WO2003044243A1 - Method of surface treatment for magnesium and/or magnesium alloy, and magnesium and/or magnesium alloy product - Google Patents

Method of surface treatment for magnesium and/or magnesium alloy, and magnesium and/or magnesium alloy product Download PDF

Info

Publication number
WO2003044243A1
WO2003044243A1 PCT/JP2002/012146 JP0212146W WO03044243A1 WO 2003044243 A1 WO2003044243 A1 WO 2003044243A1 JP 0212146 W JP0212146 W JP 0212146W WO 03044243 A1 WO03044243 A1 WO 03044243A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
magnesium alloy
chemical conversion
surface treatment
coating film
Prior art date
Application number
PCT/JP2002/012146
Other languages
French (fr)
Japanese (ja)
Inventor
Masanobu Futsuhara
Naofumi Maeshima
Katsuyoshi Yamasoe
Kiyotada Yasuhara
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Publication of WO2003044243A1 publication Critical patent/WO2003044243A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/57Treatment of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8

Definitions

  • the present invention relates to a surface treatment method for imparting high corrosion resistance and coating film adhesion to members and products made of magnesium metal and magnesium alloy. Furthermore, automotive components that require high coating adhesion and post-coating corrosion resistance, home appliances such as televisions and audio equipment that require electrical conductivity in addition to the above performance, and electronic equipment such as personal computers and mobile phones
  • the present invention relates to a surface treatment method which can be suitably used for a magnesium alloy member.
  • the formed film does not contain elements harmful to the human body such as chromium and manganese, it is promising for surface treatment of biomaterials made of magnesium metal. Background art
  • the zirconium-based chemical conversion treatment forms a hydroxide, an oxide, and a phosphoric acid compound of zirconium on the surface of the magnesium alloy, and imparts corrosion resistance and coating film adhesion to the magnesium alloy.
  • unpainted corrosion resistance may be slightly inferior and may not be sufficient for some applications.
  • Zirconium is also a rare element and is scarce in resources and expensive.
  • it in order to stably exist in a solution, it is generally present as a fluoride complex ion, and it is difficult to avoid the content of fluorine, which is not preferable in terms of environmental conservation.
  • a manganese chemical conversion treatment exhibits performance comparable to chromate treatment. They are roughly divided into phosphate and non-phosphate. Manganese chemical conversion is the current mainstream in magnesium alloy housings for notebook personal computers. However, manganese is less regulated than hexavalent chromium, but it is still a regulated substance. In the future, more stringent emission regulations will make their use more difficult.
  • the electrical resistance of the magnesium alloy surface must be kept low from the viewpoint of antistatic properties. It is not preferable that the chemical conversion film formed on the surface has a high electric resistance. As a result, the corrosion rate after 24 hours of salt spray test was 5% or less, the electric resistance ⁇ S of the film was about 0.2 ⁇ or less, and the film was peeled off in 120 hours of salt spray test. Therefore, it is required to achieve both the electrical resistance of the film and the corrosion resistance to such an extent that no corrosion occurs.
  • the metal surface is contaminated with the release agent, and it is difficult to remove the metal surface, so that it is difficult to impart corrosion resistance and coating film adhesion. In some cases, even in such cases, it is necessary to impart sufficient corrosion resistance and coating film adhesion to the metal surface. Summary of the Invention As described above, there are problems such as the presence of environmentally harmful substances such as hexavalent chromium, permanganate ions, and phosphate ions, and the limitation of compatibility between film electrical resistance and corrosion resistance. are doing.
  • an object of the present invention is to use a treatment agent that does not substantially contain harmful substances such as chromium and manganese that are harmful to the environment and the human body, and that high corrosion resistance, coating film adhesion, and high film electric resistance are required.
  • a surface treatment method of magnesium metal and a magnesium or magnesium alloy capable of forming a chemical conversion treatment film satisfying performance and a magnesium and / or magnesium alloy product treated by such a surface treatment method. It is.
  • the present invention provides a magnesium and / or magnesium alloy, wherein magnesium and Z or a magnesium alloy are treated with a chemical conversion aqueous solution (A) containing 0.001 to 10% by mass of a carbonate compound. Processing method.
  • the chemical conversion treatment aqueous solution (A) further contains a coating film adhesion promoter, and the coating film adhesion promoter contains 0.01 to 1% by mass of a triazine thiol compound, a silane coupling agent, and a polyarinole resin. It is preferably one or more compounds selected from the group of amines.
  • the surface treatment method for magnesium and Z or the magnesium alloy is further characterized in that the magnesium and Z or magnesium alloy treated by the chemical conversion aqueous solution (A) is further treated with a chemical conversion aqueous solution (B) containing a second coating film adhesion promoter.
  • the second coating adhesion promoter is preferably at least one selected from the group consisting of a triazine thiol compound, a silane coupling agent, and polyallylamine.
  • the triazine thiol compounds include 1,3,5-triazine-1,2,4,6-trithiol, 2- (dibutynoleamino) -1,4,6-dimercapto-1,3,5-triazine, and 2- (Phenylamino) —Preferably at least one compound selected from the group consisting of 4,6 dimercapto-1,3,5 triazine.
  • the silane coupling agent is N- (6-aminohexyl) aminopropyl methoxysilane, N- (6-aminohexyl) aminopropyltriethoxysilane, N- (6-aminohexyl) aminopropyltrisilane Chlorosilane, N— (2 1-Aminoethyl) 1-3-aminopropinoletriethoxysilane, N— (2-aminoethyl) 1-3-aminopropyl trimethoxysilane, N— (2-aminoethyl) 1-3-aminopropyltrichlorosilane, 3 It is preferably at least one aminosilane compound selected from the group consisting of -aminopropylethoxysilane and 3-aminopropylmethoxysilane.
  • the coating adhesion promoter is a triazine thiol compound, and the second coating adhesion promoter is polyallylamine.
  • degreasing, pickling, and desmutting are preferably performed to remove contaminants and unfolded substances present on the surface.
  • the present invention is also a magnesium and / or magnesium alloy alloy product, which is treated by the above-mentioned method for treating a surface of magnesium and / or magnesium alloy.
  • the surface treatment method for magnesium and z or magnesium alloy of the present invention is a surface treatment method using a treatment agent substantially free of heavy metals.
  • surface treatment of magnesium metal and magnesium alloy using a treatment agent that does not substantially contain heavy metal compounds such as chromium, manganese, zirconium, and titanium used in the surface treatment method of conventional magnesium metal and magnesium alloy How to do.
  • the treatment agent substantially does not contain heavy metal means that heavy metal ions are not intentionally added, and the heavy metal exhibits a function in the treatment agent. It means that it is not included as much.
  • the magnesium metal and magnesium alloy to be treated by the surface treatment method of magnesium and Z or magnesium alloy of the present invention are magnesium metal and magnesium alloy produced by rolling, die casting, titano molding, or the like. Magnesium metal is promising as a biomaterial, and AZ31 alloy, 99.9% pure magnesium metal is expected to be widely used from an economic viewpoint in the future.
  • the present invention Can also be used for magnesium alloys. More preferably used alloys are:
  • the notation AZ or AM indicates the added metal element.
  • A is aluminum
  • M is manganese
  • Z is zinc.
  • the number following the these notation, Ri represent the addition concentration of these added elements, for example, if the AZ 9 1, aluminum two ⁇ -time is 9 0 /. , Which indicates that the sub is 1%.
  • M 0 means that the content of Mn is less than 1%. In particular, it is suitably used for alloys containing 5% or more of aluminum, such as AZ91 and AM60.
  • the release agent may remain not only on the surface of the metal or alloy but also within 20 to 30 m inside the metal or alloy, and sometimes even inside.
  • the conventional surface treatment method has insufficient corrosion resistance after coating and coating film adhesion, but the surface treatment method of the present invention has sufficient corrosion resistance and resistance to such magnesium metal and magnesium alloy. It can impart coating film adhesion.
  • the surface treatment method for magnesium and / or magnesium alloy of the present invention (hereinafter, also referred to as surface treatment method) is described as follows.
  • the treatment is carried out with a chemical conversion treatment aqueous solution (A) containing 0.1 to 10% by mass of a carbonate compound.
  • a feature of the surface treatment method is that magnesium metal and / or magnesium alloy is treated with an aqueous solution containing carbonate ions or an aqueous solution containing carbonate ions and a coating film adhesion promoter.
  • the important chemical point of the treatment method when the coating film adhesion promoter is not included is an alkaline solution in which magnesium metal or magnesium alloy is stable, for example, 1 mass. /.
  • the K 2 (CO 3) solution the p H of the solution in 1 1.5 (measurement to confirm) about, the reaction solution was elevated temperature kept oxide film or hydroxide skin film, a mixed film of both To promote the formation, and to produce magnesium carbonate by reaction with carbonate ions.
  • Examples of the source of the carbonate ion include carbonate compounds such as lithium carbonate, sodium carbonate, potassium carbonate, and calcium carbonate. Solubility, cost In consideration of the above, it is preferable to use sodium carbonate and potassium carbonate.
  • the concentration of the carbonate compound is 0.001 to 10% by mass, and it can be used within the limit of solubility of the carbonate compound used. Preferably 0. 0 1-1 0 mass 0/0, more preferably 0.1 to 3 wt% Dearu. If it is less than 0.001 mass ° / 0 , sufficient corrosion resistance and electric resistance of the film cannot be obtained, and if it exceeds 10 mass%, no further improvement in the effect is observed, and it is economical. Not preferred.
  • the method of treating magnesium and / or magnesium alloy with the above-mentioned chemical conversion aqueous solution (A) is not particularly limited.
  • the surface of the object to be treated is brought into contact with the chemical conversion aqueous solution (A) by a known method such as spraying or dipping.
  • a known method such as spraying or dipping.
  • the immersion method is preferred because it can be suitably used for processing personal computer housings, mobile phone housings, automobile parts and other products having complicated shapes.
  • the temperature of the chemical conversion treatment bath is not particularly limited, and may be usually 50 ° C or higher, preferably 60 to 90 ° C, more preferably 80 to 9 ° C. 0 ° C. If the temperature is lower than 50 ° C, the oxide film formation is insufficient, and the resulting composition does not show good performance. If the temperature exceeds 90 ° C, it is not preferable because there are many wastes such as evaporation of the solution and securing of a heat source, and no special performance improvement is observed.
  • the treatment time is preferably 1 to 5 minutes. If the time is less than 1 minute, the formation of an oxide film is insufficient, and good performance is not exhibited. If the time is longer than 5 minutes, it is not preferable because not only the evaporation of the solution and the securing of a heat source are wasteful, but also no special performance improvement is observed. More preferably, it is 3 to 5 minutes.
  • the coating adhesion promoter used in the above-mentioned surface treatment method includes an amino group at the terminal. It is preferable to use a silane cup agent, a triazine thiol compound, or polyallylamine having
  • silane coupling agent examples include N- (6-aminohexyl)-finished minopropyltrimethoxysilane, N- (6-aminohexynole) aminopropyltriethoxysilane, and N- (6-aminohexyl) a Minopropyltrichlorosilane, N-aminoethyl) 1-3 -aminopropyltriethoxysilane, N- (2-aminoethyl) -3 -aminopropyltrimethoxysilane, N- (2-aminoethyl) — 3— Aminosilane compounds such as aminopropinoletrichlorosilane, 3-aminopropylethoxysilane and 3-aminopropylmethoxysilane can be mentioned.
  • the triazine thiol compound is a compound having both a triazine ring and a thiol group.
  • thiol-substituted 1,3,5-triazine is preferred.
  • the triazine thiol compound may be one in which a part of a triazine ring is substituted with alkylamino.
  • triazine thiol compounds examples include 1,3,5-triazine-1,2,4,6 trithiol, 21- (dipti / reamino) -14,6-dimercapto-1,3,5-triazine and 2- (pheninoleamino ) 1,4,6-Dimercapto-11,3,5-triazine and the like.
  • the above polyallylamine has the following general formula (1)
  • the polymerization degree n is preferably in a range of a lower limit of 10 and an upper limit of 1,200. If the degree of polymerization is too low, the effect of coating film adhesion may not be obtained, and if the degree of polymerization is too high, there is a problem that bath stability is poor.
  • the polyallylamine include PAA series manufactured by Nittobo (PAA-01, PAA-03, PAA-05, PAA-15, PAA-15B, PAA-1 Commercially available products such as 0 C, PAA—H—10 C) can be used.
  • Examples of the coating adhesion promoter that can be used in the above surface treatment method include, but are not limited to, those that are stable in an alkaline atmosphere, have a functional group effective for coating adhesion, and can be adsorbed to the present chemical conversion coating. Any organic molecule can be used.
  • the concentration of the above-mentioned coating film adhesion promoter used is preferably 0.01 to 1% by mass. On the other hand, if it exceeds 1% by mass, no increase in the effect is observed, which is not economically preferable.
  • the concentration of the carbonate in the treatment bath when the above-mentioned coating film adhesion promoter is used is the same as that in the above-mentioned carbonate treatment, 0.001 to 10% by mass, preferably 0.01 to 10% by mass. 0/0, more preferably 0.1 to 3 wt. /. Can be used with
  • the temperature of the chemical conversion bath when the above-mentioned coating film adhesion promoter is used may be 40 ° C or more, preferably 60 to 90 ° C, more preferably 60 to 80 ° C.
  • the surface treatment method of magnesium and Z or magnesium alloy of the present invention is as follows. First, as described above, magnesium and Z or magnesium alloy is treated with a chemical conversion treatment aqueous solution (A) containing 0.001 to 10% by mass of a carbonate compound. After that, it is preferable to treat with a chemical conversion treatment aqueous solution (B) containing a second coating film adhesion promoter.
  • a mixture film of a magnesium compound such as magnesium carbonate, magnesium hydroxide, and magnesium oxide is formed on the metal surface, whereby the corrosion resistance can be obtained. Further treatment with the aqueous solution (B) can further improve corrosion resistance and coating film adhesion.
  • an organic molecule adsorption layer comprising the above-mentioned coating film adhesion promoter and the second coating film adhesion promoter is formed on the above-mentioned mixed film of the magnesium compound.
  • the organic molecule-adsorbing layer further improves the corrosion resistance and, at the same time, improves the adhesion between the coating film and the surface of the magnesium metal or magnesium alloy.
  • the mixture film of the magnesium compound is a very thin film at a molecular level, it is possible to impart corrosion resistance and coating film adhesion without significantly impairing the conductivity of magnesium metal or magnesium alloy.
  • the pH of the chemical conversion treatment aqueous solution (A) is preferably 10 or more.
  • the above pH is more preferably 11 or more.
  • the upper limit of pH is not particularly limited, but is preferably 13 or less.
  • the above-mentioned aqueous solution for chemical conversion treatment (A) contains a basic compound as a pH adjuster in order to keep pH within the above range. You may.
  • the basic compound is not particularly restricted but includes, for example, lithium hydroxide, sodium nitrite, potassium hydroxide, ammonia and the like.
  • the second coating film adhesion promoter is preferably at least one selected from the group consisting of a triazine thiol compound, a silane coupling agent, and polyallylamine.
  • the triazine compound, silane coupling agent, and polyallylamine that can be used as the second coating film adhesion promoter are not particularly limited, and, for example, are described above as being usable as a coating film adhesion promoter. Compounds can be mentioned.
  • the content of the triazine thiol compound is in the range of a lower limit of 10 pp and an upper limit of 100 ppm with respect to the chemical conversion treatment aqueous solution ( ⁇ ). It is preferred that If it is less than 10 ppm, sufficient corrosion resistance may not be obtained, and if it exceeds 100 ppm, no further improvement in the effect is observed, which is not economically preferable.
  • the lower limit is more preferably 100 pm, and even more preferably 500 pm.
  • the upper limit is more preferably 500 ppm, and still more preferably 200 ppm.
  • the content of the minosilane compound is preferably within the range of a lower limit of 10 ppm and an upper limit of 10,000 ppm with respect to the chemical conversion aqueous solution (B). If it is less than 10 p: m, sufficient corrosion resistance may not be obtained, and if it exceeds ni ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ni, no further improvement in effect is observed, which is not economically preferable.
  • the lower limit is more preferably 100 ppm, and even more preferably 500 ppm.
  • the upper limit is more preferably 5000 ppm, and even more preferably 2000 ppm.
  • the content of the polyallylamine is preferably within a range of a lower limit of 50 ppm and an upper limit of 10,000 p with respect to the chemical conversion aqueous solution (B). . If it is less than 50 ppm, sufficient corrosion resistance may not be obtained, and if it exceeds 10,000 ppm, no further improvement in effect is observed, which is not economically preferable.
  • the lower limit is more preferably 100 ppm, and even more preferably 500 ppm.
  • the upper limit is more preferably 5000 ppm, and even more preferably 3000 ppm.
  • the second coating film adhesion promoter may be the same compound as the above-mentioned coating film adhesion promoter, but a different compound is more preferable since the coating film adhesion promoting effect becomes better. .
  • Examples of the combination of the above-mentioned coating film adhesion promoter and the above-mentioned second coating film adhesion promoter include a combination in which the coating film adhesion promoter is a triazinethiol compound and the second coating film adhesion promoter is an aminosilane compound or polyallylamine.
  • a combination in which the film adhesion promoter is an aminosilane compound and the second coating film adhesion promoter is polyallylamine is preferable from the viewpoint of improving adhesion.
  • a combination in which the coating adhesion promoter is a triazinethiol conjugate and the second coating adhesion promoter is polyallylamine is most preferred.
  • the treatment method using the chemical conversion treatment aqueous solution (B) is not particularly limited, and the treatment can be carried out by bringing the object to be treated into contact with the chemical conversion treatment aqueous solution (B) by a known method such as spraying or immersion.
  • the temperature of the chemical conversion aqueous solution (B) is preferably in the range of a lower limit of 40 ° C and an upper limit of 80 ° C. If the temperature is lower than 40 ° C, the film formation is insufficient, and good performance is not exhibited. If the temperature exceeds 80 ° C, it is not preferable because not only waste of the solution and securing of a heat source are often wasteful, but also no special performance improvement is observed.
  • the lower limit is more preferably 50 ° C, and the upper limit is more preferably 60 ° C.
  • the release agent remains not only on the surface of the workpiece but also inside the workpiece, it is necessary to remove these release agents from the surface of the workpiece. .
  • the process and conditions for the release agent removal process differ slightly depending on the degree of contamination of the workpiece. Power Degreasing ⁇ washing with water ⁇ acid etching ⁇ washing with water ⁇ desmutting ⁇ washing with water is common.
  • an aqueous solution of an alkaline degreasing agent containing a surfactant is generally used. This process is performed for the purpose of removing mechanical oil and release agent that loosely adhere to the surface.
  • the degreasing agent used is not particularly limited. If the degree of contamination is small, this degreasing alone may be sufficient, but in most cases it is not sufficient, and in general, acid etching is performed.
  • the purpose of the acid etching process is to dissolve the metal and alloy, the uneven oxide layer on the surface of the metal and alloy, the machine oil adhering to the surface of the workpiece, and the release agent that has penetrated into the metal and alloy. To remove. If these removals are insufficient, sufficient corrosion resistance and coating film adhesion may not be imparted. Although it is not necessary to completely remove the release agent, if the removal of the release agent is extremely insufficient, this may adversely affect the corrosion resistance and the adhesion of the coating film. This step is indispensable and important especially when the contamination with the release agent is severe.
  • the acid used in the acid etching step in addition to inorganic acids such as phosphoric acid, sulfuric acid, and nitric acid, organic acids such as oxalic acid and acetic acid can be used.
  • the acid concentration in the acid etching solution is preferably from 0.1 to 5 g / l, more preferably from 0.3 to lg / l.
  • the solution exchange frequency is high due to the increase in pH due to magnesium dissolution. Is not preferred. If it exceeds 5 g Zl, magnesium metal and magnesium alloy will be significantly dissolved, and vigorous hydrogen generation will occur. Therefore, it may damage metal and alloy surfaces and is not suitable.
  • carboxylic acid or phosphoric acid is used at a concentration exceeding 5 g / 1, oxalate or phosphate may precipitate on the surface, making it impossible to remove the release agent sufficiently.
  • Some of these acids such as oxalic acid and nitric acid, are effective when used alone, but generally they are preferably used as a mixed acid of two or more.
  • sulfuric acid and nitric acid, phosphoric acid and ky hydrofluoric acid, and the like can be suitably used.
  • an aqueous solution mainly containing an alkaline compound such as KOH or NaOH can be suitably used, but the present invention is not limited thereto.
  • the purpose is to remove products attached to the surface by acid etching, to remove aluminum deflected on the surface of metals and alloys, and to remove mold release agents attached near the aluminum.
  • the magnesium metal or magnesium alloy product treated by the surface treatment method can be suitably used for a mobile phone, a housing of a personal computer, a lid material, and the like. Such a magnesium alloy product is also one of the present invention.
  • the surface treatment method of magnesium and Z or a magnesium alloy of the present invention comprises treating magnesium and Z or a magnesium alloy with a chemical conversion aqueous solution (A) containing 0.001 to 10% by mass of a carbonate compound. For this reason, a film made of a mixture of magnesium compounds can be formed on the surface of magnesium and Z or a magnesium alloy, and excellent corrosion resistance, coating film adhesion, and conductivity can be imparted. Further, when the chemical conversion treatment aqueous solution (A) further contains a coating film adhesion promoter, the corrosion resistance and the coating film adhesion can be further improved.
  • the above-mentioned surface treatment method further comprises treating with a chemical conversion treatment aqueous solution (B) containing a second coating film adhesion promoter, a film composed of a mixture of magnesium compounds is formed, and An organic molecule adsorption layer can be formed. Accordingly, a higher corrosion resistance can be imparted by the mixed film of the magnesium compound, and a higher corrosion resistance can be imparted by the water-soluble organic molecule-adsorbing layer, and a higher coating adhesion can be imparted. As a result, poor quality magnesium, which is difficult to perform the chemical conversion treatment with the chemical conversion aqueous solution (A), is used. Platinum metal and magnesium alloys can also be chemically converted sufficiently.
  • the formed magnesium compound mixture film is a very thin film at the molecular level, so that the electric resistance value of the treated magnesium metal or magnesium alloy surface does not become too high. That is, even with the method of chemical conversion treatment with the chemical conversion aqueous solution (B), more excellent corrosion resistance, coating film adhesion and conductivity can be imparted.
  • a 2 mm thick thixomolded magnesium alloy AZ91D test plate was degreased, washed with water, acid-etched, washed with water, desmutted, washed with water, chemically treated, washed with water, and dried under the following conditions. Powder coating was performed. Rinsing was carried out with a tap water shower, and all other processes were performed by a dip method. Drying was performed with an electric dryer at 100 ° C. for 20 minutes.
  • Treatment liquid 1 by weight 0/0 Magudain SF 1 0 0 Tarina (Nippon Paint Co., Ltd.) treatment temperature: 5 0 ° C
  • Processing solution 1 V o 1% Magdyne SF 400 Acid etching (Nippon Paint Co., Ltd.) Processing temperature: 50 ° C
  • Processing temperature 60 ° C Processing time: 5 minutes
  • Treatment liquid 1% by mass carbon dioxide rim aqueous solution
  • Salt spray test The test piece was sprayed with 5% saline at 35 ° C, and the occupancy of the corroded portion after 48 hours was visually evaluated.
  • the test plate was coated with Magdyne PD-E (epoxy powder paint, Nippon Paint Co., Ltd.) to a dry film thickness of 40 // m and baked at 160 ° C for 20 minutes to obtain a coated plate. Created. A cross cut up to the substrate was made with a metal cutter, subjected to a salt spray test, and evaluated 120 hours later by the peeling width of the coating film when the adhesive tape was pressure-bonded to the cross cut portion and peeled off.
  • Magdyne PD-E epoxy powder paint, Nippon Paint Co., Ltd.
  • the powder-coated test plate was subjected to a salt spray test for 120 hours. Thereafter, 100 test pieces at intervals of 1 mm were formed on the test plate taken out, and an adhesive tape was stuck and peeled off. The number of remaining grids was measured and evaluated.
  • Example 2 (2) Immerse the powder coated test plate in warm water at 50 ° C for 120 hours. Thereafter, 100 test pieces at lmm intervals were formed on the test plate taken out, and an adhesive tape was applied thereto and peeled off. The number of remaining grids was measured and evaluated.
  • Example 2
  • Example 3 A test plate was prepared in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to an aqueous 0.1 mass% potassium carbonate solution. Also, instead of the 2 mm thick titanium alloy AZ91D test plate made of titanium alloy, a 1 mm thick diecast magnesium alloy AZ91D test plate, which is an alloy with poor coating adhesion and corrosion resistance, is used. A test plate was produced in the same manner as in Example 1 except that the test plate was used. Next, each was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 3 A test plate was prepared in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to an aqueous 0.1 mass% potassium carbonate solution. Also, instead of the 2 mm thick titanium alloy AZ91D test plate made of titanium alloy, a 1 mm thick diecast magnesium alloy AZ91D test plate, which is an alloy with poor coating adhesion and corrosion resistance, is used. A test plate was produced in the same manner as in Example
  • Example 4 A test plate was produced in the same manner as in Example 1, except that the processing temperature in Example 1 was changed to 60 ° C. Next, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 4 A test plate was produced in the same manner as in Example 1, except that the processing temperature in Example 1 was changed to 60 ° C. Next, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 5 A test plate was prepared in the same manner as in Example 1 except that the chemical conversion treating agent in Example 1 was changed to a saturated calcium carbonate aqueous solution (concentration: 0.0014% by mass). Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 5 A test plate was prepared in the same manner as in Example 1 except that the chemical conversion treating agent in Example 1 was changed to a saturated calcium carbonate aqueous solution (concentration: 0.0014% by mass). Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 5 A test plate was prepared in the same manner as in Example 1 except that the chemical conversion treating agent in Example 1 was changed to a saturated calcium carbonate aqueous solution (concentration: 0.0014% by mass). Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 5 A test plate was prepared in the same manner as in Example 1 except that the chemical conversion
  • Example 6 A test plate was produced in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to a 5% by mass aqueous solution of carbon dioxide lime. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 6 A test plate was produced in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to a 5% by mass aqueous solution of carbon dioxide lime. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 6 A test plate was produced in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to a 5% by mass aqueous solution of carbon dioxide lime. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • a 1 mm-thick die-cast magnesium alloy AZ91D test plate which is an alloy having poor coating film adhesion and corrosion resistance, was immersed in a chemical conversion bath shown below to prepare a test plate. Next, the results obtained in the same manner as in Example 1 are shown in Table 1. The conditions other than the process and the chemical conversion treatment were the same as in Example 1.
  • Example 8 A test plate was prepared in the same manner as in Example 6, except that the concentration of the triazinethiol in the chemical conversion bath in Example 6 was changed to 1% by mass. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 8 A test plate was prepared in the same manner as in Example 6, except that the concentration of the triazinethiol in the chemical conversion bath in Example 6 was changed to 1% by mass. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 8 A test plate was prepared in the same manner as in Example 6, except that the concentration of the triazinethiol in the chemical conversion bath in Example 6 was changed to 1% by mass. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • Example 9 A test plate was prepared in the same manner as in Example 6, except that the concentration of triazinethiol in the chemical conversion treatment bath in Example 6 was changed to 0.01%. Next, the results obtained in the same manner as in Example 1 are shown in Table 1.
  • Example 9 A test plate was prepared in the same manner as in Example 6, except that the concentration of triazinethiol in the chemical conversion treatment bath in Example 6 was changed to 0.01%. Next, the results obtained in the same manner as in Example 1 are shown in Table 1. Example 9
  • Example 10 A test plate was produced in the same manner as in Example 6, except that the temperature of the chemical conversion treatment bath in Example 6 was changed to 60 ° C. Next, the results obtained in the same manner as in Example 1 are shown in Table 1.
  • Example 10 A test plate was produced in the same manner as in Example 6, except that the temperature of the chemical conversion treatment bath in Example 6 was changed to 60 ° C. Next, the results obtained in the same manner as in Example 1 are shown in Table 1.
  • Example 6 1 mass of the chemical conversion treatment bath in Example 6.
  • a test plate was prepared in the same manner as in Example 6, except that the aqueous solution was changed to / 0 K 2 CO 3 and an aqueous solution of N- (2-aminoethyl) _3-aminopropyltrimethoxysilane at 0.1 mass ° / 0 .
  • evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 1
  • Example 1 The chemical conversion treatment in Example 1 was performed using a commercially available manganese phosphate treating agent Magdyne SF 57 A test plate was prepared in the same manner as in Example 1 except that a 20% aqueous solution of 2 (manufactured by Nippon Paint Co., Ltd.) was used and immersion treatment was performed at 50 ° C. for 2 minutes. Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 2
  • Example 1 The chemical conversion treatment in Example 1 was carried out except that the chemical conversion treatment was changed to immersion treatment at 50 ° C for 2 minutes using a 5% aqueous solution of a commercially available zircon phosphate treatment agent Alsurf 440 (produced by Honko Paint Co., Ltd.). A test plate was produced in the same manner as in Example 1. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 3
  • Example 4 A test plate was produced in the same manner as in Example 1, except that the chemical conversion treatment in Example 1 was changed to immersion treatment with ion exchanged water at 80 ° C. for 2 minutes. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 4
  • Example 5 A test plate was produced in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to an aqueous solution of 1% by mass of a hydroxylating water. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 5
  • Example 6 A test plate was produced in the same manner as in Example 6, except that the carbon dioxide rim of the chemical conversion treatment bath in Example 6 was changed to a hydroxylation lime. Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Unpainted Paint Paint adhesion
  • Example 4 A 0.1 or less 1 0 100 100
  • Example 5 A 0.1 or less 0 3 100
  • Example 6 B 0.1 Below 1 0 100
  • Example 7 B 0.1 or less 1 0 100
  • Example 8 B 0.1 or less 3 0 100
  • Example 9 B 0.1 or less 2 0 100
  • Example 10 B 0.2 or less 3 1 100
  • the magnesium and z or magnesium alloy surface treatment method of the present invention showed excellent corrosion resistance to the magnesium alloy base material. It showed coating adhesion and conductivity.
  • the plate thickness lmm was smaller than that of the AZ91D test plate made of thixomolded magnesium alloy having a plate thickness of 2 mm.
  • the PC housing obtained by using a thixmolding magnesium alloy test plate (a test plate that is more contaminated than the test plate used in Example 6 and difficult to undergo chemical conversion treatment) was degreased under the following conditions. After washing with water, acid etching, washing with water, desmutting, washing with water, first chemical conversion treatment, washing with water, second chemical conversion treatment, washing with water, and drying, the powder coating process (process example 1) was performed. Rinsing was performed with a tap water shower, and all other steps were performed using a dip method. Drying was performed in an electric dryer at 100 ° C for 20 minutes.
  • the PC case used as the object to be treated had a high degree of release agent contamination, was difficult to remove, and was difficult to impart corrosion resistance and coating film adhesion.
  • Treatment solution 1% by weight potassium carbonate, lOOppml, aqueous solution of 3,5-triazine_2,4,6-thiol
  • Salt spray test 5 on test piece. /.
  • the saline was sprayed continuously at 35 for 8 hours, and then the corrosion resistance was evaluated by the rating number method.
  • Example 1 Evaluation was performed in the same manner as in Example 1.
  • a salt water spray test was conducted on the test plate powder-coated in the same manner as the above-mentioned test method for corrosion resistance after coating for 72 hours, and then 100 squares of 1 mm intervals were formed on the test plate taken out. An adhesive tape was applied and peeled off. The number of remaining grids was measured and evaluated.
  • Example 12 The surface treatment of the magnesium alloy was carried out in the same manner as in Example 11 under the conditions shown in Table 2, using the chemical conversion aqueous solution (A) and the chemical conversion aqueous solution (B) having the formulations shown in Table 2.
  • Table 2 shows the results. Note that Examples 12 to 14 are different from Example 1 in Example 11 in that degreasing, water washing, acid etching, water washing, first chemical conversion treatment, water washing, second chemical conversion treatment, and water washing are performed. After drying, it was performed in a powder coating process (process example 2). In Example 15, processing was performed in the same manner as in Example 6. Table 2
  • the magnesium alloy treated by the surface treatment method of the magnesium and / or the magnesium alloy of the present invention has a corrosion resistance and a coating film. It had excellent adhesion and conductivity properties.
  • the surface treatment method for magnesium and / or magnesium alloy of the present invention provides magnesium metal and magnesium alloy with corrosion resistance and coating adhesion equal to or higher than manganese phosphate treatment without using harmful substances such as chromium and manganese. And the compatibility with the electrical resistance of the film. This can significantly reduce environmental impact and human impact.
  • existing chromate treatment equipment and manganese chemical conversion treatment equipment can be used as they are, eliminating the need for new capital investment.
  • the treatment when the treatment is performed by the immersion method, it can be suitably used for the treatment of personal computer housings, mobile phone housings, automobile member / parts, and other products having complicated shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A method of surface treatment for magnesium and/or a magnesium alloy, which comprises treating magnesium and/or the magnesium alloy with an aqueous chemical treatment solution (A) containing 0.001 to 10 mass % of a carbonate salt compound. The method of surface treatment combines the use of a treating agent which is substantially free of a substance harmful to the environment or a human body and a low electric resistance of the resulting coating film.

Description

明細書  Specification
マグネシゥム及び/又はマグネシゥム合金の表面処理方法及びマグネシゥム 及び/又はマグネシゥム合金製品 技術分野  Method of surface treatment of magnesium and / or magnesium alloy and magnesium and / or magnesium alloy products
本発明は、 マグネシゥム金属、 マグネシゥム合金よりなる部材 ·製品に高い耐 食性と塗膜密着性を付与する表面処理方法に関する。 更に、 高い塗膜密着性と塗 装後耐食性を必要とする自動車部材や、 上記性能の他に電気伝導性を必要とする テレビ、 オーディオ機器等の家電製品や、 パソコン、 携帯電話等の電子機器のマ グネシゥム合金製部材にも好適に用いることができる表面処理方法に関する。 ま た、 形成される皮膜中には、 クロムやマンガン等の人体に有害な元素を含まない ので、 マグネシウム金属で作製される生体材料の表面処理としても将来有望なも のである。 背景技術  The present invention relates to a surface treatment method for imparting high corrosion resistance and coating film adhesion to members and products made of magnesium metal and magnesium alloy. Furthermore, automotive components that require high coating adhesion and post-coating corrosion resistance, home appliances such as televisions and audio equipment that require electrical conductivity in addition to the above performance, and electronic equipment such as personal computers and mobile phones The present invention relates to a surface treatment method which can be suitably used for a magnesium alloy member. In addition, since the formed film does not contain elements harmful to the human body such as chromium and manganese, it is promising for surface treatment of biomaterials made of magnesium metal. Background art
マグネシウム金属、 マグネシウム合金の化成処理技術として多くの特許、 論文、 専門書等で公開されている。 これらのうち最も一般的なのは、 クロメート処理で ある。 クロメート処理は適応できる製品の範囲が広く優れた耐食性と塗膜密着性 をマグネシウム製品に付与することができる。 しかしながら、 化成処理浴及びそ れから作製される化成皮膜には、 人体及び環境に悪影響を与える 6価クロムが含 まれている。 そのため、 クロムを用いない化成処理技術、 いわゆるノンクロム化 成処理技術の開発が行われており、 その結果、 リン酸化処理、 ジルコニウム系化 成処理、 マンガン系化成処理が開発され、 一部は実用化されており、 例えば、 特 開平 8— 3 5 0 7 3号公報、 特開平 7— 1 2 6 8 5 8号公報に開示されている。 リン酸化処理は、 マグネシウム合金の耐食性、 塗膜密着性をある程度まで向上 させることができるが、 不充分な場合が多く、 用途はかなり限定される。 リン酸 化処理を行うと、 マグネシウム合金表面に形成される化成皮膜において、 水溶性 の M g H P O 4が形成されるために、 充分な防食性を持つ皮膜が形成されがたい ことが原因である。 また、 処理温度や処理時間が長いことも欠点であり、 更に、 リン酸も土壌富栄養化等の環境汚染の原因とされている。 It has been published in many patents, papers, technical books, etc. as a chemical conversion treatment technology for magnesium metal and magnesium alloys. The most common of these is chromate treatment. Chromate treatment can be applied to magnesium products with a wide range of applicable products and excellent corrosion resistance and coating film adhesion. However, chemical conversion baths and chemical conversion coatings made from them contain hexavalent chromium, which has a negative impact on humans and the environment. For this reason, chemical conversion treatment technologies that do not use chromium, so-called non-chromium conversion treatment technologies, are being developed.As a result, phosphorylation treatment, zirconium-based conversion treatment, and manganese-based conversion treatment have been developed, and some have been put into practical use. For example, it is disclosed in Japanese Patent Application Laid-Open No. 8-35073 and Japanese Patent Application Laid-Open No. 7-162858. Phosphorylation can improve the corrosion resistance and coating adhesion of magnesium alloys to a certain extent, but they are often inadequate and their uses are quite limited. When phosphorylation is performed, water-soluble Mg HPO 4 is formed in the conversion coating formed on the surface of the magnesium alloy, which makes it difficult to form a coating with sufficient corrosion protection. . Another drawback is that the processing temperature and processing time are long. Phosphoric acid is also considered to cause environmental pollution such as soil eutrophication.
ジルコニゥム系化成処理は、 マグネシゥム合金表面にジルコ二ゥムの水酸化物、 酸化物、 リン酸化合物を形成し、 マグネシウム合金に耐食性、 塗膜密着性を付与 するものである。 しかしながら、 クロメート処理と比較すると、 未塗装耐食性が 若干劣る場合があり、 用途によっては充分でないことがある。 ジルコニウムは稀 少元素でもあり、 資源的に乏しく高価である。 また、 溶液中で安定に存在するた めには、 フッ素錯イオンとして存在させるのが一般的であり、 フッ素の含有を避 けることは難しく、 環境保全上好ましくない。  The zirconium-based chemical conversion treatment forms a hydroxide, an oxide, and a phosphoric acid compound of zirconium on the surface of the magnesium alloy, and imparts corrosion resistance and coating film adhesion to the magnesium alloy. However, compared to chromate treatment, unpainted corrosion resistance may be slightly inferior and may not be sufficient for some applications. Zirconium is also a rare element and is scarce in resources and expensive. In addition, in order to stably exist in a solution, it is generally present as a fluoride complex ion, and it is difficult to avoid the content of fluorine, which is not preferable in terms of environmental conservation.
クロメート処理に匹敵する性能を発揮するのが、 マンガン系化成処理である。 大別してリン酸系、 非リン酸系に大別される。 マンガン系化成処理は、 ノート型 パーソナルコンピューターのマグネシゥム合金製筐体では、 現在の主流となって いる。 しかし、 マンガンは、 6価クロムより規制は厳しくはないが、 排出規制物 質であることには変わりない。 将来、 排出規制がより厳しくなれば、 その使用も 難しくなる。  A manganese chemical conversion treatment exhibits performance comparable to chromate treatment. They are roughly divided into phosphate and non-phosphate. Manganese chemical conversion is the current mainstream in magnesium alloy housings for notebook personal computers. However, manganese is less regulated than hexavalent chromium, but it is still a regulated substance. In the future, more stringent emission regulations will make their use more difficult.
このような問題を改善するため、 重金属を使用しない化成処理を行った場合、 塗膜密着 ¾Ξ、 耐食性及び電気抵抗といったマグネシウム合金製品において要求さ れる物性をバランスよく満たすことが困難となる。 特に、 パソコン等の情報機器 や携帯電話の筐体等に使用する場合は、 帯電防止等の点からみて、 マグネシウム 合金表面の電気抵抗を低い抵抗値に保たなければならない。 表面に形成される化 成処理皮膜が高い電気抵抗を有することは好ましくない。 このため、 塩水噴霧試 験 2 4時間での腐食発生率が 5 %以下であり、 皮膜の電気抵抗^ Sが 0 . 2 Ω程度 以下であり、 かつ塩水噴霧試験 1 2 0時間で塗膜剥離を起こさない程度の皮膜電 気抵抗と耐食性との両立が求められている。  If chemical conversion treatment is performed without using heavy metals to improve such problems, it is difficult to satisfy well-balanced physical properties required for magnesium alloy products such as coating film adhesion, corrosion resistance and electric resistance. In particular, when used in information equipment such as personal computers and mobile phone housings, the electrical resistance of the magnesium alloy surface must be kept low from the viewpoint of antistatic properties. It is not preferable that the chemical conversion film formed on the surface has a high electric resistance. As a result, the corrosion rate after 24 hours of salt spray test was 5% or less, the electric resistance ^ S of the film was about 0.2Ω or less, and the film was peeled off in 120 hours of salt spray test. Therefore, it is required to achieve both the electrical resistance of the film and the corrosion resistance to such an extent that no corrosion occurs.
更に、 マグネシウム合金製品の成形方法によっては、 金属表面が離型剤によつ て汚染されており、 これを除去することが困難なため、 耐食性、 塗膜密着性を付 与することが困難な場合もあるが、 このような場合であっても、 金属表面に充分 な耐食性、 塗膜密着性を付与することが必要とされている。 発明の要約 このように、 6価クロム、 過マンガン酸イオン、 リン酸イオン等の環境 '人体 に有害な物質を含んでいること、 及び、 皮膜電気抵抗と耐食性の両立に限界があ るという問題点を有している。 従って、 本発明の目的は、 環境や人体に有害なク ロムやマンガン等の物質を実質的に含まない処理剤を使用し、 しかも、 高耐食性、 塗膜密着性、 高い皮膜電気抵抗性の要求性能を満たした化成処理皮膜を形成する ことができるマグネシウム金属及びノ又はマグネシウム合金の表面処理方法、 及 び、 このような表面処理方法によって処理されたマグネシウム及び/又はマグネ シゥム合金製品を提供することである。 Furthermore, depending on the forming method of the magnesium alloy product, the metal surface is contaminated with the release agent, and it is difficult to remove the metal surface, so that it is difficult to impart corrosion resistance and coating film adhesion. In some cases, even in such cases, it is necessary to impart sufficient corrosion resistance and coating film adhesion to the metal surface. Summary of the Invention As described above, there are problems such as the presence of environmentally harmful substances such as hexavalent chromium, permanganate ions, and phosphate ions, and the limitation of compatibility between film electrical resistance and corrosion resistance. are doing. Accordingly, an object of the present invention is to use a treatment agent that does not substantially contain harmful substances such as chromium and manganese that are harmful to the environment and the human body, and that high corrosion resistance, coating film adhesion, and high film electric resistance are required. To provide a surface treatment method of magnesium metal and a magnesium or magnesium alloy capable of forming a chemical conversion treatment film satisfying performance, and a magnesium and / or magnesium alloy product treated by such a surface treatment method. It is.
本発明は、 マグネシウム及び Z又はマグネシウム合金を 0 . 0 0 1〜1 0質量 %の炭酸塩化合物を含む化成処理水溶液 (A) によって処理することを特徴とす るマグネシゥム及び/又はマグネシゥム合金の表面処理方法である。  The present invention provides a magnesium and / or magnesium alloy, wherein magnesium and Z or a magnesium alloy are treated with a chemical conversion aqueous solution (A) containing 0.001 to 10% by mass of a carbonate compound. Processing method.
上記化成処理水溶液 (A) は、 更に、 塗膜密着促進剤を含むものであり、 上記 塗膜密着促進剤は、 0 . 0 1〜 1質量%のトリアジンチオール化合物、 シランカ ップリング剤及びポリアリノレアミンの群から選ばれる 1種以上の化合物であるこ とが好ましい。  The chemical conversion treatment aqueous solution (A) further contains a coating film adhesion promoter, and the coating film adhesion promoter contains 0.01 to 1% by mass of a triazine thiol compound, a silane coupling agent, and a polyarinole resin. It is preferably one or more compounds selected from the group of amines.
上記マグネシウム及び Z又はマグネシウム合金の表面処理方法は、 更に、 上記 化成処理水溶液 (A) によって処理されたマグネシウム及び Z又はマグネシウム 合金を第 2の塗膜密着促進剤を含む化成処理水溶液 (B ) によって処理するもの であり、 上記第 2の塗膜密着促進剤は、 トリアジンチオール化合物、 シランカツ プリング剤及びポリアリルァミンからなる群から選ばれる少なくとも 1つである ことが好ましい。  The surface treatment method for magnesium and Z or the magnesium alloy is further characterized in that the magnesium and Z or magnesium alloy treated by the chemical conversion aqueous solution (A) is further treated with a chemical conversion aqueous solution (B) containing a second coating film adhesion promoter. The second coating adhesion promoter is preferably at least one selected from the group consisting of a triazine thiol compound, a silane coupling agent, and polyallylamine.
上記トリアジンチオール化合物は、 1 , 3 , 5—トリアジン一 2 , 4, 6—ト リチオール、 2— (ジブチノレアミノ) 一4 , 6—ジメルカプト一 1, 3, 5—ト リアジン、 及び、 2— (フエニルァミノ) —4 , 6ージメルカプト一 1 , 3 , 5 一トリアジンからなる群から選ばれる少なくとも 1の化合物であることが好まし い。  The triazine thiol compounds include 1,3,5-triazine-1,2,4,6-trithiol, 2- (dibutynoleamino) -1,4,6-dimercapto-1,3,5-triazine, and 2- (Phenylamino) —Preferably at least one compound selected from the group consisting of 4,6 dimercapto-1,3,5 triazine.
上記シランカツプリ.ング剤は、 N— ( 6—ァミノへキシル) ァミノプロビルト リメ トキシシラン、 N— (6—ァミノへキシル) ァミノプロピルトリエトキシシ ラン、 N— (6—ァミノへキシル) ァミノプロピルトリクロロシラン、 N— ( 2 一アミノエチル) 一 3—ァミノプロピノレトリエトキシシラン、 N— ( 2—ァミノ ェチル) 一 3—ァミノプロビルトリメ トキシシラン、 N— ( 2—ァミノェチル) 一 3ーァミノプロピルトリクロロシラン、 3—ァミノプロピルェトキシシラン、 及び、 3—ァミノプロピルメ トキシシランからなる群から選ばれる少なくとも 1 のアミノシラン化合物であることが好ましい。 The silane coupling agent is N- (6-aminohexyl) aminopropyl methoxysilane, N- (6-aminohexyl) aminopropyltriethoxysilane, N- (6-aminohexyl) aminopropyltrisilane Chlorosilane, N— (2 1-Aminoethyl) 1-3-aminopropinoletriethoxysilane, N— (2-aminoethyl) 1-3-aminopropyl trimethoxysilane, N— (2-aminoethyl) 1-3-aminopropyltrichlorosilane, 3 It is preferably at least one aminosilane compound selected from the group consisting of -aminopropylethoxysilane and 3-aminopropylmethoxysilane.
上記塗膜密着促進剤は、 トリアジンチオール化合物であり、 上記第 2の塗膜密 着促進剤は、 ポリアリルァミンであることが好ましい。  Preferably, the coating adhesion promoter is a triazine thiol compound, and the second coating adhesion promoter is polyallylamine.
上記表面処理を行う前に、 脱脂、 酸洗、 脱スマット処理を行い、 表面に存在す る汚染物、 偏折物を除去するものであることが好ましい。  Before the surface treatment, degreasing, pickling, and desmutting are preferably performed to remove contaminants and unfolded substances present on the surface.
本発明はまた、 上記マグネシウム及び/又はマグネシウム合金の表面処理方法 によつて処理されたことを特徴とするマグネシゥム及び/又はマグネシゥム合金 合金製品でもある。 発明の詳細な開示  The present invention is also a magnesium and / or magnesium alloy alloy product, which is treated by the above-mentioned method for treating a surface of magnesium and / or magnesium alloy. Detailed Disclosure of the Invention
以下に、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明のマグネシゥム及び z又はマグネシゥム合金の表面処理方法は、 重金属 を実質的に含有しない処理剤を使用する表面処理方法である。 すなわち、 従来の マグネシウム金属、 マグネシウム合金の表面処理方法で使用されていたクロム、 マンガン、 ジルコニウム、 チタン等の重金属化合物を実質的に含有しない処理剤 を使用して、 マグネシウム金属、 マグネシウム合金の表面処理を行う方法である。 上記マグネシゥム及び Z又はマグネシゥム合金の表面処理方法において、 処理 剤が重金属を実質的に含有しないとは、 意図的に重金属イオンを加えていないこ とであり、 処理剤中において重金属が機能を発揮するほど含まれてないことを意 味する。  The surface treatment method for magnesium and z or magnesium alloy of the present invention is a surface treatment method using a treatment agent substantially free of heavy metals. In other words, surface treatment of magnesium metal and magnesium alloy using a treatment agent that does not substantially contain heavy metal compounds such as chromium, manganese, zirconium, and titanium used in the surface treatment method of conventional magnesium metal and magnesium alloy How to do. In the above surface treatment method for magnesium and Z or magnesium alloy, the treatment agent substantially does not contain heavy metal means that heavy metal ions are not intentionally added, and the heavy metal exhibits a function in the treatment agent. It means that it is not included as much.
本発明のマグネシウム及び Z又はマグネシウム合金の表面処理方法により処理 されるマグネシウム金属及びマグネシウム合金は、 圧延、 ダイキャス ト法やチタ ソモールド法等により作製されるマグネシゥム金属やマグネシゥム合金である。 マグネシウム金属は、 生体材料として有望であり、 A Z 3 1合金、 9 9 . 9 %の 純マグネシゥム金属が経'済的な観点から将来多く用いられると思われる。 本発明 は、 マグネシウム合金にも用いることができる。 更に好適に用いられる合金は、The magnesium metal and magnesium alloy to be treated by the surface treatment method of magnesium and Z or magnesium alloy of the present invention are magnesium metal and magnesium alloy produced by rolling, die casting, titano molding, or the like. Magnesium metal is promising as a biomaterial, and AZ31 alloy, 99.9% pure magnesium metal is expected to be widely used from an economic viewpoint in the future. The present invention Can also be used for magnesium alloys. More preferably used alloys are:
A Z 9 1、 A Z 3 1、 AM 6 0、 AM 5 0等である。 ここで、 表記の A Zや AM は添加されている金属元素を示す。 Aはアルミニウムであり、 Mはマンガン、 Z は亜鉛である。 これら表記に続く数字は、 これら添加元素の添加濃度を表してお り、 例えば、 A Z 9 1であれば、 アルミ二ゥムが 9 0 /。であり、 亜 が 1 %である ことを示している。 Mが 0とは M nの含有量が 1 %未満という意味である。 特に、 A Z 9 1、 AM 6 0等のアルミユウムを 5 %以上含有する合金に好適に用いられ る。 AZ91, AZ31, AM60, AM50, etc. Here, the notation AZ or AM indicates the added metal element. A is aluminum, M is manganese, and Z is zinc. The number following the these notation, Ri represent the addition concentration of these added elements, for example, if the AZ 9 1, aluminum two ©-time is 9 0 /. , Which indicates that the sub is 1%. M = 0 means that the content of Mn is less than 1%. In particular, it is suitably used for alloys containing 5% or more of aluminum, such as AZ91 and AM60.
マグネシゥム金属やマグネシゥム合金を加工する場合には、 機械油や離型剤が 用いられる。 特に、 ダイキャストやチクソモールドで作製する場合、 離型剤が金 属又は合金表面だけでなく、 金属又は合金内部 2 0〜3 0 m、 ときにはそれよ り内部にまで残存する場合がある。 このため、 従来の表面処理方法では塗装後耐 食性、 塗膜密着性が不充分であるが、 本発明の表面処理方法は、 このようなマグ ネシゥム金属やマグネシゥム合金に対しても充分な耐食性、 塗膜密着性を付与す ることができるものである。  When machining magnesium metal or magnesium alloy, machine oil or release agent is used. In particular, in the case of manufacturing by die casting or thixomold, the release agent may remain not only on the surface of the metal or alloy but also within 20 to 30 m inside the metal or alloy, and sometimes even inside. For this reason, the conventional surface treatment method has insufficient corrosion resistance after coating and coating film adhesion, but the surface treatment method of the present invention has sufficient corrosion resistance and resistance to such magnesium metal and magnesium alloy. It can impart coating film adhesion.
本発明のマグネシウム及び/又はマグネシウム合金の表面処理方法 (以下、 表 面処理方法ともいう。 ) は、 マグネシウム及ぴ Z又はマグネシウム合金を 0 . 0 The surface treatment method for magnesium and / or magnesium alloy of the present invention (hereinafter, also referred to as surface treatment method) is described as follows.
0 1〜1 0質量%の炭酸塩化合物を含む化成処理水溶液 (A) によって処理する ものである。 The treatment is carried out with a chemical conversion treatment aqueous solution (A) containing 0.1 to 10% by mass of a carbonate compound.
上記表面処理方法の特徴は、 炭酸イオンを含む水溶液、 又は、 炭酸イオンと塗 膜密着促進剤とを含む水溶液によって、 マグネシゥム金属及び/又はマグネシゥ ム合金を処理することにある。 塗膜密着促進剤を含まない場合の'処理法の化学的 な重要なボイントは、 マグネシウム金属やマグネシウム合金が安定なアルカリ性 溶液中、 例えば、 1質量。 /。の K 2 ( C O 3 ) 溶液で、 溶液の p Hは 1 1 . 5 (測 定して確認) 程度において、 反応液を高温に保ち酸化物皮膜若しくは水酸化物皮 膜、 両者の混合皮膜の生成を促進させること、 炭酸イオンとの反応により炭酸マ グネシゥムを生成させることである。 A feature of the surface treatment method is that magnesium metal and / or magnesium alloy is treated with an aqueous solution containing carbonate ions or an aqueous solution containing carbonate ions and a coating film adhesion promoter. The important chemical point of the treatment method when the coating film adhesion promoter is not included is an alkaline solution in which magnesium metal or magnesium alloy is stable, for example, 1 mass. /. In the K 2 (CO 3) solution, the p H of the solution in 1 1.5 (measurement to confirm) about, the reaction solution was elevated temperature kept oxide film or hydroxide skin film, a mixed film of both To promote the formation, and to produce magnesium carbonate by reaction with carbonate ions.
上記炭酸イオンの供給源としては、 例えば、 炭酸リチウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸カルシウム等の炭酸塩化合物が挙げられる。 溶解度、 コスト を考慮すれば、 炭酸ナトリウム、 炭酸カリウムの使用が好ましい。 この場合の炭 酸塩化合物の濃度は、 0 . 0 0 1 ~ 1 0質量%であり、 使用する炭酸塩化合物が 示す溶解度の限度の鞫囲で使用することができる。 好ましくは 0 . 0 1〜 1 0質 量0 /0であり、 より好ましくは 0 . 1〜3質量%でぁる。 0 . 0 0 1質量 °/0未満で あると、 充分な耐食性、 皮膜電気抵抗値が得られずまた、 1 0質量%を超えても、 それ以上の効果の向上は認められず、 経済的に好ましくない。 Examples of the source of the carbonate ion include carbonate compounds such as lithium carbonate, sodium carbonate, potassium carbonate, and calcium carbonate. Solubility, cost In consideration of the above, it is preferable to use sodium carbonate and potassium carbonate. In this case, the concentration of the carbonate compound is 0.001 to 10% by mass, and it can be used within the limit of solubility of the carbonate compound used. Preferably 0. 0 1-1 0 mass 0/0, more preferably 0.1 to 3 wt% Dearu. If it is less than 0.001 mass ° / 0 , sufficient corrosion resistance and electric resistance of the film cannot be obtained, and if it exceeds 10 mass%, no further improvement in the effect is observed, and it is economical. Not preferred.
上記化成処理水溶液 (A) によるマグネシウム及び/又はマグネシウム合金の 処理方法は、 特に限定されず、 例えば、 スプレー、 浸漬等の公知の方法によって 被処理物表面と化成処理水溶液 (A) を接触させることによって行うことができ る。 パソコン筐体、 携帯電話筐体、 自動車部材 .部品、 その他複雑な形状をした 製品の処理に好適に用いることができる点から、 浸漬法による処理であることが 好ましい。  The method of treating magnesium and / or magnesium alloy with the above-mentioned chemical conversion aqueous solution (A) is not particularly limited. For example, the surface of the object to be treated is brought into contact with the chemical conversion aqueous solution (A) by a known method such as spraying or dipping. Can be done by The immersion method is preferred because it can be suitably used for processing personal computer housings, mobile phone housings, automobile parts and other products having complicated shapes.
上記表面処理方法において、 化成処理浴の温度は特に限定されず、 通常 5 0 °C 以上であれば良いが、 好ましくは 6 0〜9 0 °Cの範囲であり、 より好ましくは 8 0〜9 0 °Cである。 5 0 °C未満の温度では、 酸化皮膜形成が不充分となり、 良好 な性能を示さないので不適である。 9 0 °Cを超えると、 溶液の蒸発、 熱源の確保 等無駄なことが多いだけでなく、 特別な性能の向上も認められないので好ましく ない。  In the above surface treatment method, the temperature of the chemical conversion treatment bath is not particularly limited, and may be usually 50 ° C or higher, preferably 60 to 90 ° C, more preferably 80 to 9 ° C. 0 ° C. If the temperature is lower than 50 ° C, the oxide film formation is insufficient, and the resulting composition does not show good performance. If the temperature exceeds 90 ° C, it is not preferable because there are many wastes such as evaporation of the solution and securing of a heat source, and no special performance improvement is observed.
上記表面処理方法において、 処理時間は 1〜 5分間であることが好ましい。 1 分未満であると、 酸化皮膜形成が不充分となり、 良好な性能を示さないので不適 である。 5分を超えると、 溶液の蒸発、 熱源の確保等無駄なことが多いだけでな く、 特別な性能の向上も認められないので好ましくない。 3〜5分間であること がより好ましい。  In the above surface treatment method, the treatment time is preferably 1 to 5 minutes. If the time is less than 1 minute, the formation of an oxide film is insufficient, and good performance is not exhibited. If the time is longer than 5 minutes, it is not preferable because not only the evaporation of the solution and the securing of a heat source are wasteful, but also no special performance improvement is observed. More preferably, it is 3 to 5 minutes.
上記表面処理方法は、 上記炭酸塩化合物単独での処理でも充分な塗膜密着性が 得られるが、 更に、 塗膜密着促進剤を添加すると、 より強固な塗膜密着性をマグ ネシゥム金属やマグネシウム合金に付与することができる。 特に、 除去し難い離 型剤を使用している場合や、 湯流れが悪く組織がポーラスである等、 品質の悪い マグネシウム铸造品にも、 耐食性■塗膜密着性を付与することができる  In the above surface treatment method, sufficient coating film adhesion can be obtained even by treatment with the above carbonate compound alone. However, when a coating film adhesion promoter is further added, stronger coating film adhesion can be obtained with magnesium metal or magnesium. Can be applied to alloys. In particular, corrosion resistance and coating film adhesion can be imparted to poor-quality magnesium products, such as when using a mold release agent that is difficult to remove, or when the flow of molten metal is poor and the structure is porous.
上記表面処理方法において使用する塗膜密着促進剤としては、 末端にァミノ基 を持つシランカップ剤、 トリアジンチオール化合物、 ポリアリルァミンの使用が 好適である。 The coating adhesion promoter used in the above-mentioned surface treatment method includes an amino group at the terminal. It is preferable to use a silane cup agent, a triazine thiol compound, or polyallylamine having
上記シランカップリング剤としては、 例えば、 N— (6—ァミノへキシル) 了 ミノプロビルトリメ トキシシラン、 N- (6—アミノへキシノレ) ァミノプロピル トリエトキシシラン、 N— (6—ァミノへキシル) ァミノプロピルトリクロロシ ラン、 N—アミノエチル) 一 3—ァミノプロピルトリエトキシシラン、 N— (2 —アミノエチル) 一 3ーァミノプロビルトリメ トキシシラン、 N- (2—ァミノ ェチル) — 3—ァミノプロピノレトリクロロシラン、 3—ァミノプロピルェトキシ シラン、 3—ァミノプロピルメ トキシシラン等のァミノシラン化合物を挙げるこ とができる。 Examples of the silane coupling agent include N- (6-aminohexyl)-finished minopropyltrimethoxysilane, N- (6-aminohexynole) aminopropyltriethoxysilane, and N- (6-aminohexyl) a Minopropyltrichlorosilane, N-aminoethyl) 1-3 -aminopropyltriethoxysilane, N- (2-aminoethyl) -3 -aminopropyltrimethoxysilane, N- (2-aminoethyl) — 3— Aminosilane compounds such as aminopropinoletrichlorosilane, 3-aminopropylethoxysilane and 3-aminopropylmethoxysilane can be mentioned.
上記トリアジンチオール化合物は、 トリァジン環とチオール基の両方を有する 化合物である。 特に、 チオール置換の 1, 3, 5—トリアジンが好ましい。 また 上記トリアジンチオール化合物は、 トリァジン環の一部がアルキルアミノ置換し たものであってもよい。 上記トリアジンチオール化合物としては、 例えば、 1, 3, 5—トリァジン一 2, 4, 6 トリチオール、 2一 (ジプチ/レアミノ) 一 4, 6—ジメルカプト一 1, 3, 5— トリァジン、 2— (フエニノレアミノ) 一 4, 6 ージメルカプト一 1 , 3, 5—トリアジン等を挙げることができる。  The triazine thiol compound is a compound having both a triazine ring and a thiol group. In particular, thiol-substituted 1,3,5-triazine is preferred. Further, the triazine thiol compound may be one in which a part of a triazine ring is substituted with alkylamino. Examples of the above triazine thiol compounds include 1,3,5-triazine-1,2,4,6 trithiol, 21- (dipti / reamino) -14,6-dimercapto-1,3,5-triazine and 2- (pheninoleamino ) 1,4,6-Dimercapto-11,3,5-triazine and the like.
上記ポリアリルアミンは、 下記一般式 (1)  The above polyallylamine has the following general formula (1)
Figure imgf000008_0001
で表わされる重合体である。 上記一般式 (1) 中、 重合度 nは、 下限 10、 上 限 1 200の範囲内であることが好ましい。 重合度が低すぎると、 塗膜密着性の 効果が得られない場合があり、 重合度が高すぎると、 浴安定が悪いという問題が ある。 上記ポリアリルァミンとしては、 日東紡社製 PAAシリーズ (PAA— 0 1、 PAA— 03、 PAA— 05、 PAA—15、 PAA— 1 5 B、 PAA— 1 0 C、 PAA— H— 10 C) 等の市販のものを使用することができる。
Figure imgf000008_0001
Is a polymer represented by In the above general formula (1), the polymerization degree n is preferably in a range of a lower limit of 10 and an upper limit of 1,200. If the degree of polymerization is too low, the effect of coating film adhesion may not be obtained, and if the degree of polymerization is too high, there is a problem that bath stability is poor. Examples of the polyallylamine include PAA series manufactured by Nittobo (PAA-01, PAA-03, PAA-05, PAA-15, PAA-15B, PAA-1 Commercially available products such as 0 C, PAA—H—10 C) can be used.
上記表面処理方法に使用することができる塗膜密着促進剤としては、 これ等に かぎらず、 アルカリ性雰囲気で安定であり、 塗膜密着に有効な官能基を持ち、 本 化成処理皮膜に吸着可能な有機分子なら使用することができる。  Examples of the coating adhesion promoter that can be used in the above surface treatment method include, but are not limited to, those that are stable in an alkaline atmosphere, have a functional group effective for coating adhesion, and can be adsorbed to the present chemical conversion coating. Any organic molecule can be used.
上記塗膜密着促進剤を使用する濃度は 0. 01~1質量%が良く、 0. 01質 量%未満では効果が弱くなり好ましくない。 一方 1質量%を超えても、 効果の増 大が認められず、 経済的に好ましくない。 上記塗膜密着促進剤を使用する場合の 処理浴中の炭酸塩の濃度は、 先の炭酸塩処理の場合と同様であり、 0. 001〜 10質量%、 好ましくは 0. 0 1〜 10質量0 /0、 より好ましくは 0. 1〜3質量 。/。で使用できる。 また、 上記塗膜密着促進剤を使用する場合の化成処理浴の温度 は 40°C以上であればよく、 好ましくは 60〜90°C、 より好ましくは 60〜 8 0°Cであれば良い。 The concentration of the above-mentioned coating film adhesion promoter used is preferably 0.01 to 1% by mass. On the other hand, if it exceeds 1% by mass, no increase in the effect is observed, which is not economically preferable. The concentration of the carbonate in the treatment bath when the above-mentioned coating film adhesion promoter is used is the same as that in the above-mentioned carbonate treatment, 0.001 to 10% by mass, preferably 0.01 to 10% by mass. 0/0, more preferably 0.1 to 3 wt. /. Can be used with The temperature of the chemical conversion bath when the above-mentioned coating film adhesion promoter is used may be 40 ° C or more, preferably 60 to 90 ° C, more preferably 60 to 80 ° C.
本発明のマグネシゥム及び Z又はマグネシゥム合金の表面処理方法は、 先ず、 上述したように、 マグネシウム及び Z又はマグネシウム合金を 0. 001〜10 質量%の炭酸塩化合物を含む化成処理水溶液 (A) によって処理した後に、 第 2 の塗膜密着促進剤を含む化成処理水溶液 (B) によって処理するものであること が好ましい。  The surface treatment method of magnesium and Z or magnesium alloy of the present invention is as follows. First, as described above, magnesium and Z or magnesium alloy is treated with a chemical conversion treatment aqueous solution (A) containing 0.001 to 10% by mass of a carbonate compound. After that, it is preferable to treat with a chemical conversion treatment aqueous solution (B) containing a second coating film adhesion promoter.
化成処理水溶液 (A) で処理することによって、 金属表面に炭酸マグネシウム、 水酸化マグネシゥム、 酸化マグネシゥム等のマグネシゥム化合物の混合物皮膜が 形成され、 これによつて耐食性能を得ることができ、 上記化成処理水溶液 (B) によって更に処理を行うことによって、 耐食性及び塗膜密着性をより向上させる ことができる。 化成処理水溶液 (B) によって更に処理を行うことによって、 上 記マグネシウム化合物の混合物皮膜上に、 上記塗膜密着促進剤及び第 2の塗膜密 着促進剤とからなる有機分子吸着層が形成され、 上記有機分子吸着層によって、 更に耐食性が改善され、 同時に塗膜とマグネシウム金属、 マグネシウム合金表面 との密着性が向上するものと推察される。 また、 上記マグネシウム化合物の混合 物皮膜は、 分子レベルの非常に薄い皮膜であるため、 マグネシウム金属やマグネ シゥム合金の導電性を著しく損なうことなく、 耐食性及び塗膜密着性を付与する ことができる。 上記化成処理水溶液 (B ) で更に処理することにより、 上記化成処理水溶液 ( A) で処理するだけでは、 充分な化成処理を行うことが困難であるような被処理 物、 例えば、 より強固に離型剤が付着しているような特に品質の悪いマグネシゥ ム錄造品にも、 充分な化成処理を行うことができる。 By treating with the chemical conversion aqueous solution (A), a mixture film of a magnesium compound such as magnesium carbonate, magnesium hydroxide, and magnesium oxide is formed on the metal surface, whereby the corrosion resistance can be obtained. Further treatment with the aqueous solution (B) can further improve corrosion resistance and coating film adhesion. By further processing with the chemical conversion treatment aqueous solution (B), an organic molecule adsorption layer comprising the above-mentioned coating film adhesion promoter and the second coating film adhesion promoter is formed on the above-mentioned mixed film of the magnesium compound. It is presumed that the organic molecule-adsorbing layer further improves the corrosion resistance and, at the same time, improves the adhesion between the coating film and the surface of the magnesium metal or magnesium alloy. Further, since the mixture film of the magnesium compound is a very thin film at a molecular level, it is possible to impart corrosion resistance and coating film adhesion without significantly impairing the conductivity of magnesium metal or magnesium alloy. By further treating with the above-mentioned chemical conversion treatment aqueous solution (B), it is difficult to perform a sufficient chemical conversion treatment only by treating with the above-mentioned chemical conversion treatment aqueous solution (A). Sufficient chemical conversion treatment can be performed even on a particularly poor quality magnesium product having a mold agent attached thereto.
上記化成処理水溶液 (B ) で更に処理する場合、 上記化成処理水溶液 (A) は、 p Hが 1 0以上であることが好ましい。 上記範囲内とすることによって、 炭酸塩 による化成処理反応が効率よく生じ、 効率のよい化成処理を行うことができる。 上記 p Hは、 1 1以上であることがより好ましい。 また、 p Hの上限は特に限定 されるものではないが、 1 3以下であることが好ましい。  In the case of further treatment with the chemical conversion treatment aqueous solution (B), the pH of the chemical conversion treatment aqueous solution (A) is preferably 10 or more. When the content is in the above range, a chemical conversion reaction with a carbonate occurs efficiently, and an efficient chemical conversion treatment can be performed. The above pH is more preferably 11 or more. The upper limit of pH is not particularly limited, but is preferably 13 or less.
上記化成処理水溶液 (B ) で更に処理する場合、 上記化成処理水溶液 (A) は、 p Hを上記範囲内のものとするために、 p H調整剤として塩基性化合物を含有す るものであってもよい。 上記塩基性化合物としては特に限定されず、 例えば、 水 酸化リチウム、 ΤΚ酸ィ匕ナトリウム、 水酸化カリウム、 アンモニア等を挙げること ができる。  In the case of further treatment with the above-mentioned aqueous solution for chemical conversion treatment (B), the above-mentioned aqueous solution for chemical conversion treatment (A) contains a basic compound as a pH adjuster in order to keep pH within the above range. You may. The basic compound is not particularly restricted but includes, for example, lithium hydroxide, sodium nitrite, potassium hydroxide, ammonia and the like.
上記第 2の塗膜密着促進剤は、 トリアジンチオール化合物、 シランカップリン グ剤及びポリアリルァミンからなる群から選ばれる少なくとも 1つであることが 好ましい。 上記第 2の塗膜密着促進剤として使用することができるトリアジン化 合物、 シランカップリング剤、 ポリアリルァミンとしては特に限定されず、 例え ば、 塗膜密着促進剤に使用することができるとして上述した化合物を挙げること ができる。  The second coating film adhesion promoter is preferably at least one selected from the group consisting of a triazine thiol compound, a silane coupling agent, and polyallylamine. The triazine compound, silane coupling agent, and polyallylamine that can be used as the second coating film adhesion promoter are not particularly limited, and, for example, are described above as being usable as a coating film adhesion promoter. Compounds can be mentioned.
上記第 2の塗膜密着促進剤としてトリアジンチオール化合物を使用する場合、 上記トリアジンチオール化合物の含有量は、 化成処理水溶液 (Β ) に対して下限 1 0 p p 上限 1 0 0 0 0 p p mの範囲内であることが好ましい。 1 0 p p m 未満であると、 充分な耐食性が得られない場合があり、 l O O O O p p mを超え ても、 それ以上の効果の向上は認められず、 経済的に好ましくない。 上記下限は、 1 0 0 p mであることがより好ましく、 5 0 0 p p mであることが更に好まし い。 上記上限は、 5 0 0 0 p p mであることがより好ましく、 2 0 0 O p p mで あることが更に好ましい。  When a triazine thiol compound is used as the second coating film adhesion promoter, the content of the triazine thiol compound is in the range of a lower limit of 10 pp and an upper limit of 100 ppm with respect to the chemical conversion treatment aqueous solution (Β). It is preferred that If it is less than 10 ppm, sufficient corrosion resistance may not be obtained, and if it exceeds 100 ppm, no further improvement in the effect is observed, which is not economically preferable. The lower limit is more preferably 100 pm, and even more preferably 500 pm. The upper limit is more preferably 500 ppm, and still more preferably 200 ppm.
上記第 2の塗膜密着促進剤としてァミノシラン化合物を使用する場合、 上記ァ ミノシラン化合物の含有量は、 化成処理水溶液 (B) に対して下限 10 p pm、 上限 10000 p pmの範囲内であることが好ましい。 10 p: m未満であると、 充分な耐食性が得られない場合があり、 Ι Ο Ο Ο Ο ρ ρ niを超えても、 それ以上 の効果の向上は認められず、 経済的に好ましくない。 上記下限は、 100 p pm であることがより好ましく、 500 p であることが更に好ましい。 上記上限 は、 5000 p pmであることがより好ましく、 2000 p pmであることが更 に好ましい。 When an aminosilane compound is used as the second coating film adhesion promoter, The content of the minosilane compound is preferably within the range of a lower limit of 10 ppm and an upper limit of 10,000 ppm with respect to the chemical conversion aqueous solution (B). If it is less than 10 p: m, sufficient corrosion resistance may not be obtained, and if it exceeds ni Ο Ο Ο ρ ρ ρ ni, no further improvement in effect is observed, which is not economically preferable. The lower limit is more preferably 100 ppm, and even more preferably 500 ppm. The upper limit is more preferably 5000 ppm, and even more preferably 2000 ppm.
上記第 2の塗膜密着促進剤としてポリアリルアミンを使用する場合、 上記ポリ ァリルァミンの含有量は、 化成処理水溶液 (B) に対して下限 50 p pm、 上限 10000 p の範囲内であることが好ましい。 50 p p m未満であると、 充 分な耐食性が得られない場合があり、 10000 p pmを超えても、 それ以上の 効果の向上は認められず、 経済的に好ましくない。 上記下限は、 100 p pmで あることがより好ましく、 500 p pmであることが更に好ましい。 上記上限は、 5000 p pmであることがより好ましく、 3000 p であることが更に好 ましい。  When polyallylamine is used as the second coating film adhesion promoter, the content of the polyallylamine is preferably within a range of a lower limit of 50 ppm and an upper limit of 10,000 p with respect to the chemical conversion aqueous solution (B). . If it is less than 50 ppm, sufficient corrosion resistance may not be obtained, and if it exceeds 10,000 ppm, no further improvement in effect is observed, which is not economically preferable. The lower limit is more preferably 100 ppm, and even more preferably 500 ppm. The upper limit is more preferably 5000 ppm, and even more preferably 3000 ppm.
上記第 2の塗膜密着促進剤は、 上記塗膜密着促進剤と同一の化合物であっても よいが、 相違するものであるほうが、 塗膜密着促進効果が良好なものとなるため、 より好ましい。  The second coating film adhesion promoter may be the same compound as the above-mentioned coating film adhesion promoter, but a different compound is more preferable since the coating film adhesion promoting effect becomes better. .
上記塗膜密着促進剤と上記第 2の塗膜密着促進剤の組み合わせとしては、 塗膜 密着促進剤がトリアジンチオール化合物で第 2の塗膜密着促進剤がァミノシラン 化合物又はポリアリルアミンである組み合わせ、 塗膜密着促進剤がァミノシラン 化合物で第 2の塗膜密着促進剤がポリアリルァミンである組み合わせが密着性向 上の観点からみて好ましい。 なかでも、 塗膜密着促進剤がトリアジンチオールィ匕 合物で第 2の塗膜密着促進剤がポリアリルアミンである組み合わせが最も好まし い。  Examples of the combination of the above-mentioned coating film adhesion promoter and the above-mentioned second coating film adhesion promoter include a combination in which the coating film adhesion promoter is a triazinethiol compound and the second coating film adhesion promoter is an aminosilane compound or polyallylamine. A combination in which the film adhesion promoter is an aminosilane compound and the second coating film adhesion promoter is polyallylamine is preferable from the viewpoint of improving adhesion. Among them, a combination in which the coating adhesion promoter is a triazinethiol conjugate and the second coating adhesion promoter is polyallylamine is most preferred.
上記化成処理水溶液 (B) による処理方法は、 特に限定されず、 スプレー、 浸 漬等の公知の方法によって被処理物と化成処理水溶液 (B) を接触させることに よって行うことができる。 第 2の化成処理反応を効率よく行うために、 化成処理 水溶液 (B) の温度は、 下限 40°C、 上限 80°Cの範囲内であることが好ましい。 4 0 °C未満の温度では、 皮膜形成が不充分となり、 良好な性能を示さないので不 適である。 8 0 °Cを超えると、 溶液の蒸発、 熱源の確保等無駄なことが多いだけ でなく、 特別な性能の向上も認められないので好ましくない。 上記下限は、 5 0 °Cであることがより好ましく、 上記上限は、 6 0 °Cであることがより好ましい。 本発明のマグネシゥム及び/又はマグネシゥム合金の表面処理方法においては、 より効率よく処理を施すために、 上記表面処理を行う前に、 脱脂、 酸洗、 脱スマ ット処理の工程を行うことがより好ましい。 例えば、 被処理物において、 離型剤 が被処理物表面だけでなく、 内部にまで残存するような場合は、 被処理物表面か ら、 これら機槻油ゃ離型剤を除去する必要がある。 このように、 機械油や金型の 離型剤で激しく汚染されたマグネシゥム金属、 マグネシゥム合金を処理する場合、 その離型剤除去工程は、 被処理物の汚染の程度によって工程や条件が多少異なる 力 脱脂→水洗→酸エッチング→水洗→脱スマツト→水洗で行われるのが一般的 である。 The treatment method using the chemical conversion treatment aqueous solution (B) is not particularly limited, and the treatment can be carried out by bringing the object to be treated into contact with the chemical conversion treatment aqueous solution (B) by a known method such as spraying or immersion. In order to efficiently perform the second chemical conversion reaction, the temperature of the chemical conversion aqueous solution (B) is preferably in the range of a lower limit of 40 ° C and an upper limit of 80 ° C. If the temperature is lower than 40 ° C, the film formation is insufficient, and good performance is not exhibited. If the temperature exceeds 80 ° C, it is not preferable because not only waste of the solution and securing of a heat source are often wasteful, but also no special performance improvement is observed. The lower limit is more preferably 50 ° C, and the upper limit is more preferably 60 ° C. In the surface treatment method for magnesium and / or magnesium alloy of the present invention, in order to perform the treatment more efficiently, it is more preferable to perform the steps of degreasing, pickling, and desmutting before performing the surface treatment. preferable. For example, if the release agent remains not only on the surface of the workpiece but also inside the workpiece, it is necessary to remove these release agents from the surface of the workpiece. . As described above, when treating magnesium metal or magnesium alloy that is heavily contaminated with machine oil or mold release agent, the process and conditions for the release agent removal process differ slightly depending on the degree of contamination of the workpiece. Power Degreasing → washing with water → acid etching → washing with water → desmutting → washing with water is common.
上記脱脂工程では、 界面活性剤を含んだアルカリ性脱脂剤の水溶液が用いられ るのが一般的である。 この工程は表面にゆるく付着した機械油や離型剤の除去を 目的として行う。 使用する脱脂剤は特に限定されるものではない。 汚染の程度が 小さい場合は、 この脱脂だけで充分な場合もあるが、 不充分な場合がほとんどで あり、 一般的には酸エッチングが行われる。  In the above degreasing step, an aqueous solution of an alkaline degreasing agent containing a surfactant is generally used. This process is performed for the purpose of removing mechanical oil and release agent that loosely adhere to the surface. The degreasing agent used is not particularly limited. If the degree of contamination is small, this degreasing alone may be sufficient, but in most cases it is not sufficient, and in general, acid etching is performed.
上記酸エッチング工程の目的は、 金属、 合金表面の不均一な酸化物層、 被処理 物表面に付着している機械油と、 金属、 合金内部にまで進入した離型剤を金属、 合金の溶解により除去することである。 これらの除去が不充分であると、 充分な 耐食性と塗膜密着性を付与できないおそれがある。 また、 完全に除去する必要は ないものの離型剤の除去が著しく不充分であると、 これも耐食性と塗膜密着性に 悪影響を及ぼすおそれがある。 特に離型剤での汚染の激しい場合には、 この工程 は必須であり、 重要である。  The purpose of the acid etching process is to dissolve the metal and alloy, the uneven oxide layer on the surface of the metal and alloy, the machine oil adhering to the surface of the workpiece, and the release agent that has penetrated into the metal and alloy. To remove. If these removals are insufficient, sufficient corrosion resistance and coating film adhesion may not be imparted. Although it is not necessary to completely remove the release agent, if the removal of the release agent is extremely insufficient, this may adversely affect the corrosion resistance and the adhesion of the coating film. This step is indispensable and important especially when the contamination with the release agent is severe.
上記酸エッチング工程に使用する酸としては、 リン酸、 硫酸、 硝酸等の無機酸 の他に、 シユウ酸、 酢酸等の有機酸が使用できる。 酸エッチング溶液中の酸濃度 は、 0 . l ~ 5 g / lが良く、 より好ましくは 0 . 3〜l g / lである。 0 . 1 g / 1未満では、 マグネシウム溶解による p H上昇のため、 溶液の交換頻度が多 くなるので好ましくない。 5 g Z lを超えると、 マグネシウム金属、 マグネシゥ ム合金の溶解が著しく起こり、 激しい水素発生がおこる。 そのため、 金属、 合金 表面へダメージを与えることがあり不適である。 また、 カルボン酸やリン酸を 5 g / 1を超える濃度で使用すると、 表面にシユウ酸塩やリン酸塩が析出して、 充 分な離型剤除去が行えないことがある。 これら酸は、 シユウ酸や硝酸のように、 単独で使用して効果のあるものもあるが、 一般的には、 2種類以上の混酸として 使用するのが好ましい。 例えば、 硫酸と硝酸、 リン酸とケィフッ化水素酸等が好 適に使用できる。 As the acid used in the acid etching step, in addition to inorganic acids such as phosphoric acid, sulfuric acid, and nitric acid, organic acids such as oxalic acid and acetic acid can be used. The acid concentration in the acid etching solution is preferably from 0.1 to 5 g / l, more preferably from 0.3 to lg / l. At less than 0.1 g / 1, the solution exchange frequency is high due to the increase in pH due to magnesium dissolution. Is not preferred. If it exceeds 5 g Zl, magnesium metal and magnesium alloy will be significantly dissolved, and vigorous hydrogen generation will occur. Therefore, it may damage metal and alloy surfaces and is not suitable. If carboxylic acid or phosphoric acid is used at a concentration exceeding 5 g / 1, oxalate or phosphate may precipitate on the surface, making it impossible to remove the release agent sufficiently. Some of these acids, such as oxalic acid and nitric acid, are effective when used alone, but generally they are preferably used as a mixed acid of two or more. For example, sulfuric acid and nitric acid, phosphoric acid and ky hydrofluoric acid, and the like can be suitably used.
上記脱スマツト工程は、 K O Hや N a O Hのアルカリ性化合物を主成分とする 水溶液が好適に使用できるが、 これらに制限されるものではない。 酸エッチング で表面に付着した生成物の除去、 金属、 合金表面に偏折したアルミニウムの除去 とそのアルミニゥム近傍に付着している離型剤の除去等を目的として行われる。 上記表面処理方法によつて処理されたマグネシゥム金属、 マグネシゥム合金製 品は、 携帯電話、 パソコンの筐体、 蓋材等に好適に使用することができる。 この ようなマグネシウム合金製品も、 本発明の一つである。  In the above desmutting step, an aqueous solution mainly containing an alkaline compound such as KOH or NaOH can be suitably used, but the present invention is not limited thereto. The purpose is to remove products attached to the surface by acid etching, to remove aluminum deflected on the surface of metals and alloys, and to remove mold release agents attached near the aluminum. The magnesium metal or magnesium alloy product treated by the surface treatment method can be suitably used for a mobile phone, a housing of a personal computer, a lid material, and the like. Such a magnesium alloy product is also one of the present invention.
本発明のマグネシゥム及び Z又はマグネシゥム合金の表面処理方法は、 マグネ シゥム及び Z又はマグネシウム合金を 0 . 0 0 1〜1 0質量%の炭酸塩化合物を 含む化成処理水溶液 (A) によって処理するものであることから、 マグネシウム 化合物の混合物からなる皮膜をマグネシウム及び Z又はマグネシウム合金の表面 に形成させることができ、 優れた耐食性、 塗膜密着性、 導電性を付与することが できる。 また、 上記化成処理水溶液 (A) が更に、 塗膜密着促進剤を含むもので あり場合には、 耐食性及び塗膜密着性をより向上させることができる。  The surface treatment method of magnesium and Z or a magnesium alloy of the present invention comprises treating magnesium and Z or a magnesium alloy with a chemical conversion aqueous solution (A) containing 0.001 to 10% by mass of a carbonate compound. For this reason, a film made of a mixture of magnesium compounds can be formed on the surface of magnesium and Z or a magnesium alloy, and excellent corrosion resistance, coating film adhesion, and conductivity can be imparted. Further, when the chemical conversion treatment aqueous solution (A) further contains a coating film adhesion promoter, the corrosion resistance and the coating film adhesion can be further improved.
また、 上記表面処理方法が更に、 第 2の塗膜密着促進剤を含む化成処理水溶液 ( B ) によって処理するものである場合には、 マグネシウム化合物の混合物から なる皮膜を形成させ、 更に、 水溶性有機分子吸着層が形成させることができるも のである。 従って、 上記マグネシウム化合物の混合物皮膜によってより高い耐食 性を付与することができ、 水溶性有機分子吸着層によって更に耐食性を良好なも のとするとともに、 高い塗膜密着性を付与することができる。 これにより、 上記 化成処理水溶液 (A) では充分に化成処理することが困難な品質の悪いマグネシ ゥム金属、 マグネシウム合金に対しても充分に化成処理することができる。 また、 形成されたマグネシゥム化合物の混合物皮膜は、 分子レベルの非常に薄い皮膜で あるため、 処理されたマグネシウム金属、 マグネシウム合金表面の電気抵抗値は、 高くなりすぎることがない。 即ち、 更に、 化成処理水溶液 (B ) で化成処理する 方法であっても、 より優れた耐食性、 塗膜密着性及び導電性を付与することがで きる。 発明を実施するための形態 Further, in the case where the above-mentioned surface treatment method further comprises treating with a chemical conversion treatment aqueous solution (B) containing a second coating film adhesion promoter, a film composed of a mixture of magnesium compounds is formed, and An organic molecule adsorption layer can be formed. Accordingly, a higher corrosion resistance can be imparted by the mixed film of the magnesium compound, and a higher corrosion resistance can be imparted by the water-soluble organic molecule-adsorbing layer, and a higher coating adhesion can be imparted. As a result, poor quality magnesium, which is difficult to perform the chemical conversion treatment with the chemical conversion aqueous solution (A), is used. Platinum metal and magnesium alloys can also be chemically converted sufficiently. In addition, the formed magnesium compound mixture film is a very thin film at the molecular level, so that the electric resistance value of the treated magnesium metal or magnesium alloy surface does not become too high. That is, even with the method of chemical conversion treatment with the chemical conversion aqueous solution (B), more excellent corrosion resistance, coating film adhesion and conductivity can be imparted. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を実施例により更に具体的に説明するが、 本発明はこれら実施例 のみに限定されるものではない。 また実施例中、 「部」 は特に断りのない限り 「 質量部」 を意味する。 実施例 1  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to only these examples. In the examples, “parts” means “parts by mass” unless otherwise specified. Example 1
板厚 2 mmのチクソモールディング製マグネシウム合金 A Z 9 1 D試験板を、 以下に示した条件で脱脂、 水洗、 酸エッチング、 水洗、 脱スマット、 水洗、 化成 処理、 水洗、 を行い、 乾燥した後、 粉体塗装を行った。 水洗は、 水道水シャワー で行い、 他の各工程は、 全てディップ方式で処理を行った。 乾燥は電気乾燥機で 1 0 0 °C、 2 0分間行った。  A 2 mm thick thixomolded magnesium alloy AZ91D test plate was degreased, washed with water, acid-etched, washed with water, desmutted, washed with water, chemically treated, washed with water, and dried under the following conditions. Powder coating was performed. Rinsing was carried out with a tap water shower, and all other processes were performed by a dip method. Drying was performed with an electric dryer at 100 ° C. for 20 minutes.
(A) 脱脂  (A) Degreasing
処理液: 1質量0 /0マグダイン S F 1 0 0タリーナー (日本ペイント社製) 処理温度: 5 0 °C Treatment liquid: 1 by weight 0/0 Magudain SF 1 0 0 Tarina (Nippon Paint Co., Ltd.) treatment temperature: 5 0 ° C
処理時間: 2分間  Processing time: 2 minutes
( B ) 酸エッチング  (B) Acid etching
処理液: 1 V o 1 %マグダイン S F 4 0 0酸エッチング (日本ペイント社製) 処理温度: 5 0 °C  Processing solution: 1 V o 1% Magdyne SF 400 Acid etching (Nippon Paint Co., Ltd.) Processing temperature: 50 ° C
処理時間: 1 0分間  Processing time: 10 minutes
( C ) 脱スマツト  (C) De-Smutt
処理液: 5 V o 1 %マグダイン S F 3 0 0アル力リェツチング  Treatment solution: 5 V o 1% Magdyne SF 300 Al force leaching
処理温度: 6 0 °C 処理時間: 5分 Processing temperature: 60 ° C Processing time: 5 minutes
(D ) 化成処理  (D) Chemical conversion treatment
処理液: 1質量%炭酸力リゥム水溶液  Treatment liquid: 1% by mass carbon dioxide rim aqueous solution
p H: 1 1 . 5  pH: 1 1.5
処理温度: 8 0 °C  Processing temperature: 80 ° C
処理時間: 5分  Processing time: 5 minutes
得られた試験板を用いて、 下記方法で、 未塗装耐食性、 化成皮膜電気抵抗、 塗 装後耐食性、 塗膜密着性を評価し結果を表 1に示した。 未塗装耐食性  Using the obtained test plates, the uncoated corrosion resistance, the electrical resistance of the chemical conversion coating, the corrosion resistance after coating, and the adhesion of the coating were evaluated by the following methods, and the results are shown in Table 1. Unpainted corrosion resistance
塩水噴霧試験:試験片に 5 %食塩水を 3 5 °Cで噴霧し、 4 8時間経過後の腐食 部分の占有率を目視で評価した。  Salt spray test: The test piece was sprayed with 5% saline at 35 ° C, and the occupancy of the corroded portion after 48 hours was visually evaluated.
化成皮膜電気抵抗 Conversion film electric resistance
表面抵抗測定装置 E P— T 3 6 0 (キーエンス社製) を用いて 2探針法で、 化 成皮膜の 9ケ所を測定して、 最大値と最小値を除いた 7点の値の平均値を電気抵 抗値とした。  Using a surface resistance measurement device EP-T360 (manufactured by KEYENCE CORPORATION), measure the 9 points of the chemical conversion film using the two-point probe method and average the values of the seven points excluding the maximum and minimum values. Is the electric resistance value.
塗装後耐食性 Corrosion resistance after painting
試験板にマグダイン P D— E (エポキシ系粉体塗料、 日本ペイント社製) を乾 燥膜厚 4 0 // mとなるように塗装し、 1 6 0 °C、 2 0分間焼き付けて塗装板を作 成した。 これに金属製カッターで素地までのクロスカットを入れ、 塩水噴霧試験 にかけ、 1 2 0時間後にクロスカツト部に粘着テープを圧着して剥離したときの 塗膜剥離幅で評価した。  The test plate was coated with Magdyne PD-E (epoxy powder paint, Nippon Paint Co., Ltd.) to a dry film thickness of 40 // m and baked at 160 ° C for 20 minutes to obtain a coated plate. Created. A cross cut up to the substrate was made with a metal cutter, subjected to a salt spray test, and evaluated 120 hours later by the peeling width of the coating film when the adhesive tape was pressure-bonded to the cross cut portion and peeled off.
( 1 ) 粉体塗装した試験板を 1 2 0時間塩水噴霧試験にかけ、 その後取り出した 試験板に 1 mm間隔の碁盤目を 1 0 0個作り、 粘着テープを貼り付けて剥離した。 残存した碁盤目の数を測定し評価した。 (1) The powder-coated test plate was subjected to a salt spray test for 120 hours. Thereafter, 100 test pieces at intervals of 1 mm were formed on the test plate taken out, and an adhesive tape was stuck and peeled off. The number of remaining grids was measured and evaluated.
( 2 ) 粉体塗装した試験板を 5 0 °Cの温水に 1 2 0時間浸漬する。 その後取り出 した試験板に l mm間隔の碁盤目を 1 0 0個作り、 粘着テープを貼り付けて剥離 した。 残存した碁盤目の数を測定し評価した。 実施例 2 (2) Immerse the powder coated test plate in warm water at 50 ° C for 120 hours. Thereafter, 100 test pieces at lmm intervals were formed on the test plate taken out, and an adhesive tape was applied thereto and peeled off. The number of remaining grids was measured and evaluated. Example 2
実施例 1における化成処理剤を 0 . 1質量%炭酸カリゥム水溶液に変更した以 外は実施例 1と同様にして試験板を作製した。 また、 板厚 2 mmのチタソモール デイング製マグネシウム合金 A Z 9 1 D試験板の代わりに、 塗膜密着性、 耐食性 の劣る合金である板厚 l mmのダイキャスト製マグネシウム合金 A Z 9 1 D試験 板を使用した以外は、 実施例 1と同様にして試験板を作製した。 次いで、 それぞ れ実施例 1と同様にして評価し、 得られた結果を表 1に記載した。 実施例 3  A test plate was prepared in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to an aqueous 0.1 mass% potassium carbonate solution. Also, instead of the 2 mm thick titanium alloy AZ91D test plate made of titanium alloy, a 1 mm thick diecast magnesium alloy AZ91D test plate, which is an alloy with poor coating adhesion and corrosion resistance, is used. A test plate was produced in the same manner as in Example 1 except that the test plate was used. Next, each was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1. Example 3
実施例 1における処理温度を 6 0 °Cに変更した以外は実施例 1と同様にして試 験板を作製した。 次いで実施例 1と同様にして評価し、 得られた結果を表 1に記 載した。 実施例 4  A test plate was produced in the same manner as in Example 1, except that the processing temperature in Example 1 was changed to 60 ° C. Next, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Example 4
実施例 1における化成処理剤を飽和炭酸カルシウム水溶液 (濃度: 0 . 0 0 1 4質量%) に変更した以外は実施例 1と同様にして試験板を作製した。 次いで実 施例 1と同様にして評価し、 得られた結果を表 1に記載した。 実施例 5  A test plate was prepared in the same manner as in Example 1 except that the chemical conversion treating agent in Example 1 was changed to a saturated calcium carbonate aqueous solution (concentration: 0.0014% by mass). Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Example 5
実施例 1における化成処理剤を 5質量%炭酸力リゥム水溶液に変更した以外は 実施例 1と同様にして試験板を作製した。 次いで実施例 1と同様にして評価し、 得られた結果を表 1に記載した。 実施例 6  A test plate was produced in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to a 5% by mass aqueous solution of carbon dioxide lime. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Example 6
塗膜密着性、 耐食性の劣る合金である板厚 1 mmのダイキャスト製マグネシゥ ム合金 A Z 9 1 D試験板を下記に示す化成処理浴に浸漬して試験板を作製した。 次いで実施例 1と同様に評価して得られた結果を表 1に記載した。 なお、 工程及 び化成処理以外の条件は実施例 1と同様にした。 (A) 化成処理: 1質量0 /oの KC03と 0. 1%の 1, 3, 5—トリアジンー 2, 4, 6 トリチオールの水溶液 A 1 mm-thick die-cast magnesium alloy AZ91D test plate, which is an alloy having poor coating film adhesion and corrosion resistance, was immersed in a chemical conversion bath shown below to prepare a test plate. Next, the results obtained in the same manner as in Example 1 are shown in Table 1. The conditions other than the process and the chemical conversion treatment were the same as in Example 1. (A) chemical conversion treatment: 1 by weight 0/1 KC0 3 and 0.1% of o, 3, 5-triazine-2, 4, 6 aqueous solution of tri-thiol
p H: 1 1. 5  pH: 1 1.5
処理温度: 80 °C  Processing temperature: 80 ° C
処理時間: 2分 実施例 7  Processing time: 2 minutes Example 7
実施例 6における化成処理浴のトリアジンチオールの濃度を 1質量%に変更し た以外は、 実施例 6と同様にして試験板を作製した。 次いで、 実施例 1と同様に 評価し、 得られた結果を表 1に記載した。 実施例 8  A test plate was prepared in the same manner as in Example 6, except that the concentration of the triazinethiol in the chemical conversion bath in Example 6 was changed to 1% by mass. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Example 8
実施例 6における化成処理浴のトリアジンチオールの濃度を 0. 01 %に変更 した以外は、 実施例 6と同様にして試験板を作製した。 次いで実施例 1と同様に 評価し得られた結果を表 1に記載した。 実施例 9  A test plate was prepared in the same manner as in Example 6, except that the concentration of triazinethiol in the chemical conversion treatment bath in Example 6 was changed to 0.01%. Next, the results obtained in the same manner as in Example 1 are shown in Table 1. Example 9
実施例 6における化成処理浴の温度を 60°Cに変更した以外は、 実施例 6と同 様にして試験板を作製した。 次いで実施例 1と同様に評価し得られた結果を表 1 に記載した。 実施例 10  A test plate was produced in the same manner as in Example 6, except that the temperature of the chemical conversion treatment bath in Example 6 was changed to 60 ° C. Next, the results obtained in the same manner as in Example 1 are shown in Table 1. Example 10
実施例 6における化成処理浴を 1質量。/ 0K2CO3と 0. 1質量 °/0の N— (2 ーァミノェチル) _ 3—ァミノプロピルトリメ トキシシラン水溶液に変更した以 外は、 実施例 6と同様にして試験板を作製した。 次いで実施例 1と同様に評価し 得られた結果を表 1に記載した。 比較例 1 1 mass of the chemical conversion treatment bath in Example 6. A test plate was prepared in the same manner as in Example 6, except that the aqueous solution was changed to / 0 K 2 CO 3 and an aqueous solution of N- (2-aminoethyl) _3-aminopropyltrimethoxysilane at 0.1 mass ° / 0 . Next, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 1
実施例 1における化成処理を市販のリン酸マンガン処理剤マグダイン S F 5 7 2 (日本ペイント社製) の 2 0 %水溶液を使用し 5 0 °C 2分間浸漬処理すること に変更した以外は実施例 1と同様にして試験板を作製した。 次いで実施例 1と同 様にして評価し、 得られた結果を表 1に記載した。 比較例 2 The chemical conversion treatment in Example 1 was performed using a commercially available manganese phosphate treating agent Magdyne SF 57 A test plate was prepared in the same manner as in Example 1 except that a 20% aqueous solution of 2 (manufactured by Nippon Paint Co., Ltd.) was used and immersion treatment was performed at 50 ° C. for 2 minutes. Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 2
実施例 1における化成処理を、 市販のリン酸ジルコン処理剤アルサーフ 4 4 0 (曰本ペイント社製) の 5 %水溶液を使用し 5 0 °C 2分間浸漬処理することに変 更した以外は実施例 1と同様にして試験板を作製した。 次いで実施例 1と同様に して評価し、 得られた結果を表 1に記載した。 . 比較例 3  The chemical conversion treatment in Example 1 was carried out except that the chemical conversion treatment was changed to immersion treatment at 50 ° C for 2 minutes using a 5% aqueous solution of a commercially available zircon phosphate treatment agent Alsurf 440 (produced by Honko Paint Co., Ltd.). A test plate was produced in the same manner as in Example 1. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 3
実施例 1における化成処理に変えてイオン交換水で 8 0 °C 2分間浸漬処理する ことに変更した以外は実施例 1と同様にして試験板を作製した。 次いで実施例 1 と同様にして評価し、 得られた結果を表 1に記載した。 比較例 4  A test plate was produced in the same manner as in Example 1, except that the chemical conversion treatment in Example 1 was changed to immersion treatment with ion exchanged water at 80 ° C. for 2 minutes. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 4
実施例 1における化成処理剤を 1質量%水酸化力リゥム水溶液に変更した以外 は実施例 1と同様にして試験板を作製した。 次いで実施例 1と同様にして評価し、 得られた結果を表 1に記載した。 比較例 5  A test plate was produced in the same manner as in Example 1, except that the chemical conversion treating agent in Example 1 was changed to an aqueous solution of 1% by mass of a hydroxylating water. Then, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Comparative Example 5
実施例 6における化成処理浴の炭酸力リゥムを水酸化力リゥムに変更した以外 は、 実施例 6と同様に試験板を作製した。 次いで、 実施例 1と同様に評価し、 得 られた結果を表 1に記載した。 未塗装 塗装 塗膜密着性 A test plate was produced in the same manner as in Example 6, except that the carbon dioxide rim of the chemical conversion treatment bath in Example 6 was changed to a hydroxylation lime. Subsequently, evaluation was performed in the same manner as in Example 1, and the obtained results are shown in Table 1. Unpainted Paint Paint adhesion
耐食性 耐食性  Corrosion resistance Corrosion resistance
(マグネシウム合金) (Ω)  (Magnesium alloy) (Ω)
(%) (mm) 塩水噴霧 /皿水; 貝 実施例 1 A 0. 1以下 0 0 100 100  (%) (mm) Salt spray / dish water; Shellfish Example 1 A 0.1 or less 0 0 100 100
A 0. 1以下 0 0 100 100 実施例 2  A 0.1 or less 0 0 100 100 Example 2
B 0. 1以下 5 2 90 86 実施例 3 A 0.1以下 1 0 100 100 実施例 4 A 0. 1以下 1 0 100 100 実施例 5 A 0. 1以下 0 3 100 100 実施例 6 B 0. 1以下 1 0 100 100 実施例 7 B 0. 1以下 1 0 100 100 実施例 8 B 0. 1以下 3 0 100 100 実施例 9 B 0.1以下 2 0 100 100 実施例 10 B 0.2以下 3 1 100 100 比較例 1 A 0.2以下 2 0 100 100 比較例 2 A 0. 1以下 2 0 00 100 比較例 3 A 0.07以下 10 10 7フ 63 比較例 4 A 0.07以下 10 10 100 100 比較例 5 A 0.1以下 10 10 90 68  B 0.1 or less 5 2 90 86 Example 3 A 0.1 or less 1 0 100 100 Example 4 A 0.1 or less 1 0 100 100 Example 5 A 0.1 or less 0 3 100 100 Example 6 B 0.1 Below 1 0 100 100 Example 7 B 0.1 or less 1 0 100 100 Example 8 B 0.1 or less 3 0 100 100 Example 9 B 0.1 or less 2 0 100 100 Example 10 B 0.2 or less 3 1 100 100 Compare Example 1 A 0.2 or less 2 0 100 100 Comparative example 2 A 0.1 or less 2 0 00 100 Comparative example 3 A 0.07 or less 10 10 7 7 63 Comparative example 4 A 0.07 or less 10 10 100 100 Comparative example 5 A 0.1 or less 10 10 90 68
A 板厚 2mmのチクソモールディング製マグネシウム合金 AZ91 D試験板 A 2mm thick thixomolding magnesium alloy AZ91 D test plate
B 板厚 1 mmのダイキャスト製マグネシウム合金 AZ91 D試験板 以上の結果により、 本発明のマグネシゥム及び z又はマグネシウム合金の表面 処理方法を行ったものは、 マグネシゥム合金基材に対して優れた耐食性と塗膜密 着性及び導電性を示した。 処理剤として 0. 1質量%炭酸力リゥム水溶液を使用 した場合 (実施例 2 ) においては、 板厚 2 mmのチクソモールディング製マグネ シゥム合金 AZ 9 1D試験板に対する処理性能に比べて、 板厚 lmmのダイキヤ ス ト製マグネシゥム合金 A Z 9 ID試験板に対する処理性能が若干劣るものであ つたが、 処理剤にトリアジンチオール化合物、 アミノシラン化合物を更に含ませ ることによって (実施例 6〜10) 、 処理性能が改善されることが明らかとなつ た。 実施例 1 1 B Die-cast magnesium alloy AZ91 D test plate with a thickness of 1 mm Based on the above results, the magnesium and z or magnesium alloy surface treatment method of the present invention showed excellent corrosion resistance to the magnesium alloy base material. It showed coating adhesion and conductivity. In the case where a 0.1% by mass aqueous solution of carbonated lime was used as the treating agent (Example 2), the plate thickness lmm was smaller than that of the AZ91D test plate made of thixomolded magnesium alloy having a plate thickness of 2 mm. Although the processing performance on the AZ9 ID test plate made of Magnesium alloy manufactured by Daicast was slightly inferior, the processing performance was further improved by adding a triazine thiol compound and an aminosilane compound (Examples 6 to 10). It has become clear that is improved. Example 1 1
チクソモールディング製マグネシゥム合金試験板 (実施例 6で使用された試験 板より汚染がひどく、 化成処理が困難である試験板) によって得られたパソコン 用筐体を、 以下に示した条件で、 脱脂、 水洗、 酸エッチング、 水洗、 脱スマット、 水洗、 第 1の化成処理、 水洗、 第 2の化成処理、 水洗を行い、 乾燥した後、 粉体 塗装工程 (工程例 1) を行った。 水洗は、 水道水シャワーで行い、 他の各工程は、 全てディップ方式で処理を行った。 乾燥は電気乾燥機で 100°C、 20分間行つ た。 なお、 被処理物として使用した上記パソコン用筐体は、 離型剤汚染程度が高 く、 除去が困難であり、 耐食性、 塗膜密着性の付与が困難なものであった。 The PC housing obtained by using a thixmolding magnesium alloy test plate (a test plate that is more contaminated than the test plate used in Example 6 and difficult to undergo chemical conversion treatment) was degreased under the following conditions. After washing with water, acid etching, washing with water, desmutting, washing with water, first chemical conversion treatment, washing with water, second chemical conversion treatment, washing with water, and drying, the powder coating process (process example 1) was performed. Rinsing was performed with a tap water shower, and all other steps were performed using a dip method. Drying was performed in an electric dryer at 100 ° C for 20 minutes. The PC case used as the object to be treated had a high degree of release agent contamination, was difficult to remove, and was difficult to impart corrosion resistance and coating film adhesion.
(A) 脱脂 (A) Degreasing
実施例 1と同様にして行った。  It carried out similarly to Example 1.
(B) 酸エッチング  (B) Acid etching
実施例 1と同様にして行った。  It carried out similarly to Example 1.
(C) 脱スマツト  (C) De-Smutt
実施例 1と同様にして行った。  It carried out similarly to Example 1.
(D) 第 1の化成処理  (D) First chemical conversion treatment
処理液: 1質量%炭酸カリウム、 l O O p pml, 3, 5—トリアジン _2, 4, 6—チオールの水溶液  Treatment solution: 1% by weight potassium carbonate, lOOppml, aqueous solution of 3,5-triazine_2,4,6-thiol
p H: 1 1. 5  pH: 1 1.5
処理温度: 8◦ °C  Processing temperature: 8 ° C
処理時間: 2分間  Processing time: 2 minutes
(E) 第 2の化成処理  (E) Second chemical conversion treatment
処理液: 2000 p p mポリアリルァミン ( 0東紡社製、 PAA— 5、 n= 8 7. 7) 水溶液  Treatment solution: 2000 ppm polyallylamine (0 TOBO, PAA-5, n = 87.7) aqueous solution
処理温度: 60 °C  Processing temperature: 60 ° C
処理時間: 2分間 '  Processing time: 2 minutes'
得られた試験板を用いて、 下記方法で、 未塗装耐食性、 化成皮膜電気抵抗、 塗 装後耐食性、 塗膜密着性を評価し結果を表 2に示した。 未塗装耐食性 The uncoated corrosion resistance, the electrical resistance of the chemical conversion film, the corrosion resistance after coating, and the adhesion of the coating film were evaluated by the following methods using the obtained test plates, and the results are shown in Table 2. Unpainted corrosion resistance
塩水噴霧試験:試験片に 5。/。食塩水を 3 5 で 8時間連続噴霧し、 その後の耐 食性をレーティングナンバー法で評価した。  Salt spray test: 5 on test piece. /. The saline was sprayed continuously at 35 for 8 hours, and then the corrosion resistance was evaluated by the rating number method.
化成皮膜電気抵抗 Conversion film electric resistance
実施例 1と同様の方法で評価した。  Evaluation was performed in the same manner as in Example 1.
塗装後耐食性 Corrosion resistance after painting
実施例 1と同様の方法で評価した。 ( 1 ) 上記塗装後耐食性の試験方法と同様の方法で粉体塗装した試験板を 7 2時 間塩水噴霧試験にかけ、 その後取り出した試験板に 1 mm間隔の碁盤目を 1 0 0 個作り、 粘着テープを貼り付けて剥離した。 残存した碁盤目の数を測定し評価し た。  Evaluation was performed in the same manner as in Example 1. (1) A salt water spray test was conducted on the test plate powder-coated in the same manner as the above-mentioned test method for corrosion resistance after coating for 72 hours, and then 100 squares of 1 mm intervals were formed on the test plate taken out. An adhesive tape was applied and peeled off. The number of remaining grids was measured and evaluated.
( 2 ) 上記塗装後耐食性の試験方法と同様の方法で粉体塗装した試験板を 5 0 °C のイオン交換水に 7 2時間浸漬する。 その後取り出した試験板に 1 mm間隔の碁 盤目を 1 0 0個作り、 粘着テープを貼り付けて剥離した。 残存した碁盤目の数を 測定し評価した。 実施例 1 2〜 1 5  (2) Immerse the test plate powder-coated by the same method as the above test method for corrosion resistance after coating in ion-exchanged water at 50 ° C for 72 hours. Thereafter, 100 pieces of grids at 1 mm intervals were formed on the test plate taken out, and an adhesive tape was stuck thereon and peeled off. The number of remaining grids was measured and evaluated. Examples 12 to 15
表 2に示した処方を有する化成処理水溶液 (A) 及び化成処理水溶液 (B ) を 用いて、 表 2に示した条件で実施例 1 1と同様にマグネシウム合金の表面処理を 行った。 結果を表 2に示す。 なお、 実施例 1 2〜1 4は、 実施例 1 1におけるェ 程例 1ではなく、 脱脂、 水洗、 酸エッチング、 水洗、 第 1の化成処理、 水洗、 第 2の化成処理、 水洗を行い、 乾燥した後、 粉体塗装工程 (工程例 2 ) で行った。 また、 実施例 1 5は、 実施例 6と同様の方法により処理を行った。 表 2 The surface treatment of the magnesium alloy was carried out in the same manner as in Example 11 under the conditions shown in Table 2, using the chemical conversion aqueous solution (A) and the chemical conversion aqueous solution (B) having the formulations shown in Table 2. Table 2 shows the results. Note that Examples 12 to 14 are different from Example 1 in Example 11 in that degreasing, water washing, acid etching, water washing, first chemical conversion treatment, water washing, second chemical conversion treatment, and water washing are performed. After drying, it was performed in a powder coating process (process example 2). In Example 15, processing was performed in the same manner as in Example 6. Table 2
Figure imgf000022_0001
Figure imgf000022_0001
(1 ) C チクソモールディング製マグネシウム合金試験板  (1) C thixomolding magnesium alloy test plate
(実施例 6で使用された試験板より汚染がひどぐ化成処理が困難である試験板)  (A test plate that is more contaminated than the test plate used in Example 6 and that is difficult to be converted)
(2) N- (6—ァミノへキシル)ァミノプロビルトリメトキシシラン  (2) N- (6-aminohexyl) aminopropyl trimethoxysilane
(3)日本ペイント社製 マグダイン SF570  (3) Magdyne SF570 manufactured by Nippon Paint Co., Ltd.
表 2の結果から明らかなように、 本発明のマグネシゥム及び/又はマグネシゥ ム合金の表面処理方法 (更に、 第 2の化成処理液で処理する方法) によって処理 されたマグネシゥム合金は、 耐食性、 塗膜密着性及び導電性の性質に優れている ものであった。 処理剤として 1質量0 /0炭酸カリウム、 l O O p pml, 3, 5— トリアジンー 2 , 4, 6—トリチオールの水溶液を使用した場合 (実施例 1 5 ) においては、 板厚 1 mmのダイキャスト製マグネシウム合金 A Z 9 1 D試験板に 対する処理性能に比べて、 チクソモールディング製マグネシウム合金試験板 (実 施例 6で使用された試験板より汚染がひどく、 化成処理が困難である試験板) に 対する処理性能が若干劣るものであつたが、 更にポリアリルアミンを含む化成処 理水溶液 (B ) で処理することにより (実施例 1 1 ) 、 処理性能が改善されるこ とが明らかとなった。 産業上の利用可能性 As is evident from the results in Table 2, the magnesium alloy treated by the surface treatment method of the magnesium and / or the magnesium alloy of the present invention (further, a method of treating with a second chemical conversion solution) has a corrosion resistance and a coating film. It had excellent adhesion and conductivity properties. 1 Mass 0/0 potassium carbonate as a treatment agent, l OO p pml, 3, 5- triazine-2, 4, when using an aqueous solution of 6-trithiol (Example 1 5) In the test, compared to the processing performance of a die-cast magnesium alloy AZ91D test plate with a thickness of 1 mm, the thixmolding magnesium alloy test plate (contamination was more severe than the test plate used in Example 6, The treatment performance was slightly inferior to that of the test plate (chemical conversion treatment is difficult), but the treatment performance was further improved by further treatment with a chemical conversion aqueous solution (B) containing polyallylamine (Example 11). It became clear that this would be done. Industrial applicability
本発明のマグネシウム及び/又はマグネシウム合金の表面処理方法は、 クロム やマンガン等の有害な物質を用いることなく、 マグネシウム金属、 マグネシウム 合金にリン酸マンガン処理と同等以上の耐食性と塗膜密着性を付与すること で き、 かつ皮膜電気抵抗値との両立をも可能にした。 これにより、 環境保全や人体 の影響を大幅に低減することができる。 また、 既存のクロメート処理設備、 マン ガン系化成処理設備をそのまま転用できるため、 あらたな設備投資の必要もない。 また、 浸漬法による処理である場合には、 パソコン筐体、 携帯電話筐体、 自動車 部材■部品、 その他複雑な形状をした製品の処理にも好適に用いることができる。  The surface treatment method for magnesium and / or magnesium alloy of the present invention provides magnesium metal and magnesium alloy with corrosion resistance and coating adhesion equal to or higher than manganese phosphate treatment without using harmful substances such as chromium and manganese. And the compatibility with the electrical resistance of the film. This can significantly reduce environmental impact and human impact. In addition, existing chromate treatment equipment and manganese chemical conversion treatment equipment can be used as they are, eliminating the need for new capital investment. Further, when the treatment is performed by the immersion method, it can be suitably used for the treatment of personal computer housings, mobile phone housings, automobile member / parts, and other products having complicated shapes.

Claims

請求の範囲 The scope of the claims
1 . マグネシウム及び/又はマグネシウム合金を 0 . 0 0 1〜1 0質量%の炭 酸塩化合物を含む化成処理水溶液 (A) によって処理することを特徴とするマグ ネシゥム及び/又はマグネシゥム合金の表面処理方法。 1. Surface treatment of magnesium and / or magnesium alloy, wherein magnesium and / or magnesium alloy is treated with a chemical conversion aqueous solution (A) containing 0.001 to 10% by mass of a carbonate compound. Method.
2 . 化成処理水溶液 (A) は、 更に、 塗膜密着促進剤を含むものであり、 前記塗膜密着促進剤は、 0 . 0 1〜 1質量%のトリアジンチオール化合物、 シラ ンカツプリング剤及びポリアリルァミンの群から選ばれる 1種以上の化合物であ る請求の範囲第 1項記載のマグネシゥム及び/又はマグネシゥム合金の表面処理 方法。 2. The chemical conversion treatment aqueous solution (A) further contains a coating film adhesion promoter, wherein the coating film adhesion promoter contains 0.01 to 1% by mass of a triazine thiol compound, a silane coupling agent and a polyallylamine. 2. The method for surface treatment of magnesium and / or magnesium alloy according to claim 1, wherein the method is at least one compound selected from the group.
3 . 更に、 化成処理水溶液 (A) によって処理されたマグネシウム及ぴ Z又は マグネシウム合金を第 2の塗膜密着促進剤を含む化成処理水溶液 (B ) によって 処理するものであり、 3. Further, the magnesium and / or Z alloy treated with the chemical conversion treatment aqueous solution (A) is treated with a chemical conversion treatment aqueous solution (B) containing a second coating film adhesion promoter,
前記第 2の塗膜密着促進剤は、 トリアジンチオール化合物、 シランカツプリング 剤及びポリアリルァミンからなる群から選ばれる少なくとも 1つである請求の範 囲第 1又は 2項記載のマグネシゥム及び Z又はマグネシゥム合金の表面処理方法。 The magnesium and Z or magnesium or magnesium alloy according to claim 1 or 2, wherein the second coating film adhesion promoter is at least one selected from the group consisting of a triazine thiol compound, a silane coupling agent and a polyallylamine. Surface treatment method.
4 . トリアジンチオール化合物は、 1, 3 , 5—トリアジン一 2 , 4, 6—ト リチオール、 2 - (ジブチルァミノ) —4, 6—ジメルカプト一 1, 3, 5—ト リアジン、 及び、 2— (フエニルァミノ) 一4, 6—ジメルカプト一 1 , 3, 5 一トリァジンからなる群から選ばれる少なくとも 1の化合物である請求の範囲第 2又は 3項記載のマグネシゥム及び/又はマグネシゥム合金の表面処理方法。 4. Triazine thiol compounds include 1,3,5-triazine-1,2,4,6-trithiol, 2- (dibutylamino) -4,6-dimercapto-1,3,5-triazine, and 2- ( 4. The surface treatment method for magnesium and / or magnesium alloy according to claim 2 or 3, wherein the method is at least one compound selected from the group consisting of 1,6-dimercapto-11,3,51-triazine.
5 . シランカップリング剤は、 N— (6—ァミノへキシル) ァミノプロビルト リメ トキシシラン、 N— ( 6—ァミノへキシル) ァミノプロビルトリエトキシシ ラン、 N— ( 6—ァミノへキシル) ァミノプロピルトリクロ口シラン、 N— ( 2 一アミノエチル) 一 3ーァミノプロピルトリエトキシシラン、 N一 (2—ァミノ ェチル) _ 3—ァミノプロピ/レトリメ トキシシラン、 N— ( 2—アミノエチル) 一 3ーァミノプロピルトリクロロシラン、 3—ァミノプロピルェトキシシラン、 及び、 3—ァミノプロピルメ トキシシランからなる群から選ばれる少なくとも 1 のアミノシラン化合物である請求の範囲第 2、 3又は 4項記載のマグネシゥム及 び/又はマグネシウム合金の表面処理方法。 5. The silane coupling agent is N- (6-aminohexyl) aminopropyl methoxysilane, N- (6-aminohexyl) aminopropyl triethoxysilane, N- (6-aminohexyl) amino propyltrimethoxysilane black port silane, N-(2 primary amino ethyl) Single 3 over § amino propyl triethoxy silane, N i (2- amino At least one selected from the group consisting of 3-aminopropyl / retrimethoxysilane, N- (2-aminoethyl) -1-aminopropyltrichlorosilane, 3-aminopropylethoxysilane, and 3-aminopropylmethoxysilane 5. The surface treatment method for magnesium and / or magnesium alloy according to claim 2, 3, or 4, which is an aminosilane compound of the formula (1).
6 . 塗膜密着促進剤は、 トリアジンチオール化合物であり、 6. The coating adhesion promoter is a triazine thiol compound,
第 2の塗膜密着促進剤は、 ポリアリルァミンである請求の範囲第 3、 4又は 5項 記載のマグネシゥム及び/又はマグネシゥム合金の表面処理方法。 The surface treatment method for magnesium and / or magnesium alloy according to claim 3, 4 or 5, wherein the second coating film adhesion promoter is polyallylamine.
7 . 前記表面処理を行う前に、 脱脂、 酸洗、 脱スマツト処理を行い、 表面に存 在する汚染物、 偏折物を除去することを特徴とする請求の範囲第 1、 2、 3、 4、 5又は 6項記載のマグネシゥム及び Z又はマグネシゥム合金の表面処理方法。 7. Prior to the surface treatment, degreasing, pickling, and de-smutting treatments are performed to remove contaminants and unfolded materials existing on the surface. 7. The surface treatment method for magnesium and Z or magnesium alloy according to 4, 5, or 6.
8 . 請求の範囲第 1、 2、 3、 4、 5、 6又は 7項記載のマグネシウム及び Z 又はマグネシゥム合金の表面処理方法によって処理されたことを特徴とするマグ ネシゥム及び/又はマグネシゥム合金合金製品。 8. Magnesium and / or magnesium alloy alloy products which have been treated by the surface treatment method for magnesium and Z or magnesium alloy according to claim 1, 2, 3, 4, 5, 6 or 7. .
PCT/JP2002/012146 2001-11-21 2002-11-21 Method of surface treatment for magnesium and/or magnesium alloy, and magnesium and/or magnesium alloy product WO2003044243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001356048 2001-11-21
JP2001-356048 2001-11-21

Publications (1)

Publication Number Publication Date
WO2003044243A1 true WO2003044243A1 (en) 2003-05-30

Family

ID=19167641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012146 WO2003044243A1 (en) 2001-11-21 2002-11-21 Method of surface treatment for magnesium and/or magnesium alloy, and magnesium and/or magnesium alloy product

Country Status (4)

Country Link
KR (1) KR20050044515A (en)
CN (1) CN1303248C (en)
TW (1) TW200300802A (en)
WO (1) WO2003044243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397325A (en) * 2013-07-08 2013-11-20 光钰科技(临沂)有限公司 Method for performing anticorrosive treatment on surface of magnesium alloy with recovered carbon dioxide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173353B (en) * 2006-10-31 2010-05-12 佛山市顺德区汉达精密电子科技有限公司 Magnesium alloy surface chemistry passivation technology
CN102154637A (en) * 2011-05-18 2011-08-17 沈阳工业大学 Surface treatment method for magnesium alloy
JP5727543B2 (en) * 2013-04-23 2015-06-03 住友電気工業株式会社 Magnesium-based metal member and method for producing magnesium-based metal member
CN110129802A (en) * 2019-06-18 2019-08-16 博敏电子股份有限公司 A kind of printed board novel antioxidant and its application
CN113584470A (en) * 2021-07-30 2021-11-02 重庆理工大学 Magnesium-lithium alloy surface anticorrosion treatment method
CN114875396B (en) * 2022-04-28 2023-03-14 厦门大学 Surface treatment method of magnesium or magnesium alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148766A (en) * 1979-05-11 1980-11-19 Hitachi Ltd Surface treatment of magnesium or magnesium alloy
JPH06116740A (en) * 1992-10-05 1994-04-26 Mitsui Mining & Smelting Co Ltd Surface treatment of magnesium alloy product
JPH11131255A (en) * 1997-10-31 1999-05-18 Million Kagaku Kk Chemical conversion treating liquid composition for magnesium-containing metal, surface treatment of the same and surface-treated body
WO2000040777A1 (en) * 1999-01-07 2000-07-13 Otsuka Kagaku Kabushiki Kaisha Surface-treating agent for magnesium-based part and method of surface treatment
WO2000050666A1 (en) * 1999-02-25 2000-08-31 Hosaka Inc. Method for treating magnesium-based metal formed article and treating solution therefor
JP2001049459A (en) * 1999-08-02 2001-02-20 Gunze Ltd Pretreating method for magnesium molded body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323571A (en) * 1998-03-17 1999-11-26 Matsushita Electric Ind Co Ltd Surface treated magnesium or magnesium alloy product, primary treatment for coating and coating method
CN1220791C (en) * 1999-03-30 2005-09-28 米隆化学股份有限公司 Chemical surface treatment liquid composition for magnesium contd. metallic material, surface treatment method and surface treatment matter thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148766A (en) * 1979-05-11 1980-11-19 Hitachi Ltd Surface treatment of magnesium or magnesium alloy
JPH06116740A (en) * 1992-10-05 1994-04-26 Mitsui Mining & Smelting Co Ltd Surface treatment of magnesium alloy product
JPH11131255A (en) * 1997-10-31 1999-05-18 Million Kagaku Kk Chemical conversion treating liquid composition for magnesium-containing metal, surface treatment of the same and surface-treated body
WO2000040777A1 (en) * 1999-01-07 2000-07-13 Otsuka Kagaku Kabushiki Kaisha Surface-treating agent for magnesium-based part and method of surface treatment
WO2000050666A1 (en) * 1999-02-25 2000-08-31 Hosaka Inc. Method for treating magnesium-based metal formed article and treating solution therefor
JP2001049459A (en) * 1999-08-02 2001-02-20 Gunze Ltd Pretreating method for magnesium molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397325A (en) * 2013-07-08 2013-11-20 光钰科技(临沂)有限公司 Method for performing anticorrosive treatment on surface of magnesium alloy with recovered carbon dioxide

Also Published As

Publication number Publication date
KR20050044515A (en) 2005-05-12
CN1589337A (en) 2005-03-02
TW200300802A (en) 2003-06-16
CN1303248C (en) 2007-03-07

Similar Documents

Publication Publication Date Title
EP1736567B1 (en) Treatment for improved magnesium surface corrosion-resistance
US6436475B1 (en) Process of treating metallic surfaces
JP4865632B2 (en) Method and composition for corrosion protection of metal substrates
JP4276530B2 (en) Chemical conversion treatment agent and surface treatment metal
JP2004218070A (en) Pretreatment method for coating
EP1669475B1 (en) Pretreatment method and powder coating step for coating surface of metal for vehicle chassis
JP4183489B2 (en) Magnesium and / or magnesium alloy surface treatment method and magnesium and / or magnesium alloy product
CN100339506C (en) Magnesium conversion coating composition and method of using same
JP2002294466A (en) Conversion coating solution for magnesium alloy, surface treatment method, and magnesium-alloy base material
WO2003044243A1 (en) Method of surface treatment for magnesium and/or magnesium alloy, and magnesium and/or magnesium alloy product
JP6275975B2 (en) Chrome-free chemical coating
JP2003003275A (en) Chemical conversion treatment solution for magnesium alloy having excellent recycling property, treatment method using the solution and member made of magnesium alloy
JP2003003273A (en) Chemical conversion treatment solution for magnesium alloy, treating method using the same, and magnesium- alloy member using the same
JP6936742B2 (en) Chrome-free chemical coating
JP4747019B2 (en) Chemical conversion treatment method and chemical treatment of magnesium alloy
JP2003003274A (en) Black chemical conversion treatment solution for magnesium alloy, treating method using the same, and magnesium-alloy member using the same
JP2003293175A (en) Zirconium phosphate stacked molecule corrosion prevention film and product
JP2000119863A (en) Low pollution surface treatment method of magnesium alloy
JP2003003277A (en) Surface treatment solution for magnesium alloy, treatment method using the solution and member made of magnesium alloy
JPH1129874A (en) Surface treated magnesium or magnesium alloy product, method of surface treatment and coating method
JP2004285373A (en) Method for forming highly corrosion resistant chemical conversion coating containing no hexavalent chromium and fluorine on aluminum or aluminum alloy and highly corrosion resistant aluminum or aluminum alloy
JPH0835073A (en) Method for modifying surface of magnesium-base molded metallic body
IL197164A (en) Method of treatment of a workpiece for improved magnesium surface corrosion-resistance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047007550

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028229444

Country of ref document: CN