WO2003035731A1 - Verfahren zur herstellung von polyurethan-schaum - Google Patents

Verfahren zur herstellung von polyurethan-schaum Download PDF

Info

Publication number
WO2003035731A1
WO2003035731A1 PCT/EP2002/011399 EP0211399W WO03035731A1 WO 2003035731 A1 WO2003035731 A1 WO 2003035731A1 EP 0211399 W EP0211399 W EP 0211399W WO 03035731 A1 WO03035731 A1 WO 03035731A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
mixing
component
nucleating agent
bubble nucleating
Prior art date
Application number
PCT/EP2002/011399
Other languages
English (en)
French (fr)
Inventor
Hans-Michael Sulzbach
Reiner Raffel
Herbert Steilen
Jürgen Wirth
Original Assignee
Hennecke Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hennecke Gmbh filed Critical Hennecke Gmbh
Publication of WO2003035731A1 publication Critical patent/WO2003035731A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7404Mixing devices specially adapted for foamable substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to a process for the production of polyurethane foam, in particular a process for the continuous production of polyurethane block foam, or for the production of heat-insulating housing foams, e.g. of refrigerator housings.
  • Cells Fine-cell foams are sought for many applications.
  • the linear cell number density achievable according to the prior art is 25 cells / cm, in extreme cases also up to 30 cells / cm.
  • the foam structure is generally formed in two to three stages before the curing of the polyurethane mass by first forming microbubbles, which act as bubble nuclei, in a first stage; in a second stage, dissolved gases diffuse into the existing bubble nuclei, the dissolved gases generally being dissolved in the reaction mass in the form of low-boiling liquids which evaporate due to the onset of the exothermic polyol-polyisocyanate reaction; and, in a third stage, over time with the second stage, carbon dioxide generated by the reaction of water with isocyanate, which diffuses further into the foam bubbles.
  • Gases with very low solubility in the polyol, the isocyanate or the polyol / isocyanate mixture such as air, nitrogen and noble gases, are particularly suitable as bubble nucleating agents.
  • the achievable cell structure of the finished polyurethane foam is essentially determined by the number and uniformity of the germ bubbles formed in the first stage, since the foaming agents themselves diffuse into the already existing bubble germs before a sufficiently large oversaturation can be achieved, which leads to the formation of new germ bubbles leads. So it is necessary to make a foam one Produce density of 100 kg / m 3 with a cell number density of 25 / cm, in the first stage to produce 200,000 bubble nuclei / cm 3 polyurethane-isocyanate mixture; a foam of 30 kg / cm 3 of the same cell number density initially requires 750,000 bubble nuclei / cm 3 .
  • air is dispersed in a polyol partial stream by means of mechanical dispersing apparatus with volumes comparable to the partial stream volume, the liquid foam obtained, the remaining polyol component and the isocyanate component being fed to an agitator mixer.
  • EP-A 565 974 it is proposed to supply the polyurethane components to a mixing head with adjustable injection pressure and adjustable mixing chamber pressure, the gas content of the isocyanate being continuously increased or decreased immediately before entering the mixing head.
  • the isocyanate flows as a thin film through a flow chamber designed as a centrifuge with several coaxial annular chambers.
  • the gas pressure in the flow chamber is controlled in the sense of an increase or decrease in the gas content of the isocyanate.
  • Bubble nuclei are generated while the isocyanate is being injected into the mixing chamber.
  • a disadvantage of this process is that, due to the relatively small mass transfer area of the isocyanate film in the centrifuge, it is not possible to bring enough gas into solution in the relatively short flow time.
  • Maximum line count densities of 90 / inch 35 / cm with a foam density of about 50 kg / m 3 are described.
  • the object of the present invention is to provide a process for the production of polyurethane foam which allows the number of cells in the foam to be controlled within wide limits.
  • a further object of the present invention is to continuously introduce comparatively large amounts of gases suitable as bubble nucleating agents into the polyol / polyisocyanate mixture.
  • Another object of the present invention is to provide a polyurethane
  • a further object of the present invention is to provide a process for the production of fine-celled polyurethane foam which is completely in the low pressure range, i.e. in the pressure range below 25 bar.
  • the invention solves a further problem in the production of polyurethane block foam, namely the processing of solid, powdery fillers, e.g. the processing of solid flame retardants, such as melamine, in polyurethane foams.
  • solid, powdery fillers e.g. the processing of solid flame retardants, such as melamine
  • Fillers are usually either premixed in a storage container with one of the polyurethane reactive components, usually the polyol, and then fed continuously to the foaming process, or else mixed online with the polyol component.
  • one of the polyurethane reactive components usually the polyol
  • the polyol usually the polyurethane reactive components
  • the foaming process or else mixed online with the polyol component.
  • air which is located in the interstices between the grains is inevitably introduced into the liquid flow. This air has two harmful effects on the foaming process. On the one hand pinholes and cavities are created and on the other hand this air leads to cracks in the foam block. Cracks occur because air remains on the surface of the powder particles, which prevents the particles from being completely wetted in liquid. Such poorly wetted particles are the starting point for crack formation.
  • the off-line premixing of the polyol component with the filler is preferred, the premixes being treated over a prolonged period, preferably under a slight vacuum, until complete wetting.
  • the object of the present invention is therefore also a process for producing filler-containing polyurethane foams by on-line metering of the fillers, complete wetting being ensured by the polyol component.
  • the present invention relates to a process for the production of polyurethane foam by mixing an isocyanate component and a polyol component in a mixing unit in the presence of a dissolved foaming agent and air and / or nitrogen as the bubble nucleating agent, which is characterized in that the bubble nucleating agent is formed by fine dispersion and pressure increase in at least one of the components is dissolved before being introduced into the mixer.
  • the fine dispersion of the bubble nucleating agent is preferably carried out in a high-speed disperser based on the rotor / stator principle.
  • the relative speed between the rotor and stator is preferably 15 to 40 m / sec.
  • the shear gap between the rotor and stator can be between 0.3 and 1 mm.
  • the bubble nucleating gas is preferably dispersed and dissolved in the polyol component.
  • the invention is described below with reference to this preferred embodiment. However, the statements apply accordingly if the bubble nucleating agent dispersion and dissolution takes place in the isocyanate component or in both components.
  • an agitator mixing head, a static mixer or a friction mixer according to the low-pressure process, ie. H. in the pressure range up to
  • An agitator mixing head is particularly preferred.
  • the disperser preferably consists of an axial inlet space for the polyol bubble nucleating agent mixture, a first rotor, a first stator, a last rotor, a concentric collecting space for the fine dispersion and one
  • a second hotor and a second stator can be provided between the first stator and the last rotor.
  • the rotors and stators preferably have through-slots which are extended in the radial-axial plane, the ratio of the tangential slot width and the radial length of the slots of the rotors preferably being between 1: 3 and 1:10.
  • the operating conditions of the disperser are preferably selected such that a pressure of 2 to 20 bar is built up behind the disperser due to the centrifugal forces generated by the disperser.
  • a throttle valve is provided in front of the inlet of the polyol component loaded with gas into the mixing unit, which preferably allows pressure control.
  • the bubble nucleating agent is predispersed with the polyol component before the polyol component is introduced into the fine dispersant, for example by static mixing elements provided in the poly line or by porous introduction elements for the bubble nucleating agent into the polyol component, for example sintered bodies, sieve structures or glass frits.
  • the pre-dispersion ensures that the formation of larger gas spaces on the suction side of the disperser, which reduces the effect of the dispersant, is avoided.
  • the pressure generated by the throttle valve limits the delivery capacity of the disperser in such a way that the pressure on its suction side does not drop to such an extent that agglomeration and separation of gas bubbles with the formation of a vortex in the axial inlet space of the disperser occurs ,
  • a metering pump ie a pump with essentially pre-pressure-independent pressure
  • the polyol delivery pump for delivery from the storage container is preferably not provided as a metering pump, but rather as a simple delivery pump with an increased delivery rate compared to the metering pump provided behind the disperser, the delivery to the disperser being limited by a pressure-controlled overflow valve and the overflow Amount of polyol is returned to the reservoir.
  • a pressure which is at least 1.5 times, particularly preferably 2 to 3 times, the solution equilibrium pressure of the bubble nucleating gas is preferably maintained behind the metering pump.
  • suction effect desired per se in commercial rotor / stator dispersers which are used for dispersing or mixing incompressible liquid or solid / liquid components can be further reduced by providing a stator as the first element in the flow direction. This reliably avoids the formation of droplets which is undesirable for gas dispersion.
  • the radial flow cross section of the multi-stage rotor / stator disperser is designed such that it is in
  • Direction of passage expanded for example by increasing the number of through slots, so that under the effect of the also increasing centrifugal force, a decrease in pressure takes place in such a way that gas bubbles comminuted up to the mechanical dividing limit expand and further comminution in the subsequent shear gap becomes accessible.
  • the undissolved gas Due to the increased pressure generated behind the last rotor stage, the undissolved gas has bubble diameters due to the compression, which are far below the bubble diameters that can be achieved by mechanical division, and dissolves completely completely relatively quickly.
  • the undissolved gas Due to the increased pressure generated behind the last rotor stage, the undissolved gas has bubble diameters due to the compression, which are far below the bubble diameters that can be achieved by mechanical division, and dissolves completely completely relatively quickly.
  • the metered supply of the bubble nucleating gas for predispersion is preferably carried out in an amount of 5 to 10 Nl / 100 kg of polyol.
  • the pressure upstream of the mixing chamber inlet which can be set by the throttle valve and the rotor speed of the fine disperser is preferably selected such that the solution partial pressure of the bubble nucleating agent in the polyol component is at most 70%, preferably between 20 and 50%, of the prevailing pressure.
  • the pressure on the internal agitator pressure is reduced, usually to 1 bar or slightly below, so that the polyol is 30 to 150% oversaturated, with spontaneous bubbles - nucleation takes place.
  • the actual foaming agent, water and or low-boiling liquids, such as pentane or methylene chloride, are preferably introduced directly into the low-pressure mixing unit and mixed there simultaneously with polyol and isocyanate. If carbon dioxide is used as an additional foaming agent, this is preferably introduced directly behind the fine disperser or behind the metering pump if a metering pump is provided behind the disperser.
  • Fillers can preferably be added to the polyol via a mixing screw before the bubble nucleating gas is introduced into the polyol.
  • the fillers are completely wetted in the rotor / stator disperser with dissolution of adhering gas.
  • the high and effective bubble nucleating gas dispersion according to the invention with subsequent solution in the polyol or isocyanate component is not due
  • the low pressure process is limited, although the fine dispersion of the gas by means of rotor / stator dispersers unfolds its superiority over other gas loading processes, especially in the low pressure process.
  • the method has been described particularly with regard to the low pressure method, it is also applicable to the high pressure method using a countercurrent injection mixing head. In this case, the metering pump located behind the disperser would generate the required pressure of 100 to 250 bar, which is maintained by the injection nozzle integrated in the mixing head.
  • the component is recirculated to the storage container in a known manner during the interruption of production.
  • the gas supply for predispersion is preferably switched off during the interruption.
  • the invention also relates to a device suitable for carrying out the method according to the invention, the storage containers for the isocyanate and polyol components, a mixing head for mixing the components, metering pumps for metered conveying of the components to the mixing head, and connecting lines from the storage containers via the pumps to the mixing head
  • a device suitable for carrying out the method according to the invention the storage containers for the isocyanate and polyol components, a mixing head for mixing the components, metering pumps for metered conveying of the components to the mixing head, and connecting lines from the storage containers via the pumps to the mixing head
  • means for metered introduction of a gaseous bubble nucleating agent with predispersion in the polyol component and a fast-running disperser connected on the suction side, based on the rotor / stator principle, and a throttle valve are provided directly in front of the agitator mixing head inlet are.
  • the mixing head is preferably designed as an agitator mixing head for the low-pressure process.
  • the cell number density is preferably at least 30 / cm; at a foam density of 100 kg / m 3 at least 50 / cm (each without fillers).
  • the bubble nucleating gas is introduced into the poly line, predispersed via a static mixer 7, and then introduced into the rotor / stator disperser 8.
  • the pressure built up by the disperser is held by the throttle 9 at the mixing chamber entrance and is preferably regulated by a pressure measurement 10.
  • a sight glass 11 can be provided in the line for visual or electro-optical control of the clarity of the polyol solution. In the event that the polyol appears milky in the sight glass, either the admission pressure at the throttle 9 can be increased and / or the rotor speed of the disperser 8 can be increased.
  • FIG. 2 shows an embodiment of the invention in which a metering pump 3b is provided behind the disperser 8 to limit the delivery rate of the disperser 8.
  • the polyol pump 3a is not calibrated. Their delivery rate is about 10% above the metering pump 3b. Excess pumped polyol is returned to the tank 1 through the overflow valve 13.
  • the mixing head 5 is designed as a countercurrent injection mixing head. Recirculation lines from the mixing head to the storage container are provided for the discontinuous high-pressure process.
  • the metering pump 3b is designed as a high-pressure metering pump.
  • the function of the throttle valve 9 is assumed by the injection nozzle at the inlet of the high-pressure mixing head.
  • FIG. 3 shows an embodiment of the invention for the production of filler-containing polyurethane foam.
  • the filler is mixed with the polyol from a filler reservoir 20 via a filler metering unit 21 by means of a mixer 22, which is preferably designed as a screw mixer.
  • Pump 3a is designed as a metering pump and delivers a defined polyol flow to the mixer 22.
  • Metering pump 3b serves to limit the delivery rate of the fine disperser.
  • the carbon dioxide 30 is preferably introduced behind the disperser 8 and metering pump 3b by means of metering pump 31 into the pressurized poly line and mixed with the polyol via an additionally provided static mixer 32.
  • water can be introduced into the mixer via one of the additive feed lines 12.
  • Other additives can be the usual additives used in polyurethane foam production, such as surface-active substances, catalysts, etc.
  • the mixer 5 has a pressure relief element 51 at the outlet, which maintains a pressure in the mixer which keeps the carbon dioxide in solution until the mixer is discharged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von Polyurethan-Schaum durch Vermischen einer Isocyanatkomponente und einer Polyolkomponente in einem Niederdruckmischaggregat in Anwesenheit eines gelösten Schäummittels und Luft und/oder Stickstoff als Blasenkeimbildner beschrieben, wobei der Blasenkeimbildner durch Feindispergierung und Lösung bei einem Druck von 2 bis 20 bar in der Polyolkomponente vor Einleitung in den Mischer gelöst wird.

Description

Verfahren zur Herstellung von Polyurethan-Schaum
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethan- Schaum, insbesondere ein Verfahren zur kontinuierlichen Herstellung von Polyurethan-Blockschaum, oder zur Herstellung von wärmedämmenden Gehäuseaus- schäumungen, z.B. von Kühlschrankgehäusen.
Die mechanischen und thermischen Eigenschaften von Polyurethan-Schäumen sind wesentlich bestimmt durch die Größe und Gleichmäßigkeit der Schaumblasen
(Zellen). Dabei werden für viele Anwendungen möglichst feinzellige Schäume angestrebt. Die nach dem Stand der Technik erreichbare lineare Zellenzahldichte liegt bei 25 Zellen/cm, in Extremfällen auch bis zu 30 Zellen/cm.
Die Ausbildung der Schaumstruktur erfolgt im Allgemeinen zwei- bis dreistufig vor der Aushärtung der Polyurethan-Masse, indem zunächst in einer ersten Stufe Mikro- blasen, die als Blasenkeime fungieren, gebildet werden; in einer zweiten Stufe gelöste Gase in die vorhandenen Blasenkeime eindiffundieren, wobei die gelösten Gase im Allgemeinen in Form von niedrigsiedenden Flüssigkeiten, die aufgrund der einsetzenden exothermen Polyol-Polyisocyanat-Reaktion verdampfen, in der Reaktionsmasse gelöst sind; sowie in einer dritten Stufe zeitlich mit der zweiten Stufe überlappend durch die Reaktion von Wasser mit Isocyanat erzeugtes Kohlendioxid, das weiter in die Schaumblasen eindiffundiert. Dabei sind als Blasenkeimbildner insbesondere Gase mit sehr niedrigem Lösungsvermögen in dem Polyol, dem Isocyanat bzw. der Polyol/Isocyanat-Mischung, wie Luft, Stickstoff und Edelgase geeignet.
Die erzielbare Zellstruktur des fertigen Polyurethan-Schaumes ist im Wesentlichen durch die Zahl und Gleichmäßigkeit der in der ersten Stufe ausgebildeten Keimblasen bestimmt, da die Schäummittel selbst in die bereits vorhandenen Blasenkeime diffundieren, bevor eine ausreichend große Übersättigung erreicht werden kann, die zur Bildung neuer Keimblasen führt. So ist es erforderlich, um einen Schaum einer Dichte von 100 kg/m3 mit einer Zellenzahldichte von 25/cm herzustellen, in der ersten Stufe 200.000 Blasenkeime/cm3 Polyurethan Isocyanat-Mischung zu erzeugen; ein Schaum von 30 kg/cm3 derselben Zellenzahldichte erfordert anfänglich 750.000 Blasenkeime/cm3.
Eine Reihe von Veröffentlichungen befasst sich mit dem Problem der Blasenkeim- erzeugung, in der Fachwelt häufig "Gasbeladung" genannt.
So werden nach der DE-A 28 36 286 in einem Polyol-Teilstrom mittels mecha- nischer Dispergierapparate mit dem Teilstromvolumen vergleichbare Volumina Luft dispergiert, wobei der erhaltene Flüssigschaum, die restliche Polyolkomponente und die Isocyanatkomponente einem Rührwerksmischer zugeführt werden.
Gemäß EP-A 565 974 wird vorgeschlagen, die Polyurethan-Komponenten einem Mischkopf mit einstellbarem Einspritzdruck und einstellbarem Mischkammerdruck zuzuführen, wobei unmittelbar vor dem Eintritt in den Mischkopf der Gasgehalt des Isocyanats kontinuierlich erhöht oder vermindert wird. Dabei fließt das Isocyanat als dünner Film durch eine als Zentrifuge mit mehreren koaxialen Ringkammern ausgebildete Durchflusskammer. Der Gasdruck in der Durchflusskammer wird im Sinne einer Erhöhung bzw. Erniedrigung des Gasgehaltes des Isocyanates gesteuert. Die
Blasenkeime werden während des Eindüsens des Isocyanats in die Mischkammer erzeugt. Nachteilig bei diesem Verfahren ist, dass aufgrund der relativ kleinen Stoff- austauschfläche des Isocyanatfilms in der Zentrifuge in der relativ kurzen Durch- fiusszeit nicht genügend Gas in Lösung gebracht werden kann. Es werden maximale Zeilenzahldichten von 90/inch = 35/cm bei einer Schaumdichte von etwa 50 kg/m3 beschrieben.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Polyurethan-Schaum zur Verfügung zu stellen, das es erlaubt, die Zellenzahl des Schaumes in weiten Grenzen zu steuern. Eine weitere Aufgabe der vorliegenden Erfindung ist es, kontinuierlich vergleichsweise große Mengen an als Blasenkeimbildner geeigneten Gasen in die Polyol/Poly- isocyanat-Mischung einzubringen.
Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, einen Polyurethan-
Schaum mit extrem feiner Zellstruktur zur Verfügung zu stellen.
Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Herstellung von feinzelligem Polyurethan-Schaum zur Verfügung zu stellen, das vollständig im Niederdruckbereich, d.h. im Druckbereich unterhalb 25 bar, arbeitet.
Darüber hinaus hat sich gezeigt, dass durch die Erfindung ein weiteres Problem der Polyurethan-Blockschaum-Herstellung gelöst, wird, nämlich die Verarbeitung von festen, pulverförmigen Füllstoffen, z.B. die Mitverarbeitung von festen Flamm- Schutzmitteln, wie Melamin, in Polyurethan-Schaumstoffen. Die pulverförmigen
Füllstoffe werden üblicherweise entweder batchweise in einem Vorratsbehälter mit einer der Polyurethan-Reaktivkomponenten, meist dem Polyol, vorgemischt und dann dem Schäumprozess kontinuierlich zugeführt oder aber on-line mit der Polyolkomponente vermischt. Insbesondere bei der on-line Pulverdosierung wird zwangs- weise Luft, die sich in den Kornzwischenräumen befindet, in den Flüssigkeitsstrom eingebracht. Diese Luft wirkt zweifach schädlich auf den Schäumprozess. Zum einen entstehen Pinholes und Lunker und zum anderen führt diese Luft zu Rissen im Schaumblock. Risse entstehen dadurch, dass an der Oberfläche der Pulverpartikel Luft angelagert bleibt, die eine völlige Benetzung der Partikel in Flüssigkeit ver- hindert. Solche schlecht benetzten Partikel sind Ausgangspunkte für Rissbildung. In der Technik wird daher die off-line- Vormischung der Polyolkomponente mit dem Füllstoff vorgezogen, wobei die Vormischungen über einen längeren Zeitraum vorzugsweise unter leichtem Vakuum bis zur vollständigen Benetzung behandelt werden. Aufgabe der vorliegenden Erfindung ist daher auch ein Verfahren zur Herstellung füllstoffhaltiger Polyurethan-Schaumstoffe durch on-line-Dosierung der Füllstoffe, wobei eine vollständige Benetzung durch die Polyolkomponente gewährleistet wird.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Polyurethan-Schaumstoff durch Vermischung einer Isocyanatkomponente und einer Polyolkomponente in einem Mischaggregat in Anwesenheit eines gelösten Schäummittels und Luft und/oder Stickstoff als Blasenkeimbildner, das dadurch gekennzeichnet ist, dass der Blasenkeimbildner durch Feindispergierung und Druckerhöhung in mindestens einer der Komponenten vor Einleitung in den Mischer gelöst wird. Vorzugsweise erfolgt die Feindispergierung des Blasenkeimbildners in einem schnell laufenden, auf dem Rotor/Stator-Prinzip beruhenden Dispergator. Die Relativgeschwindigkeit zwischen Rotor und Stator beträgt vorzugsweise 15 bis 40 m/sec. Der Scherspalt zwischen Rotor und Stator kann zwischen 0,3 und 1 mm betragen. Bevor- zugt sind Dispergatoren mit mehreren, konzentrisch abwechselnden Rotor- und
Statorelementen.
Vorzugsweise erfolgt die Blasenkeimbildnergas-Dispergierung und -Auflösung in der Polyolkomponente. Nachfolgend wird die Erfindung bezüglich dieser bevor- zugten Ausführungsform beschrieben. Jedoch gelten die Ausführungen entsprechend, wenn die Blasenkeimbildner-Dispergierung und -Auflösung in der Isocyanatkomponente oder in beiden Komponenten erfolgt.
Vorzugsweise wird erfindungsgemäß ein Rührwerksmischkopf, ein Statikmischer oder ein Friktionsmischer nach dem Niederdruckverfahren, d. h. im Druckbereich bis
25 bar, eingesetzt. Besonders bevorzugt ist ein Rührwerksmischkopf.
Vorzugsweise besteht der Dispergator aus einem axialen Einlassraum für die Polyol Blasenkeimbildner-Mischung, einem ersten Rotor, einem ersten Stator, einem letzten Rotor, einem konzentrischen Sammelraum für die Feindispersion und einem
Auslass. Zwischen dem ersten Stator und dem letzten Rotor können ein zweiter Hotor und ein zweiter Stator vorgesehen sein.
Die Rotoren und Statoren weisen vorzugsweise in der radialen-axialen Ebene ausgedehnte Durchgangsschlitze auf, wobei das Verhältnis aus tangentialer Schlitzbreite und radialer Länge der Schlitze der Rotoren vorzgusweise zwischen 1:3 bis 1:10 liegen kann.
Die Betriebsbedingungen des Dispergators werden vorzugsweise so gewählt, dass aufgrund der durch den Dispergator erzeugten Zentrifugalkräfte hinter dem Dispergator ein Druck von 2 bis 20 bar aufgebaut wird. Zur Aufrechterhaltung des Druckes ist vor dem Einlass der mit Gas beladenen Polyolkomponente in das Mischaggregat ein Drosselventil vorgesehen, das vorzugsweise eine Druckregelung erlaubt.
Weiter bevorzugt wird der Blasenkeimbildner vor der Einleitung der Polyolkomponente in den Feindispergator mit der Polyolkomponente vordispergiert, beispielsweise durch in der PolyoUeitung vorgesehene statische Mischelemente oder durch poröse Einleitelemente für den Blasenkeimbildner in die Polyolkomponente, bei- spielsweise Sinterkörper, Siebstrukturen oder Glasfritten. Durch die Vordisper- gierung wird erreicht, dass die Ausbildung größerer, die Wirkung des Dispergators herabsetzender Gasräume auf der Saugseite des Dispergators vermieden wird.
Wesentlich ist, dass durch den durch das Drosselventil erzeugten Druck die Förder- leistung des Dispergators so begrenzt wird, dass der Druck auf dessen Saugseite nicht so weit absinkt, dass es zur Agglomeration und Abscheidung von Gasblasen unter Ausbildung einer Trombe im axialen Einlassraum des Dispergators kommt.
Alternativ bzw. zusätzlich zum Drosselventil vor dem Mischaggregat-Einlass wird vorzugsweise hinter dem Dispergator zur Begrenzung von dessen Förderleistung zusätzlich eine Dosierpumpe, d.h. eine Pumpe mit im wesentlichen Vordruck-unab- hängiger Förderleistung, vorgesehen. Vorzugsweise wird in diesem Falle die Polyol- förderpumpe zur Förderung aus dem Vorratsbehälter nicht als Dosierpumpe, sondern als einfache Förderpumpe mit gegenüber der hinter dem Dispergator vorgesehenen Dosierpumpe erhöhter Förderleistung vorgesehen, wobei die Förderung zum Disper- gator durch ein druckgesteuertes Überströmventil begrenzt wird und die überströmende Polyolmenge in den Vorratsbehälter zurückgeführt wird.
Hinter der Dosierpumpe wird vorzugsweise ein Druck aufrechterhalten, der mindestens dem 1,5-fachen, besonders bevorzugt dem 2- bis 3-fachen, des Lösungs- gleichgewichtsdrucks des Blasenkeimbildnergases entspricht.
Die bei kommerziellen Rotor/Stator-Dispergatoren, die zur Dispergierung bzw. Mischung von inkompressiblen flüssigen oder fest/flüssigen Komponenten eingesetzt werden, an sich gewünschte Saugwirkung kann weiter dadurch herabgesetzt werden, dass als das in Durchströmrichtung erste Element ein Stator vorgesehen ist. Hierdurch wird die für die Gasdispergierung unerwünschte Trombenbildung sicher vermieden.
Nach einer weiter bevorzugten Ausführungsform ist der radiale Strömungsquer- schnitt des mehrstufigen Rotor/Stator-Dispergators so ausgebildet, dass er sich in
Durchgangsrichtung erweitert, beispielsweise durch Erhöhung der Zahl der Durchgangsschlitze, so dass unter der Wirkung der sich ebenfalls verstärkenden Zentrifugalkraft eine Druckabnahme erfolgt, derart, dass bereits bis zur mechanischen Zerteilgrenze zerkleinerte Gasblasen expandieren und weiterer Zerkleinerung in dem nachfolgenden Scherspalt zugänglich werden.
Durch den hinter der letzten Rotorstufe erzeugten erhöhten Druck weist das noch nicht gelöste Gas aufgrund der Kompression Blasendurchmesser auf, die weit unterhalb der durch mechanische Zerteilung erzielbaren Blasendurchmesser liegen, und geht relativ schnell vollständig in Lösung. In industriellen Anlagen, bei denen die
Entfernung zwischen den Aggregaten 5 bis 10 m oder mehr betragen, sind die Ver- weilzeiten für die vollständige Auflösung des Blasenkeimbildner-Gases bis zum Mischkopfeingang ausreichend. Anderenfalls kann die vollständige Auflösung des Gases durch entsprechend größere Rohrquerschnitte gewährleistet werden.
Die dosierte Zufuhr des Blasenkeimbildner-Gases zur Vordispergierung erfolgt vorzugsweise in einer Menge von 5 bis 10 Nl/100 kg Polyol. Der durch das Drosselventil und die Rotorgeschwindigkeit des Feindispergators einstellbare Druck vor dem Mischkammereinlass wird vorzugsweise so gewählt, dass der Lösungspartialdruck des Blasenkeimbildners in der Polyolkomponente maximal 70 %, vorzugsweise zwischen 20 und 50 %, des herrschenden Druckes beträgt.
Nach Einleitung des den Blasenkeimbildner gelöst enthaltenden Polyols in das Niederdruckmischaggregat, üblicherweise ein Rührwerksmischkopf, wird der Druck auf den Rührwerksinnendruck, üblicherweise auf 1 bar oder leicht darunter, herab- gesetzt, so dass das Polyol zu 30 bis 150 % übersättigt ist, wobei spontan Blasen- keimbildung stattfindet.
Das eigentliche Schäummittel, Wasser und oder niedrig siedende Flüssigkeiten, wie Pentan oder Methylenchlorid, werden vorzugsweise direkt in das Niederdruckmisch- aggregat eingeleitet und dort mit Polyol und Isocyanat gleichzeitig vermischt. Wird als zusätzliches Schäummittel Kohlendioxid eingesetzt, wird dieses vorzugsweise direkt hinter dem Feindispergator, bzw. hinter der Dosierpumpe, wenn hinter dem Dispergator eine Dosierpumpe vorgesehen ist, eingeleitet.
Füllstoffe können dem Polyol vorzugsweise über eine Mischschnecke vor der Einleitung des Blasenkeimbildner-Gases in das Polyol zugegeben werden. Die Füllstoffe werden in dem Rotor/Stator-Dispergator unter Auflösung anhaftenden Gases vollständig benetzt.
Die erfindungsgemäß hohe und effektive Blasenkeimbildnergas-Dispergierung mit anschließender Lösung in der Polyol- bzw. Isocyanatkomponente ist nicht auf Niederdruckverfahren beschränkt, obwohl die Feindispergierung des Gases mittels Rotor/Stator-Dispergatoren gerade beim Niederdruckverfahren ihre Überlegenheit gegenüber anderen Gasbeladungsverfahren entfaltet. Obwohl das Verfahren insbesondere im Hinblick auf das Niederdruckverfahren beschrieben wurde, ist es ebenso auf das Hochdruckverfahren unter Einsatz eines Gegenstrom-Injektionsmischkopfes anwendbar. In diesem Falle würde die hinter dem Dispergator angeordnete Dosierpumpe den erforderlichen Druck von 100 bis 250 bar erzeugen, der von der im Mischkopf integrierten Injektionsdüse gehalten wird. Im Falle diskontinuierlicher Hochdruckverfahren wird die Komponente während der Produk- tionsunterbrechung in bekannter Weise zum Vorratsbehälter rezirkuliert. Die Gaszufuhr zur Vordispergierung wird während der Unterbrechung vorzugsweise abgestellt.
Gegenstand der Erfindung ist auch eine zur Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtung, die Vorratsbehälter für die Isocyanat- und die Polyolkomponente, einen Mischkopf für die Vermischung der Komponenten, Dosierpumpen zur dosierten Förderung der Komponenten zum Mischkopf sowie Verbindungsleitungen von den Vorratsbehältern über die Pumpen zum Mischkopf aufweist, wobei in der Verbindungsleitung zwischen Polyolforderpumpe und Mischkopf Mittel zur dosierten Einleitung eines gasförmigen Blasenkeimbildners unter Vordispergierung in der Polyolkomponente und ein in Förderrichtung saugseitig angeschlossener, schnell laufender, auf dem Rotor-/Stator-Prinzip beruhender Dispergator sowie ein Drosselventil unmittelbar vor dem Rührwerksmischkopfeinlass vorgesehen sind.
Vorzugsweise ist der Mischkopf als Rührwerksmischkopf für das Niederdruckverfahren ausgebildet.
Erfindungsgemäß gelingt es, eine ein Schäummittel enthaltende Polyol-ZPolyiso- cyanat-Mischung am Mischkopfauslass bereitzustellen, die bis zu 2 Millionen
Blasenkeime pro cm3 Mischung enthält. Damit wird es möglich, Polyurethan- Schäume mit einer Dichte von 100 kg/m3 mit einer Zellenzahldichte von bis zu 60/cm bzw. mit einer Dichte von 30 kg/m3 mit einer Zellenzahldichte von bis zu 38/cm herzustellen. Erfindungsgemäße Polyurethan-Schäume einer Dichte von 50 kg/m3 weisen bis zu 45 Zellen/cm und Schäume einer Dichte von 80 kg/m3 bis zu 54 Zellen/cm auf.
Vorzugsweise beträgt die Zellenzahldichte bei einer Schaumdichte von 30 kg/m3 mindestens 30/cm; bei einer Schaumdichte von 100 kg/m3 mindestens 50/cm (jeweils ohne Füllstoffe).
Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert:
Fig. 1 zeigt einen Polyoltank 1, einen Isocyanattank 2, zugehörige Dosierpumpen 3 und 4 sowie einen Rührwerksmischkopf 5, die durch entsprechende Leitungen ver- bunden sind. In die PolyoUeitung wird erfindungsgemäß, wie durch Pfeil 6 angedeutet, das Blasenkeimbildner-Gas eingeleitet, über einen Statikmischer 7 vordisper- giert, anschließend in den Rotor/Stator-Dispergator 8 eingeleitet. Der durch den Dispergator aufgebaute Druck wird durch die Drossel 9 am Mischkammereingang gehalten und vorzugsweise über eine Druckmessung 10 geregelt. Ferner kann in die Leitung ein Schauglas 11 zur visuellen oder elektrooptischen Kontrolle der Klarheit der Polyollösung vorgesehen sein. Im Falle, dass das Polyol im Schauglas milchigtrüb erscheint, kann entweder der Vordruck an der Drossel 9 erhöht und/oder die Rotordrehzahl des Dispergators 8 erhöht werden.
Fig. 2 zeigt eine Auführungsform der Erfindung, bei der hinter dem Dispergator 8 eine Dosierpumpe 3b zur Begrenzung der Förderleistung des Dispergators 8 vorgesehen ist. Die Polyolforderpumpe 3a ist nicht kalibriert. Ihre Förderleistung liegt etwa 10 % oberhalb der Dosierpumpe 3b. Durch das Überströmventil 13 wird überschüssig gefördertes Polyol in den Tank 1 zurückgeführt. Gleiche Bezugszeichen, auch in den weiteren Figuren, bezeichnen gleiche Elemente wie in Fig. 1 oder Fig. 2. Für den Fall der Ausführung der Erfindung als Hochdruckverfahren ist der Mischkopf 5 als Gegenstrom-Injektionsmischkopf ausgebildet. Für das diskontinuierliche Hochdruckverfahren sind Rezirkulationsleitungen vom Mischkopf zum Vorratsbehälter vorgesehen. Die Dosierpumpe 3b ist als Hochdrackdosierpumpe ausge- bildet. Die Funktion des Drosselventils 9 übernimmt die Injektionsdüse am Eingang des Hochdruckmischkopfes.
Fig. 3 zeigt eine Ausführungsform der Erfindung zur Herstellung von füllstoff- haltigem Polyurethan-Schaum. Der Füllstoff wird aus einem Füllstoffvorratsbehälter 20 über ein Füllstoffdosieraggregat 21 mittels eines Mischers 22, der vorzugsweise als Schneckenmischer ausgebildet ist, mit dem Polyol vermischt. Pumpe 3 a ist als Dosierpumpe ausgebildet und fördert einen definierten Polyolstrom zum Mischer 22. Dosierpumpe 3b dient der Begrenzung der Förderleistung des Feindispergators.
Fig. 4 zeigt eine Ausführungsform der Erfindung unter Mitverwendung von Kohlendioxid als weiterem Schäummittel. Das Kohlendioxid 30 wird vorzugsweise hinter dem Dispergator 8 und Dosierpumpe 3b mittels Dosierpumpe 31 in die unter Druck stehende PolyoUeitung eingeleitet und über einen zusätzlich vorgesehenen Statikmischer 32 mit dem Polyol vermischt. Als weiteres Schäummittel kann Wasser über eine der Additivzuleitungen 12 in den Mischer eingeleitet werden. Weitere Additive können die üblichen, bei der Polyurethan-Schaumherstellung eingesetzten Additive, wie oberflächenaktive Substanzen, Katalysatoren usw., sein. Der Mischer 5 weist in diesem Fall am Ausgang ein Druckentspannungselement 51 auf, das im Mischer einen Druck aufrechterhält, der das Kohlendioxid bis zum Mischeraustrag in Lösung hält.

Claims

Patentansprtiche
1. Verfahren zur Herstellung von Polyurethan-Schaum durch Vermischen einer Isocyanatkomponente und einer Polyolkomponente in einem Mischaggregat in Anwesenheit eines gelösten Schäummittels und Luft und/oder Stickstoff als Blasenkeimbildner, dadurch gekennzeichnet, dass der Blasenkeimbildner durch Feindispergierung und Druckerhöhung in mindestens einer der Komponenten vor Einleitung in den Mischer gelöst wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Blasenkeimbildner zunächst in einem statischen Mischer in der Komponente vor- dispergiert und anschließend saugseitig in einen schnell laufenden, auf dem Rotor/Stator-Prinzip beruhenden Dispergator unter Druckerhöhung feinst- dispergiert und zumindest partiell gelöst wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Aufrechterhaltung des Druckes der Komponente bis zum Mischkammereinlass vor dem Mischkammereinlass ein vorzugsweise regelbares Drosselventil vorgesehen ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Blasenkeimbildner in einer solchen Menge in der Komponente dis- pergiert/gelöst wird, dass der Lösungspartialdruck des Blasenkeimbildners in der Komponente maximal 70 % des erhöhten Drucks beträgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Lösungspartialdruck 20 bis 50 % des erhöhten Drucks beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erhöhte Druck durch den Dispergator erzeugt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im Anschluss an den Dispergator zur Begrenzung von dessen Förderleistung eine Dosierpumpe vorgesehen ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Schäummittel Wasser und/oder niedrigsiedende Flüssigkeiten, wie Pentan oder Methylenchlorid, dem Niederdruckmischaggregat zugeführt werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als zusätzliches Schäummittel Kohlendioxid eingesetzt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Kohlendioxid im Anschluss an die Feindispergierung des Blaseπkeimmittels und Druckerhöhung in die Polyolkomponente eingebracht wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Polyolkomponente Füllstoffe enthält.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Füllstoff vor der Vordispergierung des Blasenkeimbildners mit dem Polyol vermischt wird.
13. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 12, enthaltend Vorratsbehälter für die Isocyanat- und die Polyolkomponente, einen Mischkopf für die Vermischung der Komponenten, Dosier- pumpen zur dosierten Förderung der Komponenten zum Mischkopf sowie
Verbindungsleitungen von den Vorratsbehältem über die Pumpen zum Mischkopf, wobei in mindestens einer der Verbindungsleitungen zwischen der Förderpumpe und Mischkopf Mittel zur dosierten Einleitung eines gasförmigen Blasenkeimbildners, ein statischer Mischer für die Vordispergierung des Blasenkeimbildners in der Komponente und ein in Förderrichtung saug- seitig angeschlossener, schnell laufender, auf dem Rotor/Stator-Prinzip beruhender Dispergator sowie ein Drosselventil unmittelbar vor dem Misch- kopfeinlass vorgesehen sind.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass im Anschluss an den Dispergator nach dem Rotor-/Stator-Prinzip eine zusätzliche Dosierpumpe vorgesehen ist.
15. Polyurethan-Schaum einer Dichte von 30 bis 100 kg/m3 und einer linearen Zellenzahldichte von mindestens 30 bis 50 cm-1.
PCT/EP2002/011399 2001-10-24 2002-10-11 Verfahren zur herstellung von polyurethan-schaum WO2003035731A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10151855A DE10151855C2 (de) 2001-10-24 2001-10-24 Verfahren zur Herstellung von Polyurethan-Schaum
DE10151855.2 2001-10-24

Publications (1)

Publication Number Publication Date
WO2003035731A1 true WO2003035731A1 (de) 2003-05-01

Family

ID=7703176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/011399 WO2003035731A1 (de) 2001-10-24 2002-10-11 Verfahren zur herstellung von polyurethan-schaum

Country Status (2)

Country Link
DE (1) DE10151855C2 (de)
WO (1) WO2003035731A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121527A (zh) * 2013-03-15 2015-12-02 陶氏环球技术有限责任公司 用于使聚氨酯或聚异氰脲酸酯发泡的低压方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1075376A (en) * 1964-09-21 1967-07-12 Gen Motors Ltd Gas filter elements
DE3416442A1 (de) * 1983-05-07 1984-11-08 Basf Ag, 6700 Ludwigshafen Verfahren und vorrichtung zum herstellen eines reaktionsgemisches aus mindestens zwei komponenten fuer die produktion von schaumstoffen
DE19622742C1 (de) * 1996-06-07 1998-03-12 Hennecke Gmbh Verfahren zur Schaumherstellung mittels unter Druck gelöstem Kohlendioxid
WO2001012707A1 (en) * 1999-08-17 2001-02-22 Hunstman International Llc Methods for improving the insulating properties of closed celled rigid polyurethane foams

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2628785A1 (de) * 1976-06-26 1977-12-29 Chem Fab Ludwigsburg Zeh & Co Verfahren zum herstellen eines polyurethan-kaltschaumes, insbesondere weichschaumes
DE2836286A1 (de) * 1978-08-18 1980-02-21 Metzeler Schaum Gmbh Verfahren zur zufuehrung einer einstellbaren gasmenge zu einer reaktionskomponente eines reaktionsgemisches sowie vorrichtung zur durchfuehrung eines solchen verfahrens
DE59300442D1 (de) * 1992-04-03 1995-09-14 Koepp Ag Verfahren zur kontinuierlichen Steuerung der Zellenzahl von Polyurethan-Schaumstoffen.
DE4420168C1 (de) * 1994-06-09 1996-02-08 Hennecke Gmbh Maschf Verfahren zur Steuerung der Zellenzahl in Polyurethan-Schaumstoffen
DE4445790A1 (de) * 1994-12-21 1996-06-27 Bayer Ag Verfahren und Vorrichtung zur Schaumherstellung mittels unter Druck gelöstem Kohlendioxid
DE4446876A1 (de) * 1994-12-27 1996-07-04 Bayer Ag Verfahren und Vorrichtung zur Schaumherstellung mittels unter Druck gelöstem Kohlendioxid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1075376A (en) * 1964-09-21 1967-07-12 Gen Motors Ltd Gas filter elements
DE3416442A1 (de) * 1983-05-07 1984-11-08 Basf Ag, 6700 Ludwigshafen Verfahren und vorrichtung zum herstellen eines reaktionsgemisches aus mindestens zwei komponenten fuer die produktion von schaumstoffen
DE19622742C1 (de) * 1996-06-07 1998-03-12 Hennecke Gmbh Verfahren zur Schaumherstellung mittels unter Druck gelöstem Kohlendioxid
WO2001012707A1 (en) * 1999-08-17 2001-02-22 Hunstman International Llc Methods for improving the insulating properties of closed celled rigid polyurethane foams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121527A (zh) * 2013-03-15 2015-12-02 陶氏环球技术有限责任公司 用于使聚氨酯或聚异氰脲酸酯发泡的低压方法
US9738767B2 (en) 2013-03-15 2017-08-22 Dow Global Technologies Llc Low pressure process for frothing polyurethane or polyisocyanurate

Also Published As

Publication number Publication date
DE10151855C2 (de) 2003-11-20
DE10151855A1 (de) 2003-05-15

Similar Documents

Publication Publication Date Title
DE4316190C1 (de) Verfahren und Vorrichtung zum Aufbereiten von Polyurethanschaumstoff-Abfällen, insbesondere Weichschaumstoff-Abfällen, zur Wiederverwertung als Zuschlagstoffe bei der Polyurethanherstellung
EP0907478B1 (de) Verfahren zur schaumherstellung mittels unter druck gelöstem kohlendioxid
EP1599520B1 (de) Verfahren und vorrichtung zur herstellung eines zweikomponenten-lackgemischs
DE69502608T2 (de) Verfahren und vorrichtung zur schaumherstellung mittels unter druck gelöstem kohlendioxid
WO1982002358A1 (en) Method and device for the production and optionally the discharge of foam-mixtures composed of binding agents and additives
EP0417405B1 (de) Verfahren zum Herstellen eines Schaumstoffes aus thermoplastischem Kunststoff
DE69906478T2 (de) Verfahren zum herstellen von polyurethanschaum
EP0719627B1 (de) Verfahren und Vorrichtung zur Schaumherstellung mittels unter Druck gelöstem Kohlendioxid
EP2368625A1 (de) Verfahren und Vorrichtung zur Dispergierung
EP1539453A1 (de) Verfahren zur herstellung von lunker- und pinholefreiem polyurethan-blockschaum
EP0960008B1 (de) Verfahren und vorrichtung zur herstellung füllstoffhaltiger polyurethane
DE1504710A1 (de) Mischvorrichtung zur Herstellung von Polyuerethan-Schaumstoffen
DE69812888T2 (de) Vorrichtung und verfahren zum herstellen von polymerschaum
DE10203701C1 (de) Verfahren zur Herstellung von Polyurethan-Schaum mit einstellbarer Zellstruktur
EP1464464B1 (de) Verfahren und Vorrichtung zur Herstellung von Polyurethan-Schaumstoffen
DE4420168C1 (de) Verfahren zur Steuerung der Zellenzahl in Polyurethan-Schaumstoffen
DE10151855C2 (de) Verfahren zur Herstellung von Polyurethan-Schaum
DE20213713U1 (de) Filtrationsmembran
DE60004541T2 (de) Vorrichtung und verfahren zur ausgabe von polyurethanschaummaterial
DE4425319A1 (de) Verfahren und Vorrichtung zur Schaumherstellung mittels unter Druck gelöstem Kohlendioxid
EP0878284A2 (de) Verfahren und Vorrichtung zur Herstellung von Polyurethan-Schaum mittels flüssigem Kohlendioxid als Schäummittel
EP0804328A1 (de) Verfahren und vorrichtung zur schaumherstellung mittels unter druck gelösten kohlendioxids
WO2002004190A1 (de) Verfahren und vorrichtung zum herstellen von schaumstoffen
EP3372305A1 (de) Niederdruck mischsystem und -mischverfahren von flüssigen und pastösen mit gasförmigen und festen mischkomponenten, im dauerbetrieb und einzelnen gemischportionen in beliebigen austrittspositionen
DE19718895C1 (de) Verfahren und Vorrichtung zur Herstellung von Polyurethan-Schaum mittels flüssigem Kohlendioxid als Schäummittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP