WO2002099880A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2002099880A1
WO2002099880A1 PCT/JP2002/005164 JP0205164W WO02099880A1 WO 2002099880 A1 WO2002099880 A1 WO 2002099880A1 JP 0205164 W JP0205164 W JP 0205164W WO 02099880 A1 WO02099880 A1 WO 02099880A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
semiconductor device
semiconductor package
wiring board
semiconductor
Prior art date
Application number
PCT/JP2002/005164
Other languages
French (fr)
Japanese (ja)
Inventor
Naotaka Tanaka
Norio Nakazato
Hiroshi Kikuchi
Fujiaki Nose
Takashi Kubo
Tetsuya Aoki
Kenji Yoshimoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2002099880A1 publication Critical patent/WO2002099880A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Definitions

  • the present invention relates to a semiconductor device.
  • a wiring board on which electronic components are mounted (hereinafter abbreviated as a mounting board) is provided with an elastic body having high thermal conductivity via a casing.
  • a method to achieve heat dissipation from the electronic components to the mounting board and from the mounting board to the electronic equipment housing by fixing to the body is proposed.
  • a heat conductive member here, grease
  • a heat sink attached to the upper surface of a heating element.
  • the mother board (wiring board) of a commonly used electronic device has low thermal conductivity and an organic material such as FR-4. Most of the materials are of a system type, so the heat radiation efficiency deteriorates. Therefore, from the heat-generating electronic components such as semiconductor devices to the housing housing the mounting board Direct heat dissipation is the shortest heat dissipation path and is the heat dissipation method with the highest heat dissipation efficiency.
  • An object of the present invention is to reliably embed a heat conductive member at a low load without generating a gap between an electronic component including a heating element and a housing, to improve heat dissipation,
  • An object of the present invention is to provide a highly reliable semiconductor device with reduced body strain and a method for manufacturing the same.
  • the semiconductor device of the present invention comprises:
  • a wiring board a semiconductor device electrically connected to and mounted on the wiring board via a conductive material for electrode connection; a housing for housing the wiring board and the semiconductor device; A heat conductor that is disposed in a gap with the housing and that conducts heat of the semiconductor device to the housing.
  • the housing has an upper housing portion and a lower housing portion each having an opening, and has a structure in which the opening of one housing fits into the opening of the other housing,
  • a press-fitting / compression means for housing and holding the semiconductor device mounted on the wiring board and the heat conductor in a housing, and the heat conductor is made of a conductive material for electrode connection at room temperature.
  • the compression load when heated in a temperature range that is soft and higher than room temperature is smaller than the compression load at room temperature, and is made of a thermally conductive elastic body, and is heated in the temperature range in the gap between the semiconductor device and the housing. And compression mounted.
  • an optical element having an electrode terminal electrically connected to the semiconductor device on the wiring board and an optical terminal connected to an optical fiber is held on the inner wall of the housing.
  • the optical element includes a light emitting element for converting an electric signal into an optical signal, such as a light emitting diode (LED) or a semiconductor laser, and a light receiving element for converting an optical signal into an electric signal.
  • LED light emitting diode
  • ceramic wiring boards are used as wiring boards.
  • a multilayer wiring board made of a heat-resistant resin may be used.
  • a bare chip of a semiconductor element, a semiconductor package, and the like are mounted as mounted components. Solder is generally used for electrical connection between the mounted components and the wiring board, but a conductive adhesive other than solder can be used.
  • the housing requires a certain amount of strength to house the semiconductor device and protect it from the outside world, but is made of a material with high thermal conductivity to efficiently release the heat from the housed semiconductor device to the outside. Is done. Further, a material having good workability is desirable from the viewpoint of molding the casing. For example, a metal material such as aluminum, an aluminum alloy, a copper-zinc alloy (Machiyu) is used. In addition, depending on the application, plastics filled with metal-ceramic powder as a filler can be used to enhance thermal conductivity.
  • the housing has a predetermined depth, and has an upper housing portion and a lower housing portion. Either case is fitted to the other case, and both are detachable by means of crimping means provided on the periphery, such as a screw structure, a tightening structure using panels or pins, etc. It is fixed by crimping. Then, when the wiring board on which the semiconductor device is mounted is housed in the housing, the wiring board on which the semiconductor device is mounted is inserted into one housing part, and the other housing part is fitted. It is fixed by crimping using a crimping means provided on the peripheral edge.
  • a gap is formed between the back surface of the semiconductor device and the inner wall surface of the housing behind it, which is smaller than the uncompressed thickness of the heat conductor to be mounted. It is designed to be. Therefore, by compressing and fixing the housing portions, the heat conductor interposed in the gap is compression-mounted.
  • the degree to which this heat conductor is compressed and mounted is reasonable if it is slightly compressed, but is preferably within the range of 40% to 70% of the thickness of the heat conductor before compression. It is desirable to compress and fix the housing parts so that they are compressed.
  • the material of the heat conductor one of its functions is to efficiently conduct the heat generated from the semiconductor device to the housing. For example, 1. OW / m ⁇ K ⁇ l 0. O WZm ⁇ It is desirable to have a thermal conductivity of about K. Further, since the heat conductor is compression-mounted in the gap between the semiconductor device housed in the housing and the inner wall of the housing, it must have a specific elasticity as described above. Therefore, the thermal conductor used in the present invention has thermal conductivity and elasticity, and can be defined as a thermally conductive elastic body.
  • the heat conductor used in the present invention is compressed and mounted in the gap with a low load even if the compression ratio at the time of compression mounting is high, and as described above, the semiconductor device is electrically mounted on the wiring board.
  • a thermally conductive elastic material that is softer at room temperature than a conductive material for electrode connection such as solder, and has a compressive load smaller than the compressive load at room temperature when heated in a temperature range higher than room temperature Consists of The preferable elastic modulus at normal temperature (synonymous with room temperature) is in the range of 0.5 MPa to 5.0.
  • the deformation resistance of the heat conductor is represented by the load required per unit compressibility
  • the deformation resistance at 100 ° C is 1/3 to 1/2 of the deformation resistance at 30 ° C. It is desirable that.
  • the preferred shape of the heat conductor is a sheet shape, and the dimensions of the sheet are thicker than the gap between the semiconductor device housed in the housing and the inner wall of the housing.
  • the thickness is selected in consideration of being mounted in the gap in a compressed state of 40% to 70%.
  • the heating temperature of the heat conductor is higher than room temperature, preferably 50 ° C to 100 ° C, and the timing of heating is such that the housing portions are heated and held when fitting and crimping. After press-fixing, or after press-fixing, it may be heated and held at the above-mentioned predetermined temperature.
  • the heat conductor is temporarily fixed to the back surface of the semiconductor device including the heating element or the inner wall surface of the housing facing the semiconductor device in advance with an adhesive with good thermal conductivity so that the position does not shift. It is desirable to keep.
  • a heat conductive rubber material such as a silicone rubber sheet, such as a silicone rubber sheet, has a low heat resistance, is excellent in flexibility and adhesiveness, and can be adjusted in hardness. Is mentioned.
  • the rubber sheet required here include solder and Au bumps Although it has lower rigidity than the encapsulant (called underfill resin) that reinforces the conductive material for electrode connection and the mounting substrate such as a module substrate, it has high thermal conductivity,
  • the provided material can be used as a rubber sheet constituting a heat conductor.
  • a practically preferable semiconductor module is housed in a housing, and a wiring board corresponds to a module board, and a semiconductor device mounted thereon corresponds to a semiconductor package.
  • this semiconductor device is:
  • the housing includes an upper housing portion and a lower housing portion each having an opening. Having a structure in which an opening of one housing portion fits into an opening of the other housing portion, and a semiconductor package and a heat conductor mounted on the module substrate at a peripheral portion.
  • the semiconductor package wherein the semiconductor element is electrically connected to and mounted on the package substrate via a first solder;
  • the elastic body is softer than the first and second solders at room temperature, and is higher than room temperature and lower than the reflow temperature of the solder, and the compression load when heated in the temperature range is smaller than the compression load at room temperature.
  • the semiconductor device is characterized in that it is heated and compressed in the above-mentioned temperature range in the gap between the semiconductor package and the housing.
  • the method for manufacturing a semiconductor device of the present invention includes a step of electrically connecting and mounting a semiconductor package having a heating element on a wiring board via a conductive material for electrode connection, and a step of wiring the semiconductor package mounted thereon.
  • a method of manufacturing a semiconductor device comprising: housing a substrate in a housing including an upper housing portion and a lower housing portion, wherein the wiring board on which the semiconductor package is mounted is housed in the housing.
  • the heat conductive elastic body is disposed in a gap between the semiconductor package and the housing, and the upper conductive part and the lower housing part are fitted and press-bonded to each other, so that the heat conductive elastic body is Compression mounting in the gap between the semiconductor package and the housing, and the wiring board
  • a step of pinching and fixing the heat conductive elastic body at room temperature the heat conductive elastic body is softer than the conductive material for electrode connection at room temperature, and has a compressive load when heated in a temperature range higher than room temperature. It is made of a sheet-like thermally conductive elastic body smaller than the compressive load at room temperature, and as a post-process of housing the wiring board in the housing, the housing housing the wiring board is stored at 50 ° C. to 100 ° C. It is characterized by the addition of a step of heating and holding in a temperature environment of ° C.
  • the heat conductive elastic body is placed between the semiconductor package and the housing.
  • the housing is heated under a temperature environment of 50 ° C to 100 ° C. You can keep it.
  • FIG. 1 is a sectional view of a first embodiment of a semiconductor device according to the present invention.
  • FIG. 2 is a sectional view of a second embodiment of the semiconductor device according to the present invention.
  • FIG. 3 is a sectional process view showing an example of a method for manufacturing a semiconductor device according to the present invention.
  • FIG. 4 is a sectional process view showing another example of the method for manufacturing a semiconductor device according to the present invention.
  • FIG. 5 is a cross-sectional view showing an experimental method for measuring the mechanical properties of the rubber sheet used in the present invention.
  • FIG. 6 is a characteristic graph showing the relationship between the compression ratio and the compression load of the rubber sheet.
  • FIG. 7 is a graph of the stress relaxation characteristics of the rubber sheet at room temperature.
  • FIG. 8 is a graph of stress relaxation characteristics at 85 ° C. of the rubber sheet used in the present invention.
  • FIGS. 9 (a) and 9 (b) are a cross-sectional view and a plan view showing a housing load measuring method when a rubber sheet is attached.
  • FIG. 10 is a characteristic graph showing the results of measuring the housing load when the rubber sheet is attached.
  • FIGS. 11 (a) and 11 (b) are a plan view and a sectional view of a third embodiment of the semiconductor device according to the present invention.
  • FIG. 12 is a cross-sectional view of a semiconductor device schematically showing the direction of a load applied to a housing when a rubber sheet is compression-mounted in the third embodiment.
  • FIG. 13 is a circuit configuration block diagram of an optical transceiver LSI including a semiconductor package and a laser diode module housed in a housing in the third embodiment.
  • FIGS. 14 (a), 14 (b), and 14 (c) are cross-sectional views illustrating the heat dissipation structure of the third embodiment.
  • FIG. 15 is a sectional view of a fourth embodiment of the semiconductor device according to the present invention.
  • FIG. 16 is a sectional view of a fifth embodiment of the semiconductor device according to the present invention.
  • FIGS. 17 (a), 17 (b) and 17 (c) show the semiconductor device according to the present invention.
  • FIG. 17 is a cross-sectional view of a sixth embodiment
  • FIG. 17D is a cross-sectional view of a semiconductor device according to a conventional technique.
  • FIG. 18 is a sectional view of a semiconductor device according to a seventh embodiment of the present invention.
  • Figure 5 shows an experimental method for measuring the mechanical properties of a highly heat-conductive silicone rubber sheet as a heat conductor.
  • the rubber sheet 8 having a constant thickness was sandwiched between the rigid cylindrical jigs 51a and 5lb, and compressed at a compression speed of 0.01 mm / s.
  • Fig. 6 shows the relationship between the compressibility of rubber sheet 8 (the ratio of the crushed amount to the initial thickness: expressed in% on the horizontal axis) and the compression load (expressed in kgf on the vertical axis) from the experiment shown in Fig. 5.
  • the results are measured at room temperature (25 ° C).
  • Material A and Material B in the figure are materials with different thermal conductivities (rubber sheet 8). Comparing the compressive load at the same compressibility, Material A with higher thermal conductivity (5.6) W / m-K) is larger than B material (2.5 W / m-K), which has low thermal conductivity, and the difference becomes more pronounced (upward right) as the compressibility increases. I understand.
  • Figure 7 shows the results of measurements of the changes in the compressive load of materials A and B in Fig. 6 when they were displaced and held at room temperature (25 ° C) with a compressibility of 35%.
  • Side The axis indicates the retention time in seconds. It can be seen that when the displacement is maintained after compression, rapid stress relaxation occurs early, and the compression load becomes almost constant after a certain period of time.
  • Figure 8 shows the results of a similar test performed at 80 ° C for material A, which has a high thermal conductivity, at elevated temperatures. In an environment of 80 ° C, the initial compressive load is also reduced due to the softness of the sheet material itself, and the stress relaxation after holding the displacement saturates at about 20% to 30% at room temperature. The load is maintained at about 15 kgf), but at 80 ° C, the compression load is reduced to almost zero with a short holding time.
  • FIGS. 9 and 10 show the cases that occur when the actual product module housing (defined as a semiconductor device in the present invention) is used to assemble the housing with the heat dissipation mounting structure using the sheet material 8. This is the result of experimentally examining the load of the hologram.
  • 9A is a plan view of the external appearance
  • FIG. 9B is a cross-sectional view.
  • the housing used for the evaluation includes an upper housing portion 5 and a lower housing portion 6 made of aluminum.
  • the upper housing portion 5 is fitted to the lower housing portion 6.
  • a screw 9 is inserted through the mounting holes 3 a provided at the four corners of the module board 3, and the four corners of the upper housing part 5 and the lower housing part 6 are tightened with the screws 9.
  • a thermally conductive rubber sheet 8 inserted between the rear surface of 0 (more precisely, the semiconductor package 2 mounted on the module substrate 3) and the upper housing portion 5 is mounted in a compressed state.
  • the module substrate 3 contains a heating element (element such as a semiconductor chip) 1, and a semiconductor package 2 sealed with a copper cap 7 is mounted and connected via a solder bump 4. .
  • a strain gauge 14 is attached to the surface of the upper housing 5 corresponding to the center of the mounting area 100a of the semiconductor package 2 having the heating element 1, The load on the housing was measured indirectly from the change in gauge output during standing.
  • Figure 10 shows the rubber sheet material between the upper surface of the semiconductor package 2 and the housing (more precisely, a shallow recess corresponding to the mounting area 100a of the semiconductor package 2 provided on the inner wall of the upper housing portion 5). This is the result of measuring the change in the strain output on the housing surface when the upper and lower housing parts are compression-mounted via Fig. 8.
  • the left vertical axis shows the housing holding temperature (° C)
  • the right vertical axis shows the housing strain (unit: ⁇ )
  • the horizontal axis shows the holding time (unit: minute). .
  • FIG. 10 plots the predicted values without the pits. The inventors have confirmed that the measured values are almost the same, and that the measured values are obtained.
  • FIG. 1 is a sectional view showing an outline of a first embodiment of a semiconductor device according to the present invention.
  • FIG. 3 and FIG. 4 are cross-sectional views showing different manufacturing steps of the heat treatment rubber sheet 8 having different heat treatment timings.
  • a semiconductor package 2 having a BGA (Ball Grid Array) structure on which an element 1 for high-speed communication is mounted as a semiconductor element is provided with solder bumps 4 (referred to as second solder in the present invention) on a module substrate 3. ), And constitutes a semiconductor module 10 ° that is housed in a housing.
  • the heating element 1 in the figure shows a case of one chip, but the same applies to a plurality of multi-chip package (MCM) structures.
  • MCM multi-chip package
  • the housing for accommodating the semiconductor module 100 is composed of an upper housing portion 5 and a lower housing portion 6, and has a structure in which the upper housing portion 5 fits into the lower housing portion 6.
  • These housing parts are made of anore minim to enhance the heat radiation effect.
  • the housing material may be another metal material or a plastic material.
  • the module board 3 on which a plurality of semiconductor packages 2 are mounted (one package is shown in FIG. 1 for simplicity) is screwed up and down 9 through mounting holes 3 a provided at the four corners. It is fixed inside the housing parts 5, 6.
  • a gap is formed between the upper surface of the copper cap 7 of the semiconductor package 2 and the upper housing portion 5 in consideration of the amount of the rubber sheet 8 having high thermal conductivity after screwing.
  • the rubber sheet 8 (industrial silicone rubber sheet) has a configuration that achieves both high deformability and high thermal conductivity by being highly filled with a silver-based filler. Although the thermal conductivity varies depending on the type of the filler, the rubber sheet 8 has a thermal conductivity of about 2 to 6 W / (m ⁇ K). The hardness increases as the thermal conductivity increases.
  • the amount of clearance t 1 (equivalent to the thickness of the compressed rubber sheet 8) between the inner wall surface (projection 5 a) of the upper housing part 5 and the upper surface of the semiconductor package 2 is determined by the thickness direction of the housing parts 5 and 6. It is designed so as to be smaller than the initial thickness t2 of the rubber sheet 8 in consideration of the dimensional variation of the above, and it is necessary to design a design which usually estimates a compression ratio of 30% or more. In this example, the gap amount t1 is designed to be 40% to 70% of the initial thickness t2 of the rubber sheet 8.
  • the semiconductor package 2 mounted on the module substrate 3 has a structure in which the copper cap 7 is attached to the upper surface of the heating element 1 because this example is an embodiment in which heat dissipation characteristics are particularly taken into consideration. It may be a cap material made of, a structure in which the element is molded with resin, or a base chip structure in which the element is directly exposed.
  • a rubber sheet 8 is attached to the upper surface of the copper cap 7, and as shown in Fig. 3,
  • the housing parts 5 and 6 were fastened with the screws 9 in an environment set at a high temperature, preferably a temperature of 50 ° C. or more and 100 ° C. or less.
  • the semiconductor device is transferred to a heating furnace 50.
  • the temperature was kept at a temperature of not less than 100 ° C and not more than 100 ° C.
  • the heating and holding may be performed for at least 10 minutes or more, usually for 15 to 20 minutes in the above-mentioned heating temperature environment. could be obtained.
  • the optical components are often precisely positioned and fixed using an adhesive, so under a heating environment of 100 ° C or more, The temperature exceeds the heat resistance temperature of the optical mechanism. Therefore, it is desirable, in addition to the knowledge obtained from the measurement results in Fig. 10 described above! / Assembling the housing under a heating environment of 50 ° C or more and 100 ° C or less, which is the heat treatment temperature, does not affect the reliability of the module product as a whole, and reduces the load on the rubber sheet. Thus, a heat dissipation structure can be realized.
  • Heat is radiated from the electronic component having the heating element 1 to the housing from the area in contact with the element of the copper cap 4, through the rubber sheet 8, to a large extent through the heat dissipation path to the housing. From the area not in contact with the element, only a small heat radiation path passes through the rubber sheet 8 to the housing.
  • the contact area of the rubber sheet material 8 with the copper cap 4 is not limited to the entire surface of the cap, but is limited to the area where the heating element 1 is in contact. This greatly reduces the load on the housing parts 5, 6 and the electronic components and the module substrate 3 at the same compression ratio of the rubber sheet, while minimizing the influence on the heat radiation characteristics.
  • assembling was performed by fastening the screws 9 of the housing portions 5 and 6 while heating and maintaining the same in an environment of 50 ° C. or more and 100 ° C. or less.
  • a method of heating and holding the semiconductor device in an environment of 250 ° C. or more and 100 ° C. or less immediately after assembling another semiconductor device in a room temperature environment in advance was also performed.
  • the screws are tightened in the housing while holding the former by heating, the initial load generated during housing assembly can be kept lower than in the latter case, so that stress relaxation can be achieved in a shorter time. As a result, the TAT (Turn Around Time) of the manufacturing process can be shortened.
  • FIG. 11 includes a high-speed communication module structure on which optical components for optical communication are mounted.
  • FIG. 11A is a plan view showing the appearance of the semiconductor device
  • FIG. 11B is a sectional view thereof.
  • the basic configuration of the device is the same as that of the first embodiment, except that a laser diode module (optical element) 11 with a built-in laser diode for electrical / optical conversion is used in the upper housing part 5 or the lower housing part 6. It is fixed to the back of. In this embodiment, the photoelement 11 is installed on the back surface of the lower housing part 6.
  • the laser diode module 11 includes a light emitting element for converting and outputting an electric signal to an optical signal, but generally also includes a light receiving element for converting an optical signal to an electric signal.
  • a light emitting element for converting and outputting an electric signal to an optical signal
  • a light receiving element for converting an optical signal to an electric signal.
  • high-precision positioning is performed in order to focus the output optical signal on the optical fiber 12 with high efficiency. Positioning is required in the same manner as the light emitting element.
  • optical signals In the case of light-emitting devices, electrical signals are converted to optical signals, and in the case of light-receiving devices, optical signals are converted to electrical signals. Enable.
  • FIG. 12 schematically shows the direction of the load (load) applied to the housing when the thermally conductive rubber sheet 8 is compression-mounted in the third embodiment of FIG.
  • FIG. 13 is a block diagram showing an example of a circuit configuration of an optical transceiver LSI including the semiconductor package 2 and the laser diode module 11 housed in the housing of FIG. 11.
  • the upper part in the figure inputs the electric signal input from the left end to the LD module (transmitter) at the right end through the MUX circuit (multiplexing circuit).
  • the electrical signal is converted to an optical signal by an LD module and output from the right end as an optical signal through an optical fiber (not shown).
  • the lower part in the figure converts the optical signal input from the right end through an optical fiber (not shown) into an electric signal by the PD module (receiver), and passes through the amplifier to the DEMUX circuit ( (Separation circuit) and output to the outside.
  • the MUX circuit (multiplexing circuit) and the DE MUX circuit (separation circuit) on the left side of the optical transceiver LSI block correspond to the semiconductor package 2 in FIG. 11, and the LD module and PD module on the right side correspond to the optical element 11 1 (Laser diode module).
  • the MUX circuit (multiplexing circuit) and the DE MUX circuit (separation circuit) on the left side of the optical transceiver LSI block correspond to the semiconductor package 2 in FIG. 11, and the LD module and PD module on the right side correspond to the optical element 11 1 (Laser diode module).
  • 10 GbZs data was output as an optical output from the LD module (transmitting unit).
  • FIG. 14A is a schematic cross-sectional view illustrating the heat dissipation structure of the semiconductor device (optical transceiver module) shown in FIG.
  • FIGS. 14 (b) and 14 (c) are partial enlarged views of the semiconductor package 2, respectively.
  • the gap between the heat generating element 1 (transceiver LSI) and the metal cap 7 is shown.
  • the gap around the BGA solder bump 4 (first solder) is filled with an underfill resin that has good thermal conductivity.
  • FIG. 15 is a cross-sectional view of another embodiment including a high-speed communication module structure equipped with optical communication optical components.
  • This example is basically the same as the structure of the third embodiment shown in FIG. 11, except that the heat radiation fins 10 are provided on the lower housing part 6 side.
  • the heat radiation fins 10 are provided in the lower housing part 6 on the side where the laser diode 11 is installed, thereby enhancing the heat radiation effect of the laser diode 11 that generates a large amount of heat.
  • FIG. 16 is a cross-sectional view of another embodiment including a high-speed communication module structure equipped with an optical communication optical component having a higher heat radiation effect than the fourth embodiment shown in FIG.
  • a heat conductive rubber sheet 8 is provided between the laser diode 11 and the upper housing part 5 so that the heat of the laser diode 11 is further radiated to the upper housing part 5. It is also compression mounted in the gap. As a result, the laser diode 11 that generates a large amount of heat is radiated from the upper and lower housing portions 5 and 6, thereby further improving the heat radiation effect.
  • FIGS. 17A and 17B are cross-sectional views of a sixth embodiment including a high-speed communication module structure equipped with optical communication optical components.
  • the structure is the same as that of the third embodiment shown in FIG. 11, except that a semiconductor element 2 is replaced with a chip as a heating element 1, and a chip has solder bumps 4 on a module substrate 3. The difference is that an underfill resin is filled around the solder bumps 4. As a result, heat from the bare chip 1 can be effectively radiated from the upper and lower housing portions 5 and 6.
  • FIG. 17 (c) is a partially enlarged view schematically showing a heat dissipation path of the flip chip of the sixth embodiment.
  • Figure 17 (d) shows the results of the conventional wire bonding shown as a comparative example. This is the heat dissipation path.
  • FIG. 18 is a sectional view of a seventh embodiment including a high-speed communication module structure equipped with optical communication optical components. Basically, it has the same structure as the sixth embodiment shown in FIG. 17 (a). However, in this embodiment, a multi-chip in which a plurality of bare chips (heating elements) having different heights are mixed on the module substrate 2 is used. They differ in that they are chips. When a plurality of heating elements 1 having such height differences in height are mounted on the module substrate 2, the low-load heat radiation method of the present invention is extremely effective.
  • the present invention is applicable to a semiconductor device and a method for manufacturing the same.
  • a semiconductor device mounted on a wiring board is housed in a housing with good heat dissipation and reduced distortion due to external stress, particularly a semiconductor including a high-speed optical communication element.
  • the present invention can be applied as a semiconductor device suitable for the device and a manufacturing method thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Light Receiving Elements (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A semiconductor device with an excellent heat radiation, reduced cabinet deformation, and high reliability and a method of manufacturing the semiconductor device, the semiconductor device, wherein a heat conductive member is surely buried at a low load between an electronic part including a heating element and a cabinet without producing a clearance, whereby, since the stress relaxation characteristics of a rubber sheet material under a low temperature heating environment are utilized, a heat radiating installation structure imparting a low load to the cabinet and a semiconductor package can be provided for the semiconductor device even if the compressibility of the rubber sheet material is high.

Description

技術分野 Technical field
本発明は、 半導体装置に関する。  The present invention relates to a semiconductor device.
背景技術 Background art
電子機器内部に実装された発熱素子を有する電子部品からの熱を外部に放熱す る方法として、 電子部品上面に放熱フィンを取り付け、 筐体内部の空気中に放熱 フィンを介して放熱させる方法が一般的糸である。  As a method of dissipating heat from electronic components having a heating element mounted inside an electronic device to the outside, a method of attaching heat radiation fins to the upper surface of the electronic components and dissipating heat through the radiation fins to the air inside the housing is known. It is a general thread.
し力 しながら、 例えば、 モパイル機器や携帯電話機器に代表される急速な電子 書  However, for example, rapid electronic books represented by mobile devices and mobile devices
機器の小型ィヒ ·薄型化に対して、 放熱フィンのような空間体積が必要な放熱形態 をとることは難しくなつてきている。 そのため、 電子機器の筐体そのものを放熱 媒体として用いる放熱方式が重要になってきている。 It is becoming increasingly difficult to adopt a heat-dissipation mode that requires a space volume such as a heat-dissipating fin, as devices become smaller and thinner. For this reason, a heat dissipation method using the housing of the electronic device itself as a heat dissipation medium is becoming important.
この場合、 配線基板に実装された発熱素子を含む電子部品からの熱を高熱伝導 性の部ネオを介して基板側から筐体へ放熱させる放熱方式と、 電子部品から直接筐 体へ放熱させる方式とが提案されている。  In this case, a heat dissipation method that radiates heat from the electronic components including the heating elements mounted on the wiring board from the board side to the housing through the high thermal conductivity part Neo, and a heat dissipation method that radiates heat directly from the electronic components to the housing It has been proposed.
例えば、 特開平 1 1— 1 6 3 5 6 4号公報で開示されている発明は、 電子部品 が実装された配線基板 (以下、 実装基板と略称) を高熱伝導性の弾性体を介して 筐体に固定することで、 電子部品から実装基板、 実装基板から電子機器筐体への 放熱を実現する方法を提案している。  For example, in the invention disclosed in Japanese Patent Application Laid-Open No. H11-166354, a wiring board on which electronic components are mounted (hereinafter abbreviated as a mounting board) is provided with an elastic body having high thermal conductivity via a casing. We propose a method to achieve heat dissipation from the electronic components to the mounting board and from the mounting board to the electronic equipment housing by fixing to the body.
また、 特開平 0 8— 1 3 9 2 3 6号公報で開示されている発明は、 発熱素子の 上面に取り付けた放熱板と筐体との間に、 高熱伝導性の部材 (ここではグリー ス) を充填固着して、 直接電子部品から筐体への放熱を実現する方法を提案して レヽる。  Also, the invention disclosed in Japanese Patent Application Laid-Open No. 08-139392 / 1996 discloses that a heat conductive member (here, grease) is provided between a housing and a heat sink attached to the upper surface of a heating element. We propose a method of realizing heat dissipation from electronic components directly to the housing by filling and fixing).
放熱効率を考えた場合, 実装基板を介して放熱経路を取ろうとすると、 一般的 に使用されている電子機器のマザ一ボード (配線基板) は熱伝導率の低レ、 F R— 4等の有機系の材料であることがほとんどであるため、 放熱効率は悪化する。 し たがって、 発熱している半導体装置等の電子部品から実装基板を収納する筐体へ 直接放熱させる方が放熱経路としても最短であり放熱効率の最も高い放熱方式で ある。 Considering the heat dissipation efficiency, if one tries to take a heat dissipation path through the mounting board, the mother board (wiring board) of a commonly used electronic device has low thermal conductivity and an organic material such as FR-4. Most of the materials are of a system type, so the heat radiation efficiency deteriorates. Therefore, from the heat-generating electronic components such as semiconductor devices to the housing housing the mounting board Direct heat dissipation is the shortest heat dissipation path and is the heat dissipation method with the highest heat dissipation efficiency.
しかしながら、 例えば、 特開平 0 8— 2 3 3 6号公報で開示されているように、 グリースのような充填部材で実装基板上の電子部品と筐体との隙間を固着するこ とは、 塗布量や塗布面の均一性を管理することや、 電子部品に不具合が生じた場 合のリペア一工程を非常に面倒にする。 さらには、 グリースを硬化させるための 新たな高^ Λ口熱工程も必要となる。  However, for example, as disclosed in Japanese Patent Application Laid-Open No. 08-23336, it is difficult to fix the gap between the electronic component on the mounting board and the housing with a filling member such as grease. It controls the amount and uniformity of the coated surface, and makes the repair process in the event of a failure in the electronic components very troublesome. In addition, a new high heat opening process for curing the grease is required.
これに対して、 シリコーン系のゴムシートを電子部品と筐体との隙間に挟みこ むことによって、 グリースを充填固着した場合と同様な最短の放熱経路で放熱を 実現できる方法がある。 この場合には、 ゴムシートを電子部品の上に載せるだけ でよいため、 工程管理も簡単で低コストなプロセスで対応可能となり、 その後の リペア一も容易であるという特長がある。 ただし、 この放熱方式では、 電子部品 と筐体との隙間管理が非常に重要となり、 実際の隙間が想定していた隙間よりも 大きいとシートは隙間を充填しきれず放熱効率は極端に悪化し、 逆に想定してい た隙間より小さいと、 電子部品を筐体に収納する際に発生するシートの圧縮率が 当初の設計値より高くなり、 電子部品や筐体に高い荷重が加わってしまうという 問題がある。  On the other hand, there is a method that can realize heat radiation by the shortest heat radiation path similar to the case where grease is filled and fixed by sandwiching a silicone rubber sheet in the gap between the electronic component and the housing. In this case, it is only necessary to place the rubber sheet on the electronic components, so that the process management is simple and can be performed with a low-cost process, and the subsequent repair is easy. However, in this heat dissipation method, it is very important to manage the gap between the electronic component and the housing.If the actual gap is larger than the assumed gap, the sheet cannot fill the gap and the heat dissipation efficiency will be extremely deteriorated. Conversely, if the gap is smaller than expected, the compression rate of the sheet generated when storing electronic components in the housing will be higher than the original design value, and a high load will be applied to the electronic components and housing. There is.
さらに、 シリコーンゴムタイプの熱伝導部材では、 この部材中に充填されるフ ィラーの充填量に応じて熱伝導率が変化するため、 高熱伝導な仕様ほど充填量が 増加し硬度が高いということになり、 同じ圧縮率に対してより高い荷重が加わつ てしまうことになる。 特に、 筐体内に収納される電子部品が光学系を利用した高 速光通信モジュール等では、 伝送ロスを小さくするため部品の搭載位置決め精度 が設計上非常に重要であり、 シート材の圧縮装着によって筐体や電子部品を搭載 したモジュール基板に変形を加えることは好ましくない。  Furthermore, in silicone rubber type heat conductive members, the thermal conductivity changes according to the filling amount of the filler filled in this member, so the higher the heat conducting specification, the higher the filling amount and the higher the hardness. Therefore, a higher load is applied to the same compression ratio. In particular, in high-speed optical communication modules, etc., in which electronic components housed in the housing use an optical system, the mounting positioning accuracy of the components is very important in designing to reduce transmission loss. It is not preferable to apply deformation to the module substrate on which the housing and electronic components are mounted.
さらに、 発熱量の大きい電子部品を搭載したモジュールでは、 筐体材料として 熱伝導率の高いアルミ材を使用することが望ましい。 将来的な低コスト化に対応 するためには、 加工コストの高いメタル筐体をプラスチック筐体に変更すること も重要である。 強度の点ではいずれの場合も筐体がより低剛性な方向に向かうた め、 シートの圧縮率を上げて高い荷重を加えることは適切でない。 一方、 設計的には、 電子部品と筐体との隙間がシートの初期厚さより広くなつ てしまって、 隙間を残すことは絶対回避する必要がある。 そのため、 筐体の厚さ 方向の寸法誤差や電子部品の実装高さのバラツキも考慮した上で、 かなり高めの 圧縮率で設計せざるを得ない。 したがって、 通常の組立て工程では電子部品ゃ筐 体に高い荷重が加わることが想定されるため、 理想的には、 シートの圧縮率が高 くても、 より低負荷でゴムシートを装着できる放熱方式を確立する必要がある。 発明の開示 Furthermore, for modules with electronic components that generate a large amount of heat, it is desirable to use aluminum with high thermal conductivity as the housing material. In order to respond to future cost reductions, it is also important to replace metal casings with high processing costs with plastic casings. In any case, it is not appropriate to increase the compressibility of the seat and apply a high load, because in all cases, the casing moves in the direction of less rigidity. On the other hand, in terms of design, it is absolutely necessary to avoid leaving a gap between the electronic component and the housing, which is wider than the initial thickness of the sheet. For this reason, it is necessary to design with a considerably high compression ratio, taking into account dimensional errors in the thickness direction of the housing and variations in the mounting height of electronic components. Therefore, in the normal assembly process, a high load is expected to be applied to the electronic components and the housing. Ideally, even if the compression ratio of the sheet is high, a heat dissipation method that can mount the rubber sheet with a lower load is ideal. Need to be established. Disclosure of the invention
本発明の目的は、 上記観点に鑑み、 発熱素子を含む電子部品と筐体との間に隙 間を発生させずに熱伝導部材を低負荷で確実に埋め込み、 放熱性を良好にして、 筐体ひずみが低減された信頼性の高い半導体装置及びその製造方法を提供するこ とにある。  SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to reliably embed a heat conductive member at a low load without generating a gap between an electronic component including a heating element and a housing, to improve heat dissipation, An object of the present invention is to provide a highly reliable semiconductor device with reduced body strain and a method for manufacturing the same.
上記目的を達成する為の本発明の半導体装置は、  To achieve the above object, the semiconductor device of the present invention comprises:
配線基板と、 前記配線基板上に電極接続用導電材料を介して電気的に接続、 搭 載された半導体装置と、 前記配線基板と前記半導体装置とを収納する筐体と、 前 記半導体装置と筐体との隙間に配置され、 前記半導体装置の熱を筐体に伝導する 熱伝導体とを備えた半導体装置であって、  A wiring board, a semiconductor device electrically connected to and mounted on the wiring board via a conductive material for electrode connection; a housing for housing the wiring board and the semiconductor device; A heat conductor that is disposed in a gap with the housing and that conducts heat of the semiconductor device to the housing.
前記筐体は、 互いに開口部を有する上部筐体部分と下部筐体部分とを有し、 一 方の筐体部分の開口部が他方の筐体部分の開口部に勘合する構造を有すると共に、 周縁部に、 前記配線基板上に搭載された半導体装置と熱伝導体とを筐体内に収納 保持する嵌合圧着手段を有し、 前記熱伝導体は、 常温において前記電極接続用導 電材料より柔らかく、 かつ、 常温より高い温度域で加熱されたときの圧縮荷重が 常温での圧縮荷重より小さレ、熱伝導性弾性体からなり、 前記半導体装置と筐体と の隙間に前記温度域で加熱され圧縮装着されていることを特徴とする。  The housing has an upper housing portion and a lower housing portion each having an opening, and has a structure in which the opening of one housing fits into the opening of the other housing, At the peripheral portion, there is provided a press-fitting / compression means for housing and holding the semiconductor device mounted on the wiring board and the heat conductor in a housing, and the heat conductor is made of a conductive material for electrode connection at room temperature. The compression load when heated in a temperature range that is soft and higher than room temperature is smaller than the compression load at room temperature, and is made of a thermally conductive elastic body, and is heated in the temperature range in the gap between the semiconductor device and the housing. And compression mounted.
そして、 好ましくは前記筐体内壁に、 前記配線基板上の半導体装置に電気的に 接続された電極端子と、 光ファイバに接続された光学端子とを有する光素子が保 持されていることである。 これによつて、 高速光通信用素子を含む半導体装置が 実現できる。 光素子は、 発光ダイオード'(L E D) や半導体レーザ等の電気信号 を光信号に変換する発光素子及び、 光信号を電気信号に変換する受光素子を含む。 配線基板としては、 一般的にセラミックス製の配線基板が用いられるが、 用途 によっては耐熱樹脂製の多層配線基板が用レヽられてもよい。 この配線基板上には、 搭載部品として半導体素子のベアチップや半導体パッケージ等が実装される。 搭 載部品と配線基板との電気的な接続は、 一般に半田が用いられるが、 半田以外の 導電性接着剤を用いることもできる。 Preferably, an optical element having an electrode terminal electrically connected to the semiconductor device on the wiring board and an optical terminal connected to an optical fiber is held on the inner wall of the housing. . Thereby, a semiconductor device including a high-speed optical communication element can be realized. The optical element includes a light emitting element for converting an electric signal into an optical signal, such as a light emitting diode (LED) or a semiconductor laser, and a light receiving element for converting an optical signal into an electric signal. Generally, ceramic wiring boards are used as wiring boards. Depending on the case, a multilayer wiring board made of a heat-resistant resin may be used. On this wiring board, a bare chip of a semiconductor element, a semiconductor package, and the like are mounted as mounted components. Solder is generally used for electrical connection between the mounted components and the wiring board, but a conductive adhesive other than solder can be used.
筐体は、 半導体装置を収納し、 外界から保護するため或る程度の強度を必要と するが、 収納された半導体装置からの熱を外部に効率よく放出するため熱伝導率 の高い材料で構成される。 また、 筐体を成型加工する上から加工性良好な材料が 望ましく、 例えばアルミニウム、 アルミ合金、 銅亜鉛合金 (真ちゆう) 等の金属 材料が用いられる。 その他、 用途によっては、 熱伝導性を高めるために金属ゃセ ラミックスの粉末をフイラ一として充填したプラスチックスも使用できる。  The housing requires a certain amount of strength to house the semiconductor device and protect it from the outside world, but is made of a material with high thermal conductivity to efficiently release the heat from the housed semiconductor device to the outside. Is done. Further, a material having good workability is desirable from the viewpoint of molding the casing. For example, a metal material such as aluminum, an aluminum alloy, a copper-zinc alloy (Machiyu) is used. In addition, depending on the application, plastics filled with metal-ceramic powder as a filler can be used to enhance thermal conductivity.
筐体の構造について説明する。 筐体は所定の深さを有し、 上部筐体部分と下部 筐体部分と有している。 いずれか一方の筐体部分が他方の筐体部分に嵌合し、 周 縁部に設けられた、 例えばネジ構造、 パネやピンを用いた締め付け構造等の嵌合 圧着手段により、 両者は着脱自在に圧着固定されている。 そして、 筐体内に半導 体装置が搭載された配線基板を収納する際、 一方の筐体部分に半導体装置が搭載 された配線基板を揷入した後、 他方の筐体部分を嵌合し、 周縁部に設けられた圧 着手段により圧着固定する。  The structure of the housing will be described. The housing has a predetermined depth, and has an upper housing portion and a lower housing portion. Either case is fitted to the other case, and both are detachable by means of crimping means provided on the periphery, such as a screw structure, a tightening structure using panels or pins, etc. It is fixed by crimping. Then, when the wiring board on which the semiconductor device is mounted is housed in the housing, the wiring board on which the semiconductor device is mounted is inserted into one housing part, and the other housing part is fitted. It is fixed by crimping using a crimping means provided on the peripheral edge.
筐体の寸法関係について詳述すると、 圧着固定した時に、 半導体装置の背面と その背後の筐体内壁面との間に、 装着される熱伝導体の圧縮前の厚さよりも狭い 隙間が形成されるように設計されている。 したがって、 筐体部分どうしを圧縮固 定することにより、 この隙間に介揷された熱伝導体は圧縮装着される。 この熱伝 導体が圧縮装着される程度は、 わずかでも圧縮されていればそれなりの効果が認 められるが、 好ましくは圧縮以前の熱伝導体の厚さの 4 0 %〜7 0 %の範囲内に 圧縮されるように筐体部分どうしを圧縮固定することが望ましい。  To explain the dimensional relationship of the housing in detail, when crimped and fixed, a gap is formed between the back surface of the semiconductor device and the inner wall surface of the housing behind it, which is smaller than the uncompressed thickness of the heat conductor to be mounted. It is designed to be. Therefore, by compressing and fixing the housing portions, the heat conductor interposed in the gap is compression-mounted. The degree to which this heat conductor is compressed and mounted is reasonable if it is slightly compressed, but is preferably within the range of 40% to 70% of the thickness of the heat conductor before compression. It is desirable to compress and fix the housing parts so that they are compressed.
本発明で用いる熱伝導体についての実験事実に基づく詳細な説明は、 「発明の 実施の形態」 の項で行うとして、 ここでは熱伝導体の材質、 形状、 寸法等につい て概要を説明する。  The detailed description of the heat conductor used in the present invention based on the experimental facts will be given in the section of “Embodiments of the Invention”. Here, the outline of the material, shape, dimensions, etc. of the heat conductor will be described.
先ず、 熱伝導体の材質については、 その機能の一つが半導体装置から発生する 熱を筐体に効率よく伝導することにあることから、 例えば 1 . O W/m · K〜l 0 . O WZm · K程度の熱伝導率を有していることが望ましレ、。 また、 熱伝導体 は、 筐体内に収納される半導体装置と筐体内壁間の隙間に圧縮装着されるので、 上記の通り特定の弾性を有していなければならない。 それ故に、 本発明で使用す る熱伝導体は、 熱伝導性と弾性とを有していることから熱伝導性弾性体と定義す ることができる。 First, as for the material of the heat conductor, one of its functions is to efficiently conduct the heat generated from the semiconductor device to the housing. For example, 1. OW / m · K ~ l 0. O WZm · It is desirable to have a thermal conductivity of about K. Further, since the heat conductor is compression-mounted in the gap between the semiconductor device housed in the housing and the inner wall of the housing, it must have a specific elasticity as described above. Therefore, the thermal conductor used in the present invention has thermal conductivity and elasticity, and can be defined as a thermally conductive elastic body.
本発明で使用する熱伝導体は、 圧縮装着時の圧縮率が高くても低負荷な状態で 隙間に圧縮装着されていることが重要であり、 上記の通り、 配線基板に半導体装 置を電気的に接続する、 例えば、 半田のごとき電極接続用導電材料よりも常温に おいて柔らかく、 かつ、 常温より高い温度域で加熱したときの圧縮荷重が常温で の圧縮荷重より小さい熱伝導性弾性体からなる。 好ましい常温 (室温と同義) で の弾性率は、 0 . 5 M P a〜5 . 0の範囲である。  It is important that the heat conductor used in the present invention is compressed and mounted in the gap with a low load even if the compression ratio at the time of compression mounting is high, and as described above, the semiconductor device is electrically mounted on the wiring board. For example, a thermally conductive elastic material that is softer at room temperature than a conductive material for electrode connection such as solder, and has a compressive load smaller than the compressive load at room temperature when heated in a temperature range higher than room temperature Consists of The preferable elastic modulus at normal temperature (synonymous with room temperature) is in the range of 0.5 MPa to 5.0.
また、 熱伝導体の変形抵抗を単位圧縮率あたりに必要な荷重で表したとき、 1 0 0 °Cでの変形抵抗が 3 0 °Cでの変形抵抗の 1 / 3〜 1 / 2であることが望まし レ、。  Also, when the deformation resistance of the heat conductor is represented by the load required per unit compressibility, the deformation resistance at 100 ° C is 1/3 to 1/2 of the deformation resistance at 30 ° C. It is desirable that.
熱伝導体の好ましい形状はシート状に成形されたものであり、 寸法については シートの厚さが、 筐体内に収納される半導体装置と筐体内壁との間の隙間より厚 く、 好ましくは、 4 0 %〜 7 0 %圧縮された状態で隙間に装着されることを考慮 した厚みが選ばれる。  The preferred shape of the heat conductor is a sheet shape, and the dimensions of the sheet are thicker than the gap between the semiconductor device housed in the housing and the inner wall of the housing. The thickness is selected in consideration of being mounted in the gap in a compressed state of 40% to 70%.
熱伝導体の加熱温度は、 常温より高い温度、 好ましくは、 5 0°C〜 1 0 0 °Cで あり、 加熱のタイミングは、 筐体部分どうしを嵌合圧着する際に加熱保持しなが ら圧着固定するか、 もしくは圧着固定した後で、 上記所定の温度に加熱保持して もよい。  The heating temperature of the heat conductor is higher than room temperature, preferably 50 ° C to 100 ° C, and the timing of heating is such that the housing portions are heated and held when fitting and crimping. After press-fixing, or after press-fixing, it may be heated and held at the above-mentioned predetermined temperature.
また、 熱伝導体の装着方法としては、 位置ずれが生じないように発熱素子を含 む半導体装置の背面、 もしくは半導体装置に対向する筐体内壁面に予め熱伝導性 の良い接着剤で仮固定しておくことが望ましい。  In addition, as a method of mounting the heat conductor, the heat conductor is temporarily fixed to the back surface of the semiconductor device including the heating element or the inner wall surface of the housing facing the semiconductor device in advance with an adhesive with good thermal conductivity so that the position does not shift. It is desirable to keep.
熱伝導体となる好ましいシート材としては、 一般に熱抵抗が低く、 柔軟性と粘 着性に優れ、 かつ硬度調整が可能な、 例えば、 シリコーン系のゴムシートの如き 髙熱伝導性のゴム質シートが挙げられる。  As a preferred sheet material to be a heat conductor, generally, a heat conductive rubber material such as a silicone rubber sheet, such as a silicone rubber sheet, has a low heat resistance, is excellent in flexibility and adhesiveness, and can be adjusted in hardness. Is mentioned.
ここで要求されるゴムシートの好ましい特性としては、 半田や A uバンプ等の 電極接続用導電材料を補強する封止材 (アンダーフィル樹脂と称される) や、 モ ジュール基板の如き実装基板よりは剛性は低いが、 熱伝導率は高いことであり、 そのような特性を備えた材料が熱伝導体を構成するゴムシートとして使用可であ る。 Preferred characteristics of the rubber sheet required here include solder and Au bumps Although it has lower rigidity than the encapsulant (called underfill resin) that reinforces the conductive material for electrode connection and the mounting substrate such as a module substrate, it has high thermal conductivity, The provided material can be used as a rubber sheet constituting a heat conductor.
次に示す本発明の半導体装置の構成例は、 実用上好ましい半導体モジュールを 筐体内に収納するものであり、 配線基板がモジュール基板に相当し、 それに搭載 する半導体装置が半導体パッケージに相当する。  In the following configuration example of the semiconductor device of the present invention, a practically preferable semiconductor module is housed in a housing, and a wiring board corresponds to a module board, and a semiconductor device mounted thereon corresponds to a semiconductor package.
すなわち、 この半導体装置は、 .  That is, this semiconductor device is:
モジュール基板と、 前記モジュール基板上に第 2の半田を介して電気的に接続、 搭載された半導体パッケージと、 前記モジュール基板と前記半導体パッケージと を収納する筐体と、 前記半導体パッケージと筐体との隙間に配置され、 前記半導 体パッケージの熱を筐体に伝導する熱伝導体とを備えた半導体装置において、 前 記筐体は、 互いに開口部を有する上部筐体部分と下部筐体部分とを有し、 一方の 筐体部分の開口部が他方の筐体部分の開口部に勘合する構造を有すると共に、 周 縁部に、 前記モジュール基板上に搭載された半導体パッケージと熱伝導体とを筐 体内に収納保持する嵌合圧着手段を有し、 前記半導体パッケージでは、 パッケ一 ジ基板に半導体素子が第 1の半田を介して電気的に接続、 搭載されていて、 前記 熱伝導体は、 常温において前記第 1、 第 2の半田より柔らかく、 かつ、 常温より 高く半田のリフロ一温度よりも低レ、温度域で加熱したときの圧縮荷重が常温での 圧縮荷重より小さい弾性体からなり、 前記半導体パッケージと筐体との隙間に前 記温度域で加熱され圧縮装着されていることを特徴とする。  A module board, a semiconductor package electrically connected and mounted on the module board via a second solder, a housing for housing the module board and the semiconductor package, a semiconductor package and a housing, A heat conductor that is disposed in a gap between the semiconductor package and the heat conductor that conducts heat of the semiconductor package to the housing. The housing includes an upper housing portion and a lower housing portion each having an opening. Having a structure in which an opening of one housing portion fits into an opening of the other housing portion, and a semiconductor package and a heat conductor mounted on the module substrate at a peripheral portion. The semiconductor package, wherein the semiconductor element is electrically connected to and mounted on the package substrate via a first solder; The elastic body is softer than the first and second solders at room temperature, and is higher than room temperature and lower than the reflow temperature of the solder, and the compression load when heated in the temperature range is smaller than the compression load at room temperature. The semiconductor device is characterized in that it is heated and compressed in the above-mentioned temperature range in the gap between the semiconductor package and the housing.
また、 本発明の半導体装置の製造方法は、 発熱素子を有する半導体パッケージ を配線基板上に電極接続用導電材料を介して電気的に接続、 搭載する工程と、 前 記半導体パッケージが搭載された配線基板を上部筐体部分と下部筐体部分とから なる筐体内に収納する工程とを有している半導体装置の製造方法であって、 前記 半導体パッケージが搭載された配線基板を筐体内に収納する工程においては、 前 記半導体パッケージと筐体との隙間に熱伝導性弾性体を配置し、 上部筐体部分と 下部筐体部分とを嵌合圧着することにより、 前記熱伝導性弾性体を前記半導体パ ッケージと筐体間の隙間に圧縮装着すると共に、 前記配線基板を上部筐体部分及 び下部筐体部分で挟持固定する工程を含み、 前記熱伝導性弾性体は、 常温におい て前記電極接続用導電材料より柔らかく、 カゝつ、 常温より高い温度域で加熱した ときの圧縮荷重が常温での圧縮荷重より小さいシート状熱伝導性弾性体からなり、 前記配線基板を筐体内に収納する工程の後工程として、 前記配線基板が収納され た筐体を 5 0 °C〜 1 0 0 °Cの温度環境下で加熱保持する工程を付加したことを特 徴とする。 In addition, the method for manufacturing a semiconductor device of the present invention includes a step of electrically connecting and mounting a semiconductor package having a heating element on a wiring board via a conductive material for electrode connection, and a step of wiring the semiconductor package mounted thereon. A method of manufacturing a semiconductor device, comprising: housing a substrate in a housing including an upper housing portion and a lower housing portion, wherein the wiring board on which the semiconductor package is mounted is housed in the housing. In the step, the heat conductive elastic body is disposed in a gap between the semiconductor package and the housing, and the upper conductive part and the lower housing part are fitted and press-bonded to each other, so that the heat conductive elastic body is Compression mounting in the gap between the semiconductor package and the housing, and the wiring board And a step of pinching and fixing the heat conductive elastic body at room temperature, the heat conductive elastic body is softer than the conductive material for electrode connection at room temperature, and has a compressive load when heated in a temperature range higher than room temperature. It is made of a sheet-like thermally conductive elastic body smaller than the compressive load at room temperature, and as a post-process of housing the wiring board in the housing, the housing housing the wiring board is stored at 50 ° C. to 100 ° C. It is characterized by the addition of a step of heating and holding in a temperature environment of ° C.
また、 上記のように、 筐体を 5 0 °C〜1 0 0 °Cの温度環境下で加熱保持するェ 程を付加する代わりに、 前記熱伝導性弾性体を前記半導体パッケージと筐体間の 隙間に圧縮装着すると共に、 前記配線基板を上部筐体部分及び下部筐体部分で挟 持固定する工程の中で、 筐体を 5 0 °C〜 1 0 0 °Cの温度環境下で加熱保持するよ うにしてもよレ、。  Further, as described above, instead of adding a step of heating and holding the housing under a temperature environment of 50 ° C. to 100 ° C., the heat conductive elastic body is placed between the semiconductor package and the housing. In the process of compressing and mounting the wiring board between the upper housing part and the lower housing part while compressing and mounting the wiring board in the gap, the housing is heated under a temperature environment of 50 ° C to 100 ° C. You can keep it.
本発明の他の目的、 特徴及ぴ利点は添付図面に関する以下の本発明の実施例の 記載から明らかになるであろう。  Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明による半導体装置の第 1実施例の断面図である。  FIG. 1 is a sectional view of a first embodiment of a semiconductor device according to the present invention.
図 2は本発明による半導体装置の第 2実施例の断面図である。  FIG. 2 is a sectional view of a second embodiment of the semiconductor device according to the present invention.
図 3は本発明による半導体装置の製造方法の一例を示す断面工程図である。 図 4は本発明による半導体装置の製造方法の他の一例を示す断面工程図である。 図 5は本発明に使用するゴムシートの機械的特性を計測するための実験方法を 示す断面図である。  FIG. 3 is a sectional process view showing an example of a method for manufacturing a semiconductor device according to the present invention. FIG. 4 is a sectional process view showing another example of the method for manufacturing a semiconductor device according to the present invention. FIG. 5 is a cross-sectional view showing an experimental method for measuring the mechanical properties of the rubber sheet used in the present invention.
図 6はゴムシートの圧縮率と圧縮荷重の関係を示す特性グラフである。  FIG. 6 is a characteristic graph showing the relationship between the compression ratio and the compression load of the rubber sheet.
図 7は室温におけるゴムシートの応力緩和特性グラフである。  FIG. 7 is a graph of the stress relaxation characteristics of the rubber sheet at room temperature.
図 8は本発明に使用するゴムシートの 8 5 °Cにおける応力緩和特性グラフであ る。  FIG. 8 is a graph of stress relaxation characteristics at 85 ° C. of the rubber sheet used in the present invention.
図 9 ( a ) 、 図 9 ( b ) はゴムシート装着時の筐体負荷測定方法を示す断面図 と平面図である。  FIGS. 9 (a) and 9 (b) are a cross-sectional view and a plan view showing a housing load measuring method when a rubber sheet is attached.
図 1 0はゴムシート装着時の筐体負荷測定結果を示した特性グラフである。 図 1 1 ( a ) 、 図 1 1 ( b ) は本発明による半導体装置の第 3実施例の平面図 及び断面図である。 図 1 2は第 3実施例の中でゴムシートが圧縮装着された時、 筐体が受ける負荷 の向きを模式的に示した半導体装置の断面図である。 FIG. 10 is a characteristic graph showing the results of measuring the housing load when the rubber sheet is attached. FIGS. 11 (a) and 11 (b) are a plan view and a sectional view of a third embodiment of the semiconductor device according to the present invention. FIG. 12 is a cross-sectional view of a semiconductor device schematically showing the direction of a load applied to a housing when a rubber sheet is compression-mounted in the third embodiment.
図 1 3は第 3実施例の中で筐体内に収納した半導体パッケージとレーザダイォ ードモジュールとから構成される光トランシーバ LS Iの回路構成ブロック図で める。  FIG. 13 is a circuit configuration block diagram of an optical transceiver LSI including a semiconductor package and a laser diode module housed in a housing in the third embodiment.
図 14 (a) 、 図 14 (b) 、 図 14 (c) は第 3実施例の放熱構造を説明す る断面図である。  FIGS. 14 (a), 14 (b), and 14 (c) are cross-sectional views illustrating the heat dissipation structure of the third embodiment.
図 1 5は本発明による半導体装置の第 4実施例の断面図である。  FIG. 15 is a sectional view of a fourth embodiment of the semiconductor device according to the present invention.
図 1 6は本発明による半導体装置の第 5実施例の断面図である。  FIG. 16 is a sectional view of a fifth embodiment of the semiconductor device according to the present invention.
図 1 7 (a) 、 図 17 (b) 、 図 17 (c) 、 は本発明による半導体装置の第 FIGS. 17 (a), 17 (b) and 17 (c) show the semiconductor device according to the present invention.
6実施例の断面図であり、 図 1 7 ( d ) は従来技術による半導体装置の断面図で める。 FIG. 17 is a cross-sectional view of a sixth embodiment, and FIG. 17D is a cross-sectional view of a semiconductor device according to a conventional technique.
図 1 8は本発明による半導体装置の第 7実施例の断面図である。  FIG. 18 is a sectional view of a semiconductor device according to a seventh embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の基本的な構成要件となる熱伝導体に要求される特性、 及びそ れを用いた本発明の半導体装置及びその製造方法の基本原理について、 図面を参 照して説明する。  Hereinafter, the characteristics required for a heat conductor, which is a basic component of the present invention, and the basic principle of a semiconductor device of the present invention using the same and a method of manufacturing the same will be described with reference to the drawings. .
図 5は、 熱伝導体となる高熱伝導性のシリコーン系ゴムシートの機械的特性を 測定した実験方法を示す。 リジットな円筒冶具 51 a、 5 l bの間に一定厚さの ゴムシート 8を挟んで、 圧縮速度 0. 01 mm/ sで圧縮した。  Figure 5 shows an experimental method for measuring the mechanical properties of a highly heat-conductive silicone rubber sheet as a heat conductor. The rubber sheet 8 having a constant thickness was sandwiched between the rigid cylindrical jigs 51a and 5lb, and compressed at a compression speed of 0.01 mm / s.
図 6は、 図 5で示した実験から、 ゴムシート 8の圧縮率 (初期の厚さに対する 潰し量の割合:横軸に%で表示) と圧縮荷重 (縦軸に k g f で表示) の関係を室 温 ( 25 °C) で計測した結果である。 図中の A材と B材はそれぞれ熱伝導率が異 なる材料 (ゴムシート 8) であり、 同じ圧縮率の時の圧縮荷重を比ぺると、 熱伝 導率が高い A材 (5. 6 W/m - K) は熱伝導率が低い B材 (2. 5 W/m - K) より大きくなつており、 圧縮率が増加するほどその差が顕著 (右上がりの特性) になっているのがわかる。  Fig. 6 shows the relationship between the compressibility of rubber sheet 8 (the ratio of the crushed amount to the initial thickness: expressed in% on the horizontal axis) and the compression load (expressed in kgf on the vertical axis) from the experiment shown in Fig. 5. The results are measured at room temperature (25 ° C). Material A and Material B in the figure are materials with different thermal conductivities (rubber sheet 8). Comparing the compressive load at the same compressibility, Material A with higher thermal conductivity (5.6) W / m-K) is larger than B material (2.5 W / m-K), which has low thermal conductivity, and the difference becomes more pronounced (upward right) as the compressibility increases. I understand.
図 7は、 図 6の A、 B材料について, 室温 (25°C) において圧縮率 35%ま で圧縮した状態で変位保持したときの圧縮荷重の変化を測定した結果である。 横 軸は保持時間を秒単位で示した。 圧縮後に変位保持すると初期に急速な応力緩和 を生じ、 ある時間経過したところで圧縮荷重はほぼ一定になることがわかる。 図 8は、 熱伝導率の高い A材について、 温度を上げて、 8 0 °Cにおいて同様の 試験を行った結果である。 8 0 °Cの環境下においては、 シート材そのものの軟ィ匕 によって初期圧縮荷重も小さくなり、 変位保持後の応力緩和が室温においては 2 0 %〜 3 0 %程度で飽和してしまう (圧縮荷重が 1 5 k g f程度に保持される) のに対して.、 8 0 °Cでは僅かな保持時間でほぼゼロ付近まで圧縮荷重が緩和して しまうことがわかる。 Figure 7 shows the results of measurements of the changes in the compressive load of materials A and B in Fig. 6 when they were displaced and held at room temperature (25 ° C) with a compressibility of 35%. side The axis indicates the retention time in seconds. It can be seen that when the displacement is maintained after compression, rapid stress relaxation occurs early, and the compression load becomes almost constant after a certain period of time. Figure 8 shows the results of a similar test performed at 80 ° C for material A, which has a high thermal conductivity, at elevated temperatures. In an environment of 80 ° C, the initial compressive load is also reduced due to the softness of the sheet material itself, and the stress relaxation after holding the displacement saturates at about 20% to 30% at room temperature. The load is maintained at about 15 kgf), but at 80 ° C, the compression load is reduced to almost zero with a short holding time.
以上の検討結果から、 発熱素子を有する電子部品 (少なくとも半導体装置を含 む) から、 上記高熱伝導性のゴムシート 8を介して筐体 (ここでは図面省略) へ の放熱を実現する場合、 通常の室温環境下での筐体組立てではなく、 他の半導体 部品への影響も小さレ、低温な加熱環境下で筐体組立てを行えば、 ゴムシート 8の 圧縮率を高く設計せざるを得なレ、場合においても筐体および電子部品への負荷を 格段に低くすることが可能であることがわかる。  From the above examination results, when realizing heat radiation from an electronic component having a heating element (including at least a semiconductor device) to a housing (not shown here) via the highly thermally conductive rubber sheet 8, In addition to assembling the housing in a room temperature environment, the effect on other semiconductor components is small, and if the housing is assembled in a low-temperature heating environment, the compression rate of the rubber sheet 8 must be designed to be high. It can be seen that even in such a case, the load on the housing and the electronic components can be significantly reduced.
図 9、 図 1 0は実際の製品モジュール筐体 (本発明では半導体装置と定義) を 用いて、 シート材 8を用いた放熱実装構造により筐体組立てを行った際に発生す る筐体への負荷を実験的に検討した結果である。 図 9 ( a ) は外観平面図、 図 9 ( b ) は断面図である。  FIGS. 9 and 10 show the cases that occur when the actual product module housing (defined as a semiconductor device in the present invention) is used to assemble the housing with the heat dissipation mounting structure using the sheet material 8. This is the result of experimentally examining the load of the hologram. 9A is a plan view of the external appearance, and FIG. 9B is a cross-sectional view.
評価に用いた筐体は、 アルミニウム製の上部筐体部分 5及び下部筐体部分 6か らなり、 下部筐体部分 6に上部筐体部分 5が嵌合する構造になっている。 モジュ ール基板 3の四隅に設けられた据付穴 3 aにネジ 9を貫通させて、 上部筐体部分 5及ぴ下部筐体部分 6の四隅をネジ 9で締め付けることにより、 半導体モジユー ル 1 0 0 (正確にはモジュール基板 3に搭載された半導体パッケージ 2 ) の背面 と上部筐体部分 5との間に介挿された熱伝導性ゴムシ一ト 8が圧縮された状態で 装着される。 なお、 モジュール基板 3には、 発熱素子 (半導体チップ等の素子) 1が内装されていて、 銅キャップ 7で封止された半導体パッケージ 2が、 半田バ ンプ 4を介して搭載、 接続されている。  The housing used for the evaluation includes an upper housing portion 5 and a lower housing portion 6 made of aluminum. The upper housing portion 5 is fitted to the lower housing portion 6. A screw 9 is inserted through the mounting holes 3 a provided at the four corners of the module board 3, and the four corners of the upper housing part 5 and the lower housing part 6 are tightened with the screws 9. A thermally conductive rubber sheet 8 inserted between the rear surface of 0 (more precisely, the semiconductor package 2 mounted on the module substrate 3) and the upper housing portion 5 is mounted in a compressed state. The module substrate 3 contains a heating element (element such as a semiconductor chip) 1, and a semiconductor package 2 sealed with a copper cap 7 is mounted and connected via a solder bump 4. .
図 9に示すように、 発熱素子 1を有する半導体パッケージ 2の搭載領域 1 0 0 aの中央部に相当する上部筐体 5の表面に、 ひずみゲージ 1 4を貼付し、 筐体組 立て時のゲージ出力変化から間接的に筐体への負荷を測定した。 As shown in FIG. 9, a strain gauge 14 is attached to the surface of the upper housing 5 corresponding to the center of the mounting area 100a of the semiconductor package 2 having the heating element 1, The load on the housing was measured indirectly from the change in gauge output during standing.
図 1 0は、 半導体パッケージ 2の上面と筐体 (正確には上部筐体部分 5の内壁 に設けられた半導体パッケージ 2の搭載領域 1 0 0 aに相当する浅い凹所) 間に ゴムシート材 8を介して上下筐体部分を圧縮装着した際の筐体表面のひずみ出力 変化を測定した結果である。 なお、 同図の左縦軸は筐体の保持温度 (°C) 、 右縦 軸は筐体ひずみ (単位: μ ) であり、 横軸は保持時間 (単位:分) をそれぞれ示 している。  Figure 10 shows the rubber sheet material between the upper surface of the semiconductor package 2 and the housing (more precisely, a shallow recess corresponding to the mounting area 100a of the semiconductor package 2 provided on the inner wall of the upper housing portion 5). This is the result of measuring the change in the strain output on the housing surface when the upper and lower housing parts are compression-mounted via Fig. 8. In the figure, the left vertical axis shows the housing holding temperature (° C), the right vertical axis shows the housing strain (unit: μ), and the horizontal axis shows the holding time (unit: minute). .
室温環境においてネジ締結による筐体組立てを行うことで、 半導体パッケージ 2上面と筐体間の隙間に介挿されたゴムシート 8が圧縮変形して、 筐体表面に引 張りひずみが発生している。 図示のように、 保持時間の初期にひずみはピークに 達している。 その後、 筐体温度の上昇とともに徐々に応力緩和が進行し、 筐体表 面の温度が 5 0 °Cを越えた付近で応力緩和が急速に生じているのがわかる。 この 測定結果から、 図 8に示したような加熱環境下における応力緩和の増加は 5 0 °C を越えた付近から顕著になることが予想される。 しかし、 図 8の結果と異なり応 力緩和の進行が途中から止まってしまったのは、 図 9に示したように筐体側のゴ ムシ一ト搭載領域が凹所で形成されたものを流用したため、 ゴムシート 8が筐体 組立て後に筐体の凹所の中に埋め込まれるような形となり、 ある程度以上潰れ変 形が進行してしまうと、 シート材 8自身の変形の逃げ場が失われ、 静水圧に近い 境界条件となってしまったためと考えられる。 したがってシート材と接触する筐 体側の形状はシート材周辺の変形が拘束されないような構造にすることが重要で ある。 図 1 0には、 凹所無しの予測値をプロットしてあるが、 発明者らはほぼこ れに近レ、実測値が得られる事を確認している。  When the housing is assembled by screwing in a room temperature environment, the rubber sheet 8 inserted in the gap between the upper surface of the semiconductor package 2 and the housing is compressed and deformed, and tensile strain is generated on the housing surface. . As shown, the strain peaks at the beginning of the retention time. After that, stress relaxation gradually progresses as the temperature of the case rises, and it can be seen that stress relaxation occurs rapidly near the temperature of the surface of the case exceeding 50 ° C. From these measurement results, it is expected that the increase in stress relaxation under the heating environment as shown in Fig. 8 will become significant from around 50 ° C. However, unlike the results shown in Fig. 8, the progress of stress relaxation stopped halfway because, as shown in Fig. 9, the case where the grommet mounting area on the housing side was formed with a recess was diverted. However, when the rubber sheet 8 is embedded in the recess of the housing after assembling the housing, and the crushing and deformation progresses to a certain extent, the escape of the deformation of the sheet material 8 itself is lost, and the hydrostatic pressure is reduced. It is considered that the boundary condition was close to. Therefore, it is important that the shape of the housing side that comes into contact with the sheet material be structured so that deformation around the sheet material is not restricted. FIG. 10 plots the predicted values without the pits. The inventors have confirmed that the measured values are almost the same, and that the measured values are obtained.
以下、 図面にしたがって本発明の実施例を具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
図 1は、 本発明による半導体装置の第 1実施例の概要を示す断面図である。 図 3及ぴ図 4は、 それぞれ高熱伝導性のゴムシート 8の加熱処理タィミングが 異なる製造工程を示した断面図である。  FIG. 1 is a sectional view showing an outline of a first embodiment of a semiconductor device according to the present invention. FIG. 3 and FIG. 4 are cross-sectional views showing different manufacturing steps of the heat treatment rubber sheet 8 having different heat treatment timings.
本実施例を、 高速通信用モジュール構造を例にして説明する。 半導体素子とし て高速通信用の素子 1を搭載した B G A (Ball Grid Array) 構造の半導体パッ ケージ 2は、 モジュール基板 3に、 半田バンプ 4 (本発明では第 2の半田と称す る) を介して実装され、 筐体内に収納される半導体モジュール 1 0◦を構成して いる。 なお、 図中の発熱素子 1は 1チップの場合を示しているが、 複数のマルチ チップパッケージ (MCM) 構造においても同様である。 This embodiment will be described by taking a high-speed communication module structure as an example. A semiconductor package 2 having a BGA (Ball Grid Array) structure on which an element 1 for high-speed communication is mounted as a semiconductor element is provided with solder bumps 4 (referred to as second solder in the present invention) on a module substrate 3. ), And constitutes a semiconductor module 10 ° that is housed in a housing. Note that the heating element 1 in the figure shows a case of one chip, but the same applies to a plurality of multi-chip package (MCM) structures.
半導体モジュール 1 0 0を収納する筐体は、 上部筐体部分 5と下部筐体部分 6 とから構成され、 下部筐体部分 6に上部筐体部分 5が嵌合する構造になっている。 これらの筐体部分は放熱効果を高めるため、 ァノレミニゥム製である。 ただし、 筐 体材料については他の金属材でもプラスチック材でもよい。 ただし、 プラスチッ ク材の場合は、 例えば、 フィラーを充填し熱伝導性を高めることが望ましい。 複数の半導体パッケージ 2を搭載したモジュール基板 3 (図 1では簡略化を目 的として 1つのパッケージが示されている) は、 その四隅に設けられた据付穴 3 aを介してネジ締結 9により上下部筐体部分 5、 6内部に固定される。  The housing for accommodating the semiconductor module 100 is composed of an upper housing portion 5 and a lower housing portion 6, and has a structure in which the upper housing portion 5 fits into the lower housing portion 6. These housing parts are made of anore minim to enhance the heat radiation effect. However, the housing material may be another metal material or a plastic material. However, in the case of a plastic material, for example, it is desirable to increase the thermal conductivity by filling a filler. The module board 3 on which a plurality of semiconductor packages 2 are mounted (one package is shown in FIG. 1 for simplicity) is screwed up and down 9 through mounting holes 3 a provided at the four corners. It is fixed inside the housing parts 5, 6.
半導体パッケージ 2の銅キャップ 7上面と上部筐体部分 5との間には、 ネジ締 結後に高熱伝導性のゴムシート 8の揷入分を考慮した隙間が予め形成されている。 ゴムシート 8 (工業用シリコーンゴムシート) は、 銀系のフィラーを高充填す ることにより、 高変形能力と高熱伝導性を両立した構成となっている。 熱伝導率 はフイラ一の種類によって異なってくるが、 ゴムシート 8は 2〜6 W/ (m · K) 程度の熱伝導率を有している。 硬度は熱伝導率が高い程高くなる。  A gap is formed between the upper surface of the copper cap 7 of the semiconductor package 2 and the upper housing portion 5 in consideration of the amount of the rubber sheet 8 having high thermal conductivity after screwing. The rubber sheet 8 (industrial silicone rubber sheet) has a configuration that achieves both high deformability and high thermal conductivity by being highly filled with a silver-based filler. Although the thermal conductivity varies depending on the type of the filler, the rubber sheet 8 has a thermal conductivity of about 2 to 6 W / (m · K). The hardness increases as the thermal conductivity increases.
上部筐体部分 5の内壁面 (突出部 5 a ) と半導体パッケージ 2上面との隙間量 t 1 (圧縮されたゴムシート 8の厚さに相当) は、 筐体部分 5、 6の厚さ方向の 寸法バラツキを考慮した上でゴムシート 8の初期厚さ t 2より小さくなるように 設計されており、 通常 3 0 %以上の圧縮率を見積もった設計が必要である。 この 例では、 隙間量 t 1は、 ゴムシート 8の初期厚さ t 2の 4 0 %〜 7 0 %となるよ うに設計されている。  The amount of clearance t 1 (equivalent to the thickness of the compressed rubber sheet 8) between the inner wall surface (projection 5 a) of the upper housing part 5 and the upper surface of the semiconductor package 2 is determined by the thickness direction of the housing parts 5 and 6. It is designed so as to be smaller than the initial thickness t2 of the rubber sheet 8 in consideration of the dimensional variation of the above, and it is necessary to design a design which usually estimates a compression ratio of 30% or more. In this example, the gap amount t1 is designed to be 40% to 70% of the initial thickness t2 of the rubber sheet 8.
なお、 モジュール基板 3に搭載される半導体パッケージ 2は、 この例では特に 放熱特性を考慮した実施例であるため、 発熱素子 1の上面に銅キヤップ 7を取り 付けた構造であるが、 他の材質からなるキヤップ材であつても、 樹脂で素子がモ ールドされた構造でも、 直接素子がむき出しとなっているべァチップ構造であつ ても構わない。  The semiconductor package 2 mounted on the module substrate 3 has a structure in which the copper cap 7 is attached to the upper surface of the heating element 1 because this example is an embodiment in which heat dissipation characteristics are particularly taken into consideration. It may be a cap material made of, a structure in which the element is molded with resin, or a base chip structure in which the element is directly exposed.
銅キャップ 7上面にはゴムシート 8が装着され、 図 3に示すように、 室温より 高い温度、 好ましくは 5 0 °C以上 1 0 0 °C以下の温度に設定された環境下で筐体 部分 5、 6をネジ 9で締結した。 A rubber sheet 8 is attached to the upper surface of the copper cap 7, and as shown in Fig. 3, The housing parts 5 and 6 were fastened with the screws 9 in an environment set at a high temperature, preferably a temperature of 50 ° C. or more and 100 ° C. or less.
また、 別の半導体装置では、 図 4に示すように、 室温環境下で筐体部分 5、 6 をネジ 9で締結してゴムシート 8の圧縮装着を行つた直後に、 加熱炉に移し 5 0 °C以上 1 0 0 °C以下の温度に加熱保持した。  In another semiconductor device, as shown in FIG. 4, immediately after the housing parts 5 and 6 are fastened with the screw 9 at room temperature and the rubber sheet 8 is compressed and mounted, the semiconductor device is transferred to a heating furnace 50. The temperature was kept at a temperature of not less than 100 ° C and not more than 100 ° C.
この加熱保持工程においては、 上記加熱温度環境下で少なくとも 1 0分以上、 通常は 1 5〜 2 0分間加熱保持すればよく、 いずれの場合も筐体に収納された信 賴性の高い半導体装置を得ることができた。  In this heating and holding step, the heating and holding may be performed for at least 10 minutes or more, usually for 15 to 20 minutes in the above-mentioned heating temperature environment. Could be obtained.
なお、 筐体内に収納する電子部品が、 通信系のモジュールでは、 接着材を用い て光学部品の精密位置決め固定を行っている場合が多いため、 1 0 0 °C以上の加 熱環境下では、 光学機構の耐熱温度を越えてしまう。 そのため、 前述した図 1 0 の測定結果から得られた知見と併せ、 好まし!/、加熱処理温度である 5 0 °C以上 1 0 0 °C以下の加熱環境下で筐体を組み立てることが、 モジュール製品全体として の信頼性に影響を与えることなく、 より低負荷なゴムシートによる放熱構造を実 現することができる。  In electronic modules housed in the housing, in the case of communication modules, the optical components are often precisely positioned and fixed using an adhesive, so under a heating environment of 100 ° C or more, The temperature exceeds the heat resistance temperature of the optical mechanism. Therefore, it is desirable, in addition to the knowledge obtained from the measurement results in Fig. 10 described above! / Assembling the housing under a heating environment of 50 ° C or more and 100 ° C or less, which is the heat treatment temperature, does not affect the reliability of the module product as a whole, and reduces the load on the rubber sheet. Thus, a heat dissipation structure can be realized.
次に、 本発明の第 2実施例を図 2を参照して説明する。  Next, a second embodiment of the present invention will be described with reference to FIG.
発熱素子 1を有する電子部品から筐体への放熱は、 銅キャップ 4の素子と接触 している領域から、 ゴムシート 8を通り、 筐体への放熱パスが大部分行っており、 銅キャップ 4の素子と接触していない領域から、 ゴムシート 8を通り、 筐体への 放熱パスはわずかしか行っていない。  Heat is radiated from the electronic component having the heating element 1 to the housing from the area in contact with the element of the copper cap 4, through the rubber sheet 8, to a large extent through the heat dissipation path to the housing. From the area not in contact with the element, only a small heat radiation path passes through the rubber sheet 8 to the housing.
そのため、 第 2実施例においては、 ゴムシート材 8の銅キャップ 4との接触領 域は、 キャップ全面ではなく、 発熱素子 1が接触している領域に限定されている。 これにより放熱特性への影響を最小限に抑えながら、 同じゴムシートの圧縮率で の筐体部分 5、 6およぴ電子部品やモジュール基板 3への負荷は大幅に軽減され る。  Therefore, in the second embodiment, the contact area of the rubber sheet material 8 with the copper cap 4 is not limited to the entire surface of the cap, but is limited to the area where the heating element 1 is in contact. This greatly reduces the load on the housing parts 5, 6 and the electronic components and the module substrate 3 at the same compression ratio of the rubber sheet, while minimizing the influence on the heat radiation characteristics.
さらに第 1実施例と同様に 5 0 °C以上 1 0 0 °C以下の環境下に加熱保持しなが ら筐体部分 5、 6のネジ 9締結による組立てを行った。 また、 第 1実施例と同様 に、 別の半導体装置を予め室温環境下で筐体組立てを行った直後 2 5 0 °C以上 1 0 0 °C以下の環境下で加熱保持する方法も実施した。 前者の加熱保持しながら筐体部分のネジ締結を行う場合には、 筐体組立て時の 初期の発生負荷を、 後者の場合よりも低く抑えることができるので、 より短時間 での応力緩和が達成され、 製造プロセスの短 T AT (Turn Around Time) 化が図 れる。 Further, as in the first embodiment, assembling was performed by fastening the screws 9 of the housing portions 5 and 6 while heating and maintaining the same in an environment of 50 ° C. or more and 100 ° C. or less. In addition, as in the first embodiment, a method of heating and holding the semiconductor device in an environment of 250 ° C. or more and 100 ° C. or less immediately after assembling another semiconductor device in a room temperature environment in advance was also performed. . When the screws are tightened in the housing while holding the former by heating, the initial load generated during housing assembly can be kept lower than in the latter case, so that stress relaxation can be achieved in a shorter time. As a result, the TAT (Turn Around Time) of the manufacturing process can be shortened.
次に、 本発明による半導体装置の第 3実施例を図 1 1を参照して説明する。 図 1 1の半導体装置は、 光通信用光学部品を搭載した高速通信用モジュール構造を 含む。 図 1 1 ( a ) は、 半導体装置の外観を示した平面図であり、 図 1 1 ( b ) はその断面図である。  Next, a third embodiment of the semiconductor device according to the present invention will be described with reference to FIG. The semiconductor device of FIG. 11 includes a high-speed communication module structure on which optical components for optical communication are mounted. FIG. 11A is a plan view showing the appearance of the semiconductor device, and FIG. 11B is a sectional view thereof.
装置の基本構成は第 1実施例と同様であるが、 電気/光変換を行うためのレー ザダイオードを内蔵したレーザダイオードモジュール (光素子) 1 1が上部筐体 部分 5もしくは下部筐体部分 6の裏面に固定されている。 この実施例では、 光素 子 1 1は下部筐体部分 6の裏面に設置されている。  The basic configuration of the device is the same as that of the first embodiment, except that a laser diode module (optical element) 11 with a built-in laser diode for electrical / optical conversion is used in the upper housing part 5 or the lower housing part 6. It is fixed to the back of. In this embodiment, the photoelement 11 is installed on the back surface of the lower housing part 6.
この種の半導体装置においては、 レーザダイォードモジュールは発熱量が大き いため一般に高放熱部分である筐体のフィン側裏面に直付けされる場合が多レ、。 レーザダイォードモジュール 1 1は電気信号を光信号に変換 ·出力するための発 光素子を含むが、 一般には光信号を電気信号に変換する受光素子をも含んでいる。 発光素子の場合には、 出力された光信号を光ファイバ 1 2に高効率に集光する ため高精度な位置決めが実施されているが、 受光素子の場合も機能が逆なだけで 高精度な位置決めが要求されるのは発光素子と同じである。  In this type of semiconductor device, since the laser diode module generates a large amount of heat, it is often mounted directly on the fin side of the housing, which is a high heat radiation part. The laser diode module 11 includes a light emitting element for converting and outputting an electric signal to an optical signal, but generally also includes a light receiving element for converting an optical signal to an electric signal. In the case of light-emitting elements, high-precision positioning is performed in order to focus the output optical signal on the optical fiber 12 with high efficiency. Positioning is required in the same manner as the light emitting element.
発光素子の場合には、 電気信号を光信号に変換することで、 また受光素子の場 合には、 光信号を電気信号に変換することで、 いずれの場合にも低ノィズ ·高速 な信号伝送を可能にする。  In the case of light-emitting devices, electrical signals are converted to optical signals, and in the case of light-receiving devices, optical signals are converted to electrical signals. Enable.
この際、 発熱素子 1を有する半導体パッケージ 2のゴムシート 8を介した筐体 部分 5、 6への放熱構造を適用するために筐体へ高い負荷を与えて筐体自身を変 形させてしまうと、 レーザダイオードモジュール 1 1と光ファイバ 1 2の相対位 置がずれてしまい、 レーザダイオードから発光された光信号の光ファイバ 1 2へ の集光効率が著しく悪ィヒし製品性能を劣化させる。 したがって、 第 1実施例で示 した方法により筐体に対して低負荷にゴムシート 8を装着し、 半導体パッケージ 2の高放熱構造を達成することが、 光通信用の高速伝送モジュールでは必須な要 件である。 At this time, a high load is applied to the housing to apply a heat dissipation structure to the housing portions 5 and 6 via the rubber sheet 8 of the semiconductor package 2 having the heating element 1, and the housing itself is deformed. The relative positions of the laser diode module 11 and the optical fiber 12 are shifted, and the efficiency of condensing the optical signal emitted from the laser diode on the optical fiber 12 is significantly reduced, deteriorating the product performance. . Therefore, it is essential for the high-speed transmission module for optical communication that the high heat dissipation structure of the semiconductor package 2 be achieved by attaching the rubber sheet 8 to the housing with low load by the method shown in the first embodiment. Case.
本発明によれば、 ゴムシート 8力 40 %〜 70 %に圧縮装着されても加熱保 持されることで筐体に対しては低負荷となり、 放熱効果を発揮しつつ筐体変形を 抑えることができる。 そのため、 上記のようにレーザダイォードから発光された 光信号の光ファイバ 12への集光効率の低下を防止でき、 信頼性の高い装置が実 現できる。 なお、 図 12は、 図 11の第 3実施例において、 熱伝導性ゴムシート 8が圧縮装着されたとき、 筐体が受ける負荷 (荷重) の向きを模式的に示してい る。  According to the present invention, even when the rubber sheet is compressed and mounted at a force of 40% to 70%, it is heated and held, so that the load on the housing is reduced, and the deformation of the housing is suppressed while exhibiting a heat radiation effect. Can be. Therefore, it is possible to prevent the efficiency of condensing the optical signal emitted from the laser diode on the optical fiber 12 as described above, and to realize a highly reliable device. FIG. 12 schematically shows the direction of the load (load) applied to the housing when the thermally conductive rubber sheet 8 is compression-mounted in the third embodiment of FIG.
図 13は、 図 1 1の筐体内に収納した半導体パッケージ 2とレーザダイォード モジユーノレ 11とから構成される光トランシーバ L S Iの回路構成例をプロック 図で示したものである。  FIG. 13 is a block diagram showing an example of a circuit configuration of an optical transceiver LSI including the semiconductor package 2 and the laser diode module 11 housed in the housing of FIG. 11.
このプロック図の機能の概要を説明すると、 図中の上段部が、 左端から入力し た電気信号を MUX回路 (多重化回路) 通して右端の LDモジュール (送信部) に入力し、 この入力した電気信号を LDモジュールで光信号に変換して右端から 光ファイバ (図示されていない) を通して外部に光信号として出力する。 それに 対して、 図中の下段部が、 右端から光ファイバ (図示されていない) を通して入 力した光信号を PDモジュール (受信部) で電気信号に変換すると共に増幅器を 通して左端の DEMUX回路 (分離回路) に入力して外部に電気出力する。 即ち、 この光トランシーパ L S Iプロックの左側の MUX回路 (多重化回路) 及ぴ D E MUX回路 (分離回路) が図 11の半導体パッケージ 2に該当し、 右側の LDモ ジュール及び P Dモジュールが光素子 1 1 (レーザダイォードモジュール) に該 当する。 なお、 この装置では、 例えば、 622MbZ sのデータを MUX回路 (多重化回路) に入力した時、 LDモジュール (送信部) から光出力として 10 GbZsのデータが出力された。  To explain the outline of the function of this block diagram, the upper part in the figure inputs the electric signal input from the left end to the LD module (transmitter) at the right end through the MUX circuit (multiplexing circuit). The electrical signal is converted to an optical signal by an LD module and output from the right end as an optical signal through an optical fiber (not shown). On the other hand, the lower part in the figure converts the optical signal input from the right end through an optical fiber (not shown) into an electric signal by the PD module (receiver), and passes through the amplifier to the DEMUX circuit ( (Separation circuit) and output to the outside. That is, the MUX circuit (multiplexing circuit) and the DE MUX circuit (separation circuit) on the left side of the optical transceiver LSI block correspond to the semiconductor package 2 in FIG. 11, and the LD module and PD module on the right side correspond to the optical element 11 1 (Laser diode module). In this device, for example, when 622 MbZs data was input to the MUX circuit (multiplexing circuit), 10 GbZs data was output as an optical output from the LD module (transmitting unit).
図 14 (a) は、 図 11に示した半導体装置 (光トランシーバモジュール) の 放熱構造について説明する断面模式図である。 図 14 (b) 及び図 14 (c) は、 それぞれ半導体パッケージ 2の部分拡大図であり、 図 14 (b) の構成では、 発 熱素子 1 (トランシーバ LS I) と金属キャップ 7との隙間には熱伝導性樹脂 (熱硬化†生樹脂) が充填され、 半導体パッケージ基板 21と発熱素子 1とを接続 する B G A半田バンプ 4 (第 1の半田) の周囲の隙間には、 熱伝導"生良好なアン ダーフィル樹脂が充填されている。 FIG. 14A is a schematic cross-sectional view illustrating the heat dissipation structure of the semiconductor device (optical transceiver module) shown in FIG. FIGS. 14 (b) and 14 (c) are partial enlarged views of the semiconductor package 2, respectively.In the configuration of FIG. 14 (b), the gap between the heat generating element 1 (transceiver LSI) and the metal cap 7 is shown. Is filled with a heat conductive resin (thermosetting resin), and connects the semiconductor package substrate 21 and the heating element 1 The gap around the BGA solder bump 4 (first solder) is filled with an underfill resin that has good thermal conductivity.
図 1 4 ( C) の場合には、 B G A半田バンプ 4の代わりに金バンプが、 アンダ 一フィル樹脂の代わりに異方導電樹脂 (非導電樹脂) が充填されていて、 いずれ も半導体パッケージ 2のキャップ 7から上部筐体部分 5に放熱するだけでなく、 モジュール基板 3側からも下部筐体部分 6にも放熱するように配慮されている。 次に本発明による半導体装置の第 4実施例を図 1 5を参照して説明する。  In the case of Fig. 14 (C), gold bumps are filled in place of the BGA solder bumps 4 and anisotropic conductive resin (non-conductive resin) is filled in place of the underfill resin. In addition to dissipating heat from the cap 7 to the upper housing part 5, consideration is given to heat dissipation from the module substrate 3 side to the lower housing part 6. Next, a fourth embodiment of the semiconductor device according to the present invention will be described with reference to FIG.
図 1 5は、 光通信用光学部品を搭載した高速通信用モジュール構造を含む他の 実施例の断面図である。 この例は、 図 1 1に示した第 3実施例の構造と基本的に は同じであるが、 放熱フィン 1 0が下部筐体部分 6側に設けられている点が異な る。 すなわち、 放熱フィン 1 0をレーザダイオード 1 1が設置される側の下部筐 体部分 6に設けることにより、 発熱量の多いレーザダイォード 1 1の放熱効果を 高めている。  FIG. 15 is a cross-sectional view of another embodiment including a high-speed communication module structure equipped with optical communication optical components. This example is basically the same as the structure of the third embodiment shown in FIG. 11, except that the heat radiation fins 10 are provided on the lower housing part 6 side. In other words, the heat radiation fins 10 are provided in the lower housing part 6 on the side where the laser diode 11 is installed, thereby enhancing the heat radiation effect of the laser diode 11 that generates a large amount of heat.
次に、 本発明による半導体装置の第 5実施例を図 1 6を参照して説明する。 図 1 6は、 図 1 5に示した第 4実施例よりも放熱効果をさらに高めた光通信用 光学部品を搭載した高速通信用モジュール構造を含む他の実施例の断面図である。 この例では、 レーザダイォード 1 1の熱を更に上部筐体部分 5にも放熱するよう に、 半導体パッケージ 2と同様に熱伝導性ゴムシ一ト 8がレーザダイオード 1 1 と上部筐体部分 5との隙間にも圧縮装着されている。 これにより、 発熱量の多い レーザダイォード 1 1が上下筐体部分 5、 6から放熱され、 放熱効果を一層高め ている。  Next, a fifth embodiment of the semiconductor device according to the present invention will be described with reference to FIG. FIG. 16 is a cross-sectional view of another embodiment including a high-speed communication module structure equipped with an optical communication optical component having a higher heat radiation effect than the fourth embodiment shown in FIG. In this example, similarly to the semiconductor package 2, a heat conductive rubber sheet 8 is provided between the laser diode 11 and the upper housing part 5 so that the heat of the laser diode 11 is further radiated to the upper housing part 5. It is also compression mounted in the gap. As a result, the laser diode 11 that generates a large amount of heat is radiated from the upper and lower housing portions 5 and 6, thereby further improving the heat radiation effect.
図 1 7 ( a ) ( b ) は、 光通信用光学部品を搭載した高速通信用モジュール構 造を含む第 6実施例の断面図である。 基本的には、 図 1 1に示した第 3実施例と 同一構造であるが、 半導体パッケージ 2の代わりに、 発熱素子 1としてべァチッ プが用いられ、 チップはモジュール基板 3に半田バンプ 4を介して直接接続され、 半田バンプ 4の周囲にアンダーフィル樹脂が充填されている点が異なる。 これに よりベアチップ 1からの熱を上下筐体部分 5、 6から効果的に放熱できる。 図 1 7 ( c ) は、 第 6実施例のフリップチップの放熱経路を模式的に示した部分拡大 図である。 図 1 7 ( d ) は、 比較例として示した従来のワイヤーボンディングの 場合の放熱経路である。 FIGS. 17A and 17B are cross-sectional views of a sixth embodiment including a high-speed communication module structure equipped with optical communication optical components. Basically, the structure is the same as that of the third embodiment shown in FIG. 11, except that a semiconductor element 2 is replaced with a chip as a heating element 1, and a chip has solder bumps 4 on a module substrate 3. The difference is that an underfill resin is filled around the solder bumps 4. As a result, heat from the bare chip 1 can be effectively radiated from the upper and lower housing portions 5 and 6. FIG. 17 (c) is a partially enlarged view schematically showing a heat dissipation path of the flip chip of the sixth embodiment. Figure 17 (d) shows the results of the conventional wire bonding shown as a comparative example. This is the heat dissipation path.
次に、 本発明による半導体装置の第 7実施例を図 1 8を参照して説明する。 図 1 8は、 光通信用光学部品を搭載した高速通信用モジュール構造を含む第 7 実施例の断面図であるである。 基本的には、 図 1 7 ( a ) に示した第 6実施例と 同一構造であるが、 本実施例は、 高さの異なる複数のベアチップ (発熱素子) が モジユール基板 2に混載されたマルチチップである点で異なる。 この種の高さに 高低差がある複数の発熱素子 1をモジュール基板 2に搭載する場合には、 本発明 の低負荷放熱方式が極めて有効である。  Next, a seventh embodiment of the semiconductor device according to the present invention will be described with reference to FIG. FIG. 18 is a sectional view of a seventh embodiment including a high-speed communication module structure equipped with optical communication optical components. Basically, it has the same structure as the sixth embodiment shown in FIG. 17 (a). However, in this embodiment, a multi-chip in which a plurality of bare chips (heating elements) having different heights are mixed on the module substrate 2 is used. They differ in that they are chips. When a plurality of heating elements 1 having such height differences in height are mounted on the module substrate 2, the low-load heat radiation method of the present invention is extremely effective.
産業上の利用可能性 Industrial applicability
本発明は、 半導体装置及びその製造方法に適応できる。 特に、 配線基板上に搭 載された半導体装置を、 筐体内に放熱性良好に、 かつ外部応力に対する歪を低減 することを考慮して収納された半導体装置、 特に高速光通信用素子を含む半導体 装置に好適な半導体装置及びその製造方法として適応できる。  The present invention is applicable to a semiconductor device and a method for manufacturing the same. In particular, a semiconductor device mounted on a wiring board is housed in a housing with good heat dissipation and reduced distortion due to external stress, particularly a semiconductor including a high-speed optical communication element. The present invention can be applied as a semiconductor device suitable for the device and a manufacturing method thereof.
上記記載は実施例についてなされたが、 本発明はその精神と添付クレームの範 囲内で種々の変更およぴ修正をすることができることは当業者に明らかである。  Although the above description has been made with reference to embodiments, it will be apparent to those skilled in the art that the present invention can be variously changed and modified within the spirit and scope of the appended claims.

Claims

請 求 の 範 囲 The scope of the claims
1. 配線基板と、 1. a wiring board,
前記配線基板上に電極接続用導電材料を介して電気的に接続、 搭載された半導 体装置と、  A semiconductor device electrically connected and mounted on the wiring substrate via a conductive material for electrode connection,
前記配線基板と前記半導体装置とを収納する筐体と、  A housing for housing the wiring board and the semiconductor device;
前記半導体装置と筐体との隙間に配置され、 前記半導体装置の熱を筐体に伝導 する熱伝導体とを備えた半導体装置において、  A semiconductor device comprising: a heat conductor that is disposed in a gap between the semiconductor device and a housing and that conducts heat of the semiconductor device to the housing.
前記筐体は、 互いに開口部を有する上部筐体部分と下部筐体部分とを有し、 一 方の筐体部分の開口部が他方の筐体部分の開口部に勘合する構造を有すると共に、 周縁部に、 前記配線基板上に搭載された半導体装置と熱伝導体とを筐体内に収納 保持する嵌合圧着手段を有し、  The housing has an upper housing portion and a lower housing portion each having an opening, and has a structure in which the opening of one housing fits into the opening of the other housing, The peripheral portion has a fitting and crimping means for housing and holding the semiconductor device and the heat conductor mounted on the wiring board in a housing,
前記熱伝導体は、 常温において前記電極接続用導電材料より柔らかく、 かつ、 常温より高レ、温度域で加熱したときの圧縮荷重が常温での圧縮荷重より小さい熱 伝導性弾性体からなり、 前記半導体装置と筐体との隙間に前記温度域で加熱され 圧縮装着されていることを特徴とする半導体装置。  The heat conductor is made of a heat conductive elastic material that is softer than the conductive material for electrode connection at room temperature, and has a compression load higher than room temperature when heated in a temperature range, and is smaller than a compression load at room temperature. A semiconductor device, which is heated and compressed and mounted in the gap between a semiconductor device and a housing in the temperature range.
2. 配線基板と、  2. Wiring board and
前記配線基板上に電極接続用導電材料を介して電気的に接続、 搭載された半導 体装置と、  A semiconductor device electrically connected and mounted on the wiring substrate via a conductive material for electrode connection,
前記配線基板と前記半導体装置とを収納する筐体と、  A housing for housing the wiring board and the semiconductor device;
前記半導体装置と筐体との隙間に配置され、 前記半導体装置の熱を筐体に伝導 する熱伝導体とを備えた半導体装置において、  A semiconductor device comprising: a heat conductor that is disposed in a gap between the semiconductor device and a housing and that conducts heat of the semiconductor device to the housing.
前記筐体は、 互いに開口部を有する上部筐体部分と下部筐体部分とを有し、 一 方の筐体部分の開口部が他方の筐体部分の開口部に勘合する構造を有すると共に、 周縁部に、 前記配線基板上に搭載された半導体装置と熱伝導体とを筐体内に収納 保持する嵌合圧着手段を有し、  The housing has an upper housing portion and a lower housing portion each having an opening, and has a structure in which the opening of one housing fits into the opening of the other housing, The peripheral portion has a fitting and crimping means for housing and holding the semiconductor device and the heat conductor mounted on the wiring board in a housing,
前記筐体内壁には、 前記配線基板上の半導体装置に電気的に接続された電極端 子と、 光フアイパーに接続された光学端子とを有する光素子が保持され、  An optical element having an electrode terminal electrically connected to a semiconductor device on the wiring board and an optical terminal connected to an optical fiber is held on the inner wall of the housing,
前記熱伝導体は、 常温において前記電極接続用導電材料より柔らかく、 力つ、 常温より高い温度域で加熱したときの圧縮荷重が常温での圧縮荷重より小さい熱 伝導性弾性体からなり、 前記半導体装置と筐体との隙間に前記温度域で加熱され 圧縮装着されていることを特徴とする半導体装置。 The heat conductor is softer than the conductive material for electrode connection at room temperature, A compressive load when heated in a temperature range higher than room temperature is made of a thermally conductive elastic body that is smaller than a compressive load at room temperature, and is heated and compressed in a gap between the semiconductor device and the housing in the temperature range. A semiconductor device characterized by the above-mentioned.
3. モジユーノレ基板と、  3. Module board and
前記モジュール基板上に第 2の半田を介して電気的に接続、 搭載された半導体 ノヽ。ッケージと、  A semiconductor device electrically connected and mounted on the module substrate via a second solder. Package and
前記モジュール基板と前記半導体パッケージとを収納する筐体と、  A housing for housing the module substrate and the semiconductor package;
前記半導体パッケージと筐体との隙間に配置され、 前記半導体パッケージの熱 を筐体に伝導する熱伝導体とを備えた半導体装置において、  A semiconductor device comprising: a heat conductor that is disposed in a gap between the semiconductor package and a housing and conducts heat of the semiconductor package to the housing.
前記筐体は、 互いに開口部を有する上部筐体部分と下部筐体部分とを有し、 一 方の筐体部分の開口部が他方の齒体部分の開口部に勘合する構造を有すると共に、 周縁部に、 前記モジュール基板上に搭載された半導体パッケージと熱伝導体とを 筐体内に収納保持する嵌合圧着手段を有し、  The housing has an upper housing portion and a lower housing portion each having an opening, and has a structure in which the opening of one housing fits into the opening of the other tooth portion, At the peripheral portion, there is provided a fitting and crimping means for housing and holding the semiconductor package and the heat conductor mounted on the module substrate in a housing,
前記半導体パッケージでは、 パッケージ基板に半導体素子が第 1の半田を介し て電気的に接続、 搭載され、  In the semiconductor package, a semiconductor element is electrically connected to and mounted on a package substrate via a first solder;
前記熱伝導体は、 常温において前記第 1、 第 2の半田より柔らかく、 かつ、 常 温より高く、 半田リフロ一温度よりも低レ、温度域で加熱したときの圧縮荷重が常 温での圧縮荷重より小さレ、弾性体からなり、 前記半導体パッケージと筐体との隙 間に前記温度域で加熱され圧縮装着されていることを特徴とする半導体装置。  The heat conductor is softer than the first and second solders at room temperature, is higher than room temperature, is lower than the solder reflow temperature, and has a compression load when heated in a temperature range at room temperature. A semiconductor device comprising an elastic body having a load smaller than a load, wherein the semiconductor device is heated and compressed in the temperature range between the semiconductor package and the housing.
4. モジユーノレ基板と、  4. Module board
前記モジュール基板上に第 2の半田を介して電気的に接続、 搭載された半導体 ノ ッゲージと、  A semiconductor package that is electrically connected and mounted on the module substrate via a second solder;
前記モジュール基板と前記半導体パッケージとを収納する筐体と、  A housing for housing the module substrate and the semiconductor package;
前記半導体パッケージと筐体との隙間に配置され、 前記半導体パッケージの熱 を筐体に伝導する熱伝導体とを備えた半導体装置において、  A semiconductor device comprising: a heat conductor that is disposed in a gap between the semiconductor package and a housing and conducts heat of the semiconductor package to the housing.
前記筐体は、 互いに開口部を有する上部筐体部分と下部筐体部分とを有し、 一 方の筐体部分の開口部が他方の筐体部分の開口部に勘合する構造を有すると共に、 周縁部に、 前記モジュール基板上に搭載された半導体パッケージと熱伝導体とを 筐体内に収納保持する嵌合圧着手段を有し、 前記半導体パッケージでは、 パッケージ基板に半導体素子が第 1の半田を介し て電気的に接続、 搭載され、 The housing has an upper housing portion and a lower housing portion each having an opening, and has a structure in which the opening of one housing fits into the opening of the other housing, At the peripheral portion, there is provided a fitting and crimping means for housing and holding the semiconductor package and the heat conductor mounted on the module substrate in a housing, In the semiconductor package, a semiconductor element is electrically connected to and mounted on a package substrate via a first solder;
前記筐体内壁には、 前記モジュール基板上の半導体パッケージ電極に電気的に 接続された電極端子と、 光フアイパーに接続された光学端子とを有する光素子が 保持され、  An optical element having an electrode terminal electrically connected to a semiconductor package electrode on the module substrate and an optical terminal connected to an optical fiber is held on the housing inner wall,
前記熱伝導体は、 常温において前記第 1、 第 2の半田より柔らかく、 かつ、 常 温より高く、 半田のリフロ一温度よりも低レ、温度域で加熱したときの圧縮荷重が 常温での圧縮荷重より小さレ、弾性体からなり、 前記半導体パッケージと筐体との 隙間に前記温度域で加熱され圧縮装着されていることを特徴とする半導体装置。  The heat conductor is softer than the first and second solders at room temperature, is higher than room temperature, is lower than the reflow temperature of the solder, and has a compression load when heated in a temperature range. A semiconductor device comprising an elastic body smaller than a load, wherein the semiconductor device is heated and compressed in the temperature range in a gap between the semiconductor package and the housing.
5. 配線基板と、  5. Wiring board,
前記配線基板上に電極接続用導電材料を介して電気的に接続、 搭載された複数 の半導体装置と、  A plurality of semiconductor devices that are electrically connected and mounted on the wiring substrate via a conductive material for electrode connection,
前記配線基板と前記複数の半導体装置とを収納する筐体と、  A housing for housing the wiring board and the plurality of semiconductor devices;
前記複数の半導体装置と筐体との隙間に一括配置され、 前記複数の半導体装置 の熱を筐体に伝導する熱伝導体とを備えた半導体装置において、  A semiconductor device comprising: a plurality of semiconductor devices and a heat conductor that is collectively disposed in a gap between the housing and conducts heat of the plurality of semiconductor devices to the housing.
前記筐体は、 互いに開口部を有する上部筐体部分と下部筐体部分とを有し、 一 方の筐体部分の開口部が他方の筐体部分の開口部に勘合する構造を有すると共に、 周縁部に、 前記配線基板上に搭載された複数の半導体装置と熱伝導体とを筐体内 に収納保持する嵌合圧着手段を有し、  The housing has an upper housing portion and a lower housing portion each having an opening, and has a structure in which the opening of one housing fits into the opening of the other housing, A peripheral crimping means for fitting and crimping means for housing and holding the plurality of semiconductor devices mounted on the wiring board and the heat conductor in a housing;
前記熱伝導体は、 常温において前記電極接続用導電材料より柔らかく、 かつ、 常温より高レ、温度域で加熱したときの圧縮荷重が常温での圧縮荷重より小さい熱 伝導性弾性体からなり、 前記複数の半導体装置と筐体との隙間に前記温度域でカロ 熱され圧縮装着されていることを特徴とする半導体装置。  The heat conductor is made of a heat conductive elastic material that is softer than the conductive material for electrode connection at room temperature, and has a compression load higher than room temperature when heated in a temperature range, and is smaller than a compression load at room temperature. A semiconductor device, wherein the semiconductor device is compressed and mounted in a gap between a plurality of semiconductor devices and a housing by heating in the temperature range.
6. 前記熱伝導体は、 熱伝導率が、 1 . 0〜7 . 0 WZ (m - K) であって、 室温での弾性率が、 0 . 5〜5 . O P aであり、 常温より高い温度域で加熱した ときの圧縮荷重が常温での圧縮荷重より小さ!/、熱伝導性弾性体からなり、 前記半 導体装置と筐体との隙間に、 前記温度域で加熱され圧縮装着されていることを特 徴とする請求項 1に記載の半導体装置。  6. The thermal conductor has a thermal conductivity of 1.0 to 7.0 WZ (m-K), an elastic modulus at room temperature of 0.5 to 5. OPa, The compressive load when heated in a high temperature range is smaller than the compressive load at room temperature! 2. The semiconductor device according to claim 1, wherein the semiconductor device is made of a heat conductive elastic material, and is heated and compressed in the temperature range in a gap between the semiconductor device and the housing.
7. 前記熱伝導体は、 変形抵抗を単位圧縮率あたりに必要な荷重で表わしたと き、 1 0 0 °Cでの変形抵抗が 3 0 °Cでの変形抵抗の 1 3〜1 / 2であるゴム質 材からなることを特徴とする請求項 1乃至 5の何れか一つに記載の半導体装置。 7. For the thermal conductor, the deformation resistance was expressed as the load required per unit compressibility. 6.A rubber material having a deformation resistance at 100 ° C. of 13 to 1/2 of a deformation resistance at 30 ° C. according to any one of claims 1 to 5, 13. The semiconductor device according to claim 1.
8 . 前記熱伝導体は、 前記半導体素子もしくは前記半導体パッケージに接触す る第一の部位の厚さを t 1、 その周囲の前記半導体素子もしくは前記半導体パッ ケージに接触しない第二の部位の厚さを t 2としたとき、 厚さ t lは 1: 2の 4 0 %〜 7 0 %であることを特徴とする請求項 1に記載の半導体装置。 8. The thickness of the first portion of the thermal conductor that contacts the semiconductor element or the semiconductor package is t1, and the thickness of the surrounding second portion that does not contact the semiconductor element or the semiconductor package. 2. The semiconductor device according to claim 1, wherein the thickness tl is 40% to 70% of 1: 2, where t2 is t2.
9. 前記嵌合圧着手段は、 上部筐体部分と下部筐体部分の周縁部に設けられた ネジ機構による締め付け手段で構成したことを特徴とする請求項 1に記載の半導 9. The semiconductor device according to claim 1, wherein the fitting / compression bonding means is configured by fastening means using a screw mechanism provided on a peripheral edge of the upper housing part and the lower housing part.
10. 前記半導体装置もしくは前記半導体パッケージは、 高速通信用素子を搭載 していることを特徴とする請求項 1に記載の半導体装置。 10. The semiconductor device according to claim 1, wherein the semiconductor device or the semiconductor package has a high-speed communication element mounted thereon.
11. 発熱素子を有する半導体パッケージを配線基板上に電極接続用導電材料を 介して電気的に接続、 搭載する工程と、  11. a step of electrically connecting and mounting the semiconductor package having the heating element on the wiring board via a conductive material for electrode connection;
前記半導体パッケージが搭載された配線基板を上部筐体部分と下部筐体部分と を有した筐体内に収納する工程とを有している半導体装置の製造方法であって、 前記半導体パッケージが搭載された配線基板を筐体内に収納する工程において は、 前記半導体パッケージと筐体との隙間に熱伝導性弾性体を配置し、 上部筐体 部分と下部筐体部分とを嵌合圧着することにより、 前記熱伝導性弾性体を前記半 導体パッケージと筐体間の隙間に圧縮装着すると共に、 前記配線基板を上部筐体 部分及び下部筐体部分で挟持固定する工程を含み、 前記熱伝導性弾性体は、 常温 において前記電極接続用導電材料より柔らかく、 かつ、 常温より高い温度域でカロ 熱したときの圧縮荷重が常温での圧縮荷重より小さいシート状熱伝導性弾性体か らなり、  Accommodating a wiring board on which the semiconductor package is mounted in a housing having an upper housing part and a lower housing part, wherein the semiconductor package is mounted. In the step of housing the wiring board in the housing, a heat conductive elastic body is disposed in a gap between the semiconductor package and the housing, and the upper housing portion and the lower housing portion are fitted and crimped, Compressing and mounting the heat conductive elastic body in a gap between the semiconductor package and the housing, and clamping and fixing the wiring board between an upper housing part and a lower housing part; Is made of a sheet-like thermally conductive elastic material which is softer than the conductive material for electrode connection at room temperature, and has a compressive load smaller than the compressive load at room temperature when heated in a temperature range higher than room temperature;
前記配線基板を筐体内に収納する工程の後工程として、 前記配線基板が収納さ れた筐体を 5 0〜: 1 0 0 °Cの温度環境下で加熱保持する工程を付加したことを特 徴とする半導体装置の製造方法。  As a post-process of the step of housing the wiring board in the housing, a step of heating and holding the housing housing the wiring board in a temperature environment of 50 to 100 ° C. is added. A method for manufacturing a semiconductor device.
12. 発熱素子を有する半導体パッケージを配線基板上に電極接続用導電材料を 介して電気的に接続、 搭載する工程と、  12. a step of electrically connecting and mounting the semiconductor package having the heating element on the wiring board via the conductive material for electrode connection;
前記半導体パッケージが搭載された配線基板を上部筐体部分と下部筐体部分と を有する筐体内に収納する工程とを有している半導体装置の製造方法であって、 前記半導体パッケージが搭載された配線基板を筐体内に収納する工程において は、 前記半導体パッケージと筐体との隙間に熱伝導性弾性体を配置し、 上部筐体 部分と下部筐体部分とを嵌合圧着することにより、 前記熱伝導性弾性体を前記半 導体パッケージと筐体間の隙間に圧縮装着すると共に、 前記配線基板を上部筐体 部分及び下部筐体部分で挟持固定する工程と、 前記圧縮荷重を加えた状態で熱伝 導性弾性体を 5 0〜1 0 0 °Cの温度環境下で加熱保持する工程とを含み、 前記熱 伝導性弾性体は、 常温において前記電極接続用導電材料より柔らかく、 かつ、 常 温より高い温度域で加熱したときの圧縮荷重が常温での圧縮荷重より小さいシー ト状熱伝導性弾性体からなり、 前記半導体パッケージの熱を前記熱伝導性弾性体 を介して前記筐体に伝導するようにしたことを特徴とする半導体装置の製造方法。 The wiring board on which the semiconductor package is mounted is an upper housing part and a lower housing part. And housing the wiring board on which the semiconductor package is mounted in the housing, wherein the semiconductor package and the housing are connected to each other. A heat conductive elastic body is arranged in the gap, and the upper housing part and the lower housing part are fitted and pressed together, whereby the heat conductive elastic body is compression-mounted in the gap between the semiconductor package and the housing. Together with the step of clamping and fixing the wiring board between the upper housing part and the lower housing part, and applying the compressive load to the heat conductive elastic body under a temperature environment of 50 to 100 ° C. A step of heating and holding, wherein the heat conductive elastic body is softer than the conductive material for electrode connection at room temperature, and a compression load when heated in a temperature range higher than room temperature is smaller than a compression load at room temperature. Sheet-like thermal conductivity A method of manufacturing a semiconductor device, comprising an elastic body, wherein heat of the semiconductor package is conducted to the housing via the heat conductive elastic body.
13. 発熱素子を有する半導体パッケージを配線基板上に電極接続用導電材料を 介して電気的に接続、 搭載する工程と、  13. a step of electrically connecting and mounting the semiconductor package having the heating element on the wiring board via a conductive material for electrode connection;
前記半導体パッケージが搭載された配線基板を上部筐体部分と下部筐体部分と を有した筐体内に収納する工程とを有している半導体装置の製造方法であつて、 前記半導体パッケージが搭載された配線基板を筐体内に収納する工程において は、  Accommodating a wiring board on which the semiconductor package is mounted in a housing having an upper housing portion and a lower housing portion, wherein the semiconductor package is mounted. In the process of housing the printed circuit board in the housing,
( a ) 前記配線基板上の半導体パッケージに電気的に接続される電極端子と光 フアイバーに接続される光学端子とを有している光素子を、 前記筐体内壁に予め 配設する工程と、  (a) a step of previously disposing an optical element having an electrode terminal electrically connected to a semiconductor package on the wiring substrate and an optical terminal connected to an optical fiber on the inner wall of the housing;
( b ) 前記半導体装置と筐体との隙間に熱伝導性弾性体を配置し、 上部筐体部 分と下部筐体部分とを嵌合圧着することにより、 前記熱伝導性弾性体を前記半導 体パッケージと筐体間の隙間に圧縮装着すると共に、 前記配線基板を上下筐体部 分で挟持固定する工程とを含み、 前記熱伝導性弾性体は、 常温において前記電極 接続用導電材料より柔らかく、 かつ、 常温より高い温度域で加熱したときの圧縮 荷重が常温での圧縮荷重より小さいシート状熱伝導性弾性体からなり、  (b) A heat conductive elastic body is arranged in a gap between the semiconductor device and the housing, and an upper housing part and a lower housing part are fitted and press-fitted, so that the heat conductive elastic body is Compressing and mounting the wiring board in the gap between the conductor package and the housing, and clamping and fixing the wiring board between the upper and lower housing portions. It is made of a sheet-like heat conductive elastic material that is soft and has a compressive load smaller than the compressive load at room temperature when heated in a temperature range higher than room temperature.
前記配線基板を筐体内に収納する工程の後工程として、 前記配線基板が収納さ れた筐体を 5 0〜: L 0 0 °Cの温度環境下で加熱保持する工程を付加したことを特 徴とする半導体装置の製造方法。 As a post-process of the step of housing the wiring board in the housing, a step of heating and holding the housing in which the wiring board is housed in a temperature environment of 50 to L 0 ° C is added. A method for manufacturing a semiconductor device.
14. 発熱素子を有する半導体パッケージを配線基板上に電極接続用導電材料を 介して電気的に接続、 搭載する工程と、 14. a step of electrically connecting and mounting the semiconductor package having the heating element on the wiring board via the conductive material for electrode connection;
前記半導体パッケージが搭載された配線基板を上部筐体部分と下部筐体部分と を有した筐体内に収納する工程とを有している半導体装置の製造方法であって、 前記半導体パッケージが搭載された配線基板を筐体内に収納する工程において は、  Accommodating a wiring board on which the semiconductor package is mounted in a housing having an upper housing part and a lower housing part, wherein the semiconductor package is mounted. In the process of housing the printed circuit board in the housing,
( a ) 前記配線基板上の半導体パッケージに電気的に接続される電極端子と光 ファイバーに接続される光学端子とを有している光素子を、 予め前記筐体内壁に 配設する工程と、  (a) a step of previously disposing an optical element having an electrode terminal electrically connected to a semiconductor package on the wiring board and an optical terminal connected to an optical fiber on the inner wall of the housing;
( b ) 前記半導体パッケージと筐体との隙間に熱伝導性弾性体を配置し、 上部 筐体部分と下部筐体部分とを嵌合圧着することにより、 前記熱伝導性弾性体を前 記半導体パッケージと筐体間の隙間に圧縮装着すると共に、 前記配線基板を上下 筐体部分で挟持固定する工程と、  (b) A heat conductive elastic body is arranged in a gap between the semiconductor package and the housing, and the upper housing part and the lower housing part are fitted and press-fitted, so that the heat conductive elastic body is Compressing and mounting in a gap between the package and the housing, and clamping and fixing the wiring board between upper and lower housing portions;
( c ) 前記圧縮荷重を加えた状態で熱伝導性弾性体を 5 0〜 1 0 0 °Cの温度環 境下で加熱保持する工程とを含み、 前記熱伝導性弾性体は、 常温において前記電 極接続用導電材料より柔らかく、 かつ、 常温より高い温度域で加熱したときの圧 縮荷重が常温での圧縮荷重より小さいシート状熱伝導性弾性体からなり、 前記半 導体パッケージの熱を前記熱伝導性弾性体を介して前記筐体に伝導するようにし たことを特徴とする半導体装置の製造方法。  (c) heating and holding the thermally conductive elastic body under a temperature environment of 50 to 100 ° C. while the compressive load is applied, wherein the thermally conductive elastic body is It is made of a sheet-like thermally conductive elastic material which is softer than the electrode-connecting conductive material and has a smaller compressive load when heated in a temperature range higher than normal temperature than a compressive load at normal temperature. A method for manufacturing a semiconductor device, characterized in that heat is conducted to the housing via a thermally conductive elastic body.
15. 前記熱伝導性弾性体は、 熱伝導率が、 1 . 0〜7 . 0 W/ (m · K) で あって、 室温での弾性率が、 0 . 5〜5 . O M P aであることを特徴とする請求 項 1 1に記載の半導体装置の製造方法。  15. The thermal conductive elastic body has a thermal conductivity of 1.0 to 7.0 W / (mK) and an elastic modulus at room temperature of 0.5 to 5. OMPa. The method for manufacturing a semiconductor device according to claim 11, wherein:
16. 前記熱伝導性弾性体は、 変形抵抗を単位圧縮率あたりに必要な荷重で表わ したとき、 1 0 0 °Cでの変形抵抗が 3 0 °Cでの変形抵抗の l Z 3〜l / 2である ゴム質材からなることを特徴とする請求項 1 1に記載の半導体装置の製造方法。  16. When the deformation resistance of the heat conductive elastic body is expressed by the load required per unit compressibility, the deformation resistance at 100 ° C is 1Z3 to the deformation resistance at 30 ° C. 12. The method for manufacturing a semiconductor device according to claim 11, wherein the semiconductor device is made of a rubber material of l / 2.
17. 前記熱伝導性弾性体を前記半導体パッケージと筐体間の隙間に圧縮装着す る共に、 前記配線基板を上部筐体部分及び下部筐体部分で挟持固定する工程にお いては、 前記熱伝導性弾性体が前記半導体パッケージに接触する第一の部位の厚 さを t 1、 その周囲の前記半導体パッケージに接触しない第二の部位の厚さを t 2としたとき、 厚さ t 1が t 2の 4 0〜7 0 %となるように圧縮装着することを 特徴とする請求項 1 1に記載の半導体装置の製造方法。 17. In the step of compressively mounting the heat conductive elastic body in a gap between the semiconductor package and the housing, and holding and fixing the wiring board between an upper housing portion and a lower housing portion, The thickness of the first portion where the conductive elastic body contacts the semiconductor package is t1, and the thickness of the surrounding second portion that does not contact the semiconductor package is t1. 12. The method for manufacturing a semiconductor device according to claim 11, wherein when the thickness is set to 2, the compression mounting is performed so that the thickness t1 is 40 to 70% of t2.
PCT/JP2002/005164 2001-05-30 2002-05-28 Semiconductor device WO2002099880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-162282 2001-05-30
JP2001162282A JP4079604B2 (en) 2001-05-30 2001-05-30 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
WO2002099880A1 true WO2002099880A1 (en) 2002-12-12

Family

ID=19005439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005164 WO2002099880A1 (en) 2001-05-30 2002-05-28 Semiconductor device

Country Status (3)

Country Link
JP (1) JP4079604B2 (en)
TW (1) TW556290B (en)
WO (1) WO2002099880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059466A1 (en) * 2016-11-30 2018-06-01 Sagemcom Broadband Sas HEAT EXHAUST DEVICE
US10516249B2 (en) 2016-03-29 2019-12-24 Fanuc Corporation Laser oscillator

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180745B2 (en) 2003-10-10 2007-02-20 Delphi Technologies, Inc. Flip chip heat sink package and method
JP2005136018A (en) * 2003-10-29 2005-05-26 Denso Corp Semiconductor device
JP4646557B2 (en) * 2004-06-28 2011-03-09 京セラ株式会社 Communication device
JP4086068B2 (en) * 2004-12-27 2008-05-14 日本電気株式会社 Semiconductor device
DE102007003821A1 (en) * 2006-12-20 2008-06-26 Rohde & Schwarz Gmbh & Co. Kg Transistor clamping device for transistor, has holding down plate that is provided between maintaining block, transistor, and spring that is fixed on transistor such that constant pressure is executed
JP4825739B2 (en) 2007-06-22 2011-11-30 株式会社日立製作所 Structure of opto-electric hybrid board and opto-electric package
US8426740B2 (en) 2008-05-29 2013-04-23 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board
KR101069143B1 (en) * 2009-09-01 2011-09-30 주식회사 삼진엘앤디 A LED Module Having Panel Structure of Protection Against Heat
JP2011249682A (en) * 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp Thermal conductive sheet and semiconductor device
JP2011249681A (en) * 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp Thermal conductive sheet and semiconductor device
JP2012079477A (en) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd Solid light source device and projection type image display device
JP2014016395A (en) 2012-07-06 2014-01-30 Sumitomo Electric Ind Ltd Optical transceiver
TWI508238B (en) 2012-12-17 2015-11-11 Princo Corp Chip thermal system
JP6034844B2 (en) * 2014-11-05 2016-11-30 デクセリアルズ株式会社 Manufacturing method of heat conductive sheet
JP2017199819A (en) * 2016-04-28 2017-11-02 日立オートモティブシステムズ株式会社 Electronic control apparatus
JP6880777B2 (en) * 2017-01-27 2021-06-02 富士通株式会社 Optical module
US10770405B2 (en) 2017-05-31 2020-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal interface material having different thicknesses in packages
KR102566974B1 (en) 2018-07-11 2023-08-16 삼성전자주식회사 Semiconductor package and method of fabricating the same
JP2020042114A (en) * 2018-09-07 2020-03-19 日本電信電話株式会社 Optical circuit
JP2021114491A (en) * 2020-01-16 2021-08-05 株式会社デンソー Electronic apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289847A (en) * 1987-05-21 1988-11-28 Nec Corp Heat dissipation structure of lsi package
US5396403A (en) * 1993-07-06 1995-03-07 Hewlett-Packard Company Heat sink assembly with thermally-conductive plate for a plurality of integrated circuits on a substrate
JPH11354890A (en) * 1998-06-05 1999-12-24 Nec Corp Semiconductor laser module
JP2000031355A (en) * 1998-07-07 2000-01-28 Nec Corp Semiconductor device and manufacture thereof
EP1041627A2 (en) * 1999-03-30 2000-10-04 Polymatech Co., Ltd. Heat conductive molded body and manufacturing method thereof and semiconductor device
EP1067164A1 (en) * 1999-07-08 2001-01-10 Saint-Gobain Performance Plastics Corporation Phase change thermal interface material
JP2001144233A (en) * 1999-11-12 2001-05-25 Fujitsu Ltd Semiconductor unit, cooler and their manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302728A (en) * 1993-04-12 1994-10-28 Oki Electric Ind Co Ltd Lsi heat dissipation structure of ceramic multilayer board
JPH098185A (en) * 1995-06-23 1997-01-10 Hitachi Ltd Package with electronic-component cooling structure and its manufacture
JPH09219473A (en) * 1996-02-13 1997-08-19 Hitachi Ltd Package having electronic component cooling structure and manufacture thereof
JPH10308484A (en) * 1997-05-08 1998-11-17 Casio Comput Co Ltd Heat radiation structure of electronic apparatus
JP2001102501A (en) * 1999-09-29 2001-04-13 Toshiba Corp Circuit module and electronic device using the circuit module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289847A (en) * 1987-05-21 1988-11-28 Nec Corp Heat dissipation structure of lsi package
US5396403A (en) * 1993-07-06 1995-03-07 Hewlett-Packard Company Heat sink assembly with thermally-conductive plate for a plurality of integrated circuits on a substrate
JPH11354890A (en) * 1998-06-05 1999-12-24 Nec Corp Semiconductor laser module
JP2000031355A (en) * 1998-07-07 2000-01-28 Nec Corp Semiconductor device and manufacture thereof
EP1041627A2 (en) * 1999-03-30 2000-10-04 Polymatech Co., Ltd. Heat conductive molded body and manufacturing method thereof and semiconductor device
EP1067164A1 (en) * 1999-07-08 2001-01-10 Saint-Gobain Performance Plastics Corporation Phase change thermal interface material
JP2001144233A (en) * 1999-11-12 2001-05-25 Fujitsu Ltd Semiconductor unit, cooler and their manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516249B2 (en) 2016-03-29 2019-12-24 Fanuc Corporation Laser oscillator
FR3059466A1 (en) * 2016-11-30 2018-06-01 Sagemcom Broadband Sas HEAT EXHAUST DEVICE
WO2018099729A1 (en) * 2016-11-30 2018-06-07 Sagemcom Broadband Sas Device for removing heat
US10665527B2 (en) 2016-11-30 2020-05-26 Sagemcom Broadband Sas Device for removing heat

Also Published As

Publication number Publication date
JP4079604B2 (en) 2008-04-23
TW556290B (en) 2003-10-01
JP2002353388A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
WO2002099880A1 (en) Semiconductor device
US7440282B2 (en) Heat sink electronic package having compliant pedestal
US6410988B1 (en) Thermally enhanced and mechanically balanced flip chip package and method of forming
JP4821537B2 (en) Electronic control unit
US8779582B2 (en) Compliant heat spreader for flip chip packaging having thermally-conductive element with different metal material areas
KR101210090B1 (en) Metal core printed circuit board and light-emitting diode packaging method thereof
US7135769B2 (en) Semiconductor packages and methods of manufacturing thereof
US6657311B1 (en) Heat dissipating flip-chip ball grid array
JP5121353B2 (en) Overmolded MCMIC package and manufacturing method thereof
KR100632459B1 (en) Heat-dissipating semiconductor package and manufacturing method
US6429513B1 (en) Active heat sink for cooling a semiconductor chip
WO2019146402A1 (en) Power conversion device and method for manufacturing power conversion device
EP1463104A2 (en) Overmolded electronic package including circuit-carrying substrate
TW200807745A (en) Light-emitting heat-dissipating device and packaging method thereof
US20070145473A1 (en) Semiconductor device and electronic control unit using the same
TW201123370A (en) Semiconductor package structures, flip chip packages, and methods for manufacturing semiconductor flip chip package
JP5071405B2 (en) Power semiconductor device
JP2010177404A (en) Cooling structure for light-emitting device
US20110079902A1 (en) Semiconductor device
JP2013532894A (en) Optoelectronic light emitting module and automotive headlight
US6713865B2 (en) Semiconductor device having semiconductor element housed in packed with heat sink
WO2004107439A1 (en) An integrated circuit package employing a head-spreader member
US7310224B2 (en) Electronic apparatus with thermal module
TW200522398A (en) Optoelectronic module and its production method
KR20130058751A (en) Electronic component

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase