WO2003012456A1 - Rotor pour compte-tours - Google Patents

Rotor pour compte-tours Download PDF

Info

Publication number
WO2003012456A1
WO2003012456A1 PCT/JP2002/007663 JP0207663W WO03012456A1 WO 2003012456 A1 WO2003012456 A1 WO 2003012456A1 JP 0207663 W JP0207663 W JP 0207663W WO 03012456 A1 WO03012456 A1 WO 03012456A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover ring
rotation sensor
ring
cylindrical
multipole magnet
Prior art date
Application number
PCT/JP2002/007663
Other languages
English (en)
French (fr)
Inventor
Masanori Tomioka
Original Assignee
Uchiyama Manufacturing Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiyama Manufacturing Corp. filed Critical Uchiyama Manufacturing Corp.
Priority to JP2003517596A priority Critical patent/JPWO2003012456A1/ja
Priority to US10/485,271 priority patent/US6906509B2/en
Priority to EP02755673A priority patent/EP1424560A4/en
Publication of WO2003012456A1 publication Critical patent/WO2003012456A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a structure for detecting the rotational speed of a bearing part that rotates relatively, specifically, detecting the rotational speeds of front, rear, left and right wheels of an automobile for deployment of an automobile anti-brake brake system or a traction control system.
  • the present invention relates to a rotor for a rotation sensor used when performing the rotation. Background art
  • the following structure is often used as a wheel rotation number detecting device used to prevent a rotation difference from occurring in each wheel of an automobile. It consists of a rotation sensor rotor attached to the rotating part of the bearing, and a sensing sensor that senses pulses emitted from the rotation sensor rotor.
  • the rotation sensor port which is a pulse generating rotor, comprises a cylindrical portion fitted and fixed to the peripheral surface of a rotating bearing, and a circular portion bent radially from an end edge of the cylindrical portion.
  • a reinforcing ring having an L-shaped cross section and a pulse generating means composed of a multipolar magnet are arranged on an axially outer surface of a circular portion of the reinforcing ring.
  • a sensing sensor for sensing a pulse emitted from the pulse generating means is provided near the pulse generating means from the outside in the axial direction.
  • the rotational speed detecting device having such a structure has a sealing lip formed at the end of the reinforcing ring, and has a sealing function.
  • a pulse generating ring 106 as a pulse generating means composed of a multipolar magnet is attached to an axially outer surface of a circular ring portion 105 bent radially from an end edge of the cylindrical portion 104. I have. Then, the rotation speed detection sensor 108 generates a pulse.
  • the raw ring 106 is arranged close to the outside from the axial direction.
  • the end of the L-shaped reinforcing ring 103 composed of a cylindrical portion 104 and a circular ring portion 105 that is bent radially from the edge of the cylindrical portion 104 is shown in FIG. As shown, a seal lip 107 is provided, and the seal lip 107 is in sliding contact with the peripheral surface of the inner ring 102. Due to this sealing function, the bearing composed of the outer ring 101 and the inner ring 102 is protected from intrusion of moisture or foreign matter.
  • the pulse generation ring 106 is located closest to the rotation speed detection sensor 108 and is located at the outermost position. It is arranged to be exposed to the atmosphere on the side. Therefore, the pulse generation ring 106 is in a severe condition in which it is directly exposed to scattered water or foreign matter, and if this water enters, it causes ⁇ to reduce the detection capability of the number of revolutions, and if it is worse, the portion becomes Even foreign matter may adhere to the surface.
  • the present invention provides a complete protection of the pulse generator, and greatly improves the sensing performance and the durability. It is intended to provide.
  • the present invention relates to a rotation sensor port used for detecting the number of rotations of a bearing portion such as a wheel of an automobile, and a radial direction of a rotating portion of the bearing portion.
  • a reinforcing ring fitted and fixed to the outside, a cylindrical multipole magnet extending in the axial direction and provided radially outside of the reinforcing ring, and a cylindrical multipole magnet provided radially outside the multipole magnet.
  • the present invention proposes a rotor for a rotation sensor, comprising a non-magnetic covering ring that covers a radial outer surface of a pole magnet.
  • any cylindrical multipole magnet may be employed as long as it is used as an encoder in this technical field.
  • a ferromagnetic material is mixed with an elastic material such as synthetic rubber or synthetic resin, and vulcanized using a mold. After that, the magnetized magnets such that the S and N poles appear alternately in the circumferential direction can be used as a cylindrical multipole magnet.
  • the cylindrical multipolar magnet is arranged radially outside the reinforcing ring by vulcanizing the cylindrical multipolar magnet using a mold and then attaching it to the radial outer surface of the reinforcing ring by bonding or the like. be able to.
  • Magnetization of the vulcanized product can be performed before the non-magnetic cover ring is placed radially outside the multipole magnet so as to cover the radially outer surface of the multipole magnet. Wear. This is advantageous because clear and strong N and S poles are formed.
  • the cover ring is made of a non-magnetic material, it is possible to perform magnetization after the cover ring is arranged as described above. This is advantageous in that the manufacturing process of the rotation sensor port of the present invention can be simplified, which is advantageous.
  • the rotation sensor rotor of the present invention has a reinforcing ring and a cylindrical multi-pole.
  • a magnet and a covering are separately formed, and after a cylindrical multipole magnet is magnetized, the magnet is adhered to the radially outer surface of the reinforcing ring, and fixed and assembled from the outer peripheral side with a covering.
  • it can be manufactured by adhering a cylindrical multipole magnet to the radially outer surface of the reinforcing ring, fixing the assembly from the outer peripheral side with a cover ring, and then magnetizing the cylindrical multipole magnet.
  • a cylindrical multipole magnet is integrally formed on the radially outer surface of the reinforcing ring by vulcanization molding bonding, the cylindrical multipole magnet is magnetized, and this is fixed from the outer peripheral side with a cover ring. It can also be manufactured by assembling, or by assembling with a cover ring fixed from the outer periphery, and then magnetizing a cylindrical multipole magnet. The optimal manufacturing process can be adopted according to various situations and requirements.
  • polymers such as NBR (acrylonitrile butadiene rubber), ACM (acrylate copolymer), and H-NBR (hydrogenated acrylonitrile butadiene rubber) are used as the elastic material such as synthetic rubber or synthetic resin. Can be used.
  • the ferromagnetic material mixed into the elastic material may be strontium ferrite, barium ferrite, or strontium ferrite and barium ferrite. Powder mixed with light or the like can be used.
  • Such a ferromagnetic material powder is preferably mixed with the above-mentioned polymer in an amount of about 70% to 98% by weight and mixed with a rubber chemical.
  • the multi-pole magnet that generates a pulse is disposed radially outside a rotating portion of a bearing portion such as an automobile wheel.
  • the radially outer surface of the multipole magnet is covered by a covering provided on the radially outer side of the multipole magnet, it is not directly exposed to scattered water or foreign matter. As a result, it is possible to prevent a situation such as the occurrence of a mackerel, the attachment of a foreign substance, and the occurrence of damage due to the intrusion of the foreign substance.
  • the covering is made of a non-magnetic material, the magnetic force from the multi-pole magnet easily penetrates it and does not degrade the pulse generation performance in any way.
  • the cover ring may be provided radially outside the multipole magnet so as to cover the radially outer surface of the multipole magnet.
  • a structure in which the multipolar magnet is held from the outside in the radial direction can be adopted.
  • the multipole magnet can be more reliably shut off from the outside, so that the multipole magnet is not affected by the outside. Therefore, the multi-pole magnet is more reliably protected from the falling stones, sand, mud, water, etc. Can be generated.
  • the cover ring holds the multipole magnet from the radial outside of the cylindrical multipole magnet.
  • a cylindrical multipole magnet is caulked to a cover ring, and the multipole magnet is held by the cover ring.
  • a cylindrical multipole magnet is adhered to a cover ring, and the multipole magnet is held by the cover ring.
  • the cylindrical multipole magnet and the covering are integrated, it is more effective in preventing the multipole magnet from being affected from the outside.
  • the outer periphery of the cylindrical multipole magnet is pressed into the reinforcing ring, in which the cylindrical multipole magnet is provided radially outward, from the axial direction. It is also possible to adopt a structure in which the surface and the inner peripheral surface of the cover ring are in pressure contact with each other.
  • the cylindrical multipole magnet is provided with an elastic projection on its radially outer surface which extends radially outward from the radially inner surface of the cover ring.
  • the radially outer surface of the cylindrical multipole magnet is covered by a simple process of press-fitting the cover ring from the axial direction. This is advantageous because the cover ring can be arranged radially outward as described above.
  • a plurality of elastic projections are provided at predetermined intervals in the circumferential direction on the radially outer surface of the cylindrical multipole magnet, and preferably three at equal intervals. It is desirable to provide the above.
  • the cover ring may have a structure in which the cover ring is fitted and fixed radially outside the rotating portion of the bearing portion.
  • the part extending in the axial direction outside (the right side in Fig. 2) of the cover ring is fitted and fixed to the radial outside of the rotating part of the bearing,
  • the part that extends inward in the axial direction (the left side in Fig. 2) is provided radially outside the cylindrical multipole magnet to cover the radially outer surface of the cylindrical multipole magnet.
  • the cover ring can be arranged radially outward so as to cover the radially outer surface of the cylindrical multipole magnet by a simple process of press-fitting the cover ring from the axial direction. Is advantageously eliminated.
  • the cylindrical multipolar magnet is shut off from the outside, The cylindrical multipole magnet can be prevented from being affected from the outside.
  • the first to fourth cover rings hold the cylindrical multipole magnet at a portion extending inward in the axial direction of the cover ring (the left side in FIG. 2). By realizing this, it is possible to more surely prevent the multipolar magnet from being affected from the outside while having the configuration shown in FIG. For example, as shown in Fig.
  • the cover ring in a structure in which the cover ring is fitted and fixed radially outside the rotating part of the bearing, the cover ring is press-fitted from the axial direction so that the diameter of the cylindrical multipole magnet is increased.
  • the third and fourth cover rings described above, which hold the cylindrical multipole magnet between the outer side surface in the direction and the inner side surface in the radial direction of the cover ring, are described as follows. (The left side in Fig. 2). Also, when the cover ring is pressed in from the axial direction, adhesion between the radial outer surface of the cylindrical multipole magnet and the radial inner surface of the force parling is attempted, and the cover ring is pressed from the axial direction.
  • the inner end of the cover ring in the axial direction (the left end in Fig. 2) is swaged to form a gap between the radial outer surface of the cylindrical multipole magnet and the radial inner surface of the cover ring.
  • the configuration in which the second and first covering rings hold the cylindrical multipole magnet can be realized by a portion extending inward in the axial direction of the cover ring (the left side in FIG. 2).
  • the thickness of the covering can be 0.1 mm to 1.0 mm.
  • the cover ring is relatively thin in this way, in addition to having good permeability of magnetic force, it has good formability, and the cover ring can be formed with its axial inner end (see FIG. 4). It is also accurate, easy and preferable to perform force crimping at the left end.
  • cover ring is required to have the above-described performance and non-magnetic performance that allows the transmission of magnetic force.
  • the material include SUS304, Al, CuZn, and C11. Can be selected.
  • the cylindrical multipole magnet that generates a rotation pulse is arranged at a location facing the outside, but is isolated from the outside air by a nonmagnetic covering ring that covers the outer diameter side.
  • the wheel rotational speed detector is protected from foreign matter, lubricating oil, etc., scratches, and destruction, and can form an accurate and stable magnetic field. Only when this stable magnetic field is present, the excellent sensing performance of the rotation speed detection sensor is exhibited, and high-precision rotation speed detection can be performed.
  • the protective action of the cover ring prevents abrasion, and in actual use, the cover ring holds the cylindrical multipole magnet from the outside diameter side. Since the cover structure holds the magnetic pole, it prevents displacement and misalignment, and retains accurate magnetic poles over a long period of time.
  • FIG. 1 is a partially omitted sectional view showing a state in which a rotor for a rotation sensor of the present invention is mounted on a rotating member of a bearing unit.
  • FIG. 2 is a partially omitted cross-sectional view showing a state where another rotation sensor rotor of the present invention is mounted on a rotating member of a bearing unit.
  • FIG. 3 is a cross-sectional view in which a part of another rotation sensor rotor of the present invention is omitted.
  • FIG. 4 is a sectional view in which a part of another rotation sensor rotor of the present invention is omitted.
  • FIG. 5 is a sectional view in which a part of another rotation sensor rotor of the present invention is omitted.
  • FIG. 6 is a partially omitted cross-sectional view showing another state in which the rotation sensor port of the present invention is mounted on a rotating member of the bearing unit.
  • FIG. 7 is a partially omitted sectional view showing a state in which a conventional rotor for a rotation sensor is mounted on a rotating member of a bearing unit.
  • the mixing ratio of strontium ferrite powder is 80% by weight.
  • the outer surface of the metal reinforcing ring 2 in the radial direction is subjected to a base treatment, an adhesive is applied, and the unvulcanized rubber prepared as described above is vulcanized into a cylindrical shape by a mold and simultaneously bonded.
  • a 0.5 mm thick SUS 304 plate is formed into a ring shape to form a cover ring 4. This is press-fitted from the axial direction (left and right direction in Fig. 1) of the reinforcing ring 2 in which the rubber member containing ferrite powder is vulcanized and bonded to the outer surface in the radial direction, and the cover ring 4 is arranged at the outermost periphery To the temporarily installed state.
  • the right end in the axial direction of the cover ring 4 is formed from the beginning in the state shown in FIG. 1, and the cover ring 4 and the cylindrical multipole magnet 3 are caulked by force. If only the left end in the axial direction of the pearling 4 is deformed radially inward, the working process can be simplified.
  • the rotation sensor rotor 1 is a member for rotating a bearing portion.
  • the rotation sensor 1 is fitted and fixed to a drive shaft 5.
  • a rotation speed detection sensor 108 is arranged in close proximity from the outside in the radial direction, and is used as a wheel rotation speed detection device.
  • a base treatment is performed on the radially outer surface of the metal reinforcing ring 12, an adhesive is applied, and the unvulcanized rubber prepared as described above is vulcanized and molded into a cylindrical shape by a mold at the same time.
  • This vulcanized and bonded rubber member containing ferrite powder is magnetized, and a cylindrical multipole magnet 13 in which N poles and S poles are alternately formed in the circumferential direction is formed in the radial direction of the reinforcing ring 12. Installed on the outside.
  • a 311 8304 plate having a thickness of 0.6111111 is formed into a ring shape having a cross section shown in FIG. 2 to form a cover ring 14.
  • the cover ring 14 is formed so as to extend radially outward from the axially outer end of the cylindrical portion 14a (the right side in Fig. 2) and from the axially inner end of the cylindrical portion 14a.
  • the annular portion 14b extends toward the inside, and the cylindrical portion 14c extends axially inward from the radially outer end of the annular portion 14b.
  • a reinforcing ring 12 provided with a cylindrical multipolar magnet 13 on a radially outer surface is fitted and fixed to a rotating member of a bearing portion, in the case of FIG. 2, a drive shaft 5.
  • the cover ring 14 was fitted and fixed to the drive shaft 5 to obtain the rotation sensor opening 11 of the present invention.
  • the cover ring 14 is arranged radially outside the multipole magnet 13, and the cover ring 14 has a multipole magnet formed by the circular ring portion 14 b and the cylindrical portion 14 c.
  • the radially outer surface of the magnet 13 is covered.
  • a rotation speed detection sensor 108 is arranged in proximity to the cylindrical multipole magnet 13 of the rotation sensor rotor 11 from the radial outside, and is used as a wheel rotation speed detection device. .
  • a rotor 21 for a rotation sensor shown in FIG. 3 explains another embodiment in a structure in which a cover ring 24 holds the cylindrical multipole magnet 23 from the outside in the radial direction. is there.
  • the cylindrical multipole magnet 23 which is vulcanized and bonded to the radially outer surface of the metal reinforcing ring 22 and is magnetized so that the N and S poles appear alternately in the circumferential direction, is a cover.
  • An elastic projection 26 having a size extending radially outward (upward in FIG. 3) from the radially inner surface of the ring 24 is provided on the radially outer surface.
  • three elastic projections 26 are provided on the radially outer surface of the cylindrical multipole magnet 23 at equal intervals.
  • the cover ring 24 is press-fitted from the axial direction (the left-right direction in FIG. 3) to the reinforcing ring 22 provided with the cylindrical multipole magnet 23 on the radially outer surface as described above. Since the elastic projection 26 extends radially outward (upward in FIG. 3) from the radially inner side surface of the cover ring 24, the tip thereof is elastically deformed by press-fitting the cover ring 24, and the cover ring 2 is deformed. 4. Press against the inner surface of 4. Thus, the rotation sensor rotor 21 of the present invention is formed.
  • the covering ring 24 is fixed.
  • the rotation sensor may be press-fitted from the axial direction (the left-right direction in FIG. 3) to form the rotation sensor opening 21 of the present invention.
  • the pressure contact between the radially inner surface of the cover ring 24 and the radially outer surface of the cylindrical multipole magnet 23 changes only the elastic protrusion 2.6.
  • Most of the outer surface of the cylindrical multi-pole magnet 24 is kept in a non-contact state.c.As described above, after the magnetizing has been completed, the cover ring 24 must be attached. Even so, most of the outer surface of the cylindrical multipole magnet 24 is kept in an accurate shape. As a result, it is possible to minimize the disturbance of the pitch between the north pole and the south pole and to provide an accurate pulse.
  • the inner diameter of the axially outer end (right end in FIG. 3) of the cover ring 24 is set to the axially outer end of the cylindrical multipole magnet 23 (in FIG. 3, The inner diameter of the right side is almost the same.
  • the inner diameter side of the axially outer end (right end in FIG. 3) of the cover ring 24 is further extended in the inner diameter direction, and as shown in the embodiment of FIG.
  • an embodiment may be employed in which the bearing portion is fitted and fixed to a rotating member, for example, a drive shaft.
  • the rotation sensor rotor 21 is the same as the first and second embodiments, and a description thereof will be omitted.
  • FIGS. 4 and 5 are intended to improve the workability of fitting a rotating part of a bearing, for example, a drive shaft, and to increase the effective area of a cylindrical multipole magnet. This embodiment will be described.
  • the reinforcing ring 32 includes a rotating member of the bearing portion, for example, a cylindrical portion 32 a fitted and fixed to the radially outer surface of the shaft, It is formed so as to have a ring portion 32b extending radially outward from the end of the shape portion 32a.
  • the cylindrical multipolar magnet 33 which is vulcanized and bonded to the reinforcing ring 32, is formed so as to extend in the axial direction (the left-right direction in FIG. 4) outside the radial direction of the circular ring portion 32b. You. As a result, the cylindrical multipole magnet 33 is arranged at a position radially outwardly away from the rotating member of the bearing, for example, the drive shaft. In this way, the fitting workability is improved and the effective area of the cylindrical multipole magnet is increased.
  • the cover ring 34 is arranged at the outermost periphery and temporarily mounted, and as shown in FIG. It can be performed by changing the left end 36 in the axial direction radially inward as shown by arrow 37.
  • the reinforcing ring 42 includes a rotating member of a bearing portion, for example, a cylindrical portion 42 a fitted and fixed to a radially outer surface of a drive shaft, and a cylindrical portion 4 a. 2a, a circular portion 4 2b extending radially outward from the end portion, and a cylindrical portion 4 2c extending axially from the radially outer end of the circular portion 42.
  • the cylindrical multi-pole magnet 43 bonded to the reinforcing ring 42 by vulcanization molding is provided on the radially outer surface of the cylindrical portion 42c.
  • a covering 44 is provided radially outside the cylindrical multipole magnet 4.
  • the cylindrical multipolar magnet 43 is disposed at a position radially outwardly away from the rotating member of the bearing, for example, the drive shaft. In this way, the fitting workability is improved and the effective area of the cylindrical multipole magnet is increased.
  • the other parts of the rotation sensors 31 and 41 shown in FIGS. 4 and 5 are the same as those in the first and second embodiments, and the description thereof is omitted. (Example 5)
  • Embodiment 2 shows a state in which the rotor for the rotation sensor of the present invention is fitted to the drive shaft 5 which is the inner ring of the bearing portion.
  • FIG. This explains a case where 51 is mounted on the outer peripheral side of the outer ring 6 of the bearing portion. Even with the mounting structure shown in Fig. 6, the radial outer surface of the cylindrical multipole magnet 53 is covered by the covering 54, so there is no worry about use in harsh places exposed to muddy water. It is assumed.
  • a seal loop that slides on the radially outer surface of the inner ring 5 can be provided on the reinforcing ring 52 or the force paring 54.
  • a seal lip 55 is provided on the reinforcing ring 52 so as to be in sliding contact with the radially outer surface of the inner ring 5.
  • the seal lip provided on the reinforcing ring 52 can be brought into contact with the side peripheral surface of the flange portion to seal the bearing portion.
  • ADVANTAGE OF THE INVENTION it is possible to more reliably protect the pulse generating portion of the rotor for the rotating sensor used for detecting the rotational speed of the front, rear, left and right wheels of the automobile, and the rotational performance with greatly improved sensing performance and durability is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

明細書 回転センサ用ロータ一 技術分野
本発明は、 相対回転する軸受部の回転数検出構造に関し、 具体的には自動車の アンチ口ヅクブレーキシステムあるいはトラクシヨンコントロールシステムなど の配備のため、 自動車の前後 ·左右の車輪の回転数を検出する際に用いられる回 転センサ用ローターに関する。 背景技術
従来、 自動車の各車輪に回転差が生じるのを防止するために用いられる車輪回 転数検出装置としては次のような構造が多く用いられている。 これは、 軸受の回 転部に取り付けられる回転センサ用ロー夕一と、 この回転センサ用ローターから 発せられるパルスを感知する感知センサーからなっている。 パルス発生ローター である回転センサ用口一夕一は、 回転する軸受の周面に嵌合固定される円筒部と、 当該円筒部の端縁から径方向に折れまがっている円輪部とからなる断面 L字形の 補強環と、 当該補強環の円輪部の軸方向外側面に多極磁石からなるパルス発生手 段が配置されているものである。 そして、 このパルス発生手段から発するパルス を感知する感知センサーが、 前記のパルス発生手段に軸方向の外側から近接配備 されている。 このような回転数検出装置が開発され実用化に至っている。
このような構造の回転数検出装置においては、 多くの場合、 補強環の端部ヘシ —ルリップが形成され、 密封機能が付加されている。 以下、 図面を参照しつつ詳
9、る 0
このような従来例の一例を第 7図を用いて説明する。 回転する軸受の周面 (第 7図の場合は、 外輪 1 0 1の周面) に、 補強環 1 0 3の円筒部 1 0 4が嵌合固定 されている。 この円筒部 1 0 4の端縁から径方向に折れ曲がつている円輪部 1 0 5の軸方向外側面に多極磁石からなるパルス発生手段としてのパルス発生リング 1 0 6が取り付けられている。 そして、 回転数検出センサ一 1 0 8が、 パルス発 生リング 1 0 6に、 軸方向の外側から近接配備されている。
円筒部 1 0 4と、 円筒部 1 0 4の端縁から径方向に折れまがっている円輪部 1 0 5とからなる断面 L字形の補強環 1 0 3の端部には、 第 7図図示のように、 シ ールリップ 1 0 7が設けられており、 このシールリップ 1 0 7が内輪 1 0 2の周 面に摺接している。 これによる密封機能によって、 外輪 1 0 1、 内輪 1 0 2から なる軸受は、 水分あるいは異物の侵入から守られている。
第 7図図示のような従来の回転数検出装置におけるパルス発生ローターである 回転センサ用口一夕一においては、 パルス発生リング 1 0 6は、 回転数検出セン サー 1 0 8に近付けて最も外部側の大気に露出した配置になっている。 そこで、 パルス発生リング 1 0 6は、 飛散する水あるいは異物に直接曝される酷い状況に あり、 この水が侵入すれば鲭の発生を招いて回転数の検出能力を低下させ、 悪く すると該部分へ異物さえ付着しかねない。 異物がパルス発生リング 1 0 6と回転 数検出センサー 1 0 8間へ付着、 侵入すれば、 パルス発生リング 1 0 6が回転中 に異物を嚙み込み、 損傷を起こしてしまい、 回転検出数を誤らせるという回転数 検出装置として致命的な欠点となって現れる。 発明の開示
本発明は前述した従来の回転数検出装置における回転センサ用ローターの欠点 に鑑み、 パルス発生部の完璧な保護をなし、 感知性能と耐久性を飛躍的に向上せ しめた回転センサ用ロー夕一を提供することを目的としている。
前記課題を解決するため、 この発明は、 自動車のホイール等の軸受部において その回転数の検出をなすために用いられる回転センサ用口一夕一であって、 軸受 部の回転する部分の径方向外側に嵌合固定される補強環と、 軸方向に延び、 当該 補強環の径方向外側に配備される円筒状の多極磁石と、 当該多極磁石の径方向外 側に配備され、 当該多極磁石の径方向外側面を覆う非磁性体製のカバーリングと からなる回転センサ用ローターを提案するものである。
前記において円筒状多極磁石としては、 この技術分野においてエンコーダとし て用いられているものであれば、 いずれも採用することができる。 例えば、 強磁 性材料を合成ゴムあるいは合成樹脂等の弾性素材に混入し、 型を用いて加硫成型 した後、 円周方向に S極と N極とが交互に表れるように着磁したものを円筒状多 極磁石とすることができる。
補強環の径方向外側への円筒状多極磁石の配備は、 円筒状多極磁石を型を用い て加硫成型した後、 補強環の径方向外側面に接着等によって取り付けることによ り行うことができる。 また、 補強環の径方向外側面に下地処理を行って、 接着材 を塗布し、 ここに強磁性材料が混入されているゴム材料を型によって加硫成型す ると同時に接着することもできる。
なお、 加硫成型したものへの着磁は、 非磁性体製のカバーリングが多極磁石の 径方向外側面を覆うように多極磁石の径方向外側に配備される前に行うことがで きる。 このようにすれば、 はっきりとして強力な N極、 S極が形成されるので有 利である。 ただし、 カバーリングは非磁性体製であるので、 カバーリングが前記 のように配備された後に着磁を行うことも可能である。 このようにすれば、 本発 明の回転センサ用口一夕一の製造工程を簡素化することができるので有利である 本発明の回転センサ用ロー夕一は、 補強環と、 円筒状多極磁石と、 カバーリン グとをそれそれ別々に形成し、 円筒状多極磁石を着磁した後にこれを補強環の径 方向外側面に接着し、 カバーリングにて外周側から固定して組付ける、 あるいは、 円筒状多極磁石を補強環の径方向外側面に接着し、 カバーリングにて外周側から 固定して組付けた後に、 円筒状多極磁石を着磁することによって製造できる。 ま た、 補強環の径方向外側面に円筒状多極磁石を加硫成型接着によって一体的に成 形した後、 円筒状多極磁石を着磁し、 これをカバーリングにて外周側から固定し て組付ける、 あるいは、 カバーリングにて外周側から固定して組付けた後、 円筒 状多極磁石を着磁することによつても製造できる。 様々な状況と要求に応じて最 適な製造工程を採用すれば良い。
前記において、 合成ゴムあるいは合成樹脂等の弾性素材としては、 N B R (ァ クリロニトリルブタジエンラバ一) 、 A C M (アクリル酸エステル共重合体) 、 H - N B R (水素添加アクリロニトリルブタジエンラバー) 等のポリマ一を用い ることができる。
また、 この弾性素材に混入する強磁性材料としては、 ストロンチウムフヱライ ト、 バリウムフェライ ト、 あるいは、 ストロンチウムフェライ トとバリウムフエ ライトとの混合粉などを用いることができる。
このような強磁性材料の粉末を前述したポリマーへ、 好ましくは、 重量比で 7 0 %〜 9 8 %程度配合しゴム薬品と共に混合する。
本願発明の回転センサ用ロー夕一は前述した構造からなるので、 パルスを発生 する多極磁石が、 自動車のホイール等の軸受部の回転する部分の径方向外側に配 置されることになる。 しかし、 この多極磁石の径方向外側面は、 多極磁石の径方 向外側に配備されるカバ一リングによって覆われるので、 飛散する水や、 異物な どに直接曝されることがなくなる。 これによつて、 鯖が発生したり、 異物が付着 したり、 異物を嚙み込んで損傷が発生するなどの事態を未然に防止できる。
この一方、 カバ一リングは非磁性体からなるので多極磁石からの磁力はこれを 簡単に透過しパルス発生性能をいささかも低下させない。
前記本発明の回転センサ用ローターにおいて、 カバ一リングが多極磁石の径方 向外側面を覆うように多極磁石の径方向外側に配備される形態は、 カバーリング が円筒状多極磁石の径方向外側から多極磁石を抱持している構造にすることがで きる。
このようにすれば、 より確実に多極磁石を外部から遮断し、 多極磁石が外方か ら影響を受けないようにできる。 そこで、 多極磁石は外部から降りかかる石、 砂、 泥、 水等からより確実に守られ、 これらが引き起こすであろう摩耗や、 破壊から 守られて、 誤作動のない正確なパルスを半永久的に発生させることが可能になる。 ここで、 カバーリングが円筒状多極磁石の径方向外側から多極磁石を抱持して いる構造としては、 以下のような形態を採用することができる。
第一の形態は、 円筒状多極磁石がカバーリングにカシメられて、 カバーリング による多極磁石の抱持が行われるものである。
第二の形態は、 円筒状多極磁石がカバーリングに接着されて、 カバーリングに よる多極磁石の抱持が行われるものである。
これらの形態によれば、 円筒状多極磁石とカバ一リングとの一体化が図られる ので、 多極磁石が外方から影響を受けないようにする上で、 一層効果的である。. 第三の形態として、 径方向外側に円筒状多極磁石が配備されている補強環に対 して、 軸方向からカバーリングが圧入されることにより、 円筒状多極磁石の外周 面とカバ一リングの内周面とが圧接している構造を採用することもできる。
この第三の形態の変形として、 円筒状多極磁石がカバーリングの径方向内側面 より径方向外側に伸びる大きさの弾性突起をその径方向外側面に備えており、 当 該円筒状多極磁石が径方向外側に配備されている補強環に対して、 カバーリング が軸方向から圧入されることにより、 弾性変形した前記弾性突起の先端側とカバ ーリングの内周面とが圧接している構造を第四の形態として採用することもでき る。
これら第三、 第四のカバーリングが円筒状多極磁石を抱持する形態によれば、 カバーリングを軸方向から圧入するという簡単な工程によって、 円筒状多極磁石 の径方向外側面を覆うようにカバーリングをその径方向外側に配備できるので有 利である。
前述した第四の形態の場合、 前記弾性突起は、 円筒状多極磁石の径方向外側面 において、 円周方向に所定の間隔をおいて複数個、 好ましくは均等な間隔を.あけ て 3個以上設けておくことが望ましい。
前述したいずれの本発明の回転センサ用ロー夕一においても、 カバーリングは 軸受部の回転する部分の径方向外側に嵌合固定されている構造にすることができ る
例えば、 添付図面の第 2図図示のように、 カバーリングの軸方向外側 (第 2図 中、 右側) に伸びる部分を軸受部の回転する部分の径方向外側に嵌合固定し、 力 バーリングの軸方向内側 (第 2図中、 左側) に伸びる部分を、 円筒状多極磁石の 径方向外側に配備して、 円筒状多極磁石の径方向外側面を覆うものである。
このような形態にしても、 カバ一リングを軸方向から圧入させるという簡単な 工程によって、 円筒状多極磁石の径方向外側面を覆うようにカバーリングをその 径方向外側に配備でき、 装着不備がなくなるので有利である。
この第 2図図示の形態では、 円筒状多極磁石の径方向外側面と、 カバーリング の径方向内側面との間にはギヤヅプが存在している。 このような形態であっても、 カバーリングが多極磁石の径方向外側面を覆うように多極磁石の径方向外側に配 備されているので、 円筒状多極磁石を外部から遮断し、 円筒状多極磁石が外方か ら影響を受けないようにできる。 ただし、 図示してはいないが、 カバーリングの軸方向内側 (第 2図中、 左側) に伸びる部分のところで、 前述した第一〜第四のカバーリングが円筒状多極磁石 を抱持する形態を実現することにより、 第 2図図示の形態としながら、 より一層 確実に多極磁石が外方から影響を受けないようにすることができる。 例えば、 第 2図図示のようにカバーリングが軸受部の回転する部分の径方向外側に嵌合固定 されている構造において、 カバーリングを軸方向から圧入させることによって、 円筒状多極磁石の径方向外側面と、 カバーリングの径方向内側面との間で前述し た第三、 第四のカバーリングが円筒状多極磁石を抱持する形態を、 カバ一リング の軸方向内側 (第.2図中、 左側) に伸びる部分で実現させることができる。 また、 カバ一リングを軸方向から圧入させる際に円筒状多極磁石の径方向外側面と、 力 パーリングの径方向内側面との間での接着を図ったり、 カバーリングを軸方向か ら圧入させた後に、 カバーリングの軸方向内側端 (第 2図中、 左側端) をカシメ ることにより、 円筒状多極磁石の径方向外側面と、 カバーリングの径方向内側面 との間で、 前述した第二、 第一のカバ一リングが円筒状多極磁石を抱持する形態 を、 カバーリングの軸方向内側 (第 2図中、 左側) に伸びる部分で実現させるこ とができる。
更に、 前述した本発明のいずれの回転センサ用ロー夕一においても、 カバーリ ングの厚みは 0 . l mm〜l . 0 mmにすることができる。
カバ一リングがこのように比較的薄目であれば、 磁力の透過性が良いことに加 えて、 成形性が良好で、 カバーリングの形状をなすにも、 その軸方向内側端 (第 4図中、 左側端) で力シメをなすことにおいても、 正確で、 容易となり好ましい ものとなる。
なお、 カバーリングは、 磁力の透過を可能とする非磁性性能と、 前述した性能 を要求されるので、 その材料としては、 例えば、 S U S 3 0 4、 A l、 C u Z n、 C 11などを選択することができる。
本発明によると、 回転パルスを発生する円筒状多極磁石は外部に向いた場所へ 配置されるが、 外径側から覆う非磁性材製のカバーリングによって外気から隔離 されており、 これによつて車輪回転数の検出部は、 異物あるいは潤滑油等の被着 や、 キズ、 破壊の発生から守られ、 正確で安定した磁場を形成することができる。 この安定した磁場があって初めて回転数検出センサーの優れた感知性能が発揮 されるものであり、 高精度な回転数検出を行なうことができる。
また、 円筒状多極磁石が弾性体で形成されていてもカバーリングの保護作用に よって摩耗が防がれ、 実際の使用においても円筒状多極磁石をカバーリングが外 径側からしつかり抱持するカバー構造であるから、 剥がれとかズレとかの位置ず れを防ぎ、 正確な磁極を長期に亙って保持できるものとなっている。 図面の簡単な説明
第 1図は、 本発明の回転センサ用ローターが軸受部の回転する部材に装着され た状態を示す一部を省略した断面図である。
第 2図は、 本発明の他の回転センサ用ローターが軸受部の回転する部材に装着 された状態を示す一部を省略した断面図である。
第 3図は、 本発明の他の回転センサ用ローターの一部を省略した断面図である。 第 4図は、 本発明の他の回転センサ用ローターの一部を省略した断面図である。 第 5図は、 本発明の他の回転センサ用ローターの一部を省略した断面図である。 第 6図は、 本発明の回転センサ用口一夕一が軸受部の回転する部材に装着され た他の状態を示す一部を省略した断面図である。
第 7図は、 従来の回転センサ用ローターが軸受部の回転する部材に装着された 状態を示す一部を省略した断面図である。 発明を実施するための最良の形態
以下、 添付図面を参照して本発明の好ましい実施例を説明する。
なお、 添付図面に示されている各部材の形状、 配置関係は、 本発明が理解でき る程度に概略的に例示したものに過ぎない。 また、 以下に示される各自部材の材 質、 寸法、 等は本発明の好ましい実施例に過ぎない。 従って、 本発明は、 添付図 面を参照して以下に説明される実施例に限定されるものではなく、 請求の範囲の 記載から把握される技術的範囲において種々の形態に変更可能である。
(実施例 1 )
N B R (アクリロニトリルブタジエンラバ一) に、 フェライ ト粉末 (ストロン チウムフェライ ト粉末) とゴム薬品とを添加、 混合して、 未加硫ゴムを準備する
(ストロンチウムフェライト粉末の配合割合は重量比で 8 0 %)
金属製の補強環 2の径方向外側面に下地処理を行って、 接着材を塗布し、 ここ に前記のように準備した未加硫ゴムを型によって円筒状に加硫成型すると同時に 接着する。
厚さ 0 . 5 mmの S U S 3 0 4板をリング状に成形してカバ一リング 4を形成 する。 これを、 径方向外側面にフェライ ト粉末入のゴム部材が加硫成型接着され ている補強環 2の軸方向 (第 1図中、 左右方向) から圧入し、 最外周にカバーリ ング 4が配置された仮装着状態にする。
次いで、 カバーリング 4の軸方向の両端側 (第 1図中、 左右両端) を径方向内 側 (第 1図中、 下側) に向けて変形させ、 カシメて、 第 1図図示の状態とする。 次に、 カバ一リング 4の外周から着磁を行って、 円周方向に N極、 S極が交互 に形成されている円筒状多極磁石 3とし、 本発明の回転センサ用口一ター 1を得 7
なお、 カバーリング 4の軸方向の右側端は、 最初から、 第 1図図示の状態に成 形しておき、 カシメによるカバ一リング 4と円筒状多極磁石 3との一体ィ匕は、 力 パーリング 4の軸方向の左側端のみを径方向内側に向けて変形させて行うことと しておけば、 作業工程を簡略化できる。
回転センサ用ロー夕一 1は、 第 1図図示のように、 軸受部の回転する部材、 第 1図の場合は、 ドライブシャフト 5に嵌合固定され、 円筒状多極磁石 3に対して、 径方向外側から回転数検出センサー 1 0 8が近接配備され、 車輪回転数検出装置 として用いられる。
(実施例 2 )
H - N B R (水素添加アクリロニトリルブタジエンラバ一) に、 フェライ ト粉 末 (ストロンチウムフェライ ト粉末とバリウムフェライ ト粉末との混合物) とゴ ム薬品とを添加、 混合して、 未加硫ゴムを準備する (フヱライ ト粉末の配合割合 は重量比で 8 5 %)
金属製の補強環 1 2の径方向外側面に下地処理を行って、 接着材を塗布し、 こ こに前記のように準備した未加硫ゴムを型によって円筒状に加硫成型すると同時 に接着する。
この加硫成型接着されたフェライト粉末入のゴム部材を着磁し、 円周方向に N 極、 S極が交互に形成されている円筒状多極磁石 1 3が、 補強環 1 2の径方向外 側面に配備された状態とする。
厚さ 0 . 6 111111の3 11 8 3 0 4板を、 断面が第 2図図示の状態のリング状に成 形してカバーリング 1 4を形成する。 カバーリング 1 4は、 第 2図図示のように、 軸方向外側 (第 2図中、 右側) の円筒状部 1 4 a、 円筒状部 1 4 aの軸方向内側 端部から径方向外側に向かって伸びる円輪部 1 4 b、 円輪部 1 4 bの径方向外側 端部から軸方向内側に向かって伸びる円筒状部 1 4 cからなる。
径方向外側面に円筒状多極磁石 1 3が配備されている補強環 1 2を、 軸受部の 回転する部材、 第 2図の場合は、 ドライブシャフト 5に嵌合固定する。 次いで、 カバーリング 1 4をドライブシャフト 5に嵌合固定し、 本発明の回転センサ用口 一夕一 1 1を得た。 この回転センサ用ローター 1 1では、 カバーリング 1 4が多 極磁石 1 3の径方向外側に配備され、 カバーリング 1 4の円輪部 1 4 bと円筒状 部 1 4 cとによって、 多極磁石 1 3の径方向外側面が覆われている。
第 2図図示のように、 回転センサ用ローター 1 1の円筒状多極磁石 1 3に対し て径方向外側から回転数検出センサー 1 0 8が近接配備され、 車輪回転数検出装 置として用いられる。
(実施例 3 )
第 3図図示の回転センサ用ローター 2 1は、 カバーリング 2 4が円筒状多極磁 石 2 3の径方向外側からこれを抱持している構造における他の実施形態を説明す るものである。
金属製の補強環 2 2の径方向外側面に加硫成型接着され、 円周方向に N極、 S 極が交互に現れるように着磁されている円筒状多極磁石 2 3は、 カバ一リング 2 4の径方向内側面より径方向外側 (第 3図中、 上側) に伸びる大きさの弾性突起 2 6をその径方向外側面に備えている。 弾性突起 2 6は図示していないが、 円筒 状多極磁石 2 3の径方向外側面に均等の間隔をあけて 3個設けられている。
このように径方向外側面に円筒状多極磁石 2 3が配備されている補強環 2 2に 対して、 カバーリング 2 4を、 軸方向 (第 3図中、 左右方向) から圧入する。 弾性突起 2 6は、 カバーリング 2 4の径方向内側面より径方向外側 (第 3図中、 上側) に伸びているので、 カバーリング 2 4の圧入によりその先端が弾性変形し、 カバーリング 2 4の内周面に圧接する。 こうして本発明の回転センサ用ローター 2 1が形成される。
なお、 径方向外側面に円筒状多極磁石 2 3が配備されている補強環 2 2を、 軸 受部の回転する部材、 例えば、 ドライブシャフトに嵌合固定した後、 カバーリン グ 2 4を、 軸方向 (第 3図中、 左右方向) から圧入して、 本発明の回転センサ用 口一夕一 2 1を形成する形態にすることもできる。
いずれにしても、 第 3図図示の実施形態の場合、 カバーリング 2 4の径方向内 側面と、 円筒状多極磁石 2 3の径方向外側面との圧接は、 弾性突起 2.6のみを変 形させて行われ、 円筒状多極磁石 2 4の大部分の外表面は非接触状態におかれる c そこで、 前記のように、 あらかじめ着磁を終えてからカバ一リング 2 4を取り付 けることとしても、 円筒状多極磁石 2 4の大部分の外表面は正確な形状に保たれ る。 これによつて、. N極、 S極のピッチの乱れを最小に抑え、 正確なパルスを提 供することができる。
第 3図図示の実施形態では、 カバーリング 2 4の軸方向外側端 (第 3図中、 右 側端) の内径を、 円筒状多極磁石 2 3の軸方向外側端 (第 3図中、 右側端) の内 径とほほ同じにしている。 カバ一リング 2 4の軸方向外側端 (第 3図中、 右側 端) の内径側を内径方向に更に延ばし、 第 2図の実施形態のように、 カバーリン グ 2 4の軸方向外側端が、 補強環 2 2とおなじように、 軸受部の回転する部材、 例えば、 ドライブシャフトに嵌合固定される実施形態にすることもできる。
回転センサ用ローター 2 1の前述した部分以外に関しては、 前記実施例 1、 2 の場合と同様であるので、 その説明を省略する。
(実施例 4 )
第 4図、 第 5図図示の実施形態は、 軸受部の回転する部材、 例えば、 ドライブ シャフトへの嵌合作業性を良くしたり、 円筒状多極磁石の有効面積を広げること を考慮した他の実施形態を説明するものである。
第 4図図示の実施形態では、 補強環 3 2が、 軸受部の回転する部材、 例えば、 フトの径方向外側面に嵌合固定される円筒状部 3 2 aと、 この円筒 状部 3 2 aの端部から径方向外側に伸びる円輪部 3 2 bとを有するように形成さ れている。
補強環 3 2に加硫成型接着される円筒状多極磁石 3 3は、 円輪部 3 2 bの径方 向外側において、 軸方向 (第 4図中、 左右方向) に伸びるように形成される。 これによつて、 円筒状多極磁石 3 3が、 軸受部の回転する部材、 例えば、 ドラ イブシャフトから、 径方向外側により離れた位置に配置されることになる。 こう して、 嵌合作業性を良くし、 円筒状多極磁石の有効面積を広げたものである。 なお、 カシメによるカバーリング 3 4と円筒状多極磁石 3 3との一体化を図る 工程は、 カバーリング 3 4を最外周に配置して仮装着状態とした後、 第 4図図示 のように、 その軸方向の左側端 3 6を径方向内側に向けて、 矢示 3 7のように変 形させて行うことができる。
第 5図図示の実施形態では、 補強環 4 2が、 軸受部の回転する部材、 例えば、 ドライブシャフトの径方向外側面に嵌合固定される円筒状部 4 2 aと、 この円筒 状部 4 2 aの端部から径方向外側に伸びる円輪部 4 2 bと、 この円輪部 4 2わの 径方向外側端から軸方向に伸びる円筒状部 4 2 cとを有するように形成されてい る o
補強環 4 2に加硫成型接着される円筒状多極磁石 4 3は、 円筒状部 4 2 cの径 方向外側面に配備される。 そして、 円筒状多極磁石 4の径方向外側にカバーリン グ 4 4が配備されている。
これによつて、 円筒状多極磁石 4 3が、 軸受部の回転する部材、 例えば、 ドラ イブシャフトから、 径方向外側により離れた位置に配置されることになる。 こう して、 嵌合作業性を良くし、 円筒状多極磁石の有効面積を広げたものである。 第 4図、 第 5図図示の回転センサ用ロー夕一 3 1、 4 1の前述した以外の部分 に関しては、 前記実施例 1、 2の場合と同様であるので、 その説明を省略する。 (実施例 5 )
実施例 実施例 2では、 軸受部の内輪であるドライブシャフト 5に本発明の 回転センサ用ローターを嵌着した状態を示したが、 第 6図は、 本発明の回転セン サ用口一夕一 5 1を軸受部の外輪 6の外周側に装着する場合を説明するものであ る。 第 6図図示の装着構造でも、 円筒状多極磁石 5 3の径方向外側面は、 カバーリ ング 5 4によって覆われているので、 泥水などに曝される過酷な箇所においての 使用を不安のないものとしている。
内輪 5と外輪 6とからなる軸受部の密封が必要な場合には、 補強環 5 2か、 力 パーリング 5 4に、 内輪 5の径方向外側面に摺接するシ一ルリヅプを設けること ができる。 第 6図図示の実施形態では、 補強環 5 2にシールリップ 5 5を設けて 内輪 5の径方向外側面に摺接させている。
なお、 図示していないが、 フランジ部が近接配置されていれば、 補強環 5 2に 設けたシールリップをフランジ部の側周面に接触させて軸受部の密封を図ること もできる。
回転センサ用ローター 5 1の前述した以外の部分に関しては、 前記実施例 1、 2の場合と同様であるので、 その説明を省略する。 産業上の利用の可能性
本発明によれば、 自動車の前後 ·左右の車輪の回転数検出に用いられる回転セ ンサ用ローターにおけるパルス発生部のより確実な保護を可能にし、 感知性能と 耐久性が飛躍的に向上した回転センサ用ロー夕一を提供できる。

Claims

請求の範囲
1 . 自動車のホイール等の軸受部においてその回転数の検出をなすために用いら れる回転センサ用口一夕一であって、
軸受部の回転する部分の径方向外側に嵌合固定される補強環と、
軸方向に延び、 当該補強環の径方向外側に配備される円筒状の多極磁石と、 当該多極磁石の径方向外側に配備され、 当該多極磁石の径方向外側面を覆う 非磁性体製のカバーリング
とからなる回転センサ用ローター。
2 . カバーリングは、 前記円筒状多極磁石の径方向外側から多極磁石を抱持して いることを特徴とする第 1項記載の回転センサ用ローター。
3 . 多極磁石がカバーリングにカシメられて、 カバーリングによる多極磁石の抱 持が行われていることを特徴とする第 2項記載の回転センサ用ロー夕一。
4 . 多極磁石がカバ一リングに接着されて、 カバーリングによる多極磁石の抱持 が行われていることを特徴とする第 2項記載の回転センサ用ロー夕一。
5 . 径方向外側に円筒状多極磁石が配備されている補強環に対して、 カバ一リン グが軸方向から圧入されることにより、 円筒状多極磁石の外周面とカバーリング の内周面とが圧接していることを特徴とする第 2項記載の回転センサ用ローター c
6 . 円筒状多極磁石がカバーリングの径方向内側面より径方向外側に伸びる大き さの弾性突起をその径方向外側面に備えており、 当該円筒状多極磁石が径方向外 側に配備されている補強環に対して、 カバーリングが軸方向から圧入されること により、 弾性変形した前記弾性突起の先端側とカバーリングの内周面とが圧接し ていることを特徴とする第 2項記載の回転センサ用ロー夕一。
7 . カバ一リングは軸受部の回転する部分の径方向外側に嵌合固定されているこ とを特徴とする第 1項乃至第 6項のいずれかに記載の回転センサ用ローター。
8 . カバ一リングはその厚みが 0 . l mn!〜 1 . 0 mmであることを特徴とする 第 1項乃至第 7項のいずれかに記載の回転センサ用口一夕一。
PCT/JP2002/007663 2001-07-30 2002-07-29 Rotor pour compte-tours WO2003012456A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003517596A JPWO2003012456A1 (ja) 2001-07-30 2002-07-29 回転センサ用ローター
US10/485,271 US6906509B2 (en) 2001-07-30 2002-07-29 Rotor for rotation sensor
EP02755673A EP1424560A4 (en) 2001-07-30 2002-07-29 ROTOR FOR A ROTATING SENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001229299 2001-07-30
JP2001-229299 2001-07-30

Publications (1)

Publication Number Publication Date
WO2003012456A1 true WO2003012456A1 (fr) 2003-02-13

Family

ID=19061667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007663 WO2003012456A1 (fr) 2001-07-30 2002-07-29 Rotor pour compte-tours

Country Status (4)

Country Link
US (1) US6906509B2 (ja)
EP (1) EP1424560A4 (ja)
JP (1) JPWO2003012456A1 (ja)
WO (1) WO2003012456A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114507A (ja) * 2003-10-07 2005-04-28 Uchiyama Mfg Corp 円筒型カバー付きエンコーダ
JP2009174411A (ja) * 2008-01-24 2009-08-06 Hitachi Ltd 内燃機関のバルブタイミング制御装置およびその装置に用いられる回転角度検出手段の製造方法
CN103552092A (zh) * 2013-09-29 2014-02-05 爱马特(江苏)自动化有限公司 用于机械手装置上的移送滚轮与轨道状态的检测装置
CN103552091A (zh) * 2013-09-29 2014-02-05 爱马特(江苏)自动化有限公司 机械手装置上的移送滚轮与轨道状态的检测装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678972B2 (ja) * 2001-03-28 2011-04-27 Ntn株式会社 回転センサ用ローター
JP4258375B2 (ja) * 2001-06-19 2009-04-30 株式会社ジェイテクト 回転検出器用磁性部材
JP2004212351A (ja) * 2003-01-08 2004-07-29 Uchiyama Mfg Corp 磁気エンコーダと磁気エンコーダ付軸受ユニット
US7320166B2 (en) * 2004-06-23 2008-01-22 Freudenberg-Nok General Partnership Speed sensor encoder wheel and method of making
FR2875005B1 (fr) * 2004-09-06 2006-12-08 Hutchinson Sa Codeur de deplacement, dispositif comprenant un tel codeur et procede de fabrication d'un tel codeur
DE102004044118B4 (de) * 2004-09-11 2013-09-12 Schaeffler Technologies AG & Co. KG Radlageranordnung mit einem radialflanschseitigen Encoder
DE102005004181B4 (de) * 2005-01-29 2008-10-16 Dambach Lagersysteme Gmbh & Co. Kg Lenkvorrichtung für ein Flurförderzeug
FR2884314B1 (fr) * 2005-04-11 2007-06-22 Hutchinson Sa Codeur pour arbre mobile, dispositif comprenant un tel codeur et procede de fabrication d'un tel codeur
EP1798558B1 (en) * 2005-12-16 2013-05-01 JTEKT Corporation Magnetized pulser ring
US20080084202A1 (en) * 2006-10-06 2008-04-10 Acewell International Co., Ltd. Vehicular rotation speed sensing apparatus
US8237431B2 (en) * 2007-07-05 2012-08-07 Terry Fruehling Wheel speed sensor
FR2959569B1 (fr) * 2010-04-30 2012-11-02 Snr Roulements Sa Assemblage instrumente pour fusee d'essieu et procede de montage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325055A (en) * 1991-12-11 1994-06-28 Sauer, Inc. Retained magnetic strip for mounting on a rotating member to provide a magnetic flux to be sensed
JP2001056236A (ja) * 1999-08-20 2001-02-27 Uchiyama Mfg Corp 多極磁石エンコーダとシール部材の取付け構造
JP2001241435A (ja) * 2000-02-29 2001-09-07 Nsk Ltd 自動車用エンコーダ付転がり軸受ユニット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643512A (en) * 1987-06-25 1989-01-09 Sumitomo Electric Industries Ring for rotary sensor
US6003375A (en) * 1994-07-18 1999-12-21 Nsk Ltd. Hub unit with rotation speed sensor
DE19601271A1 (de) * 1996-01-16 1997-07-24 Michael Donner Magnetpolrotor für eine Drehzahlmessung
FR2754903B1 (fr) * 1996-10-23 1998-12-04 Skf France Dispositif de codeur pour capteur de vitesse de rotation et roulement equipe d'un tel dispositif
JP4678972B2 (ja) * 2001-03-28 2011-04-27 Ntn株式会社 回転センサ用ローター

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325055A (en) * 1991-12-11 1994-06-28 Sauer, Inc. Retained magnetic strip for mounting on a rotating member to provide a magnetic flux to be sensed
JP2001056236A (ja) * 1999-08-20 2001-02-27 Uchiyama Mfg Corp 多極磁石エンコーダとシール部材の取付け構造
JP2001241435A (ja) * 2000-02-29 2001-09-07 Nsk Ltd 自動車用エンコーダ付転がり軸受ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1424560A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114507A (ja) * 2003-10-07 2005-04-28 Uchiyama Mfg Corp 円筒型カバー付きエンコーダ
JP4543306B2 (ja) * 2003-10-07 2010-09-15 内山工業株式会社 円筒型カバー付きエンコーダ
US8049645B2 (en) 2003-10-07 2011-11-01 Uchiyama Manufacturing Corp. Cylindrical cover-attached encoder apparatus
DE102004049000B4 (de) * 2003-10-07 2015-07-23 Uchiyama Manufacturing Corp. Codegeber-Einrichtung mit einer Abdeckung
JP2009174411A (ja) * 2008-01-24 2009-08-06 Hitachi Ltd 内燃機関のバルブタイミング制御装置およびその装置に用いられる回転角度検出手段の製造方法
CN103552092A (zh) * 2013-09-29 2014-02-05 爱马特(江苏)自动化有限公司 用于机械手装置上的移送滚轮与轨道状态的检测装置
CN103552091A (zh) * 2013-09-29 2014-02-05 爱马特(江苏)自动化有限公司 机械手装置上的移送滚轮与轨道状态的检测装置

Also Published As

Publication number Publication date
JPWO2003012456A1 (ja) 2004-11-18
EP1424560A4 (en) 2008-03-05
EP1424560A1 (en) 2004-06-02
US20040174160A1 (en) 2004-09-09
US6906509B2 (en) 2005-06-14

Similar Documents

Publication Publication Date Title
WO2003012456A1 (fr) Rotor pour compte-tours
JP4678972B2 (ja) 回転センサ用ローター
US7675212B2 (en) Sealing device
JP2752343B2 (ja) パッキン装置
WO2007122919A1 (ja) 密封装置
US20060214823A1 (en) Cylindrical cover-attached encoder apparatus
WO2006126469A1 (ja) トーンホイール付密封装置
WO2007114019A1 (ja) ロータリエンコーダ用パルサーリング
EP1517148B1 (en) Sealing device and rotation detector
JP3453699B2 (ja) ベアリングシール
JP2001241435A (ja) 自動車用エンコーダ付転がり軸受ユニット
JP2002333033A (ja) 車輪用軸受
KR20070099569A (ko) 자기 엔코더 장치를 구비한 밀봉장치
JP2004212351A (ja) 磁気エンコーダと磁気エンコーダ付軸受ユニット
JP2001056236A (ja) 多極磁石エンコーダとシール部材の取付け構造
JP2001255337A (ja) パックシール
JP3484473B2 (ja) ベアリングシール
EP1610013A1 (en) Sensor assembly body, seal device, and rolling bearing device for motor vehicle
WO2006001176A1 (ja) センサ付き密封装置
JP2003120697A (ja) ベアリングシール
JP2005024017A (ja) トーンホイール付軸受装置の構造
JP2005037131A (ja) 回転検出用のパルサリングおよびシール装置
JP2005037130A (ja) 回転検出用のパルサリングおよびシール装置
JP2005098334A (ja) シール装置
JP2009250609A (ja) 着磁パルサリング、及びこれを用いたセンサ付き転がり軸受装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003517596

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10485271

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002755673

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002755673

Country of ref document: EP