WO2003008707A1 - Paper with the use of acacia tree pulp and process for producing the same - Google Patents

Paper with the use of acacia tree pulp and process for producing the same Download PDF

Info

Publication number
WO2003008707A1
WO2003008707A1 PCT/JP2002/007349 JP0207349W WO03008707A1 WO 2003008707 A1 WO2003008707 A1 WO 2003008707A1 JP 0207349 W JP0207349 W JP 0207349W WO 03008707 A1 WO03008707 A1 WO 03008707A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
acacia
paper
mixed
beating
Prior art date
Application number
PCT/JP2002/007349
Other languages
French (fr)
Japanese (ja)
Inventor
Chandra Heriyanto
Jonny Hidajat
Ming Tsung Tsai
Original Assignee
Pt. Pabrik Kertas Tjiwi Kimia Tbk.
Suzuki, Rikio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pt. Pabrik Kertas Tjiwi Kimia Tbk., Suzuki, Rikio filed Critical Pt. Pabrik Kertas Tjiwi Kimia Tbk.
Publication of WO2003008707A1 publication Critical patent/WO2003008707A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only

Definitions

  • the present invention relates to a paper made mainly from mixed southern pulp, and more particularly to paper using acacia pulp in place of softwood bleached crab pulp blended in mixed southern pulp and a method for producing the same.
  • paper strength is affected by various factors.
  • paper is composed of fibers, and the strength of these fibers is a major factor.
  • the fiber strength mainly depends on the cell thickness of the fiber, and when the fiber becomes loin, the web also becomes loin.
  • the second factor is the hydrogen bonding between the fiber surfaces.
  • the surface of the fiber is covered with hydroxyl groups, which greatly affect hydrogen bonding. And this hydrogen bond becomes a strong bond if it has a high density effect, although its bonding force is weak. This can be enhanced by considering the following perspectives.
  • the total hydrogen bonding between the two fiber surfaces is affected by the size of the contact area.
  • the contact area depends on the properties of the fiber, the preparation process, the fiber length, the fibrillation, the flexibility and the diameter ratio.
  • the fiber length is likely to cause Can form a stronger web.
  • beating in the preparation process has the effect of promoting the formation of fibers into fibers and increasing the contact surface area. In this way, the overall hydrogen bond strength can be increased.
  • the long fibers of bleached softwood kraft pulp become entangled with the pulp fibers of the mixed South Sea wood, and the hydrogen bonds cause strong fiber bonding, which increases the strength of the paper.
  • Increasing paper strength is an important factor not only for improving paper quality, but also for operating efficiency of paper machines.
  • softwood bleached kraft pulp is very expensive compared to mixed southern pulp, so if the amount of softwood bleached kraft pulp is increased to increase the paper strength, the softwood bleached kraft pulp may be mixed. There was a problem that it became expensive in proportion to the amount. Since the strength of the paper is affected by the factors mentioned above, other pulp with similar properties should be applicable to improve the strength of the paper.
  • Acacia pulp unlike softwood bleached kraft pulp, cannot increase web strength due to fiber length.
  • the fiber length of acacia pulp is shorter than softwood bleached kraft pulp as well as mixed southern pulp, but it is easily friable and is divided into thin fibrous forms as shown in the examples described later.
  • the present invention provides a paper made from mixed southern seawood as a main raw material, which has properties comparable to paper made from softwood bleached kraft pulp and paper made from mixed southern seawood pulp, but which is even less expensive. And to provide a method for producing the paper.
  • the present invention relates to a paper made from a mixed pulp of mixed southern and acacia wood, which has properties comparable to paper made from 10% softwood bleached kraft pulp and 90% mixed southern pulp. It is an object of the present invention to provide a paper which is more inexpensive while having the same, and to provide a method for producing the paper.
  • the mixed southern pulp in the present invention is mainly composed of pulp of merantis (Meranti Group, commonly known as meranti) because of its easy availability, and also includes Rinba Campuran Group (Rimba Campuran Group, We used pulp with local names such as Punak, Kempas, Balan, Bintangur, and Pisang pisang, but especially limited to this. Rather than the southern lumber commonly used in the manufacture of paper when needed It is clear that the pulp can be used by mixing as appropriate. Disclosure of the invention
  • a paper characterized in that mixed South Sea pulp is used as a main raw material and a prescribed amount of acacia pulp is blended with the pulp.
  • the paper of the present invention is characterized in that the mixed South Sea pulp is mainly composed of pulp of Meranti (Meranti Group, commonly known as Meranti) and, in addition, Rimba Camp uran Group (currently: Tunana Puna) ), Gen'no ⁇ 0 scan (empas), Roh run (Balan), human ,, Ntanku Les (Bintangur), is obtained by mixing a combination of some of Nono 0 Norre-flops of Pisanpisan (Pisang pisang), etc.), acacia
  • the blending amount of the wood pulp is 20 to 30% by weight, preferably 25 to 30% by weight.
  • both pulp are beaten in different beating lines, respectively.
  • a manufacturing method is provided.
  • the method for producing paper of the present invention is characterized in that the mixed southern pulp is mainly made of pulp of merantis (Meranti Group, commonly known as merantik), and is also used as a pulp of Rimba Campuran Group (local name: Punak). ), Kempas, Nolan (Balan), Bintangurore (Bintangur), Pisampisan (Pisang pisang), etc.).
  • Acacia wood The pulp has a blending amount of 20 to 30% by weight and a beating degree in a range of 400 CSF to 500 CSF (Canadian Standard Freeness), preferably 25 to 30 CSF. a weight 0/0, characterized by beating the beating degree in the range of 4 0 0 CSF ⁇ 5 0 0 CSF .
  • Table 1 summarizes the results of examining the fiber length and roughness (degree of fiber diameter) before and at a predetermined degree of beating of each pulp.
  • LL length weighted average fiber length
  • LW weight weighted average fiber length (according to JAPAN TAPP I paper pulp test method No. 52-89).
  • those of the LPP, Inc. meranti class:. about 70 weight / 0, lymph camp orchids: about 30 weight 0/0 was used, as the bleached softwood kraft pulp had use of a commercially available Leaf River (trade name).
  • IKPP Acacia Acacia pulp manufactured by Indah Kiat Pulp & Paper
  • LPP MTH Mixed southern pulp manufactured by Lontar Papyrus Pulp & Paper
  • LR NBKP Leaf River: Trade name of bleached softwood kraft pulp (USA)
  • acacia pulp is a very thin fiber compared to mixed southern pulp and softwood bleached kraft pulp, and therefore has a low roughness, especially when beaten to 400 CSF.
  • the beating process has a greater effect on the reduction in roughness than on the reduction in fiber length.
  • the fiber length is reduced to only 95% (weight-weighted average fiber length), but the roughness is reduced to 60%.
  • Fig. 1 shows a schematic drawing of the contact state of each fiber.
  • A shows the case of mixed southern timber (MTH) and acacia (Ac acia) timber pulp
  • (b) shows the case of softwood bleached kraft pulp (NBKP) and mixed southern timber (MTH).
  • Fig. 2 is a scanning electron micrograph of the acacia pulp with various degrees of beating, where (a) is before beating, (b) is 55 OCSF, (c) is 500C SF, and (d) ) Indicates a beating degree of 45 OCSF, and (e) indicates a beating degree of 400 CSF.
  • Fig. 1 is a scanning electron micrograph of the acacia pulp with various degrees of beating, where (a) is before beating, (b) is 55 OCSF, (c) is 500C SF, and (d) ) Indicates a beating degree of 45 OCSF, and (e) indicates a beating degree of 400 CSF.
  • FIG. 3 shows scanning electron micrographs of the softwood bleached kraft pulp when the degree of beating was changed.
  • A shows the result before beating, and
  • b shows the result when the degree of beating was 500 CSF.
  • Fig. 4 shows scanning electron micrographs of the mixed South Sea pulp with different degrees of beating, (a) before the beating and (b) with the degree of beating 50 OCSF.
  • Paper sheets ranged from 74 to 76 gZm2 and were made on an automatic handmade machine.
  • the raw material is a mixture of acacia wood pulp mixed in a range of 20-35% (weight%, the same applies hereinafter) to 500 cc of mixed South Sea wood pulp (ex. Manufactured by IKPP).
  • the beating degree was independently beaten in the range of 400 CSF to 550 CSF. The reason is that acacia pulp is easier to beat than mixed southern seawood, so it is necessary to beat acacia pulp on a single line.
  • a sheet made from 10% softwood bleached kraft pulp 500CSF (90% mixed South Sea wood pulp) (hereinafter referred to as “10% NBKP”) and a sheet made from 100% mixed South Sea wood pulp (hereinafter “100% MTH ”).
  • Figures 6 to 13 show the relationship between the raw material blending and the degree of beating with the individual properties of paper.
  • the relationship with the composite characteristic value is shown in FIGS. 14 and 15. Since the measured value of stiffness (stiffness) includes the basis weight, all characteristic values other than stiffness are represented by index values, that is, each characteristic value divided by the basis weight.
  • Fig. 6 shows the relationship of stiffness when the mixing ratio of acacia pulp was changed
  • Fig. 7 shows the relationship of stiffness when the degree of beating of acacia pulp was changed.
  • acacia pulp there is no certain tendency in the mixing ratio of acacia pulp except 400 CSF, but it is the highest at 400 CSF, and the content of acacia pulp is 20%. It can be seen that stiffness equal to or greater than 10% NB KP was obtained at% or more. The reason for this is that the fibers of the acacia pulp sufficiently fill the voids between the fibers of the mixed southern seawood, i.e. Conceivable.
  • the stiffness increases as the beating degree of the acacia pulp increases from 450CSF to 400CSF, and the acacia pulp content is 25% or more. It can be seen that the acacia pulp has a beating degree of about 420 CSF or less, and stiffness equivalent to or higher than that of 10% NBKP is obtained.
  • the stiffness of the acacia pulp content is about 22% or more and the acacia pulp content is about 22% or more, which is equivalent to or higher than that of 10% NBKP, at least if the refining degree of the acacia pulp is more than about 420CSF. Can be expected to be obtained.
  • Fig. 8 shows the change in the tensile strength index when the mixing ratio of the acacia pulp was changed
  • Fig. 9 shows the tensile strength index when the beating degree of the acacia pulp was changed.
  • the optimal value of the tensile strength index is obtained when the mixing ratio of acacia pulp is 24% to 30% and the beating degree is in the range of 400CSF to 500CSF.
  • Most sheets have a tensile strength index approximately equal to or greater than 10% NBKP, except in the case of Acacia pulp content of 20% to 30%, except for 550 CSF.
  • NBKP tensile strength index
  • the fibers of acacia pulp do not contribute to the improvement of the tensile strength because the fibers of the acacia pulp are not soild and are not divided into thin fibrous forms.
  • higher values were obtained than those with 100% MTH. LPPAE in each figure indicates 100% MTH.
  • the acacia pulp content is 25% to 30%
  • the beating degree is in the range of 400CSF to 520CSF
  • the tensile strength index is almost equal to or higher than 10% NBKP. I have.
  • Burst strength tends to differ from stiffness (stiffness) and tensile strength index.
  • Fig. 10 and Fig. 11 As the mixing ratio of acacia pulp increases, the value of the burst strength index increases. In the numerical range measured in this example, no peak appeared for the content of acacia pulp, while the effect of beating degree showed an optimum burst strength index at 450 CSF. Except at the time of 550 CSF, the burst strength index was equal to or higher than that of 10% NBKP when the content of acacia pulp was 20% or more.
  • Figure 12 shows the change in the tear strength index when the mixing ratio of the acacia pulp is changed
  • Fig. 13 shows the change in the tear strength index when the beating degree of the acacia pulp is changed.
  • acacia pulp with a beating degree of 400 CSF the content of acacia pulp is in the range of 20% to 30%, which is also comparable to that of 10% NBKP.
  • the 400 CSF sample (well beaten fiber) fills the voids in the fiber of the mixed southern pulp and results in a high density paper with a tear strength value. Is up.
  • a certain tear strength is obtained due to the strength of the fiber itself.
  • Samples with other formulations tend to be more complicated due to the complex web structure of mixed southern pulp and acacia pulp.
  • the composite property values (burst strength, tensile strength and tear strength) are shown in FIGS. In this figure, stiffness (rigidity) is omitted because it is less important than the other three properties.
  • Figure 14 shows the composite value of each property, with some samples having positive values.
  • Figure 15 shows the values for each property value separately.All samples with acacia pulp of 25% -400CSF, 20% -500CSF and 30% -500CSF have positive values. have.
  • 10% NBKP can be obtained by using mixed Nanyo-Acacia mixed pulp with the mixed amount of acacia pulp of 25% to 30% and the degree of beating around 45 OCS F. Paper with excellent properties can be obtained, but the content of acacia pulp is selected from 20 to 35% and the beating degree of acacia pulp is selected from 400 CSF to 500 CSF depending on the value of the properties to be considered. This makes it possible to produce paper with properties that are about the same or better than 10% NB KP. Wear.
  • acacia pulp is less expensive than softwood bleached kraft pulp, so chemical costs (fillers, wet end starch, retention agents, sizing agents, etc.) and beating costs (acacia pulp is easier to beat) Is the same, the paper production cost when using a mixed pulp of mixed southern seawood and acacia is compared with the case of using a mixed pulp of 10% softwood bleached kraft pulp and 90% southern seawood. And acacia pulp can be made cheaper by the price difference.
  • the paper obtained from the mixed southern seawood-acacia pulp according to the present invention has almost the same or higher characteristic values as the paper using 90% mixed southern seawood-1% softwood bleached kraft pulp. It was confirmed that mixed South Seawood-Acacia wood pulp could be sufficiently replaced by mixed South Sea wood single-leaf bleached kraft pulp.
  • Acacia pulp is also cheaper than softwood bleached kraft pulp, so it has the same characteristics, but its production cost can be reduced by the price difference between the two pulp.
  • Figure 1 is a schematic drawing of the contact state of each fiber.
  • A shows the case of mixed southern seawood (MTH) and acacia (Ac acia) pulp, and (b) shows softwood bleached kraft pulp (NBKP). ) And mixed southern seawood (MTH).
  • Figure 2 shows scanning electron micrographs of the acacia pulp with various degrees of beating, where (a) is before beating, (b) is 550CSF, and (c) is 500C. SF, (d) shows the degree of beating degree of 450 CSF, (e) shows the case of beating degree of 400 CSF.
  • Fig. 3 is a scanning electron micrograph when the degree of beating of softwood bleached kraft pulp is changed. (A) shows the case before beating and (b) shows the case with a beating degree of 500 CSF.
  • FIGS. 4A and 4B are scanning electron micrographs when the degree of beating of the mixed southern pulp was changed.
  • FIG. 4A shows the state before the beating and
  • FIG. 4B shows the state when the degree of beating was 500 CSF.
  • Fig. 5 is a schematic diagram showing the difference in beating effect due to the difference in raw materials, where (a) is the fiber of bleached softwood bleached kraft pulp, (b) is the fiber of beaten mixed southern seawood pulp, and (c) Indicates the case of beaten acacia pulp fibers.
  • Figure 6 shows the relationship of stiffness (rigidity) when the mixing ratio of acacia pulp was changed.
  • FIG. 7 is a diagram showing the relationship of stiffness when the degree of beating of acacia pulp is changed.
  • Figure 8 shows the tensile strength when the mixing ratio of acacia pulp was changed.
  • FIG. 1 A first figure.
  • FIG. 9 is a diagram showing a change in tensile strength when the degree of beating of acacia pulp is changed.
  • Figure 10 shows the rupture resistance when the mixing ratio of acacia pulp was changed.
  • FIG. 1 A first figure.
  • FIG. 11 is a diagram showing a change in burst resistance indettas when the degree of beating of acacia pulp is changed.
  • FIG. 12 is a diagram showing a change in the tear resistance index when the mixing ratio of acacia pulp is changed.
  • FIG. 13 is a diagram showing the change in the tear resistance index when the degree of beating of acacia pulp is changed.
  • FIG. 14 is a graph showing the total characteristic value difference ratio of akashia pulp-containing paper to 10% NBKP paper.
  • FIG. 15 is a diagram showing a synthetic property value difference ratio of acacia pulp-containing paper to 10% NBKP paper.

Abstract

It is intended to provide paper comprising lumber from Southeast Asia as the main component which is comparable in properties to paper made from 10% of softwood leached craft pulp and 90% of mixed Southeast Asian lumber pulp and yet less expensive. Paper characterized by comprising mixed Southeast Asian lumber pulp as the main component to which a definite amount of acacia tree pulp is added. To produce this paper, these pulps are beaten in different beating lines. The content of the acacia tree pulp ranges from 20 to 30% by weight, preferably from 25 to 30% by weight, and the degree of beating ranges from 400 CSF to 500 CSF.

Description

アカシア材パルプを使用した紙おょぴその製造方法 明 技術分野 田  Paper making method using acacia pulp
この発明は、 混合南洋材パルプを主原料とす書る紙に関し、 特に混合南洋材パル プに配合されてきた針葉樹晒クラブトパルプに代えてアカシア材パルプを使用し た紙およびその製造方法に関する。 背景技術  The present invention relates to a paper made mainly from mixed southern pulp, and more particularly to paper using acacia pulp in place of softwood bleached crab pulp blended in mixed southern pulp and a method for producing the same. . Background art
紙の強度は、 種々の要素によって影響を受けることが知られている。 まず、 紙 は、 繊維から構成されているので、 この繊維の強度が主要な要素となる。 そして 、 この繊維強度は主に繊維の細胞膜厚に左右されており、 繊維が壌れるとき、 そ のウェブも壌れることになる。  It is known that paper strength is affected by various factors. First, paper is composed of fibers, and the strength of these fibers is a major factor. The fiber strength mainly depends on the cell thickness of the fiber, and when the fiber becomes loin, the web also becomes loin.
次に第二の要素は、 繊維表面間の水素結合といえる。 繊維の表面は、 水酸基で 覆われており、 これらは水素結合に大きく影響している。 そして、 この水素結合 は、 結合力は弱いが高密度効果を有すると強い結合になる。 以下の観点を考慮す ることによりこれを強めることができる。  The second factor is the hydrogen bonding between the fiber surfaces. The surface of the fiber is covered with hydroxyl groups, which greatly affect hydrogen bonding. And this hydrogen bond becomes a strong bond if it has a high density effect, although its bonding force is weak. This can be enhanced by considering the following perspectives.
すなわち、 二つの繊維表面間の総合水素結合は、 接触面積の大きさに影響され る。 そして、 この接触面積は、 繊維の特性、 調成工程、 繊維長さ、 フィブリルィ匕 、 柔軟性及ぴ直径比率等に依存している。  That is, the total hydrogen bonding between the two fiber surfaces is affected by the size of the contact area. The contact area depends on the properties of the fiber, the preparation process, the fiber length, the fibrillation, the flexibility and the diameter ratio.
これらのうち繊維長は、 絡みやフロックを起こす傾向があるものの繊維の結合 により強固なウェブを形成させることができる。 Of these, the fiber length is likely to cause Can form a stronger web.
また、 調成工程における叩解は、 繊維のフイブリル化を進め接触表面積を拡大 する作用がある。 このようにして総合水素結合強度を上げることができる。  In addition, beating in the preparation process has the effect of promoting the formation of fibers into fibers and increasing the contact surface area. In this way, the overall hydrogen bond strength can be increased.
さらに、 繊維の細胞膜厚が薄い場合、 叩解工程で容易に繊維を壌し、 柔軟性を 増すこともできるが、 これも表面の接触面積を増すことになる。 混合南洋材 (MT H: Mixed Tropical Hardwood) パルプは、 安価であるた めに紙の原料として広く用いられているが、 近年の抄紙機の高速化に伴い混合南 洋材パルプのみでは抄紙時に強度不足となるため、 通常、 特別な繊維特性を持つ たパルプを原料パルプに混入し、 紙の強度を上げている。 最も一般的な方法は、 混合南洋材の原料パルプに、 針葉樹晒クラフトパルプ (N B K P : Needle In addition, if the cell thickness of the fiber is thin, the beating process can easily lend the fiber and increase its flexibility, but this also increases the surface contact area. Mixed Tropical Hardwood (MTH) Pulp is widely used as a raw material for paper because of its low cost. However, with the recent increase in speed of paper machines, mixed southern pulp alone has strength during papermaking. Due to the shortage, pulp with special fiber properties is usually mixed into the raw pulp to increase the strength of the paper. The most common method is to mix kraft pulp with softwood bleach (NBKP: Needle)
Bleached Kraft Pulp) を酉己合することである。 Bleached Kraft Pulp).
この配合により、 針葉樹晒クラフトパルプの長い繊維が混合南洋材のパルプ繊 維と絡みあって、 水素結合により強い繊維結合を生じ、 紙の強度が上がることに なる。 そして、 紙の強度が上がることは、 紙品質の向上ばかりでなく、 抄紙機の 運転効率にとっても重要なファクタとなっている。 しかしながら、 針葉樹晒クラフトパルプは、 混合南洋材パルプと比すると非常 に高価であるため、 針葉樹晒クラフトパルプの混入量を増大させて紙の強度を大 きくしょうとすると、 その針葉樹晒クラフトパルプの混入量に比例して高価とな つてしまうという課題があった。 紙の強度は、 上述のような要素に影響されるので、 紙の強度を向上させるため には同様な特性を持つた他のパルプも適用できるはずである。  By this blending, the long fibers of bleached softwood kraft pulp become entangled with the pulp fibers of the mixed South Sea wood, and the hydrogen bonds cause strong fiber bonding, which increases the strength of the paper. Increasing paper strength is an important factor not only for improving paper quality, but also for operating efficiency of paper machines. However, softwood bleached kraft pulp is very expensive compared to mixed southern pulp, so if the amount of softwood bleached kraft pulp is increased to increase the paper strength, the softwood bleached kraft pulp may be mixed. There was a problem that it became expensive in proportion to the amount. Since the strength of the paper is affected by the factors mentioned above, other pulp with similar properties should be applicable to improve the strength of the paper.
発明者等は、 製品開発及び最適コストの面から、 代替の繊維が適用できないか を鋭意研究した結果、 繊維ウェブの水素結合強度を向上する為の一つの繊維とし て、 アカシア材パルプに注目した。 Inventors should consider whether alternative fibers can be applied in terms of product development and optimal cost. As a result of intensive research on acacia pulp, we focused on acacia pulp as one of the fibers to improve the hydrogen bonding strength of the fibrous web.
アカシア材パルプは、 針葉樹晒クラフトパルプと異なり、 繊維の長さによって ウェブ強度を上げることができない。 アカシア材パルプの繊維長は、 針葉樹晒ク ラフトパルプはもちろん混合南洋材よりも短いが、 壌れ易く、 後述の実施例で示 すように薄い繊維状に分割される。  Acacia pulp, unlike softwood bleached kraft pulp, cannot increase web strength due to fiber length. The fiber length of acacia pulp is shorter than softwood bleached kraft pulp as well as mixed southern pulp, but it is easily friable and is divided into thin fibrous forms as shown in the examples described later.
発明者等は、 これらの薄い繊維状物は、 混合南洋材からなるパルプの繊維間の 空隙を塞ぎ、 より大きい接触面積をもたらし、 その結果ウェブの中の水素結合強 度を向上させることができることを見出し、 本発明を完成するに至った。 すなわち、 本発明は、 混合南洋材を主原料とする紙であって、 針葉樹晒クラフ トパルプと混合南洋材パルプから作られた紙に匹敵する特性を有しながらもさら に安価である紙を提供すること及ぴその紙の製造方法を提供することを目的とす る。  We have found that these thin fibrous materials can close the voids between the fibers of the pulp made of mixed southern materials, providing a larger contact area and, as a result, increasing the hydrogen bonding strength in the web. And completed the present invention. That is, the present invention provides a paper made from mixed southern seawood as a main raw material, which has properties comparable to paper made from softwood bleached kraft pulp and paper made from mixed southern seawood pulp, but which is even less expensive. And to provide a method for producing the paper.
さらに詳しくは、 本発明は、 混合南洋材とアカシア材の混合パルプから作られ た紙であって、 1 0 %針葉樹晒クラフトパルプと 9 0 %混合南洋材パルプから作 られた紙に匹敵する特性を有しながらもさらに安価である紙を提供すること及び その紙の製造方法を提供することを目的とする。 なお、 本発明における混合南洋材パルプとは、 実施例では入手の容易性からメ ランチ類 (Meranti Group, 俗称メランチ材) のパルプを主成分とし、 他にリン ノ キャンプラン類 (Rimba Campuran Group, 現地名プナ (Punak) 、 ケンパ ス (Kempas) 、 バラン (Balan) 、 ビンタングル (Bintangur) 、 ピサンピサ ン (Pisang pisang) 等が含まれる) のパルプを含むものを用いたが、 特にこれ に限られるものではなく、 必要に応じて紙の製造に普通に使用されている南洋材 パルプを適宜混合して使用し得ることは明らかである。 発明の開示 More specifically, the present invention relates to a paper made from a mixed pulp of mixed southern and acacia wood, which has properties comparable to paper made from 10% softwood bleached kraft pulp and 90% mixed southern pulp. It is an object of the present invention to provide a paper which is more inexpensive while having the same, and to provide a method for producing the paper. In the present invention, the mixed southern pulp in the present invention is mainly composed of pulp of merantis (Meranti Group, commonly known as meranti) because of its easy availability, and also includes Rinba Campuran Group (Rimba Campuran Group, We used pulp with local names such as Punak, Kempas, Balan, Bintangur, and Pisang pisang, but especially limited to this. Rather than the southern lumber commonly used in the manufacture of paper when needed It is clear that the pulp can be used by mixing as appropriate. Disclosure of the invention
かくして、 本発明によれば、 混合南洋材パルプを主原料とし、 これにアカシア 材パルプを所定量配合したことを特徴とする紙が提供される。  Thus, according to the present invention, there is provided a paper characterized in that mixed South Sea pulp is used as a main raw material and a prescribed amount of acacia pulp is blended with the pulp.
本発明の紙は、 前記混合南洋材パルプとして、 メランチ類 (Meranti Group, 俗 称メランチ材) のパルプを主成分とし、 他にリンパキャンプラン類 (Rimba Camp uran Group 現: t也名プナ (Punak) 、 ゲンノヽ0ス ( empas) 、 ノ ラン (Balan) 、 ヒ、、ンタンク レ (Bintangur) 、 ピサンピサン (Pisang pisang) 等) のノヽ0ノレ プのいくつかを組合わせ混合したものであり、 アカシア材パルプの配合量は、 2 0〜 3 0重量%、 好ましくは 2 5〜 3 0重量%であることを特徴とする。 さらに、 本発明によれば、 混合南洋材パルプを主原料とし、 これにアカシア材 パルプを所定量配合した紙の製造に際し、 両パルプをそれぞれ異なる叩解ライン で叩解を行うことを特徴とする紙の製造方法が提供される。 The paper of the present invention is characterized in that the mixed South Sea pulp is mainly composed of pulp of Meranti (Meranti Group, commonly known as Meranti) and, in addition, Rimba Camp uran Group (currently: Tunana Puna) ), Gen'noヽ0 scan (empas), Roh run (Balan), human ,, Ntanku Les (Bintangur), is obtained by mixing a combination of some of Nono 0 Norre-flops of Pisanpisan (Pisang pisang), etc.), acacia The blending amount of the wood pulp is 20 to 30% by weight, preferably 25 to 30% by weight. Further, according to the present invention, in the production of paper in which mixed South Sea pulp is used as a main raw material and a predetermined amount of acacia pulp is blended with the pulp, both pulp are beaten in different beating lines, respectively. A manufacturing method is provided.
本発明の紙の製造方法は、前記混合南洋材パルプとして、メランチ類 (Meranti Group, 俗称メランチ材) のパルプを主原料とし、 他にリンパキャンプラン類 (R imba Campuran Group、 現地名プナ (Punak) 、 ケンパス (Kempas) 、 ノ ラ ン (Balan) 、 ビンタングノレ (Bintangur) 、 ピサンピサン (Pisang pisang ) 等が含まれる) のパルプのいくつかを組合わせ混合したものを用いたものであ り、 アカシア材パルプは、 配合量が 2 0〜 3 0重量%であり、 叩解度を 4 0 0 C S F ~ 5 0 0 C S F (Canadian Standard Freeness) の範囲で叩解すること 、 好ましくは 合量が 2 5〜 3 0重量0 /0であり、 叩解度を 4 0 0 C S F〜 5 0 0 C S Fの範囲で叩解することを特徴とする。 The method for producing paper of the present invention is characterized in that the mixed southern pulp is mainly made of pulp of merantis (Meranti Group, commonly known as merantik), and is also used as a pulp of Rimba Campuran Group (local name: Punak). ), Kempas, Nolan (Balan), Bintangurore (Bintangur), Pisampisan (Pisang pisang), etc.). Acacia wood The pulp has a blending amount of 20 to 30% by weight and a beating degree in a range of 400 CSF to 500 CSF (Canadian Standard Freeness), preferably 25 to 30 CSF. a weight 0/0, characterized by beating the beating degree in the range of 4 0 0 CSF~ 5 0 0 CSF .
以下、 本宪明の具体例を参考例及び実施例でもって詳細に説明する。 【参考例】 Hereinafter, specific examples of the present invention will be described in detail with reference examples and examples. [Reference example]
ここでは、繊維長さ及び S EM写真分析( S EM: Scanning Electron Micro scope, 走査電子顕微鏡) を含む、 アカシア材パルプ繊維の特性を考察すること から始め、 特に繊維長さ及び繊維径に対する叩解工程の影響を調べた。  Here we begin by examining the properties of acacia pulp fibers, including fiber length and SEM photo analysis (SEM: Scanning Electron Microscope), and in particular the beating process for fiber length and fiber diameter. The effect of was investigated.
各パルプの叩解前及び所定の叩解度における繊維長およぴ粗度 (繊維径の度合レヽ ) を調べた結果をまとめて表 1に示す。 ただし、 この表 1において、 LL=長さ 加重平均繊維長、 LW=重さ加重平均繊維長を示し (JAPAN TAPP I紙 パルプ試験方法 N o. 52— 89による) 、 また、 混合南洋材としては、 L P P 社製のもの (メランチ類:約 70重量。 /0、 リンパキャンプラン類:約 30重量0 /0 ) を用い、 針葉樹晒クラフトパルプとしては市販の Leaf River (商品名) を用 いた。 Table 1 summarizes the results of examining the fiber length and roughness (degree of fiber diameter) before and at a predetermined degree of beating of each pulp. However, in Table 1, LL = length weighted average fiber length, LW = weight weighted average fiber length (according to JAPAN TAPP I paper pulp test method No. 52-89). , those of the LPP, Inc. (meranti class:. about 70 weight / 0, lymph camp orchids: about 30 weight 0/0) was used, as the bleached softwood kraft pulp had use of a commercially available Leaf River (trade name).
【表 1】 【table 1】
種々の叩解度に対する繊維長さの分析  Analysis of fiber length for different beating degrees
Figure imgf000008_0001
注) IKPP Acacia= Indah Kiat Pulp & Paper社製アカシア材パルプ
Figure imgf000008_0001
Note) IKPP Acacia = Acacia pulp manufactured by Indah Kiat Pulp & Paper
LPP MTH =Lontar Papyrus Pulp & Paper社製混合南洋材パルプ LR NBKP =Leaf River:針葉樹晒クラフトパルプの商品名 (USA)  LPP MTH = Mixed southern pulp manufactured by Lontar Papyrus Pulp & Paper LR NBKP = Leaf River: Trade name of bleached softwood kraft pulp (USA)
この表 1の結果力 ら、 アカシア材パルプの繊維長さは、 同一叩解度では針葉樹 晒クラフトパルプはもちろん、 混合南洋材より短いことがわかる。 したがって、 アカシア材パルプは、 繊維長さの面からウェブ強さを向上させることはできない From the results in Table 1, it can be seen that the fiber length of acacia pulp is shorter than that of bleached softwood kraft pulp as well as mixed southern pulp at the same beating degree. Therefore, Acacia pulp cannot improve web strength in terms of fiber length
しかし、 アカシア材パルプは、 混合南洋材パルプや針葉樹晒クラフトパルプに 比較し非常に薄い繊維であるため粗度が小さく、 この点は特に 400 C S Fに叩 解された時に著しい。 表 1に示すように、 叩解工程は、 繊維長さの低下より、 粗 度の低下に大きく影響している。 アカシア材パルプを 5 50 CS Fから 400 C S Fに叩解したとき、 繊維長さはわずか 9 5 % (重さ加重平均繊維長) に低下す るだけであるが、 粗度は 60%に低下する。 However, acacia pulp is a very thin fiber compared to mixed southern pulp and softwood bleached kraft pulp, and therefore has a low roughness, especially when beaten to 400 CSF. As shown in Table 1, the beating process has a greater effect on the reduction in roughness than on the reduction in fiber length. When acacia pulp is beaten from 550 CSF to 400 CSF, the fiber length is reduced to only 95% (weight-weighted average fiber length), but the roughness is reduced to 60%.
粗度のデータから、 400 C S Fにおけるアカシア繊維の径は、 500 CSF における混合南洋材繊維の径の約 40%である。 したがって、 この粗度データか ら導き出される両繊維の直径比は、 500 CS F針葉樹晒クラフトパルプと 50 O CS F混合南洋材の直径比と非常に近い値となる。 この直径比の達成により、 ウェブ形成時に混合南洋材繊維の空隙を特に叩解されたアカシア繊維で埋めるこ とができる。 図 1に、 各繊維の接触状態を模式化した図面を示す。 (a) は混合南洋材 (M TH) とアカシア (Ac a c i a) 材パルプの場合を示し、 (b) は針葉樹晒ク ラフトパルプ (NBKP) と混合南洋材 (MTH) の場合を示す。  From the roughness data, the diameter of the acacia fiber at 400 CSF is about 40% of the diameter of the mixed southern fiber at 500 CSF. Therefore, the diameter ratio of both fibers derived from this roughness data is very close to the diameter ratio of 500 CS F softwood bleached kraft pulp and 50 O CS F mixed southern lumber. Achieving this diameter ratio allows the interstices of the mixed southern fibers to be filled with particularly beaten acacia fibers during web formation. Fig. 1 shows a schematic drawing of the contact state of each fiber. (A) shows the case of mixed southern timber (MTH) and acacia (Ac acia) timber pulp, and (b) shows the case of softwood bleached kraft pulp (NBKP) and mixed southern timber (MTH).
この図から、 アカシア繊維の太さは混合南洋材或いは針葉樹晒クラフトパルプに 比べて小さいことから、 アカシア繊維が混合南洋材繊維の隙間を塞ぎ込んでいる ことが容易に理解されるはずである。 次に、 S EM写真により各パルプの叩解度合いによるパルプ繊維の状態の違い を調べた。 図 2は、 アカシア材パルプの叩解度を種々変えた場合の走査電子顕微鏡写真で あり、 (a) は叩解前、 (b) は叩解度 55 OCSF、 (c) は叩解度 500C SF、 (d) は叩解度 45 OCSF、 (e) は叩解度 400CSFの場合を示す 。 図 3は、 針葉樹晒クラフトパルプの叩解度を変えた場合の走查電子顕微鏡写真 であり、 ( a ) は叩解前、 ( b ) は叩解度 500 C S Fの場合を示す。 また、 図 4は、 混合南洋材パルプの叩解度を変えた場合の走查電子顕微鏡写真であり、 ( a) は叩解前、 (b) は叩解度 50 OCSFの場合を示す。 From this figure, it can be easily understood that the acacia fiber is closing the gap between the mixed southern seawood fibers because the thickness of the acacia fiber is smaller than that of the mixed southern seawood or softwood bleached kraft pulp. Next, the difference in the state of the pulp fiber due to the degree of beating of each pulp was examined using SEM photographs. Fig. 2 is a scanning electron micrograph of the acacia pulp with various degrees of beating, where (a) is before beating, (b) is 55 OCSF, (c) is 500C SF, and (d) ) Indicates a beating degree of 45 OCSF, and (e) indicates a beating degree of 400 CSF. Fig. 3 shows scanning electron micrographs of the softwood bleached kraft pulp when the degree of beating was changed. (A) shows the result before beating, and (b) shows the result when the degree of beating was 500 CSF. Fig. 4 shows scanning electron micrographs of the mixed South Sea pulp with different degrees of beating, (a) before the beating and (b) with the degree of beating 50 OCSF.
図 3及び図 4カゝら明らかなように、 針葉樹晒クラフトパルプ及び混合南洋材パ ルプは、 叩解工程でフィプリル化の傾向が表れるが、 アカシア材パルプでは、 叩 解工程で繊維が壌れ、 更に叩解が進むと薄い繊維層に分割される (図 2参照) 。 アカシア繊維は、 竹に似た挙動を示し、 短い断片にカットされにくレ、が、 つぶ された時薄い断片に分割されやすい (図 5参照) 。 この特性は、 アカシア材パル プの繊維が、 混合南洋材パルプ及ぴ針葉樹晒クラフトパルプより薄い壁を持って いることを示しているが、 同時にこの繊維は丈夫である。 この特性が、 混合南洋 材パルプの繊維間の空間を満たすことにより柔軟性を高めると共に接触面積を増 大することができる。 発明を実施するための最良の形態  As is evident from Figs. 3 and 4, the softwood bleached kraft pulp and the mixed South Sea pulp tend to fibrillate during the beating process, whereas the acacia pulp has loose fibers during the beating process. As the beating process proceeds, it is divided into thin fiber layers (see Fig. 2). Acacia fiber behaves like bamboo and is difficult to cut into short pieces, but tends to break into thin pieces when crushed (see Figure 5). This property indicates that the fibers of acacia pulp have thinner walls than mixed southern pulp and softwood bleached kraft pulp, but at the same time the fiber is tougher. This property can enhance the flexibility and the contact area by filling the spaces between the fibers of the mixed southern pulp. BEST MODE FOR CARRYING OUT THE INVENTION
【実施例】  【Example】
次に、 実験室での試行テストにより、 各種叩解度のアカシア材パルプを用いて 製紙し、 こわさ (剛度) 、 引張強さ、 破裂強さ及び引裂き強さを調べた。 紙シートは、 74〜76 gZm2の範囲で、 自動手漉きマシンで作られた。 原 料は、 混合南洋材パルプ (e x. I KP P社製) 500 c cにアカシア材パルプ を 20〜35% (重量%、 以下同じ) の範囲で混入したもので、 アカシア材パル プの叩解度は、 400CSF〜550 CS Fの範囲において単独で叩解した。 その理由は、 アカシア材パルプは混合南洋材に比較し叩解が容易であるためであ り、 そのためアカシア材パルプの叩解は、 単独のラインで行う必要がある。 もし アカシア材と混合南洋材との叩解を同時に行うと、 アカシア材パルプの繊維が切 断されるため、 最適な条件が得られない。 さらに、 アカシア材パルプの叩解度は 、 正確に調整する必要がある。 アカシア材パルプの叩解は、 針葉樹晒クラフトパ ルプの叩解ラインで行うこともできる。 Next, paper was made using acacia pulp of various beating degrees by trial tests in a laboratory, and stiffness, tensile strength, burst strength and tear strength were examined. Paper sheets ranged from 74 to 76 gZm2 and were made on an automatic handmade machine. The raw material is a mixture of acacia wood pulp mixed in a range of 20-35% (weight%, the same applies hereinafter) to 500 cc of mixed South Sea wood pulp (ex. Manufactured by IKPP). The beating degree was independently beaten in the range of 400 CSF to 550 CSF. The reason is that acacia pulp is easier to beat than mixed southern seawood, so it is necessary to beat acacia pulp on a single line. If beating of acacia wood and mixed southern seawood is performed at the same time, the optimal conditions cannot be obtained because the fibers of acacia pulp are cut off. In addition, the degree of acacia pulp beating must be adjusted accurately. Acacia pulp can be beaten at the beating line of softwood bleached kraft pulp.
この実施例では、 パルプの特性により焦点を当てるため、 ケミカルは使用して いない。 比較例として、 10 %針葉樹晒クラフトパルプ 500CSF (90 %混合南洋 材パルプ) から作成されたシート (以下 「10%NBKP」 という) 及び 100 %混合南洋材パルプで作られたシート (以下 「100%MTH」 という) の場合 も例示する。  In this example, no chemicals were used to focus more on the properties of the pulp. As comparative examples, a sheet made from 10% softwood bleached kraft pulp 500CSF (90% mixed South Sea wood pulp) (hereinafter referred to as “10% NBKP”) and a sheet made from 100% mixed South Sea wood pulp (hereinafter “100% MTH ”).
原料配合及び叩解度に対する紙の単独特性値との関係を、 図 6から図 13に示 した。 合成特性値との関係は、 図 14及ぴ図 15に示す。 こわさ (剛度) の測定 値には坪量が含まれているため、 こわさ以外のすべての特性値は、 インデックス 値、 すなわち各特性値を坪量で割つたもので表している。  Figures 6 to 13 show the relationship between the raw material blending and the degree of beating with the individual properties of paper. The relationship with the composite characteristic value is shown in FIGS. 14 and 15. Since the measured value of stiffness (stiffness) includes the basis weight, all characteristic values other than stiffness are represented by index values, that is, each characteristic value divided by the basis weight.
アカシア材パルプの混合割合を変えた場合のこわさの関係を図 6に、 アカシア 材パルプの叩解度を変えた場合のこわさの関係を図 7に、 それぞれ示す。  Fig. 6 shows the relationship of stiffness when the mixing ratio of acacia pulp was changed, and Fig. 7 shows the relationship of stiffness when the degree of beating of acacia pulp was changed.
図 6を参照すると、 400CSF以外はアカシア材パルプの混合比に対しある 一定の傾向が見られないが、 400 CSFの点で最も高い値となっており、 ァカ シァ材パルプの含有量が 20 %以上で 10 %NB K Pと同等ないしはそれ以上の こわさが得られていることがわかる。 この理由は、 繊維の径によるものすなわち 混合南洋材の繊維間の空隙をアカシア材パルプの繊維が充分満たしているものと 考えられる。 Referring to Fig. 6, there is no certain tendency in the mixing ratio of acacia pulp except 400 CSF, but it is the highest at 400 CSF, and the content of acacia pulp is 20%. It can be seen that stiffness equal to or greater than 10% NB KP was obtained at% or more. The reason for this is that the fibers of the acacia pulp sufficiently fill the voids between the fibers of the mixed southern seawood, i.e. Conceivable.
一方、 図 7を参照すると、 アカシア材パルプ含有量が 20 %以上では、 ァカシ ァ材パルプの叩解度が 450CSFから 400CSFと進むに従って、 こわさが 大きくなっており、 アカシア材パルプ含有量が 25 %以上ではアカシア材パルプ の叩解度が約 420 C S F以下で 10%NBKPと同等ないしはそれ以上のこわ さが得られていることがわかる。  On the other hand, referring to Fig. 7, when the acacia pulp content is 20% or more, the stiffness increases as the beating degree of the acacia pulp increases from 450CSF to 400CSF, and the acacia pulp content is 25% or more. It can be seen that the acacia pulp has a beating degree of about 420 CSF or less, and stiffness equivalent to or higher than that of 10% NBKP is obtained.
図 6及ぴ図 7の両者の傾向を合わせ見ると、 少なくともアカシア材パルプの叩 解度が約 420CSFより進めば、 アカシア材パルプ含有量約 22 %以上で 10 %N B K Pと同等ないしはそれ以上のこわさが得られることが期待できよう。 次に、 アカシア材パルプの混合割合を変えた場合の引っ張り強さインデックス の変化を図 8に、 アカシア材パルプの叩解度を変えた場合の引っ張り強さインデ ックスを図 9に、 それぞれ示す。  Looking at the trends of both Fig. 6 and Fig. 7, the stiffness of the acacia pulp content is about 22% or more and the acacia pulp content is about 22% or more, which is equivalent to or higher than that of 10% NBKP, at least if the refining degree of the acacia pulp is more than about 420CSF. Can be expected to be obtained. Next, Fig. 8 shows the change in the tensile strength index when the mixing ratio of the acacia pulp was changed, and Fig. 9 shows the tensile strength index when the beating degree of the acacia pulp was changed.
図 8を参照すると、 引張強さインデックスの最適値は、 アカシア材パルプの混 合量が 24 %から 30 %、 叩解度が 400CSFから 500CSFの範囲の時に 得られる。 アカシア材パルプの混合量が 20 %から 30 %の範囲でも、 550 C S Fの場合を除き、 ほとんどのシートは 10%NBKPとほぼ同等とないしはそ れ以上の引張強さインデックス有している。 550CSFでは、 アカシア材パル プの繊維は、 壌されておらず、 薄い繊維状に分割されていない為、 引張強さの向 上に寄与しないからである。 しかし、 100%MTHのものよりは、 高い数値が 得られている。 なお、 各図の LPPAEは 100%MTHを示す。  Referring to Fig. 8, the optimal value of the tensile strength index is obtained when the mixing ratio of acacia pulp is 24% to 30% and the beating degree is in the range of 400CSF to 500CSF. Most sheets have a tensile strength index approximately equal to or greater than 10% NBKP, except in the case of Acacia pulp content of 20% to 30%, except for 550 CSF. In the case of 550CSF, the fibers of acacia pulp do not contribute to the improvement of the tensile strength because the fibers of the acacia pulp are not soild and are not divided into thin fibrous forms. However, higher values were obtained than those with 100% MTH. LPPAE in each figure indicates 100% MTH.
図 9を参照すると、 アカシア材パルプの含有量が 25 %から 30 %で、 叩解度 が 400CSFから 520 CS Fの範囲で引張強さインデックスが 10%NBK Pとほぼ同等とないしはそれ以上となっている。  Referring to Fig. 9, the acacia pulp content is 25% to 30%, the beating degree is in the range of 400CSF to 520CSF, and the tensile strength index is almost equal to or higher than 10% NBKP. I have.
図 8及び図 9の両者の傾向を合わせ見ると、 少なくともアカシア材パルプの叩 解度が約 400CSF〜520CSFであれば、 アカシア材パルプの含有量が 2 4%〜30%の範囲で 10%NBKPと同等ないしはそれ以上の引張強さインデ ックスが得られることが期待できょう。 また、 アカシア材パルプの混合割合を変えた場合の破裂抵抗ィンデックスの変 化を図 10に、 アカシア材パルプの叩解度を変えた場合の破裂抵抗ィンデッタス の変化を図 11に、 それぞれ示す。 Looking at the trends in both Fig. 8 and Fig. 9, it is clear that at least If the degree of resolving power is about 400CSF to 520CSF, it can be expected that a tensile strength index equal to or higher than 10% NBKP can be obtained when the content of acacia pulp is in the range of 24% to 30%. Figure 10 shows the change in rupture resistance index when the mixing ratio of acacia pulp was changed, and Figure 11 shows the change in rupture resistance index when the beating degree of acacia pulp was changed.
破裂強さは、 こわさ (剛度) 及び引張強さインデックスとは異なる傾向を示す 。 図 10及び図 1 1に示すように、 アカシア材パルプの混合割合が増加するにつ れ、 破裂強さインデックスの数値は增加している。 この実施例で測定した数値範 囲では、 アカシア材パルプの含有量に対しピークは現れなかった、 一方、 叩解度 の作用に対しては、 450CSFの時に最適な破裂強さインデックスが得られた 。 550 C S Fの時以外、 ァカシァ材パルプの含有量が 20 %以上で、 10 %N B K Pと同等ないしはそれ以上の破裂強さインデックスが得られた。 また、 アカシア材パルプの混合割合を変えた場合の引裂強さインデックスの変 化を図 12に、 アカシア材パルプの叩解度を変えた場合の引裂強さインデックス の変化を図 13に示す。  Burst strength tends to differ from stiffness (stiffness) and tensile strength index. As shown in Fig. 10 and Fig. 11, as the mixing ratio of acacia pulp increases, the value of the burst strength index increases. In the numerical range measured in this example, no peak appeared for the content of acacia pulp, while the effect of beating degree showed an optimum burst strength index at 450 CSF. Except at the time of 550 CSF, the burst strength index was equal to or higher than that of 10% NBKP when the content of acacia pulp was 20% or more. Figure 12 shows the change in the tear strength index when the mixing ratio of the acacia pulp is changed, and Fig. 13 shows the change in the tear strength index when the beating degree of the acacia pulp is changed.
図 12及ぴ図 13から明らかなように、 引裂強さも、 破裂強さの場合と同様、 特定の傾向を示さなかった。 このアイテムに対し、 正確なデータを得ることは、 膨大なサンプルの量を必要とするため、 困難であった。  As is clear from FIGS. 12 and 13, the tear strength did not show any specific tendency as in the case of the burst strength. Obtaining accurate data for this item was difficult because of the huge sample volume required.
しかし、 アカシア材パルプの叩解度が 400 C S F時点のサンプルでは、 ァカ シァ材パルプの含有量が 20 %から 30 %の範囲で、 やはり 10%NBKPのも のと匹敵する値となっている。 400 CSFサンプル (良く叩解された繊維) で は, 混合南洋材パルプの繊維の空隙が満たされ、 高密度の紙となり、 引裂強さ値 が上がっている。 一方、 550 CS Fのサンプルでは、 繊維そのものの強度によ り、 それなりの引裂強さを得ている。 他の配合のサンプルでは、 混合南洋材パル プとアカシア材パルプの複雑なウェブ構造により、 込み入った傾向を示す。 合成特性値 (破裂強さ、 引張強さ及び引裂強さ) を図 14及び図 15に示す。 この図では、 こわさ (剛度) は他の 3つの特性に較べ、 それほど重要でないので 、 省いている。 However, in the case of acacia pulp with a beating degree of 400 CSF, the content of acacia pulp is in the range of 20% to 30%, which is also comparable to that of 10% NBKP. The 400 CSF sample (well beaten fiber) fills the voids in the fiber of the mixed southern pulp and results in a high density paper with a tear strength value. Is up. On the other hand, in the sample of 550 CSF, a certain tear strength is obtained due to the strength of the fiber itself. Samples with other formulations tend to be more complicated due to the complex web structure of mixed southern pulp and acacia pulp. The composite property values (burst strength, tensile strength and tear strength) are shown in FIGS. In this figure, stiffness (rigidity) is omitted because it is less important than the other three properties.
すべての数値は、 アカシア材パルプと混合南洋材パルプとの混合物から得られ たものと、 10%NBKPとの差を、 10%NBKPの値で割ったもので表して いる。  All figures represent the difference between a mixture of acacia pulp and mixed southern pulp obtained from 10% NBKP divided by the value of 10% NBKP.
図 14は、 各物性の合成総合値で、 正の値を持ったサンプルが見られる。 図 1 5は、 各物性値ごとに区別して記載したものであり、 25%—400CSF、 2 0%- 500 CSF及ぴ 30%- 500 C S Fのアカシア材パルプを持ったサン プルではすべて正の値を有している。  Figure 14 shows the composite value of each property, with some samples having positive values. Figure 15 shows the values for each property value separately.All samples with acacia pulp of 25% -400CSF, 20% -500CSF and 30% -500CSF have positive values. have.
これは、 すべての項目で 10%NBKPより優れていることを表している。 This indicates that all items are better than 10% NBKP.
25%-400 C S Fアカシア材パルプを含むサンプルは、 最も高い合成値を 示した。 一方、 30%— 500 C S Fのアカシア材パルプを持ったサンプルでは 、 より均等な配分の値を示している。 以上の結果を総合すると、 アカシア材パルプの混合量を 25 %から 30 %、 叩 解度を 45 OCS F前後の条件とした混合南洋材一アカシア材混合パルプを使用 することにより、 10%NBKPよりも優れた特性を有する紙が得られるが、 重 視する特性値に応じてアカシア材パルプの含有量を 20〜 35 %、 ァカシァ材パ ルプの叩解度が 400CSF〜500 CSFの間で適宜選択することにより、 1 0 %NB K Pとほぼ同じかより優れた性質の紙を製造することができることがで きる。 また、 アカシア材パルプは針葉樹晒クラフトパルプよりも安価であるため、 ケ ミカルコスト (填料、 ウエットエンドスターチ、 歩留剤、 サイズ剤、 等) や叩解 コス ト (アカシア材パルプは叩解が容易である) は同一であるとして、 混合南洋 材ーアカシアの混合パルプを用いた場合の紙の生産コストを 10%針葉樹晒クラ フトパルプ一 90%南洋材の混合パルプを用いた場合と比較すると、 概ね針葉樹 晒クラフトパルプとアカシア材パルプとの価格差の分だけ安価にできる。 本発明による混合南洋材一アカシア材パルプから得られた紙は、 上述したよう に、 90%混合南洋材一 10%針葉樹晒クラフトパルプを用いた紙とほぼ同等な いしはそれ以上の特性値を有するものが得られるため、 混合南洋材一アカシア材 パルプは混合南洋材一針葉樹晒クラフトパルプに十分代替できることが確認され た。 Samples containing 25% -400 CSF acacia pulp showed the highest synthetic values. On the other hand, a sample with 30% -500 CSF acacia pulp shows a more even distribution value. Summarizing the above results, 10% NBKP can be obtained by using mixed Nanyo-Acacia mixed pulp with the mixed amount of acacia pulp of 25% to 30% and the degree of beating around 45 OCS F. Paper with excellent properties can be obtained, but the content of acacia pulp is selected from 20 to 35% and the beating degree of acacia pulp is selected from 400 CSF to 500 CSF depending on the value of the properties to be considered. This makes it possible to produce paper with properties that are about the same or better than 10% NB KP. Wear. Also, acacia pulp is less expensive than softwood bleached kraft pulp, so chemical costs (fillers, wet end starch, retention agents, sizing agents, etc.) and beating costs (acacia pulp is easier to beat) Is the same, the paper production cost when using a mixed pulp of mixed southern seawood and acacia is compared with the case of using a mixed pulp of 10% softwood bleached kraft pulp and 90% southern seawood. And acacia pulp can be made cheaper by the price difference. As described above, the paper obtained from the mixed southern seawood-acacia pulp according to the present invention has almost the same or higher characteristic values as the paper using 90% mixed southern seawood-1% softwood bleached kraft pulp. It was confirmed that mixed South Seawood-Acacia wood pulp could be sufficiently replaced by mixed South Sea wood single-leaf bleached kraft pulp.
また、 アカシア材パルプは針葉樹晒クラフトパルプよりも安価であるため、 同 等の特性を有しながらも生産コストが概ね両パルプの価格差の分だけ安価に出来 る。  Acacia pulp is also cheaper than softwood bleached kraft pulp, so it has the same characteristics, but its production cost can be reduced by the price difference between the two pulp.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 各繊維の接触状態を模式化した図面であり、 (a) は混合南洋材 (M TH) とアカシア (Ac a c i a) 材パルプ場合を示し、 (b) は針葉樹晒クラ フトパルプ (NBKP) と混合南洋材 (MTH) の場合を示す。  Figure 1 is a schematic drawing of the contact state of each fiber. (A) shows the case of mixed southern seawood (MTH) and acacia (Ac acia) pulp, and (b) shows softwood bleached kraft pulp (NBKP). ) And mixed southern seawood (MTH).
図 2は、 アカシア材パルプの叩解度を種々変えた場合の走査電子顕微鏡写真で あり、 (a) は叩解前、 (b) は叩解度 550CSF、 (c) は叩解度 500 C S F、 ( d ) は叩解度 4 5 0 C S F、 ( e ) は叩解度 4 0 0 C S Fの場合を示す 図 3は、 針葉樹晒クラフトパルプの叩解度を変えた場合の走査電子顕微鏡写真 であり、 ( a ) は叩解前、 ( b ) は叩解度 5 0 0 C S Fの場合を示す。 Figure 2 shows scanning electron micrographs of the acacia pulp with various degrees of beating, where (a) is before beating, (b) is 550CSF, and (c) is 500C. SF, (d) shows the degree of beating degree of 450 CSF, (e) shows the case of beating degree of 400 CSF.Fig. 3 is a scanning electron micrograph when the degree of beating of softwood bleached kraft pulp is changed. (A) shows the case before beating and (b) shows the case with a beating degree of 500 CSF.
図 4は、 混合南洋材パルプの叩解度を変えた場合の走査電子顕微鏡写真であり 、 ( a ) は叩解前、 ( b ) は叩解度 5 0 0 C S Fの場合を示す。  FIGS. 4A and 4B are scanning electron micrographs when the degree of beating of the mixed southern pulp was changed. FIG. 4A shows the state before the beating and FIG. 4B shows the state when the degree of beating was 500 CSF.
図 5は、 原料の差異による叩解効果の差異を示す模式図であり、 (a ) は叩解 された針葉樹晒クラフトパルプの繊維、 ( b ) は叩解された混合南洋樹パルプの 繊維、 ( c ) は叩解されたァカシァ材パルプの繊維の場合を示す。  Fig. 5 is a schematic diagram showing the difference in beating effect due to the difference in raw materials, where (a) is the fiber of bleached softwood bleached kraft pulp, (b) is the fiber of beaten mixed southern seawood pulp, and (c) Indicates the case of beaten acacia pulp fibers.
図 6は、 アカシア材パルプの混合割合を変えた場合のこわさ (剛度) の関係を 示す図である。  Figure 6 shows the relationship of stiffness (rigidity) when the mixing ratio of acacia pulp was changed.
図 7は、 ァカシァ材パルプの叩解度を変えた場合のこわさの関係を示す図であ る。  FIG. 7 is a diagram showing the relationship of stiffness when the degree of beating of acacia pulp is changed.
図 8は、 アカシア材パルプの混合割合を変えた場合の引っ張り強さ.  Figure 8 shows the tensile strength when the mixing ratio of acacia pulp was changed.
スの変化を示す図である。 FIG.
図 9は、 アカシア材パルプの叩解度を変えた場合の引っ張り強さ- の変化を示す図である。  FIG. 9 is a diagram showing a change in tensile strength when the degree of beating of acacia pulp is changed.
図 1 0は、 アカシア材パルプの混合割合を変えた場合の破裂抵抗  Figure 10 shows the rupture resistance when the mixing ratio of acacia pulp was changed.
の変化を示す図である。 FIG.
図 1 1は、 アカシア材パルプの叩解度を変えた場合の破裂抵抗ィンデッタスの 変化を示す図である。  FIG. 11 is a diagram showing a change in burst resistance indettas when the degree of beating of acacia pulp is changed.
図 1 2は、 アカシア材パルプの混合割合を変えた場合の引き裂き抵抗インデッ タスの変化を示す図である。  FIG. 12 is a diagram showing a change in the tear resistance index when the mixing ratio of acacia pulp is changed.
図 1 3は、 アカシア材パルプの叩解度を変えた場合の引き裂き抵抗インデック スの変化を示す図である。 図 1 4は、 1 0 % N B K Pの紙に対するァカシァ材パルプ含有紙の総合特性値 差比を示す図である。 Fig. 13 is a diagram showing the change in the tear resistance index when the degree of beating of acacia pulp is changed. FIG. 14 is a graph showing the total characteristic value difference ratio of akashia pulp-containing paper to 10% NBKP paper.
図 1 5は、 1 0 %N B K Pの紙に対するアカシア材パルプ含有紙の合成特性値 差比を示す図である。  FIG. 15 is a diagram showing a synthetic property value difference ratio of acacia pulp-containing paper to 10% NBKP paper.

Claims

請求の範囲 The scope of the claims
1 . 混合南洋材パルプを主原料とし、 これにアカシア材パルプを所定量配合した ことを特徴とする紙。 1. A paper made from mixed South Sea pulp as a main raw material and mixed with a prescribed amount of acacia pulp.
2 . 前記混合南洋材パルプは、 メランチ類 (Meranti Group, 俗称メランチ材) のノ ルプを主原料とし、他にリンパキャンプラン類 (Rimba Campuran Group 、 現地名プナ (Punak) 、 ケンパス (Kempas) 、 パラン (Balan) 、 ビンタ ングル (Bintangur) 、 ピサンピサン (Pisang pisang) 等) のパルプの いくつかを糸且合わせ混合したことを特徴とする請求項 1記載の紙。 2. The mixed southern pulp is mainly made of merantis (Meranti Group, commonly known as merantis), and is also made of other materials such as Rimba Campuran Group, local names Punak, Kempas, 2. The paper according to claim 1, wherein some of the pulp of Balan, Bintangur, Pisang pisang and the like are mixed together.
3 . 前記アカシア材パルプの配合量が 2 0〜 3 0重量%であることを特徴とする 請求項 1又は 2に記載の紙。 3. The paper according to claim 1, wherein the blending amount of the acacia pulp is 20 to 30% by weight.
4 . 前記アカシア材パルプの配合量が 2 5〜3 0重量%であることを特徴とする 請求項 1ないし 3の何れか 1項に記載の紙。  4. The paper according to any one of claims 1 to 3, wherein the blending amount of the acacia pulp is 25 to 30% by weight.
5 . 混合南洋材パルプを主原料とし、 これにアカシア材パルプを所定量配合し、 常法により紙を製造するに際し、 それぞれのパルプは異なる叩解ラインで叩 解を行うことを特徴とする紙の製造方法。  5. The main raw material is mixed South Sea pulp, a prescribed amount of acacia pulp is blended with the pulp, and each pulp is beaten on a different beating line when producing paper by an ordinary method. Production method.
6 . 前記混合南洋材パルプは、 メランチ類 (Meranti Group, 俗称メランチ材) のノ ノレプを主原料とし、他にリンノ《キャンプラン類 (Rimba Campuran Group 6. The mixed southern pulp is mainly made of merantis (Meranti Group, commonly known as merantik), and other ingredients are Rinba Campuran Group.
、 現地名プナ (Punak) 、 ケンパス (Kempas) 、 パラン (Balan) 、 ビンタ ングノレ (Bintangur) 、 ピサンピサン (Pisang pisang) 等力 S含まれる) のパルプのレヽくつかを組合わせ混合したものであることを特徴とする請求項 5記載の紙の製造方法。 A mixture of some pulp with the local name Punak, Kempas, Balan, Bintangur, Bintangur, Pisang pisang, etc. The method for producing paper according to claim 5, characterized in that:
7. 前記アカシア材パルプは、 配合量が 2 0〜 3 0重量%であり、 叩解度を 4 0 0CSF〜50 OCSFの範囲で叩解することを特徴とする請求項 5又は 6 記載の紙の製造方法。 7. The acacia pulp has a blending amount of 20 to 30% by weight and a beating degree of 40%. 7. The method for producing paper according to claim 5, wherein the paper is beaten in the range of 0CSF to 50 OCSF.
8. 前記アカシア材パルプは、 配合量が 25〜30重量%であり、 叩解度を 40 0CSF〜50 OCSFの範囲で叩解することを特徴とする請求項 5〜 7の 何れか 1項に記載の紙の製造方法。 8. The acacia pulp according to any one of claims 5 to 7, wherein a blending amount of the pulp is 25 to 30% by weight, and a beating degree is in a range of 400 CSF to 50 OCSF. Paper manufacturing method.
PCT/JP2002/007349 2001-07-19 2002-07-19 Paper with the use of acacia tree pulp and process for producing the same WO2003008707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-220440 2001-07-19
JP2001220440A JP3966701B2 (en) 2001-07-19 2001-07-19 Paper using acacia pulp and method for producing the same

Publications (1)

Publication Number Publication Date
WO2003008707A1 true WO2003008707A1 (en) 2003-01-30

Family

ID=19054259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007349 WO2003008707A1 (en) 2001-07-19 2002-07-19 Paper with the use of acacia tree pulp and process for producing the same

Country Status (2)

Country Link
JP (1) JP3966701B2 (en)
WO (1) WO2003008707A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876168A1 (en) 2006-07-04 2008-01-09 Evonik Degussa GmbH Method for manufacturing beta amino alpha hydroxy carboxylic acid amides
WO2022006608A1 (en) 2020-07-10 2022-01-13 Mondi Ag Method for producing a cellulose-fibre-based drinking straw

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793017B2 (en) * 2006-02-20 2011-10-12 パナソニック株式会社 Subcone for speaker, speaker using the same, and electronic device and apparatus using the speaker
JP4793222B2 (en) * 2006-11-02 2011-10-12 パナソニック株式会社 Speaker diaphragm
JP4793015B2 (en) * 2006-02-20 2011-10-12 パナソニック株式会社 Speaker diaphragm, speaker using the same, and electronic device and apparatus using the speaker
JP4793244B2 (en) * 2006-12-13 2011-10-12 パナソニック株式会社 Speaker dust cap
US8199964B2 (en) 2006-02-20 2012-06-12 Panasonic Corporation Speaker diaphragm, speaker dust cap, speaker sub-cone, speaker using these components, and electronic apparatus using the same
JP4793016B2 (en) * 2006-02-20 2011-10-12 パナソニック株式会社 DUST CAP FOR SPEAKER, SPEAKER USING THE SAME, AND ELECTRONIC DEVICE AND DEVICE USING THE SPEAKER
JP5332501B2 (en) * 2008-10-27 2013-11-06 王子ホールディングス株式会社 Coated paper for printing
SG10201503693PA (en) * 2015-05-11 2016-12-29 Rge Pte Ltd A Pulp Fiber Composition
JP7215189B2 (en) * 2018-03-16 2023-01-31 王子ホールディングス株式会社 Paper substrate for foam insulation paper container, sheet for foam insulation paper container and foam insulation paper container
JP2019163578A (en) * 2018-03-16 2019-09-26 王子ホールディングス株式会社 Paper base material for foam heat insulation paper container, sheet for foam heat insulation paper container, and foam heat insulation paper container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197400A (en) * 1982-05-11 1983-11-17 ダイセル化学工業株式会社 Increasing of paper strength
JPH08109591A (en) * 1994-10-05 1996-04-30 Honshu Paper Co Ltd Paper and paper board improved in strength and their production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197400A (en) * 1982-05-11 1983-11-17 ダイセル化学工業株式会社 Increasing of paper strength
JPH08109591A (en) * 1994-10-05 1996-04-30 Honshu Paper Co Ltd Paper and paper board improved in strength and their production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876168A1 (en) 2006-07-04 2008-01-09 Evonik Degussa GmbH Method for manufacturing beta amino alpha hydroxy carboxylic acid amides
WO2022006608A1 (en) 2020-07-10 2022-01-13 Mondi Ag Method for producing a cellulose-fibre-based drinking straw

Also Published As

Publication number Publication date
JP3966701B2 (en) 2007-08-29
JP2003027388A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US11634863B2 (en) Method to produce composite-enhanced market pulp and paper
CN204325807U (en) Couch board
WO2003008707A1 (en) Paper with the use of acacia tree pulp and process for producing the same
CN102124162A (en) Engineered composite product and method of making the same
CN112575618A (en) Multilayer paperboard
Brodin et al. Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties
Kasmani et al. Effect of nano-cellulose on the improvement of the properties of paper newspaper produced from chemi-mechanical pulping
WO2021001751A1 (en) Refined cellulose fiber composition
WO2016140609A1 (en) Pulp mixture for production of a paperboard product with high strength in z-direction
Fathi et al. Prospects for the preparation of paper money from cotton fibers and bleached softwood kraft pulp fibers with nanofibrillated cellulose
Laukala et al. Influence of pulp type on the three-dimensional thermomechanical convertibility of paperboard
JPH08188980A (en) Transparent paper
Fatehi et al. Interaction of cationic modified poly vinyl alcohol with high yield pulp
WO2020033659A1 (en) Fiber blend, method for producing fiber blend, and paperboard product comprising fiber blend
US20200340182A1 (en) A cellulose paper composite and process for preparation thereof
Liu et al. Using cationic polyvinyl alcohol (C-PVA) to improve the strength of wood-free papers containing high-yield pulp (HYP)
Khantayanuwong et al. Physical Properties of Handsheets Derived from Coi (Streblus asper Lour.) Pulp Fiber as Papermaking Material Traced from Ancient Times.
JPH08109591A (en) Paper and paper board improved in strength and their production
KR100750875B1 (en) Manufacturing method for increasing bulk and stiffness of paperboard by using mechanically and chemically modified wood particles into paperboard middle layers
Zhang et al. Energy saving potential of high yield pulp (HYP) application by addition of small amounts of bleached wheat straw pulp
EP0004833B1 (en) Paper-like fibre product and method of manufacturing such a product
JP7234866B2 (en) Kraft paper and its manufacturing method
Potulski et al. Nanofibrillated cellulose applied as reinforcement for short-fiber paper.
Pego et al. Blended paper: physical, optical, structural, and interfiber bonding analysis
EP4310249A1 (en) Translucent paper products

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)