WO2003000456A2 - Method for carrying out local laser-induced etching of solid materials - Google Patents

Method for carrying out local laser-induced etching of solid materials Download PDF

Info

Publication number
WO2003000456A2
WO2003000456A2 PCT/DE2002/002259 DE0202259W WO03000456A2 WO 2003000456 A2 WO2003000456 A2 WO 2003000456A2 DE 0202259 W DE0202259 W DE 0202259W WO 03000456 A2 WO03000456 A2 WO 03000456A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
solid
etching
laser beam
liquid
Prior art date
Application number
PCT/DE2002/002259
Other languages
German (de)
French (fr)
Other versions
WO2003000456A3 (en
Inventor
Konrad Seppelt
Vera Yakovlevna Popkova
Georgii Ayratovitch Shafeev
Alexander Vladimirovitch Simakin
Original Assignee
Konrad Seppelt
Vera Yakovlevna Popkova
Georgii Ayratovitch Shafeev
Simakin Alexander Vladimirovit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konrad Seppelt, Vera Yakovlevna Popkova, Georgii Ayratovitch Shafeev, Simakin Alexander Vladimirovit filed Critical Konrad Seppelt
Priority to AU2002320886A priority Critical patent/AU2002320886A1/en
Publication of WO2003000456A2 publication Critical patent/WO2003000456A2/en
Publication of WO2003000456A3 publication Critical patent/WO2003000456A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5353Wet etching, e.g. with etchants dissolved in organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for local laser-induced etching of solids.
  • Solids etching is a fundamental process in many areas of industrial production, from chemistry to microelectronics.
  • the etching is typically carried out with the aid of masks which have openings for the areas to be etched, while the areas protected by the masks are not attacked by the etchant.
  • a variety of etchants are used to achieve a high etch rate, including also gaseous chlorine.
  • Gaseous fluorine has an even higher chemical activity, but the use of pure fluorine for etching purposes is difficult to answer because of its harmful effects on equipment, personnel and the environment.
  • laser irradiation is widely used, for example, in etching, plating, welding, doping, etc., see eg D. Bäu- alder, Laser Processing and Chemistry, 2 nd Edition, Berlin, Springer 1996th
  • a large variety of gaseous media is used for the purpose of local laser-induced etching of solids, including compounds containing chlorine and fluorine.
  • US-A-5, 354, 420 describes a laser-induced etching process for III-V and II-VI semiconductors using gaseous media made from chlorofluorocarbons. The etching process is usually initiated by locally heating the solid surface with the laser, sometimes beyond the melting point. The surrounding gaseous medium is thermally released with the release of active species, eg chlorine or fluorine. These species react with the heated surface of the solid material so that localized etching occurs.
  • active species eg chlorine or fluorine.
  • the disadvantage of a gaseous medium is the relatively low etching rate as a result of the low density of the reactive species, and the removal of the reactive species from the irradiated zone, so that diffuse etching edges arise.
  • the gaseous reactive atmosphere requires vacuum systems to control the gas pressure, the laser-light-permeable windows of the chamber, etc.
  • US-A-5, 057, 184 describes a method for laser-induced etching of solids in a liquid environment. The process is based on the action of collapsing gas bubbles that arise in the vicinity of the superheated surface that is wetted by the liquid. This method requires the surface to be heated by laser radiation, in other words the absorption coefficient of the solid must be large enough to cause the local liquid to evaporate locally.
  • Si0 2 and Si0 2 based materials are often used in microelectronics, optoelectronics and other domains of modern industry. There is therefore a need for a suitable maskless process for their processing.
  • the existing processes do not open the way for local etching of Si0 2 , since this material is the Radiation from most common lasers is not absorbed. Therefore, with the existing processes, local heating of Si0 2 and the decomposition of gaseous material in the vicinity of the irradiated surface is impossible. Si0 2 does react specifically with fluorine atoms or ions.
  • DE 199 12 879 AI discloses a method for etching a surface of a transparent, solid material (eg Si0 2 ) with a laser beam, in which a surface is irradiated by means of a laser beam, a fluid capable of absorbing the laser beam being in contact with the opposite surface the solid substance is held.
  • a solution or dispersion which contains a substance selected from organic substances or inorganic pigments is proposed as the fluid.
  • DE 199 12 879 AI does not use the fluoroorganic compound according to the invention in the liquid or supercritical phase; on the other hand, carbon deposition occurs on the surface to be etched, which promotes heating and etching, but is very undesirable for electronic purposes. The etching is very slow.
  • the object of the invention is to substantially avoid the disadvantages of the prior art.
  • the object of the invention is to provide an effective method for local laser-induced etching of solids.
  • the present invention accordingly relates to a method for local laser-induced etching of solids, which comprises that a surface of a solid which is kept in contact with an organofluorine compound in the liquid or supercritical phase is irradiated with a laser beam, so that the surface with the laser beam is etched.
  • the solid is preferably made of Si0 2 , in particular crystalline or molten quartz; solids based on Si0 2 , in particular glasses; metal; Semiconductors, in particular Si, Ge, III-V semiconductors (such as GaAs and InP) and II-VI semiconductors (such as CdS and ZnSe); polymers; Ceramics, in particular made of clay-ceramic materials or special ceramic materials, in particular oxides, carbides or nitrides; Silicon carbide; alumina; Sapphire; and diamond selected.
  • Materials immersed in fluoroorganic liquids are etched by laser radiation and thus local heating of the solid / liquid interface.
  • the heating leads to thermal decomposition of the liquid and thus to the release of reactive fluorinated species. These react chemically with the surroundings of the material.
  • the laser energy is selected so that it is sufficient to decompose the " liquid. It can be assumed that the Si0 2 or a material based on Si0 2 is in direct contact with the fluoroorganic liquid.
  • the background etching is practically zero because the temperature is outside the laser-irradiated boundary layer is close to room temperature, so that there the concentration of reactive fluorinated Species in the liquid is practically zero.
  • a copper vapor laser works well, but any other laser can be used, for example an Nd: YAG laser (fundamental or 1st harmonic), pulsed CW argon ion laser, or any other laser.
  • Si0 2 or materials based on Si0 2 are transparent at the wavelength of these lasers, and the basic structure with these lasers is the irradiation of the Si0 2 / liquid boundary layer through the transparent material.
  • pulse intervals can be used, e.g. a few Hz, e.g. of excimer lasers.
  • the common liquids are perfluorinated and / or partially fluorinated organic aliphatic, alicyclic (cyclo-C 3 -C ⁇ o), olefinic or aromatic compounds.
  • the etching takes place without or with the addition of light-absorbing additives.
  • the absorption for example, is performed by two-photon absorption or 'due to the presence of trace impurities.
  • additives can be added to the liquid, for example Br 2 , I 2 , etc., especially for lasers in the visible range.
  • the temperature of the liquid at the solid-liquid interface can not only be increased by the absorption of the laser radiation in the liquid, but also by heat transfer from solid material that has been heated by the laser.
  • the liquid can be transparent to the laser light while the solid material is absorbing.
  • the advantage of liquids over gases is that the process can be carried out in a normal atmosphere.
  • the decomposition of the fluoroorganic liquid with the help of visible or near infrared laser light is initially only a purely thermal process.
  • Ultraviolet excimer laser radiation eg XeCl laser, wavelength 308 nm, or KrF laser, wavelength 248 nm
  • the concentration of reactive fluorinated species is proportional to the number of laser photons absorbed by the liquid.
  • the beam of a copper vapor laser (wavelength 510.6 nm, pulse length 10-20 ns) is focused from above through a transparent SiO 2 substrate onto the boundary layer of this substrate with liquid perfluorobenzene (C 6 F 6 ).
  • the etching process can be carried out successfully.
  • the etching rate is approximately 500 nm / pulse with a light flux ("Fluence") of 60 J / cm 2 of a 20 ns pulse.
  • Example 1 is repeated, but the laser beam is focused from below through the SiO 2 substrate onto the boundary layer.
  • the etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • Example 1 is repeated, but in addition an amount of a compound which absorbs laser light (I 2 , Br 2 , dyes, etc.) is added to the liquid in order to increase the absorption of the laser light.
  • the etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • Example 4
  • Example 1 is repeated, but the laser radiation is not sent through an Si0 2 substrate but through glass.
  • the etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • Example 1 is repeated, but the radiation from a UV excimer laser with a wavelength for which Si0 2 is transparent is sent into the liquid through an Si0 2 substrate.
  • the etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • Example 1 is repeated, but the wavelength of the laser radiation is in the near infrared region, where Si0 2 is still transparent.
  • the etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • Example 1 is repeated, but the laser radiation is sent through an SiO 2 window into the fluoroorganic liquid.
  • the etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • Example 8 In a test arrangement according to FIG. 2, the beam of a copper vapor laser (wavelength 510.6 nm, pulse length 10-20 ns) is directed onto an absorbent solid made of SiC ceramic. The solid is immersed in a transparent fluoroorganic liquid, eg perfluorooctane. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • a transparent fluoroorganic liquid eg perfluorooctane.
  • Example 8 is repeated, except that the substrate immersed in the fluoroorganic liquid is irradiated with near infrared laser light.
  • the etching process can be carried out successfully and with comparable etching rates as in Example 1.
  • the beam of a copper vapor laser is directed through a transparent window onto a metal substrate such as e.g. Steel focused.
  • a metal substrate such as e.g. Steel focused.
  • perfluorooctane vapors are brought into the laser-irradiated area of the substrate and condense there on the metal surface to form a liquid.
  • the etching process - can be carried out successfully.
  • the etching rate is approximately 500 nm / pulse.
  • Example 1 is repeated, but the boundary layer is irradiated through the transparent solid with the interference light of two or more coherent lasers.
  • the spatial distribution of the etched pattern depends on the laser wavelength and the angle between the laser beams. The etching process can be carried out successfully.
  • Example 10 is repeated, but the reactor contains organofluorine compounds in the liquid phase at elevated temperature and / or pressure or in the supercritical state.
  • the etching process can be carried out successfully.

Abstract

The invention relates to a method for carrying out local laser-induced etching of solid materials. According to the invention, a surface of a solid material, which is held in contact with a fluoro-organic compound provided in a liquid or supercritical phase, is irradiated with a laser beam that, in turn, etches the surface.

Description

Verfahren zum lokalen laserinduzierten Ätzen von Feststoffen Process for local laser-induced etching of solids
Die vorliegende Erfindung betrifft ein Verfahren zum loka- len laserinduzierten Ätzen von Feststoffen.The present invention relates to a method for local laser-induced etching of solids.
Das Ätzen von Feststoffen ist ein grundlegendes Verfahren in vielen Bereichen industrieller Produktion, von der Chemie bis zur Mikroelektronik. Typischerweise wird das Ätzen mit Hilfe von Masken vorgenommen, die Öffnungen für die zu ätzenden Bereiche aufweisen, während die durch die Masken geschützten Bereiche vom Ätzmittel nicht angegriffen werden. Um eine hohe Ätzrate zu erreichen, werden eine Vielzahl von Ätzmitteln benutzt, u.a. auch gasförmiges Chlor. Gasförmiges Fluor hat zwar eine noch höhere chemische Aktivität, aber der Gebrauch reinen Fluors zu Ätzzwecken ist wegen seines schädigenden Einflusses auf Geräte, Personal und Umgebung schwer zu verantworten.Solids etching is a fundamental process in many areas of industrial production, from chemistry to microelectronics. The etching is typically carried out with the aid of masks which have openings for the areas to be etched, while the areas protected by the masks are not attacked by the etchant. A variety of etchants are used to achieve a high etch rate, including also gaseous chlorine. Gaseous fluorine has an even higher chemical activity, but the use of pure fluorine for etching purposes is difficult to answer because of its harmful effects on equipment, personnel and the environment.
Zum Zweck der lokalen Änderung von Materialien ist Laserbestrahlung weit verbreitet, zum Beispiel beim Ätzen, Metallisieren, Schweißen, Dotieren etc., siehe z.B. D. Bäu- erle, Laser Processing und Chemistry, 2nd Edition, Berlin, Springer 1996.For the purpose of local change of materials laser irradiation is widely used, for example, in etching, plating, welding, doping, etc., see eg D. Bäu- alder, Laser Processing and Chemistry, 2 nd Edition, Berlin, Springer 1996th
Zum Zweck des lokalen laserinduzierten Ätzens von Feststoffen wird eine große Vielfalt gasförmiger Medien genutzt, z.B. auch chlor- und fluorhaltige Verbindungen. In US-A-5, 354, 420 wird ein laserinduziertes Ätzverfahren für III-V- und II-VI-Halbleiter unter Verwendung von gasförmigen Medien aus Chlorfluorkohlenwasserstoffen beschrieben. Das Ätzverfahren wird gewöhnlich durch lokales Erhitzen der festen Oberfläche mit dem Laser, manchmal über den Schmelzpunkt hinaus, initiiert. Das umgebende gasförmige Medium wird thermisch unter Freisetzung aktiver Spezies, z.B. Chlor oder Fluor, zersetzt. Diese Spezies reagieren mit der erhitzten Oberfläche des festen Materials, so dass eine örtlich abgegrenzte Ätzung erfolgt.A large variety of gaseous media is used for the purpose of local laser-induced etching of solids, including compounds containing chlorine and fluorine. US-A-5, 354, 420 describes a laser-induced etching process for III-V and II-VI semiconductors using gaseous media made from chlorofluorocarbons. The etching process is usually initiated by locally heating the solid surface with the laser, sometimes beyond the melting point. The surrounding gaseous medium is thermally released with the release of active species, eg chlorine or fluorine. These species react with the heated surface of the solid material so that localized etching occurs.
Der Nachteil eines gasförmigen Mediums ist die relativ geringe Ätzrate als Folge der geringen Dichte der reaktiven Spezies, und der Abtransport der reaktiven Spezies aus der bestrahlten Zone, so dass diffuse Ätzkanten entstehen. Darüber hinaus erfordert die gasförmige reaktive At- mosphäre Vakuumsysteme zur Kontrolle des Gasdruckes, das Laserlicht durchlässige Fenster der Kammer, etc.The disadvantage of a gaseous medium is the relatively low etching rate as a result of the low density of the reactive species, and the removal of the reactive species from the irradiated zone, so that diffuse etching edges arise. In addition, the gaseous reactive atmosphere requires vacuum systems to control the gas pressure, the laser-light-permeable windows of the chamber, etc.
US-A-5, 057, 184 beschreibt ein Verfahren zum laserinduzierten Ätzen von Feststoffen in flüssiger Umgebung. Das Ver- fahren basiert auf der Einwirkung kollabierender Gasblasen, die in der Nähe der überhitzten Oberfläche entstehen, welche durch die Flüssigkeit benetzt ist. Dieses Verfahren erfordert das Erhitzen der Oberfläche durch Laserbestrahlung, in anderen Worten, der Absorptionskoeffizient des Feststoffs muss groß genug sein, um das lokale Verdampfen der benachbarten Flüssigkeit zu bewirken.US-A-5, 057, 184 describes a method for laser-induced etching of solids in a liquid environment. The process is based on the action of collapsing gas bubbles that arise in the vicinity of the superheated surface that is wetted by the liquid. This method requires the surface to be heated by laser radiation, in other words the absorption coefficient of the solid must be large enough to cause the local liquid to evaporate locally.
Das laserinduzierte Ätzen von Si02 und auf Si02 basierenden Verbindungen bereitet besondere Schwierigkeiten. Dies hauptsächlich deswegen, weil die Bandbreite reinen Si02 lOeV übertrifft und deshalb zum Erhitzen der Oberfläche Lasersysteme nötig sind bei 125 nm und kürzeren Wellenlängen (d.h. im fernen UV-Bereich) strahlen.The laser-induced etching of Si0 2 and compounds based on Si0 2 presents particular difficulties. This is mainly because the bandwidth exceeds pure Si0 2 lOeV and therefore laser systems are required to heat the surface at 125 nm and shorter wavelengths (ie in the far UV range).
Andererseits werden Si02 und auf Si02 basierende Materialien häufig in Mikroelektronik, Optoelektronik und anderen Domänen moderner Industrie benutzt. Es besteht daher ein Bedarf an einem geeigneten maskenlosen Verfahren zu ihrer Bearbeitung. Die existierenden Verfahren eröffnen nicht den Weg zum lokalen Ätzen von Si02, da dieses Material die Strahlung der meisten üblichen Laser nicht absorbiert. Daher ist mit den existierenden Verfahren eine lokale Erhitzung von Si02 und die Zersetzung gasförmigen Materials in der Nähe der bestrahlten Oberfläche unmöglich. Zwar rea- giert Si02 spezifisch mit Fluoratomen oder -ionen. Die direkte Anwendung von z.B. wässriger Flusssäure (HF) löst dieses Problem aber nicht, und zwar wegen der Ätzung nicht bestrahlter Oberfläche (Hintergrundätzung) . Dieses Verfahren wird auch "nasses Ätzen" genannt, siehe T. Tetsuya, Japanische Patentveröffentlichung Nr. 05268388, Sony Corporation.On the other hand, Si0 2 and Si0 2 based materials are often used in microelectronics, optoelectronics and other domains of modern industry. There is therefore a need for a suitable maskless process for their processing. The existing processes do not open the way for local etching of Si0 2 , since this material is the Radiation from most common lasers is not absorbed. Therefore, with the existing processes, local heating of Si0 2 and the decomposition of gaseous material in the vicinity of the irradiated surface is impossible. Si0 2 does react specifically with fluorine atoms or ions. However, the direct application of, for example, aqueous hydrofluoric acid (HF) does not solve this problem, because of the etching of the non-irradiated surface (background etching). This method is also called "wet etching", see T. Tetsuya, Japanese Patent Publication No. 05268388, Sony Corporation.
DE 199 12 879 AI offenbart ein Verfahren zum Ätzen einer Oberfläche eines durchsichtigen, festen Stoffes (z.B. Si02) mit einem Laserstrahl, in welchem eine Oberfläche mittels eines Laserstrahls bestrahlt wird, wobei ein zur Absorption des Laserstrahls befähigtes Fluid in Kontakt mit der gegenüberliegenden Oberfläche des festen Stoffes gehalten wird. Als Fluid wird eine Lösung oder Dispersion vorgeschlagen, welche einen aus organischen Stoffen oder anorganischen Pigmenten ausgewählten Stoff enthält.DE 199 12 879 AI discloses a method for etching a surface of a transparent, solid material (eg Si0 2 ) with a laser beam, in which a surface is irradiated by means of a laser beam, a fluid capable of absorbing the laser beam being in contact with the opposite surface the solid substance is held. A solution or dispersion which contains a substance selected from organic substances or inorganic pigments is proposed as the fluid.
Allerdings kommen in DE 199 12 879 AI nicht die erfindungsgemäßen fluororganischen Verbindung in flüssiger oder überkritischer Phase zum Einsatz; dagegen tritt Kohlen- stoffabscheidung auf der zu ätzenden Oberfläche auf, die zwar das Erhitzen und Ätzen fördert, aber für elektronische Zwecke sehr unerwünscht ist. Es erfolgt eine sehr langsame Ätzung.However, DE 199 12 879 AI does not use the fluoroorganic compound according to the invention in the liquid or supercritical phase; on the other hand, carbon deposition occurs on the surface to be etched, which promotes heating and etching, but is very undesirable for electronic purposes. The etching is very slow.
Die Aufgabe der Erfindung besteht darin, die Nachteile beim Stand der Technik im wesentlichen zu vermeiden. Insbesondere besteht die Aufgabe der Erfindung darin, ein effektives Verfahren zum lokalen laserinduzierten Ätzen von Feststoffen bereitzustellen.The object of the invention is to substantially avoid the disadvantages of the prior art. In particular, the object of the invention is to provide an effective method for local laser-induced etching of solids.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zum lokalen laserinduzierten Ätzen von Feststoffen, welches umfasst, dass eine Oberfläche eines Feststoffs, welche mit einer fluororganischen Verbindung in flüssiger oder überkritischer Phase in Berührung gehalten wird, mit einem Laserstrahl bestrahlt wird, so dass die Oberfläche mit dem Laserstrahl geätzt wird.The present invention accordingly relates to a method for local laser-induced etching of solids, which comprises that a surface of a solid which is kept in contact with an organofluorine compound in the liquid or supercritical phase is irradiated with a laser beam, so that the surface with the laser beam is etched.
Der Feststoff wird vorzugsweise aus Si02, insbesondere kristallinem oder geschmolzenem Quarz; auf Si02 basieren- den Feststoffen, insbesondere Gläsern; Metallen; Halbleitern, insbesondere Si, Ge, III-V- Halbleitern (wie z.B. GaAs und InP) und II-VI-Halbleitern (wie z.B. CdS und ZnSe) ; Polymeren; Keramiken, insbesondere aus tonkeramischen Materialien oder sonderkeramischen Materialien, insbesondere Oxiden, Carbiden oder Nitriden; Siliziumcar- bid; Aluminiumoxid; Saphir; und Diamant ausgewählt.The solid is preferably made of Si0 2 , in particular crystalline or molten quartz; solids based on Si0 2 , in particular glasses; metal; Semiconductors, in particular Si, Ge, III-V semiconductors (such as GaAs and InP) and II-VI semiconductors (such as CdS and ZnSe); polymers; Ceramics, in particular made of clay-ceramic materials or special ceramic materials, in particular oxides, carbides or nitrides; Silicon carbide; alumina; Sapphire; and diamond selected.
Materialien, eingetaucht in fluororganische Flüssigkeiten, werden durch Laserbestrahlung und damit lokales Erhitzen der Grenzschicht Feststoff/Flüssigkeit geätzt. Das Erhitzen führt zu thermischer Zersetzung der Flüssigkeit und damit zur Freisetzung reaktiver fluorierter Spezies. Diese reagieren chemisch mit der Umgebung des Materials. Die Laserenergie ist so gewählt, dass sie zur Zersetzung der "Flüssigkeit ausreicht. Man kann annehmen, dass das Si02 oder ein auf Si02 basierendes Material in direktem Kontakt mit der fluororganischeri Flüssigkeit steht. Die Hintergrundätzung ist praktisch null, weil die Temperatur außerhalb der laserbestrahlten Grenzschicht nahe Raumtemperatur ist, so dass dort die Konzentration reaktiver fluorierter Spezies in der Flüssigkeit praktisch null ist. Ein Kupferdampflaser arbeitet gut, aber jeder andere Laser kann benutzt werden, z.B. ein Nd:YAG Laser (Grundschwingung oder 1. Oberton), gepulster CW-Argon-Ionenlaser, oder jeder an- dere Laser. Si02 oder Materialien auf Si02-Basis sind bei der Wellenlänge dieser Laser transparent, und der grundsätzliche Aufbau mit diesen Lasern ist die Bestrahlung der Si02/Flüssikgeits-Grenzschicht durch das transparente Material hindurch.Materials immersed in fluoroorganic liquids are etched by laser radiation and thus local heating of the solid / liquid interface. The heating leads to thermal decomposition of the liquid and thus to the release of reactive fluorinated species. These react chemically with the surroundings of the material. The laser energy is selected so that it is sufficient to decompose the " liquid. It can be assumed that the Si0 2 or a material based on Si0 2 is in direct contact with the fluoroorganic liquid. The background etching is practically zero because the temperature is outside the laser-irradiated boundary layer is close to room temperature, so that there the concentration of reactive fluorinated Species in the liquid is practically zero. A copper vapor laser works well, but any other laser can be used, for example an Nd: YAG laser (fundamental or 1st harmonic), pulsed CW argon ion laser, or any other laser. Si0 2 or materials based on Si0 2 are transparent at the wavelength of these lasers, and the basic structure with these lasers is the irradiation of the Si0 2 / liquid boundary layer through the transparent material.
Aus praktischen Gründen ist es wünschenswert, Laser mit hoher Wiederholungsrate zu benutzen, die damit in der Lage sind, eine hohe Ätzgeschwindigkeit zu ermöglichen. Die oben genannten Laser mit einer Wiederholungsrate von meh- reren KHz erfüllen diese Anforderungen gut.For practical reasons, it is desirable to use lasers with a high repetition rate that are capable of enabling a high etching rate. The above-mentioned lasers with a repetition rate of several KHz meet these requirements well.
Um andererseits ein flaches Profil der Ätzung zu erreichen, können längere Pulsintervalle angewendet werden, z.B. einige Hz, z.B. von Excimer-Lasern.On the other hand, to achieve a flat etching profile, longer pulse intervals can be used, e.g. a few Hz, e.g. of excimer lasers.
Die gebräuchlichen Flüssigkeiten sind perfluorierte und/oder partiell fluorierte organische aliphatische, ali- cyclische (cyclo-C3-Cιo) , olefinische oder aromatische Verbindungen. Bevorzugte fluororganische Verbindungen sind Fluor-chlor-brom-iod-kohlenwasserstoffe der allgemeinen Formel CnHxFyClzBrmIp, wobei x+y+z+m+p = 2n+2 und n = 1-10 ist, z.B. 1,1,1,2,2,3,3,4,4,5,5, 6, 6, 7,7,8, 8-Heptadeca- fluor-bromoctan, Perfluorhexan, Freone (Chlorfluorkohlenwasserstoffe) wie z.B. R 41-12, R 245 fb, R 338 pcc, " R 356 m ff, R 365 mfc, R 123, R 123 a, R 133, R 122, R 122_b, R 122 a, R 132 b, R 132 c, R 144 b, R 151, R 225 ca, R 234 fb, R 253 fa, R 11, R 113 a, R 113, R 216 ba, R 11 Bl, R 114 B 2, R R 113 B2, R 123 Bl, R 216 B2, R 318 B2; Fluor-iod-kohlenwasserstoffe wie z.B. R 217 I la, R 217 II; Fluorolefine : Heptafluorpropoxytri- fluorethylene, Oligomere von Hexafluorpropylen, und Te- trafluorethylen, Oligomere von Hexafluorpropylenoxid, und Tetrafluorethylenoxid; Fluor-chlor-brom-aromaten, z.B. Hexafluorbenzol, Pentafluorbenzol, Pentafluorchlorbenzol, Octafluortoluol, Trifluormethylbenzol; Alicyclen: Per- fluormethyl-, Perfluorethyl-, 1, 3-Perfluordimethylcyclo- hexane, Perfluordecalin, Perfluor-bicyclo (4, 3, 0) nonan, Perfluormethyldecalin; einfache Ether, z.B. Perfluordi- butylether, Perfluordiamylether; Amine wie z.B. Per- fluormethyldiethylamin, Perfluortriethylamin, Perfluortri- propylamin, Perfluortributylamin, etc.The common liquids are perfluorinated and / or partially fluorinated organic aliphatic, alicyclic (cyclo-C 3 -Cιo), olefinic or aromatic compounds. Preferred organofluorine compounds are fluorine-chloro-bromo-iodine hydrocarbons of the general formula C n H x F y Cl z Br m I p , where x + y + z + m + p = 2n + 2 and n = 1-10 , for example 1,1,1,2,2,3,3,4,4,5,5, 6, 6, 7,7,8, 8-heptadecafluorobromo-bromoctane, perfluorohexane, freons (chlorofluorocarbons) such as R 41-12, R 245 fb, R 338 pcc, " R 356 m ff, R 365 mfc, R 123, R 123 a, R 133, R 122, R 122_b, R 122 a, R 132 b, R 132 c , R 144 b, R 151, R 225 ca, R 234 fb, R 253 fa, R 11, R 113 a, R 113, R 216 ba, R 11 Bl, R 114 B 2, RR 113 B2, R 123 Bl , R 216 B2, R 318 B2; fluorine-iodohydrocarbons such as R 217 I la, R 217 II; fluoroolefins: heptafluoropropoxytri- fluorethylenes, oligomers of hexafluoropropylene, and tetrafluoroethylene, oligomers of hexafluoropropylene oxide, and tetrafluoroethylene oxide; Fluorochlorobromo-aromatics, for example hexafluorobenzene, pentafluorobenzene, pentafluorochlorobenzene, octafluorotoluene, trifluoromethylbenzene; Alicycles: perfluoromethyl-, perfluoroethyl-, 1,3-perfluorodimethylcyclohexane, perfluorodecalin, perfluorobicyclo (4,3,0) nonane, perfluoromethyldecalin; simple ethers, for example perfluorodibutyl ether, perfluorodiamyl ether; Amines such as perfluoromethyldiethylamine, perfluorotriethylamine, perfluorotripropylamine, perfluortributylamine, etc.
Die Ätzung erfolgt ohne bzw. mit Zugabe lichtabsorbierender Additive. Ohne Additive erfolgt die Absorption z.B. durch Zweiphotonenabsorption oder' aufgrund der Anwesenheit von Spurenverunreinigungen.The etching takes place without or with the addition of light-absorbing additives. Without additives, the absorption, for example, is performed by two-photon absorption or 'due to the presence of trace impurities.
Falls die Absorption der Flüssigkeit bei der Wellenlänge des verwendeten Lasers zu gering ist, können Additive zur Flüssigkeit gegeben werden, z.B. Br2, I2, usw., insbesondere für Laser in sichtbarem Bereich.If the absorption of the liquid at the wavelength of the laser used is too low, additives can be added to the liquid, for example Br 2 , I 2 , etc., especially for lasers in the visible range.
Die Temperatur der Flüssigkeit an der Fest-Flüssig-Grenz- schicht kann nicht nur durch die Absorption der Laser- Strahlung in der Flüssigkeit erhöht werden, sondern auch durch Wärmeübergang von festem Material, das vom Laser erhitzt wurde. In diesem Fall kann die Flüssigkeit durchlässig für das Laserlicht sein, während das feste Material absorbiert .The temperature of the liquid at the solid-liquid interface can not only be increased by the absorption of the laser radiation in the liquid, but also by heat transfer from solid material that has been heated by the laser. In this case, the liquid can be transparent to the laser light while the solid material is absorbing.
Der Vorteil von Flüssigkeiten gegenüber Gasen ist der, dass der Prozeß unter Normalatmosphäre ausgeführt werden kann. Die Zersetzung der fluororganischen Flüssigkeit mit Hilfe von sichtbaren oder nahe-infrarot-Laserlicht ist zu- nächst nur ein rein thermischer Prozess. Im Fall von ultraviolett Excimer Laserstrahlung (z.B. XeCl Laser, Wellenlänge 308 nm, oder KrF Laser, Wellenlänge 248 nm) kann auch photolytische Zersetzung der Flüssigkeit erfolgen. Bei photolytischer Zersetzung ist die Konzentration reak- tiver fluorierter Spezies proportional der Anzahl der von der Flüssigkeit absorbierten Laserphotonen.The advantage of liquids over gases is that the process can be carried out in a normal atmosphere. The decomposition of the fluoroorganic liquid with the help of visible or near infrared laser light is initially only a purely thermal process. In case of Ultraviolet excimer laser radiation (eg XeCl laser, wavelength 308 nm, or KrF laser, wavelength 248 nm) can also cause photolytic decomposition of the liquid. In the case of photolytic decomposition, the concentration of reactive fluorinated species is proportional to the number of laser photons absorbed by the liquid.
Ätzen größerer Flächen oder bestimmter Strukturen geschieht durch Führung des Laserstrahls über die Si02 Flüs- sigkeit Grenzschicht. Dazu wird entweder das Material samt Flüssigkeit gegenüber dem Laserstrahl bewegt, oder der Laserstrahl wird über die Grenzschicht bewegt, z.B. mit Hilfe eines geeigneten Reflektorsystems.Larger areas or certain structures are etched by guiding the laser beam over the Si0 2 liquid boundary layer. For this purpose, either the material including the liquid is moved relative to the laser beam, or the laser beam is moved over the boundary layer, for example with the aid of a suitable reflector system.
Lokale Laserstrahlung erzeugt starke Temperaturgradienten in der Flüssigkeit, was zur Konvektion führt. Dies begünstigt den Transport reaktiver fluorierter Spezies zu den laserexponierten Flächen. Dieser Vorgang kann durch Rühren der Flüssigkeit verstärkt werden. Für den Fall, dass die Zersetzung der fluororganischen Flüssigkeit oder der Ätzvorgang selbst zu unlöslichen Zersetzungsprodukten führt, können diese durch Filtration entfernt werden.Local laser radiation creates strong temperature gradients in the liquid, which leads to convection. This favors the transport of reactive fluorinated species to the laser exposed areas. This process can be intensified by stirring the liquid. In the event that the decomposition of the organofluorine liquid or the etching process itself leads to insoluble decomposition products, these can be removed by filtration.
Eine andere Möglichkeit, fluororganische Verbindungen für lokale Laserätzung zu verwenden, erzielt man durch solche Wahl der Laserwellenlänge, dass der Feststoff absorbiert, während die Flüssigkeit transparent ist. In diesem Fall erfolgt die Zersetzung durch Wärmeübertragung von Feststoff zur benachbarten Flüssigkeit. Falls die Laserenergie groß genug ist, wird die Flüssigkeit thermisch zu freiem Fluor oder reaktiven fluorhaltigen Spezies zersetzt. Dieses reagiert mit der festen bestrahlten Oberfläche, so dass es zu lokalem Ätzen kommt. Dichte Dämpfe einer fluororganischen Verbindung oberhalb der Flüssigkeit können auch als lokale Quelle aktiver fluorierter Spezies dienen. Eine spezielle Kontrolle des Gasdruckes ist in diesem Fall nicht notwendig, der Dampfdruck wird durch die Temperatur des kältesten Punkts innerhalb des Reaktors bestimmt.Another possibility of using organofluorine compounds for local laser etching is achieved by selecting the laser wavelength in such a way that the solid absorbs while the liquid is transparent. In this case, the decomposition takes place through heat transfer from the solid to the neighboring liquid. If the laser energy is large enough, the liquid is thermally decomposed to free fluorine or reactive fluorine-containing species. This reacts with the solid, irradiated surface, so that local etching occurs. Dense vapors of an organofluorine compound above the liquid can also serve as a local source of active fluorinated species. A special control of the gas pressure is not necessary in this case, the vapor pressure is determined by the temperature of the coldest point within the reactor.
Die vorliegende Erfindung wird nun anhand der nachfolgenden Beispiele und mit Bezug auf die beigefügten Zeichnun- gen näher erläutert.The present invention will now be explained in more detail with reference to the following examples and with reference to the accompanying drawings.
Beispiel 1example 1
In einer Versuchsanordnung gemäß Fig. 1 wird der Strahl eines Kupferdampflasers (Wellenlänge 510.6 nm, Pulslänge 10-20 ns) durch ein transparentes Si02-Substrat von oben auf die Grenzschicht dieses Substrats mit flüssigem Per- fluorbenzol (C6F6) fokussiert. Der Ätzvorgang lässt sich erfolgreich durchführen. Die Ätzrate beträgt etwa 500 nm/Puls bei einem Lichtfluss ("Fluence") von 60 J/cm2 ei- nes 20 ns Pulses.In a test arrangement according to FIG. 1, the beam of a copper vapor laser (wavelength 510.6 nm, pulse length 10-20 ns) is focused from above through a transparent SiO 2 substrate onto the boundary layer of this substrate with liquid perfluorobenzene (C 6 F 6 ). The etching process can be carried out successfully. The etching rate is approximately 500 nm / pulse with a light flux ("Fluence") of 60 J / cm 2 of a 20 ns pulse.
Beispiel 2Example 2
Beispiel 1 wird wiederholt, wobei jedoch der Laserstrahl von unten durch das Si02-Substrat auf die Grenzschicht fo- kussiert wird. Der Ätzvorgang lässt sich erfolgreich und mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen.Example 1 is repeated, but the laser beam is focused from below through the SiO 2 substrate onto the boundary layer. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
Beispiel 3Example 3
Beispiel 1 wird wiederholt, wobei jedoch zusätzlich eine Menge einer Verbindung, die Laserlicht absorbiert (I2, Br2, Farbstoffe, etc.) zu der Flüssigkeit gegeben wird, um die Absorption des Laserlichts zu erhöhen. Der Ätzvorgang lässt sich erfolgreich und mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen. Beispiel 4Example 1 is repeated, but in addition an amount of a compound which absorbs laser light (I 2 , Br 2 , dyes, etc.) is added to the liquid in order to increase the absorption of the laser light. The etching process can be carried out successfully and with comparable etching rates as in Example 1. Example 4
Beispiel 1 wird wiederholt, wobei jedoch die Laserstrahlung nicht durch ein Si02-Substrat sondern durch Glas geschickt wird. Der Ätzvorgang lässt sich erfolgreich und mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen.Example 1 is repeated, but the laser radiation is not sent through an Si0 2 substrate but through glass. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
Beispiel 5Example 5
Beispiel 1 wird wiederholt, wobei jedoch die Strahlung eines UV-Excimerlasers mit einer Wellenlänge, für die Si02 durchlässig ist, durch ein Si02-Substrat in die Flüssigkeit geschickt wird. Der Ätzvorgang lässt sich erfolgreich und mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen.Example 1 is repeated, but the radiation from a UV excimer laser with a wavelength for which Si0 2 is transparent is sent into the liquid through an Si0 2 substrate. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
Beispiel 6Example 6
Beispiel 1 wird wiederholt, wobei jedoch die Wellenlänge der Laserstrahlung in der nahen Infrarotregion liegt, wo Si02 noch durchlässig ist. Der Ätzvorgang lässt sich erfolgreich und .mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen.Example 1 is repeated, but the wavelength of the laser radiation is in the near infrared region, where Si0 2 is still transparent. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
Beispiel 7Example 7
Beispiel 1 wird wiederholt, wobei jedoch die Laserstrahlung durch ein Si02-Fenster in die fluororganische Flüs- sigkeit geschickt wird. Der Ätzvorgang lässt sich erfolgreich und mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen.Example 1 is repeated, but the laser radiation is sent through an SiO 2 window into the fluoroorganic liquid. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
Beispiel 8 In einer Versuchsanordnung gemäß Fig. 2 wird der Strahl eines- Kupferdampflasers (Wellenlänge 510.6 nm, Pulslänge 10-20 ns) auf einen absorbierenden Feststoff aus SiC-Kera- mik gerichtet. Der Feststoff ist in eine transparente fluororganische Flüssigkeit, z.B. Perfluoroctan, getaucht. Der Ätzvorgang lässt sich erfolgreich und mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen.Example 8 In a test arrangement according to FIG. 2, the beam of a copper vapor laser (wavelength 510.6 nm, pulse length 10-20 ns) is directed onto an absorbent solid made of SiC ceramic. The solid is immersed in a transparent fluoroorganic liquid, eg perfluorooctane. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
Beispiel 9Example 9
Beispiel 8 wird wiederholt, wobei jedoch das in die fluororganische Flüssigkeit getauchte Substrat mit Laserlicht des nahen Infrarot bestrahlt wird. Der Ätzvorgang lässt sich erfolgreich und mit vergleichbaren Ätzraten wie in Beispiel 1 durchführen.Example 8 is repeated, except that the substrate immersed in the fluoroorganic liquid is irradiated with near infrared laser light. The etching process can be carried out successfully and with comparable etching rates as in Example 1.
Beispiel 10Example 10
In einer Versuchsanordnung gemäß Fig. 3 wird der Strahl eines Kupferdampflasers durch ein transparentes Fenster auf ein Metallsubstrat wie z.B. Stahl fokussiert. Mit Hilfe einer Düse werden Perfluoroktandämpfe in den laserbestrahlten Bereich des Substrats gebracht und kondensieren dort auf der Metalloberfläche zu einer Flüssigkeit. Der Ätzvorgang - lässt sich erfolgreich durchführen. Die Ätzrate beträgt etwa 500 nm/Puls.In an experimental arrangement according to Fig. 3, the beam of a copper vapor laser is directed through a transparent window onto a metal substrate such as e.g. Steel focused. With the help of a nozzle, perfluorooctane vapors are brought into the laser-irradiated area of the substrate and condense there on the metal surface to form a liquid. The etching process - can be carried out successfully. The etching rate is approximately 500 nm / pulse.
Beispiel 11Example 11
Beispiel 1 wird wiederholt, aber die Grenzschicht wird durch den transparenten Feststoff hindurch mit dem Interferenzlicht zweier oder mehrerer kohärenter Laser be- strahlt. Die räumliche Verteilung des geätzten Musters hängt von der Laserwellenlänge und dem Winkel zwischen den Laserstrahlen ab. Der Ätzvorgang lässt sich erfolgreich durchführen.Example 1 is repeated, but the boundary layer is irradiated through the transparent solid with the interference light of two or more coherent lasers. The spatial distribution of the etched pattern depends on the laser wavelength and the angle between the laser beams. The etching process can be carried out successfully.
Beispiel 12Example 12
Beispiel 10 wird wiederholt, wobei der Reaktor jedoch fluororganische Verbindungen in flüssiger Phase bei erhöhter Temperatur und/oder Druck oder im überkritischen Zustand enthält. Der Ätzvorgang lässt sich erfolgreich durchführen. Example 10 is repeated, but the reactor contains organofluorine compounds in the liquid phase at elevated temperature and / or pressure or in the supercritical state. The etching process can be carried out successfully.

Claims

Patentansprüche claims
Verfahren zum lokalen laserinduzierten Ätzen von Feststoffen, welches umfasst, dass eine Oberfläche eines Feststoffs, welche mit einer fluororganischen Verbindung in flüssiger oder überkritischer Phase in Berührung gehalten wird, mit einem Laserstrahl bestrahlt wird, so dass die Oberfläche mit dem Laserstrahl geätzt wird.A method for local laser-induced etching of solids, which comprises irradiating a surface of a solid which is kept in contact with an organofluorine compound in the liquid or supercritical phase with a laser beam, so that the surface is etched with the laser beam.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Feststoff aus Si02, insbesondere kristallinem oder geschmolzenem Quarz; auf Si02 basierenden Feststoffen, insbesondere Gläsern; Metallen; Halblei- tern, insbesondere Si, Ge, III-V- und II-VI-Halblei- tern; Polymeren; Keramiken, insbesondere aus tonkeramischen Materialien oder sonderkeramischen Materialien, insbesondere Oxiden,. Carbiden oder Nitriden; Si- liziumcarbid; Aluminiumoxid; Saphir; und Diamant aus- gewählt ist.2. The method according to claim 1, characterized in that the solid of Si0 2 , in particular crystalline or molten quartz; based on Si0 2 solids, especially glasses; metal; Semiconductors, in particular Si, Ge, III-V and II-VI semiconductors; polymers; Ceramics, in particular from clay-ceramic materials or special ceramic materials, in particular oxides. Carbides or nitrides; Silicon carbide; alumina; Sapphire; and diamond is selected.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die fluororganische Verbindung eine aliphatische, alicyclische, olefinische oder aromati- sehe, Fluor enthaltende Verbindung ist.3. The method according to claim 1 or 2, characterized in that the organofluorine compound is an aliphatic, alicyclic, olefinic or aromatic see, fluorine-containing compound.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Feststoff für den Laserstrahl transparent ist und die Bestrahlung durch eine gegenüberliegende, weitere Oberfläche des Feststoffs erfolgt, und der Laserstrahl in der Grenzschicht zwischen dem Feststoff und der fluororganischen Verbindung zumindest teilweise absorbiert wird. 4. The method according to any one of claims 1 to 3, characterized in that the solid is transparent to the laser beam and the irradiation takes place through an opposite, further surface of the solid, and the laser beam in the boundary layer between the solid and the fluoroorganic compound at least partially is absorbed.
Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Feststoff den Laserstrahl absorbiert und die Bestrahlung durch die transparente fluororganische Phase erfolgt. Method according to one of claims 1 to 3, characterized in that the solid absorbs the laser beam and the irradiation takes place through the transparent fluoroorganic phase.
Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Laser eine Wellenlänge zwischen 0.157 um (F2-Excimerlaser) und 106 um (C02-La- ser) aufweist.Method according to one of claims 1 to 5, characterized in that the laser has a wavelength between 0.157 µm (F 2 excimer laser) and 106 µm (C0 2 laser).
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Laserstrahl eine Fluenz von 0,01 - 100 J/cm2, vorzugsweise von mehr als etwa 2 bis etwa 80 J/cm2 und insbesondere von etwa 10 bis etwa 60 J/cm2 ausweist.7. The method according to any one of claims 1 to 6, characterized in that the laser beam has a fluence of 0.01 - 100 J / cm 2 , preferably from more than about 2 to about 80 J / cm 2 and in particular from about 10 to about 60 J / cm 2 .
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Laser nur einmal gepulst wird oder eine Pulswiederholungsrate von bis zu 50000 Hz angewendet wird.8. The method according to any one of claims 1 to 7, characterized in that the laser is pulsed only once or a pulse repetition rate of up to 50,000 Hz is applied.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Länge des Laserpulses von etwa 10 bis etwa 30 ns, insbesondere etwa 20 ns beträgt. 9. The method according to any one of claims 1 to 8, characterized in that the length of the laser pulse is from about 10 to about 30 ns, in particular about 20 ns.
PCT/DE2002/002259 2001-06-22 2002-06-21 Method for carrying out local laser-induced etching of solid materials WO2003000456A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002320886A AU2002320886A1 (en) 2001-06-22 2002-06-21 Method for carrying out local laser-induced etching of solid materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10130349.1 2001-06-22
DE10130349A DE10130349A1 (en) 2001-06-22 2001-06-22 Process for local laser-induced etching of solids

Publications (2)

Publication Number Publication Date
WO2003000456A2 true WO2003000456A2 (en) 2003-01-03
WO2003000456A3 WO2003000456A3 (en) 2003-05-30

Family

ID=7689210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002259 WO2003000456A2 (en) 2001-06-22 2002-06-21 Method for carrying out local laser-induced etching of solid materials

Country Status (3)

Country Link
AU (1) AU2002320886A1 (en)
DE (1) DE10130349A1 (en)
WO (1) WO2003000456A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015753A1 (en) * 2002-08-06 2004-02-19 Xsil Technology Limited Laser machinining
DE10328534A1 (en) * 2003-06-24 2005-01-27 Leibniz-Institut für Oberflächenmodifizierung e.V. Laser removal of materials transparent for the laser beam used comprises contacting an incident laser beam after penetrating the transparent material with surface of the transparent material, and further processing
DE10328559A1 (en) * 2003-06-24 2005-01-27 Leibniz-Institut für Oberflächenmodifizierung e.V. Precision working transparent material surfaces, comprises using pulse laser and adjusting laser characteristics using mask
WO2008003450A1 (en) * 2006-07-03 2008-01-10 Fraunhofer-Gesellschaft Zür Förderung Der Angewandten Forschung E.V. Liquid jet-guided etching method for removing material from solids and the use thereof
WO2011134809A1 (en) 2010-04-26 2011-11-03 Novozymes A/S Enzyme granules
WO2013007594A1 (en) 2011-07-12 2013-01-17 Novozymes A/S Storage-stable enzyme granules
CN115592581A (en) * 2022-12-13 2023-01-13 太原理工大学(Cn) Laser brazing manufacturing device for grinding wheel with orderly arranged abrasive particles

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005055174B8 (en) * 2005-11-18 2007-07-26 Leibniz-Institut für Oberflächenmodifizierung e.V. Process for removing translucent materials with laser radiation and apparatus therefor
DE102007010872A1 (en) * 2007-03-06 2008-09-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the precision machining of substrates and their use
DE102007058105A1 (en) * 2007-12-03 2009-06-10 Carl Zeiss Smt Ag Device and method for processing optical elements by means of laser ablation
DE102008058535A1 (en) * 2008-11-21 2010-05-27 Tesa Se Process for material processing with high-energy radiation
DE102008059756A1 (en) * 2008-12-01 2010-06-10 Tesa Se Method for marking or marking a workpiece
DE102009004902B3 (en) * 2009-01-16 2010-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for simultaneous microstructuring and passivation
CN104028898B (en) * 2014-05-23 2016-06-15 广东工业大学 A kind of processing method and device of laser forming cutting sapphire substrate
CN113130305B (en) * 2021-03-03 2023-03-24 哈尔滨工业大学 Method for constructing surface microstructure of silicon carbide single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057184A (en) * 1990-04-06 1991-10-15 International Business Machines Corporation Laser etching of materials in liquids
US5354420A (en) * 1990-03-29 1994-10-11 The United States Of America As Represented By The Secretary Of The Navy Method for laser-assisted etching of III-V and II-VI semiconductor compounds using chlorofluorocarbon ambients
DE19912879A1 (en) * 1998-09-21 2000-04-20 Agency Ind Science Techn Process for etching a transparent solid with laser beams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354420A (en) * 1990-03-29 1994-10-11 The United States Of America As Represented By The Secretary Of The Navy Method for laser-assisted etching of III-V and II-VI semiconductor compounds using chlorofluorocarbon ambients
US5057184A (en) * 1990-04-06 1991-10-15 International Business Machines Corporation Laser etching of materials in liquids
DE19912879A1 (en) * 1998-09-21 2000-04-20 Agency Ind Science Techn Process for etching a transparent solid with laser beams

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015753A1 (en) * 2002-08-06 2004-02-19 Xsil Technology Limited Laser machinining
DE10328534A1 (en) * 2003-06-24 2005-01-27 Leibniz-Institut für Oberflächenmodifizierung e.V. Laser removal of materials transparent for the laser beam used comprises contacting an incident laser beam after penetrating the transparent material with surface of the transparent material, and further processing
DE10328559A1 (en) * 2003-06-24 2005-01-27 Leibniz-Institut für Oberflächenmodifizierung e.V. Precision working transparent material surfaces, comprises using pulse laser and adjusting laser characteristics using mask
DE10328534B4 (en) * 2003-06-24 2006-04-20 Leibniz-Institut für Oberflächenmodifizierung e.V. Device and method for laser ablation of transparent materials
DE10328559B4 (en) * 2003-06-24 2006-04-20 Leibniz-Institut für Oberflächenmodifizierung e.V. Process for the precision machining of transparent materials with pulsed laser radiation
WO2008003450A1 (en) * 2006-07-03 2008-01-10 Fraunhofer-Gesellschaft Zür Förderung Der Angewandten Forschung E.V. Liquid jet-guided etching method for removing material from solids and the use thereof
JP2009542022A (en) * 2006-07-03 2009-11-26 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. Liquid jet-guided etching method and use thereof to remove material from solids
WO2011134809A1 (en) 2010-04-26 2011-11-03 Novozymes A/S Enzyme granules
EP2840134A1 (en) 2010-04-26 2015-02-25 Novozymes A/S Enzyme granules
WO2013007594A1 (en) 2011-07-12 2013-01-17 Novozymes A/S Storage-stable enzyme granules
CN115592581A (en) * 2022-12-13 2023-01-13 太原理工大学(Cn) Laser brazing manufacturing device for grinding wheel with orderly arranged abrasive particles

Also Published As

Publication number Publication date
WO2003000456A3 (en) 2003-05-30
DE10130349A1 (en) 2003-01-02
AU2002320886A1 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
WO2003000456A2 (en) Method for carrying out local laser-induced etching of solid materials
DE3013679C2 (en)
DE3209066C2 (en)
EP0931332B1 (en) Method for separating two material layers
DE19912879C2 (en) Process for removing a transparent solid with laser beams
US5879424A (en) Optical micro-machining method of glass
DE19535068C2 (en) Coating for the structured production of conductor tracks on the surface of electrically insulating substrates, method for producing the coating and of structured conductor tracks
DE4107006C2 (en)
DE102006030588A1 (en) Liquid-jet-guided etching process for removing material from solids and its use
EP4166270A1 (en) Method of separating a layer from a solid by laser radiation
DE3835636A1 (en) METHOD AND SYSTEM FOR COMPLETELY REMOVING PHOTORESIST
EP2335275A1 (en) Method for chemically treating a substrate
EP0344764B1 (en) Process for the wet-chemical surface treatment of semiconductor chips
DE4330961C1 (en) Producing structured metallised coatings on substrates
DE2826329A1 (en) METHOD OF ETCHING HOLES
DE69934326T2 (en) METHOD FOR REMOVING ORGANIC MATERIAL OF SUPPORT
DE4040061C2 (en) Process for the corrosion-preventing production of a structured connecting layer
DE19654791B4 (en) Method and device for separating a semiconductor layer from a substrate
EP1979122B1 (en) Method for removing material from solids and use thereof
DE2421833A1 (en) METHOD OF TREATING A LAYER ON A SUBSTRATE
EP3104418A1 (en) Method and device for texturing a silicon surface
DE3935189A1 (en) Ionic etching substrates of silicon di:oxide coated - with poly-silicon or silicide layers-using etching gas of chlorine, silicon chloride and nitrogen
DE69632596T2 (en) BEAUTIFUL LASER SURFACE PROCESSING
DE4129206C2 (en) Process for structuring wafers
EP1956643A1 (en) Method for reducing and homogenising the thickness of a semiconductor layer on the surface of an electrically insulating material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2004103070

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP