WO2003052167A1 - Apparatus for generating f2 gas and method for generating f2 gas, and f2 gas - Google Patents

Apparatus for generating f2 gas and method for generating f2 gas, and f2 gas Download PDF

Info

Publication number
WO2003052167A1
WO2003052167A1 PCT/JP2002/012868 JP0212868W WO03052167A1 WO 2003052167 A1 WO2003052167 A1 WO 2003052167A1 JP 0212868 W JP0212868 W JP 0212868W WO 03052167 A1 WO03052167 A1 WO 03052167A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
preparation system
generating
preparation
electrolytic bath
Prior art date
Application number
PCT/JP2002/012868
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuro Tojo
Jiro Hiraiwa
Hitoshi Takebayashi
Yoshitomi Tada
Original Assignee
Toyo Tanso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co., Ltd. filed Critical Toyo Tanso Co., Ltd.
Priority to AU2002349510A priority Critical patent/AU2002349510A1/en
Priority to JP2003553033A priority patent/JP3569279B2/en
Priority to KR1020047007949A priority patent/KR100712345B1/en
Priority to EP02783802A priority patent/EP1457586A4/en
Priority to US10/497,158 priority patent/US20050006248A1/en
Publication of WO2003052167A1 publication Critical patent/WO2003052167A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/085Removing impurities

Definitions

  • the present invention relates to an F 2 gas generator, a 2 gas generating method, and an F 2 gas.
  • F 2 gas obtained by the very small high purity F 2 gas to generate the F 2 gas generator and F 2 gas generating method Narabiniko these impurities are used in the manufacturing process of a semiconductor or the like. Background art
  • F 2 gas is used as a base stem gas indispensable in example semiconductor manufacturing field. In some cases, it is used as such, but recently, nitrogen trifluoride gas (hereinafter referred to as NF 3 gas) or the like is synthesized based on F 2 gas, and the synthesized gas is used as a cleaning gas or dry gas for semiconductors. Used as an etching gas.
  • NF 3 gas nitrogen trifluoride gas
  • NeF gas neon fluoride gas
  • ArF gas argon fluoride gas
  • KrF gas krypton fluoride gas
  • This F 2 gas is generated by electrolysis using a carbon bath as an anode and nickel as a cathode in an electrolytic cell containing a bath composed of a predetermined amount of KF ⁇ HF.
  • KFHFHF contained in an electrolytic cell is used as KF ⁇ 2HF by first charging a predetermined amount of KF ⁇ HF and then supplying HF appropriately. At this time, the required amount of bath is prepared by introducing the insufficient KF ⁇ HF as KF ⁇ 2HF and supplying HF again.
  • KF which is a component of the bath, has high hygroscopicity and generally contains water during bathing. We have made the contents of the application relating to previous high-purity fluorine generator few impurities in (WO 01 / 77412A 1) 0
  • the F 2 gas generated in this way contains 45 to 55% oxygen in the F 2 gas generated at the beginning.
  • the generated F 2 gas and the water contained in the electrolytic bath generally reduce the amount of oxygen contained in the F 2 gas by a reaction represented by the following equation (1). However, it is difficult to reduce the amount to less than 300 ppm.
  • High-purity F 2 gas is required for the surface treatment of the excimer laser oscillation gas and the excimer laser stepper lens (C a F 2 single crystal) described above.
  • the oxygen concentration contained in the F 2 gas is less than l ppm ppm for the former excimer laser oscillation gas, and the oxygen concentration for the surface treatment gas of the latter excimer laser one stepper lens (C a F 2 single crystal). Less than 500 ppm is required.
  • the present invention aims to provide an oxygen content is very low, F 2 gas generator and F 2 gas generating method and high purity F 2 gas can be stably generated with high purity F 2 gas And Disclosure of the invention
  • the object F 2 gas generating apparatus of the present invention for solving the is a 2 gas generator by electrolysis of electrodeposition bath consisting of KF ⁇ 2H F to generate a high purity F 2 gas, KF or A preparation system for preparing KF ⁇ HF into KF ⁇ 2HF, an HF supply system for supplying HF to the electrolytic bath and the preparation system, and an electrolysis of KF ⁇ 2HF prepared by the preparation system to produce F 2 gas Occurs F. And a gas generating system. After preparation from KF or KF ⁇ HF in a preparation system closed to KF ⁇ 2HF, this prepared KF 2HF is put into an electrolytic cell tightly connected to this preparation system.
  • the KF ⁇ 2HF introduced into the electrolytic cell can be used as an electrolytic bath without absorbing moisture, that is, with a low oxygen content.
  • the amount of oxygen contained in the F 2 gas obtained by electrolyzing the electrolytic bath can be made very small from the initial stage of generation.
  • the F 2 gas generating apparatus of the present invention is characterized in that the preparation system is provided with a water removing means for removing water in the KF or KF.HF.
  • the generated F 2 gas has an oxygen concentration of 2% or less.
  • the oxygen concentration in the F 2 gas is reduced to 2% or less, preferably 0.2% or less (2000 ppm or less), and more preferably 0.02% or less (200 ppm or less). Therefore, it is possible to use or excimer laser oscillation gases, as the surface treatment gas excimer laser stepper lens (C a F 2 single crystals).
  • F 2 gas generating apparatus of the present invention KF ⁇ 2 electrolytic bath consisting of HF by electrolyzing an F 2 gas generating apparatus for generating an F 2 gas, KF Wakashi Ku KF from KF 'HF ⁇ 2 preparation system for preparing the HF, the electrolytic bath ⁇ beauty said a HF supply system for supplying HF to the preparation system, the preparation systems of by connexion adjustment made by the KF ⁇ 2 HF to by electrolyzing F 2 gas It is provided with, and F 2 gas generating system for generating, the preparation system, the moisture control hand to adjust the moisture of HF supply system and F 2 each system of the gas generating system or in the system as a whole outside atmosphere A step is provided.
  • the moisture control means for adjusting the water content of the HF supply system and F 2 each system of the gas generating system or in the system as a whole outside atmosphere is provided, it is possible to reliably suppress the incorporation of oxygen .
  • the moisture control means is a housing capable of controlling the atmosphere inside the system or the whole system.
  • the moisture control means is a housing capable of controlling the atmosphere, it is possible to easily adjust the atmospheric humidity of each system or the entire system. As a result, the incorporation of oxygen can be reliably suppressed.
  • F 2 gas generating method of the present invention is an F 2 gas generating method for generating an F 2 gas by electrolyzing an electrolytic bath comprising a KF ⁇ 2 HF, KF young properly the water in KF ⁇ HF
  • a preparation system for preparing KF or KFHF which is provided with a moisture removing means for removing water
  • the KF or KFHF is heated for a predetermined time under a vacuum or an inert gas atmosphere.
  • the mixture is cooled to room temperature in a vacuum or an inert gas atmosphere, and then HF gasified from an HF supply system is supplied to the preparation system, and the KF or KF ⁇ HF is supplied in the preparation system.
  • KF ′ HF is heated at 200 to 300 ° C. to remove the KF or KF ⁇ HF adsorbed water and water of crystallization.
  • F 2 gas of the present invention KF or KF 'moisture removing means for removing moisture in the HF is attached KF or KF ⁇ HF and KF - 2 in the preparation system for preparing the HF, the KF or KF ''
  • the HF is heated and degassed for a specified time in a vacuum or inert gas atmosphere, cooled to room temperature in a vacuum or inert gas atmosphere, and then vaporized from the HF supply system into the preparation system.
  • the HF is supplied to the KF or KF ⁇ HF and the HF is reacted in the preparation system to generate KF ⁇ 2 HF, and the KF ⁇ 2 HF is converted into an F 2 gas generation system.
  • F 2 gas of the present invention the oxygen concentration is 2% or less.
  • the oxygen concentration in the F 2 gas is preferably reduced to 0.2% or less (2000 ppm or less), and more preferably to 0.02% or less (200 ppm or less). For this reason, it can be used as an excimer laser oscillation gas or a surface treatment gas for an excimer laser stepper lens (C a F 2 single crystal).
  • FIG. 1 is a schematic diagram of a fluorine gas generator of the present invention.
  • Figure 2 shows , The current amount in the case of Example 1 and Comparative Example 1, 3 is a diagram showing a ⁇ 2 of the relationship F 2 gas.
  • the F 2 gas generator G in the present embodiment generates high-purity F 2 gas by electrolyzing an electrolytic bath 24 composed of KF ⁇ 2 HF, and converts KF or KF.HF into KF ⁇ 2 generation and preparation system a for preparing the HF, and HF supply system B supplies HF to the electrolytic bath 24 and preparation system a, the electrolysis to F 2 gas KF ⁇ 2HF prepared Te prepared based a Niyotsu And an F 2 gas generating system C.
  • the preparation system A to be prepared into 2HF is a KF2HF preparation device 7 composed of a Ni container 7a for storing KF10 and an upper lid 7b for sealing the container 7a.
  • an HF cylinder 11 placed on a load cell 12 is installed in a casten 13.
  • the cast 13 is connected to an acrylic scrubber (not shown).
  • the surface of the HF cylinder 11 is covered with a heater 14, so that the inside of the HF cylinder 11 is maintained at a predetermined temperature.
  • to measure the gas amount of HF cylinder 1 1, preparation system A and F 2 gas onset The amount of HF gas supplied to raw system C is measured.
  • the HF cylinder 11 is connected to the preparation system A by an HF delivery pipe 5.
  • the F 2 gas generating system C mainly comprises an electrolytic bath 24 composed of a mixed molten salt of KF and 2HF, an electrolytic bath 20 containing the electrolytic bath 24, and an anode 22 and a cathode 23 for electrolyzing the electrolytic bath 24. It is configured as a part.
  • the electrolytic cell 20 is integrally formed of a metal such as Ni, Monel, pure iron, and stainless steel.
  • the electrolytic cell 20 is separated into an anode chamber 28 and a cathode chamber 29 by a partition wall 27 made of Ni or Monel.
  • the anode chamber 28 is provided with an anode 22 made of low-polarizable carbon
  • the cathode chamber 29 is provided with a cathode 23 made of Ni or Fe.
  • the upper lid 30 of the electrolytic cell 20 is provided with a discharge port 25 of F 2 gas generated from the anode chamber 28 and the cathode chamber 29 and a discharge port 26 of H 2 gas generated from the cathode chamber 7.
  • the electrolytic cell 20 is provided with a heater 31 for heating the inside of the electrolytic cell 20.
  • a heat insulating material is provided around the heater 12.
  • the shape of the heater 12 is not particularly limited, such as a ripon-type heater or an echrome wire, but it is preferable that the heater 12 be shaped so as to cover the entire circumference of the electrolytic cell 2.
  • the evacuation system D is composed of a molecular sheep 16 and a vacuum pump 17. Then, when the KF 10 contained in the preparation system A is heated by the heater 9, the water desorbed from the KF 10 is sucked.
  • container 7a After preliminarily heat-treating preparation system A at 250 to 300 ° C. by heater 9, container 7a is charged with a predetermined amount of KF10. Then, it is heated again to 250-300 ° C. under a vacuum or a purge of ultra-high purity inert gas, and kept for 24-48 hours to dry the KF10. At this time, vacuum piping The valve 2a is opened, the valves 3a and 4b are closed, and the container 7b is exhausted by the vacuum exhaust system D. Thus, KF10 is heated again to 250 to 300 ° C under the purging of ultra-high purity inert gas and heat treated for 24 to 48 hours to desorb the adsorbed water and water of crystallization in KF10. be able to.
  • thermogravimetric method of F (hereinafter referred to as TG) and the differential thermal analysis (Differential Thermo 1 Analysis, hereinafter referred to as DTA) were performed at 43.4 °.
  • Endothermic peaks at C, 64.4 ° C, 90.8 ° C and 151.6 ° C were observed.
  • the endothermic peaks at 43.4 ° C, 64.4 ° C, and 90.8 ° C were due to adsorbed water, and the peak at 151.6 ° C was due to desorption of crystal water.
  • KF which is the raw material
  • the water of crystallization corresponding to the endothermic peak that appears at 151.6 ° C in DTA has strong interaction with KF, and the HF mainly contained in the electrolytic bath forms a network by hydrogen bonding. It is thought that this water of crystallization becomes difficult to diffuse when it is in a very small amount, and it is difficult to remove it. Therefore, as described above, the KF is heated again to 250 to 300 ° C. under a purge of ultra-high purity inert gas and heat-treated for 24 to 48 hours, preferably for 10 to 30 hours, to obtain the crystal. Water can be desorbed.
  • HF is introduced into the preparation system A, and when the HF with respect to KF 10 becomes higher than the molar ratio of KF ⁇ HF, the supply rate of HF can be increased.
  • valve 5a was closed and valve 4a was opened at the same time, and high-purity inert gas was piped. It is introduced from 1 and exhausted from the inert gas purge pipe 3. This is to prevent the backflow solidification of KF ⁇ 2HF into pipe 1 due to the rapid absorption of HF I KF 10 in pipe 1 into KF ⁇ 2HF 10 prepared into KF ⁇ 2HF. is there.
  • the valve 4b is closed.
  • an inert gas is supplied from the inert gas purge pipe 3.
  • valves 18 and 19 are opened.
  • the preparation system A sends out the prepared KF ⁇ 2HF from the pipe 1 into the electrolytic cell 20 of the F 2 gas generation system C by the gas pressure of the inert gas introduced from the inert gas purge pipe 3.
  • the electrolytic cell 20 is heat-treated at 250 to 300 ° C. in advance to desorb adsorbed water and the like.
  • the F 2 gas generator according to the present invention it is possible to supply high-purity KF ⁇ 2HF having a small amount of adsorbed water into the electrolytic cell of the F 2 gas generator without bringing it into contact with air.
  • High purity electrolysis bath KF-2HF bath can be built in the electrolyzer. As a result, the oxygen concentration in the electrolytic bath is extremely reduced.
  • each of the preparation system A, the HF supply system B, and the F 2 gas generation system C can be housed in a housing whose atmosphere can be controlled. This Thereby, the humidity of the external atmosphere of each system can be adjusted, and oxygen mixed into each system can be suppressed.
  • the entire system, that is, the two gas generators G can be housed in one housing.
  • F 2 gas generation device and the F 2 gas generation method according to the present invention are not limited to the above-described embodiment.
  • the preparation system A was previously heated at 250 to 300 ° C by a heater 19, and then KF 10 was charged into the vessel 7a, and the purity was 99.9999.
  • the KF 10 was dried again by heating to 250-300 ° C. under a purge of% high purity N 2 gas and holding for 24-48 hours. Thereafter, the mixture was cooled to room temperature, and HF was introduced into KF 10 of Preparation System A. At this time, water was flowed through the cooling water pipe 8 to cool the KF ⁇ 2HF preparation device 7 so that the temperature became 100 ° C. or less.
  • Example 2 The same KF ⁇ 2 HF as in Example 1 was used as the electrolytic bath, the F 2 gas generating system C was housed in a casing (not shown) serving as a moisture control means, the humidity inside the casing was controlled to 40%, and the anode was Using a carbon electrode and a Ni electrode as a cathode, constant current electrolysis was performed at an applied current density of 2 OAZ dm 2 . Then, when the amount of O 2 in the generated F 2 gas was measured by gas chromatography at the time of the amount of electricity of about 100 Ahr, it was about 70 ppm.
  • Example 2 The same KF2HF as in Example 1 was used as an electrolytic bath, and in F 2 gas generating system C, constant current electrolysis was performed at an applied current density of lAZdm 2 using a carbon electrode as the anode and a Ni electrode as the cathode. . Then, when the amount of O 2 in the generated F 2 gas was measured by gas chromatography at the time of the amount of electricity of about 10 OAhr, it was about 21000 ppm.
  • This TsutomuAkira is configured as described above, KF is dried, after the adsorbed water and crystal water of the surface is desorbed, by using the KF ⁇ 2HF, from the initial F 2 gas generation, comprising It is possible to stably generate F 2 gas having a very low oxygen concentration.

Abstract

An apparatus (G) for generating a F2 gas having a high purity through electrolyzing an electrolytic bath (24) comprising KF · 2HF, characterized in that it has a preparation system (A) for preparing KF · 2HF from KF or KF · 2HF, a HF supplying system (B) for supplying HF to the electrolytic bath (24) and the preparation system (A), and a F2 gas generating system (C) for electrolyzing KF · 2HF prepared by the preparation system (A), to generate a F2 gas.

Description

明 細 書  Specification
F 2ガス発生装置及び F 2ガス発生方法並びに F 2ガス 技術分野 F 2 gas generator, F 2 gas generation method, and F 2 gas technical field
本発明は、 F2ガス発生装置及ぴ 2ガス発生方法並びに F2ガスに関 する。 特に半導体等の製造工程に使用される不純物の極めて少ない高 純度 F 2ガスを発生する F 2ガス発生装置及び F 2ガス発生方法並びにこ れらによって得られる F2ガスに関する。 背景技術 The present invention relates to an F 2 gas generator, a 2 gas generating method, and an F 2 gas. In particular to F 2 gas obtained by the very small high purity F 2 gas to generate the F 2 gas generator and F 2 gas generating method Narabiniko these impurities are used in the manufacturing process of a semiconductor or the like. Background art
F2ガスは、 例えば半導体製造分野においては欠くことのできない基 幹ガスとして使用されている。 そして、 それ自体で用いられる場合も あるが、 最近では、 F2ガスを基にして三フッ化窒素ガス (以下、 NF 3ガスという。) 等を合成し、 これを半導体のクリーニングガスやドラ ィエッチング用ガスとして使用している。 また、 フッ化ネオンガス (以下、 N e Fガスという。)、 フッ化アルゴンガス (以下、 Ar Fガ スという。)、 フッ化クリプトンガス (以下、 K r Fガスという。) 等は 半導体集積回路のパターニングの際に用いられるエキシマレーザー発 振用ガスであり、 その原料には希ガスと F 2ガスの混合ガスが多用され ている。 F 2 gas is used as a base stem gas indispensable in example semiconductor manufacturing field. In some cases, it is used as such, but recently, nitrogen trifluoride gas (hereinafter referred to as NF 3 gas) or the like is synthesized based on F 2 gas, and the synthesized gas is used as a cleaning gas or dry gas for semiconductors. Used as an etching gas. In addition, neon fluoride gas (hereinafter, referred to as NeF gas), argon fluoride gas (hereinafter, referred to as ArF gas), krypton fluoride gas (hereinafter, referred to as KrF gas), and the like are semiconductor integrated circuits. This is an excimer laser oscillation gas used for patterning, and a mixed gas of rare gas and F 2 gas is often used as a raw material.
この F2ガスは、 所定量の KF · HFからなる浴が収納された電解槽 で、'炭素を陽極、 ニッケルを陰極として電気分解して発生させている 。 一般に、 電解槽中に収納されている KF ■ HFは、 初めに KF ■ H Fを所定量投入し、 その後、 HFを適宜供給して KF ■ 2HFとして 使用されている。 この際、 KF ■ 2HFとして不足分の KF ■ HFを 投入し、 再度 HFを供給することにより、 所定量の浴が調製される。 浴の成分である K Fは吸湿性が高く、 建浴時に水分を含むのが一般的 である。 我々は、 先に不純物が少ない高純度フッ素発生装置に関する 内容の出願を行った (WO 01/77412A 1)0 This F 2 gas is generated by electrolysis using a carbon bath as an anode and nickel as a cathode in an electrolytic cell containing a bath composed of a predetermined amount of KF · HF. In general, KFHFHF contained in an electrolytic cell is used as KF ■ 2HF by first charging a predetermined amount of KF ■ HF and then supplying HF appropriately. At this time, the required amount of bath is prepared by introducing the insufficient KF ■ HF as KF ■ 2HF and supplying HF again. KF, which is a component of the bath, has high hygroscopicity and generally contains water during bathing. We have made the contents of the application relating to previous high-purity fluorine generator few impurities in (WO 01 / 77412A 1) 0
ところが、 このようにして発生される F 2ガスは、 初期に発生する F 2ガス中に 45〜55%の酸素が含まれる。 発生する F2ガスと、 電解 浴中に含まれる水とは次式 (1) に示すような反応によって、 通常、 F2ガス中に含まれる酸素量が減少する。 しかしながら、 その量を 30 00 p pm以下にすることは困難である。 However, the F 2 gas generated in this way contains 45 to 55% oxygen in the F 2 gas generated at the beginning. The generated F 2 gas and the water contained in the electrolytic bath generally reduce the amount of oxygen contained in the F 2 gas by a reaction represented by the following equation (1). However, it is difficult to reduce the amount to less than 300 ppm.
2 F2 + H20→F20+ 2HF · · ' ' (1) 2 F 2 + H 2 0 → F 2 0+ 2HF · · '' (1)
前述したエキシマレーザー発振用ガスや、 エキシマレーザーのステ ッパーレンズ (C a F2単結晶) の表面処理には髙純度の F2ガスが必 要である。 その F2ガス中に含まれる酸素濃度は、 前者のエキシマレー ザ一発振用ガスとしては l O O O p p m以下、 後者のエキシマレーザ 一のステッパーレンズ (C a F2単結晶) の表面処理用ガスとしては 5 00 p pm以下のものが要求される。 High-purity F 2 gas is required for the surface treatment of the excimer laser oscillation gas and the excimer laser stepper lens (C a F 2 single crystal) described above. The oxygen concentration contained in the F 2 gas is less than l ppm ppm for the former excimer laser oscillation gas, and the oxygen concentration for the surface treatment gas of the latter excimer laser one stepper lens (C a F 2 single crystal). Less than 500 ppm is required.
本発明は、 酸素含有量が非常に少ない、 高純度の F2ガスを安定的に 発生させることのできる F 2ガス発生装置及び F 2ガス発生方法並びに 高純度 F2ガスを提供することを目的とする。 発明の開示 The present invention aims to provide an oxygen content is very low, F 2 gas generator and F 2 gas generating method and high purity F 2 gas can be stably generated with high purity F 2 gas And Disclosure of the invention
前記課題を解決するための本発明の F2ガス発生装置は、 KF · 2H Fからなる電 浴を電気分解して高純度の F2ガスを発生させる 2ガ ス発生装置であって、 KF若しくは KF · HFを KF · 2HFに調製 する調製系と、 前記電解浴及び前記調製系に H Fを供給する H F供給 系と、 前記調製系によって調製された KF · 2HFを電気分解して F2 ガスを発生する F。ガス発生系と、 を有することを特徴とする。 KF若しくは KF · HFから KF · 2 HFに密閉された調製系内で 調製した後、 この調製系と密閉連結された電解槽中にこの調製された KF ■ 2HF投入する。 このため、 電解槽内に投入された KF · 2 H Fは、 水分を吸収することなく、 即ち、 少ない酸素含有量の電解浴と することができる。 これにより、 この電解浴を電気分解して得られる F2ガス中に含まれる酸素量を発生初期の段階から非常に少ないものと することができる。 The object F 2 gas generating apparatus of the present invention for solving the is a 2 gas generator by electrolysis of electrodeposition bath consisting of KF · 2H F to generate a high purity F 2 gas, KF or A preparation system for preparing KF · HF into KF · 2HF, an HF supply system for supplying HF to the electrolytic bath and the preparation system, and an electrolysis of KF · 2HF prepared by the preparation system to produce F 2 gas Occurs F. And a gas generating system. After preparation from KF or KF · HF in a preparation system closed to KF · 2HF, this prepared KF 2HF is put into an electrolytic cell tightly connected to this preparation system. For this reason, the KF · 2HF introduced into the electrolytic cell can be used as an electrolytic bath without absorbing moisture, that is, with a low oxygen content. Thereby, the amount of oxygen contained in the F 2 gas obtained by electrolyzing the electrolytic bath can be made very small from the initial stage of generation.
また、 本発明の F2ガス発生装置は、 前記調製系には、 前記 KF若し くは KF . HF中の水分を除去する水分除去手段が付設されているこ とを特徴とする。 Further, the F 2 gas generating apparatus of the present invention is characterized in that the preparation system is provided with a water removing means for removing water in the KF or KF.HF.
∑ F若しくは KF · HFから KF ■ 2 HFに調製時に酸素量を確実 に低減することができる。  ∑ From F or KF · HF to KF ■ 2 HF can be reliably reduced during preparation of HF.
また、 本発明の F2ガス発生装置は、 発生した F2ガス中の酸素濃度 が 2 %以下であるものである。 Further, in the F 2 gas generating device of the present invention, the generated F 2 gas has an oxygen concentration of 2% or less.
F2ガス中の酸素濃度が 2%以下、 好ましくは 0. 2%以下 (200 0 p p m以下)、 さらに好ましくは 0. 02 %以下 ( 200 p p m以 下) に低減されている。 このため、 エキシマレーザー発振用ガスや、 エキシマレーザーのステッパーレンズ (C a F2単結晶) の表面処理用 ガスとして使用することができる。 The oxygen concentration in the F 2 gas is reduced to 2% or less, preferably 0.2% or less (2000 ppm or less), and more preferably 0.02% or less (200 ppm or less). Therefore, it is possible to use or excimer laser oscillation gases, as the surface treatment gas excimer laser stepper lens (C a F 2 single crystals).
また、 本発明の F2ガス発生装置は、 KF ■ 2 HFからなる電解浴を 電気分解して F2ガスを発生する F2ガス発生装置であって、 KF若し くは KF ' HFから KF · 2 HFに調製する調製系と、 前記電解浴及 び前記調製系に H Fを供給する H F供給系と、 前記調製系によつて調 製された KF ■ 2 HFを電気分解して F2ガスを発生する F2ガス発生 系と、 を備えてなり、 前記調製系、 HF供給系及び F 2ガス発生系の各 系ごと若しくは各系全体の外部雰囲気中の水分を調整する水分制御手 段が設けられていることを特徴とする。 Further, F 2 gas generating apparatus of the present invention, KF ■ 2 electrolytic bath consisting of HF by electrolyzing an F 2 gas generating apparatus for generating an F 2 gas, KF Wakashi Ku KF from KF 'HF · 2 preparation system for preparing the HF, the electrolytic bath及beauty said a HF supply system for supplying HF to the preparation system, the preparation systems of by connexion adjustment made by the KF ■ 2 HF to by electrolyzing F 2 gas It is provided with, and F 2 gas generating system for generating, the preparation system, the moisture control hand to adjust the moisture of HF supply system and F 2 each system of the gas generating system or in the system as a whole outside atmosphere A step is provided.
調製系、 HF供給系及び F2ガス発生系の各系ごと若しくは各系全体 の外部雰囲気中の水分を調整する水分制御手段が設けられているため 、 酸素の混入を確実に抑制することができる。 Since the preparation system, the moisture control means for adjusting the water content of the HF supply system and F 2 each system of the gas generating system or in the system as a whole outside atmosphere is provided, it is possible to reliably suppress the incorporation of oxygen .
また、 本発明の F2ガス発生装置は、 前記水分制御手段が、 前記各系 若しくは各系全体を収納する内部の雰囲気制御が可能な筐体であるも のである。 Further, in the F 2 gas generating device of the present invention, the moisture control means is a housing capable of controlling the atmosphere inside the system or the whole system.
水分制御手段が、 雰囲気制御の可能な筐体であるため、 各系若しく は各系全体の雰囲気湿度の調整も容易に行える。 これによつて、 酸素 の混入を確実に抑制することができる。  Since the moisture control means is a housing capable of controlling the atmosphere, it is possible to easily adjust the atmospheric humidity of each system or the entire system. As a result, the incorporation of oxygen can be reliably suppressed.
また、 本発明の F2ガス発生方法は、 KF ■ 2 HFからなる電解浴を 電気分解して F 2ガスを発生させる F 2ガス発生方法であって、 K F若 しくは KF · HF中の水分を除去する水分除去手段が付設されている KF若しくは KF · HFを KF · 2 HFに調製する調製系において、 前記 KF若しくは KF · HFを所定時間、 真空または不活性ガス雰囲 気下で加熱、 脱気した後、 真空または不活性ガス雰囲気下で室温まで 冷却し、 次いで、 該調製系内に HF供給系から気相化した HFを供給 して、 前記調製系内で前記 KF若しくは KF ■ HFと前記HFとを反 応させて、 KF · 2HFを発生し、 該 KF · 21- IFを F2ガス発生系の 電解槽に供給した後、 電気分解して低酸素濃度の F 2ガスを発生させる ものである。 Further, F 2 gas generating method of the present invention is an F 2 gas generating method for generating an F 2 gas by electrolyzing an electrolytic bath comprising a KF ■ 2 HF, KF young properly the water in KF · HF In a preparation system for preparing KF or KFHF, which is provided with a moisture removing means for removing water, the KF or KFHF is heated for a predetermined time under a vacuum or an inert gas atmosphere. After degassing, the mixture is cooled to room temperature in a vacuum or an inert gas atmosphere, and then HF gasified from an HF supply system is supplied to the preparation system, and the KF or KF ■ HF is supplied in the preparation system. Reacts with the HF to generate KF · 2HF, and supplies the KF · 21-IF to the electrolytic cell of the F 2 gas generating system, and then electrolyzes to generate F 2 gas with a low oxygen concentration. It is what makes it.
このような構成にすることにより、 発生させる F2ガス中の酸素濃度 を少なくすることが可能となり、 エキシマレーザー発振用ガスや、 ェ キシマレーザ一のステッパーレンズ (C a F2単結晶) の表面処理用ガ スとして使用することが可能となる。 With this configuration, it is possible to reduce the oxygen concentration in the generated F 2 gas, and to treat the surface of the excimer laser oscillation gas and the stepper lens (C a F 2 single crystal) of the excimer laser. It becomes possible to use it as a gas.
また、 本発明の F2ガス発生方法は、 前記調製系において、 前記 KF 若しくは KF ' HFを 200〜300°Cで加熱して、 前記 KF若しく は KF · HFの吸着水及び結晶水を除去するものである。 Further, in the method for generating F 2 gas of the present invention, in the preparation system, the KF Alternatively, KF ′ HF is heated at 200 to 300 ° C. to remove the KF or KF · HF adsorbed water and water of crystallization.
このようにして、 KF若しくは KF · HF中の水分を確実に除去す ることができる。 これによつて、 水分中に含まれる酸素を除去するこ とが可能となり、 発生される F2ガス中の酸素濃度を F2ガス発生初期 の段階から確実に低減することができる。 In this way, water in KF or KF · HF can be reliably removed. Yotsute thereto enables the deoxygenated child contained in the water, the oxygen concentration of F 2 gas to be generated can be reduced reliably from F 2 gas generating initial stage.
また、 本発明の F2ガスは、 KF若しくは KF ' HF中の水分を除去 する水分除去手段が付設されている KF若しくは KF ■ HFを KF - 2 HFに調製する調製系において、 前記 KF若しくは KF ' HFを所 定時間、 真空または不活性ガス雰囲気下で加熱、 脱気した後、 真空ま たは不活性ガス雰囲気下で室温まで冷却し、 次いで、 該調製系内に H F供給系から気相化した HFを供給して、 前記調製系内で前記 KF若 しくは KF ■ HFと前記 HFとを反応させて、 KF · 2 H Fを発生し 、 該 KF · 2 HFを F2ガス発生系の電解槽に供給した後、 電気分解し て発生するものである。 従って、 酸素濃度が極めて低い高純度の 2ガ スであるため、 半導体製造用の各種基幹ガスとして使用することがで さる。 Further, F 2 gas of the present invention, KF or KF 'moisture removing means for removing moisture in the HF is attached KF or KF ■ HF and KF - 2 in the preparation system for preparing the HF, the KF or KF '' The HF is heated and degassed for a specified time in a vacuum or inert gas atmosphere, cooled to room temperature in a vacuum or inert gas atmosphere, and then vaporized from the HF supply system into the preparation system. The HF is supplied to the KF or KF ■ HF and the HF is reacted in the preparation system to generate KF · 2 HF, and the KF · 2 HF is converted into an F 2 gas generation system. After being supplied to the electrolytic cell, it is generated by electrolysis. Therefore, since it is a highly pure 2 gas having an extremely low oxygen concentration, it can be used as various basic gases for semiconductor production.
また、 本発明の F2ガスは、 酸素濃度が 2%以下である。 Further, F 2 gas of the present invention, the oxygen concentration is 2% or less.
F2ガス中の酸素濃度が、 好ましくは 0. 2%以下 (2000 p pm 以下)、 さらに好ましくは 0. 02%以下 (200 p pm以下) に低減 されている。 このため、 エキシマレーザー発振用ガスや、 エキシマレ 一ザ一のステッパーレンズ (C a F2単結晶) の表面処理用ガスとして 使用することができる。 図面の簡単な説明 The oxygen concentration in the F 2 gas is preferably reduced to 0.2% or less (2000 ppm or less), and more preferably to 0.02% or less (200 ppm or less). For this reason, it can be used as an excimer laser oscillation gas or a surface treatment gas for an excimer laser stepper lens (C a F 2 single crystal). BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のフッ素ガス発生装置の模式図である。 第 2図は 、 実施例 1及び比較例 1、 3の場合の通電量と、 F2ガス中の〇2量の 関係を示す図である。 発明を実施するための最良の形態 FIG. 1 is a schematic diagram of a fluorine gas generator of the present invention. Figure 2 shows , The current amount in the case of Example 1 and Comparative Example 1, 3 is a diagram showing a 〇 2 of the relationship F 2 gas. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 第 1図に基づいて本発明の実施形態の一例を説明する。  Hereinafter, an example of an embodiment of the present invention will be described with reference to FIG.
本実施形態における F 2ガス発生装置 Gは、 KF ■ 2 HFからなる電 解浴 24を電気分解して高純度の F2ガスを発生するものであって、 K F若しくは KF . HFを KF · 2 HFに調製する調製系 Aと、 電解浴 24及び調製系 Aに HFを供給する HF供給系 Bと、 調製系 Aによつ て調製された KF · 2HFを電気分解して F2ガスを発生する F2ガス 発生系 Cと、 を備えて構成されている。 The F 2 gas generator G in the present embodiment generates high-purity F 2 gas by electrolyzing an electrolytic bath 24 composed of KF ■ 2 HF, and converts KF or KF.HF into KF · 2 generation and preparation system a for preparing the HF, and HF supply system B supplies HF to the electrolytic bath 24 and preparation system a, the electrolysis to F 2 gas KF · 2HF prepared Te prepared based a Niyotsu And an F 2 gas generating system C.
第 1図において、 KF若しくは KF · ^! から · 2HFに調製 する調製系 Aは、 KF 1 0を収納する N i製の容器 7 aと、 この容器 7 aを密閉する上蓋 7 bとで構成される KF · 2 HF調製装置 7と、 この KF . 2 HF調整装置 7の容器 7 aを覆い、 内部の KF 10を加 熱するヒーター 9と、 冷却用の冷却水用パイプ 8と、 上蓋 7 bに設け られた真空排気系 Dと連結される真空配管 2と、 不活性ガスパージ用 配管 3と、 KF 10中に挿入され、 HF供給系 B及び F2ガス発生系 C と連結している HF供給兼 KF · 2HF送出配管 1と、 で構成されて いる。 In Fig. 1, KF or KF · ^! The preparation system A to be prepared into 2HF is a KF2HF preparation device 7 composed of a Ni container 7a for storing KF10 and an upper lid 7b for sealing the container 7a. A heater 9 that covers the container 7a of the KF.2 HF adjustment device 7 and heats the internal KF 10, a cooling water pipe 8 for cooling, and a vacuum exhaust system D provided in the upper lid 7b Vacuum pipe 2, inert gas purge pipe 3, and HF supply and KF2HF delivery pipe 1 inserted into KF 10 and connected to HF supply system B and F 2 gas generation system C. It is configured.
この調製系 Aに HFを供給する HF供給系 Bは、 ロードセル 1 2上 に载置された HFボンべ 1 1が、 カステン 1 3中に設置されている。 このカステン 1 3は、 図示しなしアクリルスクラバーに連結されてい る。 HFボンべ 1 1の表面はヒーター 14で覆われており、 HFボン ベ 1 1内を所定の温度に保つようにしている。また、 ロードセル 12に よって、 HFボンべ 1 1内のガス量を測定し、 調製系 A及び F2ガス発 生系 Cへの HFガス供給量を測定している。この HFボンべ 1 1は、 H F送出用配管 5によつて調製系 Aに連結されている。 In an HF supply system B for supplying HF to the preparation system A, an HF cylinder 11 placed on a load cell 12 is installed in a casten 13. The cast 13 is connected to an acrylic scrubber (not shown). The surface of the HF cylinder 11 is covered with a heater 14, so that the inside of the HF cylinder 11 is maintained at a predetermined temperature. Also, depending on the load cell 12, to measure the gas amount of HF cylinder 1 1, preparation system A and F 2 gas onset The amount of HF gas supplied to raw system C is measured. The HF cylinder 11 is connected to the preparation system A by an HF delivery pipe 5.
F 2ガス発生系 Cは、 K F · 2HF系混合溶融塩からなる電解浴 24 と、 この電解浴 24を収納する電解槽 20と、 電解浴 24を電気分解 する陽極 22と陰極 23と、 を主要部品として構成されている。 The F 2 gas generating system C mainly comprises an electrolytic bath 24 composed of a mixed molten salt of KF and 2HF, an electrolytic bath 20 containing the electrolytic bath 24, and an anode 22 and a cathode 23 for electrolyzing the electrolytic bath 24. It is configured as a part.
電解槽 20は、 N i、 モネル、 純鉄、 ステンレス鋼等の金属で一体 に形成されている。 電解槽 20は、 N iまたはモネルからなる隔壁 2 7によって、 陽極室 28及び陰極室 29とに分離されている。 陽極室 28には、 低分極性炭素からなる陽極 22が、 陰極室 29には N i又 は F eからなる陰極 23が配置されている。 電解槽 20の上蓋 30に は、 陽極室 28及び陰極室 29から発生する F 2ガス排出口 25と、 陰 極室 7から発生する H2ガスの排出口 26とが配設されている。 また、 電解槽 20は、 電解槽 20内を加熱するヒーター 3 1が設けられてい る。 なお、 ヒーター 12の周りには図示していないが断熱材が設けら れている。 ヒーター 12は、 リポンタイプのものや、 ェクロム線等、 その形態は特に限定されないが、 電解槽 2の全周を覆うような形状で あることが好ましい。 The electrolytic cell 20 is integrally formed of a metal such as Ni, Monel, pure iron, and stainless steel. The electrolytic cell 20 is separated into an anode chamber 28 and a cathode chamber 29 by a partition wall 27 made of Ni or Monel. The anode chamber 28 is provided with an anode 22 made of low-polarizable carbon, and the cathode chamber 29 is provided with a cathode 23 made of Ni or Fe. The upper lid 30 of the electrolytic cell 20 is provided with a discharge port 25 of F 2 gas generated from the anode chamber 28 and the cathode chamber 29 and a discharge port 26 of H 2 gas generated from the cathode chamber 7. Further, the electrolytic cell 20 is provided with a heater 31 for heating the inside of the electrolytic cell 20. Although not shown, a heat insulating material is provided around the heater 12. The shape of the heater 12 is not particularly limited, such as a ripon-type heater or an echrome wire, but it is preferable that the heater 12 be shaped so as to cover the entire circumference of the electrolytic cell 2.
真空排気系 Dは、 モレキユラシープ 1 6と真空ポンプ 1 7とで構成 されている。 そして、 調製系 Aに収納されている KF 10をヒーター 9で加熱したときに KF 10から脱着してくる水分を吸引する。  The evacuation system D is composed of a molecular sheep 16 and a vacuum pump 17. Then, when the KF 10 contained in the preparation system A is heated by the heater 9, the water desorbed from the KF 10 is sucked.
次に、 以上のように構成されている F2ガス発生装置 Gの作動につい て説明する。 Next, a description will be given of the operation of the F 2 gas generator G which is configured as described above.
予め調製系 Aをヒーター 9によって 250〜300°Cで熱処理を行 つた後、 容器 7 aに所定量の KF 10を装填する。 そして、 真空又は 超高純度不活性ガスのパージ下で再度 250-300°Cに加熱して、 24〜48時間保持して、 KF 10を乾燥させる。 この時、 真空配管 バルブ 2 aを開き、 バルブ 3 a及びバルブ 4 bは閉じた状態とし、 真 空排気系 Dで、 容器 7 b内を排気する。 このように、 KF 10を超高 純度不活性ガスのパージ下で再度 250〜 300 °Cに加熱して、 24 〜 48時間熱処理することによって、 KF 1 0中の吸着水及び結晶水 を脱着させることができる。 After preliminarily heat-treating preparation system A at 250 to 300 ° C. by heater 9, container 7a is charged with a predetermined amount of KF10. Then, it is heated again to 250-300 ° C. under a vacuum or a purge of ultra-high purity inert gas, and kept for 24-48 hours to dry the KF10. At this time, vacuum piping The valve 2a is opened, the valves 3a and 4b are closed, and the container 7b is exhausted by the vacuum exhaust system D. Thus, KF10 is heated again to 250 to 300 ° C under the purging of ultra-high purity inert gas and heat treated for 24 to 48 hours to desorb the adsorbed water and water of crystallization in KF10. be able to.
Fの熱重量法 (Th e rmo g r a v i me t r y、 以下、 T G とレヽう。)、 示差熱分析法 (D i f f e r e n t i a l Th e r m a 1 An a l y s i s, 以下、 DTAという。) を行ったところ、 43. 4°C、 64. 4°C、 90. 8 °C及び 1 5 1. 6 °Cの吸熱ピークが観察 された。 このうち、 43. 4°C、 64. 4°C、 90. 8 °Cでの吸熱ピ ークは吸着水のもの、 1 5 1. 6 °Cのピークは結晶水の脱着によるも のである。 原料となる KFの吸着水は前述の (1) 式に示す反応によ り容易に分解されると思われる。 ところが、 DTAの 1 5 1. 6°Cに 現われる吸熱ピークに対応する結晶水は K Fとの相互作用が強いこと と、 電解浴に主として含まれる HFが水素結合によるネットワークを 作っていることから、 この結晶水は微量になると拡散しにくくなり、 排除しにく くなると考えられる。 そこで、 前述のように、 KFを超高 純度不活性ガスのパージ下で再度 250〜 300 °Cに加熱して、 24 〜 48時間、 好ましくは 10〜 30時間熱処理しておくことで、 この 結晶水を脱着することが可能となる。  The thermogravimetric method of F (hereinafter referred to as TG) and the differential thermal analysis (Differential Thermo 1 Analysis, hereinafter referred to as DTA) were performed at 43.4 °. Endothermic peaks at C, 64.4 ° C, 90.8 ° C and 151.6 ° C were observed. Among these, the endothermic peaks at 43.4 ° C, 64.4 ° C, and 90.8 ° C were due to adsorbed water, and the peak at 151.6 ° C was due to desorption of crystal water. . It is thought that the water absorbed by KF, which is the raw material, is easily decomposed by the reaction shown in equation (1). However, the water of crystallization corresponding to the endothermic peak that appears at 151.6 ° C in DTA has strong interaction with KF, and the HF mainly contained in the electrolytic bath forms a network by hydrogen bonding. It is thought that this water of crystallization becomes difficult to diffuse when it is in a very small amount, and it is difficult to remove it. Therefore, as described above, the KF is heated again to 250 to 300 ° C. under a purge of ultra-high purity inert gas and heat-treated for 24 to 48 hours, preferably for 10 to 30 hours, to obtain the crystal. Water can be desorbed.
その後、 室温まで冷却し、 バルブ 2 aを閉じて、 バルブ 4 b及びバ ルブ 3 aを開く。 このとき、 予めラインヒーター 15で高純度不活性 ガス用配管 4を 30〜 35°Cに予熱しておく。 そして、 ヒーター 14 によって HFボンべ 1 1を加熱して HFをガス化し、 バルブ 5を開く と、 徐々に調製系 Aの KF 10中に HFが導入される。 この際、 KF 10と HFとの反応が激しく、 発熱するため冷却水用パイプ 8に水を 流し、 KF ■ 2HF調整装置 7を冷却し、 温度が 100°C以上になる ことを防止する。温度が 100°Cを超え、 200°Cに至ると HFの激し い突縢が生じ、 爆発に似た状態を呈するようになるからである。 Then, cool to room temperature, close valve 2a, and open valve 4b and valve 3a. At this time, the high-purity inert gas pipe 4 is preheated to 30 to 35 ° C by the line heater 15 in advance. Then, the HF cylinder 11 is heated by the heater 14 to gasify the HF. When the valve 5 is opened, the HF is gradually introduced into the KF 10 of the preparation system A. At this time, the reaction between KF 10 and HF is intense and generates heat, so water is supplied to the cooling water pipe 8. Sink, KF ■ 2HF adjuster 7 is cooled to prevent the temperature from exceeding 100 ° C. When the temperature exceeds 100 ° C and reaches 200 ° C, a violent HF dashing occurs and the state resembles an explosion.
このようにして、 調製系 Aに HFを導入していき、 KF 10に対す る HFが KF · HFのモル比よりも高くなると HFの供給速度を上げ ることができる。 そして、 HF供給系 Bのロードセル 1 2により、 所 定量の HFが調製系 Aに供給されたことを確認後、 バルブ 5 aを閉じ ると同時にバルブ 4 aを開き、 高純度不活性ガスを配管 1から導入し 、 不活性ガスパージ用配管 3から排気する。 これは、 配管 1中の HF I KF 1 0が KF · 2HFに調製された KF · 2HF 10中に急激 に吸収されることによる KF · 2 HFの配管 1中への逆流固化を防止 するためである。  In this way, HF is introduced into the preparation system A, and when the HF with respect to KF 10 becomes higher than the molar ratio of KF · HF, the supply rate of HF can be increased. After confirming that a certain amount of HF was supplied to preparation system A by load cell 12 of HF supply system B, valve 5a was closed and valve 4a was opened at the same time, and high-purity inert gas was piped. It is introduced from 1 and exhausted from the inert gas purge pipe 3. This is to prevent the backflow solidification of KF · 2HF into pipe 1 due to the rapid absorption of HF I KF 10 in pipe 1 into KF · 2HF 10 prepared into KF · 2HF. is there.
そして、 適当時間不活性ガスで、 調製系 A内をパージした後、 バル ブ 4 bを閉じる。 次いで、 不活性ガスパージ用配管 3から不活性ガス を供給する。 これと同時に、 バルブ 18及びバルブ 1 9を開く。 調製 系 Aは、 不活性ガスパージ用配管 3から導入される不活性ガスのガス 圧によって、 調製された KF · 2HFを配管 1から F2ガス発生系 Cの 電解槽 20内に送出する。 このとき、 電解槽 20は、 予め 250〜3 00°Cで熱処理しておき、 吸着水等を脱着しておく。 Then, after purging the inside of the preparation system A with an inert gas for an appropriate time, the valve 4b is closed. Next, an inert gas is supplied from the inert gas purge pipe 3. At the same time, valves 18 and 19 are opened. The preparation system A sends out the prepared KF · 2HF from the pipe 1 into the electrolytic cell 20 of the F 2 gas generation system C by the gas pressure of the inert gas introduced from the inert gas purge pipe 3. At this time, the electrolytic cell 20 is heat-treated at 250 to 300 ° C. in advance to desorb adsorbed water and the like.
このように、 本発明に係る F2ガス発生装置では、 水分吸着量が少な い高純度の KF · 2HFを空気に接触させることなく、 F2ガス発生装 置の電解槽内に供給することができ、 電解槽中に高純度の電解浴 K F - 2 HF浴を建浴することができる。 これによつて、 電解浴の酸素 濃度は極めて低減されたものとなる。 As described above, in the F 2 gas generator according to the present invention, it is possible to supply high-purity KF · 2HF having a small amount of adsorbed water into the electrolytic cell of the F 2 gas generator without bringing it into contact with air. High purity electrolysis bath KF-2HF bath can be built in the electrolyzer. As a result, the oxygen concentration in the electrolytic bath is extremely reduced.
また、 調製系 A、 HF供給系 B及び F2ガス発生系 Cの各系それぞれ を雰囲気制御が可能な筐体中に収納するようにすることもできる。 こ れによって、 各系の外部雰囲気の湿度を調整することができ、 各系内 に混入する酸素を抑制することができる。 また、 各系全体、 即ち 2ガ ス発生装置 Gを一つの筐体内に収納することもできる。 なお、 これら 、 全ての系をクリーンルーム内に設置することで、 雰囲気制御が可能 な筐体内に収納することと同様の効果を得ることもできる。 このよう に、 各系内への酸素の混入を抑制することによって、 より確実に発生 する F 2ガス中の酸素濃度を低減することが可能となる。 In addition, each of the preparation system A, the HF supply system B, and the F 2 gas generation system C can be housed in a housing whose atmosphere can be controlled. This Thereby, the humidity of the external atmosphere of each system can be adjusted, and oxygen mixed into each system can be suppressed. In addition, the entire system, that is, the two gas generators G can be housed in one housing. By installing all these systems in a clean room, it is possible to obtain the same effect as when the systems are housed in a case where the atmosphere can be controlled. Thus, by suppressing the mixing of oxygen into each system, it is possible to more reliably reduce the oxygen concentration in the F 2 gas generated.
なお、 本発明に係る F2ガス発生装置および F2ガス発生方法は、 前 述の実施形態例に限定されるものではない。 Note that the F 2 gas generation device and the F 2 gas generation method according to the present invention are not limited to the above-described embodiment.
(実施例)  (Example)
以下、 実施例により、 本発明に係る F2ガス発生装置を具体的に説明 する。 The following examples will be specifically described the F 2 gas generating apparatus according to the present invention.
(実施例 1 )  (Example 1)
第 1図に示す、 F2ガス発生装置 Gにおいて、 予め調製系 Aをヒータ 一 9によって 250〜300°Cで熱 理を行った後、 容器 7 aに KF 10を装填し、 純度 99. 9999%の高純度 N2ガスのパージ下で再 度 250〜 300°Cに加熱して、 24〜 48時間保持して、 KF 10 を乾燥させた。 その後、 室温まで冷却し、 HFを調製系 Aの KF 10 中に導入した。 この際、 冷却水用パイプ 8に水を流し、 KF · 2HF 調製装置 7を冷却し、 温度が 100°C以下になるようにした。そして、 HF供給系 Bのロードセル 1 2により、 所定量の HFが調製系 Aに供 給されたことを確認後、 高純度 N2ガスで適当時間調製系 A内をパージ した後、 高純度 N2ガスを供給し、 そのガス圧によって、 調製された K F - 2 HFを配管 1から F2ガス発生系 Cの電解槽 20内に送出し、 浴 量 7 1の電解浴を建浴した。 そして、 F2ガス発生系 Cにおいて、 陽極 に炭素電極、 陰極に N i電極を用いて、 1 OA/ dm2の印加電流密度 で定電流電解を行った。そして、 約 100 A h rの通電量の時点でガス クロマトグラフィーにより発生された F2ガス中の〇2量を測定したと ころ、 約 650 ρ pmであった。 In the F 2 gas generator G shown in Fig. 1, the preparation system A was previously heated at 250 to 300 ° C by a heater 19, and then KF 10 was charged into the vessel 7a, and the purity was 99.9999. The KF 10 was dried again by heating to 250-300 ° C. under a purge of% high purity N 2 gas and holding for 24-48 hours. Thereafter, the mixture was cooled to room temperature, and HF was introduced into KF 10 of Preparation System A. At this time, water was flowed through the cooling water pipe 8 to cool the KF · 2HF preparation device 7 so that the temperature became 100 ° C. or less. After confirming that a predetermined amount of HF was supplied to the preparation system A by the load cell 12 of the HF supply system B, the inside of the preparation system A was purged with high-purity N 2 gas for an appropriate time, and then the high-purity N Two gases were supplied, and the prepared KF-2HF was sent out from the pipe 1 into the electrolytic cell 20 of the F 2 gas generating system C by the gas pressure, and an electrolytic bath having a capacity of 71 was built. Then, in the F 2 gas generating system C, using a carbon electrode as the anode and a Ni electrode as the cathode, the applied current density of 1 OA / dm 2 At constant current electrolysis. Then, rollers and was measured 〇 2 of F 2 gas generated by gas chromatography at the time of the energization amount of about 100 A hr, was about 650 [rho pm.
(実施例 2)  (Example 2)
実施例 1と同様の KF · 2HFを電解浴として用い、 F2ガス発生系 Cにおいて、 陽極に炭素電極、 陰極に N i電極を用いて、 1 5A/d m 2の印加電流密度で定電流電解を行った。そして、 約 l O OAh rの 通電量の時点で、 ガスクロマトグラフィ一により、 発生した F2ガス中 の 02量を測定したところ、 約 450 p pmであった。 The same KF2HF as in Example 1 was used as the electrolytic bath, and in the F 2 gas generating system C, using a carbon electrode as the anode and a Ni electrode as the cathode, constant current electrolysis was performed at an applied current density of 15 A / dm 2. Was done. Then, when the energization amount of from about l O oah r, by gas chromatography of all, was measured 0 2 amount of F 2 gas generated was about 450 p pm.
(実施例 3) "  (Example 3) "
実施例 1と同様の KF ' 2HFを電解浴として用い、 F2ガス発生系 。において、 陽極に炭素電極、 陰極に N i電極を用いて、 2A/dm2 の印加電流密度で定電流電解を行った。そして、 約 100 A h rの通電 量の時点で、 ガスクロマトグラフィーにより、 発生した F2ガス中の O 2量を測定したところ、 約 950 p であった。 An F 2 gas generation system using the same KF′2HF as the electrolytic bath as in Example 1. , Constant current electrolysis was performed at a current density of 2 A / dm 2 using a carbon electrode as the anode and a Ni electrode as the cathode. Then, when the amount of O 2 in the generated F 2 gas was measured by gas chromatography at the time of the electricity supply of about 100 Ahr, it was about 950 p.
(実施例 4)  (Example 4)
実施例 1と同様の KF · 2 HFを電解浴として用い、 F2ガス発生系 Cを水分制御手段である図示しない筐体内に収納し、 筐体内部の湿度 を 40%に制御して、 陽極に炭素電極、 陰極に N i電極を用いて、 2 OAZ dm 2の印加電流密度で定電流電解を行った。そして、 約 100 Ah rの通電量の時点で、 ガスクロマトグラフィーにより、 発生した F2ガス中の 02量を測定したところ、 約 70 p pmであった。 The same KF · 2 HF as in Example 1 was used as the electrolytic bath, the F 2 gas generating system C was housed in a casing (not shown) serving as a moisture control means, the humidity inside the casing was controlled to 40%, and the anode was Using a carbon electrode and a Ni electrode as a cathode, constant current electrolysis was performed at an applied current density of 2 OAZ dm 2 . Then, when the amount of O 2 in the generated F 2 gas was measured by gas chromatography at the time of the amount of electricity of about 100 Ahr, it was about 70 ppm.
(比較例 1 )  (Comparative Example 1)
従来の方法で調整された KF · 2HFを電解浴に用い、 F2ガス発生 系 Cにおいて、 陽極に炭素電極、 陰極に N i電極を用いて、 10AZ dm2の印加電流密度で定電流電解を行った。そして、 約 10 OAh r の通電量の時点で、 ガスクロマトグラフィ一により、 発生した F2ガス 中の 02量を測定したところ、 約 30000 p pmであった。 Using KF · 2HF adjusted in a conventional manner in the electrolytic bath, the F 2 gas generating system C, the carbon electrode as an anode, cathode using N i electrodes, a constant current electrolysis at an applied current density of 10AZ dm 2 went. And about 10 OAh r At the time of power supply amount, by gas chromatography of all, it was measured 0 2 amount of F 2 gas generated was about 30000 p pm.
(比較例 2)  (Comparative Example 2)
従来の方法で調整された KF · 2HFを電解浴に用い、 F2ガス発生 系 Cにおいて、 陽極に炭素電極、 陰極に N i電極を用いて、 1 5A/ dm2の印加電流密度で定電流電解を行った。そして、 約 10 OAh r の通電量の時点で、 ガスクロマトグラフィーにより、 発生した F2ガス 中の〇2量を測定したところ、 約 25000 p pmであった。 Using KF · 2HF adjusted in a conventional manner in the electrolytic bath, the F 2 gas generating system C, the carbon electrode as an anode, with N i electrodes the cathode, 1 5A / dm 2 of the applied current density in constant current Electrolysis was performed. Then, at the time of the energization amount of about 10 oah r, by gas chromatography, it was measured 〇 2 amount of generated F 2 gas was about 25000 p pm.
(比較例 3 )  (Comparative Example 3)
実施例 1と同様の KF · 2HFを電解浴として用い、 F2ガス発生系 Cにおいて、 陽極に炭素電極、 陰極に N i電極を用いて、 lAZdm2 の印加電流密度で定電流電解を行った。そして、 約 10 OAh rの通電 量の時点で、 ガスクロマトグラフィーにより、 発生した F2ガス中の O 2量を測定したところ、 約 21000 p pmであった。 The same KF2HF as in Example 1 was used as an electrolytic bath, and in F 2 gas generating system C, constant current electrolysis was performed at an applied current density of lAZdm 2 using a carbon electrode as the anode and a Ni electrode as the cathode. . Then, when the amount of O 2 in the generated F 2 gas was measured by gas chromatography at the time of the amount of electricity of about 10 OAhr, it was about 21000 ppm.
第 2図に前記実施例 1及び比較例 1、 3の場合の通電量と、 F2ガス 中の〇2量の関係を示す。 And energization amount of the case of Example 1 and Comparative Example 1, 3 in Figure 2, shows a 〇 2 of the relationship F 2 gas.
第 2図に示すように、 KFを乾燥して水分を脱着した後、 KF ■ 2 H Fに調整したものを電解浴に使用した実施例 1のものは、 F 2ガス発 生初期から F 2ガス中の酸素量が少ないことがわかる。 産業上の利用可能性 As shown in Figure 2, after desorption of moisture by drying the KF, KF ■ is what was adjusted to 2 HF that of Example 1 was used in the electrolytic bath, F 2 gas from the F 2 gas onset raw Initial It turns out that the amount of oxygen in the inside is small. Industrial applicability
本努明は、 以上のように構成されており、 KFが乾燥されて、 表面 の吸着水や結晶水が脱着された後、 KF ■ 2HFを用いることで、 F2 ガス発生の初期から、 含有する酸素濃度の非常に低い F2ガスを安定し て発生することが可能となる。 This TsutomuAkira is configured as described above, KF is dried, after the adsorbed water and crystal water of the surface is desorbed, by using the KF ■ 2HF, from the initial F 2 gas generation, comprising It is possible to stably generate F 2 gas having a very low oxygen concentration.

Claims

請 求 の 範 囲 The scope of the claims
1. KF · 2 HFからなる電解浴を電気分解して F2ガスを発生する1. Electrolysis of electrolytic bath consisting of KF · 2 HF to generate F 2 gas
F2ガス発生装置であって、 An F 2 gas generator,
KF若しくは KF · HFを KF . 2HFに調製する調製系と、 前記電解浴及び前記調製系に H Fを供給する H F供給系と、 前記調製系によって調製された KF · 2HFを電気分解して F2ガス を発生する F 2ガス発生系と、 を有することを特徴とする F 2ガス発生 A preparation system for preparing KF or KF · HF into KF.2HF, an HF supply system for supplying HF to the electrolytic bath and the preparation system, and an electrolysis of KF · 2HF prepared by the preparation system to obtain F 2 F 2 gas generation and having a a F 2 gas generating system for generating a gas
2. 前記調製系には、 前記 KF若しくは KF · HF中の水分を除去 する水分除去手段が付設されていることを特徴とする請求の範囲第 1 項に記載の F 2ガス発生装置。 2. wherein the preparation system, F 2 gas generating apparatus according to claim 1, characterized in that moisture removal means for removing moisture in the KF or KF · HF is attached.
3. 発生した F 2ガス中の酸素濃度が 2 %以下である請求の範囲第 1 項に記載の F 2ガス発生装置。 3. The generated F 2 F 2 gas generating apparatus according to claim 1, wherein the oxygen concentration is 2% or less in the gas.
4. KF ·■ 2 HFからなる電解浴を電気分解して F2ガスを発生する F2ガス発生装置であって、 4. A F 2 gas generating device for generating the F 2 gas by electrolyzing an electrolytic bath comprising a KF · ■ 2 HF,
KF若しくは KF · HFから KF · 2 HFに調製する調製系と、 前記電解浴及び前記調製系に H Fを供給する H F供給系と、 前記調製系によって調製された KF · 2HFを電気分解して F2ガス を発生する F 2ガス発生系と、 を備えてなり、 A preparation system for preparing KF or KFHF from KFHF, a HF supply system for supplying HF to the electrolytic bath and the preparation system, and an electrolysis of KF2HF prepared by the preparation system to obtain F And an F 2 gas generation system that generates 2 gases.
前記調製系、 HF供給系及び F2ガス発生系の各系ごと若しくは各系 全体の外部雰囲気中の水分を調整する水分制御手段が設けられている ことを特徴とする F 2ガス発生装置。 The preparation system, F 2 gas generating apparatus characterized by moisture control means are provided for adjusting the water content of the ambient atmosphere of the whole each or each system the system of HF supply system and F 2 gas generating system.
5. 前記水分制御手段が、 前記各系若しくは各系全体を収納する内 部の雰囲気制御が可能な筐体である請求の範囲第 4項に記載の F 2ガス 発生装置。 5. The F 2 gas generator according to claim 4, wherein the moisture control means is a housing capable of controlling the atmosphere inside the respective systems or the whole of the respective systems.
6. KF ■ 2 HFからなる電解浴を電気分解して F2ガスを発生させ る F2ガス発生方法であって、 6. KF ■ Electrolysis of 2 HF electrolytic bath to generate F 2 gas A that F 2 gas generation process,
KF若しくは KF ■ HF中の水分を除去する水分除去手段が付設さ れている KF若しくは KF . HFを KF · 2 HFに調製する調製系に おいて、 前記 KF若しくは KF · HFを所定時間、 真空または不活性 ガス雰囲気下で加熱、 脱気した後、 真空または不活性ガス雰囲気下で 室温まで冷却し、 次いで、 該調製系内に HF供給系から気相化した H Fを供給して、 前記調製系内で前記 KF若しくは KF * HFと前記 H Fとを反応させて、 KF · 2HFを発生し、 該 KF ■ 2HFを F2ガス 発生系の電解槽に供給した後、 電気分解して低酸素濃度の F 2ガスを発 生する F 2ガス発生方法。 KF or KF ■ In a preparation system for preparing KF or KF. HF into KF · 2 HF provided with a water removing means for removing water in HF, the KF or KF · HF is evacuated for a predetermined time. Alternatively, after heating and degassing in an inert gas atmosphere, cooling to room temperature in a vacuum or an inert gas atmosphere, and then supplying HF gasified from an HF supply system to the preparation system, The KF or KF * HF is reacted with the HF in the system to generate KF · 2HF, and the KF ■ 2HF is supplied to the electrolytic cell of the F 2 gas generating system, and then electrolyzed to obtain a low oxygen concentration. F 2 gas generation method that occurs the F 2 gas.
7. 前記調製系において、 前記 KF若しくは KF · HFを 200〜 300°Cで加熱して、 前記 KF若しくは KF · HFの吸着水及び結晶 水を除去する請求の範囲第 6項に記載の F 2ガス発生方法。 7. The F 2 according to claim 6, wherein in the preparation system, the KF or KF · HF is heated at 200 to 300 ° C. to remove water of adsorption and water of crystallization of the KF or KF · HF. Gas generation method.
8. KF若しくは KF · H F中の水分を除去する水分除去手段が付 設されている KF若しくは KF ■ HFを KF · 2 HFに調製する調製 系において、 前記 KF若しくは KF · HFを所定時間、 真空または不 活性ガス雰囲気下で加熱、 脱気した後、 真空または不活性ガス雰囲気 下で室温まで冷却し、 次いで、 該調製系内に HF供給系から気相化し た HFを供給して、 前記調製系内で前記 KF若しくは KF * HFと前 記 HFとを反応させて、 KF · 2 H Fを発生し、 該 KF · 2HFを F2 ガス発生系の電解槽に供給した後、 電気分解して発生される F2ガス。8. KF or KF provided with a moisture removing means for removing moisture in KF or KFHF. In the preparation system for preparing HF to KF2HF, the KF or KFHF is vacuumed for a predetermined time. Alternatively, after heating and degassing in an inert gas atmosphere, cooling to room temperature in a vacuum or an inert gas atmosphere, and then supplying HF gasified from an HF supply system to the preparation system, wherein reacting the KF or KF * HF before Symbol HF in the system, generates a KF · 2 HF, after supplying the KF · 2HF electrolytic cell of F 2 gas generating system, generated by electrolyzing F 2 gas.
9. 酸素濃度が 2 %以下である請求の範囲第 8項に記載の F 2ガス。 9. F 2 gas according to claim 8, wherein the oxygen concentration is 2% or less.
PCT/JP2002/012868 2001-12-17 2002-12-09 Apparatus for generating f2 gas and method for generating f2 gas, and f2 gas WO2003052167A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2002349510A AU2002349510A1 (en) 2001-12-17 2002-12-09 Apparatus for generating f2 gas and method for generating f2 gas, and f2 gas
JP2003553033A JP3569279B2 (en) 2001-12-17 2002-12-09 F2 gas generator, F2 gas generation method, and F2 gas
KR1020047007949A KR100712345B1 (en) 2001-12-17 2002-12-09 Apparatus for generating f2 gas and method for generating f2 gas? and f2 gas
EP02783802A EP1457586A4 (en) 2001-12-17 2002-12-09 APPARATUS FOR GENERATING F SB 2 /sb GAS AND METHOD FOR GENERATING F SB 2 /SB GAS, AND F SB 2 /SB GAS
US10/497,158 US20050006248A1 (en) 2001-12-17 2002-12-09 Apparatus for generating f2 gas method for generating f2 gas and f2 gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-382722 2001-12-17
JP2001382722 2001-12-17

Publications (1)

Publication Number Publication Date
WO2003052167A1 true WO2003052167A1 (en) 2003-06-26

Family

ID=19187509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012868 WO2003052167A1 (en) 2001-12-17 2002-12-09 Apparatus for generating f2 gas and method for generating f2 gas, and f2 gas

Country Status (8)

Country Link
US (1) US20050006248A1 (en)
EP (1) EP1457586A4 (en)
JP (1) JP3569279B2 (en)
KR (1) KR100712345B1 (en)
CN (1) CN1327032C (en)
AU (1) AU2002349510A1 (en)
TW (1) TW593774B (en)
WO (1) WO2003052167A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242944A (en) * 2008-03-11 2009-10-22 Toyo Tanso Kk Fluorine gas generating apparatus
JP2011179072A (en) * 2010-03-01 2011-09-15 Central Glass Co Ltd Fluorine gas generation device
JP2013139606A (en) * 2012-01-05 2013-07-18 Central Glass Co Ltd Fluorine gas generation apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569277B1 (en) * 2003-05-28 2004-09-22 東洋炭素株式会社 Current control method and current control device for gas generator
FR2927635B1 (en) * 2008-02-14 2010-06-25 Snecma Propulsion Solide SEPARATION MEMBRANE FOR ELECTROLYSIS INSTALLATION
JP2011058015A (en) * 2009-09-07 2011-03-24 Toyo Tanso Kk Electrolytic device
TWI586842B (en) * 2010-09-15 2017-06-11 首威公司 Plant for fluorine production and a process using it
TWI525042B (en) * 2010-09-16 2016-03-11 首威公司 Hydrogen fluoride supply unit
EP3872235A4 (en) * 2018-10-24 2021-12-29 Showa Denko K.K. Fluorine gas production device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867877A (en) * 1981-10-20 1983-04-22 Asahi Glass Co Ltd Preparation of fluorine
JP2000313981A (en) * 1999-04-27 2000-11-14 Toyo Tanso Kk Carbon electrode for fluorine electrolysis
WO2001077412A1 (en) * 2000-04-07 2001-10-18 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1570004A (en) * 1976-10-19 1980-06-25 British Nuclear Fuels Ltd Electrolytic production of fluorine
CA2071235C (en) * 1991-07-26 2004-10-19 Gerald L. Bauer Anodic electrode for electrochemical fluorine cell
GB9300956D0 (en) * 1993-01-19 1993-03-10 British Nuclear Fuels Plc Dehydration of mixtures
US5628894A (en) * 1995-10-17 1997-05-13 Florida Scientific Laboratories, Inc. Nitrogen trifluoride process
US6113769A (en) * 1997-11-21 2000-09-05 International Business Machines Corporation Apparatus to monitor and add plating solution of plating baths and controlling quality of deposited metal
KR100633870B1 (en) * 2001-06-29 2006-10-13 쇼와 덴코 가부시키가이샤 High-purity fluorine gas, production and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867877A (en) * 1981-10-20 1983-04-22 Asahi Glass Co Ltd Preparation of fluorine
JP2000313981A (en) * 1999-04-27 2000-11-14 Toyo Tanso Kk Carbon electrode for fluorine electrolysis
WO2001077412A1 (en) * 2000-04-07 2001-10-18 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1457586A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242944A (en) * 2008-03-11 2009-10-22 Toyo Tanso Kk Fluorine gas generating apparatus
JP2011179072A (en) * 2010-03-01 2011-09-15 Central Glass Co Ltd Fluorine gas generation device
JP2013139606A (en) * 2012-01-05 2013-07-18 Central Glass Co Ltd Fluorine gas generation apparatus

Also Published As

Publication number Publication date
US20050006248A1 (en) 2005-01-13
JPWO2003052167A1 (en) 2005-04-28
TW593774B (en) 2004-06-21
EP1457586A4 (en) 2005-07-13
CN1327032C (en) 2007-07-18
TW200301316A (en) 2003-07-01
EP1457586A1 (en) 2004-09-15
CN1604970A (en) 2005-04-06
KR20040062648A (en) 2004-07-07
JP3569279B2 (en) 2004-09-22
AU2002349510A1 (en) 2003-06-30
KR100712345B1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
JP6971267B2 (en) Cleaning process to remove boron-carbon residues in the processing chamber at high temperatures
TWI263257B (en) Cyclic pulsed two-level plasma atomic layer deposition apparatus and method
TWI355288B (en) Inert gas recycling method using gas recycling con
JP2003119565A (en) Metallic thin-film vapor phase deposition method, and vapor phase deposition apparatus therefor
WO2004003983A1 (en) Cvd apparatus having means for cleaning with fluorine gas and method of cleaning cvd apparatus with fluorine gas
JP2006261217A (en) Method of forming thin film
JP2009531270A (en) Single crystal diamond electrode and electrolytic cell comprising such electrode
TW201120956A (en) Method of manufacturing semiconductor device and substrate processing apparatus
WO2003052167A1 (en) Apparatus for generating f2 gas and method for generating f2 gas, and f2 gas
JPS60211061A (en) Ion-nitrifying method of aluminum material
JP4584549B2 (en) Fluorine gas generator
US7399357B2 (en) Atomic layer deposition using multilayers
JP7072168B2 (en) Hydrogen recycling system and hydrogen recycling method
KR102465326B1 (en) Apparatus for producing ammonia using nitrogen monoixde
KR20120104214A (en) Method for removing deposits
JP2003190762A (en) Apparatus for forming fluorine gas containing hydrogen fluoride
WO2022085498A1 (en) Film forming method and film forming device
US20060124588A1 (en) System and method for reducing metal oxides with hydrogen radicals
JP2004277864A (en) Film deposition method, and film deposition system
JPH11335883A (en) Ozone and hydrogen generation and generator
JP2005057133A (en) Method for manufacturing semiconductor device and substrate processing apparatus
JP2017178772A (en) Production method of group iii nitride crystal
US8551565B2 (en) Film forming method and film forming apparatus
JP2004104025A (en) Method for forming film
JP4435629B2 (en) Thin film production method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003553033

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047007949

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10497158

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002825158X

Country of ref document: CN

Ref document number: 2002783802

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002783802

Country of ref document: EP