WO2003031356A1 - Hochreines bioaktives glas sowie verfahren zu dessen herstellung - Google Patents

Hochreines bioaktives glas sowie verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2003031356A1
WO2003031356A1 PCT/EP2002/011007 EP0211007W WO03031356A1 WO 2003031356 A1 WO2003031356 A1 WO 2003031356A1 EP 0211007 W EP0211007 W EP 0211007W WO 03031356 A1 WO03031356 A1 WO 03031356A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
bioactive glass
bioactive
glass according
glasses
Prior art date
Application number
PCT/EP2002/011007
Other languages
English (en)
French (fr)
Inventor
Stephen Krenitski
Werner Kieffer
Sybill NÜTTGENS
Michael Leister
Volker Ohmstede
Uwe Kolberg
Roland Schnabel
Original Assignee
Schott Glas
Carl-Zeiss-Stifung Trading As Schott Glas
Carl-Zeiss-Stiftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glas, Carl-Zeiss-Stifung Trading As Schott Glas, Carl-Zeiss-Stiftung filed Critical Schott Glas
Priority to EP02781200A priority Critical patent/EP1434742A1/de
Priority to AU2002349319A priority patent/AU2002349319A1/en
Priority to JP2003534346A priority patent/JP2005504708A/ja
Priority to US10/491,578 priority patent/US20050095303A1/en
Publication of WO2003031356A1 publication Critical patent/WO2003031356A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/021Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by induction heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • C03B5/265Overflows; Lips; Tweels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2211/00Heating processes for glass melting in glass melting furnaces
    • C03B2211/70Skull melting, i.e. melting or refining in cooled wall crucibles or within solidified glass crust, e.g. in continuous walled vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to a high-purity bioactive glass and a method for its production.
  • Bioactive or biocompatible materials are understood to be those which are biocompatible in a biological environment such as bones, joints, teeth but also skin or hair and which adapt functionally to the environment.
  • Bioactive materials also include bioactive glasses, which generally have a composition in% by weight of:
  • bioactive glasses are described, for example, in 'An Introduction to Bioceramics', L. Hench and J. Wilson, eds. World Scientific, New Jersey (1993).
  • bioactive glasses which have an increased alkali content.
  • Various effects are achieved with these glasses, such as antimicrobial effect, targeted in an aqueous environment and adjustable by the other glass components such as additional multivalent metal ions, resolving power or repolymerization of the polysilicic acid on the surface with a weakly alkaline pH. Glasses with these effects generally have the following composition (in% by weight):
  • further components such as CaF 2 , B 2 0 3 , Al 2 0 3 , MgO or K 2 0 can also be present, the contents of which can usually be between 0 and 10% by weight.
  • a known bioactive glass has, for example, a composition (in% by weight) of
  • the solubility or breakup of the Si0 2 network is based on the Na 2 0 and CaO content set, the high bioactivity being based on the high CaO and P 2 0 5 content, which forms a Hydroxyl carbonate apatite layer leads.
  • the layer requires interaction with the biological environment.
  • Bioactive glasses are normally produced and used in powder form, the mean particle size (measured using light scattering methods) preferably being ⁇ 90 ⁇ m, in special cases ⁇ 20 ⁇ m and particularly preferably ⁇ 5 ⁇ m. As the particle size becomes smaller, the active specific surface area of the powder increases, so that the degree of interaction can also be controlled with this.
  • Glasses of this type are produced using a batch melting process at melting temperatures between 1250 ° C. and 1400 ° C., mostly from oxides or carbonate compounds as starting materials.
  • the preparation is described as follows in US Pat. No. 6,051,247 and WO 94/04657.
  • the starting materials Si0 2 , Na 2 0, P 2 0 5 / CaO
  • the mixture produced is then in one
  • compositions lead to the strong dissolution of the platinum in the crucible and platinum particles can get into the glass. Platinum can lead to undesirable side effects, especially in bioactive applications.
  • the discontinuous melting process leads not only to shifts in the composition, but also to inhomogeneities within the crucible, particularly in the case of glasses with vaporizable components such as alkali. Since the effectiveness of the bioactive glasses essentially depends on the constancy of the composition and the ratios of the proportions Na 2 0 / CaO and CaO / P 2 0 5 , shifts within the specified proportions cannot be tolerated.
  • a discontinuous crucible melt is undesirable for industrial production if a continuous production process without compositional fluctuations is aimed for.
  • the object of the invention is to provide a bioactive glass which has the purity required for the respective biological applications.
  • the glass being produced in a high frequency heated skull crucible.
  • the refractory materials made of Al 2 0 3 or Zr0 2 used for melting technical glasses as well as the platinum or quartz melting vessels used for melting optical glasses are not suitable for the long-term and therefore stable production of high-purity bioactive glasses.
  • Ceramic refractory materials are mostly used to melt glasses. Refractory ceramics made of Al 2 0 3 and Zr0 2 have proven particularly useful. This
  • Refractory materials are very badly attacked and corroded by the bioactive glasses that contain Si0 2 , Na 2 0, CaO and P 2 0 5 .
  • the content of aluminum or zircon must not exceed certain limits. Due to the strong corrosion of the crucibles, these limits are usually exceeded.
  • the crucible becomes unusable after a few days due to the strong attack by the bioactive glass because it is completely corroded.
  • Crucibles made of these refractory materials can only be used for extremely short melting periods or discontinuous melts with subsequent reconstruction.
  • Bioactive glasses are so aggressive towards melting units made of platinum or platinum alloys that the melted glasses are either grayish from the dissolved platinum metal or strongly yellowish from the dissolved platinum ions, if the melt is carried out in a strongly oxidizing atmosphere.
  • the high platinum content in the bioactive glasses can interfere, since it is known from chemistry that platinum is effective as a catalyst for many chemical reactions.
  • the high level of platinum corrosion leads to severe corrosion of the platinum crucible after a very short time. Continued melting is impossible for safety reasons. In addition to the constant high conversion and failure costs, there are also the very high costs for the platinum and the restoration of the platinum devices.
  • crucibles made of quartz are preferred. It has been shown that organic glasses of the composition mentioned above also attack the quartz material so strongly that the quartz crucible dissolves after a few hours to a maximum of days. Since the Si0 2 dissolves in the glass melt, it is difficult to produce a glass with a constant composition. Even with crucibles made of quartz material, only extremely short melting periods or even only discontinuous melting with the associated high melting costs can be carried out.
  • bioactive glasses can be produced in a stable melting process in highly pure form.
  • Melting glasses and crystals at high frequency in a skull crucible is primarily used for high-melting crystals, such as Zr0 2 or high-melting glasses.
  • a skull is formed from the crystal or glass to be melted on the water-cooled metal pipes that form the skull crucible.
  • high-melting crystals such as Zr0 2
  • a relatively thick skull layer is formed from weakly sintered powder made from Zr0 2 crystals.
  • melting Glasses still form a relatively thick skull layer. With low-melting glasses, this skull layer becomes thinner and the risk of the melt reacting with the metal tubes of the skull crucible increases.
  • Enrichment of the glass melt can be used. In this way, for example, a desired blue color or antimicrobial effect can be achieved.
  • the glass melt can roll over, which can also destroy the skull crucibles.
  • these flashovers can be avoided if the metal tubes that form the skull crucible are short-circuited in the area of the high-frequency field.
  • Copper tubes are mostly used as the water-cooled metal tubes of the Skull crucible.
  • the extremely aggressive bioactive glass attacks the copper tube through the skull layer and colors the glass green or blue depending on
  • Oxidation state of the glass The amount of copper that diffuses into the bioactive glass is very low and is in the ppm range. For example, 2 ppm was measured in a melted bioactive glass. The coloring of the glass is not acceptable for some applications. The copper ions can be disruptive for other applications. However, since the copper is antibacterial, it can be tolerated or even desirable in certain cases. The use of copper pipes as skull material is therefore heavily dependent on the later use of the melted bioactive glass.
  • skull crucibles made of stainless steel tubes were also examined.
  • the discoloration of the bioactive glasses is significantly less when using stainless steel tubes.
  • the amounts of dissolved CoO and Cr 2 0 3 are below 1 ppm and of NiO below 5 ppm below the respective detection limits of those used
  • the amount of Fe 2 0 3 that is released from the stainless steel tubes is significantly less than the amount of Fe 2 0 3 that is introduced by the mixture.
  • a skull crucible made of aluminum tubes can also be used. In the melted Bioactive glasses cannot detect any additional aluminum beyond the amount of aluminum that is brought in by the raw materials.
  • a Skull crucible was tested to meet the highest cleanliness requirements. Its water-cooled metal tubes were covered with plastic. These tubes are not attacked by the bioactive glasses. There was no change in the glass melt or corrosion of the plastic-coated metal pipes.
  • skull crucibles with metal tubes made of different materials are available according to the invention.
  • Glasses have sufficient electrical conductivity to be coupled with high frequency.
  • the amount of energy that is introduced into the glass melt by the high frequency must be greater than the amount of heat that is withdrawn from the surface by heat radiation or by heat dissipation through the water-cooled metal pipes.
  • other factors for high-frequency melting in skull crucibles also play an important role, such as the geometry, volume or structure of the crucible, as well as the materials used for the metal tubes of the skull crucibles.
  • the skull crucibles with the different metal tubes have a different Have energy requirements for melting the glass.
  • the copper skull and the aluminum skull with 9 kW and 7 kW have a lower generator power loss than the stainless steel skull or the plastic-coated stainless steel skull with 15 kW and 14 kW generator power loss with the same dimensions of the Skull crucibles are significantly worse.
  • glasses must have sufficient electrical conductivity at the melting temperature in order to be able to melt them at high frequency.
  • the electrical conductivity of the bioactive glasses is essentially determined by the alkali content, ie by the Na 2 O content.
  • Bioactive glasses can also be used as antimicrobial glasses. These glasses preferably contain silver and / or copper ions. However, they can also contain other ions such as zinc, tin, bismuth, cerium, nickel or cobalt or combinations of these ions. The proportions of these ions can be between 0.5 and 15.0% by weight.
  • the electrical conductivity of the bioactive glasses is increased by the monovalent ions of silver and copper. Both elements can be compared with sodium in terms of electrical conductivity. The sum of Na 2 0, Ag 2 0 and Cu 2 0 is preferably greater than / equal to 6%. With the composition, the glass can be melted at high frequency. The divalent ions also contribute to increasing the electrical conductivity, but to a much lesser extent.
  • compositions of the bioactive glass already described were melted in order to specifically determine the glass compositions that can be produced by means of HF technology.
  • a crucible was used, which is enclosed by an HF coil and heated by an HF generator.
  • the compositions of the glasses melted by means of the HF technology are shown in the following table, where both a melt without Na 2 0 and with only 5% by weight Na 2 0 does not couple sufficiently, therefore the conductivity of these glasses is not sufficient to be able to use the HF Technology to bring the required amount of heat into the glass.
  • Composition 33% by weight CaO; 9% by weight P 2 0 5 and 58% by weight Si0 2 cannot be melted at high frequency.
  • the next table shows the order of the melt according to the coupling behavior and the ratio Na 2 0 + P 2 0 5 / Si0 2 .
  • the required conductivity of the glasses for melting in an HF melting plant can differ for different plants.
  • the constancy of the composition of the bioactive glasses essentially depends on whether the mixture becomes dusty during melting or whether glass components evaporate from the glass surface during the melting process. Due to the high level of purity required, synthetic raw materials must be used for the bioactive glasses, some of which have a strong tendency to become dusty.
  • the composition Na 2 0: 24.5% by weight, CaO. 24.5% by weight; P 2 0 5 : 6.0 wt%; Si0 2 45.0% by weight when using batch 1 with
  • Sodium bicarbonate, calcium carbonate, monocalcium phosphate and quartz powder found a dusting rate of .1.04 g / h per standardized area.
  • lime made for optical glasses
  • sodium metaphosphate instead of monocalcium phosphate Dust can be reduced to 0.48 g / h per standardized area.
  • the bioactive glasses can be produced both discontinuously and continuously, since the attack of the bioactive glasses on the skull crucibles is so small that the service life of the crucibles is not influenced by the corrosion. If the bioactive glass is ground into glass powder in the further process, the glass melt does not need to be refined. In a discontinuous melting process, the
  • Glass melt can be poured out through a floor drain after melting. After melting, the glass melt does not have to be subjected to an additional homogenization process, since the glass melt is very well homogenized by the very strong convection that prevails in the skull crucible.
  • the melting process can be accelerated according to the invention by introducing a gas into the glass melt from below.
  • the bubbling gas is introduced into the part into which the batch is placed.
  • Figure 1 shows the structure of a skull crucible.
  • Tub burner (2) an overflow burner (quartz glass) (3), a bridge (4), an outlet (5), a melt (6), a skull crucible (7), an RF coil (8), quartz base plate (9) , Bubbling nozzle (10) and a cooled base plate (11).

Abstract

Die vorliegende Erfindung betrifft ein hochreines bioaktives Glas mit folgender Zusammensetzung in Gew.%: SiO2 35-86 Na2O 5 ,5-35 CaO 4-46 P2O5 1-15 weitere Zusatzstoffe 0,05-15 sowie ein Verfahren zu dessen Herstellung, bei welchem das Glas in einem mit Hochfrequenz beheizten Skull-Tiegel hergestellt wird.

Description

Hochreines bioaktives Glas sowie Verfahren zu dessen Herstellung
Beschreibung
Die Erfindung betrifft ein hochreines bioaktives Glas sowie ein Verfahren zu dessen Herstellung.
Unter bioaktiven oder auch biokompatiblen Werkstoffen versteht man solche, die in biologischer Umgebung wie Knochen, Gelenken, Zähnen aber auch Haut oder Haaren bioverträglich sind und sich der Umgebung funktional anpassen. Unter bioaktive Werkstoffe fallen auch bioaktive Gläser, die im allgemeinen eine Zusammensetzung in Gew.-% von:
Figure imgf000002_0001
aufweisen.
Derartige bioaktive Gläser sind beispielsweise in 'An Introduction to Bioceramics ' , L. Hench und J. Wilson, eds . World Scientific, New Jersey (1993) beschrieben. Für viele Anwendungen im medizinischen und kosmetischen Bereich werden vorzugsweise bioaktive Gläser genommen, die einen erhöhten Alkaligehalt aufweisen. Mit diesen Gläsern werden verschiedene Effekte erreicht, wie antimikrobielle Wirkung, in wäßriger Umgebung gezieltes und durch die anderen Glaskomponenten wie zusätzlichen multivalenten Metallionen, einstellbares Auflösungsvermögen oder Repolymerisation der Polykieselsäure an der Oberfläche bei schwach alkalischem ph- Wert . Gläser mit diesen Wirkungen weisen im allgemeinen die folgende Zusammensetzung (in Gew.-%) auf:
Figure imgf000003_0001
Zusätzlich oder auch im Austausch mit Einzelkomponenten können je nach Anwendung auch weitere Komponenten wie CaF2, B203, Al203, MgO oder K20 enthalten sein, wobei deren Gehalte meist zwischen 0 und 10 Gew% liegen kann.
Ein bekanntes bioaktives Glas hat beispielsweise eine Zusammensetzung (in Gew.-%) von
Figure imgf000003_0002
Bei diesen biologisch aktiven Gläsern beruht die Löslichkeit oder Aufbrechen des Si02-Netzwerkes auf dem eingestelltem Na20- und CaO-Anteil wobei die hohe Bioaktivität auf dem hohen CaO- und P205-Anteil beruht, der zur Ausbildung einer Hydroxylcarbonat -Apatitschicht führt. Die Schicht fordert die Wechselwirkung mit der biologischen Umgebung.
Bioaktive Gläser werden normalerweise in Pulverform hergestellt und eingesetzt, wobei die mittlere Partikelgröße (gemessen mit Lichtstreuungsmethoden) vorzugsweise < 90 μm, in besonderen Fällen < 20 μm und besonders bevorzugt bei < 5 μm liegt. Mit kleiner werdenden Teilchengröße steigt die aktive spezifische Oberfläche des Pulvers an, so dass auch hiermit der Grad der Wechselwirkung gesteuert werden kann.
Hergestellt werden derartige Gläser über ein diskontinuierliches Schmelzverfahren bei Schmelztemperaturen zwischen 1250 °C und 1400 °C meist aus Oxiden oder Karbonat- Verbindungen als Ausgangsstoffen.
In US 6,051,247 und WO 94/04657 ist die Herstellung wie folgt beschrieben. Die Ausgangsstoffe (Si02, Na20, P205/ CaO) werden in einem Plastikbehälter in einer Kugelmühle 4 Stunden gemischt. Die hergestellte Mischung wird dann in einem
Platintiegel bei 1350 °C erschmolzen und 24 h homogenisiert. Das geschmolzene Glas wird danach in destilliertes, deionisiertes Wasser ausgegossen, um eine Glasfritte zu erhalten. Die Fritte wird dann in einem Mörser mit einem Pistill zerrieben und mittels ASTM Sieben gesiebt, um die erforderliche Partikelgrδßenverteilung herzustellen.
Diese Schmelzverfahren beinhalten insbesondere für ein bioaktives Glas gravierende Nachteile. Das korrosive Verhalten der bioaktiven Gläser der aufgeführten
Zusammensetzungen führt zur starken Auflösung der Platins im Schmelztiegel und es können Platinpartikel in das Glas kommen. Platin kann insbesondere bei bioaktiven Anwendungen zu unerwünschten Nebenwirkungen führen. Das diskontinuierliche Schmelzverfahren führt insbesondere bei Gläsern mit verdampfbaren Komponenten wie beispielsweise Alkali nicht nur zu Verschiebungen der Zusammensetzung sondern auch zu Inhomogenitäten innerhalb des Schmelztiegels. Da die Wirksamkeit der bioaktiven Gläser wesentlich von der Konstanz der Zusammensetzung und den Verhältnissen der Anteil Na20/CaO und CaO/ P205 abhängt, sind Verschiebungen innerhalb der festgelegten Anteile nicht zu tolerieren.
Eine diskontinuierliche Tiegelschmelze ist für eine industrielle Produktion unerwünscht, wenn ein kontinuierlicher Produktionsprozess ohne Zusammensetzungsschwankungen angestrebt wird.
Die Aufgabe der Erfindung besteht darin, ein bioaktives Glas zur Verfügung zu stellen, das die für die jeweiligen biologischen Anwendungen erforderliche Reinheit besitzt.
Die Aufgabe wird durch ein hochreines bioaktives Glas mit folgender Zusammensetzung in Gew.% gelöst:
Si02 35 - 86
Na20 5,5 - 35
CaO 4 - 46
P205 1 - 15 weitere Zusatzstoffe 0,05 - 15
wobei das Glas in einem mit Hochfrequenz beheizten Skull - Tiegel hergestellt wird.
Die Aufgabe wird durch die Merkmale der Ansprüche 2 bis 13 weiter gelöst . Die bioaktiven Gläser können aufgrund ihrer extrem hohen Aggressivität nicht mit den herkömmlichen Schmelzmethoden in einem kontinuierlichen und stabilen Schmelzprozess sowie mit der erforderlichen Reinheit geschmolzen werden.
Die zum Schmelzen von technischen Gläsern verwendeten Feuerfest-Materialien aus Al203 oder Zr02 wie auch die zum Schmelzen von optischen Gläsern verwendeten Platin- oder Quarzgut-Schmelzgefäße eignen sich nicht für eine dauerhaft und damit stabile Produktion von hochreinen bioaktiven Gläsern.
Zum Schmelzen von Gläsern werden meistens keramische feuerfest Materialien eingesetzt. Besonders bewährt haben sich feuerfeste Keramiken aus Al203 und Zr02. Diese
Feuerfestmaterialien werden von den bioaktiven Gläsern, die Si02, Na20, CaO und P205 enthalten sehr stark angegriffen und korrodiert .
Für viele Anwendungen der bioaktiven Gläser darf der Gehalt an Aluminium oder an Zirkon bestimmte Grenzen nicht überschreiten. Durch die starke Korrosion der Schmelztiegel werden diese Grenzen jedoch meist überschritten.
Der Tiegel wird durch den starken Angriff durch das bioaktive Glas nach wenigen Tagen unbrauchbar, weil er vollständig durchkorrodiert ist. Tiegel aus diesen Feuerfest-Materialien können nur für extrem kurze Schmelzperioden beziehungsweise diskontinuierliche Schmelzen mit nachfolgendem Neuaufbau eingesetzt werden.
Bioaktive Gläser sind gegenüber Schmelzaggregaten aus Platin oder Platinlegierungen so aggressiv, dass die geschmolzenen Gläser entweder graustichig von dem gelösten Platinmetall oder stark gelbstichig von den gelösten Platin-Ionen sind, falls die Schmelze in stark oxidierender Atmosphäre durchgeführt wird. Für einige Anwendungen kann der hohe Platingehalt in den bioaktiven Gläsern stören, da aus der Chemie bekannt ist, dass Platin für viele chemische Reaktionen als Katalysator wirksam ist. Darüber hinaus führt die hohe Platinkorrosion bereits nach sehr kurzer Zeit zur starken Korrision des Platintiegels. Ein Weiterschmelzen ist aus Sicherheitsgründen unmöglich. Zu den ständigen hohen Umbau- und Ausfall -Kosten kommen noch die sehr hohen Kosten für das Platin und die Wiederherstellung der Platingeräte.
Für die Herstellung von hochreinen optischen Gläsern werden bevorzugt Schmelztiegel aus Quarzgut verwendet. Es hat sich gezeigt, dass Biogläser der oben genannten Zusammensetzung auch das Quarzgut so stark angreifen, dass bereits nach wenigen Stunden bis maximal Tagen der Quarzguttiegel aufgelöst ist. Da sich das Si02 in der Glasschmelze auflöst ist die Herstellung eines Glases konstanter Zusammensetzung nur schwer möglich. Selbst mit Tiegeln aus Quarzgut können nur extrem kurze Schmelzperioden oder sogar nur diskontinuierliche Schmelzen mit den damit verbundenen hohen Schmelzkosten durchgeführt werden.
Erfindungsgemäß können bioaktive Gläser trotz der extrem hohen Aggressivität in einem stabilen Schmelzprozess in hochreiner Form hergestellt werden.
Schmelzen von Gläsern und Kristallen mit Hochfrequenz in einem Skull-Tiegel wird in erster Linie für hochschmelzende Kristalle, wie Zr02 oder hochschmelzende Gläser, eingesetzt. An den wassergekühlten Metallrohren, die den Skull -Tiegel bilden, wird ein Skull aus dem zu schmelzenden Kristall oder Glas gebildet. Bei hochschmelzenden Kristallen wie Zr02 entsteht eine relativ dicke Skullschicht aus schwach versintertem Pulver aus Zr02-Kristallen. Auch hochschmelzende Gläser bilden noch eine relativ dicke Skullschicht. Bei niedrig schmelzenden Gläsern wird diese Skullschicht dünner und die Gefahr einer Reaktion der Schmelze mit den Metallrohren des Skull-Tiegels wird immer größer.
Es ist daher zu erwarten, dass es bei den extrem aggressiven bioaktiven Gläsern wegen der dünnen Skullschicht zu einer Korrosion und damit zu einer Zerstörung der Skull -Tiegel kommt .
Es wurde jedoch überraschend gefunden, dass die aggressive Glasschmelze der bioaktiven Gläser durch die Skullschicht hindurch die Metallrohre, die den Skull-Tiegel bilden, angreifen kann. Dieser Angriff führt in der Regel nicht zur Zerstörung der Metallrohre sondern kann sogar zur gezielten
Anreicherung der Glasschmelze verwendet werden. Hierdurch ist beispielsweise eine erwünschte Blaufärbung oder antimikrobielle Wirkung erreichbar.
Im Gegensatz zu den sehr hochschmelzenden Kristallen kann es bei Gläsern zu Überschlägen in der Glasschmelze kommen, die ebenfalls zur Zerstörung der Skull -Tiegel führen können. Diese Überschläge können jedoch vermieden werden, wenn die Metallrohre, die den Skull -Tiegel bilden, im Bereich des Hochfrequenzfeldes kurzgeschlossen werden.
Als wassergekühlte Metallrohre des Skull-Tiegels werden meistens Kupferrohre eingesetzt. Das extrem aggressive bioaktive Glas greift das Kupferrohr durch die Skullschicht hindurch an und färbt das Glas grün oder blau je nach
Oxidationszustand des Glases. Die Menge an Kupfer, die in das bioaktive Glas eindiffundiert ist sehr gering und liegt im ppm-Bereich. So wurden beispielsweise 2 ppm in einem geschmolzenen bioaktiven Glas gemessen. Für einige Anwendungen ist die Färbung des Glases nicht zu akzeptieren. Für andere Anwendungen können die Kupfer- Ionen störend sein. Da das Kupfer antibakteriell ist, kann es in bestimmten Fällen jedoch toleriert oder sogar erwünscht sein. Der Einsatz der Kupferrohre als Skullmaterial ist somit stark von der späteren Verwendung des geschmolzenen bioaktiven Glases abhängig.
Der Angriff der bioaktiven Gläser auf die Kupferrohre des Skull-Tiegels ist jedoch nicht so groß, dass es durch die Korrosion zu einer Zerstörung der Rohre bei der Produktion kommt. Kupferrohre sind daher unter Berücksichtigung der Einschränkungen bezüglich Reinheit der Glasschmelze für die Produktion von bioaktiven Gläsern geeignet.
Neben dem Skull -Tiegel aus Kupferrohren wurden auch Skull - Tiegel aus Edelstahlrohren untersucht. Die Verfärbung der bioaktiven Gläser ist beim Einsatz von Edelstahlrohren deutlich geringer. Die Mengen an gelösten CoO und Cr203 liegen unter 1 ppm und von NiO unter 5 ppm unter den jeweiligen Nachweisgrenzen der angewendeten
Analysenverfahren. Die Menge an Fe203, die aus den Edelstahlrohren herausgelöst wird, liegt deutlich unter der Menge an Fe203, die durch das Gemenge eingebracht wird.
Es wurden auch Skull -Tiegel aus Platinrohren geprüft. Im
Gegensatz zu den Schmelzen, die in Platintiegel durchgeführt wurden, konnten bei Skull-Tiegel-Schmelze keine Verunreinigungen der Glasschmelze oder eine Korrosion der Platinrohre festgestellt werden. Da das Platin edler ist als Edelstahl und Kupfer, ist auch der Angriff der Biogläser auf das Platin noch geringer als auf diese.
Für sehr strenge Anforderungen bezüglich Schwermetalle in den bioaktiven Gläsern kann auch ein Skull -Tiegel aus Aluminiumrohren eingesetzt werden. In den geschmolzenen bioaktive Gläsern kann über die Menge an Aluminium hinaus, die durch die Rohstoffe eingetragen wird, kein zusätzliches Aluminium nachgewiesen werden.
Für höchste Reinheitsanforderungen wurde ein Skull -Tiegel getestet, dessen wassergekühlte Metallrohre mit Kunststoff überzogen waren. Diese Rohre werden von den bioaktiven Gläsern nicht angegriffen. Es war weder eine Veränderung der Glasschmelze noch eine Korrosion der mit Kunststoff überzogenen Metallrohre festzustellen.
Die durchgeführten Untersuchungen zeigen, dass es möglich ist die extrem aggressiven bioaktiven Gläser in Hochfrequenz beheizten Skull-Tiegeln zu schmelzen. Um die unterschiedlichen Reinheitsanforderungen der verschiedenen bioaktiven Gläser sicher zu stellen, stehen erfindungsgemäß Skull -Tiegel mit Metallrohren aus unterschiedlichen Materialien zur Verfügung.
Um Gläser mit Hochfrequenz schmelzen zu können, müssen die
Gläser eine ausreichende elektrische Leit ähigkeit aufweisen, damit mit Hochfrequenz angekoppelt wird. Die Energiemenge, die durch die Hochfrequenz in die Glasschmelze eingebracht wird, muss größer sein, als die Wärmemenge, die der Glasschmelze durch Wärmeabstrahlung von der Oberfläche oder durch Wärmeabfuhr durch die wassergekühlten Metallrohre entzogen wird. Neben der elektrischen Leitfähigkeit der Gläser spielen daher auch andere Faktoren für das Schmelzen mit Hochfrequenz in Skull -Tiegel eine wichtige Rolle, wie zum Beispiel die Geometrie, das Volumen oder der Aufbau des Schmelztiegels sowie die Materialien der Metallrohre der Skull-Tiegel.
So wurde gefunden, dass die Skull -Tiegel mit den verschiedenen Metallrohren einen unterschiedlichen Energiebedarf für das Schmelzen des Glases aufweisen. Unter gleichen Bedingungen weisen der Kupfer-Skull und der Aluminium-Skull mit 9 kW und 7 kW eine niedrigere Generatorverlustleistungen auf, als der Edelstahl -Skull oder der mit Kunststoff überzogene Edelstahl -Skull , die mit 15 kW und 14 kW Generatorverlustleistung bei gleichen Abmessungen des Skull -Tiegels deutlich schlechter sind.
Besonders bei sehr schwierig zu schmelzenden Gemengen ist es wichtig, möglichst hohe Generatorleistungen zu erreichen. Sofern es die Reinheitsanforderungen zulassen, sind daher Skull-Tiegel aus Kupferrohren vorzuziehen. Skull-Tiegel aus Aluminiumrohren weisen die gleichen niedrigen Verlustleistungen auf und sind bezüglich Reinheit in den meisten Fällen besser. Sie haben aber den Nachteil, dass ihre Herstellung recht schwierig ist.
Wie bereits erwähnt, müssen Gläser eine ausreichende elektrische Leitfähigkeit bei der Schmelztemperatur besitzen um sie mit Hochfrequenz schmelzen zu können. Diese
Anforderung erfüllen nicht alle bioaktiven Gläser, sondern nur die erfindungsgemäßen Gläser.
Die elektrische Leitfähigkeit der bioaktiven Gläser wird im wesentlichen durch den Alkaligehalt, also durch den Na20- Gehalt bestimmt.
Bioaktive Gläser können auch als antimikrobiell wirkendes Glas eingesetzt werden. Diese Gläser enthalten vorzugsweise Silber- und/oder Kupfer- Ionen. Sie können aber auch andere Ionen wie Zink, Zinn, Wismut, Cer, Nickel oder Kobalt oder Kombinationen dieser Ionen enthalten. Die Anteile dieser Ionen können zwischen 0.5 und 15.0 Gew.-% betragen. Die elektrische Leitfähigkeit der bioaktiven Gläser wird durch die einwertigen Ionen des Silbers und Kupfers erhöht. Beide Elemente sind bezüglich elektrischer Leitfähigkeit mit dem Natrium zu vergleichen. Die Summe aus Na20, Ag20 und Cu20 ist bevorzugt größer/gleich 6%. Mit der Zusammensetzung kann das Glas mit Hochfrequenz geschmolzen werden. Die zweiwertigen Ionen tragen ebenfalls zur Erhöhung der elektrischen Leitfähigkeit bei, aber in einem deutlich geringeren Maß.
Es wurden verschiedene Zusammensetzungen des bereits beschriebenen bioaktiven Glases erschmolzen, um speziell die Glaszusammensetzungen zu ermitteln, die mittels der HF- Technologie herstellbar sind. Dabei verwendete man einen Tiegel, der von einer HF-Spule umschlossen ist und durch einen HF-Generator beheizt wird. Die Zusammensetzungen der mittels der HF-Technik geschmolzenen Gläser zeigt die folgende Tabelle, wobei sowohl eine Schmelze ohne Na20 und mit nur 5 Gew. % Na20 nicht ausreichend koppelt, daher die Leitfähigkeit dieser Gläser nicht ausreicht, um mit der HF- Technologie die benötigte Wärmemenge in das Glas einzubringen .
Folgende Ergebnisse der Versuche zur Einschränkung des Zusammensetzungsbereiches wurden erhalten. Die
Zusammensetzung: 33 Gew.% CaO; 9 Gew.% P205 und 58 Gew.% Si02 lässt sich nicht mit Hochfrequenz schmelzen.
Gemenge Koppelverhalten Schmelze
Na20 Si02 CaO P205
[Gew. %] [Gew. %] [Gew. %] [Gew. %]
11,5 58 24,5 6,0 HF-Ankopplung Sl
8 61,5 24,5 6,0 HF-Ankopplung S2 6,6 62,8 24,6 6,0 HF-Ankopp1ung S3
6,6 55,7 30,3 7,4 HF-Ankopp1ung S4
5,1 64,3 24,6 6,0 keine HF- S5 Ankopplung
0 58 33 9 keine HF- S6 Ankopplung
Überraschend wurde von den Erfindern festgestellt, dass nicht nur der Na20-Gehalt in der Schmelze für das Koppelverhalten wichtig ist, sondern das ein Verhältnis von Na20+P205/Si02 das Koppelverhalten des Glases am besten wiederspiegelt . Die nächste Tabelle zeigt die Reihenfolge der Schmelze nach dem Koppelverhalten und dazu das Verhältnis Na20+P205/Si02.
HF - Kopplung Verhäl tnis
Na20+P205/Si02
51 ( sehr gut ) 0 , 30
54 0 , 25
52 0 , 22
53 0 , 20
55 (nicht ) 0 , 17
56 (nicht ) 0 , 16
Aus diesem Ergebnis geht hervor, dass für eine ausreichende HF-Ankopplung der Schmelze das Verhältnis von Na20+P205/Si02 mindestens 0,18 betragen muss.
Die benötigte Leitfähigkeit der Gläser für das Aufschmelzen in einer HF-Schmelzanlage kann sich für verschiedene Anlagen unterscheiden. Die Konstanz der Zusammensetzung der bioaktiven Gläser hängt wesentlich davon ab, ob es beim Einschmelzen zur Verstaubungen des Gemenges oder beim Schmelzvorgang zur Verdampfung von Glasbestandteilen aus der Glasoberfläche kommt. Für die bioaktiven Gläser müssen aufgrund der geforderten hohen Reinheit im allgemeinen synthetische Rohstoffe eingesetzt werden, die zum Teil stark zur Verstaubung neigen.
Bei einem Vergleichsversuch wurde für die Zusammensetzung: Na20: 24.5 Gew.%, CaO. 24.5 Gew%; P205 : 6.0 Gew.%; Si02 45.0 Gew.% bei der Verwendung von Gemenge 1 mit
Natriumhydrogencarbonat, Calciumcarbonat, Monocalciumphosphat und Quarzmehl eine Verstaubungsrate von .1,04 g/h pro normierte Fläche gefunden. Bei Gemenge 2 wurde Kalk (hergestellt für optische Gläser) anstelle von Calciumcarbonat und Natriummetaphosphat anstelle von Monocalciumphosphat eingesetzt, dadurch konnte die Verstaubung auf 0.48 g/h pro normierter Fläche erniedrigt werden.
Neben der Reinheit der Glasschmelze und der Konstanz der Zusammensetzung spielt auch die Wirtschaftlichkeit der Glasherstellung eine wichtige Rolle.
Die bioaktiven Gläser können erfindungsgemäß sowohl diskontinuierlich als auch kontinuierlich hergestellt werden, da der Angriff der bioaktiven Gläser auf die Skull-Tiegel so gering ist, dass die Standzeit der Tiegel durch die Korrosion nicht beeinflusst wird. Wird das bioaktive Glas im weiteren Prozess zu Glaspulver vermählen, dann braucht die Glasschmelze nicht geläutert werden. In einem diskontinuierlichen Schmelzprozess kann die
Glasschmelze nach dem Einschmelzen durch einen Bodenablass ausgegossen werden. Die Glasschmelze muss nach dem Einschmelzen keinem zusätzlichen Homogenisierungsprozess unterworfen werden, da die Glasschmelze durch die sehr starke Konvektion die in dem Skull-Tiegel herrscht sehr gut homogenisiert wird.
Für die kontinuierliche Schmelze hat sich erfindungsgemäß als besonders vorteilhaft erwiesen, die Glasschmelze in dem Skull-Tiegel durchzuführen, bei dem der Schmelzbereich durch eine Brücke aus wassergekühlten Metallrohre unterteilt ist, wobei die Brücke nur in den oberen Teil der Glasschmelze hinein ragt. Es hat sich überraschender Weise gezeigt, dass das Gemenge, das auf der einen Hälfte auf die Schmelze aufgelegt wird, durch die Konvektion zunächst nach unten gezogen und dabei rasch aufgeschmolzen wird, um dann in der anderen Hälfte bei der das Glas oben abgezogen wird, aufzusteigen. Zur weiteren Verbesserung des Durchsatzes, kann erfindungsgemäß der Einschmelzprozess durch das Einleiten eines Gases von unten in die Glasschmelze beschleunigt werden. Bei dem durch eine Brücke unterteilten Skull -Tiegel wird das Bubbling-Gas in den Teil eingeleitet in den das Gemenge eingelegt wird. Durch das Bubbling mit einem Gas wie zum Beispiel einem 02-Gas; einem Inertgas wie N2-Gas oder einem Edelgas wie He- oder Ar-Gas kann die Einschmelzleistung um den Faktor > 2 erhöht werden.
Die Erfindung wird nachfolgend anhand einer Zeichnung näher erläutert. Die Zeichnung besteht aus Fig. 1. Figur 1 zeigt den Aufbau eines Skull-Tiegels.
Im einzelnen werden gezeigt eine Einlegeöffnung (1), ein
Wannenbrenner (2) , ein Überlaufbrenner (Quarzglas) (3) , eine Brücke (4) , ein Auslauf (5) , eine Schmelze (6) , ein Skulltiegel (7) , eine HF-Spule (8) , Quarzalbodenplatte (9) , Bubblingdüse (10) und eine gekühlte Bodenplatte (11) .

Claims

PATENTANSPRÜCHE
1. Hochreines bioaktives Glas mit folgender Zusammensetzung in Gew.%:
Si02 35 - 86
Na20 5,5 - 35
CaO 4 - 46
P205 1 - 15 weitere Zusatzstoffe 0,05 - 15
2. Bioaktives Glas nach Anspruch 1, dadurch gekennzeichnet , dass das Glas in einem mit Hochfrequenz beheizten Skull- Tiegel hergestellt ist.
3. Bioaktives Glas nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Glas mit folgender Zusammensetzung in Gew.%:
Si02 40 - 86
Na20 6,5 - 35
CaO 4 - 46
P205 1 - 15
4. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Glas folgende Zusatzstoffe beinhaltet (in Gew.-%) :
RPQTΔTIßl IN ϊtf ΠDIP Ag20 0 , 05 15
Cu20 0 , 05 15
CuO 0 , 05 15
ZnO 0 , 05 15
SnO 0 , 05 15
Bi203 0 , 05 15
Ce203 0 , 05 15
NiO 0 , 05 15
CoO 0 , 05 15
5. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Summe von Na20, Ag20 und Cu20 > 6 Gew.% ist.
6. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Verhältnis von Na20+P05 zu Si02 mindestens 0,18 Gew.-% beträgt.
7. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Glas in einem kontinuierlichen Schmelzprozess hergestellt ist.
8. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Glas in einem diskontinuierlichen Schmelzprozess hergestellt ist.
9. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die wassergekühlten Metallrohre, die den Skull-Tiegel bilden, aus Kupfer, Edelstahl, Platinmetall, Platinlegierung oder Aluminiummetall bestehen.
10. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die wassergekühlten Metallrohre, die den Skull -Tiegel bilden, aus mit Kunststoff beschichteten Metallrohren bestehen.
11. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das bioaktive Glas in einem Skulltiegel geschmolzen wird, bei dem das Gemenge oben aufgelegt und die Glasschmelze oben abgezogen wird und bei dem eine wassergekühlte, metallische Brücke in die Schmelze eintaucht und den Gemengebereich von dem Glasauslauf trennt .
12. Bioaktives Glas nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Durchmischung im Einschmelzbereich durch Bubbling zusätzlich erhöht wird.
13. Verfahren zur Herstellung eines bioaktiven Glases nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Glas in einem mit Hochfrequenz beheizten Skull-Tiegel hergestellt wird.
14. Verfahren zur Herstellung eines bioaktiven Glases nach Anspruch 14, dadurch gekennzeichnet, dass das Glas eine homogene und konstante Zusammensetzung aufweist.
PCT/EP2002/011007 2001-10-02 2002-10-01 Hochreines bioaktives glas sowie verfahren zu dessen herstellung WO2003031356A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02781200A EP1434742A1 (de) 2001-10-02 2002-10-01 Hochreines bioaktives glas sowie verfahren zu dessen herstellung
AU2002349319A AU2002349319A1 (en) 2001-10-02 2002-10-01 Highly pure bioactive glass and method for the production thereof
JP2003534346A JP2005504708A (ja) 2001-10-02 2002-10-01 高純度生物活性ガラスおよびその製造方法
US10/491,578 US20050095303A1 (en) 2001-10-02 2002-10-02 Highly purity bioactive glass and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10149309.6 2001-10-02
DE10149309 2001-10-02

Publications (1)

Publication Number Publication Date
WO2003031356A1 true WO2003031356A1 (de) 2003-04-17

Family

ID=7701612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/011007 WO2003031356A1 (de) 2001-10-02 2002-10-01 Hochreines bioaktives glas sowie verfahren zu dessen herstellung

Country Status (6)

Country Link
US (1) US20050095303A1 (de)
EP (1) EP1434742A1 (de)
JP (1) JP2005504708A (de)
AU (1) AU2002349319A1 (de)
DE (1) DE10244783A1 (de)
WO (1) WO2003031356A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214635B2 (en) 2003-10-14 2007-05-08 Pentax Corporation CaO-MgO-SiO2-based bioactive glass and sintered calcium phosphate glass using same
US7332452B2 (en) 2002-07-15 2008-02-19 Pentax Corporation CaO-SiO2-based bioactive glass and sintered calcium phosphate using same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303817B2 (en) 2001-10-24 2007-12-04 Weitao Jia Dental filling material
US7204874B2 (en) 2001-10-24 2007-04-17 Pentron Clinical Technologies, Llc Root canal filling material
US7750063B2 (en) 2001-10-24 2010-07-06 Pentron Clinical Technologies, Llc Dental filling material
DE10303553B4 (de) * 2003-01-29 2008-07-31 Schott Ag Antitranspiranter Wirkstoff und dessen Verwendung
JP4212642B2 (ja) * 2006-03-17 2009-01-21 興亜硝子株式会社 抗菌性ガラスおよび抗菌性ガラスの製造方法
GB0612028D0 (en) * 2006-06-16 2006-07-26 Imp Innovations Ltd Bioactive glass
JP2011524324A (ja) * 2008-05-27 2011-09-01 インペリアル イノベーションズ リミテッド 低酸素誘導因子(hif)安定化ガラス
GB0911365D0 (en) 2009-06-30 2009-08-12 Bioceramic Therapeutics Ltd Multicomponent glasses for use as coatings and in personal care products
JP2014512324A (ja) * 2011-03-28 2014-05-22 コーニング インコーポレイテッド ガラス中の銅の抗微生物作用
US20140154292A1 (en) * 2012-11-30 2014-06-05 Corning Incorporated Glass frit antimicrobial coating
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US10399886B2 (en) 2017-07-14 2019-09-03 Owens-Brockway Glass Container Inc. Feedstock gel and method of making glass-ceramic articles from the feedstock gel
CA3230616A1 (en) * 2021-09-02 2023-03-09 Aaron B. Morton Bioactive glass compositions and methods of treatment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017976A1 (en) * 1992-03-09 1993-09-16 Turku Implant Team Oy Bioactive glass as a bone substitute
WO1994004657A1 (en) 1992-08-13 1994-03-03 The Trustees Of The University Of Pennsylvania Bioactive material template for in vitro synthesis of bone tissue
US6051247A (en) 1996-05-30 2000-04-18 University Of Florida Research Foundation, Inc. Moldable bioactive compositions
WO2001014264A1 (de) * 1999-08-21 2001-03-01 Schott Glas Skulltiegel für das erschmelzen oder das läutern von gläsern oder glaskeramiken
WO2001014265A1 (de) * 1999-08-21 2001-03-01 Schott Glas Skulltiegel für das erschmelzen oder das läutern von anorganischen substanzen
US6228386B1 (en) * 1999-04-23 2001-05-08 Unicare Biomedical, Inc. Compositions and methods to repair osseous defects
WO2001053222A1 (de) * 2000-01-19 2001-07-26 Schott Glas Vorrichtung zum erschmelzen oder läutern von anorganischen substanzen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017976A1 (en) * 1992-03-09 1993-09-16 Turku Implant Team Oy Bioactive glass as a bone substitute
WO1994004657A1 (en) 1992-08-13 1994-03-03 The Trustees Of The University Of Pennsylvania Bioactive material template for in vitro synthesis of bone tissue
US6051247A (en) 1996-05-30 2000-04-18 University Of Florida Research Foundation, Inc. Moldable bioactive compositions
US6228386B1 (en) * 1999-04-23 2001-05-08 Unicare Biomedical, Inc. Compositions and methods to repair osseous defects
WO2001014264A1 (de) * 1999-08-21 2001-03-01 Schott Glas Skulltiegel für das erschmelzen oder das läutern von gläsern oder glaskeramiken
WO2001014265A1 (de) * 1999-08-21 2001-03-01 Schott Glas Skulltiegel für das erschmelzen oder das läutern von anorganischen substanzen
WO2001053222A1 (de) * 2000-01-19 2001-07-26 Schott Glas Vorrichtung zum erschmelzen oder läutern von anorganischen substanzen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332452B2 (en) 2002-07-15 2008-02-19 Pentax Corporation CaO-SiO2-based bioactive glass and sintered calcium phosphate using same
US7214635B2 (en) 2003-10-14 2007-05-08 Pentax Corporation CaO-MgO-SiO2-based bioactive glass and sintered calcium phosphate glass using same

Also Published As

Publication number Publication date
AU2002349319A1 (en) 2003-04-22
US20050095303A1 (en) 2005-05-05
JP2005504708A (ja) 2005-02-17
EP1434742A1 (de) 2004-07-07
DE10244783A1 (de) 2003-04-24

Similar Documents

Publication Publication Date Title
WO2003031356A1 (de) Hochreines bioaktives glas sowie verfahren zu dessen herstellung
DE102012100233B4 (de) Hochtransmittive Gläser mit hoher Solarisationsbeständigkeit, ihre Verwendung und Verfahren zu ihrer Herstellung
EP1419118B1 (de) Antimikrobielles, entzündungshemmendes, wundheilendes glaspulver und dessen verwendung
DE19939771B4 (de) Verfahren zur Läuterung von Glasschmelzen
DE60106698T2 (de) Faser aus anorganischem Material und Verfahren zu deren Herstellung
DE4423794C1 (de) Zr0¶2¶-haltige Glaskeramik, Verfahren zu deren Herstellung sowie deren Verwendung
DE102007008299B4 (de) Verfahren zur Herstellung von Gläsern, wobei die chemische Reduktion von Bestandteilen vermieden wird
DE2905875C2 (de) Optisches Glas im System P&amp;darr;2&amp;darr;O&amp;darr;5&amp;darr;-Nb&amp;darr;2&amp;darr;O&amp;darr;5&amp;darr;
EP2649019B1 (de) Borfreies universalglas
DE2949619A1 (de) Glas, insbesondere glaskeramik-zahnrestaurierungsmittel, und verfahren zu seiner herstellung
WO2005033034A1 (de) Antimikrobielle glasoberflächen von glaspulvern
WO2003018495A1 (de) Wasserunlösliches, antimikrobielles silicatglas und dessen verwendung
DE10257049B4 (de) Verfahren zur Herstellung von Borosilicatgläsern, Boratgläsern und kristallisierenden borhaltigen Werkstoffen
EP0541546B1 (de) Glasiges oder glasig-kristallines material mit schneller löslichkeit und verfahren zu seiner herstellung
DE60203856T2 (de) Anorganische Faser und Verfahren zu dessen Herstellung
DE10293768B4 (de) Antimikrobielles Glaspulver, dessen Verwendung und Verfahren zu dessen Herstellung
DE10161075C1 (de) UV-Strahlung absorbierende, antimikrobielle, entzündungshemmende Glaskeramik, Verfahren zu ihrer Herstellung und ihre Verwendungen
EP1452500B1 (de) Glaskeramik sowie deren Herstellung und Verwendung
DE10201747C1 (de) Glas-Keramik-Komposit, Verfahren zu seiner Herstellung und Verwendungen
DE102018221827B4 (de) Verfahren zur Herstellung einer Glaskeramik und Glaskeramik
DE10213630A1 (de) Antimikrobielles Glas und dessen Verwendung
DE1049063B (de) Glaeser zum direkten Verschmelzen mit Metallen und Legierungen hoher thermischer Ausdehnung
JP2717246B2 (ja) 重金属を多量に含んだガラスおよびその製造方法
DE102012025656B3 (de) Hochtransmittive Gläser mit hoher Solarisationsbeständigkeit
DD248351B5 (de) Glaskeramisches bioaktives Material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003534346

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002781200

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002781200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10491578

Country of ref document: US