WO2002102800A1 - 5-(2-aminopyrimidin-4-yl) benzisoxazoles as protein kinase inhibitors - Google Patents

5-(2-aminopyrimidin-4-yl) benzisoxazoles as protein kinase inhibitors Download PDF

Info

Publication number
WO2002102800A1
WO2002102800A1 PCT/US2002/019186 US0219186W WO02102800A1 WO 2002102800 A1 WO2002102800 A1 WO 2002102800A1 US 0219186 W US0219186 W US 0219186W WO 02102800 A1 WO02102800 A1 WO 02102800A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
aliphatic
disease
gsk
jak
Prior art date
Application number
PCT/US2002/019186
Other languages
French (fr)
Other versions
WO2002102800A9 (en
Inventor
Young Choon Moon
Jeremy Green
Robert Davies
Deb Choquette
Albert Pierce
Mark Ledeboer
Original Assignee
Vertex Pharmaceuticals Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Incorporated filed Critical Vertex Pharmaceuticals Incorporated
Priority to EP02744399A priority Critical patent/EP1399440B1/en
Priority to DE60232510T priority patent/DE60232510D1/en
Priority to AT02744399T priority patent/ATE432929T1/en
Priority to JP2003506273A priority patent/JP4541695B2/en
Priority to MXPA03011652A priority patent/MXPA03011652A/en
Priority to CA002450769A priority patent/CA2450769A1/en
Publication of WO2002102800A1 publication Critical patent/WO2002102800A1/en
Publication of WO2002102800A9 publication Critical patent/WO2002102800A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • the present invention is in the field of medicinal chemistry and relates to compounds that are protein kinase inhibitors, compositions comprising such compounds and methods of use. More particularly, the compounds are inhibitors of GSK-3 and JAK and are useful for treating disease states, such as diabetes and Alzheimer's disease, that are alleviated by GSK-3 inhibitors, and allergic disorders, autoimmune diseases, and conditions associated with organ transplantation that are alleviated by JAK inhibitors.
  • Protein kinases mediate intracellular signal transduction. They do this by effecting a phosphoryl transfer from a nucleoside triphosphate to a protein acceptor that is involved in a signaling pathway.
  • kinases and pathways through which extracellular and other stimuli cause a variety of cellular responses to occur inside the cell include environmental and chemical stress signals (e.g. osmotic shock, heat shock, ultraviolet radiation, bacterial endotoxin, H 2 0 2 ) , cytokines (e.g. interleukin-1 (IL-1) and tumor necrosis factor ⁇ (TNF- oc) ) , and growth factors (e.g.
  • environmental and chemical stress signals e.g. osmotic shock, heat shock, ultraviolet radiation, bacterial endotoxin, H 2 0 2
  • cytokines e.g. interleukin-1 (IL-1) and tumor necrosis factor ⁇ (TNF- oc)
  • growth factors e.g.
  • GM-CSF granulocyte macrophage- colony-stimulating factor
  • FGF fibroblast growth factor
  • Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase comprised of ⁇ and ⁇ isoforms that are each encoded by distinct genes [Coghlan et al . , Chemistry & Biology, 7, 793-803 (2000); Kim and Kimmel, Curr. Opinion Genetics Dev. , 10, 508-514 (2000)].
  • GSK-3 has been implicated in various diseases including diabetes, Alzheimer's disease, CNS disorders such as manic depressive disorder and neurodegenerative diseases, and cardiomyocete hypertrophy [WO 99/65897; WO 00/38675; and Haq et al . , J " . Cell Biol .
  • GSK-3 has been found to phosphorylate and modulate the activity of a number of regulatory proteins. These include glycogen synthase which is the rate limiting enzyme necessary for glycogen synthesis, the microtubule associated protein Tau, the gene transcription factor ⁇ -catenin, the translation initiation factor elF2B, as well as ATP citrate lyase, axin, heat shock factor-1, c-Jun, c-Myc, c-Myb, CREB, and CEPB ⁇ . These diverse targets implicate GSK-3 in many aspects of cellular metabolism, proliferation, differentiation and development.
  • GSK-3 a GSK-3 mediated pathway that is relevant for the treatment of type II diabetes
  • insulin- induced signaling leads to cellular glucose uptake and glycogen synthesis.
  • GSK-3 is a negative regulator of the insulin-induced signal.
  • the presence of insulin causes inhibition of GSK-3 mediated phosphorylation and deactivation of glycogen synthase.
  • the inhibition of GSK-3 leads to increased glycogen synthesis and glucose uptake [Klein et al . , PNAS, 93, 8455-9 (1996); Cross et al . , Biochem . J. , 303, 21-26 (1994); Cohen, Biochem . Soc . Trans . , 21, 555-567 (1993); Massillon et al .
  • GSK-3 activity has also been associated with Alzheimer's disease. This disease is characterized by the well-known ⁇ -amyloid peptide and the formation of intracellular neurofibrillary tangles.
  • the neurofibrillary tangles contain hyperphosphorylated Tau protein where Tau is phosphorylated on abnormal sites. GSK-3 has been shown to phosphorylate these abnormal sites in cell and animal models. Furthermore, inhibition of GSK-3 has been shown to prevent hyperphosphorylation of Tau in cells [Lovestone et al . , Current Biology 4, 1077-86 (1994); Brownlees et al . , Neuroreport 8, 3251-55 (1997)]. Therefore, it is believed that GSK-3 activity may promote generation of the neurofibrillary tangles and the progression of Alzheimer's disease.
  • ⁇ -catenin Another substrate of GSK-3 is ⁇ -catenin which is degradated after phosphorylation by GSK-3.
  • Reduced levels of ⁇ -catenin have been reported in schizophrenic patients and have also been associated with other diseases related to increase in neuronal cell death [Zhong et al . , Nature, 395, 698-702 (1998); Takashima et al., PNAS, 90, 7789-93 (1993); Pei et al . , J. Neuropathol . Exp, 56, 70-78 (1997); Smith et al . , Bio- org. Med . Chem. 11, 635-639 (2001)].
  • the Janus kinases are a family of tyrosine kinases consisting of JAK1 , JAK2 , JAK3 and TYK2.
  • the JAKs play a critical role in cytokine signaling.
  • the down-stream substrates of the JAK family of kinases include the signal transducer and activator of transcription (STAT) proteins.
  • JAK/STAT signaling has been implicated in the mediation of many abnormal immune responses such as allergies, asthma, autoimmune diseases such as transplant rejection, rheumatoid arthritis, amyotrophic lateral sclerosis and multiple sclerosis as well as in solid and hematologic malignancies such as leukemias and lymphomas .
  • the pharmaceutical intervention in the JAK/STAT pathway has been reviewed [Frank Mol. Med. 5 : 432 -456 (1999) & Seidel, et al, Oncogene 19 : 2645 -2656 (2000) ] .
  • JAK1, JAK2, and TYK2 are ubiquitously expressed, while JAK3 is predominantly expressed in hematopoietic cells.
  • JAK3 binds exclusively to the common cytokine receptor gamma chain ( ⁇ c ) and is activated by I -2, I -4, IL-7, I -9, and IL-15.
  • I -2, I -4, IL-7, I -9, and IL-15 The proliferation and survival of murine mast cells induced by IL-4 and
  • IL-9 have, in fact, been shown to be dependent on JAK3- and ⁇ c - signaling [Suzuki et al , Blood 96 : 2172 -2180 (2000) ] .
  • Cross-linking of the high-affinity immunoglobulin (Ig) E receptors of sensitized mast cells leads to a release of proinflammatory mediators, including a number of vasoactive cytokines resulting in acute allergic, or immediate (type I) hypersensitivity reactions [Gordon et al, Nature 346 : 274-276 (1990) & Galli, N. Engl. J. Med., 328 : 251-265 (1993)].
  • a crucial role for JAK3 in IgE receptor-mediated mast cell responses in vi tro and in vivo has been established [Malaviya, et al , Biochem. Biophys . Res. Commun. 257;
  • IL-4 -mediated STAT-phosphorylation has been implicated as the mechanism involved in early and late stages of rheumatoid arthritis (RA) .
  • RA rheumatoid arthritis
  • Up-regulation of proinflammatory cytokines in RA synovium and synovial fluid is a characteristic of the disease. It has been demostrated that IL-4-mediated activation of IL-4/STAT pathway is mediated through the Janus Kinases (JAK 1 & 3) and that IL-4 -associated JAK kinases are expressed in the RA synovium [Muller-Ladner, et al , J. Immunol. 164 : 3894- 3901 (2000) ] .
  • Familial amyotrophic lateral sclerosis is a fatal neurodegenerative disorder affecting about 10% of ALS patients.
  • the survival rates of FALS mice were increased upon treatment with a JAK3 specific inhibitor. This suggested that JAK3 plays a role in FALS [Trieu, et al, Biochem. Biophys . Res. Commun. 267 : 22 -25 (2000)].
  • STAT Signal transducer and activator of transcription
  • JAK3 specific compounds were shown to inhibit the clonogenic growth of JAK3 -expressing cell lines DAUDI, RAMOS, LCI; 19, NALM-6, MOLT-3 and HL-60.
  • TEL/JAK2 fusion proteins have induced myeloproliterative disorders and in hematopoietic cell lines, introduction of TEL/JAK2 resulted in activation of STAT1, STAT3 , STAT5 , and cytokine- independent growth [Schwaller, et al, EMBO J. 17: 5321 - 5333 (1998) ] .
  • A-B is N-0 or O-N;
  • Ar is an optionally substituted C 5 _ ⁇ 0 aryl group;
  • T is a C ⁇ - alkylidene chain wherein one or two methylene units of T are optionally and independently replaced by
  • R 1 is hydrogen or an optionally substituted group selected from C ⁇ - 10 aliphatic, C5-10 aryl, C 6 -i2 aralkyl , C 3 _ ⁇ 0 heterocyclyl , or C 4-12 heterocyclylalkyl ; each R 2 is independently selected from R, halo, CN, OR,
  • aliphatic or "aliphatic group” as used herein means a straight-chain or branched C ⁇ -C ⁇ 0 hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic C 3 -C 8 hydrocarbon or bicyclic C 8 -C ⁇ 2 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” or “cycloalkyl” ) , that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members.
  • suitable aliphatic groups include substituted or unsubstituted linear or branched alkyl, alkenyl, or alkynyl groups and hybrids thereof such as (cycloalkyl) alkyl , (cycloalkenyl) alkyl or (cycloalkyl) alkenyl .
  • alkyl alkoxy
  • hydroxyalkyl , "alkoxyalkyl” , and “alkoxycarbonyl " , used alone or as part of a larger moiety include both straight and branched chains containing one to twelve carbon atoms.
  • alkenyl and alkynyl used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms.
  • haloalkyl used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms.
  • haloalkoxy means alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms.
  • halogen means F, Cl , Br, or I.
  • heteroatom means nitrogen, oxygen or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen.
  • nitrogen includes a substitutable nitrogen of a heterocyclic ring.
  • the nitrogen may be N (as in 3 , 4-dihydro-2H-pyrrolyl) , NH (as in pyrrolidinyl) or NR + (as in N-substituted pyrrolidinyl) . It is understood that the compounds of this invention are limited to those that can exist in nature as stable chemical compounds.
  • unsaturated means that a moiety has one or more units of unsaturation, and includes aryl rings.
  • aryl used alone or as part of a larger moiety as in “aralkyl” , “aralkoxy”, or “aryloxyalkyl” , refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members.
  • aryl may be used interchangeably with the term “aryl ring” .
  • aryl also refers to heteroaryl ring systems as defined hereinbelow.
  • heterocycle means non-aromatic, monocyclic, bicyclic, or tricyclic ring systems having five to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members.
  • heteroaryl used alone or as part of a larger moiety as in “heteroaryalkyl “ or “heteroarylalkoxy” , refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, and wherein each ring in the system contains 3 to 7 ring members.
  • heteroaryl may be used interchangeably with the term “heteroaryl ring” or the term “heteroaromatic” .
  • An aryl (including aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including heteroaralkyl and heteroarylalkoxy and the like) group may contain one or more substituents.
  • Suitable substituents on the unsaturated carbon atom of an aryl, heteroaryl, aralkyl, or heteroaralkyl group are independently selected from halogen, -R°, -OR°, -0(CH 2 ) y R o , -SR°, 1, 2-methylene-dioxy, 1 , 2-ethylenedioxy, phenyl (Ph) optionally substituted with R°, -O(Ph) optionally substituted with R°, -CH 2 (Ph) optionally substituted with R°, -CH 2 CH 2 (Ph) optionally substituted with R°, 5-8 membered heteroaryl optionally substituted with R°, 5-8 membered heterocycle optionally substituted with R°, -N0 2 ,
  • each R° is independently selected from hydrogen, optionally substituted C ⁇ - 6 aliphatic, phenyl, -O(Ph), or -CH 2 (Ph), wherein y is 0-6.
  • is a C ⁇ - 6 aliphatic group or a phenyl ring, it may be substituted with one or more substituents selected from -NH 2 , -NH(C ⁇ -4 aliphatic), -N(C 1 _ 4 aliphatic) 2 , -S (0) (C 1-4 aliphatic), -S0 2 (Ci_ 4 aliphatic), halogen, - (C ⁇ _ 4 aliphatic), OH, -0(Ci- 4 aliphatic), N0 2 , CN, C0 2 H, -C0 2 (C ⁇ _ 4 aliphatic), -0(halo C ⁇ _ 4 aliphatic), or -halo (C ⁇ - 4 aliphatic); wherein each C 1-4 aliphatic is unsubstituted.
  • An aliphatic group or a non-aromatic heterocyclic ring may contain one or more substituents.
  • a saturated carbon of an aliphatic group or of a non- aromatic heterocyclic ring may have one or more substituents.
  • R * is C ⁇ _ 6 aliphatic
  • it may be substituted with one or more substituents independently selected from -NH 2 , -NH(C ⁇ - aliphatic), -N(C ⁇ _ 4 aliphatic) 2 , halogen, C ⁇ _ 4 aliphatic, OH, 0(C ⁇ -4 aliphatic), N0 2 , CN, C0 2 H, C0 2 (C 1-4 aliphatic), O(halo C ⁇ -4 aliphatic), or halo(C ⁇ -4 aliphatic); wherein each C ⁇ - aliphatic is unsubstituted.
  • Substituents on the nitrogen of a non-aromatic heterocyclic ring are selected from -R + , -N(R + ) 2 , -C(0)R + , -C0 2 R + , -C(0)C(0)R + , -C(0)CH 2 C(0)R + , -S0 2 R + , -S0 2 N(R + ) 2 ,
  • each R + is independently selected from hydrogen, an optionally substituted x - 6 aliphatic, optionally substituted phenyl, optionally substituted -O(Ph), optionally substituted -CH 2 (Ph), optionally substituted -CH 2 CH 2 (Ph) , or an unsubstituted 5-6 membered heteroaryl or heterocyclic ring.
  • R + is a C x .
  • alkylidene chain refers to a straight or branched carbon chain that may be fully saturated or have one or more units of unsaturation and has two points of attachment to the rest of the molecule.
  • a combination of substituents or variables is permissible only if such a combination results in a stable or chemically feasible compound.
  • a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40°C or less, in the absence of moisture or other chemically reactive conditions, for at least a week.
  • certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention.
  • structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention.
  • structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
  • One embodiment of the present invention relates to compounds which are 2 , 1-benzisoxazoles, represented by formula I-A shown below.
  • Another embodiment of this invention relates to compounds which are 1,2- benzisoxazoles, represented by formula I-B shown below:
  • Ar is preferably a substituted or unsubstituted five or six-membered aromatic ring having zero to two ring heteroatoms selected from nitrogen, sulfur or oxygen.
  • a more preferred Ar is a substituted or unsubstituted six-membered aromatic ring having zero to two ring nitrogens.
  • Ar group is a substituted or unsubstituted phenyl ring.
  • R 1 is preferably hydrogen or an aryl ring, such as a phenyl or pyridyl ring.
  • Optional substituents on R 1 are independently selected from halogen, -R, -OR, -OH,
  • a particularly preferred substituent on the C ⁇ _ 6 aliphatic group is -S0 2 NH 2 .
  • R 2 is preferably hydrogen or a C ⁇ _ 4 alkyl group, most preferably hydrogen.
  • R 3 is preferably hydrogen, halo, 0 (C ⁇ -4 alkyl) , or a C ⁇ - 4 alkyl group. Most preferably R 3 is hydrogen.
  • Representative examples of compounds of formula I-A are shown below in Table 1. Table 1. Examples of Compounds of formula I-A
  • the compounds of this invention may be prepared in general by methods known to those skilled in the art for analogous compounds, as illustrated by the general scheme below and by the preparative examples that follow.
  • Reagents and conditions (a) ArCH 2 CN, KOH, MeOH, room temperature (rt) ; (b) formic acid, rt (c) N,N- dimethylformamide dimethyl acetal , CH 3 CN, 80 °C; (d) N- phenylguanidine-HCl , CH 3 CN, reflux.
  • Scheme I above shows a synthetic route for preparing compounds of the present invention.
  • the intermediate 3 can be obtained commercially or obtained by known methods as shown in steps (a) and (b) above. See R.B. Davis and L.C. Pizzini, J. Org . Chem., 1960, 25, 1884-1888.
  • a Mannich reaction provides intermediate 4, which can be treated with phenylguanidine to give the desired compounds 5. It will be obvious to one skilled in the art that phenylguanidine may be replaced with other arylguanidines, which are readily available, to provide other compounds of this invention.
  • Scheme II shows a synthetic route for preparing compounds of the present invention.
  • the intermediate 3 can be obtained commercially or obtained by known methods as shown in steps (a) and (b) above. See R.B. Davis and L.C. Pizzini, J. Org . Chem., 1960, 25, 1884-1888.
  • a Mannich reaction provides intermediate 4, which can be treated with phenylguanidine to give the
  • Scheme II above shows an alternative synthetic route where the pyrimidine ring is constructed before the benzisoxazole ring.
  • Steps (a) and (b) are analogous to the corresponding steps shown above in Scheme I except that they are performed in the opposite order.
  • Step (c) illustrates one of many ways known to those skilled in the art in which certain compounds of this invention may be modified to provide further compounds of this invention.
  • the bromo substituent of compound 8 may be replaced by other groups using standard coupling methods.
  • R 4 is preferably an aryl or heteroaryl ring. It will be obvious to one skilled in the art that this scheme may be modified to provide other compounds of this invention.
  • Scheme III
  • Reagents and conditions (a) NaH, DMF/THF 1:1, R 5 C(0)C1, ambient temp; wherein R 1 is -C(0)R 5 ; (b) R 7 NCO, DMSO, ambient temp/80 °C; wherein R 1 is -C(0)NHR 7 ; (c) [from the p-N0 2 -phenyl carbamic esters] R 7 NH 2 , DMSO/THF 1:1, 80 °C; wherein R 1 is -C(0)NHR 7 .
  • reagents and conditions for carbamate formation (not shown): (a) R 6 OC(0)Cl, DMSO, DIPEA, ambient temp; wherein R 1 is -C(0)OR 6 .
  • Scheme III shows general methods for the preparation of compounds of Formula I wherein NH-R 1 taken together form an amide (shown in step (a) above) , carbamate (not shown) or a urea (shown in steps (a) and (c) or step (b) above) .
  • NH-R 1 taken together form an amide (shown in step (a) above) , carbamate (not shown) or a urea (shown in steps (a) and (c) or step (b) above) .
  • Acylation of the aminopyrimidine with acid chlorides, chloroformates and isocyanates provides amides, cabamates and ureas respectively.
  • ureas can be generated by a nucleophilic displacement reaction with a primary or secondary amine via the corresponding p-nitrophenylcarbamate .
  • Scheme IV shows a general method for obtaining compounds 2 (scheme I) wherein the Ar group is substituted with an amine functionality as in 2b, and wherein R° is as described above. Compounds of type 2b may then be taken forward according to Schemes I -III.
  • the activity of a compound utilized in this invention as an inhibitor of GSK-3 or JAK kinase may be assayed in vi tro, in vivo or in a cell line according to methods known in the art.
  • vi tro assays include assays that determine inhibition of either the phosphorylation activity or ATPase activity of activated GSK-3 or JAK. Alternate in vi tro assays quantitate the ability of the inhibitor to bind to GSK-3 or JAK. Inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/GSK-3 or inhibitor/JAK complex and determining the amount of radiolabel bound. Alternatively, inhibitor binding may be determined by running a competition experiment where new inhibitors are incubated with GSK-3 or JAK bound to known radioligands . Detailed conditions for assaying a compound utilized in this invention as an inhibitor of GSK-3 or JAK kinase are set forth in the Examples below.
  • the invention provides a composition comprising a compound of this invention or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
  • the amount of compound in the compositions of this invention is such that is effective to detectably inhibit a protein kinase, particularly GSK- 3 or JAK kinase, in a biological sample or in a patient.
  • the composition of this invention is formulated for administration to a patient in need of such composition.
  • the composition of this invention is formulated for oral administration to a patient.
  • the term "patient” means an animal, preferably a mammal, and most preferably a human.
  • pharmaceutically acceptable carrier, adjuvant, or vehicle refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated.
  • compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat .
  • ion exchangers alumina, aluminum stearate, lecithin
  • serum proteins such as human serum albumin
  • buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate
  • the term “detectably inhibit”, as used herein means a measurable change in GSK-3 or JAK activity between a sample comprising said composition and a GSK-3 or JAK kinase and an equivalent sample comprising GSK-3 or JAK kinase in the absence of said composition.
  • the term “JAK” is used interchangeably with the terms “JAK kinase” and "a JAK family kinase”.
  • JAK refers to JAK3 kinase.
  • a "pharmaceutically acceptable derivative” means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof.
  • the term “inhibitorily active metabolite or residue thereof” means that a metabolite or residue thereof is also an inhibitor of a GSK-3 or JAK family kinase.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • Suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate,
  • Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N + (C ⁇ _ alkyl) 4 salts.
  • alkali metal e.g., sodium and potassium
  • alkaline earth metal e.g., magnesium
  • ammonium e.g., ammonium
  • N + (C ⁇ _ alkyl) 4 salts e.g., sodium and potassium
  • compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial , intrasternal , intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intraperitoneally or intravenously.
  • Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1 , 3-butanediol .
  • a non-toxic parenterally-acceptable diluent or solvent for example as a solution in 1 , 3-butanediol .
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or di-glycerides .
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
  • compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
  • carriers commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
  • the pharmaceutically acceptable compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non- irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
  • a suitable non- irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
  • Such materials include cocoa butter, beeswax and polyethylene glycols.
  • the pharmaceutically acceptable compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.
  • the pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.
  • Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
  • the pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers.
  • suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol , benzyl alcohol and water.
  • the pharmaceutically acceptable compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride.
  • the pharmaceutically acceptable compositions may be formulated in an ointment such as petrolatum.
  • compositions of this invention may also be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • the pharmaceutically acceptable compositions of this invention are formulated for oral administration.
  • compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions.
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
  • compositions of this invention The amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
  • additional therapeutic agents which are normally administered to treat or prevent that condition, may also be present in the compositions of this invention.
  • additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition are known as "appropriate for the disease, or condition, being treated” .
  • chemotherapeutic agents or other anti-proliferative agents may be combined with the compounds of this invention to treat proliferative diseases and cancer.
  • known chemotherapeutic agents include, but are not limited to, GleevecTM, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil , topotecan, taxol, interferons, and platinum derivatives.
  • agents the inhibitors of this invention may also be combined with include, without limitation: treatments for Alzheimer's Disease such as Aricept and Excelon ; treatments for Parkinson's Disease such as L-DOPA/carbidopa, entacapone, ropinrole, pramipexole, bromocriptine, pergolide, trihexephendyl , and amantadine; agents for treating Multiple Sclerosis (MS) such as beta interferon (e.g., Avonex and Rebif ), Copaxone , and mitoxantrone; treatments for asthma such as albuterol and Singulair ; agents for treating schizophrenia such as zyprexa, risperdal, seroquel, and halpperidol; anti-inflammatory agents such as corticosteroids, TNF blockers, IL-1 RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as
  • the amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent.
  • the amount of additional therapeutic agent in the presently disclosed compositions will range from about 50% to about 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
  • the invention relates to a method of inhibiting GSK-3 or JAK kinase activity in a biological sample comprising the step of contacting said biological sample with a compound of this invention, or a composition comprising said compound.
  • biological sample includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
  • Inhibition of GSK-3 or JAK kinase activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, blood transfusion, organ-transplantation, biological specimen storage, and biological assays.
  • the invention provides a method for treating or lessening the severity of a GSK-3 -mediated disease or condition in a patient comprising the step of administering to said patient a composition according to the present invention.
  • GSK-3 -mediated condition means any disease or other deleterious condition in which GSK-3, is known to play a role.
  • diseases or conditions include, without limitation, diabetes, Alzheimer's disease, Huntington' s, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis (AML) , multiple sclerosis (MS) , schizophrenia, cardiomycete hypertrophy, ischemia/reperfusion and baldness.
  • the invention provides a method for treating or lessening the severity of a JAK-mediated disease or condition in a patient comprising the step of administering to said patient a composition according to the present invention.
  • JAK-mediated disease means any disease or other deleterious condition in which a JAK family kinase, in particular JAK3 , is known to play a role.
  • Such conditions include, without limitation, immune responses such as allergic or type I hypersensitivity reactions, asthma, autoimmune diseases such as transplant rejection, graft versus host disease, rheumatoid arthritis, amyotrophic lateral sclerosis, and multiple sclerosis, neurodegenerative disorders such as Familial amyotrophic lateral sclerosis (FALS) , as well as in solid and hematologic malignancies such as leukemias and lymphomas .
  • FALS Familial amyotrophic lateral sclerosis
  • the methods of this invention that utilize compositions that do not contain an additional therapeutic agent comprise the additional step of separately administering to said patient an additional therapeutic agent.
  • additional therapeutic agents When these additional therapeutic agents are administered separately they may be administered to the patient prior to, sequentially with or following administration of the compositions of this invention.
  • the compounds of this invention or pharmaceutically acceptable compositions thereof may also be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters.
  • vascular stents for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury) .
  • patients using stents or other implantable devices risk clot formation or platelet activation.
  • a pharmaceutically acceptable composition comprising a kinase inhibitor.
  • Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121.
  • the coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof.
  • the coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccarides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition.
  • Implantable devices coated with a compound of this invention are another embodiment of the present invention.
  • the aqueous layer was extracted with ethyl acetate (50 mL) four times. The combined organic layers were concentrated under reduced pressure to afford a solid compound. The solid was washed with diethyl ether (30 mL) to provide pale yellow title compound. The compound was characterized by LC/MS and HPLC.
  • Compound I-A2 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by iV- (4-fluoro-phenyl) - guanidine.
  • Compound I -A3 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by N- (6-chloro-pyridin-3 - yl) -guanidine.
  • Compound I-A4 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by N- (3-chloro-phenyl) - guanidine .
  • Compound I-A19 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by 4-guanidino- benzenesulfonamide .
  • Step A 4- [3- (4-Chlorophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -ylamine .
  • Step B N- ⁇ 4- [3- (4-Chorophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -yl ⁇ -acetamide .
  • Step A 5- (2 -Methyl- [1, 3] dioxolan-2-yl) -3- (4-piperidin- 1 -yl -phenyl ) benzo [c] isoxazole [0095]
  • This compound was prepared in a manner analogous to that described in Example 13, Step B except starting with piperidine and a reaction duration of 2.5 h, giving the title compound, after purification, as a bright yellow solid (174 mg, 69% yield) .
  • Step B 1- [3- (4 -Piperidin-1-yl -phenyl) -benzo [c] isoxazol - 5 -yl ) ethanone
  • Step C 4- [3- (4-Piperidin-l-yl-phenyl) -benzo [c] isoxazol- 5 -yl] pyrimidin-2 -ylamine (I-A32)
  • Step B 3-Dimethylamino-l- [3 - (3 -piperidin-1-yl -phenyl) - benzo [c] isoxazol-5-yl] -propanone
  • Step C 4- [3- (3-Piperidin-l-yl-phenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine (I-A33)
  • Step A 3- (4-Bromo-phenyl) -5- (2-methyl- [1, 3] -dioxolan-2- yl) -benzo [c] isoxazole
  • Step B 5- (2 -Methyl- [1, 3] -dioxolan-2-yl) -3- (4-morpholin- 4 -yl -phenyl) -benzo [c] isoxazole
  • Step D 3-Dimethylamino-l- [3- (4-morpholino-4-yl-phenyl) - benzo [c] isoxazol-5 -yl] propenone
  • Step E 4- [3- (4 -Morpholin-4-yl -phenyl) benzo [c] isoxazol-5- yl] pyrimidin-2 -yl amine (I-A34) [0106] To a solution of sodium (spheres, 25 mg, 1.08 mmol) in MeOH (0.7 mL) at room temperature under nitrogen was added guanidine hydrochloride (10 mg, 0.105 mmol) and a solution of 3-dimethylamino-l- [3- (4 -morpholino-4-yl - phenyl) -benzo [c] isoxazol -5 -yl] propenone (0.08 mmol) in MeOH (1.5 mL) and the reaction was heated to 90°C for 18 hours.
  • Example 15 4- [3- (4-Bromophenyl) -benzo [c] isoxazol-5-yl] pyrimidin-2 -ylamine (I -A36) .
  • Step B 1- [3 - (4 -Bromo-phenyl) -benzo [c] isoxazol-5-yl] -3 - dimethylamino-propenone [0109]
  • This compound was prepared from [3- (4- bromophenyl) -benzo [c] isoxazol-5-yl] -ethanone in an analogous manner to Experiment 15, Step D except that the reaction duration was 18 hours.
  • the product was isolated as a brown solid and was used in the next step without purification (1.61 g, 97% yield).
  • Step C 4- [3- (4-Bromophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -ylamine
  • This compound was prepared in an analogous manner to 4- [3- (4-chlorophenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2- ylamine (see Example 13) . Purification was achieved by trituration with dichloromethane to yield 4- [3- (4- bromophenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine as a yellow solid (559 mg, 49% yield) .
  • Step A N- ⁇ 4- [3- (3-Bromophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -yl ⁇ -acetamide
  • Compound I-A50 was prepared according to the procedure described as above in Example 7 step B utilizing 4- [3 - (3-bromophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -ylamine instead of 4- [3- (4 -Chlorophenyl) - benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine .
  • Step B N- (4- ⁇ 3- [3- (2 , 5-Dimethoxy-pyrimidin-4-yl) - phenyl] -benzo [c] isoxazol-5-yl ⁇ -pyrimidin-2-yl) -acetamide
  • N- ⁇ 4-[3-(3- bromophenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2-yl ⁇ - acetamide 100 mg, 0.272 mmol
  • cesium carbonate 9.7 mg, 0.328 mmol
  • 5 5-dimethoxypyrimidine-6-boronic acid
  • the flask was evacuated and back-filled with nitrogen 5-7 times before adding 5 mL of degassed p-dioxane and 1 mL of degassed DMF.
  • 125 ⁇ L of a 10% w/v benzene solution of tri- tertbutylphosphine followed by the addition of Pd 2 (dba) 3 (25 mg, 0.0272 mmol) slurred in 1 mL of degassed DMF.
  • the reaction was stirred under nitrogen atmosphere, at 80 °C. Reaction was followed by HPLC and deemed to be complete in 4 hours.
  • the reaction mixture was suction filtered hot through a pad of diatomaceous earth and washed the precipitate with DMF and acetonitrile.
  • the filtrate was reduced to an oil under reduced pressure and the crude material purified via HPLC utilizing acetonitrile/water/TFA as the eluent.
  • the material was isolated as a bright yellow powder (15 mg, 13% yield) .
  • Reactions were carried out at 30 °C and 60 nM GSK-3 ⁇ . Final concentrations of the components of the coupled enzyme system were 2.5 mM phosphoenolpyruvate, 300 ⁇ M NADH, 30 ⁇ g/ml pyruvate kinase and 10 ⁇ g/ml lactate dehydrogenase .
  • An assay stock buffer solution was prepared containing all of the reagents listed above with the exception of ATP and the test compound of interest. 59 ⁇ l of the test reaction was placed in a 96 well 1/2 diameter plate (Corning, Corning, NY) then treated with 1 ⁇ l of a 2 mM DMSO stock containing the test compound (final compound concentration 30 ⁇ M) .
  • Final substrate concentrations in the assay were 20 ⁇ M ATP (Sigma Chemicals, St Louis, MO) and 300 ⁇ M peptide (HSSPHQS (P0 3 H 2 ) EDEEE, American Peptide, Sunnyvale, CA) . Reactions were carried out at 30°C and 20 nM GSK-3 ⁇ . Final concentrations of the components of the coupled enzyme system were 2.5 mM phosphoenolpyruvate, 300 ⁇ M NADH, 30 ⁇ g/ml pyruvate kinase and 10 ⁇ g/ml lactate dehydrogenase .
  • An assay stock buffer solution was prepared containing all of the reagents listed above with the exception of ATP and the test compound of interest.
  • the assay stock buffer solution (175 ⁇ l) was incubated in a 96 well plate with 5 ⁇ l of the test compound of interest at final concentrations spanning 0.002 ⁇ M to 30 ⁇ M at 30°C for 10 minutes.
  • a 12 point titration was conducted by preparing serial dilutions (from 10 mM compound stocks) with DMSO of the test compounds in daughter plates.
  • the reaction was initiated by the addition of 20 ⁇ l of ATP (final concentration 20 ⁇ M) .
  • Rates of reaction were obtained using a Molecular Devices Spectramax plate reader (Sunnyvale, CA) over 10 min at 30 °C .
  • the Ki values were determined from the rate data as a function of inhibitor concentration.
  • the plates were then washed with PBST, 100 ⁇ L HRP-Conjugated 4G10 antibody was added, and the plate incubated for 90 minutes at 30°C.
  • the plate was again washed with PBST, 100 ⁇ L TMB solution is added, and the plates were incubated for another 30 minutes at 30°C.
  • Sulfuric acid 100 ⁇ L of 1M was added to stop the reaction and the plate is read at 450 nm to obtain the optical densities for analysis to determine IC 50 values.

Abstract

Described herein are benzisoxazole compounds of formula I or a pharmaceutically acceptable derivative or prodrug thereof, wherein A-B is N-O or O-N; Ar is an optionally substituted C5-10 aryl group; R1 is hydrogen or an optionally substituted group selected from C1-I0 aliphatic, C¿5-10? aryl, C6-12 aralkyl, C3-10 heterocyclyl, or C4-12 heterocyclylalkyl; and T, n, R?2 and R3¿ are as described in the specification. These compounds are inhibitors of protein kinases, particularly inhibitors of GSK-3 and JAK mammalian protein kinases. The invention also provides pharmaceutically acceptable compositions comprising the compounds of the invention and methods of utilizing those compounds and compositions in the treatment of various -, protein kinase mediated disorders.

Description

- ( 2 -AMINOPYRIMIDIN-4-YL) BENZISOXAZOLES AS PROTEIN KINASE INHIBITORS
Field of the Invention
[0001] The present invention is in the field of medicinal chemistry and relates to compounds that are protein kinase inhibitors, compositions comprising such compounds and methods of use. More particularly, the compounds are inhibitors of GSK-3 and JAK and are useful for treating disease states, such as diabetes and Alzheimer's disease, that are alleviated by GSK-3 inhibitors, and allergic disorders, autoimmune diseases, and conditions associated with organ transplantation that are alleviated by JAK inhibitors.
Background of the Invention [0002] The search for new therapeutic agents has been greatly aided in recent years by a better understanding of the structure of enzymes and other biomolecules associated with target diseases. One important class of enzymes that has been the subject of extensive study is the protein kinases.
[0003] Protein kinases mediate intracellular signal transduction. They do this by effecting a phosphoryl transfer from a nucleoside triphosphate to a protein acceptor that is involved in a signaling pathway. There are a number of kinases and pathways through which extracellular and other stimuli cause a variety of cellular responses to occur inside the cell. Examples of such stimuli include environmental and chemical stress signals (e.g. osmotic shock, heat shock, ultraviolet radiation, bacterial endotoxin, H202) , cytokines (e.g. interleukin-1 (IL-1) and tumor necrosis factor α (TNF- oc) ) , and growth factors (e.g. granulocyte macrophage- colony-stimulating factor (GM-CSF) , and fibroblast growth factor (FGF) ) . An extracellular stimulus may effect one or more cellular responses related to cell growth, migration, differentiation, secretion of hormones, activation of transcription factors, muscle contraction, glucose metabolism, control of protein synthesis and regulation of cell cycle.
[0004] Many disease states are associated with abnormal cellular responses triggered by protein kinase- mediated events. These diseases include autoimmune diseases, inflammatory diseases, metabolic diseases, neurological and neurodegenerative diseases, cancer, cardiovascular diseases, allergies and asthma, Alzheimer's disease or hormone-related diseases. Accordingly, there has been a substantial effort in medicinal chemistry to find protein kinase inhibitors that are effective as therapeutic agents. A challenge has been to find protein kinase inhibitors that act in a selective manner. Since there are numerous protein kinases that are involved in a variety of cellular responses, non-selective inhibitors may lead to unwanted side effects. [0005] Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase comprised of α and β isoforms that are each encoded by distinct genes [Coghlan et al . , Chemistry & Biology, 7, 793-803 (2000); Kim and Kimmel, Curr. Opinion Genetics Dev. , 10, 508-514 (2000)]. GSK-3 has been implicated in various diseases including diabetes, Alzheimer's disease, CNS disorders such as manic depressive disorder and neurodegenerative diseases, and cardiomyocete hypertrophy [WO 99/65897; WO 00/38675; and Haq et al . , J". Cell Biol . (2000) 151, 117]. These diseases may be caused by, or result in, the abnormal operation of certain cell signaling pathways in which GSK-3 plays a role. GSK-3 has been found to phosphorylate and modulate the activity of a number of regulatory proteins. These include glycogen synthase which is the rate limiting enzyme necessary for glycogen synthesis, the microtubule associated protein Tau, the gene transcription factor β-catenin, the translation initiation factor elF2B, as well as ATP citrate lyase, axin, heat shock factor-1, c-Jun, c-Myc, c-Myb, CREB, and CEPBα. These diverse targets implicate GSK-3 in many aspects of cellular metabolism, proliferation, differentiation and development. [0006] In a GSK-3 mediated pathway that is relevant for the treatment of type II diabetes, insulin- induced signaling leads to cellular glucose uptake and glycogen synthesis. Along this pathway, GSK-3 is a negative regulator of the insulin-induced signal. Normally, the presence of insulin causes inhibition of GSK-3 mediated phosphorylation and deactivation of glycogen synthase. The inhibition of GSK-3 leads to increased glycogen synthesis and glucose uptake [Klein et al . , PNAS, 93, 8455-9 (1996); Cross et al . , Biochem . J. , 303, 21-26 (1994); Cohen, Biochem . Soc . Trans . , 21, 555-567 (1993); Massillon et al . , Biochem J. 299, 123-128 (1994)]. However, in a diabetic patient where the insulin response is impaired, glycogen synthesis and glucose uptake fail to increase despite the presence of relatively high blood levels of insulin. This leads to abnormally high blood levels of glucose with acute and chronic effects that may ultimately result in cardiovascular disease, renal failure and blindness. In such patients, the normal insulin- induced inhibition of GSK-3 fails to occur. It has also been reported that in patients with type II diabetes, GSK-3 is overexpressed [WO 00/38675] . Therapeutic inhibitors of GSK-3 are therefore potentially useful for treating diabetic patients suffering from an impaired response to insulin.
[0007] GSK-3 activity has also been associated with Alzheimer's disease. This disease is characterized by the well-known β-amyloid peptide and the formation of intracellular neurofibrillary tangles. The neurofibrillary tangles contain hyperphosphorylated Tau protein where Tau is phosphorylated on abnormal sites. GSK-3 has been shown to phosphorylate these abnormal sites in cell and animal models. Furthermore, inhibition of GSK-3 has been shown to prevent hyperphosphorylation of Tau in cells [Lovestone et al . , Current Biology 4, 1077-86 (1994); Brownlees et al . , Neuroreport 8, 3251-55 (1997)]. Therefore, it is believed that GSK-3 activity may promote generation of the neurofibrillary tangles and the progression of Alzheimer's disease.
[0008] Another substrate of GSK-3 is β-catenin which is degradated after phosphorylation by GSK-3. Reduced levels of β-catenin have been reported in schizophrenic patients and have also been associated with other diseases related to increase in neuronal cell death [Zhong et al . , Nature, 395, 698-702 (1998); Takashima et al., PNAS, 90, 7789-93 (1993); Pei et al . , J. Neuropathol . Exp, 56, 70-78 (1997); Smith et al . , Bio- org. Med . Chem. 11, 635-639 (2001)]. [0009] Small molecule inhibitors of GSK-3 have recently been reported [WO 99/65897 (Chiron) and WO 00/38675 (SmithKline Beecham) ] . [0010] The Janus kinases (JAK) are a family of tyrosine kinases consisting of JAK1 , JAK2 , JAK3 and TYK2. The JAKs play a critical role in cytokine signaling. The down-stream substrates of the JAK family of kinases include the signal transducer and activator of transcription (STAT) proteins. JAK/STAT signaling has been implicated in the mediation of many abnormal immune responses such as allergies, asthma, autoimmune diseases such as transplant rejection, rheumatoid arthritis, amyotrophic lateral sclerosis and multiple sclerosis as well as in solid and hematologic malignancies such as leukemias and lymphomas . The pharmaceutical intervention in the JAK/STAT pathway has been reviewed [Frank Mol. Med. 5 : 432 -456 (1999) & Seidel, et al, Oncogene 19 : 2645 -2656 (2000) ] . [0011] JAK1, JAK2, and TYK2 are ubiquitously expressed, while JAK3 is predominantly expressed in hematopoietic cells. JAK3 binds exclusively to the common cytokine receptor gamma chain (γc) and is activated by I -2, I -4, IL-7, I -9, and IL-15. The proliferation and survival of murine mast cells induced by IL-4 and
IL-9 have, in fact, been shown to be dependent on JAK3- and γc- signaling [Suzuki et al , Blood 96 : 2172 -2180 (2000) ] . [0012] Cross-linking of the high-affinity immunoglobulin (Ig) E receptors of sensitized mast cells leads to a release of proinflammatory mediators, including a number of vasoactive cytokines resulting in acute allergic, or immediate (type I) hypersensitivity reactions [Gordon et al, Nature 346 : 274-276 (1990) & Galli, N. Engl. J. Med., 328 : 251-265 (1993)]. A crucial role for JAK3 in IgE receptor-mediated mast cell responses in vi tro and in vivo has been established [Malaviya, et al , Biochem. Biophys . Res. Commun. 257;
807 -813 (1999)]. In addition, the prevention of type I hypersensitivity reactions, including anaphylaxis, mediated by mast cell -activation through inhibition of JAK3 has also been reported [Malaviya et al , J. Biol . Chem. 274:27028-27038 (1999)]. Targeting mast cells with JAK3 inhibitors modulated mast cell degranulation in vi tro and prevented IgE receptor/antigen-mediated anaphylactic reactions in vivo . [0013] A recent study described the successful targeting of JAK3 for immunosuppression and allograft acceptance. The study demonstrated a dose-dependent survival of Buffalo heart allograft in Wistar Furth recipients upon administration of inhibitors of JAK3 indicating the possibility of regulating unwanted immune responses in graft versus host disease [Kirken, transpl . proc. 33 : 3268 -3270 (2001)].
[0014] IL-4 -mediated STAT-phosphorylation has been implicated as the mechanism involved in early and late stages of rheumatoid arthritis (RA) . Up-regulation of proinflammatory cytokines in RA synovium and synovial fluid is a characteristic of the disease. It has been demostrated that IL-4-mediated activation of IL-4/STAT pathway is mediated through the Janus Kinases (JAK 1 & 3) and that IL-4 -associated JAK kinases are expressed in the RA synovium [Muller-Ladner, et al , J. Immunol. 164 : 3894- 3901 (2000) ] .
[0015] Familial amyotrophic lateral sclerosis (FALS) is a fatal neurodegenerative disorder affecting about 10% of ALS patients. The survival rates of FALS mice were increased upon treatment with a JAK3 specific inhibitor. This suggested that JAK3 plays a role in FALS [Trieu, et al, Biochem. Biophys . Res. Commun. 267 : 22 -25 (2000)]. [0016] Signal transducer and activator of transcription (STAT) proteins are activated by, among others, the JAK family kinases. Results from a recent study suggested the possibility of intervention in the JAK/STAT signaling pathway by targeting JAK family kinases with specific inhibitors for the treatment of leukemia [Sudbeck, et al, Clin. Cancer Res. 5: 1569-1582 (1999) ] . JAK3 specific compounds were shown to inhibit the clonogenic growth of JAK3 -expressing cell lines DAUDI, RAMOS, LCI; 19, NALM-6, MOLT-3 and HL-60. [0017] In animal models, TEL/JAK2 fusion proteins have induced myeloproliterative disorders and in hematopoietic cell lines, introduction of TEL/JAK2 resulted in activation of STAT1, STAT3 , STAT5 , and cytokine- independent growth [Schwaller, et al, EMBO J. 17: 5321 - 5333 (1998) ] .
[0018] Inhibition of JAK3 and TYK2 abrogated tyrosine phosphorylation of STAT3 , and inhibited cell growth of mycosis fungoides, a form of cutaneous T cell lymphoma . These results implicated JAK family kinases in the constitutively activated JAK/STAT pathway that is present in mycosis fungoides [Nielsen, et al, Proc. Nat. Acad. Sci. U.S.A. 94 : 6764 - 6769 (1997)]. Similarly, STAT3 , STAT5, JAK1 and JAK2 were demonstrated to be constitutively activated in mouse T cell lymphoma characterized initially by LCK over-expression, thus further implicating the JAK/STAT pathway in abnormal cell growth [Yu, et al, J. Immunol. 159 : 5206-5210 (1997)]. In addition, IL-6-mediated STAT3 activation was blocked by an inhibitor of JAK, leading to sensitization of myeloma cells to apoptosis [Catlett-Falcone, et al, Immunity 10 : 105-115 (1999)]. [0019] There is a continued need to find new therapeutic agents to treat human diseases. Accordingly, there is a great need to develop inhibitors of GSK-3 and JAK protein kinases that are useful in treating various diseases or conditions associated with GSK-3 and JAK activation, particularly given the inadequate treatments currently available for the majority of these disorders.
Description of the Invention
[0020] It has now been found that compounds of this invention and pharmaceutical compositions thereof are effective as protein kinase inhibitors, particularly as inhibitors of GSK-3 and JAK. These compounds have the general formula I :
Figure imgf000009_0001
or a pharmaceutically acceptable derivative or prodrug thereof, wherein: A-B is N-0 or O-N; Ar is an optionally substituted C50 aryl group;
T is a Cι- alkylidene chain wherein one or two methylene units of T are optionally and independently replaced by
O, NR, S, C(O), C(0)NR, NRC(0)NR, S02 , S02NR, NRS02 , NRS02NR, C02, OC(O), NRC02, or OC(0)NR; n is zero or one; R1 is hydrogen or an optionally substituted group selected from Cι-10 aliphatic, C5-10 aryl, C6-i2 aralkyl , C30 heterocyclyl , or C4-12 heterocyclylalkyl ; each R2 is independently selected from R, halo, CN, OR,
N(R)2, SR, C(=0)R, C02R, CONR2, NRC(=0)R, NRC02 (C1-6 aliphatic), OC(=0)R, S02R, S(=0)R# S02NR2, or NRS02 (Cι-6 aliphatic) ; each R3 is independently selected from R, halo, CN, OR, N(R)2, SR, C(=0)R, C02R, CONR2 , NRC(=0)R, NRC02 (C1-6 aliphatic), OC(=0)R, S02R, S(=0)R, S02NR2, or NRS02 (Cι_6 aliphatic) ; and each R is independently selected from hydrogen, a Cι_8 aliphatic group, or two R on the same nitrogen are taken together with the nitrogen to form a 4-8 membered heterocyclic ring having 1-3 heteroatoms selected from nitrogen, oxygen or sulfur. [0021] As used herein, the following definitions shall apply unless otherwise indicated. [0022] The phrase "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted." Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other.
[0023] The term "aliphatic" or "aliphatic group" as used herein means a straight-chain or branched Cι-Cι0 hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic C3-C8 hydrocarbon or bicyclic C8-Cι2 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as "carbocycle" or "cycloalkyl" ) , that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members. For example, suitable aliphatic groups include substituted or unsubstituted linear or branched alkyl, alkenyl, or alkynyl groups and hybrids thereof such as (cycloalkyl) alkyl , (cycloalkenyl) alkyl or (cycloalkyl) alkenyl . [0024] The terms "alkyl", "alkoxy", "hydroxyalkyl " , "alkoxyalkyl" , and "alkoxycarbonyl " , used alone or as part of a larger moiety include both straight and branched chains containing one to twelve carbon atoms. The terms "alkenyl" and "alkynyl" used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms. [0025] The terms "haloalkyl" , "haloalkenyl" and
"haloalkoxy" means alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms. The term "halogen" means F, Cl , Br, or I. [0026] The term "heteroatom" means nitrogen, oxygen or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen. Also, the term "nitrogen" includes a substitutable nitrogen of a heterocyclic ring. As an example, in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3 , 4-dihydro-2H-pyrrolyl) , NH (as in pyrrolidinyl) or NR+ (as in N-substituted pyrrolidinyl) . It is understood that the compounds of this invention are limited to those that can exist in nature as stable chemical compounds.
[0027] The term "unsaturated", as used herein, means that a moiety has one or more units of unsaturation, and includes aryl rings.
[0028] The term "aryl", used alone or as part of a larger moiety as in "aralkyl" , "aralkoxy", or "aryloxyalkyl " , refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members. The term "aryl" may be used interchangeably with the term "aryl ring" . The term "aryl" also refers to heteroaryl ring systems as defined hereinbelow.
[0029] The term "heterocycle" , "heterocyclyl" , or "heterocyclic" , as used herein means non-aromatic, monocyclic, bicyclic, or tricyclic ring systems having five to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members.
[0030] The term "heteroaryl", used alone or as part of a larger moiety as in "heteroaryalkyl " or "heteroarylalkoxy" , refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, and wherein each ring in the system contains 3 to 7 ring members. The term "heteroaryl" may be used interchangeably with the term "heteroaryl ring" or the term "heteroaromatic" .
[0031] An aryl (including aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including heteroaralkyl and heteroarylalkoxy and the like) group may contain one or more substituents. Suitable substituents on the unsaturated carbon atom of an aryl, heteroaryl, aralkyl, or heteroaralkyl group are independently selected from halogen, -R°, -OR°, -0(CH2)yRo, -SR°, 1, 2-methylene-dioxy, 1 , 2-ethylenedioxy, phenyl (Ph) optionally substituted with R°, -O(Ph) optionally substituted with R°, -CH2(Ph) optionally substituted with R°, -CH2CH2(Ph) optionally substituted with R°, 5-8 membered heteroaryl optionally substituted with R°, 5-8 membered heterocycle optionally substituted with R°, -N02,
-CN, -N(R°)2, -N(R°) (CH2)yR°, -NR°C(0)R°, -NR°C (0) N (R°) 2 , '-NR°C02R°, -NR°NR°C(0)R°, -NR°NR°C (O) N (R°) 2 , -NR°NR°C02R°, -C(0)C(0)R°, -C(0)CH2C(0)R°, -C02R°, -C(0)R°, -C(0)N(R°)2, -OC(0)N(R°)2, -S(0)2R°, -S02N(R°)2, -S(0)R°, -NR°S02N (R°) 2 ,
-NR°S02R°, -C(=S)N(R°)2, -C (=NH) -N (R°) 2, or - (CH2) yNHC (O) R°, wherein each R° is independently selected from hydrogen, optionally substituted C±-6 aliphatic, phenyl, -O(Ph), or -CH2(Ph), wherein y is 0-6. When R° is a Cι-6 aliphatic group or a phenyl ring, it may be substituted with one or more substituents selected from -NH2, -NH(Cι-4 aliphatic), -N(C1_4 aliphatic)2, -S (0) (C1-4 aliphatic), -S02 (Ci_4 aliphatic), halogen, - (Cι_4 aliphatic), OH, -0(Ci-4 aliphatic), N02, CN, C02H, -C02 (Cι_4 aliphatic), -0(halo Cι_4 aliphatic), or -halo (Cι-4 aliphatic); wherein each C1-4 aliphatic is unsubstituted. [0032] An aliphatic group or a non-aromatic heterocyclic ring may contain one or more substituents. A saturated carbon of an aliphatic group or of a non- aromatic heterocyclic ring may have one or more substituents. Suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring are selected from those listed above for the unsaturated carbon of an aryl or heteroaryl group as well as the following: =0, =S, =NNHR*, =NN(R*)2, =N- ,
Figure imgf000014_0001
=NNHC02 (alkyl) , =NNHS02 (alkyl) , or =NR*, where each R* is independently selected from hydrogen or an optionally substituted Cι_6 aliphatic. When R* is Cι_6 aliphatic, it may be substituted with one or more substituents independently selected from -NH2, -NH(Cχ- aliphatic), -N(Cι_4 aliphatic)2, halogen, Cι_4 aliphatic, OH, 0(Cι-4 aliphatic), N02, CN, C02H, C02 (C1-4 aliphatic), O(halo Cι-4 aliphatic), or halo(Cχ-4 aliphatic); wherein each Cχ- aliphatic is unsubstituted.
[0033] Substituents on the nitrogen of a non-aromatic heterocyclic ring are selected from -R+, -N(R+)2, -C(0)R+, -C02R+, -C(0)C(0)R+, -C(0)CH2C(0)R+, -S02R+, -S02N(R+)2,
-C(=S)N(R+)2, -C(=NH) -N(R+)2, or -NR+S02R+; wherein each R+ is independently selected from hydrogen, an optionally substituted x-6 aliphatic, optionally substituted phenyl, optionally substituted -O(Ph), optionally substituted -CH2(Ph), optionally substituted -CH2CH2 (Ph) , or an unsubstituted 5-6 membered heteroaryl or heterocyclic ring. When R+ is a Cx.6 aliphatic group or a phenyl ring, it may be substituted with one or more substituents selected from -NH2, -NH(Cι_ aliphatic), -N(Cι-4 aliphatic)2, halogen, Cx_ aliphatic, OH, 0(Cι-4 aliphatic), N02, CN, C02H, C02(Cι-4 aliphatic), O (halo Cι-4 aliphatic), or halo(C1-4 aliphatic); wherein each Cι-4 aliphatic is unsubstituted . [0034] The term "alkylidene chain" refers to a straight or branched carbon chain that may be fully saturated or have one or more units of unsaturation and has two points of attachment to the rest of the molecule. [0035] A combination of substituents or variables is permissible only if such a combination results in a stable or chemically feasible compound. A stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40°C or less, in the absence of moisture or other chemically reactive conditions, for at least a week. [0036] It will be apparent to one skilled in the art that certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention. [0037] Unless otherwise stated, structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention.
[0038] One embodiment of the present invention relates to compounds which are 2 , 1-benzisoxazoles, represented by formula I-A shown below. Another embodiment of this invention relates to compounds which are 1,2- benzisoxazoles, represented by formula I-B shown below:
Figure imgf000016_0001
I -A I -B wherein Ar, T, n, R1, and R2 are as described above for formula I . [0039] Ar is preferably a substituted or unsubstituted five or six-membered aromatic ring having zero to two ring heteroatoms selected from nitrogen, sulfur or oxygen. A more preferred Ar is a substituted or unsubstituted six-membered aromatic ring having zero to two ring nitrogens. Most preferably, Ar group is a substituted or unsubstituted phenyl ring. Preferably, Ar is substituted with one or more substituents independently selected from Cι_ι0 aliphatic, C50 aryl, C62 aralkyl, C30 heterocyclyl , C-ι2 heterocyclylalkyl , halo, CN, OR, N(R)2, SR, C(=0)R, C02R, CONR2 , NRC(=0)R, NRC02 (C1-6 aliphatic), OC(=0)R, S02R, S(=0)R, S02NR2, or NRS02 (C1-6 aliphatic), or two substituents on adjacent positions are optionally taken together with their intervening atoms to form a fused 5-8 membered unsaturated or partially unsaturated ring having zero to two heteroatoms selected from nitrogen, oxygen or sulfur; wherein R is as described above for formula I .
[0040] R1 is preferably hydrogen or an aryl ring, such as a phenyl or pyridyl ring. Optional substituents on R1 are independently selected from halogen, -R, -OR, -OH,
-SH, -SR, protected OH (such as acyloxy) , -N02, -CN, -NH2, -NHR, -N(R)2, -NHCOR, -NHCONHR, -NHCON(R)2, -NRCOR, - NHC02R, -C02R, -C02H, -COR, -CONHR, -CON(R)2, -S(0)2R, - S02NH2, -S(0)R, -S02NHR, or -NHS(0)2R, where R is a C1-6 aliphatic group or a substituted Cι_6 aliphatic group, preferably having one to three carbons. A particularly preferred substituent on the Cι_6 aliphatic group is -S02NH2.
[0041] R2 is preferably hydrogen or a Cι_4 alkyl group, most preferably hydrogen.
[0042] R3 is preferably hydrogen, halo, 0 (Cι-4 alkyl) , or a Cι-4 alkyl group. Most preferably R3 is hydrogen. Representative examples of compounds of formula I-A are shown below in Table 1. Table 1. Examples of Compounds of formula I-A
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
[0043] The compounds of this invention may be prepared in general by methods known to those skilled in the art for analogous compounds, as illustrated by the general scheme below and by the preparative examples that follow.
Scheme I
Figure imgf000032_0001
1
Figure imgf000032_0002
Reagents and conditions: (a) ArCH2CN, KOH, MeOH, room temperature (rt) ; (b) formic acid, rt (c) N,N- dimethylformamide dimethyl acetal , CH3CN, 80 °C; (d) N- phenylguanidine-HCl , CH3CN, reflux.
[0044] Scheme I above shows a synthetic route for preparing compounds of the present invention. For various Ar groups, the intermediate 3 can be obtained commercially or obtained by known methods as shown in steps (a) and (b) above. See R.B. Davis and L.C. Pizzini, J. Org . Chem., 1960, 25, 1884-1888. A Mannich reaction provides intermediate 4, which can be treated with phenylguanidine to give the desired compounds 5. It will be obvious to one skilled in the art that phenylguanidine may be replaced with other arylguanidines, which are readily available, to provide other compounds of this invention. Scheme II
Figure imgf000033_0001
Figure imgf000033_0002
Reagents and conditions: (a) RXNHC (=NH) NH2-HC1 , CH3CN, reflux; (b) 4 -Br-C6H4-CH2CN, KOH, MeOH, room temperature (rt) ; (c) R4B(OH)2, Pd(PPh3)4, Na2C03, dioxane
[0045] Scheme II above shows an alternative synthetic route where the pyrimidine ring is constructed before the benzisoxazole ring. Steps (a) and (b) are analogous to the corresponding steps shown above in Scheme I except that they are performed in the opposite order. Step (c) illustrates one of many ways known to those skilled in the art in which certain compounds of this invention may be modified to provide further compounds of this invention. For example, the bromo substituent of compound 8 may be replaced by other groups using standard coupling methods. R4 is preferably an aryl or heteroaryl ring. It will be obvious to one skilled in the art that this scheme may be modified to provide other compounds of this invention. Scheme III
Figure imgf000034_0001
Reagents and conditions: (a) NaH, DMF/THF 1:1, R5C(0)C1, ambient temp; wherein R1 is -C(0)R5; (b) R7NCO, DMSO, ambient temp/80 °C; wherein R1 is -C(0)NHR7; (c) [from the p-N02-phenyl carbamic esters] R7NH2, DMSO/THF 1:1, 80 °C; wherein R1 is -C(0)NHR7.
Alternatively, reagents and conditions for carbamate formation (not shown): (a) R6OC(0)Cl, DMSO, DIPEA, ambient temp; wherein R1 is -C(0)OR6.
[0046] Scheme III shows general methods for the preparation of compounds of Formula I wherein NH-R1 taken together form an amide (shown in step (a) above) , carbamate (not shown) or a urea (shown in steps (a) and (c) or step (b) above) . Acylation of the aminopyrimidine with acid chlorides, chloroformates and isocyanates provides amides, cabamates and ureas respectively.
Alternatively, ureas can be generated by a nucleophilic displacement reaction with a primary or secondary amine via the corresponding p-nitrophenylcarbamate . Scheme IV
Figure imgf000035_0001
Reagents and conditions: a) NHR°2, Pd(OAc)2, P-tBu3, KOtBu, toluene, 90 °C. [0047] Scheme IV shows a general method for obtaining compounds 2 (scheme I) wherein the Ar group is substituted with an amine functionality as in 2b, and wherein R° is as described above. Compounds of type 2b may then be taken forward according to Schemes I -III. [0048] The activity of a compound utilized in this invention as an inhibitor of GSK-3 or JAK kinase may be assayed in vi tro, in vivo or in a cell line according to methods known in the art. In vi tro assays include assays that determine inhibition of either the phosphorylation activity or ATPase activity of activated GSK-3 or JAK. Alternate in vi tro assays quantitate the ability of the inhibitor to bind to GSK-3 or JAK. Inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/GSK-3 or inhibitor/JAK complex and determining the amount of radiolabel bound. Alternatively, inhibitor binding may be determined by running a competition experiment where new inhibitors are incubated with GSK-3 or JAK bound to known radioligands . Detailed conditions for assaying a compound utilized in this invention as an inhibitor of GSK-3 or JAK kinase are set forth in the Examples below.
[0049] According to another embodiment, the invention provides a composition comprising a compound of this invention or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle. The amount of compound in the compositions of this invention is such that is effective to detectably inhibit a protein kinase, particularly GSK- 3 or JAK kinase, in a biological sample or in a patient. Preferably the composition of this invention is formulated for administration to a patient in need of such composition. Most preferably, the composition of this invention is formulated for oral administration to a patient.
[0050] The term "patient" , as used herein, means an animal, preferably a mammal, and most preferably a human. [0051] The term "pharmaceutically acceptable carrier, adjuvant, or vehicle" refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat . [0052] The term "detectably inhibit", as used herein means a measurable change in GSK-3 or JAK activity between a sample comprising said composition and a GSK-3 or JAK kinase and an equivalent sample comprising GSK-3 or JAK kinase in the absence of said composition. [0053] As used herein, the term "JAK" is used interchangeably with the terms "JAK kinase" and "a JAK family kinase". Preferably JAK refers to JAK3 kinase. [0054] A "pharmaceutically acceptable derivative" means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof. As used herein, the term "inhibitorily active metabolite or residue thereof" means that a metabolite or residue thereof is also an inhibitor of a GSK-3 or JAK family kinase. [0055] Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, thiocyanate, tosylate and undecanoate. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts. [0056] Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N+(Cι_ alkyl)4 salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization. [0057] The compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial , intrasternal , intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1 , 3-butanediol . Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.
[0058] For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides . Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
[0059] The pharmaceutically acceptable compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added. [0060] Alternatively, the pharmaceutically acceptable compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non- irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols. [0061] The pharmaceutically acceptable compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
[0062] Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used. [0063] For topical applications, the pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol , benzyl alcohol and water. [0064] For ophthalmic use, the pharmaceutically acceptable compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutically acceptable compositions may be formulated in an ointment such as petrolatum.
[0065] The pharmaceutically acceptable compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents. [0066] Most preferably, the pharmaceutically acceptable compositions of this invention are formulated for oral administration.
[0067] The amount of the compounds of the present invention that may be combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, the compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions. [0068] It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition. [0069] Depending upon the particular condition, or disease, to be treated or prevented, additional therapeutic agents, which are normally administered to treat or prevent that condition, may also be present in the compositions of this invention. As used herein, additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition, are known as "appropriate for the disease, or condition, being treated" .
[0070] For example, chemotherapeutic agents or other anti-proliferative agents may be combined with the compounds of this invention to treat proliferative diseases and cancer. Examples of known chemotherapeutic agents include, but are not limited to, Gleevec™, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil , topotecan, taxol, interferons, and platinum derivatives.
[0071] Other examples of agents the inhibitors of this invention may also be combined with include, without limitation: treatments for Alzheimer's Disease such as Aricept and Excelon ; treatments for Parkinson's Disease such as L-DOPA/carbidopa, entacapone, ropinrole, pramipexole, bromocriptine, pergolide, trihexephendyl , and amantadine; agents for treating Multiple Sclerosis (MS) such as beta interferon (e.g., Avonex and Rebif ), Copaxone , and mitoxantrone; treatments for asthma such as albuterol and Singulair ; agents for treating schizophrenia such as zyprexa, risperdal, seroquel, and halpperidol; anti-inflammatory agents such as corticosteroids, TNF blockers, IL-1 RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as cyclosporin, tacrolimus, rapamycin, mycophenolate mofetil, interferons, corticosteroids, cyclophophamide, azathioprine, and sulfasalazine; neurotrophic factors such as acetylcholinesterase inhibitors, MAO inhibitors, interferons, anti-convulsants, ion channel blockers, riluzole, and anti-Parkinsonian agents; agents for treating cardiovascular disease such as beta-blockers, ACE inhibitors, diuretics, nitrates, calcium channel blockers, and statins; agents for treating liver disease such as corticosteroids, cholestyramine, interferons, and anti -viral agents; agents for treating blood disorders such as corticosteroids, anti-leukemic agents, and growth factors; and agents for treating immunodeficiency disorders such as gamma globulin.
[0072] The amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent. Preferably the amount of additional therapeutic agent in the presently disclosed compositions will range from about 50% to about 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
[0073] According to another embodiment, the invention relates to a method of inhibiting GSK-3 or JAK kinase activity in a biological sample comprising the step of contacting said biological sample with a compound of this invention, or a composition comprising said compound. [0074] The term "biological sample" , as used herein, includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof. [0075] Inhibition of GSK-3 or JAK kinase activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, blood transfusion, organ-transplantation, biological specimen storage, and biological assays.
[0076] According to another embodiment, the invention provides a method for treating or lessening the severity of a GSK-3 -mediated disease or condition in a patient comprising the step of administering to said patient a composition according to the present invention. [0077] The term "GSK-3 -mediated condition", as used herein means any disease or other deleterious condition in which GSK-3, is known to play a role. Such diseases or conditions include, without limitation, diabetes, Alzheimer's disease, Huntington' s, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis (AML) , multiple sclerosis (MS) , schizophrenia, cardiomycete hypertrophy, ischemia/reperfusion and baldness. [0078] According to another embodiment, the invention provides a method for treating or lessening the severity of a JAK-mediated disease or condition in a patient comprising the step of administering to said patient a composition according to the present invention. [0079] The term "JAK-mediated disease" , as used herein means any disease or other deleterious condition in which a JAK family kinase, in particular JAK3 , is known to play a role. Such conditions include, without limitation, immune responses such as allergic or type I hypersensitivity reactions, asthma, autoimmune diseases such as transplant rejection, graft versus host disease, rheumatoid arthritis, amyotrophic lateral sclerosis, and multiple sclerosis, neurodegenerative disorders such as Familial amyotrophic lateral sclerosis (FALS) , as well as in solid and hematologic malignancies such as leukemias and lymphomas .
[0080] In an alternate embodiment, the methods of this invention that utilize compositions that do not contain an additional therapeutic agent, comprise the additional step of separately administering to said patient an additional therapeutic agent. When these additional therapeutic agents are administered separately they may be administered to the patient prior to, sequentially with or following administration of the compositions of this invention. [0081] The compounds of this invention or pharmaceutically acceptable compositions thereof may also be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters. Vascular stents, for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury) . However, patients using stents or other implantable devices risk clot formation or platelet activation. These unwanted effects may be prevented or mitigated by pre-coating the device with a pharmaceutically acceptable composition comprising a kinase inhibitor. Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccarides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. Implantable devices coated with a compound of this invention are another embodiment of the present invention.
[0082] In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
Synthetic Examples Example 1. N-phenylguanidine
[0083] Aniline (30 mmol, 1 equiv.), cyanamide (1.3 g, 31 mmol, 1.03 equiv.), and 4N hydrogen chloride in dioxane (8 mL, 32 mmol) was stirred for 10 minutes at room temperature and heated to 80°C for 18 hours. The mixture was diluted with water (30 mL) and diethyl ether (50 mL) . The aqueous layer was washed with ether (30 mL) and the organic layers were discarded. The aqueous layer was neutralized with 6N aqueous HCl (6 mL) and diluted with ethyl acetate (50 mL) . The aqueous layer was extracted with ethyl acetate (50 mL) four times. The combined organic layers were concentrated under reduced pressure to afford a solid compound. The solid was washed with diethyl ether (30 mL) to provide pale yellow title compound. The compound was characterized by LC/MS and HPLC.
[0084] The following arylguanidine intermediates were prepared by the procedure described above in Example 1 except the aniline was replaced with the appropriate arylamine: N- (4-fluoro-phenyl) -guanidine; N- (6-chloro- pyridin-3-yl) -guanidine; N- (3-chloro-phenyl) -guanidine; N- (3-methoxy-phenyl) -guanidine; N- (3-benzyloxy-phenyl) - guanidine; 4-guanidino-benzenesulfonamide; 3-guanidino- benzenesulfonamide .
[0085] The following synthetic intermediates were obtained commercially (from Bionet) : l-[3-phenyl- benzo [c] isoxazol-5-yl] -ethanone; 1- [3- (4-fluoro-phenyl) - benzo [c] isoxazol-5-yl] -ethanone; 1- [3 - (4-chloro-phenyl) - benzo [c] isoxazol-5-yl] -ethanone; 3-dimethylamino-l- (3- phenyl-benzo [c] isoxazol-5-yl) -propenone; 3-dimethylamino- 1- [3- (4-fluoro-phenyl) -benzo [c] isoxazol-5-yl] -propenone; 3-dimethylamino-l- [3- (4-chloro-phenyl) -benzo [c] isoxazol - 5-yl] -propenone; and 1- (4 -nitro-phenyl) -3-dimethylamino- propenone .
Example 2. Phenyl- [4- (3 -phenyl -benzo [c] isoxazol -5 -yl! pyrimidin-2-yl] -amine (Compound I-Al)
Figure imgf000047_0001
[0086] 3-Dimethylamino-l- (5-methyl-3-methylsulfanyl-1- phenyl -IH-pyrazol-4 -yl) -propenone (30 mg, 0.1 mmol) and N-phenylguanidine (15 mg, 1.1 equiv.) were slurried in acetonitrile (0.5 mL) and heated at 100 °C for 24 hours. The mixture was diluted with methanol (2 mL) and heated briefly and cooled. The resulting solid was filtered and washed with methanol (1 mL) . The solid was dried under reduced pressure to afford the title compound. The compound was characterized by LC/MS and HPLC.
Example 3. (4-Fluoro-phenyl) - [4- (3-phenyl- benzo [c] isoxazol-5-yl) -pyrimidin-2-yl] -amine (Compound I-
A2)
Figure imgf000048_0001
[0087] Compound I-A2 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by iV- (4-fluoro-phenyl) - guanidine.
Example 4. (6-Chloro-pyridin-3-yl) - [4- (3-phenyl- benzo [c] isoxazol-5-yl) -pyrimidin-2-yl] -amine (Compound I A3)
Figure imgf000048_0002
[0088] Compound I -A3 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by N- (6-chloro-pyridin-3 - yl) -guanidine.
Example 5. (3-Chloro-phenyl) - [4- (3-phenyl- benzo [c] isoxazol-5-yl) -pyrimidin-2-yl] -amine (Compound I A4)
Figure imgf000049_0001
[0089] Compound I-A4 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by N- (3-chloro-phenyl) - guanidine .
Example 6. 4- [4- (3 -Phenyl -benzo [c] isoxazol -5-yl) - pyrimidin-2 -ylamino] -benzenesulfonamide (Compound I-A19)
Figure imgf000049_0002
[0090] Compound I-A19 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by 4-guanidino- benzenesulfonamide .
Figure imgf000049_0003
Step A. 4- [3- (4-Chlorophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -ylamine .
[0091] To a mixture of sodium pellets (14 mg, 0.609 mmol) in methanol (1 mL) at room temperature, was added guanidine hydrochloride (10 mg, 0.105 mmol) and commercially available 1- [3- (4-chlorophenyl) -benzo [c] isoxazole-5-yl] -3- dimethylamino-propenone (50 mg, 0.153 mmol). The reaction mixture was heated at 80° C for 18 hours. The mixture was cooled to room temperature and diluted with water (6 mL) . The granular precipitate was filtered, dissolved in dichloromethane, then dried over magnesium sulfate. Purification by silica gel chromatography (4:1 ethyl acetate/hexane) gave 4- [3 - (4-chlorophenyl) -benzo [c] isoxazol - 5 -yl] -pyrimidin-2 -ylamine as a yellow solid (35 mg, 98% yield). R NMR (500 MHz, d6-DMSO) δ 8.68 (s, 1H) , 8.35 (d, 1H) , 8.25-8.19 (m, 3H) , 7,82-7.80 (m, 1H) , 7.78-7.72 (m, 2H) , 7.4 (d, 1H) , 6.79 (s, 1H) ppm. LC-MS (ES+) m/e= 323.04 (M+H) .
Step B. N- {4- [3- (4-Chorophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -yl } -acetamide .
[0092] To a suspension of 4- [3- (4-chlorophenyl) - benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine in toluene (1.5 mL) at room temperature, was added acetic anhydride (0.5 mL) . The mixture was heated at 100 °C for 3 hours. The reaction mixture was diluted with water (6 mL) and the precipitate filtered then washed with toluene (2 x 6 mL) . Purification was achieved by silica gel chromatography (4:1 ethyl acetate/hexane then 2% methanol/dichloromethane) , followed by a 5% aqueous sodium bicarbonate wash (1 x 50 mL) to give the title compound as a yellow solid (12 mg, 30% yield) . XH NMR (500 MHz, dg-DMSO) δ 10.62 (s, 1H) , 8.85 (s, 1H) , 8.75 (d, 1H) , 8.31 (d, 1H) , 8.25 (d, 2H) , 8.02 (d, 1H) , 7.85 (d, 1H) , 7.75 (d, 2H) , 2.3 (s, 3H) ppm. LC-MS (ES+) m/e= 365.13 (M+H) .
Example 8. {4- [3- (4-Chlorophenyl) -benzo [c] isoxazol-5-yl] pyrimidin-2 -yl } -methylamine (I-A23) .
Figure imgf000051_0001
[0093] This compound was prepared in an analogous manner to that described in Example 2 using 1-methylguanidine hydrochloride to yield the title compound as a yellow solid
(30 mg, 98% yield). XH NMR (500 MHz, d6-DMSO) δ 8.7 (s, IH) , 8.41 (s, IH) , 8.31-8.2 (m, 3H) , 7.82 (d, IH) , 7.72 (d, 2H) , 7.38 (d, IH) , 7.25-7.2 (m, IH) , 2.95-2.85 (m, 3H) ppm. LC-MS
(ES+) m/e= 337.04 (M+H).
Example 9. 3- (4-Chlorophenyl) -5- (2-morpholin-4-yl-pyrimidin-
Figure imgf000051_0002
[0094] This compound was prepared according to the procedure described in Example 13, Step E, except using morpholinoformamidine hydrobromide to yield 3- (4- chlorophenyl) -5- (2-morpholin-4-yl-pyrimidin-4-yl) - benzo [c] isoxazole as a yellow solid (30 mg, 98% yield) . ""Ή NMR (500 MHz, d6-DMSO) δ 8.7 (S, IH) , 8.5 (d, IH) , 8.3-8.22 (m, 3H) , 7.82 (s, IH) , 7.75 (d, 2H) , 7.55 (d, IH) , 3.85-3.8 (m, 4H) , 3.75-3.68 (m, 4H) ppm. LC-MS (ES+) m/e= 393.13 (M+H) .
Example 10. 4- [3 - (4 -Piperidin-1-yl -phenyl) - benzo [c] isoxazol-5 -yl] pyrimidin-2 -ylamine (I -A32 ]
Figure imgf000052_0001
Step A. 5- (2 -Methyl- [1, 3] dioxolan-2-yl) -3- (4-piperidin- 1 -yl -phenyl ) benzo [c] isoxazole [0095] This compound was prepared in a manner analogous to that described in Example 13, Step B except starting with piperidine and a reaction duration of 2.5 h, giving the title compound, after purification, as a bright yellow solid (174 mg, 69% yield) . XH NMR (500 MHz, CDC13) δ 8.02-7.81 (m, 3H) , 7.53 (d, J=9.25 Hz, IH) , 7.10- 6.92 (m, 2H) , 4.15-3.96 (m, 2H) , 3.94-3.71 (m, 2H) , 3.47- 3.23 (m, 4H) , 1.83-1.60 (m, 9H) . LC-MS (ES+) m/e= 365.19 (M+H) .
Step B. 1- [3- (4 -Piperidin-1-yl -phenyl) -benzo [c] isoxazol - 5 -yl ) ethanone
[0096] This compound was prepared in a manner analogous to that described in Experiment 17, Step C giving the title compound as an orange oil (42.6 mg, 97% yield) . XH NMR (500 MHz, CDC13) δ 8.57-8.47 (m, IH) , 8.01-7.91 (m, 2H) , 7.88 (dd, J=1.5, 9.4 Hz, IH) , 7.55 (dd, 0.85, 9.4 Hz, IH) , 7.08-6.94 (m, 2H) , 3.46-3.30 (m, 4H) , 2.66 (s, 3H) , 1.82-1.59 (m, 6H) . LC-MS (ES+) m/e= 321.1 (M+H) .
Step C. 4- [3- (4-Piperidin-l-yl-phenyl) -benzo [c] isoxazol- 5 -yl] pyrimidin-2 -ylamine (I-A32)
[0097] This compound was prepared in a manner analogous to that described in Experiment 17, Steps D & E giving the title compound as an orange solid (30 mg, 70% yield from 1- [3- (4 -piperidin-1-yl -phenyl) - benzo [c] isoxazol-5-yl) ethanone) . XH NMR (500 MHz, CDC13) δ 8.58 (s, IH) , 8.38 (d, J=5.25 Hz, IH) , 8.06-7.85 (m, 3H) , 7.62 (d, J=9.4 Hz, IH) , 7.16-6.92 (m, 3H) , 5.19-4.91 (br s, 2H) , 3.45-3.25 (m, 4H) , 1.82-1.61 (m, 6H) . HPLC (cyano column) 14.26 min. LC-MS (ES+) m/e= 372.2 (M+H).
Example 11. 4- [3- (3 -Piperidin-1-yl -phenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine (I-A33)
Figure imgf000053_0001
Step A. 3- (3-Bromophenyl) -5- (2 -methyl- [1, 3] dioxolan-2- yl) benzo [c] isoxazole [0098] To a solution of KOH (58g, 1.03mol) in MeOH
(200 mL) at room temperature was added a solution of 2- methyl-2- (4-nitro-phenyl) - [1, 3] dioxolane (10.7g, 0.051 mol) and 3-bromophenylacetonitrile (11.34g, 0.058 mol) in MeOH (100 mL) . The mixture was stirred at room temperature under a stream of nitrogen for 4 days. The product was isolated according to the procedure given in Example 15 Step A (8.5g, 46% yield). XH NMR (500 MHz, CDC13) δ 8.19-8.15 (m, IH) , 7.97 (d, 4.0 Hz, IH) , 7.90 (s, IH) , 7.67-7.59 (m, 2H) , 7.50-7.40 (m, 2H) , 4.15-4.03 (m, 2H) , 1.71 (s, 3H) . LC-MS ES+) m/e= 361.96 (M+H).
Step B. 3-Dimethylamino-l- [3 - (3 -piperidin-1-yl -phenyl) - benzo [c] isoxazol-5-yl] -propanone
[0099] This was prepared according to the procedure described in Example 13 to give the title compound as a brown solid (141 mg, 48% yield from 3- (3-bromophenyl) -5- (2 -methyl- [1, 3] dioxolan-2-yl) benzo [c] isoxazole) . 1H NMR (500 MHz, DMS0-d6) δ 8.50 (s, IH) , 8.09-7.89 (m, IH) , 7.89-7.64 (m, 2H) , 7.63-7.45 (m, 3H) , 7.42-7.13 (m, IH) , 6.01 (d, J=12.2 Hz, IH) , 3.51-3.27 (m, 4H) , 3.26-3.07 (m, 3H) , 3.06-2.80 (m, 3H) , 1.84-1.42 (m, 6H) . LC-MS ES+) m/e= 371.31 (M+H). HPLC (cyano column) 14.13 minutes.
Step C. 4- [3- (3-Piperidin-l-yl-phenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine (I-A33)
[0100] This compound was prepared in a manner analogous to that described in Experiment 17, Step E. The title compound was isolated as a yellow/brown solid (97 mg, 69%). 1H NMR (500 MHz, CDCl3) δ 8.56 (S, IH) , 8.39 (D, J=5.2 Hz, IH) , 7.97 (dd, J=1.3, 9.4 Hz, IH) , 7.69 (d, 9.5 Hz, IH) , 7.63-7.53 (m, IH) , 7.52-7.37 (m, 2H) , 7.17-7.02 (m, 2H) , 5.16 (br s, 2H) , 3.39-3.19 (m, 4H) , 1.86-1.53 (m, 6H) . LC-MS ES+) m/e= 361.96 (M+H). HPLC (cyano column) 12.01 minutes.
Example 12. 4- [4- (4-Nitro-phenyl) -pyrimidin-2 -ylamino] benzenesulfonamide
Figure imgf000054_0001
[0101] 1- (4-Nitro-phenyl) -3-dimethylamino-propenone (3 mmol) and 4 -guanidino-benzenesulfonamide (3.3 mmol) in acetonitrile (1 mL) was refluxed for 36 hours. The mixture was diluted with methanol (5 mL) and cooled to room temperature. The yellow solid was filtered and washed with methanol (3 mL) and dried under reduced pressure to afford title compound. The compound was characterized by LC/MS and HPLC.
Example 13. 4- [3- (4-Morpholin-4-yl- phenyl) benzo [c] isoxazol-5-yl] pyrimidin-2 -yl amine (I-A34)
Figure imgf000055_0001
Step A. 3- (4-Bromo-phenyl) -5- (2-methyl- [1, 3] -dioxolan-2- yl) -benzo [c] isoxazole
[0102] To solution of KOH (28.46 g, 508 mmol) in MeOH (50 mL) at 0-10°C was added a solution of 4- bromophenylacetonitrile (6.32g, 32.2 mmol) and 2-methyl - 2- (4-nitro-phenyl) - [1, 3] -dioxolane (I) (5.35g, 25.6 mmol) in MeOH (15 mL) . The mixture was stirred at room temperature under nitrogen for 18 hours giving a thick slurry. Water (100 mL) was added and the precipitate was filtered, and was washed with water (2 x 75 mL) . The solid was dissolved in hot CH2C12, filtered and evaporated to give a brown solid. Repeated triturations with Et20 gave the product as a bright orange solid (5.19 g, 56% yield). XH NMR (500 MHz, CDC13) δ 7.99-7.68 (m, IH) , 7.79-7.68 (m, 2H) , 7.66-7.54 (m, IH) , 7.52-7.40 (m, IH) , 4.17-4.04 (m, 2H) , 3.92-3.78 (m, 2H) , 1.70 (s, 3H) ppm. LC-MS (ES+) m/e= 361.9 (M+H).
Step B. 5- (2 -Methyl- [1, 3] -dioxolan-2-yl) -3- (4-morpholin- 4 -yl -phenyl) -benzo [c] isoxazole
[0103] A flame dried, argon flushed flask was charged with 3- (4 -bromo-phenyl) -5- (2-methyl- [1, 3] -dioxolan-2-yl) - benzo [c] isoxazole (199.6 mg, 0.56 mmol), Pd(OAc)2 (5 mg, 0.02 mmol), P(tBu)3 (30 μL of 10% solution in toluene, 0.012 mmol), NaOtBu (78.8 mg, 0.82 mmol) and morpholine (150 μL, 1.72 mmol) in' anhydrous toluene (1 mL) . The mixture was heated at 80°C under Argon for 3 hours. The solvent was evaporated, and purification by flash chromatography (Si02) eluting initially with 1:9 EtOAc : hexanes to 3:7 EtOAc :hexanes provided the title compound as bright yellow solid (49 mg, 24% yield) . 1H NMR (500 MHz, CDCl3) δ 7.96 (d, 2H) , 7.91 (s, IH) , 7.55 (d, J=9.35 Hz, J=8.9 Hz, IH) , 7.47-7.34 (m, IH) , 7.04 (d, J=8.95 Hz, 2H) , 4.17-4.01 (m, 2H) , 3.95-3.76 (m, 6H) , 3.31 (t, J=5 Hz, 4H) , 1.7 (s, 3H) . HPLC (cyano column) 8.61 minutes
Step C. 1- [3- (4 -Morpholin-4-yl -phenyl) benzo [c] isoxazol-5- yl] ethanone
[0104] A solution of 5- (2-methyl- [1 , 3] -dioxolan-2-yl) - 3- (4 -morpholin-4-yl -phenyl) -benzo [c] isoxazole (37 mg, 0.10 mmol) in formic acid (88% solution, 1.5 mL) was stirred at room temperature for 70 minutes. The formic acid was removed in vacuo, and the resultant solid was dissolved in CH2C12, dried over sodium sulfate, filtered and evaporated to give the product as an orange solid (1.42g, 87% yield). XH NMR (500 MHz, DMSO-d6) δ 8.51 (s, IH) , 7.99 (d, J=8.9 Hz, 2H) , 7.88 (d, J=1.0 Hz, IH) , 7.58 (d, 9.4 Hz, IH) , 3.90 (t, J=4.8 Hz, 4H) , 3.35 (t, J=5.0 Hz, 4H) , 2.66 (s, 3H) . LC-MS (ES+) m/e= 323.09 (M+H).
Step D. 3-Dimethylamino-l- [3- (4-morpholino-4-yl-phenyl) - benzo [c] isoxazol-5 -yl] propenone
[0105] A solution of 1- [3- (4 -morpholin-4-yl -phenyl) benzo [c] isoxazol-5-yl] ethanone (25 mg, 0.08 mmol) in DMF (2.5 mL) was treated with DMF-DMA (50 μL, 0.37 mmol) and was heated at 90°C for 36 hours and for 100°C for a further lδhours. The solvent was evaporated to give the crude product as brown oil (35.2 mg) which was used directly in the next step without purification. LC-MS
(ES+) m/e= 378.2 (M+H) .
Step E. 4- [3- (4 -Morpholin-4-yl -phenyl) benzo [c] isoxazol-5- yl] pyrimidin-2 -yl amine (I-A34) [0106] To a solution of sodium (spheres, 25 mg, 1.08 mmol) in MeOH (0.7 mL) at room temperature under nitrogen was added guanidine hydrochloride (10 mg, 0.105 mmol) and a solution of 3-dimethylamino-l- [3- (4 -morpholino-4-yl - phenyl) -benzo [c] isoxazol -5 -yl] propenone (0.08 mmol) in MeOH (1.5 mL) and the reaction was heated to 90°C for 18 hours. The resulting precipitate was filtered to give the product as an orange solid (25 mg, 84% yield) . 1H NMR (500 MHz, DMSO-d6) δ 8.61 (s, IH) , 8.33 (d, IH) , 7.98- 8.10 ( , 3H) , 7.23-6.98 (m, 3H) , 3.96-3.75 (m, 4H) , 3.43- 3.30 (m, 4H) , 2.62-2.49 (m, 2H) . LC-MS (ES+) m/e= 374.18 (M+H), HPLC (cyano column) 9.42 minutes.
Example 14. 4- {4- [3- (3 , 4-Dimethoxy-phenyl) benzo [c] isoxazol-5-yl] -pyrimidin-2-ylamino} benzenesulfonamide (Compound I -A35)
Figure imgf000057_0001
[0107] A mixture of 4- [ (4- (4-Nitro-phenyl) -pyrimidin- 2 -ylamino] -benzenesulfonamide (0.2 mmol) and 3,4- dimethoxy-phenylacetonitrile (0.4 mmol) in dimethyl sulfoxide (2 mL) was treated with 20% sodium ethoxide in ethanol (0.5 mL) at ice bath temperature. The mixture was stirred at room temperature for 18 hours and diluted with methanol (2 mL) . Solid was collected and redissolved in methanol (3 mL) and heated 10 minutes at 80 °C and cooled to room temperature. The solid was recrystallized twice in methanol to afford yellow title compound. The compound was characterized by LC/MS and HPLC.
Example 15. 4- [3- (4-Bromophenyl) -benzo [c] isoxazol-5-yl] pyrimidin-2 -ylamine (I -A36) .
Figure imgf000058_0001
Step A. 1- [3- (4-Bromophenyl) -benzo [c] isoxazol-5-yl] - ethanone
[0108] A solution of 3- (4 -bromo-phenyl) -5- (2-methyl-
[1 , 3] -dioxolan-2-yl) -benzo [c] isoxazole (Example 1, Step
A) (2.13 g, 5.93 mmol) in formic acid (88% solution, 50 ml) was stirred at room temperature for 30 minutes, affording a thick yellow precipitate. The formic acid was removed in vacuo, and the resultant solid was dissolved in CH2C12, dried over sodium sulfate, filtered and evaporated to give the product as an orange solid (1.42 g, 76% yield). XH NMR (500 MHz, CDC13) δ 8.47 (s, IH) , 8.04-7.85 (m, 3H) , 7.85-7.71 (m, 2H) , 7.72-7.57 (m, IH) , 2.68 (s, 3H) . HPLC (cyano column) 17.68 minutes
Step B. 1- [3 - (4 -Bromo-phenyl) -benzo [c] isoxazol-5-yl] -3 - dimethylamino-propenone [0109] This compound was prepared from [3- (4- bromophenyl) -benzo [c] isoxazol-5-yl] -ethanone in an analogous manner to Experiment 15, Step D except that the reaction duration was 18 hours. The product was isolated as a brown solid and was used in the next step without purification (1.61 g, 97% yield). XH NMR (500 MHz, CDC13) d 8.84 (s, IH) , 7.98-7.79 (m, 4H) , 7.77-7.67 (m, 2H) , 7.66-7.51 (m, IH) , 5.67 (d, J=12.2 Hz, IH) , 3.31-2.78 (m, 6H) .
Step C. 4- [3- (4-Bromophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -ylamine
[0110] This compound was prepared in an analogous manner to 4- [3- (4-chlorophenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2- ylamine (see Example 13) . Purification was achieved by trituration with dichloromethane to yield 4- [3- (4- bromophenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine as a yellow solid (559 mg, 49% yield) . 1H NMR (500 MHz, d6- DMSO) δ 8.67 (s, IH) , 8.36 (d, IH) , 8.2-8.13 (m, 3H) , 7.88 (d, 2H) , 7.82 (d, IH) , 7.39 (d, IH) , 6.78 (s, IH) ppm. LC-MS (ES+) m/e= 367 (M+H) .
Example 16. 3- [4- (3 -Phenyl-benzo [c] isoxazol-5-yl) - pyrimidin-2 -ylamino] -benzenesulfonamide (Compound I -A37)
Figure imgf000059_0001
[0111] Compound I -A37 was prepared according to the procedure described above in Example 2 except that N- phenylguanidine was replaced by 3-guanidino- benzenesulfonamide . Example 17. N- (4- {3 - [3- (2 , 5-Dimethoxy-pyrimidin-4-yl) - phenyl] -benzo [c] isoxazol-5-yl } -pyrimidin-2 -yl) -acetami de (Compound I-A50) .
Figure imgf000060_0001
Step A: N- {4- [3- (3-Bromophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -yl } -acetamide [0112] Compound I-A50 was prepared according to the procedure described as above in Example 7 step B utilizing 4- [3 - (3-bromophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -ylamine instead of 4- [3- (4 -Chlorophenyl) - benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine . Material was isolated, by removal of the solvent under reduced pressure and trituration with dichloromethane, as a yellow powder (430 mg, 77% yield) . XH NMR (500 MHz TFA-d) δ 9.15 (s, IH) , 8.85 (d, IH) , 8.41 (d, IH) , 8.38 (s, IH) , 8.32 (d, IH) , 8.17 (d, IH) , 8.05 (d, IH) , 7.94 (d, IH) , 7.64 (dd, IH) , 2.67 (s, 3H) in ppm. LC-MS (ES+) m/e=409 (M+H) .
Step B: N- (4- {3- [3- (2 , 5-Dimethoxy-pyrimidin-4-yl) - phenyl] -benzo [c] isoxazol-5-yl } -pyrimidin-2-yl) -acetamide [0113] A flask was charged with N-{4-[3-(3- bromophenyl) -benzo [c] isoxazol-5-yl] -pyrimidin-2-yl } - acetamide (100 mg, 0.272 mmol), cesium carbonate (97.7 mg, 0.328 mmol), and 2 , 5-dimethoxypyrimidine-6-boronic acid (55.0 mg, 0.3 mmol) . The flask was evacuated and back-filled with nitrogen 5-7 times before adding 5 mL of degassed p-dioxane and 1 mL of degassed DMF. To this stirring solution/suspension was added, 125 μL of a 10% w/v benzene solution of tri- tertbutylphosphine followed by the addition of Pd2 (dba) 3 (25 mg, 0.0272 mmol) slurred in 1 mL of degassed DMF. The reaction was stirred under nitrogen atmosphere, at 80 °C. Reaction was followed by HPLC and deemed to be complete in 4 hours. The reaction mixture was suction filtered hot through a pad of diatomaceous earth and washed the precipitate with DMF and acetonitrile. The filtrate was reduced to an oil under reduced pressure and the crude material purified via HPLC utilizing acetonitrile/water/TFA as the eluent. The material was isolated as a bright yellow powder (15 mg, 13% yield) . XH NMR (500 MHz DMSO-d6) δ 8.93 (s, IH) , 8.6 (s, IH) , 8.31 (s, IH) , 8.29 (d, IH) , 8.25 (d, IH) , 8.07 (d, IH) , 7.87 (d, IH) , 7.81 (d, IH) , 7.77 (m, IH) , 4.02 (2 close sing, 6H) in ppm. LC-MS (ES+) m/e=469 (M+H)
Example 18. {4- [3- (3-Bromo-phenyl) -benzo [c] isoxazol-5-yl] pyrimidin-2 -yl } -carbamic acid ethyl ester (Compound I- A55) .
Figure imgf000061_0001
[0114] To a stirring solution of 4- [3- (3-bromophenyl) - benzo [c] isoxazol-5-yl] -pyrimidin-2 -ylamine (75 mg; 0.205 mmol) in 1 mL of p-dioxane and 0.5 mL of DMSO, was added
40 μL (45.6 mg, 0.42 mmol) of ethyl chloroformate followed by 73μL (54.3 mg, 0.42 mmol) of diisopropylethylamine . The reaction was stirred at 50 °C, in a sealed vessel, for 8 hours. The solvents were removed under vacuo and the crude material was purified via HPLC with acetonitrile/water/TFA as the eluent. The material was isolated as a yellow powder (30 mg, 32% yield). K NMR (500 MHz, DMSO-d6) δ 10.5 (br S,1H), 8.9 (s, IH) , 8.75 (d, IH) , 8.35 (m, 3H) , 8.3(s, IH) , 8.0 (d, IH) , 7.89 (t, 2H) , 7.65 (t, IH) , 4.2 (q, 2H) , 1.26 (t, 3H) in ppm. LC-MS (ES+) m/e=439/441 (M+H)
Example 19. Thiophene-2 -carboxylic acid {4- [3- (3-bromo- phenyl) -benzo [c] isoxazol- 5-yl] -pyrimidin-2 -yl } -amide (Compound I -A 56)
Figure imgf000062_0001
[0115] 4- [3- (3-bromophenyl) -benzo [c] isoxazol-5-yl] - pyrimidin-2 -ylamine (100 mg; 0.272 mmol) was dissolved in 3 mL of a mixture (2:1) of dry DMF/THF and stirred under a nitrogen atmosphere at ambient temperature. Sodium hydride (15 mg, 0.375 mmol, 60% oil dispersion) was added To the reaction and stirred for 30 minutes. Thiophenecarbonylchloride (32 μL; 43.7 mg; 0.299 mmol) in 500 μL of dry DMF was added dropwise over 2 minutes and the reaction was stirred for 18 hours at ambient temperature . Workup was affected by removing the solvents under reduced pressure and the resulting residue was triturated with methyl tertbutyl ether. The crude solid was purified via silica column chromatography with 5% ethanol in methylenechloride to yield 32 mg of a tan powder; 24% yield. XH NMR (500 MHz, DMS0-d6) δ 11.2 (s, IH) , 8.92 (s, IH) , 8.88 (d, IH) , 8.39 (d, IH) , 8.35 (s, IH) , 8.3 (d, IH) , 8.23 (d, , IH) , 8.15 (d, IH) , 7.95 (d, IH) , 7.9 (d, IH) , 7.87 (d, IH) , 7.65 (t, IH) , 7.24 (t, IH) in ppm. LC-MS (ES+) m/e=477/479 (M+H) .
Biological Methods IC50 Determination for the Inhibition of GSK-3
[0116] Compounds were screened for their ability to inhibit GSK-3β (Amino Acids 1-420) activity using a standard coupled enzyme system (Fox et al . (1998) Protein Sci . 7, 2249) . Reactions were carried out in a solution containing 100 mM HEPES (pH 7.5), 10 mM MgCl2/ 25 mM NaCl , 300 μM NADH, 1 mM DTT and 1.5% DMSO. Final substrate concentrations in the assay were 10 μM ATP (Sigma Chemicals, St Louis, MO) and 300 μM peptide (HSSPHQS (P03H2)EDEEE, American Peptide, Sunnyvale, CA) . Reactions were carried out at 30 °C and 60 nM GSK-3β. Final concentrations of the components of the coupled enzyme system were 2.5 mM phosphoenolpyruvate, 300 μM NADH, 30 μg/ml pyruvate kinase and 10 μg/ml lactate dehydrogenase . [0117] An assay stock buffer solution was prepared containing all of the reagents listed above with the exception of ATP and the test compound of interest. 59 μl of the test reaction was placed in a 96 well 1/2 diameter plate (Corning, Corning, NY) then treated with 1 μl of a 2 mM DMSO stock containing the test compound (final compound concentration 30 μM) . The plate was incubated for about 10 minutes at 30 °C then the reaction initiated by addition of 7 μl of ATP (final concentration 10 μM) . Rates of reaction were obtained using a Molecular Devices Spectramax plate reader (Sunnyvale, CA) over a 5 minute read time at 30 °C. Compounds showing greater than 50% inhibition versus standard wells containing DMSO, but no compound, were titrated and IC50 values were determined using a similar protocol in standard 96 well plates with the assay scaled to a final volume of 200 μl . [0118] In the GSK-3 inhibition assay described above, many of the compounds of this invention that were tested were found to provide an IC50 value below one micromolar.
Kj Determination for the Inhibition of GSK-3 [0119] Compounds were screened for their ability to inhibit GSK-3β (Amino Acids 1-420) activity using a standard coupled enzyme system (Fox et al . (1998) Protein Sci . 1 , 2249) . Reactions were carried out in a solution containing 100 mM HEPES (pH 7.5), 10 mM MgCl2, 25 mM NaCl , 300 μM NADH, 1 mM DTT and 1.5% DMSO. Final substrate concentrations in the assay were 20 μM ATP (Sigma Chemicals, St Louis, MO) and 300 μM peptide (HSSPHQS (P03H2) EDEEE, American Peptide, Sunnyvale, CA) . Reactions were carried out at 30°C and 20 nM GSK-3β. Final concentrations of the components of the coupled enzyme system were 2.5 mM phosphoenolpyruvate, 300 μM NADH, 30 μg/ml pyruvate kinase and 10 μg/ml lactate dehydrogenase .
[0120] An assay stock buffer solution was prepared containing all of the reagents listed above with the exception of ATP and the test compound of interest. The assay stock buffer solution (175 μl) was incubated in a 96 well plate with 5 μl of the test compound of interest at final concentrations spanning 0.002 μM to 30 μM at 30°C for 10 minutes. Typically, a 12 point titration was conducted by preparing serial dilutions (from 10 mM compound stocks) with DMSO of the test compounds in daughter plates. The reaction was initiated by the addition of 20 μl of ATP (final concentration 20 μM) . Rates of reaction were obtained using a Molecular Devices Spectramax plate reader (Sunnyvale, CA) over 10 min at 30 °C . The Ki values were determined from the rate data as a function of inhibitor concentration.
[0121] In the GSK-3 inhibition assay described above, many of the compounds of this invention that were tested were found to provide a Ki value below one micromolar.
JAK Inhibition Assay
[0122] Compound inhibition of JAK were assayed by the method described by G. R. Brown, et al , Bioorg. Med . Chem . Lett . 2000, vol. 10, pp 575-579 in the following manner. Into Maxisorb plates, previously coated at 4°C with Poly (Glu, Ala, Tyr) 6:3:1 then washed with phosphate buffered saline 0.05% and Tween (PBST) , was added 2 μM ATP, 5 mM MgCl2, and a solution of compound in DMSO. The reaction was started with JAK enzyme and the plates incubated for 60 minutes at 30°C. The plates were then washed with PBST, 100 μL HRP-Conjugated 4G10 antibody was added, and the plate incubated for 90 minutes at 30°C. The plate was again washed with PBST, 100 μL TMB solution is added, and the plates were incubated for another 30 minutes at 30°C. Sulfuric acid (100 μL of 1M) was added to stop the reaction and the plate is read at 450 nm to obtain the optical densities for analysis to determine IC50 values.
[0123] While we have described a number of embodiments of this invention, it is apparent that our basic examples may be altered to provide other embodiments which utilize the compounds and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims rather than by the specific embodiments which have been represented by way of example.

Claims

Claims :
1. A compound of formula I :
Figure imgf000067_0001
or a pharmaceutically acceptable derivative or prodrug thereof, wherein:
A-B is N-0 or O-N;
Ar is an optionally substituted C5-ι0 aryl group;
T is a Cι-4 alkylidene chain wherein one or two methylene units of T are optionally and independently replaced by
O, NR, S, C(O), C(0)NR, NRC(0)NR, S02, S02NR, NRS02 ,
NRS02NR, C02, OC(O), NRC02 , or OC(0)NR; n is zero or one; R1 is hydrogen or an optionally substituted group selected from Ci-io aliphatic, C5_ιo aryl, C6-i2 aralkyl, C30 heterocyclyl , or C4-ι2 heterocyclylalkyl ; each R2 is independently selected from R, halo, CN, OR,
N(R)2, SR, C(=0)R, C02R, CONR2, NRC(=0)R, NRC02 (Ci-g aliphatic), OC(=0)R, S02R, S(=0)R, S02NR2, or NRS02 (Cι-6 aliphatic) ; each R3 is independently selected from R, halo, CN, OR,
N(R)2, SR, C(=0)R, C02R, CONR2, NRC(=0)R, NRC02 (Cι-6 aliphatic), OC(=0)R, S02R, S(=0)R, S02NR2, or NRS02(C1-6 aliphatic) ; and each R is independently selected from hydrogen, a Cι_8 aliphatic group, or two R on the same nitrogen are taken together with the nitrogen to form a 4-8 membered heterocyclic ring having 1-3 heteroatoms selected from nitrogen, oxygen or sulfur.
2. The compound of claim 1 wherein the compound is a 2 , 1-benzisoxazole .
3. The compounds of claim 2 wherein each R2 is independently hydrogen or a Cι-4 alkyl group and each R3 is independently selected from hydrogen, halo -0(Cι-4 alkyl), or Cι-4 alkyl .
4. The compound of claim 3 wherein Ar is a substituted or unsubstituted five or six-membered aromatic ring having zero to two heteroatoms selected from nitrogen, sulfur, and oxygen.
5. The compound of claim 4 wherein Ar is a substituted or unsubstituted six-membered aromatic ring having zero to two ring nitrogen atoms .
6. The compound of claim 5 wherein Ar is a phenyl ring optionally substituted by one or more substituents independently selected from C1-10 aliphatic, C5-ιo aryl, C6-12 aralkyl, C3-ι0 heterocyclyl , C4-i2 heterocyclylalkyl, halo, CN, OR, N(R)2/ SR, C(=0)R, C02R, CONR2, NRC(=0)R, NRC02 (Cι-6 aliphatic) , OC(=0)R, S02R, S(=0)R, S02NR2, or NRS02 (Cι_6 aliphatic) , or two substituents on adjacent positions are optionally taken together with their intervening atoms to form a fused 5-8 membered unsaturated or partially unsaturated ring having zero to two heteroatoms selected from nitrogen, oxygen or sulfur.
7. The compound of claim 6 wherein R1 is a phenyl or pyridyl ring optionally substituted with halogen, -R, -OR, -OH, -SH, -SR, protected OH, -N02; -CN, -NH2, -NHR, -N(R)2, -NHCOR, -NHCONHR, -NHCON(R)2, -NRCOR, -NHC02R, -C02R, -C02H, -COR, -CONHR, -CON(R)2, -S(0)2R, - S02NH2/ -S(0)R, -S02NHR, or -NHS(0)2R, wherein R is an aliphatic group or a substituted aliphatic group having one to three carbons .
8. The compound of claim 7 wherein R1 is substituted by -S02NH2 or -S02NHR.
9. The compound of claim 1 wherein the compound is selected from any one of the following:
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000083_0001
10. A composition comprising a compound according to claim 1 in an amount to detectably inhibit GSK-3 or JAK protein kinase activity, and a pharmaceutically acceptable carrier, adjuvant or vehicle
11. The composition according to claim 10, additionally comprising an additional therapeutic agent selected from an a chemotherapeutic or anti -proliferative agent, a treatment for Alzheimer's Disease, a treatment for Parkinson's Disease, an agent for treating Multiple Sclerosis (MS) , a treatment for asthma, an anti- inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating liver disease, an agent for treating a blood disorder, or an agent for treating an immunodeficiency disorder.
12. A method of inhibiting GSK-3 or JAK kinase activity in a biological sample, comprising the step of contacting said biological sample with: a) a composition according to claim 10; or b) a compound according to claim 1.
13. A method of treating or lessening the severity of a GSK-3- or JAK-mediated disease or condition in a patient, comprising the step of administering to said patient : a) a composition according to claim 10; or b) a compound according to claim 1.
14. The method according to claim 13, wherein said GSK-3 -mediated disease is selected from diabetes, Alzheimer's disease, Huntington's disease, Parkinson's, AIDS-associated dementia, amyotrophic lateral sclerosis
(AML) , multiple sclerosis (MS) , schizophrenia, cardiomycete hypertrophy, ischemia/reperfusion and baldness .
15. The method according to claim 13, wherein said JAK-mediated disease is selected from an immune response, an autoimmune disease, a neurodegenerative disease, or a solid or hematologic malignancy.
16. The method according to claim 15, wherein said JAK-mediated disease is selected from an allergic or type I hypersensitivity reaction, asthma, transplant rejection, graft versus host disease, rheumatoid arthritis, amyotrophic lateral sclerosis, multiple - 85 -
20. A composition for coating an implantable device comprising a compound according to claim 1 and a carrier suitable for coating said implantable device.
21. An implantable device coated with a composition according to claim 20.
PCT/US2002/019186 2001-06-15 2002-06-14 5-(2-aminopyrimidin-4-yl) benzisoxazoles as protein kinase inhibitors WO2002102800A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP02744399A EP1399440B1 (en) 2001-06-15 2002-06-14 5-(2-aminopyrimidin-4-yl)benzisoxazoles as protein kinase inhibitors
DE60232510T DE60232510D1 (en) 2001-06-15 2002-06-14 5- (2-AMINOPYRIMIDIN-4-YL) BENZOXOXOLEA AS PROTEIN KINASE INHIBITOR
AT02744399T ATE432929T1 (en) 2001-06-15 2002-06-14 5-(2-AMINOPYRIMIDINE-4-YL)BENZISOXAZOLE AS A PROTEIN KINASE INHIBITOR
JP2003506273A JP4541695B2 (en) 2001-06-15 2002-06-14 5- (2-Aminopyrimidin-4-yl) benzisoxazole as a protein kinase inhibitor
MXPA03011652A MXPA03011652A (en) 2001-06-15 2002-06-14 5-(2-aminopyrimidin-4-yl) benzisoxazoles as protein kinase inhibitors.
CA002450769A CA2450769A1 (en) 2001-06-15 2002-06-14 5-(2-aminopyrimidin-4-yl) benzisoxazoles as protein kinase inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29864601P 2001-06-15 2001-06-15
US60/298,646 2001-06-15

Publications (2)

Publication Number Publication Date
WO2002102800A1 true WO2002102800A1 (en) 2002-12-27
WO2002102800A9 WO2002102800A9 (en) 2004-05-06

Family

ID=23151418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/019186 WO2002102800A1 (en) 2001-06-15 2002-06-14 5-(2-aminopyrimidin-4-yl) benzisoxazoles as protein kinase inhibitors

Country Status (8)

Country Link
US (2) US6825190B2 (en)
EP (1) EP1399440B1 (en)
JP (2) JP4541695B2 (en)
AT (1) ATE432929T1 (en)
CA (1) CA2450769A1 (en)
DE (1) DE60232510D1 (en)
MX (1) MXPA03011652A (en)
WO (1) WO2002102800A1 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041814A1 (en) * 2002-11-04 2004-05-21 Vertex Pharmaceuticals Incorporated Heteroaryl-pyramidine derivatives as jak inhibitors
WO2004058749A1 (en) * 2002-12-18 2004-07-15 Vertex Pharmaceuticals Incorporated Benzisoxazole derivatives useful as inhibitors of protein kinases
WO2005028475A2 (en) * 2003-09-04 2005-03-31 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of protein kinases
WO2005063251A1 (en) * 2003-12-17 2005-07-14 Pfizer Products Inc. Modified stent useful for delivery of drugs along stent strut
WO2007098507A2 (en) 2006-02-24 2007-08-30 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
JP2008515986A (en) * 2004-10-13 2008-05-15 ワイス N-benzenesulfonyl substituted anilino-pyrimidine analogues
JP2008526692A (en) * 2004-12-31 2008-07-24 ▲飄▼▲揚▼ ▲孫▼ Preparation method of aminopyrimidines and salts thereof and use of drugs
US7491732B2 (en) 2005-06-08 2009-02-17 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US7655797B2 (en) 2002-02-01 2010-02-02 Rigel Pharmaceuticals, Inc. Intermediates for making 2,4-pyrimidinediamine compounds
JP2010508363A (en) * 2006-11-01 2010-03-18 バーテックス ファーマシューティカルズ インコーポレイテッド Tricyclic heteroaryl compounds useful as inhibitors of Janus kinase
US7812029B1 (en) 2002-07-29 2010-10-12 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US8138339B2 (en) 2008-04-16 2012-03-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
WO2012061428A2 (en) 2010-11-01 2012-05-10 Portola Pharmaceuticals, Inc. Nicotinamides as jak kinase modulators
US8178671B2 (en) 2003-07-30 2012-05-15 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2, 4-pyrimidinediamine compounds
US8258144B2 (en) 2008-04-22 2012-09-04 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8309566B2 (en) 2008-02-15 2012-11-13 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
US8334292B1 (en) 2010-06-14 2012-12-18 Cystic Fibrosis Foundation Therapeutics, Inc. Pyrimidine compounds and methods of making and using same
US8513242B2 (en) 2008-12-12 2013-08-20 Cystic Fibrosis Foundation Therapeutics, Inc. Pyrimidine compounds and methods of making and using same
EP2671885A1 (en) * 2012-06-05 2013-12-11 Ares Trading S.A. Imidazo-oxadiazole and Imidazo-thiadiazole derivatives
WO2014063068A1 (en) * 2012-10-18 2014-04-24 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (cdk7)
US8952027B2 (en) 2008-04-16 2015-02-10 Portola Pharmaceuticals, Inc. Inhibitors of syk and JAK protein kinases
US8987311B2 (en) 2012-01-13 2015-03-24 Bristol-Myers Squibb Company Triazolyl-substituted pyridyl compounds useful as kinase inhibitors
US9169252B2 (en) 2014-01-03 2015-10-27 Bristol-Myers Squibb Company Heteroaryl substituted nicotinamide compounds
US9180127B2 (en) 2009-12-29 2015-11-10 Dana-Farber Cancer Institute, Inc. Type II Raf kinase inhibitors
US9242975B2 (en) 2012-01-13 2016-01-26 Bristol-Myers Squibb Company Heterocyclic-substituted pyridyl compounds useful as kinase inhibitors
US9242976B2 (en) 2012-01-13 2016-01-26 Bristol-Myers Squibb Company Thiazolyl- or thiadiazolyl-substituted pyridyl compounds useful as kinase inhibitors
US9359308B2 (en) 2011-11-23 2016-06-07 Portola Pharmaceuticals, Inc. Pyrazine kinase inhibitors
US9382239B2 (en) 2011-11-17 2016-07-05 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
US9505784B2 (en) 2009-06-12 2016-11-29 Dana-Farber Cancer Institute, Inc. Fused 2-aminothiazole compounds
US9546153B2 (en) 2012-11-08 2017-01-17 Bristol-Myers Squibb Company Bicyclic heterocycle substituted pyridyl compounds useful as kinase modulators
US9593082B2 (en) 2005-06-08 2017-03-14 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US9611283B1 (en) 2013-04-10 2017-04-04 Ariad Pharmaceuticals, Inc. Methods for inhibiting cell proliferation in ALK-driven cancers
US9657009B2 (en) 2012-11-08 2017-05-23 Bristol-Myers Squibb Company Heteroaryl substituted pyridyl compounds useful as kinase modulators
KR101746199B1 (en) 2016-07-04 2017-06-13 기초과학연구원 GSK3 Nitrogen-Containing Heteroaryl Derivatives and Their Use as GSK3 Inhibitors
US9676756B2 (en) 2012-10-08 2017-06-13 Portola Pharmaceuticals, Inc. Substituted pyrimidinyl kinase inhibitors
US9758522B2 (en) 2012-10-19 2017-09-12 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged small molecules as inducers of protein degradation
US9834518B2 (en) 2011-05-04 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9834571B2 (en) 2012-05-05 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9862688B2 (en) 2014-04-23 2018-01-09 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged janus kinase inhibitors and uses thereof
US10000483B2 (en) 2012-10-19 2018-06-19 Dana-Farber Cancer Institute, Inc. Bone marrow on X chromosome kinase (BMX) inhibitors and uses thereof
US10017477B2 (en) 2014-04-23 2018-07-10 Dana-Farber Cancer Institute, Inc. Janus kinase inhibitors and uses thereof
US10059690B2 (en) 2014-04-04 2018-08-28 Syros Pharmaceuticals, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10202390B2 (en) 2015-06-24 2019-02-12 Bristol-Myers Squibb Company Heteroaryl substituted aminopyridine compounds
US10294229B2 (en) 2015-06-24 2019-05-21 Bristol-Myers Squibb Company Heteroaryl substituted aminopyridine compounds
US10550121B2 (en) 2015-03-27 2020-02-04 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US10577381B2 (en) 2005-01-19 2020-03-03 Rigel Pharmaceuticals, Inc. Prodrugs of 2,4-pyrimidinediamine compounds and their uses
US10618903B2 (en) 2015-06-24 2020-04-14 Bristol-Myers Squibb Company Heteroaryl substituted aminopyridine compounds
US10702527B2 (en) 2015-06-12 2020-07-07 Dana-Farber Cancer Institute, Inc. Combination therapy of transcription inhibitors and kinase inhibitors
US10829496B2 (en) 2017-05-11 2020-11-10 Bristol-Myers Squibb Company Thienopyridines and benzothiophenes useful as IRAK4 inhibitors
US10870651B2 (en) 2014-12-23 2020-12-22 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10906889B2 (en) 2013-10-18 2021-02-02 Dana-Farber Cancer Institute, Inc. Polycyclic inhibitors of cyclin-dependent kinase 7 (CDK7)
US11040957B2 (en) 2013-10-18 2021-06-22 Dana-Farber Cancer Institute, Inc. Heteroaromatic compounds useful for the treatment of proliferative diseases
US11142507B2 (en) 2015-09-09 2021-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL154817A0 (en) * 2000-09-15 2003-10-31 Vertex Pharma Pyrazole derivatives and pharmaceutical compositions containing the same
US6660731B2 (en) * 2000-09-15 2003-12-09 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US7473691B2 (en) * 2000-09-15 2009-01-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
ES2272567T3 (en) * 2000-12-21 2007-05-01 Vertex Pharmaceuticals Incorporated PIRAZOL COMPOUNDS USED AS PROTEIN KINASE INHIBITORS.
WO2002060492A1 (en) * 2001-01-30 2002-08-08 Cytopia Pty Ltd Methods of inhibiting kinases
US6825190B2 (en) * 2001-06-15 2004-11-30 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
MXPA04007697A (en) * 2002-02-06 2004-11-10 Vertex Pharma Heteroaryl compounds useful as inhibitors of gsk-3.
US20040009981A1 (en) * 2002-03-15 2004-01-15 David Bebbington Compositions useful as inhibitors of protein kinases
MY141867A (en) 2002-06-20 2010-07-16 Vertex Pharma Substituted pyrimidines useful as protein kinase inhibitors
WO2004013140A1 (en) * 2002-08-02 2004-02-12 Vertex Pharmaceuticals Incorporated Pyrazole compositions useful as inhibitors of gsk-3
WO2004072029A2 (en) * 2003-02-06 2004-08-26 Vertex Pharmaceuticals Incorporated Pyrazolopyridazines useful as inhibitors of protein kinases
EP1694671A2 (en) * 2003-12-04 2006-08-30 Vertex Pharmaceuticals Incorporated Quinoxalines useful as inhibitors of protein kinases
WO2006055831A2 (en) 2004-11-17 2006-05-26 Miikana Therapeutics, Inc. Kinase inhibitors
AU2006279376B2 (en) * 2005-08-18 2011-04-14 Vertex Pharmaceuticals Incoporated Pyrazine kinase inhibitors
AU2006297120B2 (en) * 2005-09-30 2011-05-19 Miikana Therapeutics, Inc. Substituted pyrazole compounds
AR056763A1 (en) * 2005-11-03 2007-10-24 Vertex Pharma AMINOPIRIMIDINES REPLACED WITH TIAZOL OR PIRAZOL, USEFUL AS ANTICANCER AGENTS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
CA2636189A1 (en) 2006-01-17 2007-07-26 Vertex Pharmaceuticals Incorporated Azaindoles useful as inhibitors of janus kinases
AU2007317435A1 (en) * 2006-11-02 2008-05-15 Vertex Pharmaceuticals Incorporated Aminopyridines and aminopyrimidines useful as inhibitors of protein kinases
EP2101819B1 (en) 2006-11-20 2013-01-09 President and Fellows of Harvard College Methods, compositions, and kits for treating pain and pruritis
MX2009006690A (en) * 2006-12-19 2009-07-31 Vertex Pharma Aminopyrimidines useful as inhibitors of protein kinases.
CA2673472A1 (en) * 2006-12-21 2008-07-03 Vertex Pharmaceuticals Incorporated 5-cyan0-4- (pyrrolo) [2, 3b] pyridine-3-yl) -pyrimidine derivatives useful as protein kinase inhibitors
CN101663295B (en) * 2007-03-09 2014-11-05 沃泰克斯药物股份有限公司 Aminopyrimidines useful as inhibitors of protein kinases
CA2679701A1 (en) * 2007-03-09 2008-09-18 Vertex Pharmaceuticals Incorporated Aminopyridines useful as inhibitors of protein kinases
JP5393489B2 (en) * 2007-03-09 2014-01-22 バーテックス ファーマシューティカルズ インコーポレイテッド Aminopyrimidines useful as inhibitors of protein kinases
MX2009011059A (en) 2007-04-13 2009-11-26 Vertex Pharma Aminopyrimidines useful as kinase inhibitors.
AU2008247594A1 (en) * 2007-05-02 2008-11-13 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
JP5389785B2 (en) * 2007-05-02 2014-01-15 バーテックス ファーマシューティカルズ インコーポレイテッド Thiazoles and pyrazoles useful as kinase inhibitors
JP5572087B2 (en) * 2007-05-02 2014-08-13 バーテックス ファーマシューティカルズ インコーポレイテッド Aminopyrimidines useful as kinase inhibitors
CN101687852A (en) * 2007-05-24 2010-03-31 沃泰克斯药物股份有限公司 Thiazoles and pyrazoles useful as kinase inhibitors
AU2008262291A1 (en) * 2007-06-11 2008-12-18 Miikana Therapeutics, Inc. Substituted pyrazole compounds
ES2400104T3 (en) * 2007-07-31 2013-04-05 Vertex Pharmaceuticals Incorporated Process for preparation of 5-fluoro-1H-pyrazolo [3,4-b] pyridin-3-amine and derivatives thereof
EP2262498A2 (en) * 2008-03-10 2010-12-22 Vertex Pharmceuticals Incorporated Pyrimidines and pyridines useful as inhibitors of protein kinases
US9273077B2 (en) 2008-05-21 2016-03-01 Ariad Pharmaceuticals, Inc. Phosphorus derivatives as kinase inhibitors
EA029131B1 (en) 2008-05-21 2018-02-28 Ариад Фармасьютикалз, Инк. Phosphorous derivatives as kinase inhibitors
WO2010027921A1 (en) * 2008-09-03 2010-03-11 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical formulations comprising the same
RS55341B1 (en) 2009-06-17 2017-03-31 Vertex Pharma Inhibitors of influenza viruses replication
EP2995303A1 (en) 2009-07-10 2016-03-16 President and Fellows of Harvard College Permanently charged sodium and calcium channel blockers as anti-inflammatory agents
KR101740076B1 (en) * 2009-07-28 2017-06-08 리겔 파마슈티칼스, 인크. Compositions and methods for inhibition of the jak pathway
WO2012012528A1 (en) 2010-07-20 2012-01-26 Vestaron Corporation Insecticidal triazines and pyrimidines
KR20130128436A (en) * 2010-12-16 2013-11-26 버텍스 파마슈티칼스 인코포레이티드 Inhibitors of influenza viruses replication
RU2013132681A (en) * 2010-12-16 2015-01-27 Вертекс Фармасьютикалз Инкорпорейтед INFLUENZA VIRUS REPLICATION INHIBITORS
UA118010C2 (en) 2011-08-01 2018-11-12 Вертекс Фармасьютікалз Інкорпорейтед INFLUENCES OF INFLUENZA VIRUS REPLICATION
TW201343648A (en) 2012-01-23 2013-11-01 Boehringer Ingelheim Int New 5,8-dihydro-6H-pyrazolo[3,4-h]quinazolines as IGF-1R/IR inhibitors
HUE054031T2 (en) 2012-04-24 2021-08-30 Vertex Pharma Dna-pk inhibitors
US10130632B2 (en) 2012-11-27 2018-11-20 Beth Israel Deaconess Medical Center, Inc. Methods for treating renal disease
HRP20211855T1 (en) 2013-03-12 2022-03-04 Vertex Pharmaceuticals Incorporated Dna-pk inhibitors
PL3057953T3 (en) 2013-10-17 2019-01-31 Vertex Pharmaceuticals Incorporated Co-crystals of (s)-n-methyl-8-(1-((2'-methyl-[4,5'-bipyrimidin]-6-yl)amino)propan-2-yl)quinoline-4-carboxamide and deuterated derivatives thereof as dna-pk inhibitors
PL3068776T3 (en) 2013-11-13 2019-10-31 Vertex Pharma Inhibitors of influenza viruses replication
CA2930297C (en) 2013-11-13 2022-04-05 Vertex Pharmaceuticals Incorporated Methods of preparing inhibitors of influenza viruses replication
CA2945263A1 (en) 2014-04-09 2015-10-15 Christopher Rudd Use of gsk-3 inhibitors or activators which modulate pd-1 or t-bet expression to modulate t cell immunity
JP6704416B2 (en) 2015-05-13 2020-06-03 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Methods for preparing inhibitors of influenza virus replication
WO2016183120A1 (en) 2015-05-13 2016-11-17 Vertex Pharmaceuticals Incorporated Inhibitors of influenza viruses replication
KR20180069782A (en) 2015-08-03 2018-06-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Charge ion channel blocker and how to use
WO2018013430A2 (en) 2016-07-12 2018-01-18 Arisan Therapeutics Inc. Heterocyclic compounds for the treatment of arenavirus infection
EP3518931A4 (en) 2016-09-27 2020-05-13 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of dna-damaging agents and dna-pk inhibitors
KR20210145164A (en) 2019-03-11 2021-12-01 녹시온 테라퓨틱스 인코포레이티드 Ester Substituted Ion Channel Blockers and Methods of Use
US10786485B1 (en) 2019-03-11 2020-09-29 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10780083B1 (en) 2019-03-11 2020-09-22 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
AU2020234961A1 (en) 2019-03-11 2021-09-30 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
CA3129131A1 (en) 2019-03-11 2020-09-17 Bridget Mccarthy Cole Charged ion channel blockers and methods for use
EP4054586A4 (en) 2019-11-06 2023-11-22 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10842798B1 (en) 2019-11-06 2020-11-24 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
KR20230022830A (en) 2020-03-11 2023-02-16 녹시온 테라퓨틱스 인코포레이티드 Charged ion channel blockers and methods of use
WO2023154466A1 (en) * 2022-02-11 2023-08-17 The University Of North Carolina At Chapel Hill Arylbenzoisoxazole compounds as ip6k and ipmk inhibitors and methods of use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019065A1 (en) * 1995-11-20 1997-05-29 Celltech Therapeutics Limited Substituted 2-anilinopyrimidines useful as protein kinase inhibitors
US6093716A (en) * 1996-09-16 2000-07-25 Celltech Therapeutics, Limited Substituted 2-pyrimidineamines and processes for their preparation
WO2000078731A1 (en) * 1999-06-18 2000-12-28 Celltech R&D Limited 5-cyano-2-aminopyrimidine derivatives
WO2001000214A1 (en) * 1999-06-30 2001-01-04 Merck & Co., Inc. Src kinase inhibitor compounds
WO2001000207A1 (en) * 1999-06-30 2001-01-04 Merck & Co., Inc. Src kinase inhibitor compounds
WO2001012621A1 (en) * 1999-08-13 2001-02-22 Vertex Pharmaceuticals Incorporated INHIBITORS OF c-JUN N-TERMINAL KINASES (JNK) AND OTHER PROTEIN KINASES
WO2001029009A1 (en) * 1999-10-20 2001-04-26 Celltech R&D Limited 4,5-disubstituted-2-aminopyrimidines
WO2001072745A1 (en) * 2000-03-29 2001-10-04 Cyclacel Limited 2-substituted 4-heteroaryl-pyrimidines and their use in the treatmetn of proliferative disorders

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897231B2 (en) * 2000-07-31 2005-05-24 Signal Pharmaceuticals, Inc. Indazole derivatives as JNK inhibitors and compositions and methods related thereto
US6825190B2 (en) * 2001-06-15 2004-11-30 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019065A1 (en) * 1995-11-20 1997-05-29 Celltech Therapeutics Limited Substituted 2-anilinopyrimidines useful as protein kinase inhibitors
US6093716A (en) * 1996-09-16 2000-07-25 Celltech Therapeutics, Limited Substituted 2-pyrimidineamines and processes for their preparation
WO2000078731A1 (en) * 1999-06-18 2000-12-28 Celltech R&D Limited 5-cyano-2-aminopyrimidine derivatives
WO2001000214A1 (en) * 1999-06-30 2001-01-04 Merck & Co., Inc. Src kinase inhibitor compounds
WO2001000207A1 (en) * 1999-06-30 2001-01-04 Merck & Co., Inc. Src kinase inhibitor compounds
WO2001012621A1 (en) * 1999-08-13 2001-02-22 Vertex Pharmaceuticals Incorporated INHIBITORS OF c-JUN N-TERMINAL KINASES (JNK) AND OTHER PROTEIN KINASES
WO2001029009A1 (en) * 1999-10-20 2001-04-26 Celltech R&D Limited 4,5-disubstituted-2-aminopyrimidines
WO2001072745A1 (en) * 2000-03-29 2001-10-04 Cyclacel Limited 2-substituted 4-heteroaryl-pyrimidines and their use in the treatmetn of proliferative disorders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. ZIMMERMANN ET AL.: "Potent and selective inhibitors of the ABL-kinase: Phenylaminopyrimidine (PAP) derivatives", BIOORG. MED. CHEM. LETT., vol. 7, no. 2, 1997, pages 187 - 192, XP002214446 *

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803939B2 (en) 2002-02-01 2010-09-28 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US8334296B2 (en) 2002-02-01 2012-12-18 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US7655797B2 (en) 2002-02-01 2010-02-02 Rigel Pharmaceuticals, Inc. Intermediates for making 2,4-pyrimidinediamine compounds
US7820819B2 (en) 2002-02-01 2010-10-26 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US7812029B1 (en) 2002-07-29 2010-10-12 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US8158621B2 (en) 2002-07-29 2012-04-17 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US7259161B2 (en) 2002-11-04 2007-08-21 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
WO2004041814A1 (en) * 2002-11-04 2004-05-21 Vertex Pharmaceuticals Incorporated Heteroaryl-pyramidine derivatives as jak inhibitors
US7226919B2 (en) 2002-12-18 2007-06-05 Vertex Pharmaceuticals Inc. Compositions useful as inhibitors of protein kinases
WO2004058749A1 (en) * 2002-12-18 2004-07-15 Vertex Pharmaceuticals Incorporated Benzisoxazole derivatives useful as inhibitors of protein kinases
US8178671B2 (en) 2003-07-30 2012-05-15 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2, 4-pyrimidinediamine compounds
US7446199B2 (en) 2003-09-04 2008-11-04 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of protein kinases
WO2005028475A3 (en) * 2003-09-04 2005-06-09 Vertex Pharma Compositions useful as inhibitors of protein kinases
WO2005028475A2 (en) * 2003-09-04 2005-03-31 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of protein kinases
WO2005063251A1 (en) * 2003-12-17 2005-07-14 Pfizer Products Inc. Modified stent useful for delivery of drugs along stent strut
JP2008515986A (en) * 2004-10-13 2008-05-15 ワイス N-benzenesulfonyl substituted anilino-pyrimidine analogues
JP2008526692A (en) * 2004-12-31 2008-07-24 ▲飄▼▲揚▼ ▲孫▼ Preparation method of aminopyrimidines and salts thereof and use of drugs
JP4698681B2 (en) * 2004-12-31 2011-06-08 ▲飄▼▲揚▼ ▲孫▼ Preparation method of aminopyrimidines and salts thereof and use of drugs
US10577381B2 (en) 2005-01-19 2020-03-03 Rigel Pharmaceuticals, Inc. Prodrugs of 2,4-pyrimidinediamine compounds and their uses
US8415365B2 (en) 2005-06-08 2013-04-09 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US7491732B2 (en) 2005-06-08 2009-02-17 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US9732073B2 (en) 2005-06-08 2017-08-15 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US9593082B2 (en) 2005-06-08 2017-03-14 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US11198689B2 (en) 2005-06-08 2021-12-14 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US11827628B2 (en) 2005-06-08 2023-11-28 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US10421752B2 (en) 2005-06-08 2019-09-24 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US8399472B2 (en) 2005-06-08 2013-03-19 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
WO2007098507A2 (en) 2006-02-24 2007-08-30 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
US8962643B2 (en) 2006-02-24 2015-02-24 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US11667611B2 (en) 2006-02-24 2023-06-06 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
JP2010508363A (en) * 2006-11-01 2010-03-18 バーテックス ファーマシューティカルズ インコーポレイテッド Tricyclic heteroaryl compounds useful as inhibitors of Janus kinase
US9624229B2 (en) 2008-02-15 2017-04-18 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
US8309566B2 (en) 2008-02-15 2012-11-13 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
US8735418B2 (en) 2008-02-15 2014-05-27 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
US8501944B2 (en) 2008-04-16 2013-08-06 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US10533001B2 (en) 2008-04-16 2020-01-14 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8937070B2 (en) 2008-04-16 2015-01-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US11414410B2 (en) 2008-04-16 2022-08-16 Alexion Pharmaceuticals, Inc. Inhibitors of protein kinases
US9868729B2 (en) 2008-04-16 2018-01-16 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8952027B2 (en) 2008-04-16 2015-02-10 Portola Pharmaceuticals, Inc. Inhibitors of syk and JAK protein kinases
US9579320B2 (en) 2008-04-16 2017-02-28 Portola Pharmaceuticals, Inc. Inhibitors of syk and JAK protein kinases
US8138339B2 (en) 2008-04-16 2012-03-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US9139581B2 (en) 2008-04-22 2015-09-22 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8258144B2 (en) 2008-04-22 2012-09-04 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8513242B2 (en) 2008-12-12 2013-08-20 Cystic Fibrosis Foundation Therapeutics, Inc. Pyrimidine compounds and methods of making and using same
US9505784B2 (en) 2009-06-12 2016-11-29 Dana-Farber Cancer Institute, Inc. Fused 2-aminothiazole compounds
US9180127B2 (en) 2009-12-29 2015-11-10 Dana-Farber Cancer Institute, Inc. Type II Raf kinase inhibitors
US11826365B2 (en) 2009-12-29 2023-11-28 Dana-Farber Cancer Institute, Inc. Type II raf kinase inhibitors
US8334292B1 (en) 2010-06-14 2012-12-18 Cystic Fibrosis Foundation Therapeutics, Inc. Pyrimidine compounds and methods of making and using same
US9102625B2 (en) 2010-11-01 2015-08-11 Portola Pharmaceuticals, Inc. Nicotinamides as JAK kinase modulators
WO2012061428A2 (en) 2010-11-01 2012-05-10 Portola Pharmaceuticals, Inc. Nicotinamides as jak kinase modulators
EP2975027A1 (en) 2010-11-01 2016-01-20 Portola Pharmaceuticals, Inc. Nicotinamides as jak kinase modulators
US9834518B2 (en) 2011-05-04 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9382239B2 (en) 2011-11-17 2016-07-05 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
US10981903B2 (en) 2011-11-17 2021-04-20 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
US10144730B2 (en) 2011-11-17 2018-12-04 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
US9359308B2 (en) 2011-11-23 2016-06-07 Portola Pharmaceuticals, Inc. Pyrazine kinase inhibitors
US9862715B2 (en) 2012-01-13 2018-01-09 Bristol-Myers Squibb Company Thiazolyl- or thiadiazolyl-substituted pyridyl compounds useful as kinase inhibitors
US8987311B2 (en) 2012-01-13 2015-03-24 Bristol-Myers Squibb Company Triazolyl-substituted pyridyl compounds useful as kinase inhibitors
US9242975B2 (en) 2012-01-13 2016-01-26 Bristol-Myers Squibb Company Heterocyclic-substituted pyridyl compounds useful as kinase inhibitors
US9242976B2 (en) 2012-01-13 2016-01-26 Bristol-Myers Squibb Company Thiazolyl- or thiadiazolyl-substituted pyridyl compounds useful as kinase inhibitors
US10227340B2 (en) 2012-01-13 2019-03-12 Bristol-Myers Squibb Company Thiazolyl- or thiadiazolyl-substituted pyridyl compounds useful as kinase inhibitors
US9834571B2 (en) 2012-05-05 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9932354B2 (en) 2012-06-05 2018-04-03 Ares Trading S.A. Imidazo-oxadiazole and imidazo-thiadiazole derivatives
EP2671885A1 (en) * 2012-06-05 2013-12-11 Ares Trading S.A. Imidazo-oxadiazole and Imidazo-thiadiazole derivatives
US10696690B2 (en) 2012-06-05 2020-06-30 Ares Trading S.A. Imidazo-oxadiazole and imidazo-thiadiazole derivatives
WO2013182274A1 (en) * 2012-06-05 2013-12-12 Ares Trading S.A. Imidazo-oxadiazole and imidazo-thiadiazole derivatives
CN104395324A (en) * 2012-06-05 2015-03-04 阿瑞斯贸易股份有限公司 Imidazo-oxadiazole and imidazo-thiadiazole derivatives
CN104395324B (en) * 2012-06-05 2017-09-12 阿瑞斯贸易股份有限公司 Mi Zuo Bing oxadiazoles and imidazo thiadiazoles derivative
US9676756B2 (en) 2012-10-08 2017-06-13 Portola Pharmaceuticals, Inc. Substituted pyrimidinyl kinase inhibitors
WO2014063068A1 (en) * 2012-10-18 2014-04-24 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (cdk7)
US10112927B2 (en) 2012-10-18 2018-10-30 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10787436B2 (en) 2012-10-18 2020-09-29 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US9758522B2 (en) 2012-10-19 2017-09-12 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged small molecules as inducers of protein degradation
USRE48175E1 (en) 2012-10-19 2020-08-25 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged small molecules as inducers of protein degradation
US10000483B2 (en) 2012-10-19 2018-06-19 Dana-Farber Cancer Institute, Inc. Bone marrow on X chromosome kinase (BMX) inhibitors and uses thereof
US10023562B2 (en) 2012-11-08 2018-07-17 Bristol-Myers Squibb Company Heteroaryl substituted pyridyl compounds useful as kinase modulators
US10544133B2 (en) 2012-11-08 2020-01-28 Bristol-Myers Squibb Company Heteroaryl substituted pyridyl compounds useful as kinase modulators
US9546153B2 (en) 2012-11-08 2017-01-17 Bristol-Myers Squibb Company Bicyclic heterocycle substituted pyridyl compounds useful as kinase modulators
US9657009B2 (en) 2012-11-08 2017-05-23 Bristol-Myers Squibb Company Heteroaryl substituted pyridyl compounds useful as kinase modulators
US9611283B1 (en) 2013-04-10 2017-04-04 Ariad Pharmaceuticals, Inc. Methods for inhibiting cell proliferation in ALK-driven cancers
US10906889B2 (en) 2013-10-18 2021-02-02 Dana-Farber Cancer Institute, Inc. Polycyclic inhibitors of cyclin-dependent kinase 7 (CDK7)
US11040957B2 (en) 2013-10-18 2021-06-22 Dana-Farber Cancer Institute, Inc. Heteroaromatic compounds useful for the treatment of proliferative diseases
US9169252B2 (en) 2014-01-03 2015-10-27 Bristol-Myers Squibb Company Heteroaryl substituted nicotinamide compounds
US10059690B2 (en) 2014-04-04 2018-08-28 Syros Pharmaceuticals, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10106526B2 (en) 2014-04-04 2018-10-23 Syros Pharmaceuticals, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10017477B2 (en) 2014-04-23 2018-07-10 Dana-Farber Cancer Institute, Inc. Janus kinase inhibitors and uses thereof
US9862688B2 (en) 2014-04-23 2018-01-09 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged janus kinase inhibitors and uses thereof
US10870651B2 (en) 2014-12-23 2020-12-22 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US11325910B2 (en) 2015-03-27 2022-05-10 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US10550121B2 (en) 2015-03-27 2020-02-04 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US10702527B2 (en) 2015-06-12 2020-07-07 Dana-Farber Cancer Institute, Inc. Combination therapy of transcription inhibitors and kinase inhibitors
US10202390B2 (en) 2015-06-24 2019-02-12 Bristol-Myers Squibb Company Heteroaryl substituted aminopyridine compounds
US10618903B2 (en) 2015-06-24 2020-04-14 Bristol-Myers Squibb Company Heteroaryl substituted aminopyridine compounds
US10294229B2 (en) 2015-06-24 2019-05-21 Bristol-Myers Squibb Company Heteroaryl substituted aminopyridine compounds
US11142507B2 (en) 2015-09-09 2021-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
KR101746199B1 (en) 2016-07-04 2017-06-13 기초과학연구원 GSK3 Nitrogen-Containing Heteroaryl Derivatives and Their Use as GSK3 Inhibitors
US10829496B2 (en) 2017-05-11 2020-11-10 Bristol-Myers Squibb Company Thienopyridines and benzothiophenes useful as IRAK4 inhibitors

Also Published As

Publication number Publication date
MXPA03011652A (en) 2004-05-31
CA2450769A1 (en) 2002-12-27
JP2009280593A (en) 2009-12-03
EP1399440A1 (en) 2004-03-24
US20050228005A1 (en) 2005-10-13
ATE432929T1 (en) 2009-06-15
WO2002102800A9 (en) 2004-05-06
JP2005509592A (en) 2005-04-14
JP4541695B2 (en) 2010-09-08
US20040009996A1 (en) 2004-01-15
DE60232510D1 (en) 2009-07-16
US6825190B2 (en) 2004-11-30
EP1399440B1 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
EP1399440B1 (en) 5-(2-aminopyrimidin-4-yl)benzisoxazoles as protein kinase inhibitors
CA2515132C (en) Heteroaryl substituted pyrroles useful as inhibitors of protein kinases
EP1417205B1 (en) Isoxazolyl-pyrimidines as inhibitors of src and lck protein kinases
EP1392684B1 (en) Thiazole compounds useful as inhibitors of protein kinases
US7244735B2 (en) Heterocyclic protein kinase inhibitors and uses thereof
US7226919B2 (en) Compositions useful as inhibitors of protein kinases
AU2002364536B2 (en) Pyrimidine-based compounds useful as GSK-3 inhibitors
US6762179B2 (en) Thiazole compounds useful as inhibitors of protein kinase
EP1562938B1 (en) Heteroaryl-pyrimidine derivatives as jak inhibitors
JP2010195838A (en) Compound useful as inhibitor of jak and other protein kinase
TW200406388A (en) Protein kinase inhibitors and uses thereof
JP2004520402A (en) Heterocyclic inhibitors of ERK2 and uses thereof
US20230069174A1 (en) Nitrogen-containing heterocyclic autotaxin inhibitor, and composition containing same and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003506273

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2450769

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/011652

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002744399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002744399

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

COP Corrected version of pamphlet

Free format text: PAGE 84, CLAIMS, ADDED; DUE TO A SCANNING ERROR DURING THE TECHNICAL PREPARATIONS FOR INTERNATIONALPUBLICATION