WO2003026783A1 - Liquid current generating device - Google Patents

Liquid current generating device Download PDF

Info

Publication number
WO2003026783A1
WO2003026783A1 PCT/JP2002/009813 JP0209813W WO03026783A1 WO 2003026783 A1 WO2003026783 A1 WO 2003026783A1 JP 0209813 W JP0209813 W JP 0209813W WO 03026783 A1 WO03026783 A1 WO 03026783A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
liquid
blade
rotating shaft
rotation
Prior art date
Application number
PCT/JP2002/009813
Other languages
French (fr)
Japanese (ja)
Inventor
Norifumi Oikawa
Yutaka Oikawa
Original Assignee
Moburon Design Office Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moburon Design Office Co., Ltd. filed Critical Moburon Design Office Co., Ltd.
Priority to JP2003530411A priority Critical patent/JP3980557B2/en
Publication of WO2003026783A1 publication Critical patent/WO2003026783A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a hollow stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23314Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a hollow stirrer element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/71Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0722Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis perpendicular with respect to the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0723Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis oblique with respect to the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/113Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller
    • B01F27/1131Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller with holes in the propeller blade surface

Definitions

  • the present invention relates to a liquid flow generation device, and more particularly to a liquid flow generation device that simultaneously generates a wave and a flow in a liquid, and flows the liquid to a distant position by a synergistic effect of the wave energy and the flow energy.
  • Conventional technology a liquid flow generation device that simultaneously generates a wave and a flow in a liquid, and flows the liquid to a distant position by a synergistic effect of the wave energy and the flow energy.
  • a method of mainly generating a flow (water flow) by using a rotating force of a propeller, a screwdriver, a pin, or the like, or the energy of a jet fluid from the outside to the liquid is used.
  • the cause is that the water flow generated by high-speed rotation of propellers etc. can generate instantaneous flow velocity (acceleration), but it stalls immediately due to the resistance of the water, which causes the water to flow, circulate, cascade, and stir.
  • An object of the present invention is to simultaneously generate a wave and a water flow with a small amount of energy consumption, and to continuously send a liquid to a distant place by the wave and the flow energy. To provide something high.
  • the liquid flow generating device is an elongated wing in which opposite surfaces are symmetrically bulged outward, and the thickness of the blade is reduced toward the peripheral portion.
  • a first wing fixed at a right angle to both short axes, and a second wing fixed at a central portion so that at least a long axis crosses the rotation axis at least obliquely.
  • the rotation of the rotation shaft causes the first blade to periodically cut off the liquid, thereby generating a wave in the liquid and causing the liquid to flow by the second blade. .
  • the shape of the outer peripheral edge of the wing may be oblong or oval.
  • first wing and the second wing are arranged so as to form an orthogonal cross when viewed from the front.
  • a drive unit for forcibly rotating the rotation shaft may be provided.
  • This drive unit can be constituted by an electric motor, and the drive source of the electric motor can be a solar battery.
  • the rotating shaft is formed in a hollow shape
  • the first wing and the second wing are formed in a hollow shape communicating with the rotating shaft
  • a surface on the rotation rear side of the first wing and the second wing is formed.
  • a high-pressure fluid delivery device for feeding high-pressure fluid into the rotary shaft is provided, and high-pressure fluid is supplied from the high-pressure fluid delivery device into the rotary shaft, and is ejected from the small holes.
  • the first blade and the second blade may be rotated about a rotation axis by a reaction force of a high-pressure fluid.
  • FIG. 1 is a front view showing an example of the device of the present invention
  • FIG. 2 is a side view of a first wing
  • FIG. 3 is a front view of a first wing
  • FIG. Fig. 5 is a partially cutaway front view of the wing device
  • Fig. 6 is a side view of the wing device
  • Fig. 7 shows the state of liquid flow generation in the water tank.
  • FIG. 8 is an explanatory diagram showing a liquid flow generation state in the conventional device. ⁇ Best mode for carrying out the invention
  • FIG. 1 shows a front view of the liquid flow generator 10.
  • a wing device 12 for generating a liquid flow is rotatably mounted on the mounting base 11.
  • the wing device 12 is configured such that a first wing 13 and a second wing 14 are integrally assembled so as to form a cross shape when viewed from the front, and are attached to a rotating shaft 15.
  • 16 is a bearing.
  • Reference numeral 18 denotes the electric motor, and a sprocket (not shown) attached to a rotating shaft (not shown) of the electric motor 18 and a sprocket (not shown) attached to the rotating shaft 15. ), A chain 19 is wound around, and the wing device 12 is driven.
  • the wing device 12 can be driven with a relatively small driving force, and therefore, a solar cell (not shown) can be suitably used as a power supply for the electric motor 18.
  • the first wing 13 and the second wing 14 of the wing device 12 are integrally assembled so as to form a substantially cross shape when viewed from the front as shown in FIG.
  • FIGS. 2 and 3 show the first wing 13 individually
  • FIG. 4 shows the second wing 14 individually.
  • the first wing 13 and the second wing 14 have opposite sides 13 a, 13 b, 14 a, and 14 b that symmetrically bulge outward, and move toward the periphery. It forms elongated wings that reduce the thickness.
  • Such a wing is formed by welding elongated peripheral bowl-shaped halves with their concave portions facing each other, and welding the peripheral edge.
  • the front shape of these wings is an ellipse as shown in Fig.
  • the side surface shape is such that the outer shape is formed by joining two flat circular arcs.
  • the angle ⁇ is not particularly limited, but is suitably about 20 ° to 60 °.
  • the first wing 13 is fixed so that both the major axis and the minor axis are perpendicular to the rotation axis 15 at the center, as is clear from FIG.
  • the second wing 14 is fixed so that at least the long axis crosses the rotation axis 15 at the center at least obliquely.
  • the intersection angle ⁇ of the long axis of the second wing 14 with the rotation axis 15 should not be too small so as not to make the resistance from the liquid too large.
  • the intersection angle i3 is preferably about 60 ° to 80 °.
  • the wing device 12 is rotationally driven by the electric motor 18, but the drive unit is not limited to this.
  • the rotating shaft 15 is formed in a hollow shape, and the first wing 13 and the second wing 14 are formed in a hollow shape communicating with the rotating shaft 15.
  • a large number of small holes 21 are formed on the surface on the rotation rear side of the wings 13 and the second wings 14 so that a high-pressure fluid can be fed into the rotary shaft 15 from a high-pressure fluid delivery device (not shown).
  • the wing device 12 is rotated about the rotation axis 15 by the reaction force of the high-pressure fluid supplied from the high-pressure fluid delivery device being ejected from the small holes 21.
  • compressed air can be fed from the high-pressure fluid delivery device into the hollow rotary shaft 15 via a hose and a rotary joint (not shown).
  • the liquid flow generator 10 is configured as described above. Next, the operation will be described.
  • the first wing 13 is formed in a streamlined shape by inflating the edge 13 c at the front end and the rear end in the rotation direction at an acute angle and bulging the center part outward. Since the rotating shaft 15 is rotated in the direction of the arrow underwater because it is fixed at a right angle to the rotating shaft 15, the first wing 13 will rotate in the X direction in Fig. On the other hand, the water returns in the Y direction in Fig. 2 on the rear side of rotation (restoration). By this extrusion and restoration, waves are generated in four directions (X direction) in plan view.
  • the product of the number of blades of the first wing 13 and the number of revolutions per minute becomes the frequency, and the amplitude of the wave substantially depends on the thickness of the first wing 13.
  • the energy loss of the first wing 13 due to this configuration is mainly the resistance loss of the wing surface, but since the cross-sectional shape is streamlined as described above and it is mounted at right angles to the rotation axis 15, Low resistance loss, low power consumption and maximum efficient wave generation. If the wing device 12 is rotated at such a high speed, the waves cannot be transmitted to a distant place because the water is agitated unnecessarily.
  • the second wing 14 is obliquely fixed to the rotation axis 15 so that at least its major axis intersects the rotation axis 15, so that the rotation axis 15 rotates.
  • the rotation of the rotation shaft 15 in the direction of the arrow causes the second wing 14 to rotate.
  • Water is pushed by the screw flow function (propulsion force) of the swollen surface on the front side of rotation, and radial water flow is generated. Since the second wing 14 also has a bulge, this second wing 14 also gives some water waves.
  • the second wing 14 has its long axis obliquely crossing the rotation axis 15, but its short axis also crosses the rotation axis 15 obliquely. Attaching to the rotating shaft 15 makes it easier to generate water flow. These intersection angles may be set appropriately according to the degree of swelling of the wings. Further, the rotation speed of the rotation shaft 15 may be appropriately selected depending on how the first wing 13 generates a wave and the second wing 14 generates a water flow.
  • the flow of water does not occur due to the wave caused by the first wing 13, but the wave propagates to a distant place. Then, the second wing 14 is rotated by the slow rotation speed, thereby generating a radially extending water flow.However, since the rotation speed is slow, the wave is not broken by the water flow, but rather is broken. Therefore, the waves flow on the water stream, and the water stream itself travels far away. Also, since the water flow itself is gentle, it takes some time to reach a steady state, unlike the case where the rapid water flow is suddenly attenuated by the resistance of surrounding water. A gentle water current spreading over the area was obtained.
  • the water tank 25 Slow water currents and waves reaching every corner of the area.
  • the liquid flow generation device 10 of the present invention was obtained as a result of investigating a synergistic phenomenon between a wave having a long reach and a water flow that causes the water to move. It was a thing. It is necessary to rotate the wing device 12 gently so as not to dampen the waves and so that the energy of the water stream is not attenuated. It can be said that it has made it possible to give fluid energy at the same time.
  • the inside of the first wing 13 and the second wing 14 is made hollow, and a small high pressure fluid containing gas, liquid, or fine solid is ejected to the rear position in the rotation direction.
  • a hole 21 is opened, this internal space is communicated with the hollow rotary shaft 15, and high-pressure fluid is sent through the rotary shaft 15 into the first blade 13 and the second blade 14, and a small hole is formed.
  • the wing device 12 can be rotated using the reaction force generated at the time of jetting, and explosion, stirring, mixing, etc. can be performed.
  • the diameter of the small hole 21 for the purpose of a waterfall should be as small as possible to increase the surface area of the jet air.
  • the ejected air is re-mixed by the rotating blades 13 and 14 and the water flow, so that there is an advantage that the air particles are extremely fine.
  • the oxygen dissolution efficiency could be increased by 60% or more compared to the case where air was simply blown out from the small hole of the pipe by adjusting the blowout hole diameter, the blowout pressure, and the rotation speed.
  • the purpose of stirring and mixing was achieved in a fraction of the time required by the conventional method.
  • the water flow reaches the corners of the water tank 25, as shown in Fig. 7, because the water flow reaches a wide area and far away due to the synergistic effect of the wave and the water flow. No foreign matter is deposited on the part.
  • Fig. 8 for example, when a strong water flow is generated in the water tank 25 by the high-power pump 26 and circulated, the water flow is rather reduced, and the water flow does not reach every corner.
  • Deposits 27 tend to be partially deposited, but in the case of the present example, conversely, the deposits tended to be peeled off and removed.
  • the liquid flow generating device 10 of the present invention has a water tank shown in FIG. When taking 25 as an example, it can be placed at the center of the water tank 25. As a result, water currents and waves are simultaneously generated in all directions. Therefore, a short distance from the wall surface of the water tank 25 can be secured, and the circulating flow can be easily generated without reducing the water speed of the water flow.
  • the liquid flow generator in the structure of the liquid flow generator (such as a powerful pump), the liquid flow generator is arranged near the wall of the water tank 25, and the water flow is generated and circulated toward the opposite wall. To create the flow, the distance from the wall is about twice as large as the liquid flow generator of the present invention.
  • the liquid flow generator of the present invention is capable of performing flow, circulation, waterfall, agitation, mixing, and the like with high energy efficiency in relation to the above-mentioned arrangement position in a water tank or the like.
  • the liquid flow generation device has a wide range of applications such as flow, circulation, waterfall, agitation, mixing, etc., purification of lakes and marshes, purification of polluted water discharged from various factories, and production of various substances in various processes. It can be used for devices that generate liquid flows in many fields such as mixing and stirring of materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

A liquid current generating device capable of simultaneously generating wave motion and flow motion with less energy consumption and sequentially supplying liquid to a distant place with the wave motion and flow motion energies, comprising first slender blades having both faces positioned opposite to each other swelled outward symmetrical with each other, reduced in thickness toward the peripheral edge part thereof and fixed to a rotating shaft so that both the major and minor axes thereof are positioned perpendicular to the rotating shaft at the center part thereof and a second blade fixed to the rotating shaft so that at least the major axis thereof crosses the rotating shaft aslant at the center part thereof, characterized in that the liquid is cut periodically by the first blades when the rotating shaft is rotated to cause the wave motion on the liquid and the liquid is moved by the second blade.

Description

明 細 書 液流発生装置 技術分野  Description Liquid flow generator Technical field
本発明は液流発生装置に関し、液体に波動と流動を同時発生させ、 この波動エネルギーと流動エネルギーの相乗効果により遠くの位 置まで液体を流動させる液流発生装置に関する。 従来技術  The present invention relates to a liquid flow generation device, and more particularly to a liquid flow generation device that simultaneously generates a wave and a flow in a liquid, and flows the liquid to a distant position by a synergistic effect of the wave energy and the flow energy. Conventional technology
従来、 液体に流動を発生させる手段としては、 プロペラ、 スクリ ユー、 夕一ピン等の回転力を利用して流動 (水流) を主体的に発生 させる方法、また噴射流体のエネルギーを外部から液体に与えて流 動 (水流) を起こす方法等がある。 いずれの方法も発生した水流を 遠くの領域まで到達させる事は困難である。その原因はプロペラ等 を高速回転して発生させる水流は瞬間的流速 (加速度) を発生させ ることはできるが、 水の抵抗により直ぐに失速するためであり、 水 を流動、 循環、 瀑気、 攪拌、 混合等を行う装置としてはエネルギー 効率が悪く、 構造が大きく経済的にも問題点があった。 また特殊な 方法として 1 9 4 0年代に開発されたォロイ ド形状の回転体によ る水流発生方法もあるが、複雑な動力伝達により回転させるため構 造上の無理が欠点となり耐久性に乏しく実用性に適さないのが現 状である。  Conventionally, as a means of generating a flow in a liquid, a method of mainly generating a flow (water flow) by using a rotating force of a propeller, a screwdriver, a pin, or the like, or the energy of a jet fluid from the outside to the liquid is used. There is a method of giving a flow (water flow) by giving it. In any case, it is difficult to make the generated water flow reach a distant area. The cause is that the water flow generated by high-speed rotation of propellers etc. can generate instantaneous flow velocity (acceleration), but it stalls immediately due to the resistance of the water, which causes the water to flow, circulate, cascade, and stir. However, the energy efficiency of the equipment for mixing and the like was poor, the structure was large, and there were economical problems. As a special method, there is a water flow generation method using an oroid-shaped rotating body that was developed in the 1940's.However, since it is rotated by complicated power transmission, structural unreasonability is a disadvantage, resulting in poor durability. At present, it is not suitable for practical use.
従って、 大きい湖沼、 池などの水を循環流動させる装置としては 経済的に適応するものがなく実施例は皆無に等しい、また農産物加 ェ、 食品、 各種工場等から出る多量の排水処理装置、 また気体の瀑 気、 異物の攪拌、 混合などは基本的に上記方法により行われている が、水流が遠くまで均一に行き届かない欠点があり効果的な処理が できないのが現状である。これを補うために大きな装置を大きな動 力で運転しているためエネルギー効率が悪いという課題があった。 発明の開示 Therefore, there is no economically applicable device for circulating and flowing water from large lakes, marshes, ponds, etc., and there are no practical examples.Moreover, a large amount of wastewater treatment devices from agricultural products, food, various factories, etc. Gas storms, agitation of foreign matter, mixing, etc. are basically performed by the above method, but at present the water cannot be distributed uniformly even far, and effective treatment cannot be performed at present. To compensate for this, large devices must be There was a problem that energy efficiency was poor due to driving with power. Disclosure of the invention
この発明における課題は、少ないエネルギー消費量により波動と 水流を同時に発生させ、この波動と流動エネルギーにより液体を遠 い所に連続的に送る事であり、且つ装置構造が簡単で耐久性と経済 性の高いものを提供する。  An object of the present invention is to simultaneously generate a wave and a water flow with a small amount of energy consumption, and to continuously send a liquid to a distant place by the wave and the flow energy. To provide something high.
本発明に係る液流発生装置は、互いに反対側となる両面が外側に 対称的に膨出し、 周縁部にいく程厚みを減じる細長い翼であって、 中央部で回転軸に対し、 長軸、 短軸共に直角となるように固定され る第 1 の翼と、 中央部で前記回転軸に対して、 少なく とも長軸が斜 めに交差するように固定される第 2 の翼とを具備し、前記回転軸が 回転することにより、前記第 1の翼が周期的に液体を切ることによ つて液体に波動を生じさせると共に、前記第 2の翼により液体を流 動させることを特徴とする。  The liquid flow generating device according to the present invention is an elongated wing in which opposite surfaces are symmetrically bulged outward, and the thickness of the blade is reduced toward the peripheral portion. A first wing fixed at a right angle to both short axes, and a second wing fixed at a central portion so that at least a long axis crosses the rotation axis at least obliquely. The rotation of the rotation shaft causes the first blade to periodically cut off the liquid, thereby generating a wave in the liquid and causing the liquid to flow by the second blade. .
前記翼の外周縁の形状を長楕円状もしくは長円状とすることが できる。  The shape of the outer peripheral edge of the wing may be oblong or oval.
前記第 1の翼と第 2の翼とが正面からみて、直交する十字状をな すように配置するようにすると好適である。  It is preferable that the first wing and the second wing are arranged so as to form an orthogonal cross when viewed from the front.
前記回転軸を強制回転させる駆動部を設けることができる。 この駆動部を、 電動モ一夕で構成し、 該電動モータの駆動源を太 陽電池とすることができる。  A drive unit for forcibly rotating the rotation shaft may be provided. This drive unit can be constituted by an electric motor, and the drive source of the electric motor can be a solar battery.
あるいは、 前記回転軸を中空に形成し、 前記第 1 の翼および第 2 の翼を該回転軸に連通する中空に形成し、前記第 1 の翼および第 2 の翼の回転後方側となる面に多数の小孔を形成し、前記回転軸内に 高圧流体を送り込む高圧流体送出装置を設けて、該高圧流体送出装 置から高圧流体を回転軸内に供給し、前記小孔から噴出される高圧 流体の反力により前記第 1 の翼および第 2の翼を回転軸を中心に 回転させるようにしてもよい。 図面の簡単な説明 Alternatively, the rotating shaft is formed in a hollow shape, the first wing and the second wing are formed in a hollow shape communicating with the rotating shaft, and a surface on the rotation rear side of the first wing and the second wing is formed. A high-pressure fluid delivery device for feeding high-pressure fluid into the rotary shaft is provided, and high-pressure fluid is supplied from the high-pressure fluid delivery device into the rotary shaft, and is ejected from the small holes. The first blade and the second blade may be rotated about a rotation axis by a reaction force of a high-pressure fluid. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明装置の一例を示す正面図であり、 図 2は、 第 1の 翼の側面図であり、 図 3は第 1 の翼の正面図であり、 図 4は、 第 2 の翼の側面図であり、図 5は、翼装置の一部切り欠き正面図であり、 図 6 は、 翼装置の側面図であり、 図 7は、 水槽内での液流発生の状 況を示す説明図であり、 図 8は、 従来装置における液流発生状況を 示す説明図である。 · 発明を実施するための最良の形態  FIG. 1 is a front view showing an example of the device of the present invention, FIG. 2 is a side view of a first wing, FIG. 3 is a front view of a first wing, and FIG. Fig. 5 is a partially cutaway front view of the wing device, Fig. 6 is a side view of the wing device, and Fig. 7 shows the state of liquid flow generation in the water tank. FIG. 8 is an explanatory diagram showing a liquid flow generation state in the conventional device. · Best mode for carrying out the invention
以下本発明の好適な実施の形態を添付図面に基づいて詳細に説 明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図 1 は液流発生装置 1 0の正面図を示す。  FIG. 1 shows a front view of the liquid flow generator 10.
取付台 1 1 に、液流を発生させる翼装置 1 2が回転自在に取り付 けられている。  A wing device 12 for generating a liquid flow is rotatably mounted on the mounting base 11.
翼装置 1 2は、 第 1の翼 1 3 と第 2の翼 1 4とが、 正面から見て 十字状をなすように一体的に組み付けられて回転軸 1 5 に取り付 けられてなる。 1 6は軸受である。  The wing device 12 is configured such that a first wing 13 and a second wing 14 are integrally assembled so as to form a cross shape when viewed from the front, and are attached to a rotating shaft 15. 16 is a bearing.
1 7は駆動部である。 1 8はその電動モータであり、 この電動モ —タ 1 8の回転軸 (図示せず) に取り付けられたスプロケッ ト (図 示せず) と回転軸 1 5 に取り付けられたスプロケッ ト (図示せず) とにチェーン 1 9が掛け渡され、翼装置 1 2が駆動されるようにな つている。  17 is a drive unit. Reference numeral 18 denotes the electric motor, and a sprocket (not shown) attached to a rotating shaft (not shown) of the electric motor 18 and a sprocket (not shown) attached to the rotating shaft 15. ), A chain 19 is wound around, and the wing device 12 is driven.
なお、 後記するように、 翼装置 1 2は比較的小さな駆動力で駆動 可能であり、 したがって、 電動モータ 1 8の電源に太陽電池 (図示 せず) を好適に用いることもできる。  As described later, the wing device 12 can be driven with a relatively small driving force, and therefore, a solar cell (not shown) can be suitably used as a power supply for the electric motor 18.
翼装置 1 2 の第 1 の翼 1 3 と第 2 の翼 1 4とは、図 6に示すよう に正面から見た場合にほぼ十字状をなすように一体的に組み付け られているものであるが、 説明の便宜上、 図 2、 図 3に第 1 の翼 1 3 を、 図 4に第 2の翼 1 4を個別に示した。 第 1 の翼 1 3および第 2の翼 1 4は、互いに反対側となる両面 1 3 a 、 1 3 b , 1 4 a、 1 4 bが外側に対称的に膨出し、 周縁部に いく程厚みを減じる細長い翼をなす。 このような翼は、 細長い椀状 の半体を互いに凹部を対向させて周縁部を溶接等することによつ て構成される。 これら翼の正面形状は図 3に示すように、 その外形 が長楕円状あるいは図 1 に示されるように長円状をなす。また側面 形状は、 図 2に示すように、 その外形が、 2つの扁平な円弧を付き 合わせたような形状をなしている。 角 αは特に限定されないが、 2 0 ° 〜 6 0 ° 位が適当である。 The first wing 13 and the second wing 14 of the wing device 12 are integrally assembled so as to form a substantially cross shape when viewed from the front as shown in FIG. However, for convenience of explanation, FIGS. 2 and 3 show the first wing 13 individually, and FIG. 4 shows the second wing 14 individually. The first wing 13 and the second wing 14 have opposite sides 13 a, 13 b, 14 a, and 14 b that symmetrically bulge outward, and move toward the periphery. It forms elongated wings that reduce the thickness. Such a wing is formed by welding elongated peripheral bowl-shaped halves with their concave portions facing each other, and welding the peripheral edge. The front shape of these wings is an ellipse as shown in Fig. 3 or an ellipse as shown in Fig. 1. Further, as shown in FIG. 2, the side surface shape is such that the outer shape is formed by joining two flat circular arcs. The angle α is not particularly limited, but is suitably about 20 ° to 60 °.
第 1 の翼 1 3は、 図 2に明確なように、 中央部で回転軸 1 5に対 し、 長軸、 短軸共に直角となるように固定される。 一方、 第 2の翼 1 4は、 図 4に示されるように、 中央部で回転軸 1 5に対して、 少 なく とも長軸が斜めに交差するように固定される。この第 2の翼 1 4の長軸の回転軸 1 5に対する交差角 βは、液体からの抵抗をあま り大きなものにしないように、あまり小さな角度にしないのが良い。 例えば交差角 i3は、 6 0 ° 〜 8 0 ° 位が好適である。  The first wing 13 is fixed so that both the major axis and the minor axis are perpendicular to the rotation axis 15 at the center, as is clear from FIG. On the other hand, as shown in FIG. 4, the second wing 14 is fixed so that at least the long axis crosses the rotation axis 15 at the center at least obliquely. The intersection angle β of the long axis of the second wing 14 with the rotation axis 15 should not be too small so as not to make the resistance from the liquid too large. For example, the intersection angle i3 is preferably about 60 ° to 80 °.
上記の例では、翼装置 1 2 を電動モータ 1 8により回転駆動する ようにしたが、 駆動部はこれに限定されるものではない。 例えば、 図 5 に示すように、 回転軸 1 5を中空に形成し、 また第 1 の翼 1 3 および第 2の翼 1 4を回転軸 1 5に連通する中空状に形成し、第 1 の翼 1 3および第 2の翼 1 4の回転後方側となる面に多数の小孔 2 1 を形成し、 高圧流体送出装置 (図示せず) から回転軸 1 5内に 高圧流体を送り込むようにしてもよい。 すなわち、 高圧流体送出装 置から供給される高圧流体が小孔 2 1から噴出される反力により 翼装置 1 2を回転軸 1 5 を中心に回転させるようにするのである。 例えば、 高圧流体送出装置から圧縮空気を、 ホースおよび図示しな いロータリージョイン トを介して中空の回転軸 1 5内に送り込む ようにすることができる。  In the above example, the wing device 12 is rotationally driven by the electric motor 18, but the drive unit is not limited to this. For example, as shown in FIG. 5, the rotating shaft 15 is formed in a hollow shape, and the first wing 13 and the second wing 14 are formed in a hollow shape communicating with the rotating shaft 15. A large number of small holes 21 are formed on the surface on the rotation rear side of the wings 13 and the second wings 14 so that a high-pressure fluid can be fed into the rotary shaft 15 from a high-pressure fluid delivery device (not shown). You may. That is, the wing device 12 is rotated about the rotation axis 15 by the reaction force of the high-pressure fluid supplied from the high-pressure fluid delivery device being ejected from the small holes 21. For example, compressed air can be fed from the high-pressure fluid delivery device into the hollow rotary shaft 15 via a hose and a rotary joint (not shown).
液流発生装置 1 0は上記のように構成されている。 続いて動作について説明する。 The liquid flow generator 10 is configured as described above. Next, the operation will be described.
まず、 波動発生の基本原理を概念図に基ずいて説明する。 図 2 、 図 3に示すように、 第 1の翼 1 3を、 その回転方向前端側および後 端側の淵 1 3 c を鋭角に、かつ中央部分を外方に膨らませ流線形状 に構成し、 回転軸 1 5にほぼ直角に固定しているので、 回転軸 1 5 を水中で矢印方向に回転すると、 第 1の翼 1 3は、 回転前方側では 図 2の X方向に水 (液体) を押し、 一方、 回転後方側では図 2の Y 方向に水が戻る (復元)。 この押出しと復元により、 平面視、 4方 向 (X方向) に波動が発生するのである。  First, the basic principle of wave generation will be described based on a conceptual diagram. As shown in FIGS. 2 and 3, the first wing 13 is formed in a streamlined shape by inflating the edge 13 c at the front end and the rear end in the rotation direction at an acute angle and bulging the center part outward. Since the rotating shaft 15 is rotated in the direction of the arrow underwater because it is fixed at a right angle to the rotating shaft 15, the first wing 13 will rotate in the X direction in Fig. On the other hand, the water returns in the Y direction in Fig. 2 on the rear side of rotation (restoration). By this extrusion and restoration, waves are generated in four directions (X direction) in plan view.
このとき第 1の翼 1 3の翼数と毎分の回転数の積が振動数にな り、 波動の振幅は第 1の翼 1 3の厚みにほぼ依存することになる。 この構成による第 1 の翼 1 3のエネルギー損失は主に翼面の抵 抗損失であるが、 上記のように断面形状を流線形にし、 かつ回転軸 1 5に対し直角に取り付けているので、 抵抗損失は少なく、 少ない 消費電力で、 最大限に効率よく波動を発生しうる。 翼装置 1 2をあ まりに高速で回転すると、 いたずらに水を撹拌することになつて、 波動を遠方に伝達できない。 波動を消失させないためには、 翼の形 状にもよるが、回転数は毎分 5 0 〜 1 5 0回転程度の低速回転にす る必要がある。 これにより消費電力も少なくて済み、 1 0 0 W〜 5 0 0 W程度の低消費電力でも十分に駆動でき、 したがって、 前記し たように太陽電池を電源とすることもできる。  At this time, the product of the number of blades of the first wing 13 and the number of revolutions per minute becomes the frequency, and the amplitude of the wave substantially depends on the thickness of the first wing 13. The energy loss of the first wing 13 due to this configuration is mainly the resistance loss of the wing surface, but since the cross-sectional shape is streamlined as described above and it is mounted at right angles to the rotation axis 15, Low resistance loss, low power consumption and maximum efficient wave generation. If the wing device 12 is rotated at such a high speed, the waves cannot be transmitted to a distant place because the water is agitated unnecessarily. In order to prevent the wave from disappearing, it is necessary to rotate at a low speed of about 50 to 150 revolutions per minute, depending on the shape of the wing. As a result, power consumption can be reduced, and sufficient driving can be performed even with a low power consumption of about 100 W to 500 W, and therefore, a solar cell can be used as a power source as described above.
次に、 第 2の翼 1 4は、 少なく ともその長軸が回転軸 1 5に対し て交差するように回転軸 1 5に斜めに固定されているので、回転軸 1 5が回転することにより、 プロペラと同様に水に流動を与える。 この場合に、 第 2の翼 1 4は、 その両面 1 4 a、 1 4 bが外側に膨 出する形状に形成されているので、回転軸 1 5が矢印方向に回転す ることによって、その回転前方側のふく らみ面のスクリュー流機能 (推進力) によって水が押され、 放射状の水流が発生する。 なお、 第 2の翼 1 4もふく らみをもっていることから、この第 2の翼 1 4 によっても若干水に波動も与える。 Next, the second wing 14 is obliquely fixed to the rotation axis 15 so that at least its major axis intersects the rotation axis 15, so that the rotation axis 15 rotates. Gives fluid to the water, like a propeller. In this case, since the second wing 14 is formed in a shape in which both sides 14a and 14b bulge outward, the rotation of the rotation shaft 15 in the direction of the arrow causes the second wing 14 to rotate. Water is pushed by the screw flow function (propulsion force) of the swollen surface on the front side of rotation, and radial water flow is generated. Since the second wing 14 also has a bulge, this second wing 14 Also gives some water waves.
上記の例では、第 2の翼 1 4をその長軸が回転軸 1 5に対して斜 めに交差するようにしたが、その短軸も回転軸 1 5に対して斜めに 交差するように回転軸 1 5に取り付けることによって、より水流を 発生させやすくなる。 これらの交差角は、 翼のふく らみの程度など に応じて適宜設定するとよい。 また回転軸 1 5の回転速度も、 第 1 の翼 1 3 による波動の発生、第 2の翼 1 4による水流の発生具合に より、 適宜選択するとよい。  In the above example, the second wing 14 has its long axis obliquely crossing the rotation axis 15, but its short axis also crosses the rotation axis 15 obliquely. Attaching to the rotating shaft 15 makes it easier to generate water flow. These intersection angles may be set appropriately according to the degree of swelling of the wings. Further, the rotation speed of the rotation shaft 15 may be appropriately selected depending on how the first wing 13 generates a wave and the second wing 14 generates a water flow.
第 1の翼 1 3 と第 2の翼 1 4とが同時に回転されることにより、 水の動きは、 第 1の翼 1 3による波動と、 第 2の翼 1 4による水流 とが合成された動きとなる。  By rotating the first wing 13 and the second wing 14 at the same time, the movement of water was such that the wave motion of the first wing 13 and the water flow of the second wing 14 were combined. Movement.
図 7に示すように、 液流発生装置 1 0を大きな水槽 (例えば 5 0 mの水泳用プール) 2 5の中央に配置して翼装置 1 2を駆動したと き、 水流に乗りつつ四方に波動が伝わり、 速度は緩いが水槽 2 5— 杯に広がる水流が定常状態で得られた。  As shown in Fig. 7, when the liquid flow generator 10 is placed in the center of a large water tank (for example, a 50-m swimming pool) 25 and the wing device 12 is driven, Waves propagated, and a steady stream of water was obtained at a slow speed, but widening the water tank.
すなわち、第 1の翼 1 3による波動によっては水の流れは生じな いが、 逆にこの波動は遠方にまで伝わる。 そして、 緩い回転速度に より第 2の翼 1 4が回転され、これにより放射状に広がる水流が発 生するが、 回転速度が緩やかなので、 この水流によって上記波動が 破壌されるものではなく、むしろ、水流に波動が乗ることによって、 水流自体遠方にまで伝わるのである。 また、 水流自体緩やかなもの であるので、急激な水流が却って周りの水の抵抗によって急激に減 殺されるのと相違し、定常状態になるまである程度の時間は要する が、やがて水槽 2 5—杯に広がる緩やかな水流が得られたものであ る。 因みに、 水槽 2 5を 5 0 mプールとし、 翼装置 1 2の大きさを 翼の長軸が 5 0 c mのものとし、回転速度を毎分 1 5 0回とした場 合に、 水槽 2 5の隅々にまで届く緩やかな水流と波動が生じた。  In other words, the flow of water does not occur due to the wave caused by the first wing 13, but the wave propagates to a distant place. Then, the second wing 14 is rotated by the slow rotation speed, thereby generating a radially extending water flow.However, since the rotation speed is slow, the wave is not broken by the water flow, but rather is broken. Therefore, the waves flow on the water stream, and the water stream itself travels far away. Also, since the water flow itself is gentle, it takes some time to reach a steady state, unlike the case where the rapid water flow is suddenly attenuated by the resistance of surrounding water. A gentle water current spreading over the area was obtained. By the way, if the water tank 25 is a 50 m pool, the size of the wing device 12 is 50 cm, the long axis of the wing is 50 cm, and the rotation speed is 150 rotations per minute, the water tank 25 Slow water currents and waves reaching every corner of the area.
このよう に、 本発明の液流発生装置 1 0は、 到達距離の大きい波 動と、水に動きを生じさせる水流との相乗現象を究明した結果得ら れたものである。 波動を壌さないために、 また水流のエネルギーが 減殺されないように、翼装置 1 2を緩やかに回転させる必要があり、 そして、 小さな駆動エネルギーにもかかわらず、 水に強い波動ェネ ルギ一と流動エネルギーを同時に与える事を可能にしたともいえ る。 As described above, the liquid flow generation device 10 of the present invention was obtained as a result of investigating a synergistic phenomenon between a wave having a long reach and a water flow that causes the water to move. It was a thing. It is necessary to rotate the wing device 12 gently so as not to dampen the waves and so that the energy of the water stream is not attenuated. It can be said that it has made it possible to give fluid energy at the same time.
また、 図 5 に示すように、 第 1の翼 1 3および第 2の翼 1 4の内 部を中空にし、 回転方向の後方位置に気体、 液体、 または微小固体 を含む高圧流体を噴出する小孔 2 1 を開け、この内部空間部と中空 にした回転軸 1 5 とを連通し、回転軸 1 5を通して高圧流体を第 1 の翼 1 3、 第 2の翼 1 4内に送り込み、 小孔 2 1から噴出させ、 噴 出時の反動力を利用し、 翼装置 1 2を回転させると共に、 爆気、 攪 拌、 混合などを行うようにすることができる。  Also, as shown in FIG. 5, the inside of the first wing 13 and the second wing 14 is made hollow, and a small high pressure fluid containing gas, liquid, or fine solid is ejected to the rear position in the rotation direction. A hole 21 is opened, this internal space is communicated with the hollow rotary shaft 15, and high-pressure fluid is sent through the rotary shaft 15 into the first blade 13 and the second blade 14, and a small hole is formed. The wing device 12 can be rotated using the reaction force generated at the time of jetting, and explosion, stirring, mixing, etc. can be performed.
瀑気を目的としたときの小孔 2 1 の径はなるべく小さく して噴 出空気の表面積を大きくする。噴出された空気は回転している翼 1 3 、 1 4と水流により再撹拌されるため空気粒が非常に微細化され る利点がある。 噴出孔径、 噴出圧力、 回転数などを調節することに より、 パイプの小孔からただ単に空気を噴出する場合に比して、 酸 素溶解効率を 6 0 %以上増大させることができた。 また撹拌、 混合 に於ても従来の方法に比較して数分の 1 の時間により 目的が達せ られた。  The diameter of the small hole 21 for the purpose of a waterfall should be as small as possible to increase the surface area of the jet air. The ejected air is re-mixed by the rotating blades 13 and 14 and the water flow, so that there is an advantage that the air particles are extremely fine. The oxygen dissolution efficiency could be increased by 60% or more compared to the case where air was simply blown out from the small hole of the pipe by adjusting the blowout hole diameter, the blowout pressure, and the rotation speed. In addition, the purpose of stirring and mixing was achieved in a fraction of the time required by the conventional method.
また、 波動と水流との相乗効果により、 緩やかであるが、 広い範 囲に、 かつ遠方にまで水流が達することから、 図 7に示すように、 水槽 2 5の隅々まで水流が行き渡り、コーナー部に異物が堆積する ことがなくなる。 この点、 図 8に示すように、 例えば強力ポンプ 2 6により強力な水流を水槽 2 5内に発生させ、循環させる場合には、 水流が却って減殺され、 隅々にまで水流が行き渡らず、 コーナ一部 に堆積物 2 7が積層する傾向があるが、 本実施例の場合には、 逆に 堆積物が剥離、 除去される傾向が見られた。  In addition, the water flow reaches the corners of the water tank 25, as shown in Fig. 7, because the water flow reaches a wide area and far away due to the synergistic effect of the wave and the water flow. No foreign matter is deposited on the part. In this regard, as shown in Fig. 8, for example, when a strong water flow is generated in the water tank 25 by the high-power pump 26 and circulated, the water flow is rather reduced, and the water flow does not reach every corner. Deposits 27 tend to be partially deposited, but in the case of the present example, conversely, the deposits tended to be peeled off and removed.
本発明の液流発生装置 1 0は、 前記したように、 図 7に示す水槽 2 5を例としたとき水槽 2 5の中央の位置に配置できる。これによ り水流と波動が四方に同時に発生する。 従って、 水槽 2 5の壁面と 短い間隔が確保でき、水流の水速を落とさないで容易に循環流を発 生させることができる。 この点図 8の従来方法では、 液流発生装置 (強力ポンプなど) の構造上、 水槽 2 5の壁面近くに液流発生装置 を配置して、 反対側の壁面に向けて水流を起し循環流を作るため、 壁面との距離が本発明の液流発生装置の約 2倍相当になる。従って 流動水の流速は距離に対し等比級数的に急速に落ちるため、必要な 流速を維持し循環流を継続させるためには、非常に大きなエネルギ 一を必要としていた。 本発明の液流発生装置は、 その水槽内等での 上記配置位置にも関係し、エネルギー効率よく、流動、循環、瀑気、 撹拌、 混合などを可能にした。 As described above, the liquid flow generating device 10 of the present invention has a water tank shown in FIG. When taking 25 as an example, it can be placed at the center of the water tank 25. As a result, water currents and waves are simultaneously generated in all directions. Therefore, a short distance from the wall surface of the water tank 25 can be secured, and the circulating flow can be easily generated without reducing the water speed of the water flow. In the conventional method shown in Fig. 8, in the structure of the liquid flow generator (such as a powerful pump), the liquid flow generator is arranged near the wall of the water tank 25, and the water flow is generated and circulated toward the opposite wall. To create the flow, the distance from the wall is about twice as large as the liquid flow generator of the present invention. Therefore, the flow velocity of the flowing water drops exponentially rapidly with respect to the distance, so that a very large amount of energy was required to maintain the required flow velocity and continue the circulating flow. The liquid flow generator of the present invention is capable of performing flow, circulation, waterfall, agitation, mixing, and the like with high energy efficiency in relation to the above-mentioned arrangement position in a water tank or the like.
発明の効果 The invention's effect
本発明による液流発生装置は、 流動、 循環、 瀑気、 撹拌、 混合な ど応用範囲が広く、 湖沼の浄化、 各種工場から排出される汚濁水の 浄化、 また各種物質の生産過程における複数の材料物質の混合、 撹 拌など多くの分野に於て、 液流を発生させる装置に利用できる。  The liquid flow generation device according to the present invention has a wide range of applications such as flow, circulation, waterfall, agitation, mixing, etc., purification of lakes and marshes, purification of polluted water discharged from various factories, and production of various substances in various processes. It can be used for devices that generate liquid flows in many fields such as mixing and stirring of materials.

Claims

求 の 範 囲 Range of request
1 . 互いに反対側となる両面が外側に対称的に膨出し、 周縁部にい く程厚みを減じる細長い翼であって、中央部で回転軸に対し、長軸、 短軸共に直角となるように固定される第 1の翼と、中央部で前記回 転軸に対して、少なく とも長軸が斜めに交差するように固定される 第 2の翼とを具備し、 1. Both sides opposite to each other are symmetrically bulged outward, and the width of the blade is reduced toward the periphery, so that both the long and short axes are perpendicular to the rotation axis at the center. A first wing fixed to the rotating shaft, and a second wing fixed so that at least a major axis thereof obliquely intersects the rotation axis at a central portion,
前記回転軸が回転することにより、前記第 1の翼が周期的に液体 を切ることによつて液体に波動を生じさせると共に、前記第 2の翼 により液体を流動させることを特徴とする液流発生装置。  The liquid flow is characterized in that the rotation of the rotating shaft causes the first blade to periodically cut off the liquid, thereby generating a wave in the liquid and causing the liquid to flow by the second blade. Generator.
2 .前記翼の外周縁の形状が長楕円状もしくは長円状をなすことを 特徴とする請求の範囲 1記載の液流発生装置。 2. The liquid flow generator according to claim 1, wherein the outer peripheral edge of the blade has an elliptical shape or an elliptical shape.
3 . 前記第 1の翼と第 2の翼とが正面からみて、 直交する十字状を なすよう に配置されていることを特徴とする請求の範囲 1 または 2記載の液流発生装置。 3. The liquid flow generating device according to claim 1, wherein the first wing and the second wing are arranged so as to form an orthogonal cross when viewed from the front.
4 .前記回転軸を回転させる駆動部を有することを特徴とする請求 の範囲 1 、 2または 3記載の液流発生装置。 4. The liquid flow generating device according to claim 1, further comprising a driving unit for rotating the rotating shaft.
5 . 前記駆動部が電動モ一夕を含み、 該電動モータの駆動源が太陽 電池であることを特徴とする請求の範囲 1 、 2 、 3または 4記載の 液流発生装置。 5. The liquid flow generating device according to claim 1, wherein the driving unit includes an electric motor, and a driving source of the electric motor is a solar cell.
6 . 前記回転軸が中空に形成され、 前記第 1の翼および第 2の翼が 該回転軸に連通する中空に形成され、前記第 1の翼および第 2の翼 の回転後方側となる面に多数の小孔が形成され、前記回転軸内に高 圧流体を送り込む高圧流体送出装置を備え、 前記高圧流体送出装置から供給される高圧流体が前記小孔から 噴出される反力により前記第 1の翼および第 2の翼が回転軸を中 心に回転することを特徴とする請求の範囲 1 、 2または 3記載の液 流発生装置。 6. The surface in which the rotation shaft is formed hollow, the first wing and the second wing are formed hollow so as to communicate with the rotation shaft, and the rotation wings of the first wing and the second wing. A high-pressure fluid sending device for sending a high-pressure fluid into the rotary shaft; 2. The method according to claim 1, wherein the first blade and the second blade rotate about a rotation axis by a reaction force of high-pressure fluid supplied from the high-pressure fluid delivery device to be ejected from the small holes. 2. The liquid flow generator according to 2, 3 or 4.
PCT/JP2002/009813 2001-09-25 2002-09-24 Liquid current generating device WO2003026783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003530411A JP3980557B2 (en) 2002-09-24 2002-09-24 Liquid flow generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-333517 2001-09-25
JP2001333517A JP2004290712A (en) 2001-09-25 2001-09-25 Water stream generator due to fluctuation of volume body

Publications (1)

Publication Number Publication Date
WO2003026783A1 true WO2003026783A1 (en) 2003-04-03

Family

ID=19148766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009813 WO2003026783A1 (en) 2001-09-25 2002-09-24 Liquid current generating device

Country Status (2)

Country Link
JP (1) JP2004290712A (en)
WO (1) WO2003026783A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434191A (en) * 2011-08-23 2012-05-02 山东理工大学 Spiral-flow type dilution mixer with adjustable blades for gas drainage
JP2012139610A (en) * 2010-12-28 2012-07-26 Eddy Plus Co Ltd Stirring rotor and stirring device
CN110078230A (en) * 2019-04-27 2019-08-02 江苏大学镇江流体工程装备技术研究院 A kind of inverted umbrella-shaped aeration machine with anti-winding function
CN111888965A (en) * 2020-09-29 2020-11-06 天津速一腾高新技术有限公司 Continuous circulation type stirring paddle based on airflow floating and color sand mixing mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902770B2 (en) * 2010-06-08 2012-03-21 株式会社エディプラス Rotating body for stirring and stirring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538423A (en) * 1991-06-26 1993-02-19 Shoshu Kin Gas dissolution device
US5744072A (en) * 1996-05-03 1998-04-28 Aeration Industries International, Inc. Method of treating waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538423A (en) * 1991-06-26 1993-02-19 Shoshu Kin Gas dissolution device
US5744072A (en) * 1996-05-03 1998-04-28 Aeration Industries International, Inc. Method of treating waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139610A (en) * 2010-12-28 2012-07-26 Eddy Plus Co Ltd Stirring rotor and stirring device
CN102434191A (en) * 2011-08-23 2012-05-02 山东理工大学 Spiral-flow type dilution mixer with adjustable blades for gas drainage
CN110078230A (en) * 2019-04-27 2019-08-02 江苏大学镇江流体工程装备技术研究院 A kind of inverted umbrella-shaped aeration machine with anti-winding function
CN111888965A (en) * 2020-09-29 2020-11-06 天津速一腾高新技术有限公司 Continuous circulation type stirring paddle based on airflow floating and color sand mixing mechanism
CN111888965B (en) * 2020-09-29 2021-03-12 安徽尚成建设工程有限公司 Continuous circulation type stirring paddle based on airflow floating and color sand mixing mechanism

Also Published As

Publication number Publication date
JP2004290712A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US6582208B2 (en) Bladeless pump
WO2016181947A1 (en) Stirring device
IL199499A (en) Method and device for treating a liquid
CN107350237A (en) A kind of rotating cylinder quick descaling device using vacuole technology
KR20130078332A (en) Device for micro bubble generation
WO2003026783A1 (en) Liquid current generating device
EP2227315B1 (en) Mixer assembly and method for flow control in a mixer assembly
JP5665392B2 (en) Ultra-fine bubble generator
JP3980557B2 (en) Liquid flow generator
JP2573568B2 (en) Apparatus for producing directed fluid flow
KR20100121274A (en) A propeller for generator
CN207188387U (en) A kind of rotating cylinder quick descaling device using vacuole technology
KR101663246B1 (en) Contra-rotating multi-layer propeller unit for multi-phase flow
JPH04171036A (en) Method for generating minute air bubbles in water
WO1979000958A1 (en) Aeration propeller and apparatus
EP0827940A1 (en) Air charger
JP2001062484A (en) Vertical shaft-type aeration agitator
CN102144607A (en) Transmission of oxygen increasing machine
JP2001079557A (en) Water quality improvement of river, lake and pond and device therefor
US20070014669A1 (en) Centrifugal engine
WO2020233247A1 (en) Ship propulsion device
JP2001104946A (en) Moving type floating plankton treatment apparatus
JP2018069159A (en) Disc rotation type fine bubble generation method and device
JP2003211180A (en) Underwater fine air bubble generator
JPH11197687A (en) Water stream generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003530411

Country of ref document: JP

122 Ep: pct application non-entry in european phase