WO2003030289A2 - Polymer membrane for fuel cells and method for the production thereof - Google Patents

Polymer membrane for fuel cells and method for the production thereof Download PDF

Info

Publication number
WO2003030289A2
WO2003030289A2 PCT/DE2002/003736 DE0203736W WO03030289A2 WO 2003030289 A2 WO2003030289 A2 WO 2003030289A2 DE 0203736 W DE0203736 W DE 0203736W WO 03030289 A2 WO03030289 A2 WO 03030289A2
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
segment
acid
ether
block
Prior art date
Application number
PCT/DE2002/003736
Other languages
German (de)
French (fr)
Other versions
WO2003030289A3 (en
Inventor
Dieter Lehmann
Jochen Meier-Haack
Claus Vogel
Antje Taeger
Suzana Pereira Nunes
Dieter Paul
Klaus-Viktor Peinemann
Kai Jakoby
Original Assignee
Institut Für Polymerforschung Dresden E.V.
Gkss-Forschungszentrum Gessthacht Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Für Polymerforschung Dresden E.V., Gkss-Forschungszentrum Gessthacht Gmbh filed Critical Institut Für Polymerforschung Dresden E.V.
Priority to EP02776768A priority Critical patent/EP1430560A2/en
Priority to AU2002339343A priority patent/AU2002339343A1/en
Publication of WO2003030289A2 publication Critical patent/WO2003030289A2/en
Publication of WO2003030289A3 publication Critical patent/WO2003030289A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the fields of power generation, vehicle construction and chemistry and relates to polymer fuel cell membranes, such as those that can be used, for example, in direct methanol fuel cells, and a method for their production.
  • B. the hydrogen-powered fuel cells or the direct methanol fuel cells comes to the polymer electrolyte membranes (PEM).
  • PEM polymer electrolyte membranes
  • the task is, on the one hand, to separate the two electrode compartments from each other and to minimize the methanol permeability, and on the other hand, the proton transport between the anode compartment (in which the hydrogen is oxidized to protons or methanol to protons and carbon dioxide) and the cathode compartment (in which oxygen is reduced) to ensure.
  • the minimization of the methanol permeability is necessary because the reaction of methanol with oxygen in the cathode compartment leads to a reduction in performance.
  • the requirements for the PEM for use in fuel cells are as follows: 1. high chemical and electrochemical stability, especially under operating conditions 2. high mechanical stability during operation
  • cation exchange membranes based on perfluorinated hydrocarbons, which were initially developed for chlor-alkali electrolysis, have been used in fuel cells. Proton conductivity is achieved through sulfonic acid groups in the side chains of these polymers.
  • Such membranes are known under the trade names Nafion® (DuPont), Dow ⁇ Membran (Dow Chemical), Flemion® (Asahi Glass Co., Ltd) and Aciplex® (Asahi Chemical Industry Co., Ltd).
  • a big disadvantage of these membranes is their high price (approx. US $ 800 / m 2 ).
  • Another disadvantage is their methanol permeability, especially at higher methanol concentrations, so that the fuel cells cannot be operated under optimal conditions.
  • these membranes dry out at operating temperatures> 100 ° C, which leads to a reduction in proton conductivity. Nevertheless, these temperatures are e.g.
  • Reinforced membranes based on PTFE microfiltration membranes coated with a perfluorinated ionomer are also known (GoreSelect TM, Gore and Associates; US 5,547,551). This technique allows the production of thinner membranes, leading to a reduction of the ohmic resistance.
  • the proton conductivity is lower than that of the Nafion ® or Dow ® membranes mentioned above.
  • Membrane materials in fuel cells have been developed e.g. B. described by Ballard (US 5,422,411). Compared to the analog, non-fluorinated polymers, these materials have a significantly higher oxidation stability. In hydrogen fuel cells, these membranes have better electrical properties than Nafion ® or Dow ® membranes.
  • Polybenzimidazole membranes have been described (B. Cahan, JS Wainright, J. Electrochem. Soc. 140, L185 (1994); P. Staiti, M. Minutoli, S. Hocevar, J. Power Sources 90, 231 - 235 (2000) ). These membranes have to be impregnated with phosphoric acid, poly-tungstic acid or phosphorotungstic acid in order to achieve proton conductivity. The acid is bound to the matrix with salt formation with the imidazole groups of the polymer. The ratio of imidazole to acid is of the order of 1: 3 to 1: 5. With these materials, however, there is a risk that the acid will be carried out of the membrane by the water formed during operation and thus the proton conductivity will be lost.
  • PES polyaryl ether sulfone
  • PEM polyaryl ether sulfone
  • Degrees of sulfonation above 29.5% lead to water-soluble products.
  • Degrees of sulfonation of up to 29% give products that are soluble in hot water.
  • these materials swell very much, which leads to poor mechanical properties.
  • Crosslinked sulfonated polyether sulfones have a lower swellability, but the specific conductivity decreases by a factor of 2 compared to the uncrosslinked products.
  • EP 0 574 791 A2 describes sulfonated polyether ether ketone (PEEK) as membrane material for use in fuel cells.
  • PEEK polyether ether ketone
  • high degrees of sulfonation which are necessary for sufficient proton conductivity, lead to materials with high degrees of swelling and thus poor mechanical properties (shortening the life of the membrane).
  • inhomogeneously sulfonated PEEK there is a risk of embrittlement due to recrystallization, since PEEK itself is partially crystalline.
  • a major disadvantage of all previously known polymeric membranes for fuel cells is the insufficient mechanical stability and / or the insufficient methanol retention capacity.
  • the object of the present invention is to provide a polymer fuel cell membrane which has improved mechanical stability and / or a substantially improved methanol retention capacity.
  • the present invention provides polymer fuel cell membranes that can overcome existing deficiencies in the prior art.
  • the polymeric fuel cell membranes according to the invention can consist of one or more separation-active layers. It is also possible for one or more carriers to be present. Materials are used as supports which at least do not completely prevent or prevent the function of the release-active layer (s), advantageously they support the function of the release-active layer (s). One or more release-active layer (s) can be applied to a support, the release-active layer (s) can be arranged between two supports, the material of the release-active layer (s) can also be applied, for example, in cavities, pores of a support material , Combinations of these options can also be implemented.
  • the carrier should primarily ensure and / or increase the mechanical stability of the membrane. It is advantageously constructed from a textile or porous material.
  • the release-active layer according to the invention consists of at least one di- and / or multiblock copolymer with one of the general segment structures A- (B- A) k and / or B- (AB) ⁇ and / or (AB) m with k> 1 and I> 1 and m> 1.
  • these segment structures can also be present side by side and in different numbers.
  • the di- and / or multiblock copolymers can be linear or branched.
  • the block segments (A) and (B) each consist of oligomer segments, the block segment (A) consisting of at least one Electron-non-conductive and proton-non-conductive oligomer segment, and the block segment (B) is composed of at least one proton-conductive and electron-non-conductive oligomer segment.
  • oligomers are compounds which consist of a small number of monomeric molecules. They are called dimers, trimers, tetramers, etc. (Stoeckhert, Kunststofflexikon 9th edition, Carl Hanser Verlag Ober Wien 1998).
  • the oligomers advantageously have degrees of polymerization of 2 to 50.
  • the oligomers present, both from block segment (A) and from block segment (B), can each consist of the same or different oligomer units, with (A) and (B) not having the same oligomer units.
  • the length of the block segment (B) in particular should advantageously be selected according to an optimal proton conductivity.
  • the membrane according to the invention must have a morphologically structure with an essentially continuous proton conductivity. This means that the structure of the membrane with regard to the arrangement of supports and separation-active layers must be selected according to this criterion. Of course, the highest possible proton conductivity is sought. It is advantageous if the separation-active layer is structured in essentially unmixed proton-conducting and non-conducting polymer regions.
  • compositions in which the block segments (A) and (B) have imide structures and the block segment (B) have sulfonic acid groups bonded directly to an aromatic diamine component of the aromatic imide structure are excluded from the composition of the membrane according to the invention. Also excluded from the composition according to the invention are compositions in which the block segment (B) contains sulfonic acid groups which are bonded directly to the aromatics and which, under the respective operating or. Desulfonate operating conditions. This desulfonation occurs particularly in the case of deactivated aromatics, ie aromatics with strongly electron-withdrawing substituents / groups.
  • polyether sulfones bearing sulfonic acid groups in which the sulfonic acid group is present directly bound to the aryl sulfone component (aromatics coupled via sulfone group), relatively easily in the aqueous system or under operating or operating conditions in a fuel cell.
  • no desulfonation of the sulfonic acid groups which are directly coupled to the ether building block has been found.
  • the oligomeric block segments (A) comprise at least one oligomer of the compound classes Oligoarylimid and / or Oligoarylensulfid and / or Oligoarylsulfon and / or Oligoarylethersulfon and / or Oligoarylenether and / or Oligoaryletherketon and / or Oligoarylenetheretherketon and / or synthesized oligoaramide and / or Oligoarylharnstoff and / or Oligoarylenoxadiazole and / or oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzothiazole and / or oligoquinoxaline.
  • the degree of polymerization of the block segments (A) is in the range from 1 to 50, advantageously in the range from 4 to 30 and still advantageously between 5 and 10.
  • the block segment (B) advantageously consists of at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaryol urea and / or oladialol or urea and / or oxadiall urea and / or Oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzthiazole and / or oligoquinoxaline and / or oligoarylimide, with the exception of this oligoarylimide a sulfonic acid group B directly attached to an aromatic amine component of an aromatic
  • the block segment (B) consists of at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaryl amide and / or oligoaryl urea and / or oligoarylenoxadiazole and / or oligoarylene sulfonamide and / or oligobobolizole / and / or oligobobolizole / and / or oligobenzolid / and / or oligobenzolid / and / or oligobenzolid / and / or oligobenzolid / and / or oligobenzolid / and / or oligobenzolid / and /
  • the block segment (B) can advantageously also be composed of at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaryol urea and / or oladialol or urea and / or oladialol or urea and / or oladialol or urea and / or oladialol or urethane and / or Oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzthiazole and / or oligoarylimide and / or oligoquinoxaline
  • the membrane in the separating layer can advantageously contain further polymers and / or further additives.
  • the block segment (A) acts primarily Improve mechanical stability and methanol retention.
  • the block segment (B) is itself proton-conductive and retains the methanol with high selectivity.
  • Such a membrane is advantageously composed of a block segment (A) made from oligoimide (s) and / or oligophenylene sulfide (s) and / or oligosulfonamide (s) and / or oligoarylsulfone (s) and / or oligobenzimidazole (s) and from a block segment (B ) built up from oligophenylene sulfide (s) and / or oligosulfonamide (s) and / or oligoarylsulfone (s) and / or oligobenzimidazole (s) and / or oligoimide (s) with the proton-conducting sulfonic acid and / or phosphonic acid groups, with the exception of the block segments (A) and (B) have an imide structure and the block segment (B) has a sulfonic acid group bonded directly to an aromatic diamine building block of the aromatic imide structure, and has
  • starting materials are used which lead to block segments (A) with at least one electron-non-conductive and proton-non-conductive oligomer segment and which lead to block segments (B ) lead with at least one proton-conducting and electron-non-conducting oligomer segment.
  • At least one of the starting materials for the production of the block segment (A) and / or (B) is present as a solution or as a melt.
  • the oligomeric block segments (A) and (B), each with different reactive end groups, which are necessary for coupling the block segments (A) with the block segments (B), are first prepared in separate reactions. Both the block length and the type of reactive end groups are determined by the composition of the starting materials.
  • the chain lengths of the block segments and the reactive functional end groups are adjusted by a defined excess of one of the monomers of the type CC or DD, as shown schematically in Formula 1.
  • a check is made to control the chain length and the reactive functional end groups difunctional monomer of type CC and / or DD added in a defined ratio to component CD to the reaction mixture (see formula 2).
  • block segments according to the invention Another property of the block segments according to the invention is that the functionalities of their end groups only allow the block segments (A) and (B) to be coupled.
  • the block segments (B) are obtained by reacting monomers, the sulfonic acid (s) and / or phosphonic acid (s) and / or (perfluoro) alkylsulfonic acid (s) and / or (perfluoro) alkylphosphonic acid (s) and / or (perfluoro ) Alkyl carboxylic acid (s) and / or of monomers which contain at least one further proton non-conductive functional group such as.
  • B. contain hydroxyl groups, which is not involved in the chain structure and which can be converted into a proton-conducting group by polymer-analogous reactions of the block segments.
  • a criterion for the selection of the monomers to be used to produce a block segment (B) is the density of the proton-conducting groups DPIG, defined by:
  • the density Dp ⁇ G should advantageously be adjusted by adding monomers without proton-conducting groups in the range from 20% to 200%.
  • the group density is advantageously between 50 and 100%.
  • the degree of polymerization of the proton-conducting block segments (B) is in the range from 1 to 50, advantageously in the range from 1 to 30 and even more advantageously between 2 and 10.
  • ⁇ -propane sultone, ⁇ -butane sultone, or 1, 2,2-trifluoro-2-hydroxy-1-trifluoromethylethane sultone (perfluoro) alkyl lactones can be obtained from the corresponding oligomeric block segments of type (A). This method is particularly advantageous if the oligomer synthesis must be carried out in melt but also in solution at temperatures above 200 ° C.
  • the multiblock copolymers of the general form A- (BA) ⁇ are advantageously obtained, k advantageously Can take values between 2 and 10.
  • This structure enables the finished membrane to have a largely phase-separated morphology with block segment (A) -rich phases (A-phase) and block segment (B) -rich phases (B-phase) and with essentially continuous proton conductivity.
  • Proton-non-conductive A phases of this type do not swell or only swell to a small extent in water or water / methanol mixtures and essentially give the membranes mechanical stability. Furthermore, they form a barrier for water and when using the membranes in DMFC for methanol between the anode and cathode compartments of a fuel cell unit.
  • Proton conduction between the anode and the cathode takes place via swellable B phases of the membrane materials.
  • the lower mechanical stability due to swelling is compensated for by the A phases.
  • the B phases in operation in a DMFC form a barrier essentially for methanol between the anode and cathode spaces of a fuel cell unit.
  • auxiliaries and additives and / or crosslinking agents can then be added.
  • the swellability of the B phase can be controlled during or after membrane production by adding crosslinking agents.
  • they are formed as a separation-active layer (s) alone or on and / or between and / or in a support as a membrane, the membrane having a structure with an essentially continuous structure Has proton conductivity.
  • Advantageous monomers for the production of oligomeric block segments (A) can be:
  • Terephthalic acid isophthalic acid, naphthalene-1, 4-dicarboxylic acid, naphthalene-1, 5- dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenyl-4,4 '-dicarboxylic acid,
  • Diaminopyridine 3.5 diaminopyridine, piperazine, 2,4-diamino-pyrimidine, 4,6-
  • Terephthalic acid isophthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, diphenyl ether-4, 4 '-dicarboxylic acid, cyclohexane-1, 4-dicarboxylic acid, pyridine-dicarboxylic acid 2,6-, 5-hydroxyisophthalic acid and
  • Terephthalic acid isophthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid,
  • Terephthalic acid isophthalic acid, naphthalene-1, 4-dicarboxylic acid, naphthalene-1, 5- dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, biphenyl-4,4 '-dicarboxylic acid, diphenyl ether-4, 4'-dicarboxylic acid, cyclohexane-1, 4-dicarboxylic acid, pyridine 2,6-dicarboxylic acid, 5-hydroxyisophthalic acid and
  • Advantageous monomers which only lead to the production of the oligomeric block segments (B), in addition to those mentioned for the production of the block segments (A), can be:
  • 5-lsophthalphosphonklare 5-lsophthalsulfonkladish, Terephthalsulfonklad, p-phenylenediaminesulfonic acid, m-phenylenediaminesulfonic acid, 4,4 '-Diaminobiphenyl- 2,2' disulfonic acid, 4,4 'diaminostilbene-2,2' disulfonic acid, 2,4-diaminomesitylene -6- sulfonic acid, 3,5-diaminobenzoic acid 4.
  • Combinations of the monomers within a block segment (A) and / or (B) are possible.
  • the criterion for the selection of the monomers and their combinations are the properties of the block segments (A) and (B) according to claim 1.
  • the carboxylic acid and sulfonic acid-containing monomers are advantageously used as acid chlorides for the synthesis of the oligomeric block segments (A) and (B).
  • the carboxylic acid-containing monomers can also be used as methyl or phenyl esters. It is also advantageous to silylate the amino, thiol and hydroxy groups which are involved in the formation of the oligomer. Monomers containing hydroxyl groups can be used in the form of their acetates.
  • the conversion of the monomers to the oligomeric block segments (A) and (B) and the preparation of the di- and / or multi-block copolymers takes place in solution or in the melt, at least one of the monomers used being in solution or in the melt.
  • Polar aprotic solvents such as dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), 1,4-dioxane or N-methylpyrrolidone (NMP) are used in particular for the reactions which are carried out in solution , If necessary, up to 5% by mass of low molecular weight salts, such as lithium chloride or calcium chloride, are added to these solvents in order to increase the solubility of the oligomers in the corresponding solvents.
  • low molecular weight salts such as lithium chloride or calcium chloride
  • the ratio solvent / monomers is chosen so that the oligomer and later the di- and / or multi-block copolymer concentration is in the range between 5 and 30 mass%, preferably between 10 and 20 mass%.
  • these solutions are used to produce the membranes.
  • the di- and / or multi-block copolymer concentration of these solutions is adjusted so that the solutions have a viscosity which is advantageous for the manufacture of the membranes.
  • the viscosity can also be adjusted by partially evaporating the solvent in vacuo or by adding solvent.
  • solutions which contain at least one of the di- or multiblock copolymers according to the invention or solutions which contain at least one oligomeric block segment (A) and at least one oligomeric block segment (B) or solutions, which contain at least one oligomeric block segment (A) and / or at least one oligomeric block segment (B) and at least one di- or multiblock copolymer using a doctor blade to form a film with a thickness of 100-500 ⁇ m on an inert, smooth base e.g. B. made of glass, PTFE or stainless steel.
  • the oligomeric block segments (A) and (B) are coupled. and / or the or the di- or multiblock copolymers to di- and / or multiblock copolymers instead.
  • the solvent is either partially evaporated by supplying energy in air and then completely in a vacuum or immediately completely in a vacuum. The temperatures for this are in the range of 50 - 150 ° C.
  • the dry membranes obtained in this way have thicknesses of 50 to 150 ⁇ m, preferably between 60 and 100 ⁇ m, the thickness of the membranes being dependent on the thickness of the polymer film pulled out and the polymer concentration.
  • the membranes have a phase-separated morphology with essentially continuous proton conductivity.
  • the support material which consists of a porous or textile material, for example polyphenylene oxide or polyphenylene sulfide
  • an inert, smooth base e.g. B. made of glass, PTFE or stainless steel or fixed.
  • the application of the release-active layer is carried out as described under 1.
  • the separation-active layer on the carrier has a phase-separated morphology with essentially continuous proton conductivity.
  • the support material which consists of a porous or textile material, for example polyphenylene oxide or polyphenylene sulfide, is impregnated with a solution containing the di- and / or multiblock copolymer.
  • the membrane is obtained by evaporating the solvent as described under 1.
  • the separation-active layer which is located in the cavities of the carrier, has a phase-separated morphology with essentially continuous proton conductivity.
  • a polymer film is first applied to a carrier material as described under 2. Before the solvent is evaporated, a second carrier material is applied to this polymer film. This membrane is finished by evaporating off the solvent, as described under 1.
  • the separation-active layer between the supports has a phase-separated morphology with essentially continuous proton conductivity.
  • a membrane which has been produced according to one of the options 1 to 4 is coated with a further polymer solution which may contain the same or a different di- and / or multiblock copolymer.
  • the membrane is finished by evaporating the solvent as described in 1.
  • the additional separation-active layer (s) on the support has a phase-separated morphology with essentially continuous proton conductivity.
  • a Nafion membrane (DuPont) is used as the standard membrane for DMFC. This membrane swells in methanol-water solutions (5% by mass of methanol) and the membrane properties are established. Sufficient conductivity is achieved with a proton conductivity of 0.2 S / cm at 80 ° C. The barrier properties of Nafion membranes with a methanol permeability of 30% and more are not suitable for use in DMFC.
  • % LiCI contains, at -18 ° C to 0.1 mol of tris-trimethylsilyl-p-phenylenediaminesulfonic acid 0.08 mol of isophthalic acid dichloride are added and the mixture is reacted for one hour at -18 ° C. and 8 hours at 100 ° C. with stirring.
  • - Reaction solution B1 (amine-terminated).
  • reaction solution B1 is slowly added dropwise to the reaction solution A1 with stirring. After stirring for 1 hour at 120 ° C., 0.05 mol of acetic anhydride are added dropwise and stirring is continued for 1 hour.
  • the solution is concentrated under vacuum and stirring and drawn into a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 1/20 of the Nafion comparison membrane
  • Block copolymer membrane 2 is a block copolymer membrane
  • reaction solution B1 is slowly added dropwise to the reaction solution A2 with stirring. After stirring for 1 hour at 120 ° C under vacuum and stirring
  • reaction solution B1 is slowly added dropwise to the reaction solution A3 with stirring. After stirring for 1 hour at 130 ° C under vacuum and stirring
  • Block copolymer membrane 4
  • reaction solution B2 is slowly added dropwise to the reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring in such a way that the solution is introduced into a fine glass fiber fabric and is slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 3/100 of the Nafion comparison membrane
  • Block copolymer membrane 5
  • reaction solution B3 is slowly added dropwise to the reaction solution A4 with stirring. After stirring for 8 hours at 130 ° C under vacuum and stirring
  • Block copolymer membrane 6
  • reaction solution A5 is added to reaction solution B3 with stirring. After stirring at 130 ° C. for 8 hours, the solution is cooled and 0.01 mol of dianediglycidyl ether is added as a crosslinking agent. The solution is immediately drawn out to the membrane, dried under vacuum and annealed at 100 ° C. for 5 hours. An easily manageable, mechanically stable membrane is obtained.
  • reaction solution A5 is added to reaction solution B3 with stirring. After stirring at 130 ° C. for 8 hours, the solution is cooled and 0.01 mol of 4,4'-difluorodiphenyl sulfone is added as crosslinking agent. The solution is drawn out to the membrane, dried under vacuum and annealed at 120 ° C. for 8 hours. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 5/100 of the Nafion comparison membrane
  • Block copolymer membrane 8
  • reaction solution B3 100 ml of reaction solution B3 are slowly added dropwise to 50 ml of reaction solution A2 and 50 ml of reaction solution A4 while stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained.
  • Block copolymer membrane 9 is a block copolymer membrane
  • reaction solution B1 and 50 ml of reaction solution B3 are slowly added dropwise to 100 ml of reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 4/100 of the Nafion comparison membrane
  • Block copolymer membrane 10 is a block copolymer membrane
  • reaction solution B1 and 45 ml of reaction solution B3 are slowly added dropwise to 100 ml of reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained.
  • reaction solution B2 and 50 ml of reaction solution B3 are slowly added dropwise to 90 ml of reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 7/100 of the Nafion comparison membrane

Abstract

The invention relates to the field of chemistry and to membranes, such as applied for example in direct methanol fuel cells. The aim of the present invention is to provide membranes having a substantially improved methanol retention capacity. Said aim is achieved by a polymer membrane for fuel cells, whereby the separating layer(s) comprises at least diblock- and/or multiblock-copolymers having the general segment structures A-(B-A)k and/or B-(A-B)l and/or (A-B)m with k ≥ 1 and l ≥ 1 and m ≥ 1, whereby the block segment (A) comprises an oligomer segment, non-conducting to electrons and non-conducting to protons and the block segment (B) comprises an oligomer segment, conducting protons and non-conducting to electrons. Said aim is also achieved by a method, whereby the starting substances are reacted to produce the block segments (A) from at least one oligomer segment, non-conducting to electrons and non-conducting to protons, as well as the block segments (B) from at least one oligomer segment, conducting protons and non-conducting to electrons.

Description

Polymere Brennstoffzellen-Membran und Verfahren zu ihrer Herstellung Polymer fuel cell membrane and process for its manufacture
Die Erfindung bezieht sich auf die Gebiete Energieerzeugung, Fahrzeugbau und Chemie und betrifft polymere Brennstoffzellen-Membranen, wie sie beispielsweise in Direkt-Methanol-Brennstoffzellen zum Einsatz kommen können und ein Verfahren zu deren Herstellung.The invention relates to the fields of power generation, vehicle construction and chemistry and relates to polymer fuel cell membranes, such as those that can be used, for example, in direct methanol fuel cells, and a method for their production.
Eine wichtige Rolle in Niedrigtemperatur-Brennstoffzellen wie z. B. den mit Wasserstoff betriebenen Brennstoffzellen oder den Direkt-Methanol-Brennstoffzellen (engl. Direct-Methanol-Fuel Cell; DMFC) kommt den Polymer-Elektrolyt-Membranen (PEM) zu. Die Aufgabe ist, einerseits die beiden Elektrodenräume voneinander zu trennen und die Methanoldurchlässigkeit zu minimieren sowie andererseits den Protonentransport zwischen dem Anodenraum (in dem der Wasserstoff zu Protonen bzw. Methanol zu Protonen und Kohlendioxid oxidiert wird) und dem Kathodenraum (in dem Sauerstoff reduziert wird) zu gewährleisten. Die Minimierung der Methanoldurchlässigkeit ist erforderlich, da die Reaktion von Methanol mit Sauerstoff im Kathodenraum zu einer Minderung der Leistungsfähigkeit führt.An important role in low temperature fuel cells such as. B. the hydrogen-powered fuel cells or the direct methanol fuel cells (Engl. Direct Methanol Fuel Cell; DMFC) comes to the polymer electrolyte membranes (PEM). The task is, on the one hand, to separate the two electrode compartments from each other and to minimize the methanol permeability, and on the other hand, the proton transport between the anode compartment (in which the hydrogen is oxidized to protons or methanol to protons and carbon dioxide) and the cathode compartment (in which oxygen is reduced) to ensure. The minimization of the methanol permeability is necessary because the reaction of methanol with oxygen in the cathode compartment leads to a reduction in performance.
Die Anforderungen an die PEM für den Einsatz in Brennstoffzellen sind folgende: 1. hohe chemische und elektrochemische Stabilität, insbesondere unter Betriebsbedingungen 2. hohe mechanische Stabilität während des BetriebesThe requirements for the PEM for use in fuel cells are as follows: 1. high chemical and electrochemical stability, especially under operating conditions 2. high mechanical stability during operation
3. Gewährleistung einer guten und permanenten Haftung zum Katalysator3. Guarantee good and permanent adhesion to the catalyst
4. extrem geringe Permeabilität für Reaktanden, um eine hohe Coulombsche Effektivität sicher zu stellen4. extremely low permeability for reactants to ensure a high Coulomb effectiveness
5. hoher Elektrolyttransport (Wasser) um eine gleichmäßige Verteilung in der Membran zu gewährleisten und ein „lokales" Austrocknen zu vermeiden5. high electrolyte transport (water) to ensure an even distribution in the membrane and to avoid "local" drying out
6. hohe Protonenleitfähigkeit zur Unterstützung hoher Stromdichten bei geringen Ohm'schen Widerständen6. high proton conductivity 'rule to support high current densities at low ohm resistors
7. keine Elektronen-Leitfähigkeit durch die Membran7. no electron conductivity through the membrane
8. Produktkosten, die der jeweiligen Anwendung angemessen sind.8. Product costs that are appropriate for the respective application.
Eine Übersicht über bisher eingesetzte Polymere als Membranen in der Brennstoffzellentechnik wurde von O. Savadogo gegeben (O. Savadogo, Journal of New Materials for Electrochemical Systems 1 , 47 - 66 (1998)).An overview of previously used polymers as membranes in fuel cell technology was given by O. Savadogo (O. Savadogo, Journal of New Materials for Electrochemical Systems 1, 47-66 (1998)).
Auf Grund ihrer hervorragenden chemischen Stabilität und elektrischen Eigenschaften (Protonenleitfähigkeit) wurden bisher Kationaustauscher-Membranen auf der Basis von perfluorierten Kohlenwasserstoffen, die zunächst für die Chlor- Alkali-Elektrolyse entwickelt wurden, in Brennstoffzellen eingesetzt. Die Protonenleitfähigkeit wird durch Sulfonsäuregruppen in den Seitenketten dieser Polymere erreicht. Derartige Membranen sind unter den Handelsnamen Nafion® (DuPont), DowΘMembran (Dow Chemical), Flemion® (Asahi Glass Co., Ltd) und Aciplex® (Asahi Chemical Industry Co., Ltd) bekannt.Due to their excellent chemical stability and electrical properties (proton conductivity), cation exchange membranes based on perfluorinated hydrocarbons, which were initially developed for chlor-alkali electrolysis, have been used in fuel cells. Proton conductivity is achieved through sulfonic acid groups in the side chains of these polymers. Such membranes are known under the trade names Nafion® (DuPont), DowΘMembran (Dow Chemical), Flemion® (Asahi Glass Co., Ltd) and Aciplex® (Asahi Chemical Industry Co., Ltd).
Ein großer Nachteil dieser Membranen ist ihr hoher Preis (ca. 800 US $/m2). Ein weiterer Nachteil ist ihre Methanoldurchlässigkeit insbesondere bei höheren Methanolkonzentrationen, so dass die Brennstoffzellen nicht unter optimalen Bedingungen betrieben werden können. Ferner trocknen diese Membranen bei Betriebstemperaturen > 100°C aus, was zu einer Minderung der Protonenleitfähigkeit führt. Trotzdem werden diese Temperaturen z. Zt. als notwendig angesehen, um eine schnelle Desorption des CO vom Katalysator zu gewährleisten, das während der Oxidation von Methanol auch entsteht und ein Katalysatorgift darstellt. Verstärkte Membranen auf der Basis von PTFE-Mikrofiltrationsmembranen, die mit einem perfluorierten lonomer beschichtet wurden, sind auch bekannt (GoreSelect™, Gore and Associates; US 5,547,551). Diese Technik erlaubt die Herstellung dünnerer Membranen, was zu einer Reduzierung des Ohm'schen Widerstandes führt. Die Protonenleitfähigkeit ist jedoch geringer als die der oben genannten Nafion® oder Dow® Membranen.A big disadvantage of these membranes is their high price (approx. US $ 800 / m 2 ). Another disadvantage is their methanol permeability, especially at higher methanol concentrations, so that the fuel cells cannot be operated under optimal conditions. Furthermore, these membranes dry out at operating temperatures> 100 ° C, which leads to a reduction in proton conductivity. Nevertheless, these temperatures are e.g. Currently considered necessary to ensure rapid desorption of the CO from the catalyst, which also arises during the oxidation of methanol and is a catalyst poison. Reinforced membranes based on PTFE microfiltration membranes coated with a perfluorinated ionomer are also known (GoreSelect ™, Gore and Associates; US 5,547,551). This technique allows the production of thinner membranes, leading to a reduction of the ohmic resistance. However, the proton conductivity is lower than that of the Nafion ® or Dow ® membranes mentioned above.
Der Einsatz von α,ß,ß-Trifluorstyrolsulfonsäure-Copolymeren alsThe use of α, β, ß-trifluorostyrene sulfonic acid copolymers as
Membranmaterialien in Brennstoffzellen wurde z. B. von Ballard beschrieben (US 5,422,411). Diese Materialien weisen im Vergleich zu den analogen, nichtfluorierten Polymeren eine deutlich höhere Oxidationsstabilität auf. In Wasserstoff- Brennstoffzellen weisen diese Membranen bessere elektrische Eigenschaften als Nafion® oder Dow® Membranen auf.Membrane materials in fuel cells have been developed e.g. B. described by Ballard (US 5,422,411). Compared to the analog, non-fluorinated polymers, these materials have a significantly higher oxidation stability. In hydrogen fuel cells, these membranes have better electrical properties than Nafion ® or Dow ® membranes.
Die Pfropfung von fluoriertem und unfluoriertem Polystyrol auf PTFE oder anderen fluorierten Trägermaterialien und nachträglicher Sulfonierung wurde in verschiedenen Veröffentlichungen beschrieben (US 4,012,303; US 4,166,014; US 4,506,035; US 4,605,685). Diese Methode ergibt insbesondere bei der Verwendung von unfluoriertem Styrol Membranen mit geringerer Leitfähigkeit als Nafion® oder Dow® Membranen und Membranen mit geringer chemischer Stabilität (oxidativer Abbau).The grafting of fluorinated and unfluorinated polystyrene on PTFE or other fluorinated support materials and subsequent sulfonation has been described in various publications (US 4,012,303; US 4,166,014; US 4,506,035; US 4,605,685). This method results in particular when using unfluorinated styrene membranes with lower conductivity than Nafion ® or Dow ® membranes and membranes with low chemical stability (oxidative degradation).
Membranen aus Polybenzimidazol wurden beschrieben (B. Cahan, J. S. Wainright, J. Electrochem. Soc. 140, L185 (1994); P. Staiti, M. Minutoli, S. Hocevar, J. Power Sources 90, 231 - 235 (2000)). Diese Membranen müssen mit Phosphorsäure, Polywolframsäure oder Phosphorwolframsäure getränkt werden, um eine Protonenleitfähigkeit zu erreichen. Die Säure wird unter Salzbildung mit den Imidazolgruppen des Polymeren an die Matrix gebunden. Das Verhältnis Imidazol zu Säure liegt in der Größenordnung 1 :3 bis 1 :5. Bei diesen Materialien besteht jedoch die Gefahr, dass die Säure durch das während des Betriebes gebildete Wasser aus der Membran ausgetragen wird und somit die Protonenleitfähigkeit verloren geht.Polybenzimidazole membranes have been described (B. Cahan, JS Wainright, J. Electrochem. Soc. 140, L185 (1994); P. Staiti, M. Minutoli, S. Hocevar, J. Power Sources 90, 231 - 235 (2000) ). These membranes have to be impregnated with phosphoric acid, poly-tungstic acid or phosphorotungstic acid in order to achieve proton conductivity. The acid is bound to the matrix with salt formation with the imidazole groups of the polymer. The ratio of imidazole to acid is of the order of 1: 3 to 1: 5. With these materials, however, there is a risk that the acid will be carried out of the membrane by the water formed during operation and thus the proton conductivity will be lost.
Sulfoniertes Polyarylethersulfon (PES, PSU) wurde als Membranmaterial für PEM beschrieben (C. Arnold, R. A. Assink, J. Membrane Sei. 38, 71 (1988)). Sulfonierungsgrade über 29,5% führen zu wasserlöslichen Produkten. Sulfonierungsgrade bis 29% geben Produkte, die in heißem Wasser löslich sind. Weiterhin quellen diese Materialien sehr stark, was zu schlechten mechanischen Eigenschaften führt. Vernetzte sulfonierte Polyethersulfone weisen zwar eine geringere Quellfähigkeit auf, jedoch nimmt die spezifische Leitfähigkeit im Vergleich zu den unvemetzten Produkten um den Faktor 2 ab.Sulfonated polyaryl ether sulfone (PES, PSU) has been described as a membrane material for PEM (C. Arnold, RA Assink, J. Membrane Sei. 38, 71 (1988)). Degrees of sulfonation above 29.5% lead to water-soluble products. Degrees of sulfonation of up to 29% give products that are soluble in hot water. Furthermore, these materials swell very much, which leads to poor mechanical properties. Crosslinked sulfonated polyether sulfones have a lower swellability, but the specific conductivity decreases by a factor of 2 compared to the uncrosslinked products.
In EP 0 574 791 A2 wird sulfoniertes Polyetheretherketon (PEEK) als Membranmaterial für den Einsatz in Brennstoffzellen beschrieben. Hohe Sulfonierungsgrade, die für eine ausreichende Protonenleitfähigkeit notwendig sind, führen jedoch zu Materialen mit hohen Quellungsgraden und somit schlechten mechanischen Eigenschaften (Verkürzung der Lebensdauer der Membran). Bei inhomogen sulfoniertem PEEK besteht die Gefahr der Versprödung durch Rekristallisierung, da PEEK selbst teilkristallin ist.EP 0 574 791 A2 describes sulfonated polyether ether ketone (PEEK) as membrane material for use in fuel cells. However, high degrees of sulfonation, which are necessary for sufficient proton conductivity, lead to materials with high degrees of swelling and thus poor mechanical properties (shortening the life of the membrane). With inhomogeneously sulfonated PEEK there is a risk of embrittlement due to recrystallization, since PEEK itself is partially crystalline.
Die Verwendung von Blockcopolyimiden aus sulfonsäurehaltigen Segmenten und nichtsulfonierten Segmenten als Membranmaterial wurde in FR 96/05707 beschrieben. Diese Membranmaterialien wurden bisher nur in Wasserstoff/Sauerstoff Brennstoffzellen getestet, was eine Abschätzung der Eignung dieser Materialien in DMFC schwierig macht.The use of block copolyimides from sulfonic acid-containing segments and non-sulfonated segments as membrane material has been described in FR 96/05707. So far, these membrane materials have only been tested in hydrogen / oxygen fuel cells, which makes it difficult to assess the suitability of these materials in DMFC.
Von Kerres et al. wurden Polyionenkomplexmembranen auf der Basis von Polybenzimidazol, Polyethylenimin, aminiertem Polysulfon oder Poly(4-vinylpyridin) (basische Polymere) und sulfoniertem Polysulfon (sPSU) bzw. sulfoniertem Polyetheretherketon (sPEEK) (saure Polymere) beschrieben (J. Kerres, A. Ullrich, T. Häring, M. Baldauf, U. Gebhardt, W. Preidel; Journal of New Materials for Electrochemical Systems, 3, 229 - 239 (2000)), die in Wasserstoff/Sauerstoff- Brennstoffzellen deutlich bessere elektrische Eigenschaften als Nafιon®-117 aufweisen. Werden diese Membranen in DMFC bei unterschiedlichen Methanolkonzentrationen getestet, so zeigen sich nur geringfügige Unterschiede im elektrischen Verhalten zur Nafion®-117 Membran.By Kerres et al. polyion complex membranes based on polybenzimidazole, polyethyleneimine, aminated polysulfone or poly (4-vinylpyridine) (basic polymers) and sulfonated polysulfone (sPSU) or sulfonated polyetheretherketone (sPEEK) (acidic polymers) have been described (J. Kerres, A. Ullrich, T. Häring, M. Baldauf, U. Gebhardt, W. Preidel; Journal of New Materials for Electrochemical Systems, 3, 229 - 239 (2000)), which in hydrogen / oxygen fuel cells have significantly better electrical properties than Nafιon ® -117 exhibit. If these membranes are tested in DMFC at different methanol concentrations, there are only slight differences in the electrical behavior compared to the Nafion ® -117 membrane.
Ein wesentlicher Nachteil aller bisher bekannten polymeren Membranen für Brennstoffzellen sind die ungenügende mechanische Stabilität und/oder das ungenügende Methanolrückhaltevermögen. Die Aufgabe der vorliegenden Erfindung ist es, eine polymere Brennstoffzellen- Membran anzugeben, die eine verbesserte mechanische Stabilität und/oder ein wesentlich verbessertes Methanolrückhaltevermögen aufweist.A major disadvantage of all previously known polymeric membranes for fuel cells is the insufficient mechanical stability and / or the insufficient methanol retention capacity. The object of the present invention is to provide a polymer fuel cell membrane which has improved mechanical stability and / or a substantially improved methanol retention capacity.
Die Erfindung ist in den Ansprüchen angegeben. Weiterbildungen sind Gegenstand der Unteransprüche.The invention is set out in the claims. Further training is the subject of the subclaims.
Mit der vorliegenden Erfindung werden polymere Brennstoffzellen-Membranen bereitgestellt, die bestehende Mängel des Standes der Technik beseitigen können.The present invention provides polymer fuel cell membranes that can overcome existing deficiencies in the prior art.
Die erfindungsgemäßen polymeren Brennstoffzellen-Membranen können aus einer oder mehreren trennaktiven Schichten bestehen. Es ist auch möglich, dass ein oder mehrere Träger vorhanden sind. Als Träger kommen Materialien zum Einsatz, die die Funktion der trennaktiven Schicht(en) zumindest nicht vollständig be- oder verhindern, vorteilhafterweise unterstützen sie die Funktion der trennaktiven Schicht(en). Dabei kann eine oder mehrer trennaktive Schicht(en) auf einen Träger aufgebracht sein, es kann die trennaktive Schicht(en) zwischen zwei Trägern angeordnet sein, es kann das Material der trennaktiven Schicht(en) auch beispielsweise in Hohlräumen, Poren eines Trägermaterials appliziert sein. Kombinationen dieser Möglichkeiten sind ebenfalls realisierbar. Der Träger soll in erster Linie die mechanische Stabilität der Membran gewährleisten und/oder erhöhen. Vorteilhafterweise ist er aus einem textilen oder porösem Material aufgebaut.The polymeric fuel cell membranes according to the invention can consist of one or more separation-active layers. It is also possible for one or more carriers to be present. Materials are used as supports which at least do not completely prevent or prevent the function of the release-active layer (s), advantageously they support the function of the release-active layer (s). One or more release-active layer (s) can be applied to a support, the release-active layer (s) can be arranged between two supports, the material of the release-active layer (s) can also be applied, for example, in cavities, pores of a support material , Combinations of these options can also be implemented. The carrier should primarily ensure and / or increase the mechanical stability of the membrane. It is advantageously constructed from a textile or porous material.
Die erfindungsgemäße trennaktive Schicht besteht aus mindestens einem Di- und/oder Multiblockcopolymer mit einem der allgemeinen Segmentstrukturen A-(B- A)k und /oder B-(A-B)ι und/oder (A-B)m mit k > 1 und I > 1 und m > 1. Diese Segmentstrukturen können in einem Multiblockcopolymer auch gleichzeitig nebeneinander und in unterschiedlichen Anzahlen vorliegen. Dabei können die Di- und/oder Multiblockcopolymere linear oder verzweigt ausgebildet sein.The release-active layer according to the invention consists of at least one di- and / or multiblock copolymer with one of the general segment structures A- (B- A) k and / or B- (AB) ι and / or (AB) m with k> 1 and I> 1 and m> 1. In a multiblock copolymer, these segment structures can also be present side by side and in different numbers. The di- and / or multiblock copolymers can be linear or branched.
Weiterhin bestehen erfindungsgemäß die Blocksegmente (A) und (B) jeweils aus Oligomersegmenten, wobei das Blocksegment (A) aus mindestens einem Elektronen-nichtleitenden und Protonen-nichtleitenden Oligomersegment, und das Blocksegment (B) aus mindestens einem Protonen-leitenden und Elektronennichtleitenden Oligomersegment aufgebaut ist.Furthermore, according to the invention, the block segments (A) and (B) each consist of oligomer segments, the block segment (A) consisting of at least one Electron-non-conductive and proton-non-conductive oligomer segment, and the block segment (B) is composed of at least one proton-conductive and electron-non-conductive oligomer segment.
Als Oligomere werden nach dem Stand der Technik Verbindungen bezeichnet, die aus einer geringen Anzahl monomerer Moleküle bestehen. Man nennt sie Dimere, Trimere, Tetramere usw. (Stoeckhert, Kunststofflexikon 9. Auflage, Carl Hanser Verlag München Wien 1998). Dabei weisen die Oligomere vorteilhafterweise Polymerisationsgrade von 2 bis 50 auf.According to the prior art, oligomers are compounds which consist of a small number of monomeric molecules. They are called dimers, trimers, tetramers, etc. (Stoeckhert, Kunststofflexikon 9th edition, Carl Hanser Verlag München Wien 1998). The oligomers advantageously have degrees of polymerization of 2 to 50.
Die vorhandenen Oligomere, sowohl vom Blocksegment (A) als auch von Blocksegment (B), können jeweils aus gleichen oder verschiedenen Oligomereinheiten bestehen, wobei (A) und (B) nicht die gleichen Oligomereinheiten aufweisen. Die Länge insbesondere des Blocksegmentes (B) sollte vorteilhafterweise nach einer optimalen Protonenleitfähigkeit ausgewählt werden.The oligomers present, both from block segment (A) and from block segment (B), can each consist of the same or different oligomer units, with (A) and (B) not having the same oligomer units. The length of the block segment (B) in particular should advantageously be selected according to an optimal proton conductivity.
In jedem Fall muss die erfindungsgemäße Membran morphologisch eine Struktur mit im Wesentlichen durchgehender Protonenleitfähigkeit aufweisen. Dies bedeutet, dass der Aufbau der Membran bezüglich der Anordnung von Trägern und trennaktiven Schichten nach diesem Kriterium zu wählen ist. Dabei wird selbstverständlich eine möglichst hohe Protonenleitfähigkeit angestrebt. Vorteilhaft ist es, wenn die trennaktive Schicht in, im wesentlichen nicht vermischte Protonen-leitende und nicht leitende Polymerbereiche strukturiert ist.In any case, the membrane according to the invention must have a morphologically structure with an essentially continuous proton conductivity. This means that the structure of the membrane with regard to the arrangement of supports and separation-active layers must be selected according to this criterion. Of course, the highest possible proton conductivity is sought. It is advantageous if the separation-active layer is structured in essentially unmixed proton-conducting and non-conducting polymer regions.
Ausgeschlossen von der erfindungsgemäßen Zusammensetzung der Membran sind Zusammensetzungen, bei denen die Blocksegmente (A) und (B) Imidstrukturen und das Blocksegment (B) direkt an einen aromatischen Diaminbaustein der aromatischen Imidstruktur gebundene Sulfonsäuregruppen aufweist. Weiterhin ausgeschlossen von der erfindungsgemäßen Zusammensetzung sind Zusammensetzungen, bei denen im Blocksegment (B) direkt an den Aromaten gebundene Sulfonsäuregruppen enthalten sind, die unter den jeweiligen Betriebsbzw. Einsatzbedingungen desulfonieren. Diese Desulfonierung tritt insbesondere bei desaktivierten Aromaten, d. h. Aromaten mit stark elektronenziehenden Substituenten/Gruppen auf. Z. B. desulfonieren Sulfonsäuregruppen tragende Polyethersulfone, bei denen die Sulfonsäuregruppe direkt an dem Arylsulfonbaustein (über Sulfongruppe gekoppelte Aromaten) gebunden vorliegt, relativ leicht im wässrigen System bzw. unter Betriebs- bzw. Einsatzbedingungen in einer Brennstoffzelle. Dagegen ist keine Desulfonierung der Sulfonsäuregruppen, die am Etherbaustein direkt gekoppelt vorliegen, festgestellt worden.Compositions in which the block segments (A) and (B) have imide structures and the block segment (B) have sulfonic acid groups bonded directly to an aromatic diamine component of the aromatic imide structure are excluded from the composition of the membrane according to the invention. Also excluded from the composition according to the invention are compositions in which the block segment (B) contains sulfonic acid groups which are bonded directly to the aromatics and which, under the respective operating or. Desulfonate operating conditions. This desulfonation occurs particularly in the case of deactivated aromatics, ie aromatics with strongly electron-withdrawing substituents / groups. For example, polyether sulfones bearing sulfonic acid groups, in which the sulfonic acid group is present directly bound to the aryl sulfone component (aromatics coupled via sulfone group), relatively easily in the aqueous system or under operating or operating conditions in a fuel cell. In contrast, no desulfonation of the sulfonic acid groups which are directly coupled to the ether building block has been found.
Vorteilhafterweise bestehen die oligomeren Blocksegmente (A) aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylimid und/oder Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligochinoxalin. Der Polymerisationsgrad der Blocksegmente (A) liegt in Bereich von 1 bis 50, vorteilhafterweise im Bereich von 4 bis 30 und noch vorteilhafterweise zwischen 5 und 10.Advantageously, the oligomeric block segments (A) comprise at least one oligomer of the compound classes Oligoarylimid and / or Oligoarylensulfid and / or Oligoarylsulfon and / or Oligoarylethersulfon and / or Oligoarylenether and / or Oligoaryletherketon and / or Oligoarylenetheretherketon and / or synthesized oligoaramide and / or Oligoarylharnstoff and / or Oligoarylenoxadiazole and / or oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzothiazole and / or oligoquinoxaline. The degree of polymerization of the block segments (A) is in the range from 1 to 50, advantageously in the range from 4 to 30 and still advantageously between 5 and 10.
Das Blocksegment (B) besteht dabei vorteilhafterweise aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligochinoxalin und/oder Oligoarylimid, ausgenommen bei diesem Oligoarylimid liegt eine direkt an einer aromatischen Aminkomponente eines aromatischen Imidbausteins gebundene Sulfonsäuregruppe vor und ausgenommen im Blocksegment (B) sind direkt an den Aromaten gebundene Sulfonsäuregruppen, die in der Membran unter Einsatzbedingungen desulfonieren, mit Polymerisationsgraden zwischen 2 und 50, wobei die Oligomersegmente als Protonen-leitende Gruppen mindestens eine oder ein Gemisch an Gruppen pro Oligomereinheit der Art Sulfonsäure und/oder Phosphonsäure und/oder (Perfluor)- Alkylsulfonsäure und/oder (Perfluor)-Alkylphosphonsäure und/oder (Perfluor)- Alkylcarbonsäure besitzen.The block segment (B) advantageously consists of at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaryol urea and / or oladialol or urea and / or oxadiall urea and / or Oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzthiazole and / or oligoquinoxaline and / or oligoarylimide, with the exception of this oligoarylimide a sulfonic acid group B directly attached to an aromatic amine component of an aromatic imide building block is present (except in the block) Aromatically bound sulfonic acid groups, which desulfonate in the membrane under conditions of use, with degrees of polymerization between 2 and 50, the oligomer segments as proton-conducting groups having at least one or a mixture of groups per oligomer unit of the type Have sulfonic acid and / or phosphonic acid and / or (perfluoro) alkylsulfonic acid and / or (perfluoro) alkylphosphonic acid and / or (perfluoro) alkylcarboxylic acid.
Eine weitere vorteilhafte Variante besteht darin, dass das Blocksegment (B) aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligoarylimid und/oder Oligochinoxalin mit Polymerisationsgraden zwischen 2 und 50 besteht und die Protonen-leitenden Oligomersegmente aus basischen polymergebundenen Gruppen und niedermolekularen und/oder oligomeren Verbindungen mit Säureeinheiten der Art Sulfonsäure und/oder Phosphonsäure und/oder (Perfluor)-Alkylsulfonsäure und/oder (Perfluor-)Alkylphosphonsäure und/oder (Perfluor)-Alkylcarbonsäure bestehen, wobei die Säuregruppen enthaltenden Verbindung(en) über ionische Wechselwirkung an die basischen Gruppen gebunden sind.Another advantageous variant consists in that the block segment (B) consists of at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaryl amide and / or oligoaryl urea and / or oligoarylenoxadiazole and / or oligoarylene sulfonamide and / or oligobobolizole / and / or oligobobolizole / and / or oligobenzolid / and / or oligobenzolid / / and oligobenzolid / and / or oligobenzolid / and / or oligobenzolid / and / or oligobenzolid / and / or oligobenzolid and / or or oligoarylimide and / or oligoquinoxaline with degrees of polymerization between 2 and 50 and the proton-conducting oligomer segments consist of basic polymer-bound groups and low molecular weight and / or oligomeric compounds with acid units of the type sulfonic acid and / or phosphonic acid and / or (perfluoro) alkyl sulfonic acid and / or (Perfluoro) alkylphosphonic acid and / or (perfluoro) alkylcarboxylic acid exist, the compound (s) containing acid groups being bound to the basic groups via ionic interaction.
Das Blocksegment (B) kann vorteilhafterweise auch aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligoarylimid und/oder Oligochinoxalin mit Polymerisationsgraden zwischen 2 und 50 besteht und diese Oligomersegmente mindestens aus einem Gemisch aus chemisch gekoppelten Oligomeren bestehen, welches Oligomere mit nur basischen oxydationsstabilen Gruppen der Art Triazin- und/oder tertiären Amino- und/oder quartären Ammoniumgruppen und Oligomere mit nur sauren Gruppen der Art Sulfonsäure und/oder Phosphonsäure und/oder (Perfluor)-Alkylsulfonsäure und/oder (Perfluor)-Alkylphosphonsäure und/oder (Perfluor)-Alkylcarbonsäure enthält.The block segment (B) can advantageously also be composed of at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaryol urea and / or oladialol or urea and / or oladialol or urea and / or oladialol or urea and / or oladialol or urethane and / or Oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzthiazole and / or oligoarylimide and / or oligoquinoxaline with degrees of polymerization between 2 and 50 and these oligomer segments consist of at least one mixture of chemically coupled oligomers which are oligomer-stable with only basic groups Triazine and / or tertiary amino and / or quaternary ammonium groups and oligomers with only acid groups of the type sulfonic acid and / or phosphonic acid and / or (perfluoro) alkyl sulfonic acid and / or (perfluoro) alkyl phosphonic acid and / or (perfluoro) alkyl carbons contains acid.
Vorteilhafterweise kann die Membran in der trennaktiven Schicht neben' den Di- und/oder Multiblockcopolymeren weitere Polymere und/oder weitere Additive enthalten.In addition to the di- and / or multiblock copolymers, the membrane in the separating layer can advantageously contain further polymers and / or further additives.
Im vorteilhaften Falle des Einsatzes der erfindungsgemäßen Membran in einer Direkt-Methanol-Brennstoffzelle wirkt das Blocksegment (A) in erster Linie zur Verbesserung der mechanischen Stabilität und der Methanolrückhaltung. Das Blocksegment (B) ist selbst Protonen-leitend und hält das Methanol mit hoher Selektivität zurück.In the advantageous case of using the membrane according to the invention in a direct methanol fuel cell, the block segment (A) acts primarily Improve mechanical stability and methanol retention. The block segment (B) is itself proton-conductive and retains the methanol with high selectivity.
Eine derartige Membran ist vorteilhafterweise aus einem Blocksegment (A) aus Oligoimid(en) und/oder Oligophenylensulfid(en) und/oder Oligosulfonamid(en) und/oder Oligoarylsulfon(en) und/oder Oligobenzimidazol(en) und aus einem Blocksegment (B) aus Oligophenylensulfid(en) und/oder Oligosulfonamid(en) und/oder Oligoarylsulfon(en) und/oder Oligobenzimidazol(en) und/oder Oligoimid(en) mit den Protonen-leitenden Sulfonsäure- und/oder Phosphonsäuregruppen aufgebaut, ausgenommen die Blocksegmente (A) und (B) weisen Imidstruktur auf und das Blocksegment (B) weist direkt an einen aromatischen Diaminbaustein der aromatischen Imidstruktur gebundene Sulfonsäuregruppe auf, und weist eine Struktur A-(B-A)k mit k = 2 bis 10 auf.Such a membrane is advantageously composed of a block segment (A) made from oligoimide (s) and / or oligophenylene sulfide (s) and / or oligosulfonamide (s) and / or oligoarylsulfone (s) and / or oligobenzimidazole (s) and from a block segment (B ) built up from oligophenylene sulfide (s) and / or oligosulfonamide (s) and / or oligoarylsulfone (s) and / or oligobenzimidazole (s) and / or oligoimide (s) with the proton-conducting sulfonic acid and / or phosphonic acid groups, with the exception of the block segments (A) and (B) have an imide structure and the block segment (B) has a sulfonic acid group bonded directly to an aromatic diamine building block of the aromatic imide structure, and has a structure A- (BA) k with k = 2 to 10.
Bei dem erfindungsgemäßen Verfahren zur Herstellung einer polymeren Brennstoffzellen-Membran, insbesondere einer Membran, wie sie erfindungsgemäß weiter oben beschrieben ist, werden Ausgangsstoffe eingesetzt, die zu Blocksegmenten (A) mit mindestens einem Elektronen-nichtleitenden und Protonennichtleitenden Oligomersegment führen und die zu Blocksegmenten (B) mit mindestens einem Protonen-leitenden und Elektronen-nichtleitenden Oligomersegment führen.In the method according to the invention for producing a polymeric fuel cell membrane, in particular a membrane as described according to the invention further above, starting materials are used which lead to block segments (A) with at least one electron-non-conductive and proton-non-conductive oligomer segment and which lead to block segments (B ) lead with at least one proton-conducting and electron-non-conducting oligomer segment.
Mindestens einer der Ausgangsstoffe zur Herstellung des Blocksegmentes (A) und/oder (B) liegt als Lösung oder als Schmelze vor. Die oligomeren Blocksegmente (A) und (B) mit jeweils unterschiedlichen reaktiven Endgruppen, die für die Kopplung der Blocksegmente (A) mit den Blocksegmenten (B) notwendig sind, werden zunächst in getrennten Reaktionen hergestellt. Sowohl die Blocklänge als auch die Art der reaktiven Endgruppen werden durch die Zusammensetzung der Ausgangsstoffe bestimmt. Bei der Umsetzung von difunktionellen Monomeren vom allgemeinen Typ CC mit DD zu den Blocksegmenten werden die Kettenlängen der Blocksegmente und die reaktiven funktionellen Endgruppen durch einen definierten Überschuss einer der Monomere vom Typ CC oder DD eingestellt, wie schematisch in Formel 1 dargestellt. Bei der Verwendung von Monomeren vom Typ CD wird zur Kontrolle der Kettenlänge und der reaktiven funktioneilen Endgruppen ein difunktionelles Monomer vom Typ CC und/oder DD in einem definierten Verhältnis zur Komponente CD zum Reaktionsansatz gegeben (siehe Formel 2).At least one of the starting materials for the production of the block segment (A) and / or (B) is present as a solution or as a melt. The oligomeric block segments (A) and (B), each with different reactive end groups, which are necessary for coupling the block segments (A) with the block segments (B), are first prepared in separate reactions. Both the block length and the type of reactive end groups are determined by the composition of the starting materials. When converting difunctional monomers of the general type CC with DD to the block segments, the chain lengths of the block segments and the reactive functional end groups are adjusted by a defined excess of one of the monomers of the type CC or DD, as shown schematically in Formula 1. When using CD-type monomers, a check is made to control the chain length and the reactive functional end groups difunctional monomer of type CC and / or DD added in a defined ratio to component CD to the reaction mixture (see formula 2).
Formel 1 n CC + (n+1) DD -» (DD-CC)n-DD (reaktive funktioneile Endgruppen D)Formula 1 n CC + (n + 1) DD - »(DD-CC) n -DD (reactive functional end groups D)
Formel 2 n CD + CC → (CD)n-CC (reaktive funktioneile Endgruppen C)Formula 2 n CD + CC → (CD) n -CC (reactive functional end groups C)
Eine erfindungsgemäße Eigenschaft der Blocksegmente ist auch, dass die Funktionalitäten ihrer Endgruppen nur eine Kopplung der Blocksegmente (A) und (B) zulassen.Another property of the block segments according to the invention is that the functionalities of their end groups only allow the block segments (A) and (B) to be coupled.
Die Blocksegmente (B) werden durch Umsetzung von Monomeren, die Sulfonsäure(n) und/oder Phosphonsäure(n) und/oder (Perfluor)-Alkylsulfonsäure(n) und/oder (Perfluor)-Alkylphosphonsäure(n) und/oder (Perfluor)-Alkylcarbonsäure(n) enthalten und/oder von Monomeren, die mindestens eine weitere Protonennichtleitende funktioneile Gruppe wie z. B. Hydroxygruppen enthalten, die nicht am Kettenaufbau beteiligt ist und die durch polymeranaloge Umsetzungen der Blocksegmente in eine Protonen-leitende Gruppe überführt werden kann. Ein Kriterium zur Auswahl der einzusetzenden Monomere zur Herstellung eines Blocksegmentes (B) ist die Dichte der Protonen-leitenden Gruppen DPIG, definiert durch:The block segments (B) are obtained by reacting monomers, the sulfonic acid (s) and / or phosphonic acid (s) and / or (perfluoro) alkylsulfonic acid (s) and / or (perfluoro) alkylphosphonic acid (s) and / or (perfluoro ) Alkyl carboxylic acid (s) and / or of monomers which contain at least one further proton non-conductive functional group such as. B. contain hydroxyl groups, which is not involved in the chain structure and which can be converted into a proton-conducting group by polymer-analogous reactions of the block segments. A criterion for the selection of the monomers to be used to produce a block segment (B) is the density of the proton-conducting groups DPIG, defined by:
_- Anzahl der Protonen-leitenden Gruppen_- Number of proton-conducting groups
D ' PPI1,G = *-*— - x 100% 0D ' P P I 1, G = * - * - - x 100% 0
Gesamtanzahl der MonomereinheitenTotal number of monomer units
Dabei sollte die Dichte DpιG vorteilhafterweise durch Zugabe von Monomeren ohne Protonen-leitende Gruppen im Bereich von 20 % bis 200 % eingestellt werden. Vorteilhafterweise liegt die Gruppendichte zwischen 50 und 100%. Der Polymerisationsgrad der Protonen-leitenden Blocksegmente (B) liegt in Bereich von 1 bis 50, vorteilhafterweise im Bereich von 1 bis 30 und noch vorteilhafterweise zwischen 2 und 10.The density Dpι G should advantageously be adjusted by adding monomers without proton-conducting groups in the range from 20% to 200%. The group density is advantageously between 50 and 100%. The degree of polymerization of the proton-conducting block segments (B) is in the range from 1 to 50, advantageously in the range from 1 to 30 and even more advantageously between 2 and 10.
Weiterhin können die oligomeren Blocksegmente (B) durch z. B. Sulfonierung, Phosphonierung, Umsetzung mit α-Halogen-(perfluor-)alkylsulfonsäuren, α-Halogen- (perfluor-)alkylphosphonsäuren, α-Halogen-(perfluor-)alkylcarbonsäuren, (mit Halogen ≠ Fluor) (Perfluor-)alkylsultonen wie z. B. γ-Propansulton, δ-Butansulton, oder 1 ,2,2-Trifluor-2-hydroxy-1-trifluormethylethansulton (Perfluor-)alkyllactonen aus den entsprechenden oligomeren Blocksegmenten vom Typ (A) erhalten werden. Diese Methode ist besonders vorteilhaft, wenn die Oligomersynthese in Schmelze aber auch in Lösung bei Temperaturen oberhalb von 200°C erfolgen muss.Furthermore, the oligomeric block segments (B) by z. B. sulfonation, phosphonation, reaction with α-halogen (perfluoro) alkylsulfonic acids, α-halogen (Perfluoro) alkylphosphonic acids, α-halogeno (perfluoro) alkyl carboxylic acids, (with halogen ≠ fluorine) (perfluoro) alkyl sultones such as. B. γ-propane sultone, δ-butane sultone, or 1, 2,2-trifluoro-2-hydroxy-1-trifluoromethylethane sultone (perfluoro) alkyl lactones can be obtained from the corresponding oligomeric block segments of type (A). This method is particularly advantageous if the oligomer synthesis must be carried out in melt but also in solution at temperatures above 200 ° C.
Durch Zusammenführen der separaten Reaktionsansätze der oligomeren Blocksegmente (A) und (B), wobei die unterschiedlichen reaktiven funktioneilen Endgruppen C und D vorzugsweise in einem äquimolaren Verhältnis vorliegen, werden vorteilhafterweise die Multiblockcopolymere der allgemeinen Form A-(B-A)κ erhalten, wobei k vorteilhafterweise Werte zwischen 2 und 10 annehmen kann. Durch diese Struktur kann die fertige Membran eine weitestgehend phasenseparierte Morphologie mit Blocksegment-(A)-reichen Phasen (A-Phase) und Blocksegment- (B)-reichen Phasen (B-Phase) und mit im wesentlichen durchgängiger Protonenleitfähigkeit erhalten. Derartige Protonen-nichtleitenden A-Phasen quellen nicht oder nur in einem geringen Umfang in Wasser bzw. Wasser/Methanolgemischen und geben im wesentlichen den Membranen die mechanische Stabilität. Weiterhin bilden sie eine Barriere für Wasser und beim Einsatz der Membranen in DMFC für Methanol zwischen dem Anoden- und Kathodenraum einer Brennstoffzelleneinheit.By combining the separate reaction batches of the oligomeric block segments (A) and (B), the different reactive functional end groups C and D preferably being present in an equimolar ratio, the multiblock copolymers of the general form A- (BA) κ are advantageously obtained, k advantageously Can take values between 2 and 10. This structure enables the finished membrane to have a largely phase-separated morphology with block segment (A) -rich phases (A-phase) and block segment (B) -rich phases (B-phase) and with essentially continuous proton conductivity. Proton-non-conductive A phases of this type do not swell or only swell to a small extent in water or water / methanol mixtures and essentially give the membranes mechanical stability. Furthermore, they form a barrier for water and when using the membranes in DMFC for methanol between the anode and cathode compartments of a fuel cell unit.
Über quellfähigere B-Phasen der Membranmaterialien erfolgt die Protonenleitung zwischen der Anode und der Kathode. Die durch die Quellung bedingte geringere mechanische Stabilität wird durch die A-Phasen kompensiert. Neben der Protonenleitung bilden die B-Phasen im Betrieb in einer DMFC eine Barriere im Wesentlichen für Methanol zwischen Anoden- und Kathodenraum einer Brennstoffzelleneinheit.Proton conduction between the anode and the cathode takes place via swellable B phases of the membrane materials. The lower mechanical stability due to swelling is compensated for by the A phases. In addition to the proton line, the B phases in operation in a DMFC form a barrier essentially for methanol between the anode and cathode spaces of a fuel cell unit.
Anschließend können bekannte Hilfs- und Zusatzstoffe und/oder Vernetzungsmittel zugesetzt werden.Known auxiliaries and additives and / or crosslinking agents can then be added.
Die Quellfähigkeit der B-Phase kann während oder nach der Membranherstellung über den Zusatz von Vernetzungsmitteln gesteuert werden. Nach der Bildung der erfindungsgemäßen Di- und/oder Multi-Block-Copolymere werden diese als trennaktive Schicht(en) allein oder auf und/oder zwischen und/oder in einem Träger als Membran ausgebildet, wobei die Membran morphologisch eine Struktur mit im Wesentlichen durchgehender Protonenleitfähigkeit aufweist.The swellability of the B phase can be controlled during or after membrane production by adding crosslinking agents. After the formation of the di- and / or multi-block copolymers according to the invention, they are formed as a separation-active layer (s) alone or on and / or between and / or in a support as a membrane, the membrane having a structure with an essentially continuous structure Has proton conductivity.
Vorteilhafte Monomere für die Herstellung oligomere Blocksegmente (A) können sein:Advantageous monomers for the production of oligomeric block segments (A) can be:
1. Oligoarylimid aus1. Oligoarylimide from
Benzophenontetracarbonsäuredianhydrid, Benzoltetracarbonsäuredianhydrid, 4,4'-Benzophenone tetracarboxylic acid dianhydride, benzene tetracarboxylic acid dianhydride, 4,4 ' -
(Hexafluorisopropyliden)-bis-phthalsäureanhydrid, 4,4'-(lsopropyliden)-bis-phthal- säureanhydrid, Biphenyl-3,3'-4,4'-tetracarbonsäuredianhydrid, 4,4'-Oxy-bis-phthal- säureanhydrid, Naphthalin-1 ,4,5,8-tetracarbonsäuredianhydrid, und p-Phenylendiamin, m-Phenylendiamin, 4,4'-Diaminobiphenyl, 4,4'-Diaminodiphenyl- ether, 3,3'-Diaminodiphenylether, 4,4'-Diaminodiphenylmethan, 1 ,5-Diamino- naphthalin, 1 ,3-Diaminocyclohexan, 1 ,4-Diaminocyclohexan, 4,4'-Diamino- diphenylsulfon, 2,4-Diaminomesitylen, 3,4'-Diaminobenzophenon, 4,4'-Diamino- benzophenon, 4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfon, 4,4'-Diamino- stilben, 2,6-Diaminopyridin, 3,5 Diaminopyridin, 2,4-Diamino-4-hydroxybenzol,(Hexafluoroisopropylidene) -bis-phthalic anhydride, 4,4 '- (isopropylidene) -bis-phthalic anhydride, biphenyl-3,3' -4,4 'tetracarboxylic dianhydride, 4,4' -oxy-bis-phthalic anhydride, naphthalene-1, 4,5,8-tetracarboxylic dianhydride and p-phenylenediamine, m-phenylenediamine, 4,4 '-Diaminobiphenyl, 4,4' -Diaminodiphenyl- ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane , 1, 5-diamino naphthalene, 1, 3-diaminocyclohexane, 1, 4-diaminocyclohexane, 'diphenyl -Diamino-, 2,4-diaminomesitylene, 3,4' 4,4 -Diaminobenzophenon, 4,4 '-Diamino- benzophenone, 4,4 '-Diaminodiphenylsulfid, 4,4'-diaminodiphenyl sulfone, 4,4' -Diamino- stilbene, 2,6-diaminopyridine, 3,5-diaminopyridine, 2,4-diamino-4-hydroxybenzene,
Piperazin, 2,4-Diaminopyrimidin, 4,6-Diaminopyrimidin, 2,4-Diamino-6-phenyl-1 ,3,5- triazin, 2,4-Diamino-6-methyl-1 ,3,5-triazin, 4,4'-Diamino-octafluor-biphenyl, 2,4-Piperazine, 2,4-diaminopyrimidine, 4,6-diaminopyrimidine, 2,4-diamino-6-phenyl-1, 3,5-triazine, 2,4-diamino-6-methyl-1, 3,5-triazine, 4,4'-diamino-octafluorobiphenyl, 2,4-
Toluoldiisocyanat, 2,6-Toluoldiisocyanat, 4,4'-Methylendiphenylendiisocyanat, p-Toluene diisocyanate, 2,6-toluene diisocyanate, 4,4 '-Methylendiphenylendiisocyanat, p-
Phenylendiisocyanat, m-PhenylendiisocyanatPhenylene diisocyanate, m-phenylene diisocyanate
2. Oligoarylsulfon aus2. Oligoaryl sulfone
2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-(4-hydroxyphenyl)-perfluorpropan, 2,2-Bis-2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) perfluoropropane, 2,2-bis
(4-hydroxyphenyl)-methan, Bis-(4-hydroxyphenyl)-keton, 2,2-Bis-(4-hydroxyphenyl)- sulfid, 2,2-Bis-(4-hydroxyphenyl)-sulfon und(4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) ketone, 2,2-bis (4-hydroxyphenyl) sulfide, 2,2-bis (4-hydroxyphenyl) sulfone and
Bis-(4-Chlorphenyl)-sulfon, Bis-(4-Fluorphenyl)-sulfon 3. Oligoaramid ausBis (4-chlorophenyl) sulfone, bis (4-fluorophenyl) sulfone 3. Oligoaramide
Terephthalsäure, Isophthalsäure, Naphthalin-1 ,4-dicarbonsäure, Naphthalin-1 ,5- dicarbonsäure, Naphthalin-2,6-dicarbonsäure, Diphenylsulfon-4,4 '-dicarbonsäure,Terephthalic acid, isophthalic acid, naphthalene-1, 4-dicarboxylic acid, naphthalene-1, 5- dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenyl-4,4 '-dicarboxylic acid,
Biphenyl-4,4'-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Cyclohexan-1 ,4- dicarbonsäure, 2,6-Pyridindicarbonsäure, 5-Hydroxyisophthalsäure, Aminobenzoe- säure und p-Phenylendiamin, m-Phenylendiamin, 4,4'-Diaminobiphenyl, 4,4'-Diaminodiphenyl- ether, 3,3'-Diaminodiphenylether, 4,4'-Diaminodiphenylmethan, 1 ,5-Diamino- naphthalin, 1 ,3-Diaminocyclohexan, 1 ,4-Diaminocyclohexan, 4,4'-Diaminodiphenyl- sulfon, 2,4-Diaminomesitylen, 3,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon,Biphenyl-4,4 '-dicarboxylic acid, diphenyl ether-4,4' dicarboxylic acid, cyclohexane-1, 4- dicarboxylic acid, 2,6-pyridinedicarboxylic acid, 5-hydroxyisophthalic acid, aminobenzoic acid and p-phenylenediamine, m-phenylenediamine, 4, 4 '-Diaminobiphenyl, 4,4' -Diaminodiphenyl- ether, 3,3 'diaminodiphenyl ether, 4,4' diaminodiphenyl methane, 1, 5-diamino naphthalene, 1, 3-diaminocyclohexane, 1, 4-diaminocyclohexane, 4, 4'-diaminodiphenylmethane sulfone, 2,4-diaminomesitylene, 3,4 '-Diaminobenzophenon, 4,4' -Diaminobenzophenon,
4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfon, 4,4'-Diaminostilben, 2,6-4,4 '-Diaminodiphenylsulfid, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminostilbene, 2,6-
Diaminopyridin, 3,5 Diaminopyridin, Piperazin, 2,4-Diamino-pyrimidin, 4,6-Diaminopyridine, 3.5 diaminopyridine, piperazine, 2,4-diamino-pyrimidine, 4,6-
Diaminopyrimidin, 2,4-Diamino-6-phenyl-1 ,3,5-triazin, 2,4-Diamino-6-methyl-1 ,3,5- triazin, 4,4'-Diamino-octafluorbiphenylDiaminopyrimidine, 2,4-diamino-6-phenyl-1, 3,5-triazine, 2,4-diamino-6-methyl-1, 3,5-triazine, 4,4'-diamino-octafluorobiphenyl
4. Oligoarylharnstoff aus p-Phenylendiamin, m-Phenylendiamin, 4,4'-Diaminobiphenyl, 4,4'-Diaminodiphenyl- ether, 3,3'-Diaminodiphenylether, 4,4'-Diaminodiphenylmethan, 1 ,5-Diamino- naphthalin, 1 ,3-Diaminocyclohexan, 1 ,4-Diaminocyclohexan, 4,4'-Diaminodiphenyl- sulfon, 2,4-Diaminomesitylen, 3,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon, 4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfon, 4,4'-Diaminostilben, 2,6- Diaminopyridin, 3,5 Diaminopyridin, Piperazin, 2,4-Diamino-pyrimidin, 4,6- Diaminopyrimidin, 2,4-Diamino-6-phenyl-1 ,3,5-triazin, 2,4-Diamino-6-methyl-1 ,3,5- triazin, 4,4'-Diamino-octafluorbiphenyl und4. Oligoarylharnstoff from p-phenylenediamine, m-phenylenediamine, 4,4 '-Diaminobiphenyl, 4,4' -Diaminodiphenyl- ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 1, 5-diamino-naphthalene, 1, 3-diaminocyclohexane, 1, 4-diaminocyclohexane, 4,4 '-Diaminodiphenyl- sulfone, 2,4-diaminomesitylene, 3,4' -Diaminobenzophenon, 4,4 '-Diaminobenzophenon, 4,4'-diaminodiphenyl sulfide, 4, 4 'diaminodiphenyl sulfone, 4,4'-diaminostilbene, 2,6-diaminopyridine, 3.5 diaminopyridine, piperazine, 2,4-diaminopyrimidine, 4,6-diaminopyrimidine, 2,4-diamino-6-phenyl-1 , 3,5-triazine, 2,4-diamino-6-methyl-1, 3,5-triazine, 4,4-diamino-octafluorobiphenyl and
2,4-Toluylendiisocyanat, 2,6-Toluylendiisocyanat, 4,4'-2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4 ' -
Methylendiphenylendiisocyanat, p-Phenylendiisocyanat, m-PhenylendiisocyanatMethylene diphenylene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate
5. Oligoarylsulfonamid aus5. Oligoarylsulfonamide
Benzol-1 ,3-disulfonsäure, Benzol-1 ,4-disulfonsäure, Naphthalin-1 ,5-disulfonsäure,Benzene-1,3-disulfonic acid, benzene-1,4-disulfonic acid, naphthalene-1,5-disulfonic acid,
Naphthalin-2,6-disulfonsäure und p-Phenylendiamin, m-Phenylendiamin, 4,4'-Diaminobiphenyl, 4,4'-Diaminodiphenyl- ether, 3,3'-Diaminodiphenylether, 4,4'-Diaminodiphenylmethan, 1,5-Diamino- naphthalin, 1,3-Diaminocyclohexan, 1 ,4-Diaminocyclohexan, 4,4'-Diaminodiphenyl- sulfon, 2,4-Diaminomesitylen, 3,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon, 4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfon, 4,4'-Diaminostilben, 2,6- Diaminopyridin, 3,5 Diaminopyridin, Piperazin, 2,4-Diamino-pyrimidin, 4,6- Diaminopyrimidin, 2,4-Diamino-6-phenyl-1,3,5-triazin, 2.4-Diamino-6-methyl-1 ,3,5- triazin, 4,4'-Diamino-octafluorbiphenylNaphthalene-2,6-disulfonic acid and p-phenylenediamine, m-phenylenediamine, 4,4 '-Diaminobiphenyl, 4,4' -Diaminodiphenyl- ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 1,5-diamino naphthalene, 1,3- diaminocyclohexane, 1, 4-diaminocyclohexane, 4,4 '-Diaminodiphenyl- sulfone, 2,4-diaminomesitylene, 3,4' -Diaminobenzophenon, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone , 4,4'-diaminostilbene, 2,6-diaminopyridine, 3.5 diaminopyridine, piperazine, 2,4-diamino-pyrimidine, 4,6-diaminopyrimidine, 2,4-diamino-6-phenyl-1,3,5 -triazine, 2,4-diamino-6-methyl-1, 3,5-triazine, 4,4'-diamino-octafluorobiphenyl
6. Oligobenzimidazol aus6. Oligobenzimidazole from
Terephthalsäure, Isophthalsäure, Naphthalin-1,4-dicarbonsäure, Naphthalin-1,5- dicarbonsäure, Naphthalin-2,6-dicarbonsäure, Diphenylsulfon-4,4 '-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, Diphenylether-4,4 '-dicarbonsäure, Cyclohexan-1 ,4- dicarbonsäure, Pyridin-2,6-dicarbonsäure, 5-Hydroxyisophthalsäure undTerephthalic acid, isophthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, diphenyl ether-4, 4 '-dicarboxylic acid, cyclohexane-1, 4-dicarboxylic acid, pyridine-dicarboxylic acid 2,6-, 5-hydroxyisophthalic acid and
3,3',4,4'-Tetraaminobiphenyl, 3,3',4,4'-Tetraaminodiphenylether, 3,3',4,4'-Tetra- aminobenzophenon, 3,3',4,4'-Tetraaminodiphenylsulfid, 3,3',4,4'-Tetraamino- diphenylsulfon, 1 ,2,4,5-Tetraaminobenzol, 3,3',4,4'-Tetraaminodiphenylenoxid, 1 ,2,5,6,-Tetraaminoanthrachinon, 2,3,6,7-Tetraaminophenazin3,3 ' , 4,4'-tetraaminobiphenyl, 3,3', 4,4'-tetraaminodiphenyl ether, 3,3 ' , 4,4 ' tetraaminobenzophenone, 3,3 ' , 4,4 ' tetraaminodiphenyl sulfide, 3,3 ' , 4,4 ' -Tetraaminodiphenylsulfone, 1, 2,4,5-Tetraaminobenzene, 3,3 ' , 4,4 ' -Tetraaminodiphenyleneoxide, 1, 2,5,6, -Tetraaminoanthraquinone, 2,3 , 6,7-Tetraaminophenazin
7. Oligobenzoxazol aus7. Oligobenzoxazole from
Terephthalsäure, Isophthalsäure, Naphthalin-1,4-dicarbonsäure, Naphthalin-1,5- dicarbonsäure, Naphthalin-2,6-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure,Terephthalic acid, isophthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid,
Biphenyl-4,4 '-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Cyclohexan-1 ,4- dicarbonsäure, 5-Hydroxyisophthalsäure undBiphenyl-4,4'-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, cyclohexane-1, 4-dicarboxylic acid, 5-hydroxyisophthalic acid and
2,5-Diamino-1 ,4-benzoldiol (2,5-Diaminohydrochinon), 4,6-Diamino-1 ,3-benzoldiol2,5-diamino-1,4-benzenediol (2,5-diaminohydroquinone), 4,6-diamino-1,3-benzenediol
(4,6-Diaminoresorcin)(4,6-diaminoresorcinol)
8. Oligobenzothiazol aus8. Oligobenzothiazole from
Terephthalsäure, Isophthalsäure, Naphthalin-1 ,4-dicarbonsäure, Naphthalin-1 ,5- dicarbonsäure, Naphthalin-2,6-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4 '-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Cyclohexan-1 ,4- dicarbonsäure, Pyridin2,6-dicarbonsäure, 5-Hydroxyisophthalsäure undTerephthalic acid, isophthalic acid, naphthalene-1, 4-dicarboxylic acid, naphthalene-1, 5- dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, biphenyl-4,4 '-dicarboxylic acid, diphenyl ether-4, 4'-dicarboxylic acid, cyclohexane-1, 4-dicarboxylic acid, pyridine 2,6-dicarboxylic acid, 5-hydroxyisophthalic acid and
2,5-Diamino-l ,4-benzoldithiol, 4,6-Diamino-1 ,3-benzoldithiol2,5-diamino-l, 4-benzenedithiol, 4,6-diamino-1, 3-benzenedithiol
9. Oligochinoxalin aus9. Oligoquinoxaline off
Bisglyoxaldihydrate von: 1,3-Diacetylbenzol, 1 ,4-Diacetylbenzol, 4,4'-Bisglyoxal dihydrate of: 1,3-diacetylbenzene, 1,4-diacetylbenzene, 4,4 ' -
Diacetylbiphenyl, 4,4"-Diacetyldiphenylether, 4,4'-Diacetyldiphenylsulfid, 4,4'-Diacetylbiphenyl, 4,4 " -diacetyldiphenylether, 4,4'-diacetyldiphenylsulfide, 4,4 ' -
Diacetyldiphenylsulfon, 4,4'-Diacetyldiphenylmethan bzw. die entsprechendenDiacetyldiphenylsulfone, 4,4'-diacetyldiphenylmethane or the corresponding
Bis(phenyl-α-diketone) undBis (phenyl-α-diketone) and
3,3',4,4'-Tetraaminobiphenyl, 3,3',4,4'-Tetraaminodiphenylether, 3,3',4,4'-Tetra- aminobenzophenon, 3,3',4,4'-Tetraaminodiphenylsulfid, 3,3',4,4'-Tetraamino- diphenylsulfon, 1 ,2,4,5-Tetraaminobenzol, 3,3',4,4'-Tetraaminodiphenylenoxid,3,3 ' , 4,4 ' tetraaminobiphenyl, 3,3 ' , 4,4 ' tetraaminodiphenyl ether, 3,3 ' , 4,4 ' tetraaminobenzophenone, 3,3 ' , 4,4 ' tetraaminodiphenyl sulfide, 3,3 ' , 4,4 ' tetraaminodiphenyl sulfone, 1, 2,4,5-tetraaminobenzene, 3,3 ' , 4,4 ' tetraaminodiphenylene oxide,
1 ,2,5,6,-Tetraaminoanthrachinon, 2,3,6,7-Tetraaminophenazin1, 2,5,6, -Tetraaminoanthraquinone, 2,3,6,7-tetraaminophenazine
Vorteilhafte Monomere, die nur zur Herstellung der oligomeren Blocksegmente (B) führen, zusätzlich zu den für die Herstellung der Blocksegmente (A) genannten, können sein:Advantageous monomers which only lead to the production of the oligomeric block segments (B), in addition to those mentioned for the production of the block segments (A), can be:
1. Oligoarylimid aus1. Oligoarylimide from
3,5-Diaminobenzoesäure, 2,4-Diamino-phenylen-4-(butyloxy-4-sulfonsäure), 2,4- Diamino-phenylen-4-(propyloxy-3-sulfonsäure), 2,4-Diamino-phenylen-4-3,5-diaminobenzoic acid, 2,4-diaminophenylene-4- (butyloxy-4-sulfonic acid), 2,4-diaminophenylene-4- (propyloxy-3-sulfonic acid), 2,4-diaminophenylene 4
(perfluorisopropyloxy-2-sulfonsäure)(Perfluorisopropyloxy-2-sulfonic acid)
2. Oligoarylenether aus2. Oligoarylene ether
3,5-Dihydroxybenzoesäure, 2,6-Dihydroxybenzoesäure, 2,5-Dihydroxy-1 ,4-benzol- disulfonsäure, 2,5-Dihydroxy-1 ,3-benzoldisulfonsäure3,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, 2,5-dihydroxy-1,4-benzene-disulfonic acid, 2,5-dihydroxy-1,3-benzene-disulfonic acid
3. Oligoaramid aus3. Oligoaramide
5-lsophthalphosphonsäure, 5-lsophthalsulfonsäure, Terephthalsulfonsäure, p-Phenylendiaminsulfonsäure, m-Phenylendiaminsulfonsäure, 4,4'-Diaminobiphenyl- 2,2'-disulfonsäure, 4,4'-Diaminostilben-2,2'disulfonsäure, 2,4-Diaminomesitylen-6- sulfonsäure, 3,5-Diaminobenzoesäure 4. Oligoarylharnstoff aus p-Phenylendiaminsulfonsäure, m-Phenylendiaminsulfonsäure, 4,4'-Diaminobiphenyl- 2,2'-disulfonsäure, 4,4'-Diaminostilben-2,2'disulfonsäure, 2,4-Diaminomesitylen-6- sulfonsäure, 3,5-Diaminobenzoesäure, 2,4-Diamino-phenylen-4-(butyloxy-4-sulfon- säure), 2,4-Diamino-phenylen-4-(propyloxy-3-sulfonsäure), 2,4-Diamino-phenylen-4- (perfluorisopropyloxy-2-sulfonsäure)5-lsophthalphosphonsäure, 5-lsophthalsulfonsäure, Terephthalsulfonsäure, p-phenylenediaminesulfonic acid, m-phenylenediaminesulfonic acid, 4,4 '-Diaminobiphenyl- 2,2' disulfonic acid, 4,4 'diaminostilbene-2,2' disulfonic acid, 2,4-diaminomesitylene -6- sulfonic acid, 3,5-diaminobenzoic acid 4. Oligoarylharnstoff of p-phenylenediaminesulfonic acid, m-phenylenediaminesulfonic acid, 4,4'-Diaminobiphenyl- 2,2 'disulfonic acid, 4,4' diaminostilbene-2,2 'disulfonic acid, 2,4-diaminomesitylene-6- sulfonic acid, 3 , 5-diaminobenzoic acid, 2,4-diaminophenylene-4- (butyloxy-4-sulfonic acid), 2,4-diaminophenylene-4- (propyloxy-3-sulfonic acid), 2,4-diaminophenylene -4- (perfluoroisopropyloxy-2-sulfonic acid)
5. Oligoarylsulfonamid aus p-Phenylendiaminsulfonsäure, m-Phenylendiaminsulfonsäure, 4,4'-Diaminobiphenyl- 2,2'-disulfonsäure, 4,4'-Diaminostilben-2,2'disulfonsäure, 2,4-Diaminomesitylen-6- sulfonsäure, 3,5-Diaminobenzoesäure, 2,4-Diamino-phenylen-4-(butyloxy-4-sulfon- säure), 2,4-Diamino-phenylen-4-(propyloxy-3-sulfonsäure), 2,4-Diamino-phenylen-4- (perfluorisopropyloxy-2-sulfonsäure)5. Oligoarylsulfonamid of p-phenylenediaminesulfonic acid, m-phenylenediaminesulfonic acid, 4,4'-Diaminobiphenyl- 2,2 'disulfonic acid, 4,4'-diaminostilbene-2,2' disulfonic acid, 2,4-diaminomesitylene-6- sulfonic acid, 3 , 5-diaminobenzoic acid, 2,4-diaminophenylene-4- (butyloxy-4-sulfonic acid), 2,4-diaminophenylene-4- (propyloxy-3-sulfonic acid), 2,4-diaminophenylene -4- (perfluoroisopropyloxy-2-sulfonic acid)
6. Oligobenzimidazol aus6. Oligobenzimidazole from
5-lsophthalphosphonsäure, 5-lsophthalsulfonsäure, Terephthalsulfonsäure5-isophthalophosphonic acid, 5-isophthalic acid, terephthalic acid
7. Oligobenzoxazol aus7. Oligobenzoxazole from
5-lsophthalphosphonsäure, 5-lsophthalsulfonsäure, Terephthalsulfonsäure5-isophthalophosphonic acid, 5-isophthalic acid, terephthalic acid
8. Oligobenzothiazol aus8. Oligobenzothiazole from
5-lsophthalphosphonsäure, 5-lsophthalsulfonsäure, Terephthalsulfonsäure5-isophthalophosphonic acid, 5-isophthalic acid, terephthalic acid
Kombinationen der Monomere innerhalb eines Blocksegmentes (A) und/oder (B) sind möglich. Das Kriterium zur Auswahl der Monomere und ihrer Kombinationen sind die zur erreichenden Eigenschaften der Blocksegmente (A) und (B) gemäß Anspruch 1.Combinations of the monomers within a block segment (A) and / or (B) are possible. The criterion for the selection of the monomers and their combinations are the properties of the block segments (A) and (B) according to claim 1.
Für die Synthese der oligomeren Blocksegmente (A) und (B) werden die carbonsäure- und sulfonsäurehaltigen Monomere vorteilhafterweise als Säurechloride eingesetzt. Die carbonsäurehaltigen Monomere können aber auch als Methyl- oder Phenylester eingesetzt werden. Ferner ist es vorteilhaft, die Amino-, Thiol- und Hydroxygruppen, die an der Oligomerbildung beteiligt sind, zu silylieren. Hydroxygruppen aufweisende Monomere können in Form ihrer Acetate eingesetzt werden. Die Umsetzung der Monomeren zu den oligomeren Blocksegmenten (A) und (B) sowie die Herstellung der Di- und/oder Multi-Blockcopolymere erfolgt in Lösung oder in Schmelze, wobei mindestens eines der verwendeten Monomere in Lösung oder in Schmelze vorliegt.The carboxylic acid and sulfonic acid-containing monomers are advantageously used as acid chlorides for the synthesis of the oligomeric block segments (A) and (B). The carboxylic acid-containing monomers can also be used as methyl or phenyl esters. It is also advantageous to silylate the amino, thiol and hydroxy groups which are involved in the formation of the oligomer. Monomers containing hydroxyl groups can be used in the form of their acetates. The conversion of the monomers to the oligomeric block segments (A) and (B) and the preparation of the di- and / or multi-block copolymers takes place in solution or in the melt, at least one of the monomers used being in solution or in the melt.
Für die Reaktionen, die in Lösung durchgeführt werden, werden insbesondere polare aprotische Lösungsmittel wie beispielsweise Dimethylformamid (DMF), Dimethylacetamid (DMAc), Dimethylsulfoxid (DMSO), Tetrahydrofuran (THF), 1 ,4- Dioxan oder N-Methylpyrrolidon (NMP) eingesetzt. Gegebenenfalls werden diesen Lösungsmitteln bis zu 5 Ma.-% niedermolekulare Salze, wie Lithiumchlorid oder Calciumchlorid zugesetzt, um die Löslichkeit der Oligomeren in den entsprechenden Lösungsmitteln zu erhöhen. Das Verhältnis Lösungsmittel/Monomere wird so gewählt, dass die Oligomer- und später die Di- und/oder Multi- Blopkcopolymerkonzentration im Bereich zwischen 5 und 30 Ma.-%, vorzugsweise zwischen 10 und 20 Ma.-%, liegt. Diese Lösungen werden nach einer Filtration durch ei'ne Glasfritte und gegebenenfalls durch Zugabe weiterer Polymere und/oder anderer Additive zur Herstellung der Membranen eingesetzt. Die Di- und/oder Multi- Blockcopolymerkonzentration dieser Lösungen wird so eingestellt, dass die Lösungen eine für die Herstellung der Membranen vorteilhafte Viskosität aufweisen. Die Viskositätseinstellung kann auch durch partielles Abdampfen des Lösungsmittels im Vakuum oder durch Hinzufügen von Lösungsmittel erfolgen.Polar aprotic solvents such as dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), 1,4-dioxane or N-methylpyrrolidone (NMP) are used in particular for the reactions which are carried out in solution , If necessary, up to 5% by mass of low molecular weight salts, such as lithium chloride or calcium chloride, are added to these solvents in order to increase the solubility of the oligomers in the corresponding solvents. The ratio solvent / monomers is chosen so that the oligomer and later the di- and / or multi-block copolymer concentration is in the range between 5 and 30 mass%, preferably between 10 and 20 mass%. After filtration through a glass frit and optionally by adding further polymers and / or other additives, these solutions are used to produce the membranes. The di- and / or multi-block copolymer concentration of these solutions is adjusted so that the solutions have a viscosity which is advantageous for the manufacture of the membranes. The viscosity can also be adjusted by partially evaporating the solvent in vacuo or by adding solvent.
Möglichkeiten zur Herstellung von erfindungsgemäßen Membranen sind folgende:The following are possible ways of producing membranes according to the invention:
1. Zur Herstellung selbsttragender trennaktiver Schichten, d. h. solche Membranen ohne zusätzliche Träger, werden Lösungen, die mindestens eines der erfindungsgemäßen Di- oder Multiblockcopolymere enthalten oder Lösungen, die mindestens ein oligomeres Blocksegment (A) und mindestens ein oligomeres Blocksegment (B) oder Lösungen, die mindestens ein oligomeres Blocksegment (A) und/oder mindestens ein oligomeres Blocksegment (B) und mindestens ein Di- oder Multiblockcopolymer enthalten, mit Hilfe einer Rakel zu einem Film mit einer Dicke von 100 - 500 μm auf eine inerte, glatte Unterlage z. B. aus Glas, PTFE oder Edelstahl verarbeitet. Vor und/oder während und/oder nach der Filmbildung findet die Kopplung der oligomeren Blocksegmente (A) und (B) und/oder des oder der Di- oder Multiblockcopolymere zu Di- und/oder Multiblockcopolymeren statt. Das Lösungsmittel wird durch Energiezufuhr entweder zunächst partiell an Luft und anschließend vollständig im Vakuum oder gleich vollständig im Vakuum abgedampft. Die Temperaturen dafür liegen im Bereich von 50 - 150°C. Die so erhaltenen trockenen Membranen weisen Dicken von 50 bis 150 μm, vorzugsweise zwischen 60 und 100 μm auf, wobei die Dicke der Membranen von der Dicke des ausgezogenen Polymerfilms und der Polymerkonzentration abhängig ist. Die Membranen weisen eine phasenseparierte Morphologie mit im wesentlichen durchgehender Protonenleitfähigkeit auf.1. For the production of self-supporting separating layers, ie those membranes without additional supports, solutions which contain at least one of the di- or multiblock copolymers according to the invention or solutions which contain at least one oligomeric block segment (A) and at least one oligomeric block segment (B) or solutions, which contain at least one oligomeric block segment (A) and / or at least one oligomeric block segment (B) and at least one di- or multiblock copolymer, using a doctor blade to form a film with a thickness of 100-500 μm on an inert, smooth base e.g. B. made of glass, PTFE or stainless steel. Before and / or during and / or after film formation, the oligomeric block segments (A) and (B) are coupled. and / or the or the di- or multiblock copolymers to di- and / or multiblock copolymers instead. The solvent is either partially evaporated by supplying energy in air and then completely in a vacuum or immediately completely in a vacuum. The temperatures for this are in the range of 50 - 150 ° C. The dry membranes obtained in this way have thicknesses of 50 to 150 μm, preferably between 60 and 100 μm, the thickness of the membranes being dependent on the thickness of the polymer film pulled out and the polymer concentration. The membranes have a phase-separated morphology with essentially continuous proton conductivity.
2. Zur Herstellung von Membranen mit einer auf einem Träger aufgebrachten trennaktiven Schicht wird zunächst das Trägermaterial, das aus einem porösen oder textilen Material besteht, beispielsweise aus Polyphenylenoxid oder Polyphenylensulfid, auf eine inerte, glatte Unterlage z. B. aus Glas, PTFE oder Edelstahl aufgelegt oder fixiert. Zur Aufbringung der trennaktiven Schicht wird, wie unter 1. Beschrieben, verfahren. Die trennaktive Schicht auf dem Träger weist eine phasenseparierte Morphologie mit im Wesentlichen durchgehender Protonenleitfähigkeit auf.2. To produce membranes with a release-active layer applied to a support, first the support material, which consists of a porous or textile material, for example polyphenylene oxide or polyphenylene sulfide, is placed on an inert, smooth base e.g. B. made of glass, PTFE or stainless steel or fixed. The application of the release-active layer is carried out as described under 1. The separation-active layer on the carrier has a phase-separated morphology with essentially continuous proton conductivity.
3. Zur Herstellung von Membranen mit einer in einem Träger eingebrachten trennaktiven Schicht wird das Trägermaterial, das aus einem porösen oder textilen Material besteht, beispielsweise aus Polyphenylenoxid oder Polyphenylensulfid, mit einer das Di- und/oder Multiblockcopolymer enthaltenden Lösung imprägniert. Durch Abdampfen des Lösungsmittels, wie unter 1. Beschrieben, wird die Membran erhalten. Die trennaktive Schicht, die sich in den Hohlräumen des Trägers befindet, weist eine phasenseparierte Morphologie mit im Wesentlichen durchgehender Protonenleitfähigkeit auf.3. To produce membranes with a release-active layer introduced into a support, the support material, which consists of a porous or textile material, for example polyphenylene oxide or polyphenylene sulfide, is impregnated with a solution containing the di- and / or multiblock copolymer. The membrane is obtained by evaporating the solvent as described under 1. The separation-active layer, which is located in the cavities of the carrier, has a phase-separated morphology with essentially continuous proton conductivity.
4. Zur Herstellung von Membranen mit einer trennaktiven Schicht zwischen zwei Trägermaterialien wird zunächst ein Polymerfilm auf ein Trägermaterial wie unter 2. beschrieben aufgebracht. Vor dem Abdampfen des Lösungsmittels wird ein zweites Trägermaterial auf diesen Polymerfilm appliziert. Die Fertigstellung dieser Membran durch Abdampfen des Lösungsmittels erfolgt, wie unter 1. beschieben. Die trennaktive Schicht zwischen den Trägern weist eine phasenseparierte Morphologie mit im Wesentlichen durchgehender Protonenleitfähigkeit auf.4. For the production of membranes with a separation-active layer between two carrier materials, a polymer film is first applied to a carrier material as described under 2. Before the solvent is evaporated, a second carrier material is applied to this polymer film. This membrane is finished by evaporating off the solvent, as described under 1. The separation-active layer between the supports has a phase-separated morphology with essentially continuous proton conductivity.
5. Zur Herstellung von Membranen mit mehr als einer trennaktiven Schicht wird eine Membran, die nach einer der Möglichkeiten 1 bis 4 hergestellt wurde, mit einer weiteren Polymerlösung beschichtet, die das gleiche oder ein anderes Di- und/oder Multiblockcopolymer enthalten kann. Die Fertigstellung der Membran durch Abdampfen des Lösungsmittels erfolgt wie in 1. beschrieben. Die zusätzliche(n) trennaktive(n) Schicht(en) auf dem Träger weist eine phasenseparierte Morphologie mit im Wesentlichen durchgehender Protonenleitfähigkeit auf.5. To produce membranes with more than one separation-active layer, a membrane which has been produced according to one of the options 1 to 4 is coated with a further polymer solution which may contain the same or a different di- and / or multiblock copolymer. The membrane is finished by evaporating the solvent as described in 1. The additional separation-active layer (s) on the support has a phase-separated morphology with essentially continuous proton conductivity.
Im weiteren ist die Erfindung an mehreren Ausführungsbeispielen näher erläutert.Furthermore, the invention is explained in more detail using several exemplary embodiments.
Vergleichsbeispiel 1Comparative Example 1
Eine Nafion-Membran (DuPont) wird als Standardmembran für DMFC eingesetzt. In Methanol-Wasser-Lösungen (5 Masse-% Methanol) quillt diese Membran und es stellen sich die Membraneigenschaften ein. Mit einer Protonen-Leitfähigkeit von 0,2 S/cm bei 80°C wird eine ausreichende Leitfähigkeit erreicht. Die Barriereeigenschaften von Nafion-Membranen mit einer Methanoldurchlässigkeit von 30 % und mehr ist für eine Anwendung in DMFC nicht geeignet.A Nafion membrane (DuPont) is used as the standard membrane for DMFC. This membrane swells in methanol-water solutions (5% by mass of methanol) and the membrane properties are established. Sufficient conductivity is achieved with a proton conductivity of 0.2 S / cm at 80 ° C. The barrier properties of Nafion membranes with a methanol permeability of 30% and more are not suitable for use in DMFC.
Beispiel 1example 1
1 Herstellung der Oligomere Blocksegment A1 :1 Production of the Oligomeric Block Segment A1:
In 200 ml getrocknetem 1-Methyl-2-pyrrolidon [NMP] werden in Reinst-Stickstoff- Atmosphäre unter Rühren 0,1 mol Dibenzophenontetracarbonsäuredianhydrid mit 0,04 mol Toluylendiamin umgesetzt. Nach 1 Stunde Rühren bei 120°C werden 0,04 mol 4,4'-Diaminodiphenylether zugesetzt und eine weitere Stunde gerührt. Danach werden langsam 0,2 mol Acetanhydrid bei 120°C zugetropft. Nach der Zugabe wird noch 1 Stunde gerührt und anschließend wird die Lösung unter Rühren auf 160°C erwärmt und die Essigsäure abdestilliert - Reaktionslösung A1 (Anhydrid-terminiert). Blocksegment A2:In 200 ml of dried 1-methyl-2-pyrrolidone [NMP], 0.1 mol of dibenzophenonetetracarboxylic acid dianhydride is reacted with 0.04 mol of toluenediamine in a high-purity nitrogen atmosphere with stirring. After stirring for 1 hour at 120 ° C 0.04 mol of 4,4'-diaminodiphenyl ether are added and stirred for another hour. Then 0.2 mol of acetic anhydride are slowly added dropwise at 120 ° C. After the addition, the mixture is stirred for a further 1 hour and then the solution is heated to 160 ° C. with stirring and the acetic acid is distilled off - reaction solution A1 (anhydride-terminated). Block segment A2:
In 200 ml getrocknetem 1-Methyl-2-pyrrolidon [NMP] werden unter inerten Bedingungen (Reinst-Stickstoff-Atmosphäre) unter Rühren 0,08 mol Dibenzophenontetracarbonsäuredianhydrid mit 0,05 mol Toluylendiisocyanat und 0,05 mol Methylendiphenylendiisocyanat umgesetzt und eine Stunde bei 140°C gerührt. Danach wird die Lösung langsam unter Rühren kurz auf 180°C erwärmt - Reaktionslösung A2 (Isocyanat-terminiert)In 200 ml of dried 1-methyl-2-pyrrolidone [NMP], 0.08 mol of dibenzophenonetetracarboxylic acid dianhydride are reacted with 0.05 mol of tolylene diisocyanate and 0.05 mol of methylene diphenylene diisocyanate under inert conditions (high-purity nitrogen atmosphere) and stirred for one hour at 140 ° C stirred. The solution is then slowly heated to 180 ° C. with stirring briefly - reaction solution A2 (isocyanate-terminated)
Blocksegment A3:Block segment A3:
In 200 ml getrocknetem 1-Methyl-2-pyrrolidon [NMP], das 3 Ma.-% LiCI enthält, werden in Reinst-Stickstoff-Atmosphäre unter Rühren 0,1 mol Isophthalsäuredimethylester mit 0,04 mol Toluylendiamin umgesetzt. Nach 1 Stunde Rühren bei 120°C werden 0,04 mol 4,4'-Diaminodiphenylether zugesetzt und eine weitere Stunde gerührt. Anschließend wird die Lösung unter Rühren 15 min auf 160°C erwärmt - Reaktionslösung A3 (Ester-terminiert).In 200 ml of dried 1-methyl-2-pyrrolidone [NMP], which contains 3% by mass of LiCl, 0.1 mol of dimethyl isophthalate is reacted with 0.04 mol of toluenediamine in a high-purity nitrogen atmosphere with stirring. After stirring for 1 hour at 120 ° C 0.04 mol of 4,4'-diaminodiphenyl ether are added and stirred for another hour. The solution is then heated to 160 ° C. for 15 minutes with stirring - reaction solution A3 (ester-terminated).
Blocksegment A4:Block segment A4:
In Schmelze werden in Reinst-Stickstoff-Atmosphäre unter Rühren 0,09 mol Bis- trimethylsilyl-bisphenol-A mit 0,1 mol 4,4'-difluordiphenylsulfon unter Zugabe von katalytischen Mengen CsF bei Temperaturen im Bereich von 250 und 300°C unter Eliminierung des Trimethylsilylfiuorids umgesetzt. Nach 1 Stunde Rühren werden 0,02 mol an silyliertem 4-Hydroxybenzoesäureethylester zugesetzt und eine weitere Stunde gerührt. Anschließend wird das Oligomer in 200 ml NMP gelöst - Reaktionslösung A4 (Ester-terminiert).0.09 mol of bis-trimethylsilyl-bisphenol-A with 0.1 mol of 4,4'-difluorodiphenyl sulfone are added to the melt in a high-purity nitrogen atmosphere with stirring, with the addition of catalytic amounts of CsF at temperatures in the range from 250 to 300 ° C. Elimination of the trimethylsilyl fluoride implemented. After stirring for 1 hour, 0.02 mol of silylated 4-hydroxybenzoic acid ethyl ester are added and the mixture is stirred for a further hour. The oligomer is then dissolved in 200 ml of NMP - reaction solution A4 (ester-terminated).
Blocksegment A5:Block segment A5:
Unter Reinst-Stickstoff-Atmosphäre werden zu 200 ml getrocknetem NMP mit 0,08 mol Bis-thmethylsilyl-m-phenylendiamin unter Rühren 0,1 mol Benzol-1 ,3- disulfonsäuredichlorid in NMP langsam zugetropft. Die Lösung wird 8 Stunden bei 100°C gerührt - Reaktionslösung A5 (Sulfonsäurechlorid-terminiert).Under a high-purity nitrogen atmosphere, 0.1 mol of benzene-1,3-disulfonic acid dichloride in NMP is slowly added dropwise to 200 ml of dried NMP with 0.08 mol of bis-methyl-silyl-m-phenylenediamine with stirring. The solution is stirred at 100 ° C. for 8 hours - reaction solution A5 (sulfonic acid chloride-terminated).
Blocksegment B1 :Block segment B1:
Unter Reinst-Stickstoff-Atmosphäre werden in 200 ml getrocknetem NMP, das 3 Ma.-Under a pure nitrogen atmosphere, 200 ml of dried NMP, the 3 Ma.-
% LiCI enthält, bei -18°C zu 0,1 mol Tris-trimethylsilyl-p-phenylendiaminsulfonsäure 0,08 mol Isophthalsäuredichlorid zugegeben und eine Stunde bei -18°C sowie 8 Stunden bei 100°C unter Rühren umgesetzt. - Reaktionslösung B1 (Amin-terminiert).% LiCI contains, at -18 ° C to 0.1 mol of tris-trimethylsilyl-p-phenylenediaminesulfonic acid 0.08 mol of isophthalic acid dichloride are added and the mixture is reacted for one hour at -18 ° C. and 8 hours at 100 ° C. with stirring. - Reaction solution B1 (amine-terminated).
Blocksegment B2:Block segment B2:
Unter Reinst-Stickstoff-Atmosphäre werden zu 200 ml getrocknetem NMP, das 3 Ma.-% LiCI enthält, mit 0,1 mol Tris-trimethylsilyl-p-phenylendiaminsulfonsäure unter Rühren 0,08 mol Toluylendiisocyanat in NMP langsam zugetropft. Nach Zugabe katalytischer Mengen an Dibutylzinnoxid wird die Lösung 8 Stunden bei 50°C gerührt - Reaktionslösung B2 (Amin-terminiert).Under a high-purity nitrogen atmosphere, 0.08 mol of tolylene diisocyanate in NMP is slowly added dropwise to 200 ml of dried NMP, which contains 3% by mass of LiCl, with 0.1 mol of tris-trimethylsilyl-p-phenylenediamine sulfonic acid with stirring. After adding catalytic amounts of dibutyltin oxide, the solution is stirred for 8 hours at 50 ° C. - reaction solution B2 (amine-terminated).
Blocksegment B3:Block segment B3:
Unter Reinst-Stickstoff-Atmosphäre werden zu 200 ml getrocknetem NMP mit 0,1 mol Tris-trimethylsilyl-p-phenylendiaminsulfonsäure unter Rühren 0,08 mol Benzol- 1 ,3-disulfonsäuredichlorid in NMP langsam zugetropft. Die Lösung wird 8 Stunden bei 100°C gerührt - Reaktionslösung B3 (Amin-terminiert).Under a high-purity nitrogen atmosphere, 0.08 mol of benzene-1,3-disulfonic acid dichloride in NMP is slowly added dropwise to 200 ml of dried NMP with 0.1 mol of tris-trimethylsilyl-p-phenylenediamine sulfonic acid with stirring. The solution is stirred at 100 ° C. for 8 hours - reaction solution B3 (amine-terminated).
2 Herstellung der Membranen Blockcopolymer-Membran 1 :2 Production of the membranes Block copolymer membrane 1:
Zur Reaktionslösung A1 wird langsam die Reaktionslösung B1 unter Rühren zugetropft. Nach 1 Stunde Rühren bei 120°C werden 0,05 mol Acetanhydrid zugetropft und 1 Stunde weitergerührt. Unter Vakuum und Rühren wird die Lösung aufkonzentriert und zu einer Membran ausgezogen und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten. Methanol-Rückhaltevermögen: 1/20 der Nafion-VergleichsmembranThe reaction solution B1 is slowly added dropwise to the reaction solution A1 with stirring. After stirring for 1 hour at 120 ° C., 0.05 mol of acetic anhydride are added dropwise and stirring is continued for 1 hour. The solution is concentrated under vacuum and stirring and drawn into a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 1/20 of the Nafion comparison membrane
Blockcopolymer-Membran 2:Block copolymer membrane 2:
Zur Reaktionslösung A2 wird langsam die Reaktionslösung B1 unter Rühren zugetropft. Nach 1 Stunde Rühren bei 120°C wird unter Vakuum und Rühren dieThe reaction solution B1 is slowly added dropwise to the reaction solution A2 with stirring. After stirring for 1 hour at 120 ° C under vacuum and stirring
Lösung aufkonzentriert und auf einem Polyphenylensulfid-Trägervlies aufgebracht und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten.Concentrated solution and applied to a polyphenylene sulfide carrier fleece and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained.
Methanol-Rückhaltevermögen: 7/100 der Nafion-Vergleichsmembran Blockcopolymer-Membran 3:Methanol retention: 7/100 of the Nafion comparison membrane Block copolymer membrane 3:
Zur Reaktionslösung A3 wird langsam die Reaktionslösung B1 unter Rühren zugetropft. Nach 1 Stunde Rühren bei 130°C wird unter Vakuum und Rühren dieThe reaction solution B1 is slowly added dropwise to the reaction solution A3 with stirring. After stirring for 1 hour at 130 ° C under vacuum and stirring
Lösung aufkonzentriert und zu einer Membran ausgezogen und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten.Concentrated solution and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained.
Methanol-Rückhaltevermögen: 2/100 der Nafion-VergleichsmembranMethanol retention: 2/100 of the Nafion comparison membrane
Blockcopolymer-Membran 4:Block copolymer membrane 4:
Zur Reaktionslösung A1 wird langsam die Reaktionslösung B2 unter Rühren zugetropft. Nach 8 Stunde Rühren bei 130°C wird unter Vakuum und Rühren die Lösung so aufkonzentriert, dass die Lösung benetzend in ein feines Glasfasergewebe eingebracht und unter Vakuum langsam getrocknet wird. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten. Methanol-Rückhaltevermögen: 3/100 der Nafion-VergleichsmembranThe reaction solution B2 is slowly added dropwise to the reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring in such a way that the solution is introduced into a fine glass fiber fabric and is slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 3/100 of the Nafion comparison membrane
Blockcopolymer-Membran 5:Block copolymer membrane 5:
Zur Reaktionslösung A4 wird langsam die Reaktionslösung B3 unter Rühren zugetropft. Nach 8 Stunden Rühren bei 130°C wird unter Vakuum und Rühren dieThe reaction solution B3 is slowly added dropwise to the reaction solution A4 with stirring. After stirring for 8 hours at 130 ° C under vacuum and stirring
Lösung aufkonzentriert und zu einer Membran ausgezogen und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten.Concentrated solution and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained.
Methanol-Rückhaltevermögen: 1/100 der Nafion-VergleichsmembranMethanol retention capacity: 1/100 of the Nafion comparison membrane
Blockcopolymer-Membran 6:Block copolymer membrane 6:
Zur Reaktionslösung A5 wird zur Reaktionslösung B3 unter Rühren zugegeben. Nach 8 Stunden Rühren bei 130°C wird die Lösung abgekühlt und es werden 0,01 mol Diandiglycidether als Vernetzungsmittel zugesetzt. Die Lösung wird sofort zur Membran ausgezogen, unter Vakuum getrocknet und 5 Stunden bei 100°C getempert. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten. Methanol-Rückhaltevermögen: 2/100 der Nafion-Vergleichsmembran Blockcopolymer-Membran 7:To reaction solution A5 is added to reaction solution B3 with stirring. After stirring at 130 ° C. for 8 hours, the solution is cooled and 0.01 mol of dianediglycidyl ether is added as a crosslinking agent. The solution is immediately drawn out to the membrane, dried under vacuum and annealed at 100 ° C. for 5 hours. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 2/100 of the Nafion comparison membrane Block copolymer membrane 7:
Zur Reaktionslösung A5 wird zur Reaktionslösung B3 unter Rühren zugegeben. Nach 8 Stunden Rühren bei 130°C wird die Lösung abgekühlt und es werden 0,01 mol 4,4'-Difluordiphenylsulfon als Vemetzungsmittel zugesetzt. Die Lösung wird zur Membran ausgezogen, unter Vakuum getrocknet und 8 Stunden bei 120°C getempert. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten. Methanol-Rückhaltevermögen: 5/100 der Nafion-VergleichsmembranTo reaction solution A5 is added to reaction solution B3 with stirring. After stirring at 130 ° C. for 8 hours, the solution is cooled and 0.01 mol of 4,4'-difluorodiphenyl sulfone is added as crosslinking agent. The solution is drawn out to the membrane, dried under vacuum and annealed at 120 ° C. for 8 hours. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 5/100 of the Nafion comparison membrane
Blockcopolymer-Membran 8:Block copolymer membrane 8:
Zu 50 ml Reaktionslösung A2 und 50 ml Reaktionslösung A4 werden langsam 100 ml der Reaktionslösung B3 unter Rühren zugetropft. Nach 8 Stunden Rühren bei 130°C wird unter Vakuum und Rühren die Lösung aufkonzentriert und zu einer Membran ausgezogen und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten.100 ml of reaction solution B3 are slowly added dropwise to 50 ml of reaction solution A2 and 50 ml of reaction solution A4 while stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained.
Methanol-Rückhaltevermögen: 1/100 der Nafion-VergleichsmembranMethanol retention capacity: 1/100 of the Nafion comparison membrane
Blockcopolymer-Membran 9:Block copolymer membrane 9:
Zu 100 ml Reaktionslösung A1 werden langsam 50 ml der Reaktionslösung B1 und 50 ml der Reaktionslösung B3 unter Rühren zugetropft. Nach 8 Stunden Rühren bei 130°C wird unter Vakuum und Rühren die Lösung aufkonzentriert und zu einer Membran ausgezogen und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten. Methanol-Rückhaltevermögen: 4/100 der Nafion-Vergleichsmembran50 ml of reaction solution B1 and 50 ml of reaction solution B3 are slowly added dropwise to 100 ml of reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 4/100 of the Nafion comparison membrane
Blockcopolymer-Membran 10:Block copolymer membrane 10:
Zu 100 ml Reaktionslösung A1 werden langsam 45 ml der Reaktionslösung B1 und 45 ml der Reaktionslösung B3 unter Rühren zugetropft. Nach 8 Stunden Rühren bei 130°C wird unter Vakuum und Rühren die Lösung aufkonzentriert und zu einer Membran ausgezogen und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten. Methanol-Rückhaltevermögen: 9/100 der Nafion-Vergleichsmembran Blockcopolymer-Membran 11 :45 ml of reaction solution B1 and 45 ml of reaction solution B3 are slowly added dropwise to 100 ml of reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 9/100 of the Nafion comparison membrane Block copolymer membrane 11:
Zu 90 ml Reaktionslösung A1 werden langsam 50 ml der Reaktionslösung B2 und 50 ml der Reaktionslösung B3 unter Rühren zugetropft. Nach 8 Stunden Rühren bei 130°C wird unter Vakuum und Rühren die Lösung aufkonzentriert und zu einer Membran ausgezogen und unter Vakuum langsam getrocknet. Es wird eine gut handhabbare, mechanisch stabile Membran erhalten. Methanol-Rückhaltevermögen: 7/100 der Nafion-Vergleichsmembran 50 ml of reaction solution B2 and 50 ml of reaction solution B3 are slowly added dropwise to 90 ml of reaction solution A1 with stirring. After stirring at 130 ° C. for 8 hours, the solution is concentrated under vacuum and stirring and drawn out to a membrane and slowly dried under vacuum. An easily manageable, mechanically stable membrane is obtained. Methanol retention: 7/100 of the Nafion comparison membrane

Claims

Patentansprüche claims
1. Polymere Brennstoffzellen-Membran, die aus mindestens einer trennaktiven Schicht oder mindestens einem Träger und mindestens einer trennaktiven Schicht besteht, wobei die trennaktive(n) Schicht(en) auf und/oder zwischen und/oder in dem Träger appliziert ist/sind, und wobei die trennaktive(n) Schicht(en) mindestens aus Di- und/oder Multiblockcopolymeren mit den allgemeinen Segmentstrukturen A-(B-A)k und /oder B-(A-B)ι und/oder (A-B)m mit k > 1 und I > 1 und m > 1 besteht, in dem das Blocksegment (A) aus mindestens einem Elektronennichtleitenden und Protonen-nichtleitenden Oligomersegment besteht, und das Blocksegment (B) aus mindestens einem Protonen-leitenden und Elektronennichtleitenden Oligomersegment besteht und die Membran morphologisch eine Struktur mit im Wesentlichen durchgehender Protonenleitfähigkeit aufweist und ausgenommen die Blocksegmente (A) und (B) weisen Imidstruktur auf und das Blocksegment (B) weist direkt an einen aromatischen Diaminbaustein der aromatischen Imidstruktur gebundene Sulfonsäuregruppen auf und ausgenommen im Blocksegment (B) sind direkt an den Aromaten gebundene Sulfonsäuregruppen, die in der Membran unter Einsatzbedingungen desulfonieren.1. Polymer fuel cell membrane, which consists of at least one release-active layer or at least one support and at least one release-active layer, the release-active layer (s) being / are applied to and / or between and / or in the support, and wherein the separation-active layer (s) consists at least of di- and / or multiblock copolymers with the general segment structures A- (BA) k and / or B- (AB) ι and / or (AB) m with k> 1 and I> 1 and m> 1, in which the block segment (A) consists of at least one electron-non-conductive and proton-non-conductive oligomer segment, and the block segment (B) consists of at least one proton-conductive and electron-non-conductive oligomer segment and the membrane morphologically has a structure has essentially continuous proton conductivity and except the block segments (A) and (B) have an imide structure and the block segment (B) has an aromatic diamine component of the aromatic Im directly sulfonic acid groups bound to the structure and except in the block segment (B) are sulfonic acid groups bonded directly to the aromatics, which desulfonate in the membrane under operating conditions.
2. Membran nach Anspruch 1 , bei der das Blocksegment (A) aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylimid und/oder Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligochinoxalin mit Polymerisationsgraden zwischen 2 und 50 besteht.2. Membrane according to claim 1, wherein the block segment (A) consists of at least one oligomer segment of the compound classes oligoarylimide and / or oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaramide / or oligoaryl urea and / or oligoarylenoxadiazole and / or oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzothiazole and / or oligoquinoxaline with degrees of polymerization between 2 and 50.
3. Membran nach Anspruch 1 , bei der das Blocksegment (B) aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligochinoxalin und/oder Oligoarylimid, mit Polymerisationsgraden zwischen 2 und 50 besteht, wobei die Oligomersegmente als Protonen-leitende Gruppen mindestens eine oder ein Gemisch an Gruppen pro Oligomereinheit der Art Sulfonsäure und/oder Phosphonsäure und/oder (Perfluor)- Alkylsulfonsäure und/oder (Perfluor)-Alkylphosphonsäure und/oder (Perfluor)- Alkylcarbonsäure besitzen.3. Membrane according to claim 1, in which the block segment (B) from at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaryl urea / or oligoarylenoxadiazole and / or oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzothiazole and / or oligoquinoxaline and / or oligoarylimide, with degrees of polymerization between 2 and 50, the oligomer segments as proton-conducting groups having at least one or a mixture of groups per oligomer unit of the type sulfonic acid and / or phosphonic acid and / or (perfluoro ) - Alkylsulfonic acid and / or (perfluoro) alkylphosphonic acid and / or (perfluoro) - alkylcarboxylic acid.
4. Membran nach Anspruch 1 , bei der das Blocksegment (B) aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligoarylimid und/oder Oligochinoxalin mit Polymerisationsgraden zwischen 2 und 50 besteht und die Protonen-leitenden Oligomersegmente aus basischen polymergebundenen Gruppen und niedermolekularen und/oder oligomeren Verbindungen mit Säureeinheiten der Art Sulfonsäure und/oder Phosphonsäure und/oder (Perfluor)-Alkylsulfonsäure und/oder (Perfluor-)Alkylphosphonsäure und/oder (Perfluor)-Alkylcarbonsäure bestehen, wobei die Säuregruppen enthaltenden Verbindung(en) über ionische Wechselwirkung an die basischen Gruppen gebunden sind.4. Membrane according to claim 1, wherein the block segment (B) from at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaryl urea / or oligoarylenoxadiazole and / or oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzothiazole and / or oligoarylimide and / or oligoquinoxaline with degrees of polymerization between 2 and 50 and the proton-conducting oligomeric segments and low / polymer-based groups and basic or polymer-bound oligomeric groups Compounds with acid units of the type sulfonic acid and / or phosphonic acid and / or (perfluoro) alkylsulfonic acid and / or (perfluoro) alkylphosphonic acid and / or (perfluoro) alkylcarboxylic acid exist, the compound (s) containing acid groups via ionic interaction with the basic ones G troops are bound.
5. Membran nach Anspruch 1 , bei der das Blocksegment (B) aus mindestens einem Oligomersegment der Verbindungsklassen Oligoarylensulfid und/oder Oligoarylsulfon und/oder Oligoarylethersulfon und/oder Oligoarylenether und/oder Oligoaryletherketon und/oder Oligoarylenetheretherketon und/oder Oligoaramid und/oder Oligoarylharnstoff und/oder Oligoarylenoxadiazol und/oder Oligoarylensulfonamid und/oder Oligobenzimidazol und/oder Oligobenzoxazol und/oder Oligobenzthiazol und/oder Oligoarylimid und/oder Oligochinoxalin mit Polymerisationsgraden zwischen 2 und 50 besteht und diese Oligomersegmente mindestens aus einem Gemisch aus chemisch gekoppelten Oligomeren bestehen, welches Oligomere mit nur basischen oxydationsstabilen Gruppen der Art Triazin- und/oder tertiären Amino- und/oder quartären Ammoniumgruppen und Oligomere mit nur sauren Gruppen der Art Sulfonsäure und/oder Phosphonsäure und/oder (Perfluor)-Alkylsulfonsäure und/oder (Perfluor)-Alkylphosphonsäure und/oder (Perfluor)-Alkylcarbonsäure enthält.5. Membrane according to claim 1, in which the block segment (B) from at least one oligomer segment of the compound classes oligoarylene sulfide and / or oligoaryl sulfone and / or oligoaryl ether sulfone and / or oligoarylene ether and / or oligoaryl ether ketone and / or oligoarylene ether ether ketone and / or oligoaramide and / or oligoaryl urea / or oligoarylenoxadiazole and / or oligoarylenesulfonamide and / or oligobenzimidazole and / or oligobenzoxazole and / or oligobenzthiazole and / or oligoarylimide and / or oligoquinoxaline with degrees of polymerisation between 2 and 50 and these oligomer segments consist of at least one mixture of chemically coupled oligomers with which oligomers are chemically coupled oligomers only basic oxidation-stable groups of the type triazine and / or tertiary amino and / or quaternary ammonium groups and oligomers with only acidic groups of the type sulfonic acid and / or phosphonic acid and / or Contains (perfluoro) alkyl sulfonic acid and / or (perfluoro) alkyl phosphonic acid and / or (perfluoro) alkyl carboxylic acid.
6. Membran nach Anspruch 1, dass in der trennaktiven Schicht neben den Di- und/oder Multiblockcopolymeren weitere Polymere und/oder weitere Additive enthalten sind.6. Membrane according to claim 1, that in the separating layer, in addition to the di- and / or multiblock copolymers, further polymers and / or further additives are contained.
7. Membran nach Anspruch 1, bei der die trennaktive Schicht in, im Wesentlichen nicht vermischte Protonen-leitende und nicht leitende Polymerbereiche strukturiert ist.7. The membrane of claim 1, wherein the separation-active layer is structured in essentially unmixed proton-conducting and non-conducting polymer regions.
8. Membran nach Anspruch 1, bei der die Di- und/oder Multiblockcopolymere linear oder verzweigt ausgebildet sind.8. The membrane of claim 1, wherein the di- and / or multiblock copolymers are linear or branched.
9. Membran nach Anspruch 1, bei der der Träger aus einem porösen oder textilen Material besteht.9. The membrane of claim 1, wherein the carrier consists of a porous or textile material.
10. Membran nach Anspruch 1, bei der das Blocksegment (A) aus gleichen oder verschiedenen Oligomereinheiten besteht.10. The membrane of claim 1, wherein the block segment (A) consists of the same or different oligomer units.
11. Membran nach Anspruch 1, bei der das Blocksegment (B) aus gleichen oder verschiedenen Oligomereinheiten besteht.11. The membrane of claim 1, wherein the block segment (B) consists of the same or different oligomer units.
12. Membran nach Anspruch 1, bei der die Länge der Blocksegmente (B) entsprechend einer optimalen Protonenleitfähigkeit ausgewählt ist.12. The membrane of claim 1, wherein the length of the block segments (B) is selected according to an optimal proton conductivity.
13. Membran nach Anspruch 1, bei der das Blocksegment (A) aus Oligoimid(en) und/oder Oligophenylensulfid(en) und/oder Oligosulfonamid(en) und/oder Oligoarylsulfon(en) und/oder Oligobenzimidazol(en) und das Blocksegment' (B) aus Oligoimid(en) und/oder Oligophenylensulfid(en) und/oder Oligosulfonamid(en) und/oder Oligophenylensulfon(en) und/oder Oligophenylethersulfon(en) und/oder Oligobenzimidazol(en) und/oder Oligochinoxalin(en) mit den Protonen-leitenden Sulfonsäure- und/oder Phosphonsäuregruppen besteht und die Struktur A-(B-A)k mit k = 2 bis 10 aufweist. 13. The membrane of claim 1, wherein the block segment (A) from oligoimide (s) and / or oligophenylene sulfide (s) and / or oligosulfonamide (s) and / or oligoarylsulfone (s) and / or oligobenzimidazole (s) and the block segment ' (B) from oligoimide (s) and / or oligophenylene sulfide (s) and / or oligosulfonamide (s) and / or oligophenylene sulfone (s) and / or oligophenyl ether sulfone (s) and / or oligobenzimidazole (s) and / or oligoquinoxaline (en ) with the proton-conducting sulfonic acid and / or phosphonic acid groups and has the structure A- (BA) k with k = 2 to 10.
14. Verfahren zur Herstellung einer polymeren Brennstoffzellen-Membran, bei dem zur Herstellung der Blocksegmente (A) aus mindestens einem Elektronennichtleitenden und Protonen-nichtleitenden Oligomersegment und bei dem zur Herstellung der Blocksegmente (B) aus mindestens einem Protonen-leitenden und Elektronen-nichtleitenden Oligomersegment die Ausgangsstoffe zur Reaktion gebracht werden, wobei mindestens einer der Ausgangsstoffe in Lösung oder als Schmelze vorliegt und wobei die Blocksegmente getrennt hergestellt werden, wobei die Funktionalitäten der Endgruppen nur eine Kopplung von (A) mit (B) ermöglichen und anschließend die Di- und/oder Multiblockcopolymere der allgemeinen Segmentstrukturen A-(B-A)k und /oder B-(A-B)ι und/oder (A-B)m mit k > 1 und I > 1 und m > 1 durch reaktive Umsetzung hergestellt werden, wobei anschließend bekannte Hilfs- und Zusatzstoffe und/oder Vernetzungsmittel zugesetzt werden können und die Di- und/oder Multiblockcopolymere als trennaktive Schicht(en) allein oder auf und/oder zwischen und/oder in einem Träger als Membran ausgebildet werden, wobei die Membran morphologisch eine Struktur mit im Wesentlichen durchgehender Protonenleitfähigkeit aufweist.14. A method for producing a polymeric fuel cell membrane, in which for the production of the block segments (A) from at least one electron-non-conductive and proton-non-conductive oligomer segment and in the for the production of the block segments (B) from at least one proton-conductive and electron-non-conductive oligomer segment the starting materials are reacted, at least one of the starting materials being in solution or as a melt and the block segments being produced separately, the functionalities of the end groups only allowing coupling of (A) to (B) and then the di- and / or multiblock copolymers of the general segment structures A- (BA) k and / or B- (AB) ι and / or (AB) m with k> 1 and I> 1 and m> 1 are prepared by reactive conversion, known auxiliary agents subsequently and additives and / or crosslinking agents can be added and the di- and / or multiblock copolymers as a release-active layer ( en) formed alone or on and / or between and / or in a support as a membrane, the membrane having a morphologically structure with essentially continuous proton conductivity.
15. Verfahren nach Anspruch 14, bei dem über die Wahl der Ausgangsstoffe die Art, Menge und Funktionalität der Blocksegmente und ihrer Endgruppen und Segmentstrukturen ausgewählt wird.15. The method according to claim 14, in which the type, quantity and functionality of the block segments and their end groups and segment structures are selected via the choice of the starting materials.
16. Verfahren nach Anspruch 14, bei dem nach der Mischung der Blocksegmente die reaktive Umsetzung zu Di- und/oder Multiblockcopolymeren auf und/oder zwischen und/oder in dem/den Trägermaterial/ien durchgeführt wird.16. The method according to claim 14, in which after the mixing of the block segments, the reactive conversion to di- and / or multiblock copolymers is carried out on and / or between and / or in the carrier material (s).
17. Verfahren nach Anspruch 14, bei dem nach der Mischung der Blocksegmente die reaktive Umsetzung zu Di- und/oder Multiblockcopolymeren während und/oder nach der Membranherstellung erfolgt.17. The method according to claim 14, in which after the mixing of the block segments, the reactive conversion to di- and / or multiblock copolymers takes place during and / or after the membrane production.
18. Verfahren nach Anspruch 14, bei dem während und/oder nach der Membranherstellung eine Vernetzung mittels energiereicher Strahlen und/oder chemischer Agenzien erfolgt. 18. The method according to claim 14, in which a crosslinking takes place by means of high-energy radiation and / or chemical agents during and / or after the membrane production.
PCT/DE2002/003736 2001-09-28 2002-09-27 Polymer membrane for fuel cells and method for the production thereof WO2003030289A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02776768A EP1430560A2 (en) 2001-09-28 2002-09-27 Polymer membrane for fuel cells and method for the production thereof
AU2002339343A AU2002339343A1 (en) 2001-09-28 2002-09-27 Polymer membrane for fuel cells and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10149716A DE10149716A1 (en) 2001-09-28 2001-09-28 Polymer fuel cell membrane and process for its manufacture
DE10149716.4 2001-09-28

Publications (2)

Publication Number Publication Date
WO2003030289A2 true WO2003030289A2 (en) 2003-04-10
WO2003030289A3 WO2003030289A3 (en) 2003-11-13

Family

ID=7701871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003736 WO2003030289A2 (en) 2001-09-28 2002-09-27 Polymer membrane for fuel cells and method for the production thereof

Country Status (4)

Country Link
EP (1) EP1430560A2 (en)
AU (1) AU2002339343A1 (en)
DE (1) DE10149716A1 (en)
WO (1) WO2003030289A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316323A1 (en) * 2003-04-10 2004-10-28 Daimlerchrysler Ag Functionalizing polyarylethersulfones with basic groups, for use in electrolytes, ion exchangers, catalysts, polymer electrolyte membranes or blends, involves a Grignard reaction and reaction with an anchoring compound
WO2005090439A2 (en) * 2004-03-12 2005-09-29 Polyfuel, Inc. Ion-conductive copolymers containing one or more ion-conducting oligomers
DE102004055129A1 (en) * 2004-11-16 2006-05-18 Volkswagen Ag Production of polymer electrolyte membrane for fuel cells based on liquid electrolyte containing polymer
WO2008012222A2 (en) * 2006-07-28 2008-01-31 Leibniz-Institut Für Polymerforschung Dresden E.V. Sulfonated polyarylene compounds, membrane material made therefrom, method for the production thereof, and use
US7459505B2 (en) 2005-05-03 2008-12-02 General Motors Corporation Block copolymers with acidic groups
US7507771B2 (en) 2003-11-13 2009-03-24 Polyfuel, Inc. Ion conductive copolymers containing one or more hydrophobic oligomers
WO2009075974A1 (en) * 2007-12-11 2009-06-18 Bose Corporation Fuel cell polymer electrolyte membrane
US7572535B2 (en) 2002-05-13 2009-08-11 Polyfuel, Inc. Ion conductive copolymers containing one or more hydrophobic oligomers
US7977394B2 (en) 2005-05-03 2011-07-12 GM Global Technology Operations LLC Triblock copolymers with acidic groups
US7993792B2 (en) 2006-07-26 2011-08-09 GM Global Technology Operations LLC Polymer blocks for PEM applications
US8216740B2 (en) 2006-12-12 2012-07-10 Bose Corporation Fuel cell
CN102643546A (en) * 2012-05-03 2012-08-22 长春工业大学 1, 3, 4-oxadiazole ring containing poly (aromatic ether sulfone) medium-high temperature proton exchange membrane and preparation method thereof
US8492460B2 (en) 2006-07-28 2013-07-23 GM Global Technology Operations LLC Fluorinated polymer blocks for PEM applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424041A2 (en) * 1989-10-16 1991-04-24 Exxon Research And Engineering Company Membranes obtained from copolymers of polyimides and aliphatic polyesters.
US5028685A (en) * 1989-10-16 1991-07-02 Exxon Research & Engineering Company Halogenated polyurethanes
EP0574791A2 (en) * 1992-06-13 1993-12-22 Hoechst Aktiengesellschaft Polymer electrolyte membrane and process for its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424041A2 (en) * 1989-10-16 1991-04-24 Exxon Research And Engineering Company Membranes obtained from copolymers of polyimides and aliphatic polyesters.
US5028685A (en) * 1989-10-16 1991-07-02 Exxon Research & Engineering Company Halogenated polyurethanes
EP0574791A2 (en) * 1992-06-13 1993-12-22 Hoechst Aktiengesellschaft Polymer electrolyte membrane and process for its manufacture

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ARNOLD C ET AL: "DEVELOPMENT OF SULFONATED POLYSULFONE MEMBRANES FOR REDOX FLOW BATTERIES" JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM, NL, Bd. 38, 1988, Seiten 71-83, XP009014843 ISSN: 0376-7388 in der Anmeldung erw{hnt *
DANG T D ET AL: "Polybenzobisthiazoles with crosslinking sites for improved fibre axial compressive strength" POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, Bd. 38, Nr. 3, 1. Februar 1997 (1997-02-01), Seiten 621-629, XP004015335 ISSN: 0032-3861 *
FAURE S ET AL: "SULFONATED POLYIMIDES AS NOVEL PROTON EXCHANGE MEMBRANES FOR H2/O2 FUEL CELLS" PROCEEDINGS OF THE SYMPOSIUM ON NEW MATERIALS FOR FUEL-CELL AND MODERN BATTERY SYSTEMS, XX, XX, 1997, Seiten 818-827, XP008003162 *
GENIES C ET AL: "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes" POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, Bd. 42, Nr. 2, Januar 2001 (2001-01), Seiten 359-373, XP004216918 ISSN: 0032-3861 *
HEINZEL,A. ET AL.: "A review of the state-of-the-art of the methanol crossover in direct methnol fuel cells" JOURNAL OF POWER SOURCES, Bd. 84, 1999, Seiten 70-74, XP001153867 AMSTERDAM *
KERRES J ET AL: "PREPARATION, CHARACTERIZATION AND FUEL CELL APPLICATION OF NEW ACID-BASE BLEND MEMBRANES" JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, ECOLE POLYTECHNIQUE DE MONTREAL, MONTREAL, CA, Bd. 3, 2000, Seiten 229-239, XP009014845 ISSN: 1480-2422 in der Anmeldung erw{hnt *
KUMUDINIE C ET AL: "Toughening of some high-temperature poly(arylene ether)s and a hydroxypoly(benzoxazole) by sol-gel generated rubbery particles" POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, Bd. 42, Nr. 12, Juni 2001 (2001-06), Seiten 5275-5283, XP004230993 ISSN: 0032-3861 *
SAVODOGO,O.: "Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems" J.NEW MAT.ELECTROCHEM.SYSTEMS, Bd. 1, 1998, Seite 47-66 XP009014846 in der Anmeldung erw{hnt *
STAITI,P. ET AL.: "Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application" JOURNAL OF POWER SOURCES, Bd. 90, 2000, Seiten 231-235, XP002251389 AMSTERDAM *
WAINRIGHT J S ET AL: "ACID-DOPED POLYBENZIMIDAZOLES: A NEW POLYMER ELECTROLYTE" JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, US, Bd. 142, Nr. 7, Juli 1995 (1995-07), Seiten L121-L123, XP009014336 ISSN: 0013-4651 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572535B2 (en) 2002-05-13 2009-08-11 Polyfuel, Inc. Ion conductive copolymers containing one or more hydrophobic oligomers
DE10316323A1 (en) * 2003-04-10 2004-10-28 Daimlerchrysler Ag Functionalizing polyarylethersulfones with basic groups, for use in electrolytes, ion exchangers, catalysts, polymer electrolyte membranes or blends, involves a Grignard reaction and reaction with an anchoring compound
US7507771B2 (en) 2003-11-13 2009-03-24 Polyfuel, Inc. Ion conductive copolymers containing one or more hydrophobic oligomers
US7504461B2 (en) 2004-03-12 2009-03-17 Polyfuel, Inc. Ion-conductive copolymers containing one or more ion-conducting oligomers
JP2007528930A (en) * 2004-03-12 2007-10-18 ポリフューエル・インコーポレイテッド Ion conductive copolymers containing one or more ion conductive oligomers
WO2005090439A3 (en) * 2004-03-12 2005-11-24 Polyfuel Inc Ion-conductive copolymers containing one or more ion-conducting oligomers
WO2005090439A2 (en) * 2004-03-12 2005-09-29 Polyfuel, Inc. Ion-conductive copolymers containing one or more ion-conducting oligomers
DE102004055129A1 (en) * 2004-11-16 2006-05-18 Volkswagen Ag Production of polymer electrolyte membrane for fuel cells based on liquid electrolyte containing polymer
US7459505B2 (en) 2005-05-03 2008-12-02 General Motors Corporation Block copolymers with acidic groups
US8263672B2 (en) 2005-05-03 2012-09-11 GM Global Technology Operations LLC Triblock copolymers with acidic groups
US7977394B2 (en) 2005-05-03 2011-07-12 GM Global Technology Operations LLC Triblock copolymers with acidic groups
US7993792B2 (en) 2006-07-26 2011-08-09 GM Global Technology Operations LLC Polymer blocks for PEM applications
WO2008012222A2 (en) * 2006-07-28 2008-01-31 Leibniz-Institut Für Polymerforschung Dresden E.V. Sulfonated polyarylene compounds, membrane material made therefrom, method for the production thereof, and use
WO2008012222A3 (en) * 2006-07-28 2008-04-24 Leibniz Inst Polymerforschung Sulfonated polyarylene compounds, membrane material made therefrom, method for the production thereof, and use
US8492460B2 (en) 2006-07-28 2013-07-23 GM Global Technology Operations LLC Fluorinated polymer blocks for PEM applications
US8163864B2 (en) 2006-07-28 2012-04-24 Leibniz-Institut Fuer Polymerforschung Dresden E.V. Sulfonated polyarylene compounds, membrane material made therefrom, method for the production thereof and use
US8216740B2 (en) 2006-12-12 2012-07-10 Bose Corporation Fuel cell
WO2009075974A1 (en) * 2007-12-11 2009-06-18 Bose Corporation Fuel cell polymer electrolyte membrane
US8557473B2 (en) 2007-12-11 2013-10-15 Bose Corporation Fuel cell polymer electrolyte membrane
CN102643546A (en) * 2012-05-03 2012-08-22 长春工业大学 1, 3, 4-oxadiazole ring containing poly (aromatic ether sulfone) medium-high temperature proton exchange membrane and preparation method thereof

Also Published As

Publication number Publication date
AU2002339343A1 (en) 2003-04-14
WO2003030289A3 (en) 2003-11-13
EP1430560A2 (en) 2004-06-23
DE10149716A1 (en) 2003-04-30

Similar Documents

Publication Publication Date Title
DE60214166T2 (en) POLYMER ELECTROLYTE FOR A FUEL POLYMER TYPE FUEL CELL AND FUEL CELL
DE10201886B4 (en) A polymer electrolyte membrane and a process for producing the same, and solid polymer electrolyte fuel cell using the same
EP2443172B1 (en) Aromatic polyethersulfone block copolymers
EP1073690B1 (en) Acid-base polymer blends and their use in membrane processes
EP1971635B1 (en) Proton-conducting polymer membrane
EP1337319B1 (en) Novel membranes having improved mechanical properties, for use in fuel cells
DE10117686A1 (en) Proton-conducting membrane for use e.g. in fuel cells, is made by coating a support with a solution of aromatic tetra-amine and aromatic polycarboxylic acid in polyphosphoric acid and then heating the coating
DE10117687A1 (en) Proton-conducting membrane and its use
EP2009728B1 (en) Method for manufacturing a sulfonated poly(1,3,4-oxadiazol) polymer
DE10144815A1 (en) Proton-conducting polymer membrane for use in membrane-electrode units for fuel cells, obtained by heating a polyazole polymer with polyphosphoric acid and coating the solution onto a substrate, e.g. an electrode
EP1901378A1 (en) Proton conducting polymer membrane, method for producing same, and fuel cell using same
EP1559164A2 (en) Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells
WO2004030135A2 (en) Proton-conducting membrane and use thereof verwendung
DE10220817A1 (en) Process for producing a grafted polymer electrolyte membrane and its use in fuel cells
WO2003030289A2 (en) Polymer membrane for fuel cells and method for the production thereof
WO2009066952A1 (en) Monomer for proton-conducting polymer having acid group in side chain thereof, proton-conducting polymer prepared using the monomer, method of preparing the proton-conducting polymer, electrolyte membrane comprising the proton-conducting polymer, and membrane-electrode assembly including the electrolyte
EP1373364B1 (en) Sulfonated polyetherketoneketone
JPWO2019188572A1 (en) Electrolyte membrane
DE60304541T2 (en) Electrode arrangement for polymer electrolyte fuel cell, and fuel cell using this
DE10155543C2 (en) Proton-conducting electrolyte membrane, process for its production and its use
DE19909028A1 (en) Sulfonated aromatic polymers, membrane containing these polymers, process for their preparation and their use
EP1420039B1 (en) Proton-conducting membrane for electrochemical use
DE102007034752B4 (en) Polymer blocks for PEM applications
DE102005043127A1 (en) Method for conditioning membrane electrode assemblies for fuel cells
WO2009127614A1 (en) Use of hyper-branched polymers in fuel cell applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002776768

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002776768

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP