with an ultraviolet curable adhesive.
  • the above-mentioned polymer film FA was arranged as a first optical film.
  • a first interlayer adhesive layer B1a is formed on the polymer film FA using the same ultraviolet curable adhesive as described above, and 1Z4 is formed on the first interlayer adhesive layer B1a.
  • a 100 ⁇ thick polymer film made of polyvinyl alcohol having a function as a wave plate is disposed as a second optical film F 2, and a first interlayer adhesive is formed on the second optical film F 2.
  • a second interlayer adhesive layer B 2 a is formed in the same manner as the agent layer ⁇ 1 a, and the polymer film FB is placed on the third optical film F on the second interlayer adhesive layer B 2 a. As No. 3, they were arranged so that their orientation directions differed by 90 degrees from the first optical film F1.
  • a protective layer forming material layer 30a having a thickness of 20 was formed on the polymer film FB by using the same ultraviolet curable adhesive as described above, thereby producing a filter precursor 10a. .
  • the obtained filter precursor 10a is supported on an inclined support surface, and an optical plane transfer member 40 made of a glass plate is disposed on the filter precursor 10a, and the optical plane 42 is formed on the protective layer. After performing an optical planar transfer member arranging step in contact with the surface of the forming material layer 30a, the optical planar transfer member 40 is moved to 9.8 N
  • the optical filter 1 thus obtained has a thickness of 5111, a first interlayer cured adhesive layer B 1 and a second interlayer cured adhesive layer B cured by the lower adhesive layer 14 a.
  • the thickness of both 2 is 10 ⁇
  • the thickness of the protective layer 30 is 15 ⁇
  • the total thickness is 840 / zm
  • the surface of the protective layer 30 is optical. The maximum number of Newton rings in an arbitrary area of 1 cm in length and 1 cm in width was examined.
  • the birefringent functional layer composed of the birefringent polymer film is provided integrally on a non-deformable transparent substrate, for example, as an optical low-pass filter
  • the birefringent functional layer has a plurality of birefringent polymer films or has another optical film having appropriate optical characteristics together with the birefringent polymer film, An optical filter that exhibits desired optical characteristics as a whole can be easily provided according to the configuration.
  • an optical plane transfer member having an optical plane an optical plane can be easily introduced to the surface of the protective layer, and light loss due to scattering or irregular reflection of incident light is small, and Excellent performance can be obtained in that the distortion applied to the processed image is small.
  • the birefringent functional layer is integrally provided on a non-deformable transparent substrate, it can be handled as one optical filter as a whole, and therefore can be applied or mounted to various optical devices. This is convenient for cleaning.
  • the birefringent polymer film produced by a method of polymerizing a liquid crystalline monomer component and a crosslinkable monomer component has a small thickness and a haze by selecting the type of each monomer. It has the feature of small value.
  • a birefringent functional layer is formed using such a birefringent polymer film. This makes it possible to reliably obtain an optical filter having the intended optical performance without impairing the characteristics of the birefringent polymer film.
  • an optical element that is difficult to be realized only by the birefringent functional layer is used. It is possible to provide an optical filter having the weight characteristic easily and weight.
  • the birefringent polymer film and the other optical film constituting the birefringent functional layer have a flat plate shape extending along a plane, and have a local shape such as wrinkles.
  • the bonding of the birefringent functional layer forming material to the transparent substrate and the formation of a protective layer having an optical plane are simultaneously achieved. Therefore, the intended optical filter can be manufactured very easily.
  • the formation of the birefringent functional layer is performed by bonding the birefringent functional layer to the transparent substrate. Since it can be achieved at the same time as the formation of the protective layer, the intended optical filter can be produced very easily.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

An optical filter having a birefringence functional layer composed of a birefringence polymer film and preferably applicable to various optical devices and a method for manufacturing the same are disclosed. The optical filter has a birefringence functional layer provided over a non-deformable transparent substrate with a curing adherent layer interposed therebetween and a protective resin layer on the functional layer. The birefringence functional layer is composed of a birefringence polymer film or optical films including a birefringence polymer film and alternated with adherent layers. The surface of the protective layer is an optical flat. The method comprises the steps of providing an ultraviolet-curing adhesive layer on a transparent substrate and a birefringence functional layer forming material layer on the adhesive layer, forming a filter precursor having a protective layer forming material layer of ultraviolet-curing resin thereon, disposing an optical flat transfer member in such a way that the optical flat is in contact with the protective layer forming material layer, and pressing and irradiating it with ultraviolet radiation.

Description

明 細 光学フィルターおよびその製造方法  Patent application title: Optical filter and manufacturing method thereof
技 術 分 野 Technical field
本発明は、 例えば、 C C D素子 (電荷結合素子) 、 MO S素子 (金属一酸ィ匕 物一半導体素子) などよりなる撮像素子を始めとする光像処理装置、 その他の 光学装置に用いられる光学フィルターおよびその製造方法に関し、 さらに詳し くは、 複屈折性重合体フィルムにより構成された複屈折性機能層を有する光学 フィルターおよびその製造方法に関する。 背 景 技 術 一般に、 C C D素子や MO S素子などよりなる撮像素子を用いた撮像光学系 においては、 被写体光の高空間周波数成分を制限し、 擬似信号の発生に伴う被 写体による光とは異なる色光成分を除去するために、 光学的ローパスフィル ターを用いることが必要とされる。 '  The present invention relates to an optical image processing apparatus including an image sensor including a CCD element (charge-coupled element) and a MOS element (metal-oxide-semiconductor-semiconductor element), and optical devices used in other optical devices. More specifically, the present invention relates to an optical filter having a birefringent functional layer composed of a birefringent polymer film, and a method for producing the same. BACKGROUND ART Generally, in an imaging optical system using an imaging element such as a CCD element or a MOS element, a high spatial frequency component of subject light is limited, and the light generated by the subject due to the generation of a pseudo signal is In order to remove different color light components, it is necessary to use an optical low-pass filter. '
このような光学的ローパスフィルタ一としては、 複屈折物質中における常光 線と異常光線との分離による光学的ローパス特性を利用した、 例えば水晶など による複屈折型のものが多く使用されている。  As such an optical low-pass filter, a birefringent type using, for example, quartz or the like, which utilizes optical low-pass characteristics by separating an ordinary ray and an extraordinary ray in a birefringent substance, is often used.
しかしながら、 水晶板による光学的ローパスフィルターを得るためには、 水 晶の単結晶を合成し、 これに切削加工、 研磨加工などの後加工を施すことが必 要であり、 これらの作業にはそれぞれ多大な時間および労力が必要である。 し かも、 水晶板は、 屈折率の異方性がおよそ 9 X 1 0— 3と小さいものであるの で、 所定の空間遮断周波数を有するものとするためには、 水晶板の厚さを 1〜 2 mmと相当に大きくすることが必要となり、 その結果、 光学的ローパスフィ ルターの小型化おょぴ軽量ィヒを図ることは困難である。 また、 屈折率の異方性が大きい材料としては、 方解石、 ルチルなどが知られ ているが、 これらは水晶と同様に無機材料であるため、 単結晶の合成、 後加工 などに多大の時間およぴ労力を要する問題がある。 However, in order to obtain an optical low-pass filter using a quartz plate, it is necessary to synthesize a single crystal of water, and to perform post-processing such as cutting and polishing on this single crystal. A great deal of time and effort is required. In addition, since the anisotropy of the refractive index of the crystal plate is as small as about 9 × 10−3, the thickness of the crystal plate must be 1 in order to have a predetermined spatial cutoff frequency. It is necessary to increase the size of the optical low-pass filter to about 2 mm, which makes it difficult to reduce the size and weight of the optical low-pass filter. Calcite, rutile, and the like are known as materials having a large anisotropy in refractive index. However, since these are inorganic materials like quartz, it takes a lot of time to synthesize single crystals and perform post-processing. There is a problem that requires labor.
一方、 有機材料、 特に高分子材料を用いると、 これに延伸処理を行うことに よって複屈折性を有するフィルムを得ることができる。 しかしながら、 光学的 に均一なフィルムが得られる延伸条件下では、 水晶以上に高い複屈折性を有す るものを得ることが困難であり、 また、 屈折率異方性の方向を自由に設定する ことができず、 実際上面内のほぼ 0度に固定される、 という問題点がある。 更に、 液晶性を有する重合性単量体を用い、 当該単量体の液晶分子を配向さ せた状態で重合させて硬化させることにより、 複屈折性を有する重合体フィル ムを得る方法が、 例えば特開平 5— 2 1 5 9 2 1号公報、 特開平 8—1 2 2 7 0 8号公報、 特開平 8— 2 8 3 7 1 8号公報、 特開 2 0 0 0— 1 7 8 2 3 3号 公報などにより、 提案されている。  On the other hand, when an organic material, particularly a polymer material is used, a film having birefringence can be obtained by performing a stretching treatment on the film. However, under stretching conditions to obtain an optically uniform film, it is difficult to obtain a film having higher birefringence than quartz, and the direction of the refractive index anisotropy can be freely set. And it is actually fixed at almost 0 degrees in the upper surface. Further, a method of obtaining a polymer film having birefringence by using a polymerizable monomer having liquid crystallinity and polymerizing and curing the liquid crystal molecules of the monomer in an oriented state, For example, Japanese Unexamined Patent Publication Nos. Hei 5-2-15952, Hei 8-122 708, Hei 8-28 3718, Japanese Patent Publication 2000-178 It has been proposed in the Gazette of 233 and others.
従来、 このような重合体フィルムをフィルタ一要素として実用に供する場合 には、 当該重合体フィルムは厚みが小さく、 柔軟で自己保形性を有していない ために、 通常、 重合体フィルムを 2枚のガラス板の間に挟んでガラス板挟持型 フィルターとすることが行われている。  Conventionally, when such a polymer film is put to practical use as one element of a filter, the polymer film usually has two thicknesses because it has a small thickness, is flexible and has no self-retaining property. It has been practiced to sandwich a glass plate between two glass plates to form a filter.
一方、 実際の光学装置において有用な光学的特性、 例えば光学的ローパス フィルターとしての機能を有するフィルタ一系を構成するためには、 通常、 複 数のフィルターを多重に組合せることが必要である。  On the other hand, in order to construct a filter system having useful optical characteristics in an actual optical device, for example, a function as an optical low-pass filter, it is usually necessary to combine a plurality of filters in a multiplex manner.
しかしながら、 ガラス板挟持型フィルターを多重に組合せてフィルタ一系を 構成する場合には、 所期の光学的特性を得るために必要とされる重合体フィル ムの占める厚さに比して、 それらを保持するためのガラス板の数が多く、 それ が占める厚さの割合がきわめて;^きいために全体が厚くなり、 その重量も相当 に大きいものとなる。 従って、 そのようなフィルタ一系を実際の光学装置に組 み込むことが困難であり、 例えば高い透明性を有する優れた光学的特性を有す る重合体フィルムが開発されても、 その特長が減殺されてしまう、 という問題 点がある。 発 明 の 開 示 However, when a filter is constructed by combining multiple filters sandwiched between glass plates to form a filter system, these filters must be compared to the thickness occupied by the polymer film required to obtain the desired optical characteristics. The number of glass plates to hold the glass is large, and the percentage of the thickness occupied by the glass plates is extremely large; Therefore, it is difficult to incorporate such a filter system into an actual optical device. For example, even if a polymer film having excellent optical properties with high transparency is developed, its characteristics are still high. The problem is that they are reduced. Disclosure of the invention
本発明は、 以上の事情を背景としてなされたものであって、 その目的は、 複 屈折性重合体フィルムにより構成された複屈折性機能層を有してなり、 全体を 薄く、 各種の光学装置に対して好適に適用することのできる光学フィルターを 提供することにある。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a birefringent functional layer composed of a birefringent polymer film so that the whole is thin and various optical devices are provided. An object of the present invention is to provide an optical filter which can be suitably applied to the optical filter.
本発明の他の目的は、 上記のような光学フィルターを容易に製造することの できる方法を提供することにある。  Another object of the present invention is to provide a method capable of easily manufacturing the above optical filter.
本発明の光学フィルタ一は、 非変形性を有する透明基板と、 この透明基板の 少なくとも一面上に硬化接着層を介して一体に設けられた複屈折性重合体フィ ルムにより構成された複屈折性機能層と、 この複屈折性機能層の表面を覆うよ う設けられた樹脂よりなる保護層とよりなり、  The optical filter of the present invention comprises a transparent substrate having non-deformability, and a birefringent polymer film integrally provided on at least one surface of the transparent substrate via a cured adhesive layer. A functional layer and a protective layer made of a resin provided to cover the surface of the birefringent functional layer,
前記複屈折性機能層は、 単一の複屈折性重合体フィルムにより、 または、 少 なくとも 1つの複屈折性重合体フィルムを含む複数の光学フィルムが互いに硬 化接着層を介して一体に積層されてなるフィルム積層体により、 形成されてお り、  The birefringent functional layer may be formed of a single birefringent polymer film, or a plurality of optical films including at least one birefringent polymer film may be integrally laminated with each other via a cured adhesive layer. Formed by the film laminate
前記保護層の表面が光学的平面とされていることを特徴とする。  The surface of the protective layer is an optical plane.
本発明の光学フィルターの製造方法は、 非変形性を有する透明基板の少なく とも一面上に、 光学的ローパス機能を有する複屈折性重合体フィルムを含む複 屈折性機能層形成材を、 紫外線硬化型接着剤層を介して配置すると共に、 この 複屈折性機能層形成材の表面上に紫外線硬化型樹脂よりなる保護層形成材料層 が形成されてなるブイルター前駆体を形成するフィルタ一前駆体形成工程と、 このフィルター前駆体に対し、 光学的平面を有する光学的平面転写用部材を、 その光学的平面が保護層形成材料層の表面に対接する状態に配置する光学的平 面転写用部材配置工程と、  The method for producing an optical filter according to the present invention comprises the steps of: forming a birefringent functional layer forming material including a birefringent polymer film having an optical low-pass function on at least one surface of a non-deformable transparent substrate; A filter-precursor forming step of forming a filter precursor in which a protective layer forming material layer made of an ultraviolet curable resin is formed on the surface of the birefringent functional layer forming material, while being arranged via an adhesive layer. And an optical plane transfer member arranging step of arranging an optical plane transfer member having an optical plane with respect to the filter precursor so that the optical plane is in contact with the surface of the protective layer forming material layer. When,
光学的平面転写用部材をフィルター前駆体の保護層形成材料層に押圧した状 態で紫外線を照射することにより、 保護層形成材料層を硬化させて光学的平面 を有する保護層を形成すると共に、 複屈折性機能層形成材と透明基板との間の 接着剤層を硬化させて硬化接着層を形成する硬化処理工程と By irradiating ultraviolet rays while pressing the optical plane transfer member against the protective layer forming material layer of the filter precursor, the protective layer forming material layer is cured to form a protective layer having an optical plane, Between the birefringent functional layer forming material and the transparent substrate Curing treatment step of curing the adhesive layer to form a cured adhesive layer;
が行われることを特徴とする。 Is performed.
または、 本発明の光学フィルターの製造方法は、 非変形性を有する透明基板 の少なくとも一面上に、 少なくとも 1つの光学的ローパス機能を有する複屈折 性重合体フィルムを含む複数の光学フィルムが紫外線硬化型接着剤層を介して 積層されてなる複屈折性機能層形成材を、 紫外線硬化型接着剤層を介して配置 すると共に、 この複屈折性機能層形成材の表面上に紫外線硬化型樹脂よりなる 保護層形成材料層が形成されてなるフィルタ一前駆体を形成するフィルター前 駆体形成工程と、  Alternatively, in the method for producing an optical filter of the present invention, a plurality of optical films including a birefringent polymer film having at least one optical low-pass function are formed on at least one surface of a non-deformable transparent substrate. The birefringent functional layer forming material laminated via the adhesive layer is arranged via the ultraviolet curable adhesive layer, and the surface of the birefringent functional layer forming material is formed of an ultraviolet curable resin. A filter precursor forming step of forming a filter precursor in which a protective layer forming material layer is formed,
このフィルター前駆体に対し、 光学的平面を有する光学的平面転写用部材を、 その光学的平面が保護層形成材料層の表面に対接する状態に配置する光学的平 面転写用部材配置工程と、  An optical plane transfer member arranging step of arranging an optical plane transfer member having an optical plane on the filter precursor so that the optical plane is in contact with the surface of the protective layer forming material layer;
光学的平面転写用部材をフィルター前駆体の保護層形成材料層に押圧した状 態で紫外線を照射することにより、 保護層形成材料層を硬化させて光学的平面 を有する保護層を形成すると共に、 複屈折性機能層形成材を構成する光学フィ ルム相互間の接着剤層、 およぴ複屈折性機能層形成材と透明基板との間の接着 剤層を硬化させて硬化接着層を形成する硬化処理工程と  By irradiating ultraviolet rays while pressing the optical plane transfer member against the protective layer forming material layer of the filter precursor, the protective layer forming material layer is cured to form a protective layer having an optical plane, A cured adhesive layer is formed by curing the adhesive layer between the optical films constituting the birefringent functional layer forming material and the adhesive layer between the birefringent functional layer forming material and the transparent substrate. Curing process and
が行われることを特徴とする。' Is performed. '
以上において、 複屈折性重合体フィルムは、 室温において液晶相を示す単量 体よりなる液晶性単量体成分と、 この液晶性単量体成分の単量体と共重合する 多官能性単量体よりなる架橋性単量体成分とを含有してなる重合性液晶組成物 を重合して得られる、 厚みが 5 0〜2 0 0 でヘイズ値が 1 . 5以下のもの であることが好ましい。  In the above, the birefringent polymer film is composed of a liquid crystalline monomer component composed of a monomer exhibiting a liquid crystal phase at room temperature, and a polyfunctional monomer copolymerized with the monomer of the liquid crystalline monomer component. It is preferable that the polymerizable liquid crystal composition obtained by polymerizing a polymerizable liquid crystal composition containing a crosslinkable monomer component having a thickness of 50 to 200 and a haze value of 1.5 or less is obtained. .
また、 透明基板として、 赤外線非透過性および/または視感度補正機能を有 するものを用いることができる。  Further, as the transparent substrate, a substrate having an infrared non-transmission property and / or a visibility correction function can be used.
以上の製造方法において、 硬化処理工程は、 フィルター前駆体を構成する複 屈折性重合体フィルム、 並びに、 他の光学フィルムが用いられる場合にはその 各々に張力が作用された状態で行うことも可能である。 本発明の光学フィルタ一は、 複屈折性重合体フィルムにより構成された複屈 折性機能層が、 非変形性を有する透明基板に一体に設けられているために、 例 えば光学的ローパスフィルターとしての機能が得られ、 また、 複屈折性機能層 が複数の複屈折性重合体フィルムを有する場合あるいは複屈折性重合体フィル ムと共に適宜の光学特性を有する他の光学フィルムを有する場合には、 その構 成に応じて全体として所望の光学的特性を発揮する光学フィルターを容易に提 供することができる。 In the above manufacturing method, the curing treatment step can be performed in a state where tension is applied to each of the birefringent polymer film constituting the filter precursor, and when other optical films are used. It is. In the optical filter of the present invention, since the birefringent functional layer composed of the birefringent polymer film is provided integrally on a non-deformable transparent substrate, for example, as an optical low-pass filter When the birefringent functional layer has a plurality of birefringent polymer films or has another optical film having appropriate optical characteristics together with the birefringent polymer film, An optical filter that exhibits desired optical characteristics as a whole can be easily provided according to the configuration.
しかも、 保護層の表面には、 通常研磨等によって得られるガラスの光学的平 面性と同様の光学的平面性が転写によつて容易に得られることにより、 入射光 の散乱や乱反射による光の損失が少なく、 並びに、 処理される画像に与える歪 みが小さい点で優れた性能を得ることができる。 併せて、 複屈折性機能層が、 非変形性を有する透明基板に一体に設けられているために全体として 1つの光 学フィルターとして取り扱うことができ、 従って各種の光学装置に適用あるい は装着する上で便利である。  In addition, the surface of the protective layer can easily obtain the optical flatness similar to the optical flatness of glass usually obtained by polishing, etc., by transfer, so that the scattering of incident light and light scattering due to irregular reflection can be obtained. Excellent performance can be obtained in that loss is small and distortion applied to the processed image is small. At the same time, since the birefringent functional layer is integrally provided on a non-deformable transparent substrate, it can be handled as a single optical filter as a whole, so it can be applied or mounted to various optical devices. It is convenient in doing.
液晶性単量体成分と架橋性単量体成分とを重合する方法によって製造される 複屈折性重合体フィルムは、 各単量体の種類を選択することにより、 厚みが小 さくてヘイズ値の小さい特長を有するものとなる。 そして、 本発明の構成によ れば、 このような複屈折性重合体フィルムを用いて複屈折性機能層を構成する ことにより、 当該複屈折性重合体フィルムの特長を損なうことなしに、 目的と する光学的性能を有する光学フィルターを確実に得ることができる。  The birefringent polymer film produced by a method of polymerizing a liquid crystalline monomer component and a crosslinkable monomer component has a small thickness and a low haze value by selecting the type of each monomer. It has small features. According to the configuration of the present invention, by forming the birefringent functional layer using such a birefringent polymer film, the purpose of the present invention can be achieved without impairing the features of the birefringent polymer film. An optical filter having the following optical performance can be reliably obtained.
また、 透明基板として赤外線非透過性または視感度補正機能を有するものを 用いることにより、 複屈折性機能層による光学的作用に加えて、 当該複屈折性 機能層のみによっては実現が困難な光学的特性を容易に加重的に有する光学 フィルターを提供することができる。  In addition, by using a transparent substrate having an infrared non-transmitting property or a visibility correction function, in addition to the optical action of the birefringent functional layer, an optical element that is difficult to realize only with the birefringent functional layer alone is used. An optical filter having characteristics easily and weighted can be provided.
本発明の製造方法によれば、 複屈折性機能層を構成する複屈折性重合体フィ ルムおよび他の光学フィルムが、 平面に沿って延びる平板状の形態を有し、 し わなどの局部的な変形の生じていない好適な状態を達成することができると共 に、 複屈折性機能層形成材の透明基板に対する一体的な接合、 並びに、 光学的 平面を有する保護層の形成を同時に達成することができるので、 きわめて容易 に目的とする光学フィルターを製造することができる。 According to the production method of the present invention, the birefringent polymer film and the other optical film constituting the birefringent functional layer have a flat plate shape extending along a plane, and have a local shape such as wrinkles. In addition to achieving a favorable state in which no significant deformation occurs, the joining of the birefringent functional layer forming material to the transparent substrate and the optical Since the formation of the protective layer having a flat surface can be achieved at the same time, the intended optical filter can be manufactured very easily.
また、 複屈折性機能層を複数の光学フイルムにより構成されたものとする場 合には、 当該複屈折性機能層の形成を、 当該複屈折性機能層の透明基板に対す る接合およぴ保護層の形成と同時に達成することができるので、 きわめて容易 に目的とする光学フィルターを製造することができる。 図面の簡単な説明  In the case where the birefringent functional layer is constituted by a plurality of optical films, the formation of the birefringent functional layer is performed by bonding the birefringent functional layer to the transparent substrate. Since it can be achieved at the same time as the formation of the protective layer, the intended optical filter can be produced very easily. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の光学フィルターの一例における構成を模式的に示す説明用 断面図である。  FIG. 1 is an explanatory cross-sectional view schematically showing a configuration of an example of the optical filter of the present invention.
図 2は、 図 1の光学フィルターの製造過程における透明基板に下層接着剤層 を設けた状態の説明用断面図である。  FIG. 2 is a cross-sectional view for explaining a state in which a lower adhesive layer is provided on a transparent substrate in a process of manufacturing the optical filter of FIG.
図 3は、 図 1の光学フィルターの製造における光学的平面転写用部材配置ェ 程および硬化処理工程に関する説明用断面図である。  FIG. 3 is a cross-sectional view for explaining an optical plane transfer member disposing step and a curing step in the production of the optical filter of FIG.
図 4は、 複屈折性重合体フィルムを製造する好適な方法の一例を示す説明用 断面図である。  FIG. 4 is an explanatory sectional view showing an example of a preferred method for producing a birefringent polymer film.
図 5は、 光重合性液晶組成物における液晶化合物の液晶分子の配向処理につ いての説明図である。  FIG. 5 is an explanatory diagram of an alignment treatment of liquid crystal molecules of a liquid crystal compound in a photopolymerizable liquid crystal composition.
〔符号の説明〕  [Explanation of symbols]
1 0 光学フイノレター  1 0 Optical Fino Letter
1 0 a フィルター前駆体  1 0a Filter precursor
1 2 透明基板  1 2 Transparent substrate
1 4 硬化接着層  1 4 Cured adhesive layer
2 0 フィルム積層体  20 Film laminate
2 0 a フィルム積層体形成材  20 a Film laminate forming material
3 0 保護層  3 0 Protective layer
3 1 露出面  3 1 Exposed surface
F 1 第 1の光学フィルム B 1 第 1の層間硬化接着層 F 1 First optical film B 1 First interlayer cured adhesive layer
F 2 第 2の光学フィルム  F 2 Second optical film
B 2 第 2の層間硬化接着層  B 2 Second interlayer cured adhesive layer
F 3 第 3の光学フィルム  F 3 Third optical film
1 4 a 下層接着剤層  1 4 a Lower adhesive layer
B 1 a 第 1の層間接着剤層  B 1 a First interlayer adhesive layer
B 2 a 第 2の層間接着剤層  B 2 a Second interlayer adhesive layer
3 0 a 保護層形成材料層  30 a Protective layer material layer
2 光学的平面  2 Optical plane
0 光学的平面転写用部材  0 Optical planar transfer member
5 0 キャスト用ガラスセノレ  5 0 Cast glass
5 2 成型用基板  5 2 Molding substrate
M 液晶分子 (液晶骨格)  M liquid crystal molecules (liquid crystal skeleton)
5 シール用テープ  5 Sealing tape
L 光重合性液晶組成物の薄層  L Thin layer of photopolymerizable liquid crystal composition
J 磁力線の方向 発明を実施するための最良の形態  J Best Mode for Carrying Out the Invention
以下、 本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
図 1は本発明の光学フィルターの一例における構成を模式的に示す説明用断 面図である。 この例の光学フィルター 1 0は、 3枚の光学フィルムが積層され て構成された積層型の複屈折性機能層を有する光学フィルターである。  FIG. 1 is an explanatory cross-sectional view schematically showing the configuration of an example of the optical filter of the present invention. The optical filter 10 of this example is an optical filter having a laminated birefringent functional layer formed by laminating three optical films.
この光学フィルター 1 0は、 透明基板 1 2の表面上に、 硬化接着層 1 4を介 して、 後述する構成のフィルム積層体 2 0により構成された複屈折性機能層が 一体に設けられており、 このフィルム積層体 2 0の表面上には、 その露出面 3 1が光学的平面とされた保護層 3 0が形成されている。  This optical filter 10 is provided with a birefringent functional layer integrally formed on a surface of a transparent substrate 12 via a cured adhesive layer 14 via a film laminate 20 having a configuration described later. On the surface of the film laminate 20, a protective layer 30 whose exposed surface 31 is an optical plane is formed.
透明基板 1 2は、 非変形性あるいは剛性を有する平板状部材であり、 その材 料としては、 有機材料または無機材料を用いることができる。 そして有機材料の具体例としては、 ポリエチレンテレフタレート、 ポリカー ボネート、 ポリイミド、 ポリメタクリル酸メチル、 ポリスチレン、 ポリエチレ ン、 ポリ塩化ビュル、 ポリテトラフルォロエチレン、 ポリクロ口フルォロェチ レン、 ポリアリレート、 ポリスノレホン、 セノレロース、 ポリエーテノレエーテノレケ トンなどの樹脂物質を挙げることができる。 ' また、 無機材料の具体例としては、 水晶、 ニオブ酸リチウム、 ルチルおよび 方解石などの透明性複屈折材料、 並びにガラス、 シリコンなどを挙げることが できる。 The transparent substrate 12 is a non-deformable or rigid plate-like member, and an organic material or an inorganic material can be used as the material. Specific examples of organic materials include polyethylene terephthalate, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, polyethylene, polychlorinated butyl, polytetrafluoroethylene, polychlorofluoroethylene, polyarylate, polysnoreon, senorelose, Resin materials such as polyetherenothenoketone can be used. Further, specific examples of the inorganic material include quartz, lithium niobate, transparent birefringent materials such as rutile and calcite, glass, and silicon.
透明基板 1 2の厚さは、 その材料の種類によっても異なるが、 十分な非変形 性を得るために、 或る程度以上の厚さを有することが必要であり、 例えば 0 . 2〜 1 . O mmの厚さとされる。  The thickness of the transparent substrate 12 varies depending on the type of the material, but it is necessary that the transparent substrate 12 have a certain thickness or more in order to obtain sufficient non-deformability, for example, 0.2 to 1.2. O mm thickness.
フィルム積層体 2 0は、 第 1の光学フィルム F 1の表面に、 第 1の層間硬化 接着層 B 1を介して第 2の光学フィルム F 2が接合されると共に、 この第 2の 光学フィルム F 2の表面に、 第 2の層間硬化接着層 B 2を介して第 3の光学 フィルム F 3が接合されて構成された、 一体のものである。  The film laminate 20 is formed by joining the second optical film F2 to the surface of the first optical film F1 via the first interlayer cured adhesive layer B1 and the second optical film F1. The third optical film F3 is joined to the surface of the second through a second interlayer cured adhesive layer B2, and is an integral unit.
この図示の例において、 第 1の光学フィルム F 1およぴ第 3の光学フィルム F 3は、 配向角が同一であるが配向方向が異なる複屈折性重合体フィルムであ り、 第 2の光学フィルム F 2は 1 Z 4波長板である。  In the illustrated example, the first optical film F1 and the third optical film F3 are birefringent polymer films having the same orientation angle but different orientation directions. Film F 2 is a 1 Z 4 wave plate.
ここに、 「配向角」 とは、 フィルム面に対する光学軸のなす角度であり、 「配向方向」 とは、 光学的ローパスフィルター効果を発現する像分離の方向あ るレヽは複屈折性重合体フィルムにおける特定の基準辺と液晶骨格のなす角度で める。  Here, the “orientation angle” is the angle formed by the optical axis with respect to the film surface, and the “orientation direction” is the direction of image separation that exhibits an optical low-pass filter effect. At the angle between the specific reference side and the liquid crystal skeleton.
複屈折性機能層を構成する各光学フィルムの厚みは、 特に制限されるもので はなく、 また種類によっても異なるが、 高い透明性を確保するために小さいこ とが望ましく、 例えば 2 0〜 2 0 0 // mの範囲とされる。  The thickness of each optical film constituting the birefringent functional layer is not particularly limited, and varies depending on the type. However, it is preferable that the thickness be small in order to ensure high transparency. The range is 0 0 // m.
硬化接着層 1 4は、 フィルム積層体 2 0を透明基板 1 2に一体に接合するも のであり、 高い透明性を有することが好ましい。  The cured adhesive layer 14 is for integrally bonding the film laminate 20 to the transparent substrate 12 and preferably has high transparency.
また、 層間硬化接着層は、 いずれも、 関連する光学フィルムを一体に接合す るものである。 すなわち、 第 1の層間硬化接着層 B 1は、 第 1の光学フィルム F 1と第 2の光学フィルム F 2を接合し、 第 2の層間硬化接着層 B 2は、 第 2 の光学フィルム F 2と第 3の光学フィルム F 3を接合するものである。 これら の層間硬化接着層は高い透明性を有するものであることが好ましい。 In addition, any of the interlayer cured adhesive layers integrally bond the related optical films. Things. That is, the first interlayer cured adhesive layer B1 joins the first optical film F1 and the second optical film F2, and the second interlayer cured adhesive layer B2 forms the second optical film F2. And the third optical film F3. It is preferable that these interlayer cured adhesive layers have high transparency.
保護層 3 0は、 最上の光学フィルム、 すなわち図示の例では第 3の光学フィ ルム F 3の表面上に層状に形成された樹脂または重合体よりなるものであって、 その露出面 3 1が光学的平面とされている。 この保護層 3 0も、 高い透明性を 有するものであることが好ましい。  The protective layer 30 is made of a resin or a polymer formed in a layer on the surface of the uppermost optical film, that is, in the illustrated example, the third optical film F3, and its exposed surface 31 is formed. It is an optical plane. It is preferable that the protective layer 30 also has high transparency.
ここで、 「光学的平面」 とは、 単位面積 (1 c m 2 ) 当たりに観測される ニュートンリングの数が 1 0本以下であるような高い平坦性を有する表面をい 5 o Here, “optical plane” refers to a surface having high flatness such that the number of Newton rings observed per unit area (1 cm 2 ) is 10 or less.
光学的平面を得るために用いられる光学的平面転写用部材としては通常ガラ スの板を用いることができるが、 求められる平面性に応じて光学研磨を行つた 平面性の高いレベルから通常のフロートガラスのレベル迄適宜使い分けること が可能である。  A glass plate can be usually used as an optical plane transfer member used to obtain an optical plane.However, an optical polishing is performed according to the required flatness. It can be properly used up to the glass level.
フィルム積層体 2 0を透明基板 1 2に接合する硬化接着層 1 4、 ブイルム積 層体 2 0における各光学フィルム間を接合する硬化接着層 (図の例では第 1の 層間硬化接着層 B 1および第 2の層間硬化接着層 B 2 ) 、 並びに、 樹脂よりな る保護層 3 0は、 光学接着剤が硬化されて形成されたものである。  The cured adhesive layer 14 for bonding the film laminate 20 to the transparent substrate 12 and the cured adhesive layer for bonding between the optical films in the film laminate 20 (in the example shown, the first interlayer cured adhesive layer B 1 The second interlayer cured adhesive layer B 2) and the protective layer 30 made of resin are formed by curing an optical adhesive.
ここに、 光学接着剤としては、 例えば紫外線硬化型のものであって、 その硬 化物が優れた光透過性を有するもの、 例えば、 エポキシ系接着剤、 ウレタン系 接着剤またはァクリル系接着剤などの接着剤を用いることが好ましい。  Here, as the optical adhesive, for example, an ultraviolet-curable adhesive whose cured product has excellent light transmittance, for example, an epoxy-based adhesive, a urethane-based adhesive, or an acryl-based adhesive It is preferable to use an adhesive.
そのような光学的接着剤の具体例としては、 例えば 「ハードロック O P」 シ リーズおょぴ 「ハードロック U V」 シリーズのもの (電気化学工業株式会社 製) 、 その他を挙げることができる。  Specific examples of such an optical adhesive include, for example, “Hard Rock OP” series and “Hard Rock UV” series (manufactured by Denki Kagaku Kogyo Co., Ltd.), and others.
複屈折性機能層は、 少なくとも 1つの複屈折性重合体フィルムを備えること が必要であり、 図示の例におけるように、 複数の光学フィルムが用いられる場 合には、 そのうちの少なくとも 1つまたは 2つ以上が複屈折性重合体フィルム であることが必要である。 この条件が満たされるのであれば、 他の光学フィル ムの数おょぴその種類については特に制限されるものではなく、 従って、 すべ ての光学フィルムが複屈折性重合体フィルムである構成、 並びに、 1枚または それ以上の複屈折性重合体フィルムと他の光学フィルムとが組合せられた構成 のいずれであってもよい。 ' The birefringent functional layer needs to include at least one birefringent polymer film. When a plurality of optical films are used as in the illustrated example, at least one or two of the optical films are used. At least one birefringent polymer film It is necessary that As long as this condition is satisfied, the number and types of other optical films are not particularly limited, and therefore all optical films are birefringent polymer films, and Any one of combinations of one or more birefringent polymer films and another optical film may be used. '
複屈折性機能層が複数の複屈折性重合体フィルムを有する場合に、 それらの 複屈折性重合体フィルムは、 同一の光学的特性を有するものであっても、 また 異なる光学的特性を有するものであってもよい。  When the birefringent functional layer has a plurality of birefringent polymer films, the birefringent polymer films have the same optical characteristics but also have different optical characteristics. It may be.
また、 複屈折性重合体フィルム以外の他の光学フィルムの具体例としては、 例えば 1 Z 4波長板、 パンドパスフィルター、 色捕償板、 その他の光学的特性 を有する重合体フィルムを挙げることができる。  Further, specific examples of the optical film other than the birefringent polymer film include, for example, a 1Z 4 wavelength plate, a bandpass filter, a color capture plate, and a polymer film having other optical characteristics. it can.
以上のような構成の光学フィルターによれば、 複屈折性機能層は、 複屈折性 重合体フィルムを含む光学フィルムにより構成されていることにより、 単一ま たは複数の複屈折性重合体フィルムの光学異方性または複屈折性による光学的 特性、 例えば光学的ローパスフィルターとしての機能が得られ、 あるいは更に 複屈折性重合体フィルムと他の光学フィルムによる光学的特性が並行して、 ま たはそれらの光学的特性が互いに関連し合うことにより全体として実用的な光 学的特性を有する光学フィルターを提供することができる。  According to the optical filter having the above-described configuration, the birefringent functional layer is constituted by the optical film including the birefringent polymer film, so that a single or a plurality of birefringent polymer films are formed. Optical properties due to optical anisotropy or birefringence, such as the function of an optical low-pass filter, or the optical properties of a birefringent polymer film and another optical film in parallel Can provide an optical filter having practical optical characteristics as a whole because their optical characteristics are related to each other.
図 1の例の光学フィルターによれば、 第 1の光学フィルム F 1およぴ第 3の 光学フィルム F 3の 2枚の複屈折性重合体フィルムにより、 入射光線が各々水 平方向および垂直方向に常光線と異常光線とに分離され、 これにより光学的 ローパスフィルターとしての性能が発現されると共に、 第 2の光学フィルム F 2として 1 Z 4波長板が組合せられていることにより、 第 1の光学フィルム F 1を通過して常光線と異常光線とに分離された光線の偏光状態を、 それぞれ円 偏光とする作用が得られ、 従って、 この例の光学フィルターによれば、 入射光 線が水平方向おょぴ垂直方向に 4点分離することにより、 水平方向おょぴ垂直 方向において光学的ローパスフィルター作用が発揮されることとなる。  According to the optical filter of the example shown in FIG. 1, the incident light rays are directed in the horizontal direction and the vertical direction, respectively, by the two birefringent polymer films of the first optical film F1 and the third optical film F3. In addition to being separated into an ordinary ray and an extraordinary ray, the performance as an optical low-pass filter is exhibited, and the 1Z4 wavelength plate is combined as the second optical film F2, so that the first The polarization state of the light beam that has passed through the optical film F1 and separated into the ordinary light beam and the extraordinary light beam can be obtained as circularly polarized light. Therefore, according to the optical filter of this example, the incident light beam is By separating four points in the vertical direction, an optical low-pass filter action is exerted in the horizontal and vertical directions.
また、 この例のような構成の光学フィルターにおいては、 1 Z 4波長板によ る円偏光変換機能を有するために、 水平方向およぴ垂直方向における光線分離 距離を互いに独立に制御することができ、 従って光学的ローパスフィルターの 遮断空間周波数状態を、 水平方向および垂直方向において各々独立して実現す ることができる。 In an optical filter having a configuration like this example, a 1Z4 wavelength plate is used. Because of its circular polarization conversion function, the beam separation distance in the horizontal direction and the vertical direction can be controlled independently of each other, so that the cut-off spatial frequency state of the optical low-pass filter can be controlled in the horizontal and vertical directions respectively. It can be realized independently.
そして、 保'護層 3 0の表面が光学的平面 3 O Aとされてい όことにより、 入 射光の散乱や乱反射による光の損失が少なく、 また画像歪みが少ないという優 れた性能を得ることができると共に、 フィルム積層体 2 0が、 非変形性を有す る透明基板 1 2に一体に設けられているため、 全体として 1つの部材として取 り扱うことができ、 従って、 当該光学フィルタ一は、 これを各種の光学装置に 適用あるいは装着する上できわめて便利である。  In addition, since the surface of the protective layer 30 is an optical plane 3OA, it is possible to obtain excellent performance such that light loss due to scattering or irregular reflection of incident light and image distortion are small. In addition, since the film laminate 20 is integrally provided on the non-deformable transparent substrate 12, it can be handled as one member as a whole. It is very convenient to apply or attach this to various optical devices.
本発明の光学フィルターにおいて積層型の複屈折性機能層を構成する光学 フィルムの組合せの具体例を挙げると下記のとおりである。  Specific examples of the combination of the optical films constituting the laminated birefringent functional layer in the optical filter of the present invention are as follows.
(例 1 )  (Example 1 )
第 1の光学フィルム F 1 : First optical film F 1:
配向角が 4 5度、 配向方向が 0度、 厚さ 1 0 0 t mで光線分離距離が 3 . 5 μ mの複屈折性重合体フィルム  Birefringent polymer film with an orientation angle of 45 degrees, an orientation direction of 0 degrees, a thickness of 100 tm and a light separation distance of 3.5 μm
第 2の光学フィルム F 2 : Second optical film F 2:
配向角が 4 5度、 配向方向が 4 5度、 厚さ 7 0 i mで光線分離距離が 2 . 5 μ mの複屈折性重合体フィルム  Birefringent polymer film with an orientation angle of 45 degrees, an orientation direction of 45 degrees, a thickness of 70 im and a light separation distance of 2.5 μm
(例 2 )  (Example 2)
第 1の光学フィルム F 1 : First optical film F 1:
配向角が 4 5度、 配向方向が 0度、 厚さ 1 0 0 /z mで光線分離距離が 3 . 5 μ mの複屈折性重合体フィルム  Birefringent polymer film with an orientation angle of 45 degrees, an orientation direction of 0 degrees, a thickness of 100 / zm and a light separation distance of 3.5 μm
第 2の光学フィルム F 2 : Second optical film F 2:
1 / 4波長板の機能を有する重合体フィルム  Polymer film with quarter wave plate function
第 3の光学フィルム F 3 : Third optical film F 3:
配向角が 4 5度、 配向方向が 9 0度、 厚さ 1 0 0 mで光線分離距離が 3 . 5 Ai mの複屈折性重合体フィルム (例 3 ) Birefringent polymer film with orientation angle of 45 degrees, orientation direction of 90 degrees, thickness of 100 m and light separation distance of 3.5 Aim (Example 3)
上記例 2において、 第 2の光学フィルム F 2として、 配向角が 4 5度、 配向 方向が 4 5度、 厚さ 7 0 μ mで光線分離距離が 2 . 5 mの複屈折性重合体 フィルムを用いたもの。  In Example 2 above, as the second optical film F2, a birefringent polymer film having an orientation angle of 45 degrees, an orientation direction of 45 degrees, a thickness of 70 μm, and a light separation distance of 2.5 m was used. Using.
以上のような構成の光学フィルタ一は、 例えば次のよう【こして製造すること ができる。  The optical filter having the above configuration can be manufactured, for example, as follows.
先ず、 図 2に示すように、 透明基板 1 2を用意し、 これに紫外線硬化型接着 剤による下層接着剤層 1 4 aを形成し、 この下層接着剤層 1 4 a上に第 1の光 学フィルム F 1を配置する。  First, as shown in FIG. 2, a transparent substrate 12 is prepared, and a lower adhesive layer 14a made of an ultraviolet-curable adhesive is formed thereon, and a first light is formed on the lower adhesive layer 14a. Place the study film F1.
次に図 3に示すように、 この第 1の光学フィルム F 1の上に紫外線硬化型接 着剤による第 1の層間接着剤層 B 1 aを形成し、 この第 1の眉間接着剤層 B 1 a上に第 2の光学フィルム F 2を配置し、 この第 2の光学フィルム F 2の上に 紫外線硬化型接着剤による第 2の眉間接着剤層 B 2 aを形成し、 この第 2の層 間接着剤層 B 2 a上に第 3の光学フィルム F 3を配置する。 そしてこの第 3の 光学フィルム F 3の上に紫外線硬化型接着剤による保護層形成材料層 3 0 aを 形成する。  Next, as shown in FIG. 3, a first interlayer adhesive layer B 1 a made of an ultraviolet-curable adhesive is formed on the first optical film F 1, and the first eyebrow adhesive layer B is formed. A second optical film F2 is arranged on 1a, and a second inter-brows adhesive layer B2a made of an ultraviolet curable adhesive is formed on the second optical film F2. The third optical film F3 is arranged on the inter-layer adhesive layer B2a. Then, on the third optical film F3, a protective layer forming material layer 30a made of an ultraviolet-curable adhesive is formed.
このようにして、 透明基板 1 2の表面上に、 下層接着剤層 1 4 aを介して、 3枚の光^フィルム (F l、 F 2および F 3 ) と、 2つの層間接着剤層 (B 1 aおよび B 2 a ) とが積層されてなるフィルム積層体形成材 2 0 aが配置され、 これにより、 当該フィルム積層体形成材 2 0 aの表面に保護層形成材料層 3 0 aが形成された状態のフィルター前駆体 1 0 aを形成する。 Thus, on the surface of the transparent substrate 12, through the lower adhesive layer 14 a, three optical films (Fl, F 2 and F 3) and two interlayer adhesive layers ( B 1 a and B 2 a) are laminated to form a film laminate forming material 20 a, whereby a protective layer forming material layer 30 a is formed on the surface of the film laminate forming material 20 a. The formed filter precursor 10a is formed.
このフィルター前駆体 1 0 aに対し、 光学的平面 4 2を有するガラス板より なる光学的平面転写用部材 4 0を、 当該光学的平面 4 2が保護層形成材料層 3 0 aの表面に対接する状態に配置し (光学的平面転写用部材配置工程) 、 更に、 当該光学的平面転写用部材 4 0により、 フィルター前駆体 1 0 aの保護層形成 材料層 3 0 aの上面を下方に押圧した状態で、 透明基板 1 2および光学的平面 転写用部材 4 0の一方または両方を介して、 紫外線を照射する (硬化処理工 程) 。 上記の光学的平面転写用部材 40の光学的平面 42は、 適宜の離型性処理が 施されていることが好ましい。 An optical plane transfer member 40 made of a glass plate having an optical plane 42 is placed on the surface of the protective layer forming material layer 30a with respect to the filter precursor 10a. Placed in contact with each other (optical plane transfer member arranging step), and the upper surface of the protective layer forming material layer 30a of the filter precursor 10a is pressed downward by the optical plane transfer member 40. In this state, ultraviolet rays are irradiated through one or both of the transparent substrate 12 and the optical plane transfer member 40 (curing process). It is preferable that the optical flat surface 42 of the above-mentioned optical flat surface transfer member 40 is subjected to an appropriate release treatment.
この硬化処理工程により、 下層接着剤層 14 aが硬化して硬化接着層 14が 形成されると共に、 2つの層間接着剤層 (B l aおよび B 2 a) が硬化して 2 つの層閬硬化接着層 (B 1および B 2) が形成され、 ま 、 保護層形成材料層 30 aが硬化して保護層 30が形成される。  In this curing process, the lower adhesive layer 14a is cured to form the cured adhesive layer 14, and the two interlayer adhesive layers (Bla and B2a) are cured to form two cured adhesive layers. The layers (B1 and B2) are formed, and the protective layer forming material layer 30a is cured to form the protective layer 30.
そして、 3枚の光学フィルム (F l、 2ぉょぴ 3) が 2つの眉間硬化接 着層 (B 1および B 2) により相互に一体に接合された状態のフィルム積層体 20が、 硬化接着層 14を介して透明基板 12に一体に接合されて複屈折性機 能層が形成されると共に、 同時に、 光学的平面転写用部材' 40の光学的平面 4 2の形状が転写されることにより保護層 30の表面が光学的平面とされ、 もつ て目的とする積層型の複屈折性機能層を有する光学フィルターが製造される。 以上のような方法によれば、 下層接着剤層 14 a、 すべての層間接着剤層 (第 1の層間接着剤層 B 1 aおよび第 2の層間接着剤層 B 2 a) 、 並びに、 保 護層形成材料層 30 aの全部を同時に紫外線の照射によって硬化させるので、 単一の硬化処理工程により、 硬化接着層 14、 すべての層間接着剤層、 並びに. 保護層 30を形成することができ、 しかも、 これと同時に、 保護層 30の表面 に光学的平面が形成される。 従って、 簡単な方法により、 高い効率で、 積層型 の複屈折性機能層を有する光学フィルターを製造することができる。  Then, the film laminate 20 in a state where the three optical films (Fl, 2 ぴ 3) are integrally bonded to each other by the two eyebrow curing adhesive layers (B1 and B2) is cured and adhered. By being integrally bonded to the transparent substrate 12 via the layer 14 to form a birefringent functional layer, at the same time, the shape of the optical plane 42 of the optical plane transfer member 40 is transferred. The surface of the protective layer 30 is an optical flat surface, and an optical filter having the intended laminated birefringent functional layer is manufactured. According to the above method, the lower adhesive layer 14a, all the interlayer adhesive layers (the first interlayer adhesive layer B1a and the second interlayer adhesive layer B2a), and the protection Since the whole of the layer forming material layer 30a is simultaneously cured by irradiation with ultraviolet rays, the cured adhesive layer 14, all the interlayer adhesive layers, and the protective layer 30 can be formed by a single curing process. Moreover, at the same time, an optical plane is formed on the surface of the protective layer 30. Therefore, an optical filter having a laminated birefringent functional layer can be manufactured with high efficiency by a simple method.
そして、 本発明の製造方法では、 フィルター前駆体 10 aにおけるフィルム 積層体形成材 20 aが、 光学的平面転写用部材 40により透明基板 12との間 で下方に押圧された状態、 すなわちフィルム積層体形成材 20 aを形成する各 光学フィルム (F l、 F 2および F 3) の局部的な変位が抑制された状態で紫 外線の照射による硬化処理工程が行われるため、 事実上、 各光学フィルム (F 1、 F 2および F 3) に張力が作用された場合と同様の状態で、 各光学フィル ム (F l、 ? 2ぉょぴ? 3) の両面に接している接着剤層、 すなわち下層接着 剤層 14 a、 第 1の眉間接着剤層 B 1 a、 第 2の層間接着剤層 B 2 a、 および 保護層形成材料層 30 aにおける接着剤の硬化が行われることとなる。 その結 果、 各光学フィルム (F l、 F 2ぉょぴF 3 ) にしわが生ずるなどの局部的変 形が十分有効に抑制され、 従って所期の光学的特性を有する光学フィルターを 確実に製造することができる。 Then, in the production method of the present invention, the film laminate forming material 20 a in the filter precursor 10 a is pressed downward between the transparent substrate 12 by the optical planar transfer member 40, that is, the film laminate Since the curing process by irradiation with ultraviolet light is performed in a state where the local displacement of each optical film (Fl, F2 and F3) forming the forming material 20a is suppressed, each optical film is effectively (F1, F2 and F3) in the same state as when tension is applied, the adhesive layer in contact with both sides of each optical film (Fl,? 2 ぉ? 3), that is, The adhesive in the lower adhesive layer 14a, the first eyebrow adhesive layer B1a, the second interlayer adhesive layer B2a, and the protective layer forming material layer 30a are cured. The result As a result, local deformation such as wrinkling of each of the optical films (Fl, F2 ぴ F3) is sufficiently and effectively suppressed, and therefore, it is possible to reliably manufacture an optical filter having desired optical characteristics. Can be.
以上の硬化処理工程は、 各光学フィルム (F l、 F 2および F 3 ) に適宜の 手段によつて積極的に張力を作用させた状態で行う ともでき、 この場合には、 各光学フィルム (F l、 F 2および F 3 ) に確実に所望の平坦な状態および平 行な状態を保持させることができる。  The above-mentioned curing process can be performed in a state where tension is applied to each optical film (Fl, F2 and F3) by an appropriate means. In this case, each optical film ( Fl, F2 and F3) can be reliably maintained in the desired flat state and parallel state.
各接着剤層 (下層接着剤層 1 4 a、 層間接着剤層 B 1 aおよび B 2 a、 並び に保護層形成材料層 3 0 a ) を形成する接着剤は、 硬化処理工程の間、 流動性 の低い状態が維持されるものであることが好ましい。 接着剤が流動性の高いも のである場合には、 硬化の進行に伴って局部的な接着剤の流れが生ずることに より、 光学フィルムに局部的な変形が生ずる可能性が大きくなる。 従って、 十 分な接合性が得られるのであれば、 いわゆるグリーンシートと称される予備的 または一次的硬化処理が施された接着剤シートを好ましく用いることもできる c 本発明において、 複屈折性機能層は、 複屈折性重合体フィルムよりなる光学 フィルムにより構成される。 この複屈折性重合体フィルムは、 高い透明性を有 することが好ましく、 具体的には、 厚みが 5 0〜 2 0 0 μ mでヘイズ値が 1 . 5以下のものであることが好ましい。 ' The adhesive forming each adhesive layer (lower adhesive layer 14a, interlayer adhesive layers B1a and B2a, and protective layer forming material layer 30a) flows during the curing process. It is preferable that the state with low property is maintained. When the adhesive has a high fluidity, the possibility of local deformation of the optical film increases due to the local flow of the adhesive as curing proceeds. Therefore, if sufficient bonding properties can be obtained, an adhesive sheet which has been subjected to a preliminary or primary curing treatment called a so-called green sheet can be preferably used.c In the present invention, the birefringent function The layer is composed of an optical film made of a birefringent polymer film. The birefringent polymer film preferably has high transparency, and specifically, preferably has a thickness of 50 to 200 μm and a haze value of 1.5 or less. '
このような複屈折性重合体フィルムは、 例えば、 室温において液晶相を示す 単量体よりなる液晶性単量体成分と、 この液晶性単量体成分の単量体と共重合 する多官能性単量体よりなる架橋性単量体成分とを用いて光重合性液晶組成物 を調製し、 平板状の間隙による成型用空間が形成されたキャスト用ガラスセル の内部にこの光重合性液晶組成物を充填して薄層を形成し、 この薄層に対し、 室温 (例えば 2 5 °C) において、 例えば 3テスラ以上好ましくは 5〜1 0テス ラの高い強度の平行磁場を所定の角度方向となるよう作用させて配向処理を行 い、 これにより液晶性単量体成分の液晶分子が配向された状態を得、 この状態 で、 例えば紫外線を照射することにより、 光重合性液晶組成物の薄層を光重合 処理して硬化させて製造することができる。 以上において、 光重合性液晶組成物の薄層に対する平行磁場の方向は、 複屈 折性の大きい重合体フィルムを得る場合には、 薄層の面に対して例えば 4 5度 またはその近傍とされることが好ましい。 Such a birefringent polymer film includes, for example, a liquid crystalline monomer component composed of a monomer that exhibits a liquid crystal phase at room temperature, and a polyfunctional copolymerizable with the monomer of the liquid crystalline monomer component. A photopolymerizable liquid crystal composition is prepared by using a crosslinkable monomer component composed of a monomer, and the photopolymerizable liquid crystal composition is formed inside a casting glass cell having a molding space formed by a flat gap. An object is filled to form a thin layer, and a parallel magnetic field having a high intensity of, for example, 3 Tesla or more, preferably 5 to 10 Tesla at room temperature (for example, 25 ° C.), and The liquid crystal molecules of the liquid crystalline monomer component are aligned to obtain a state in which the liquid crystal molecules of the liquid crystalline monomer component are aligned. To produce a thin layer by photopolymerization and curing. Can be. In the above description, the direction of the parallel magnetic field with respect to the thin layer of the photopolymerizable liquid crystal composition is, for example, 45 degrees with respect to the surface of the thin layer or in the vicinity thereof in order to obtain a polymer film having high birefringence. Preferably.
光重合性液晶組成物の液晶性単量体成分を構成する単量体としては、 例えば 単官能ァクリレート化合物または単官能メタクリレート化合物であって、 室温 において液晶相を示すものが好ましく用いられる。  As the monomer constituting the liquid crystalline monomer component of the photopolymerizable liquid crystal composition, for example, a monofunctional acrylate compound or a monofunctional methacrylate compound which exhibits a liquid crystal phase at room temperature is preferably used.
また、 架橋性単量体成分を構成する化合物としては、 分子中に 3つ以上のベ ンゼン核を有する多官能ァクリレート化合物おょぴ多官能メタタリレート化合 物であることが好ましく用いられる。  Further, as the compound constituting the crosslinkable monomer component, a polyfunctional acrylate compound having three or more benzene nuclei in the molecule or a polyfunctional methacrylate compound is preferably used.
以上のような液晶性単量体成分および架橋性単量体成分よりなる光重合性液 晶組成物によれば、 平行磁場による配向処理において、 架橋性単量体成分を構 成する多ベンゼン核含有化合物により、 液晶性単量体成分の配向状態が擾乱さ れる程度が緩和される作用が発揮されるため、 最終的に得られる複屈折性重合 体フィルムは、 きわめて高い透明性を有するものとなる。  According to the photopolymerizable liquid crystal composition comprising the liquid crystal monomer component and the crosslinkable monomer component as described above, the polybenzene nuclei constituting the crosslinkable monomer component are subjected to the alignment treatment by the parallel magnetic field. Since the contained compound exerts an action of alleviating the degree to which the orientation state of the liquid crystalline monomer component is disturbed, the finally obtained birefringent polymer film should have extremely high transparency. Become.
そして、 光重合処理が終了した後のセル複合体から成型用基板を取り外すこ とにより、 複屈折性を有すると共に高い透明性を有する複屈折性重合体フィル ムが得られる。  Then, by removing the molding substrate from the cell composite after the photopolymerization treatment, a birefringent polymer film having both birefringence and high transparency can be obtained.
' 複屈折性重合体フィルムは、 通常、 その複屈折性、 すなわち屈折率の異方性 が大きいものであることが好ましく、 具体的には、 屈折率の異方性の下限値は、 水晶の屈折率の異方性 ( 0 . 0 0 9 ) より大きい値、 例えば 0 . 0 1以上、 特 に、 0 . 0 2以上であることが好ましい。 このような条件を満たすものによれ ば、 例えば目的とする光学フィルターが光学的ローパスフィルターである場合 に、 その薄型化を十分に図ることができ、 撮像素子のための光学的ローパス フィルターとして好適なものとなる。  ′ Usually, the birefringent polymer film preferably has a large birefringence, that is, a large anisotropy of the refractive index. Specifically, the lower limit of the anisotropy of the refractive index is the same as that of quartz. The refractive index is preferably larger than the anisotropy (0.009), for example, 0.01 or more, particularly preferably 0.02 or more. According to those satisfying such conditions, for example, when the target optical filter is an optical low-pass filter, the thickness can be sufficiently reduced, which is suitable as an optical low-pass filter for an imaging device. It will be.
一方、 当該屈折率の異方性の上限値は、 液晶の安定性などの観点から 0 . 3 5以下、 特に 0 . 3以下であることが好ましい。  On the other hand, the upper limit of the anisotropy of the refractive index is preferably not more than 0.35, particularly preferably not more than 0.3 from the viewpoint of the stability of the liquid crystal.
また、 複屈折性重合体フィルムに対し、 適当な補正板を組み合わせることに より、 被写体光の常光線と異常光線の強度が同等となる特性の複合光学フィル ターを得ることができる。 このような補正板としては、 一般的な 1 / 4波長板 を用いることができるが、 非偏光のものとするために偏光解消板を用いること も有効である。 これらの波長板としては、 例えばポリカーボネート、 ポリビニ ルアルコール、 「アートン」 (商品名) や 「ゼォネックス」 (商品名) として '市販されているシクロォレフィン系重合体、 その他により製造されたものを用 いることができる。 In addition, by combining a birefringent polymer film with an appropriate correction plate, a composite optical filter with the characteristics that the intensity of the ordinary light and the extraordinary light of the subject light becomes equal You can get As such a correction plate, a general quarter-wave plate can be used, but it is also effective to use a depolarizing plate in order to make it non-polarized. As these wave plates, for example, polycarbonate, polyvinyl alcohol, a cycloolefin polymer commercially available as "ARTON" (trade name) or "ZONEX" (trade name), or a plate made of other materials may be used. Can be.
本発明において用いる複屈折性重合体フィルムおよび他の光学フィルムは、 光線透過率を高いものとするために、 当該フィルムの 2つの面の一方若しくは 両方に、 真空蒸着法、 デイツビング法などにより無反射コーティング層が形成 されたものであってもよい。 また、 完成した光学フィルターの表面に、 必要に 応じて、 真空蒸着法あるいはデイツビング法などにより、 無反射コーティング を施すこともできる。  The birefringent polymer film and other optical films used in the present invention are non-reflective on one or both of the two surfaces of the film by a vacuum deposition method, a dive method, or the like in order to increase the light transmittance. A coating layer may be formed. Further, the surface of the completed optical filter can be provided with an anti-reflection coating by a vacuum evaporation method or a dive method as required.
本発明においては、 透明基板として、 例えば、 赤外線非透過性、 視感度補正 機能などの光学的特性を有するものを用いることができ、 この場合には、 複屈 折性機能層による光学的特性に加えて、 当該透明基板による光学的特性が同時 に発揮されるため、 実用上、 一層好適な光学フィルターが得られる。  In the present invention, as the transparent substrate, for example, a substrate having optical characteristics such as infrared non-transparency and visibility correction function can be used. In this case, the optical characteristics of the birefringent functional layer are reduced. In addition, since the optical characteristics of the transparent substrate are exhibited at the same time, a more practical optical filter can be obtained in practical use.
視感度補正機能を有するものとしては、 例えば、 リン酸ガラスに銅イオンが 導入されたもの、 ガラス基板表面に真空蒸着法によつて光学多層膜が積層して 形成された近赤外線遮断性干渉フィルター、 その他が挙げられ、 プラスチック 製のものとしては、 例えば、 リン酸基含有アクリル系単量体およびこれと共重 合可能な単量体からなる混合単量体を重合して得られる共重合体と、 銅塩を主 体とする金属塩とからなるもの (特開平 6— 1 1 8 2 2 8号公報参照) 、 その 他を挙げることができるが、 これらに限定されるものではない。  Examples of a device having a visibility correction function include a phosphoric acid glass in which copper ions are introduced, and a near-infrared blocking interference filter formed by laminating an optical multilayer film on a glass substrate surface by a vacuum evaporation method. And plastics, for example, a copolymer obtained by polymerizing a mixed monomer composed of a phosphoric acid group-containing acrylic monomer and a monomer copolymerizable therewith. And a metal salt mainly composed of a copper salt (see Japanese Patent Application Laid-Open No. HEI 6-118282), and others, but are not limited thereto.
本発明の光学フィルタ一は、 透明基板上に複屈折性機能層が硬化接着層によ り一体に設けられたものであり、 露出表面を形成する保護層の表面が光学的平 面とされているので、 複屈折性機能層における複屈折性重合体フィルムの作用、 すなわち複屈折性による光学的ローパスフィルターとしての機能を含む実用上 有用な光学的特性を発揮するものであり、 しかも厚みが小さくて非常に軽量な ものとすることができ、 従って、 ビデオカメラなどの C C D素子、 MO S素子 などの撮像素子を利用した機器にきわめて好適に適用することができる。 The optical filter according to the present invention has a birefringent functional layer integrally provided on a transparent substrate by a cured adhesive layer, and the surface of a protective layer forming an exposed surface is an optical flat surface. Therefore, it exhibits practically useful optical characteristics including the function of the birefringent polymer film in the birefringent functional layer, that is, the function as an optical low-pass filter due to birefringence, and has a small thickness. And very lightweight Therefore, the present invention can be very suitably applied to a device using an image sensor such as a CCD device and a MOS device such as a video camera.
以上においては、 積層型の複屈折性機能層を有する本発明の光学フィルター について具体的に説明したが、 本発明において、 複屈折性機能層が複数の光学 フィルムを有してなる積層型であることは必須のことではない。 すなわち、 本 発明においては、 複屈折性機能層を単一の複屈折性重合体フィルムのみによつ て構成することもできる。 この場合には、 光学フィルタ一は、 複屈折性重合体 フィルムが透明基板の上に硬化接着層を介して一体に接合され、 当該複屈折性 重合体フィルムの表面上に保護層が形成された構成とされる。  In the above, the optical filter of the present invention having a laminated birefringent functional layer has been specifically described. In the present invention, the birefringent functional layer is a laminated type having a plurality of optical films. That is not essential. That is, in the present invention, the birefringent functional layer can be constituted by only a single birefringent polymer film. In this case, in the optical filter 1, the birefringent polymer film was integrally bonded on the transparent substrate via the cured adhesive layer, and the protective layer was formed on the surface of the birefringent polymer film. Configuration.
そして、 このような構成の光学フィルタ一は、 上記の複屈折性機能層が積層 型である光学フィルターの製造方法に準ずる方法によって製造することができ 同様の効果を得ることができる。  The optical filter 1 having such a configuration can be manufactured by a method according to the method for manufacturing an optical filter in which the birefringent functional layer is a laminated type, and the same effect can be obtained.
以下、 本発明の実施例について説明するが、 本発明はこれらによって限定さ れるものではない。  Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
なお、 以下の実施例において、 「部」 は 「質量部」 を意味する。  In the following examples, “parts” means “parts by mass”.
実施例 1 Example 1
( 1 ) 重合体フィルム F Aの製造  (1) Production of polymer film FA
<光重合性液晶組成物の調製 > <Preparation of photopolymerizable liquid crystal composition>
下記の液晶性単量体成分の 1 0 0部に、 下記の光重合開始剤の 1部おょぴ酸 化防止剤 0 . 2部を添加して溶解させることにより、 光重合性液晶組成物を調 製した。  To 100 parts of the following liquid crystalline monomer component, 1 part of the following photopolymerization initiator and 0.2 part of an antioxidant were added and dissolved to obtain a photopolymerizable liquid crystal composition. Was prepared.
〔重合性単量体〕  (Polymerizable monomer)
下記の式 (1 ) で示される化合物 (A) 3 5モル%および式 (2 ) で示され る化合物 (B ) 3 5モル%ょりなる液晶性単量体成分と、 式 (3 ) で示される 化合物 ( C ) 3 0モル%よりなる架橋性単量体成分との組成物 式 ( 1 ) 化合物 (A ) 35 mol% of the compound (A) represented by the following formula (1) and 35 mol% of the compound (B) represented by the formula (2): Composition with a crosslinkable monomer component consisting of 30 mol% of the compound (C) shown Formula (1) Compound (A)
Figure imgf000020_0001
式 ( 2 ) 化合物 (B )
Figure imgf000020_0001
Formula (2) Compound (B)
Figure imgf000020_0002
式 ( 3 ) 化合物 (C )
Figure imgf000020_0002
Formula (3) Compound (C)
Figure imgf000020_0003
Figure imgf000020_0003
〔光重合開始剤〕 (Photopolymerization initiator)
ビス (2, 6—ジメ トキシベンゾィル) 一 2, 4, 4一トリメチルーペンチ ノレフォスフィンォキシドと、 1—ヒ ドロキシシク口へキシル一フエ二ルケトン との質量比で 1 : 3の混合物  A mixture of bis (2,6-dimethoxybenzoyl) -1,2,4,4-trimethyl-pentinolephosphinfoxide and 1-hydroxycyclohexyl-1-phenylketone in a mass ratio of 1: 3.
(商品名 「ィルガキュア 1 8 0 0」 チパスペシャルケミカルズ社製) 〔酸化防止剤〕 1, 3, 5—トリス (3 , 5—ジ一 t—プチル一 4ーヒドロキシベンジル) 一 s—トリアジン一2 , 4 , 6— (1 H、 3 H、 5 H) トリオン (Product name "IRGACURE 1800" manufactured by Chipa Special Chemicals Co., Ltd.) [Antioxidant] 1,3,5-tris (3,5-di-t-butyl-1-hydroxybenzyl) s-triazine-1,2,4,6 -— (1H, 3H, 5H) trione
(商品名 「アデカスタブ AO— 2 0」 旭電化社製)  (Product name "ADK STAB AO-20" manufactured by Asahi Denka Co., Ltd.)
<キャスト用ガラスセルの作製 > <Preparation of cast glass cell>
図 4に示すように、 各々、 直径 4 0 mm、 厚さ 3 mmのガラスよりなる 2枚 の成型用基板 5 2、 5 2を0 . 1 mmの間隙を介して平行に対向させ、 当該 2 枚の成型用基板 5 2、 5 2の外周面にわたってシール用テープ 5 4を共通に貼 り付けることにより、 直径 4 0 mm、 厚さ 0 . 1 mmの円形のシールされた成 型用空間を有するキャスト用ガラスセル 5 0を作製した。 ここに用いられたガ ラス板は、 通常の洗浄後に更にプラズマ洗浄処理されたものである。  As shown in FIG. 4, two molding substrates 52, 52 each made of glass having a diameter of 40 mm and a thickness of 3 mm were opposed to each other in parallel with a gap of 0.1 mm. By applying a sealing tape 54 in common over the outer peripheral surfaces of the two molding substrates 52, 52, a circular sealed molding space having a diameter of 40 mm and a thickness of 0.1 mm is formed. A glass cell 50 for casting was produced. The glass plate used here has been subjected to a plasma cleaning treatment after normal cleaning.
<光重合処理 > <Photopolymerization treatment>
上記の光重合性液晶組成物を、 5 0 °Cに温めておいた上記キャスト用ガラス セル 5 0の成型用空間内に注入することにより、 光重合性液晶組成物の薄層 L を形成し、 次いで、 注入口をシール用テープでシールした後、 遮光雰囲気中に おいて 5 0 °Cに加温した。  The photopolymerizable liquid crystal composition was injected into the molding space of the casting glass cell 50 warmed to 50 ° C. to form a thin layer L of the photopolymerizable liquid crystal composition. Next, the inlet was sealed with a sealing tape, and then heated to 50 ° C. in a light-shielded atmosphere.
図 5に示すように、 この光重合性液晶組成物が封入されたキャスト用ガラス セル 5 0を、 強度が 5テスラの平行磁場中であって、 成形用基板 5 2の表面に 対する磁力線の方向 (図 5において矢印 Jで示す。 ) のなす角 0が 4 5度とな る角度状態に保持したセル台 (図示せず) に載せて支持し、 キャスト用ガラス セル 5 0の温度が 2 5 °Cに維持されるよう冷却しながら 4分間保持することに より、 光重合性液晶組成物中の液晶分子 Mの配向処理を行い、 その後、 紫外線 放射ランプにより 1 6 mW/ c m 2 の強度の紫外線を室温で 6 0秒間間照射 して光重合性液晶組成物の光重合処理を行つた。  As shown in FIG. 5, the glass cell 50 for casting in which the photopolymerizable liquid crystal composition was sealed was placed in a parallel magnetic field having a strength of 5 Tesla, and the direction of the magnetic field lines with respect to the surface of the molding substrate 52 was measured. (Indicated by the arrow J in FIG. 5.) The glass cell 50 for casting was placed on and supported by a cell table (not shown) that was held at an angle of 0 to 45 degrees. The liquid crystal molecules M in the photopolymerizable liquid crystal composition were aligned by holding the liquid for 4 minutes while cooling so that the liquid crystal composition was maintained at a temperature of ° C. Thereafter, an intensity of 16 mW / cm 2 was obtained using an ultraviolet radiation lamp. Ultraviolet rays were irradiated at room temperature for 60 seconds to perform photopolymerization of the photopolymerizable liquid crystal composition.
<光学異方性高分子フィルムの取得〉 <Acquisition of optically anisotropic polymer film>
以上のようにして得られた成型用複合体を温度 8 5 °Cのオーブン中に 1 5時 間放置して後重合処理を行った後、 室温にまで冷却し、 得られたセル複合体の ガラスセルを解体して、 厚みが 1 0 0 μ ηιの重合体フィルム F Aを得た。  The molding composite obtained as described above was left in an oven at a temperature of 85 ° C for 15 hours to perform post-polymerization treatment, and then cooled to room temperature. The glass cell was disassembled to obtain a polymer film FA having a thickness of 100 μηι.
この重合体フィルム F Αは、 複屈折性を示し、 像分離量は 3 . 7 mであり ヘイズ値は 1. 2であってきわめて高い透明性を有するものであった。 This polymer film F exhibits birefringence, and the image separation amount is 3.7 m. The haze value was 1.2, indicating a very high transparency.
(2) 重合体フィルム FB  (2) Polymer film FB
上記の重合体フィルム F Aの場合と全く同様の方法により製造された、 同様 の形状およぴ特性を有するものを重合体フィルム F Bとして用いた。  As the polymer film FB, a film having the same shape and characteristics produced by the same method as that of the above-mentioned polymer film FA was used.
(3) 光学フィルターの製造  (3) Production of optical filters
図 2および図 3によって説明した方法に従い、 厚さが 0. 5mmの透明ガラ ス板を透明基板として用い、 その上面上に、 紫外線硬化型接着剤により下層接 着剤層 14 aを形成し、 その上に、 上記の重合体フィルム F Aを第 1の光学 フィルムとして配置した。  According to the method described with reference to FIG. 2 and FIG. 3, a transparent glass plate having a thickness of 0.5 mm is used as a transparent substrate, and a lower adhesive layer 14a is formed on the upper surface thereof with an ultraviolet curable adhesive. On top of that, the above-mentioned polymer film FA was arranged as a first optical film.
次いで、 この重合体フィルム FAの上に、 上記と同様の紫外線硬化型接着剤 により第 1の層間接着剤層 B 1 aを形成し、 この第 1の層間接着剤層 B 1 a上 に、 1Z4波長板としての機能を有するポリビ-ルアルコールよりなる厚さ 1 00 μπιの重合体フィルムを第 2の光学フィルム F 2として配置し、 この第 2 の光学フィルム F 2上に、 第 1の層間接着剤層 Β 1 aと同様にして第 2の層間 接着剤層 B 2 aを形成し、 この第 2の層間接着剤層 B 2 a上に、 上記の重合体 フィルム FBを第 3の光学フィルム F 3として、 その配向方向が第 1の光学フ イルム F 1に対して 90度異なる状態で配置した。  Next, a first interlayer adhesive layer B1a is formed on the polymer film FA using the same ultraviolet curable adhesive as described above, and 1Z4 is formed on the first interlayer adhesive layer B1a. A 100 μπι thick polymer film made of polyvinyl alcohol having a function as a wave plate is disposed as a second optical film F 2, and a first interlayer adhesive is formed on the second optical film F 2. A second interlayer adhesive layer B 2 a is formed in the same manner as the agent layer Β 1 a, and the polymer film FB is placed on the third optical film F on the second interlayer adhesive layer B 2 a. As No. 3, they were arranged so that their orientation directions differed by 90 degrees from the first optical film F1.
更に、 この重合体フィルム FBの上に、 上記と同様の紫外線硬化型接着剤に より、 厚さ 20 の保護層形成材料層 30 aを形成し、 これにより、 フィル ター前駆体 10 aを作製した。  Further, a protective layer forming material layer 30a having a thickness of 20 was formed on the polymer film FB by using the same ultraviolet curable adhesive as described above, thereby producing a filter precursor 10a. .
得られたフィルター前駆体 10 aを傾斜支持面上に支持し、 このフィルター 前駆体 10 aに対して、 ガラス板よりなる光学的平面転写用部材 40を配置し てその光学的平面 42を保護層形成材料層 30 aの表面に対接させて光学的平 面転写用部材配置工程を行った上、 この光学的平面転写用部材 40を 9. 8N The obtained filter precursor 10a is supported on an inclined support surface, and an optical plane transfer member 40 made of a glass plate is disposed on the filter precursor 10a, and the optical plane 42 is formed on the protective layer. After performing an optical planar transfer member arranging step in contact with the surface of the forming material layer 30a, the optical planar transfer member 40 is moved to 9.8 N
(l k g f ) の押圧力で下方に押圧し、 この状態で、 透明基板 12および光学 的平面転写用部材 40を介して、 100mwZcm2 のエネルギー強度の紫 外線を 60秒間照射して硬化処理工程を行い、 これにより、 図 1に示された構 成の光学フィルターを製造した。 このようにして得られた光学フィルタ一は、 下層接着剤層 1 4 aによる硬化 接着層 1 4の厚さが 5 111、 第 1の層間硬化接着層 B 1および第 2の層間硬化 接着層 B 2の厚さが共に 1 0 μ πι、 保護層 3 0の厚さが 1 5 μ πι、 全体の合計 厚さが 8 4 0 /z mのものであり、 かつ、 保護層 3 0の表面は光学的平面であつ て、 縦 1 c m、 横 1 c mの任意の領域のニュートンリングの最大数を調べたと ころ 5本であった。 (lkgf) is pressed downward, and in this state, a curing process is performed by irradiating an ultraviolet ray having an energy intensity of 100 mwZcm2 for 60 seconds through the transparent substrate 12 and the optical plane transfer member 40, Thus, an optical filter having the configuration shown in FIG. 1 was manufactured. The optical filter 1 thus obtained has a thickness of 5111, a first interlayer cured adhesive layer B 1 and a second interlayer cured adhesive layer B cured by the lower adhesive layer 14 a. The thickness of both 2 is 10 μππι, the thickness of the protective layer 30 is 15 μππι, the total thickness is 840 / zm, and the surface of the protective layer 30 is optical. The maximum number of Newton rings in an arbitrary area of 1 cm in length and 1 cm in width was examined.
また、 この光学フィルターの光学的特性は、 可視光線透過率が 9 0 %、 水平 方向光線分離距離が 3 . 5 μ m、 垂直方向光線分離距離が 3 · 5 mであった c 発 明 の 効 果 The optical properties of the optical filter, the visible light transmittance of 90%, the horizontal beam separation distance 3. 5 mu m, the vertical beam separation distance of light c onset was 3 · 5 m effective Fruit
本発明の光学フィルタ一は、 複屈折性重合体フィルムにより構成された複屈 折性機能層が、 非変形性を有する透明基板に一体に設けられているために、 例 えば光学的ローパスフィルターとしての機能が得られ、 また、 複屈折性機能層 が複数の複屈折性重合体フィルムを有する場合あるいは複屈折性重合体フィル ムと共に適宜の光学特性を有する他の光学フィルムを有する場合には、 その構 成に応じて全体として所望の光学的特性を発揮する光学フィルターを容易に提 供することができる。  In the optical filter of the present invention, since the birefringent functional layer composed of the birefringent polymer film is provided integrally on a non-deformable transparent substrate, for example, as an optical low-pass filter When the birefringent functional layer has a plurality of birefringent polymer films or has another optical film having appropriate optical characteristics together with the birefringent polymer film, An optical filter that exhibits desired optical characteristics as a whole can be easily provided according to the configuration.
しかも、 光学平面を有する光学的平面転写用部材を用いることによって容易 に保護層の表面に光学的平面を導入することが可能で、 入射光の散乱や乱反射 による光の損失が少ない点、 並びに、 処理される画像に与える歪みが小さい点 で優れた性能を得ることができる。 また併せて、 複屈折性機能層が、 非変形性 を有する透明基板に一体に設けられているために全体として 1つの光学フィル ターとして取り扱うことができ、 従つて各種の光学装置に適用あるいは装着す る上で便利である。  Moreover, by using an optical plane transfer member having an optical plane, an optical plane can be easily introduced to the surface of the protective layer, and light loss due to scattering or irregular reflection of incident light is small, and Excellent performance can be obtained in that the distortion applied to the processed image is small. In addition, since the birefringent functional layer is integrally provided on a non-deformable transparent substrate, it can be handled as one optical filter as a whole, and therefore can be applied or mounted to various optical devices. This is convenient for cleaning.
液晶性単量体成分と架橋性単量体成分とを重合する方法によつて製造される 複屈折性重合体フィルムは、 各単量体の種類を選択することにより、 厚みが小 さくてヘイズ値の小さい特長を有するものとなる。 そして、 本発明の構成によ れば、 このような複屈折性重合体フィルムを用いて複屈折性機能層を構成する ことにより、 当該複屈折性重合体フィルムの特長を損なうことなしに、 目的と する光学的性能を有する光学フィルターを確実に得ることができる。 The birefringent polymer film produced by a method of polymerizing a liquid crystalline monomer component and a crosslinkable monomer component has a small thickness and a haze by selecting the type of each monomer. It has the feature of small value. According to the configuration of the present invention, a birefringent functional layer is formed using such a birefringent polymer film. This makes it possible to reliably obtain an optical filter having the intended optical performance without impairing the characteristics of the birefringent polymer film.
また、 透明基板として赤外線非透過性または視感度捕正機能を有するものを 用いることにより、 複屈折性機能層による光学的作用に加えて、 当該複屈折性 機能層のみによっては実現が困難な光学的特性を容易に加重的に有する光学 フィルターを提供することができる。  In addition, by using a transparent substrate having an infrared non-transmitting property or a luminous efficiency capturing function, in addition to the optical function of the birefringent functional layer, an optical element that is difficult to be realized only by the birefringent functional layer is used. It is possible to provide an optical filter having the weight characteristic easily and weight.
本発明の製造方法によれば、 複屈折性機能層を構成する複屈折性重合体フィ ルムおよび他の光学フィルムが、 平面に沿って延びる平板状の形態を有し、 し わなどの局部的な変形の生じていない好適な状態を達成することができると共 に、 複屈折性機能層形成材の透明基板に対する一体的な接合、 並びに、 光学的 平面を有する保護層の形成を同時に達成することができるので、 きわめて容易 に目的とする光学フィルターを製造することができる。  According to the production method of the present invention, the birefringent polymer film and the other optical film constituting the birefringent functional layer have a flat plate shape extending along a plane, and have a local shape such as wrinkles. In addition to achieving a suitable state in which no major deformation occurs, the bonding of the birefringent functional layer forming material to the transparent substrate and the formation of a protective layer having an optical plane are simultaneously achieved. Therefore, the intended optical filter can be manufactured very easily.
また、 複屈折性機能層を複数の光学フイルムにより構成されたものとする場 合には、 当該複屈折性機能層の形成を、 当該複屈折性機能層の透明基板に対す る接合およぴ保護層の形成と同時に達成することができるので、 きわめて容易 に目的とする光学フィルターを製造することができる。  In the case where the birefringent functional layer is constituted by a plurality of optical films, the formation of the birefringent functional layer is performed by bonding the birefringent functional layer to the transparent substrate. Since it can be achieved at the same time as the formation of the protective layer, the intended optical filter can be produced very easily.

Claims

請 求 の 範 囲 The scope of the claims
〔1〕 非変形性を有する透明基板と、 この透明基板の少なくとも一面上に硬化 接着層を介して一体に設けられた複屈折性重合体フィルムにより構成された複' 屈折性機能層と、 この複屈折性機能層の表面を覆うよう設けられた樹脂よりな る保護層とよりなり、 [1] a transparent substrate having non-deformability; a birefringent functional layer composed of a birefringent polymer film integrally provided on at least one surface of the transparent substrate via a cured adhesive layer; A protective layer made of a resin provided to cover the surface of the birefringent functional layer,
前記複屈折性機能層は、 単一の複屈折性重合体フィルムにより、 または、 少 なくとも 1つの複屈折性重合体フィルムを含む複数の光学フィルムが互いに硬 化接着層を介して一体に積層されてなるフィルム積層体により、 形成されてお り、  The birefringent functional layer may be formed of a single birefringent polymer film, or a plurality of optical films including at least one birefringent polymer film may be integrally laminated with each other via a cured adhesive layer. Formed by the film laminate
前記保護層の表面が光学的平面とされていることを特徴とする光学フィル  An optical filter, wherein the surface of the protective layer is an optical plane.
〔2〕 複屈折性重合体フィルムは、 室温において液晶相を示す単量体よりなる 液晶性単量体成分と、 この液晶性単量体成分の単量体と共重合する多官能性単 量体よりなる架橋性単量体成分とを含有してなる重合性液晶組成物を重合して 得られる、 厚みが 5 0〜2 0 0 / mでヘイズ値が 1 . 5以下のものであること を特徴とする請求項 1に記 ¾の光学フィルター。 [2] The birefringent polymer film comprises a liquid crystalline monomer component composed of a monomer exhibiting a liquid crystal phase at room temperature, and a polyfunctional monomer copolymerized with the monomer of the liquid crystalline monomer component. Having a thickness of 50 to 200 / m and a haze value of 1.5 or less, obtained by polymerizing a polymerizable liquid crystal composition containing a crosslinkable monomer component comprising 2. The optical filter according to claim 1, wherein:
〔3〕 透明基板が、 赤外線非透過性および/または視感度補正機能を有するこ とを特^ [とする請求項 1または請求項 2に記載の光学フィルター。  [3] The optical filter according to claim 1 or 2, wherein the transparent substrate has an infrared non-transparency and / or a visibility correction function.
〔4〕 非変形性を有する透明基板の少なくとも一面上に、 複屈折性重合体ブイ ルムを含む複屈折性機能層形成材を、 紫外線硬化型接着剤層を介して配置する と共に、 この複屈折性機能層形成材の表面上に紫外線硬化型樹脂よりなる保護 層形成材料層が形成されてなるフィルター前駆体を形成するフィルタ一前駆体 形成工程と、  [4] A birefringent functional layer forming material containing a birefringent polymer film is disposed on at least one surface of a non-deformable transparent substrate via an ultraviolet-curable adhesive layer, and A filter-precursor forming step of forming a filter precursor in which a protective layer-forming material layer made of an ultraviolet-curable resin is formed on the surface of the functional functional layer-forming material;
このフィルター前駆体に対し、 光学的平面を有する光学的平面転写用部材を、 その光学的平面が保護層形成材料層の表面に対接する状態に配置する光学的平 面転写用部材配置工程と、 光学的平面転写用部材をフィルター前駆体の保護層形成材料層に押圧した状 態で紫外線を照射することにより、 保護層形成材料層を硬化させて光学的平面 を有する保護層を形成すると共に、 複屈折性機能層形成材と透明基板との間の 接着剤層を硬化させて硬化接着層を形成する硬化処理工程と An optical plane transfer member arranging step of arranging an optical plane transfer member having an optical plane on the filter precursor so that the optical plane is in contact with the surface of the protective layer forming material layer; By irradiating ultraviolet rays while pressing the optical plane transfer member against the protective layer forming material layer of the filter precursor, the protective layer forming material layer is cured to form a protective layer having an optical plane, A curing treatment step of curing the adhesive layer between the birefringent functional layer forming material and the transparent substrate to form a cured adhesive layer;
が行われることを特徴とする光学フィルターの製造方法。 Is carried out.
〔5〕 非変形性を有する透明基板の少なくとも一面上に、 少なくとも 1つの複 屈折性重合体フィルムを含む複数の光学フィルムが紫外線硬化型接着剤層を介 して積層されてなる複屈折性機能層形成材を、 紫外線硬化型接着剤層を介して 配置すると共に、 この複屈折性機能層形成材の表面上に紫外線硬化型樹脂より なる保護層形成材料層が形成されてなるフィルター前駆体を形成するフィル ター前駆体形成工程と、  [5] A birefringent function in which a plurality of optical films including at least one birefringent polymer film are laminated on at least one surface of a non-deformable transparent substrate via an ultraviolet-curable adhesive layer. The layer forming material is disposed via an ultraviolet-curable adhesive layer, and a filter precursor formed by forming a protective layer-forming material layer made of an ultraviolet-curable resin on the surface of the birefringent functional layer-forming material. Forming a filter precursor to be formed;
このフィルター前駆体に対し、 光学的平面を有する光学的平面転写用部材を、 その光学的平面が保護層形成材料層の表面に対接する状態に配置する光学的平 面転写用部材配置工程と、  An optical plane transfer member arranging step of arranging an optical plane transfer member having an optical plane on the filter precursor so that the optical plane is in contact with the surface of the protective layer forming material layer;
光学的平面転写用部材をフィルター前駆体の保護層形成材料層に押圧した状 態で紫外線を照射することにより、 保護層形成材料層を硬化させて光学的平面 を有する保護層を形成すると共に、 複屈折性機能層形成材を構成する光学フィ ルム相互間の接着剤層、 およぴ複屈折性機能層形成材と透明基板との間の接着 剤層を硬化させて硬化接着層を形成する硬化処理工程と  By irradiating ultraviolet rays while pressing the optical plane transfer member against the protective layer forming material layer of the filter precursor, the protective layer forming material layer is cured to form a protective layer having an optical plane, A cured adhesive layer is formed by curing the adhesive layer between the optical films constituting the birefringent functional layer forming material and the adhesive layer between the birefringent functional layer forming material and the transparent substrate. Curing process and
が行われることを特徴とする光学フィルターの製造方法。 Is carried out.
〔6〕 複屈折性重合体フィルムは、 室温において液晶相を示す単量体よりなる 液晶性単量体成分と、 この液晶性単量体成分の単量体と共重合する多官能性単 量体よりなる架橋性単量体成分とを含有してなる重合性液晶組成物を重合して 得られる、 厚みが 5 0〜2 0 0 μ mでヘイズ値が 1 . 5以下のものであること を特徴とする請求項 4または請求項 5に記載の光学フィルターの製造方法。 [6] The birefringent polymer film comprises a liquid crystalline monomer component composed of a monomer exhibiting a liquid crystal phase at room temperature, and a polyfunctional monomer copolymerized with the monomer of the liquid crystalline monomer component. Having a thickness of 50 to 200 μm and a haze value of 1.5 or less, obtained by polymerizing a polymerizable liquid crystal composition containing a crosslinkable monomer component comprising 6. The method for producing an optical filter according to claim 4, wherein:
〔7〕 硬化処理工程は、 フィルター前駆体を構成する複屈折性重合体フィルム に張力が作用された状態で行われることを特徴とする請求項 4に記載の光学 フィルターの製造方法。 〔8〕 硬化処理工程は、 フィルター前駆体を構成する光学フィルムの各々に張 力が作用された状態で行われることを特徴とする請求項 5に記載の光学フィル ターの製造方法。 [7] The method for producing an optical filter according to claim 4, wherein the curing step is performed in a state where tension is applied to the birefringent polymer film constituting the filter precursor. [8] The method for producing an optical filter according to claim 5, wherein the curing treatment step is performed in a state where tension is applied to each of the optical films constituting the filter precursor.
〔9〕 透明基板が、 赤外線非透過性および/または視感度補正機能を有するこ とを特徴とする請求項 4または請求項 5に記載の光学フィルターの製造方法。  [9] The method for producing an optical filter according to claim 4 or 5, wherein the transparent substrate has an infrared non-transmission property and / or a visibility correction function.
PCT/JP2003/000468 2002-01-21 2003-01-21 Optical filter and its production method WO2003062903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003562704A JPWO2003062903A1 (en) 2002-01-21 2003-01-21 Optical filter and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-11784 2002-01-21
JP2002011784 2002-01-21

Publications (1)

Publication Number Publication Date
WO2003062903A1 true WO2003062903A1 (en) 2003-07-31

Family

ID=27606020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000468 WO2003062903A1 (en) 2002-01-21 2003-01-21 Optical filter and its production method

Country Status (2)

Country Link
JP (1) JPWO2003062903A1 (en)
WO (1) WO2003062903A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126108A1 (en) * 2006-04-28 2007-11-08 Sumitomo Chemical Company, Limited Composite polarizing plate and liquid crystal display using the same
WO2007132940A1 (en) * 2006-05-17 2007-11-22 Sumitomo Chemical Company, Limited Polarizing plate, method for manufacturing the polarizing plate, laminated optical member, and liquid crystal display device
KR20150023375A (en) * 2012-06-25 2015-03-05 제이에스알 가부시끼가이샤 Solid-state image capture element optical filter and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335043A (en) * 1995-06-09 1996-12-17 Omron Corp Dot matrix image display module and its manufacture
US5820779A (en) * 1994-10-18 1998-10-13 Kureha Kagaku Kogyo Kabushiki Kaisha Polymeric optical low-pass filter and device thereof
JP2001075054A (en) * 1999-09-02 2001-03-23 Dainippon Ink & Chem Inc Polymer optical low-pass filter, its production and polymer optical low-pass filter composite body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820779A (en) * 1994-10-18 1998-10-13 Kureha Kagaku Kogyo Kabushiki Kaisha Polymeric optical low-pass filter and device thereof
JPH08335043A (en) * 1995-06-09 1996-12-17 Omron Corp Dot matrix image display module and its manufacture
JP2001075054A (en) * 1999-09-02 2001-03-23 Dainippon Ink & Chem Inc Polymer optical low-pass filter, its production and polymer optical low-pass filter composite body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126108A1 (en) * 2006-04-28 2007-11-08 Sumitomo Chemical Company, Limited Composite polarizing plate and liquid crystal display using the same
TWI449970B (en) * 2006-04-28 2014-08-21 Sumitomo Chemical Co Composite polarizing plate and liquid crystal display device using the same
WO2007132940A1 (en) * 2006-05-17 2007-11-22 Sumitomo Chemical Company, Limited Polarizing plate, method for manufacturing the polarizing plate, laminated optical member, and liquid crystal display device
KR20150023375A (en) * 2012-06-25 2015-03-05 제이에스알 가부시끼가이샤 Solid-state image capture element optical filter and application thereof
KR101983742B1 (en) 2012-06-25 2019-05-29 제이에스알 가부시끼가이샤 Solid-state image capture element optical filter, solid-state image capture device and camera module

Also Published As

Publication number Publication date
JPWO2003062903A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP3592383B2 (en) Polymer optical low-pass filter, composite thereof, method for producing the same, and composite optical filter
TWI380059B (en) A laminate polarizing plate, a method of producing the same and a liquid crystal display
TWI255353B (en) Laminated optical film, method for producing the same film and liquid-crystal display device using the same film
JP4363749B2 (en) Optical film
JP6724297B2 (en) Method for producing optical laminate, method for producing circularly polarizing plate, and method for producing organic electroluminescence display device
JP2016206217A (en) Optical film, transfer film, image display device, method for manufacturing optical film, and method for manufacturing transfer film
JP2020170147A (en) Liquid crystal display device
JP7377303B2 (en) Antireflection polarizing plate, optical laminate, and method for producing optical laminate
JP2005345680A (en) Optical filter and imaging device
JP2005031170A (en) Imaging apparatus and optical filter
JP2006301182A (en) Optical filter, its manufacturing method and imaging apparatus
WO2003062903A1 (en) Optical filter and its production method
WO2017170019A1 (en) Polarizing plate set and ips mode liquid crystal display using same
WO2022260134A1 (en) Optical layered body, layered optical film, optical article, and virtual reality display device
JP2001318223A (en) Phase difference plate
JP2006276353A (en) Optical compensation plate and reflection type liquid crystal projector using same
TW200420919A (en) Method for manufacturing a phase plate
JPH0830766B2 (en) Composite phase plate
TWI254137B (en) Optical anisotropic film
JP4967563B2 (en) Polymer optical low-pass filter and manufacturing method thereof
JP2018189825A (en) Laminate and display
JP2003195050A (en) Method for manufacturing optically anisotropic polymer molding
JP2008076790A (en) Method for manufacturing optically anisotropic polymer thin film
JP6756112B2 (en) Optical film and image display device
JP2021124648A (en) Laminated retardation plate and method for producing the same, elliptical polarizing plate and method for producing the same, and image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003562704

Country of ref document: JP

122 Ep: pct application non-entry in european phase