WO2002094417A1 - Method and device for gas separation by adsorption, in particular for industrial oxygen production - Google Patents

Method and device for gas separation by adsorption, in particular for industrial oxygen production Download PDF

Info

Publication number
WO2002094417A1
WO2002094417A1 PCT/BE2002/000078 BE0200078W WO02094417A1 WO 2002094417 A1 WO2002094417 A1 WO 2002094417A1 BE 0200078 W BE0200078 W BE 0200078W WO 02094417 A1 WO02094417 A1 WO 02094417A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reactor
stator
rotor
stage
Prior art date
Application number
PCT/BE2002/000078
Other languages
French (fr)
Inventor
Jacques Ribesse
Original Assignee
Tec Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tec Energy Ltd filed Critical Tec Energy Ltd
Publication of WO2002094417A1 publication Critical patent/WO2002094417A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0431Beds with radial gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel

Definitions

  • PSA Vaum Pressure Swing Adsorption systems
  • FIG. 2 An example of a conventional PSA system, VPSA, is shown in Figure 2.
  • Such systems include two or three reservoirs A, B, C, filled with a specific adsorbent mass to capture the impure gases to be discharged.
  • the raw gas to be treated G brought under pressure and completely free of undesirable compounds (hydrocarbons, water, oil), is admitted into one of the tanks A, B, C, by opening for example a valve 71 of the tank A. gas passes through this tank filled with the specific adsorbent. The impure gas is adsorbed under pressure and the purified gas, not adsorbed, leaves the tank A via a valve 72 and the tank F towards use. During this period of time (of the order of 30 to 60 seconds), the reservoir B, initially pressurized, is gradually discharged to the atmosphere at 75, or is put under vacuum, by opening the valve 73 '. The impure gas is thus partially desorbed.
  • the tank C is filled with purified gas and pressurized by opening the valve 72 ", so that the upper part of the tank C is completely desorbed of the impure gas by such a purified gas sweep.
  • the circuits are inverted by the operation of nine valves 71 to 73 and 71 'to 73' as well as 71 "to 73", to send raw gas and produce purified gas in the reservoir C, carry out a vacuum desorption of the reservoir A, and a re-pressurization of the reservoir B, etc. And the cycle thus initiated can continue
  • Figure 2 gives a representation of the evolution of the pressures
  • the method according to the present invention makes it possible to eliminate the disadvantages mentioned above, both by the procedure chosen for the production cycle and by the mode of passage of the gases in the separation masses and by the elimination of the sequential valves described above, following the use of a original centralized mechanical device.
  • the production performances thus obtained are improved:
  • the gas separation process of the invention is based on the preferential adsorption of compounds of a raw gas in specific adsorbent masses, and operates by pressure change at room temperature, followed by the deso ⁇ tion of the compounds adsorbed according to the systems.
  • VPSA into two reactors.
  • a cycle is used with four distinct and successive phases, the first phase of which, in one of the two reactors, adsorption under pressure of the compounds of the raw gas in the adsorbent material, and an evacuation, towards use, of the purified gas not adsorbed, and simultaneously in the second reactor, a deso ⁇ tion of the gas compounds which are adsorbed there, by reduction of the pressure discharged towards the atmosphere or by a vacuum pump.
  • the second phase includes a continuation of the adsorption in the first reactor, a stop of the desorption in the second reactor and a pressurization of the latter by rapid injection of purified gas against the current.
  • the third phase includes a supply of raw gas to the second pressurized reactor with adsorption of gas components in the adsorbent mass and an evacuation of purified gas and, simultaneously, a desorption of the compounds adsorbed in the first reactor, by evacuation of the pressure to the atmosphere or by a vacuum pump.
  • the fourth phase includes a continuation of the adsorption of gas under pressure in the second reactor and an evacuation of the purified gas towards the use as well as a stop of the desorption in the first reactor and a re-pressure of it ci by rapid injection, against the current, of purified gas, without loss of this gas to the outside.
  • an injection of purified gas is implemented, against the current, into the reactor during deso ⁇ tion, dosed so as to cause a further lowering of the partial pressure of the adsorbed compounds, so as to remove an increased quantity of adsorbed gas from the adsorbent mass.
  • the mode of flow of the gases in the reactor is organized from the periphery of the reactor to the center of the latter during the adsorption under pressure, and from the center of the reactor towards its periphery in the desorption phase, in order to ensure, on the one hand, the raw gas and, on the other hand, the desorbed compounds a constant and optimal speed of passage.
  • the present invention also relates to a device for implementing the method of the invention.
  • a device for distributing gases and gas components which comprises, on the one hand, a stator connected to the source of raw gas to be purified, to the two reactors, to the discharge line of compound (s) desorbed (s), for the storage and / or use of the purified gas and, on the other hand, arranged in the stator, a rotor with sequential operation, arranged to distribute the raw and purified gases and desorbed components towards their destination programmed by respecting the different phases and without the use of sequential valves, the rotor and the stator each having orifices to be selectively compared according to the phases of the process.
  • the stator advantageously comprises five superimposed or successive stages and of which, following their successive order numbers from I to V.
  • Two stages are connected directly to the two reactors, stage III in common with a raw gas inlet of each of the reactors , and stage V in common with a purified gas outlet from each reactor.
  • Stage I is connected to a pressurized raw gas inlet.
  • Stage II is connected to an outlet of the desorbed gas to the atmosphere or to a vacuum pump.
  • Stage IV is connected to a storage and / or use of the purified gas.
  • the appropriate rotor is cylindrical and divided into two groups, sealed and supe ⁇ osed, each time four compartments equal to each other in volume in each group and arranged around an axis of rotation of the rotor.
  • a first group is arranged to selectively connect the gas stages I, II and III of the stator.
  • the second group is arranged to selectively connect the gas stages to stages IV and V.
  • a seal between stator and rotor can be achieved by a nozzle made of wear material, in particular graphite or bronze, applied under pressure against the rotor at the orifices of a stage and sliding in an associated duct of the stator, a seal O-ring that can be placed between the nozzle and the duct.
  • an O-ring seal can be provided between the rotor and the stator, in order to avoid gas leaks between stages, advantageously the stator carrying one or more circular centering rings for centering the rotor. .
  • Ducts and valves can be installed to control the flow of purified gas for flushing purposes in order to facilitate the desorption of gas during the desorption phases.
  • Gas diffusion grids and separation of adsorbent and / or desiccant materials can ensure a uniform and radial distribution of the gases in the adsorbent materials.
  • These grids in particular of cylindrical shape, can be composed of trapezoidal elements which cannot be closed and which include rigid metal supports preventing lateral movements linked to pressure fluctuations.
  • FIG. 1 schematically represents a device for implementing the method of the invention.
  • Figure 2 schematically shows a device of the prior art described above.
  • FIG. 3 is a graph of the pressure as a function of time, observed during the implementation of the device of FIG. 2.
  • FIG. 4 is a graph of the pressure as a function of time, observed during the implementation of the device method of the invention in the device of the invention.
  • Figure 5 is a schematic axial section of a dispensing apparatus of the invention.
  • Figures 6 to 10 are respective cross sections along the respective section planes VI-VI to X-X of Figure 5, through the stages of the dispensing apparatus.
  • FIG. 11 shows, in schematic section, a detail of sealing means used according to the invention.
  • FIG. 12 schematically shows in axial section a tank or reactor to be used according to the invention.
  • FIG. 1 Detailed description of modes and embodiments of the invention
  • the process of the invention is implemented (FIG. 1) in two cylindrical reactors D and E, equipped with cylindrical grids separating the specific adsorbent materials: desiccants 1, molecular sieve 2 , used for the adsorption of impure gas under the effect of the pressure variation.
  • a special distributor 5 comprising a stator 6 is connected to the middle part of the reactors D and E via conduits 7, 7 'and filters 8 and 8'.
  • the stator 6 of the distributor 5 is also connected to supplying pressurized raw gas via line 9, this raw gas being brought to pressure by means of compressor 11 and refrigerant 10.
  • the stator 6 is connected via the conduit 12 to a vacuum pump 13.
  • the upper part of the stator 6, containing purified gas is connected to the purified gas tank 14 via a conduit 15, as well as to the upper part of the reactors D and E, via filters 18, 18 'and conduits 16, 16'.
  • the rotor 4 (FIG. 5) of the distributor 5 is driven by a motor (not shown) in a sequential mode with four positions.
  • the rotor 4 is divided into two groups of four sealed compartments.
  • On each of the stages I to V of the distributor 5 are provided openings for communication with the openings made in the stator 6. A description of this distributor apparatus 5 is given below, see FIG. 5.
  • a pipe 16 "connects the pipes 16 and 16 ', where a purified gas flushing rate is controlled by means of the valve 19. Operation of the process
  • the filtered raw gas is compressed (FIG. 1) by the machine 11 at a pressure of 0.5 bar in the case of oxygen production by air separation; it is cooled in the exchanger 10 to a temperature close to the ambient or close to 0 ° C (primary separation of the water) and is sent to the distributor 5 via the conduit 9.
  • stage I of the distributor 5 conducts the gas to the reactor D via stage III of the distributor, the conduit 7, the filter 8 and the circular conduit encircling the middle part of the reactor D.
  • the raw gas is distributed uniformly within an adsorbent mass 1 capturing an element of the gas, H 2 O for example.
  • This gas with radial passage, passes through a second adsorbent mass 2.
  • the purified gas is collected at the center of reactor D and joins the upper part of the distributor 5 via the conduit 16 and the filter 18, then the stator 6 (orifice), towards ( Figure 5) the rotor channel 4, to the conduit 15 (orifice), the purified gas tank 14 and use.
  • degassing of the reactor E of the components adsorbed in the masses adsorption by lowering the pressure and purging with purified gas.
  • the desorbed gas leaves the reactor E via the conduit 7 ', the filter 8', the gas distributor 5, the pipe 12 and the vacuum pump 13, which can reject this gas to the atmosphere.
  • purged gas is rinsed by injecting this gas at the top of the reactor via the 16 "conduit and valve 19. This purified gas lowers the partial pressure of adsorbed gas and makes it possible to eliminate more of this gas from the molecular sieve 2.
  • the second phase of the process After a limited time, from 15 to 25 seconds, we pass to the second phase of the process by rotation of the rotor 4 of the rotary distributor 5 by a quarter of a turn.
  • the raw gas follows an identical path to the reactor D via other openings and channels of the stator and rotor, which continues to produce purified gas via the conduit 16, the distributor 5 and the oxygen tank 14
  • the desorption of the reactor E is finished and the rapid pressure redirection is carried out via the rotary distributor 5 by withdrawing purified gas from the gas tank 14 via the conduit 16 '.
  • the duration of this second phase is limited to 3 to 5 seconds.
  • the third phase is then started by a new rotation of the rotor 6 of the rotary distributor.
  • the raw gas passes radially through the adsorbent layers of reactor E and leaves the gases or compounds to be adsorbed there.
  • the purified non-adsorbed gas, collected in the center of the reactor, is evacuated via the conduits 16 ′, then 15 and, after passage through the distributor, towards the purified gas tank 14 and the use.
  • this phase one proceeds to the desorption of the gas previously adsorbed in the reactor D, by the communication between this reactor and the vacuum pump 13, via the conduit 7, the distributor 5, the conduit 12.
  • the duration of this third phase is 15 to 25 seconds.
  • the fourth phase is then started by rotating the rotor 4 a quarter of a turn: the impure gas continues on its way to the reactor E with continued production of purified gas and also re-pressure of reactor D by reverse injection of purified gas from tank 14 via line 15, the distributor and line 16.
  • FIG. 3 The representation of the different phases of the process according to the invention is given in FIG. 3.
  • the distributor 5 (FIGS. 5 to 10) comprises the stator 6 with five stages I to V and the rotor 4 which performs sequential rotary movements by quarter turn, driven by the Above-mentioned motor controlled by a processor.
  • the reactors D and E are connected to the stator 6 by the pipes 7, 7 ', and by the pipes 22 and 22'. These pipes are equipped with movable nozzles 23, in contact with the rotor to ensure sealing.
  • the gas to be separated, under pressure, is introduced into the distributor 5 on stage I thereof, at the base, through the conduit 9 in a circular enclosure 24.
  • the stator 6 is provided with four circular or rectangular orifices 25, allowing the passage of the raw gas towards a channel of the rotor 4.
  • the desorbed gas is extracted from stage II (FIGS. 5 and 9) of the distributor 5 via a circular enclosure 26.
  • the stator has at this location four orifices 27 to access one of the channels of the rotor 4.
  • stage III of the distributor The middle parts of the two reactors D and E (FIGS. 5 and 8) are connected directly to stage III of the distributor via the pipes 7 and 7 ′ and the movable nozzles 23.
  • Stage IV of the distributor is provided ( Figures 5 and 7) a circular enclosure 28 connected to the purified gas tank via the conduit 15.
  • the stator 6 is provided with four orifices 29 for the passage of gas.
  • the stage V of the distributor 5 is connected (FIGS. 5 and 6) via the pipes 22, 22 'at the top of the reactors D and E.
  • the stator 6 at this point is pierced with two orifices in which the sealing nozzles 23 slide in contact with the rotor.
  • the distributor 5 is provided with the cylindrical rotor 4, compartmentalized in four axial channels occupying the entire height of the stator.
  • This rotor 4 is also provided with a separation between its lower part containing raw or desorbed gas and its upper part containing purified gas thanks to a plate 30. Thus, there are two groups of four compartments.
  • stage I (figure 10): two orifices 31, stage II (figure 9): one orifice 32, stage III (figure 8): three orifices 33, - stage IV (figure 7): three orifices 36, stage V (figure 6): three orifices 39.
  • the stator 6 is equipped with circular seals 42, see FIG. 5 and FIG. 11 which also represents a detail of the sealing nozzles 23, comprising springs 43 for pressure of the nozzles 23.
  • the movement of the rotor 4 is carried out according to a programming linked to the type of gas to be separated and to the kinetic characteristics of the adsorbents used.
  • the process according to the invention comprises a radial distribution of the gases according to FIG. 12.
  • the reactors D and E comprise a peripheral supply 43 for the admission of raw gas under pressure and for the evacuation of desorbed gas evacuated to the vacuum pump 13.
  • the reactors are provided with cylindrical vertical grids 44,
  • This operation consists ( Figure 1) of injecting into the reactor, in the phase of deso ⁇ tion, purified gas at the head of the reactor via the valve 19 and the pipe 16, 16 'for the purpose of 'Significantly lower the partial pressure of adsorbed gas and, thus, significantly reduce the residual content of adsorbed gas at the end of the deso ⁇ tion phase.
  • This operation significantly increases the adsorption capacity of the system, which translates, for a given production capacity, to a limited quantity of adsorbent, smaller reactors, lower investment cost and a drop in energy consumption. Performance of a unit according to the invention
  • Phase 1 duration 15-25 seconds
  • phase 2 duration 3-5 seconds
  • phase 3 duration 15-25 seconds
  • phase 4 duration 3-5 seconds
  • total duration 45-65 seconds

Abstract

The invention concerns a method and a device for separating components of a gas by adsorption, vacuum pressure swing adsorption (VPSA), with two reactors lined with adsorbents selected on the basis of the gas to be adsorbed, and operating in accordance with a four-phase cycle comprising pressure variations at room temperature; adsorption under pressure in a first reactor and purified gas production, vacuum desorption of the second reactor and rinsing the purified gas, further adsorption and purified gas production to the first reactor and re-pressurising the second reactor, adsorption to the second reactor and purified gas production, desorption of the first reactor with rinsing, adsorption to the second reactor with purified gas production and re-pressurising the first reactor, repeating the cycle; and use of a rotary gas dispenser for carrying out said four phases with radial circulation mode of the gases in the adsorbent masses at constant speed and with inverse rinsing of the masses with purified gas during desorption, resulting in substantial reduction of power consumption.

Description

"Procédé et dispositif pour la séparation de gaz par adsorption. en particulier pour la production d'oxygène industriel" "Method and device for the separation of gas by adsorption. In particular for the production of industrial oxygen"
Etat actuel de la technique La séparation des gaz est réalisée par les techniques connues suivantes :Current state of the art The separation of gases is carried out by the following known techniques:
- cryogénie, technique appliquée pour les quantités très élevées de gaz à traiter, unités centralisées à haute consommation énergétique et nécessitant le transport des gaz vers l'utilisation,- cryogenics, a technique applied for very large quantities of gas to be treated, centralized units with high energy consumption and requiring the transport of gases to use,
- membranes, technique appliquée dans des cas particuliers où une pression élevée est disponible et la pénétration est facile, récupération d'hydrogène par exemple,- membranes, technique applied in special cases where high pressure is available and penetration is easy, recovery of hydrogen for example,
- systèmes VPSA ou PSA ((Vacuum) Pressure Swing Adsorption = adsorption par variation de pression (et vide)), technologie largement développée depuis 1970. La présente invention fait partie de cette famille. Un exemple d'un système classique PSA, VPSA, est représenté à la figure 2. De tels systèmes comportent deux ou trois réservoirs A, B, C, remplis d'une masse adsorbante spécifique pour capter les gaz impurs à rejeter.- VPSA or PSA (Vacuum) Pressure Swing Adsorption systems, technology widely developed since 1970. The present invention is part of this family. An example of a conventional PSA system, VPSA, is shown in Figure 2. Such systems include two or three reservoirs A, B, C, filled with a specific adsorbent mass to capture the impure gases to be discharged.
Le gaz brut à traiter G, amené sous pression et totalement débarrassé de composés indésirables (hydrocarbures, eau, huile), est admis dans un des réservoirs A, B, C, par ouverture par exemple d'une vanne 71 du réservoir A. Le gaz traverse ce réservoir garni de l'adsorbant spécifique. Le gaz impur est adsorbé sous pression et le gaz épuré, non adsorbé, quitte le réservoir A via une vanne 72 et le réservoir F vers l'utilisation. Pendant cette période de temps (de l'ordre de 30 à 60 secondes), le réservoir B, sous pression initialement, est progressivement déchargé vers l'atmosphère en 75, ou est mis sous vide, par ouverture de la vanne 73'. Le gaz impur est ainsi partiellement désorbé. Simultanément, le réservoir C est rempli au moyen de gaz épuré et remis sous pression par ouverture de la vanne 72", de sorte que la partie supérieure du réservoir C est désorbée complètement du gaz impur par un tel balayage au gaz épuré. Après un délai fixé (30 à 60 secondes), on procède à l'inversion des circuits par le fonctionnement de neuf vannes 71 à 73 et 71' à 73' ainsi que 71" à 73", pour envoyer du gaz brut et produire du gaz épuré dans le réservoir C, effectuer une desorption sous vide du réservoir A, et une remise sous pression du réservoir B, etc. .. Et le cycle ainsi amorcé peut continuer. La figure 2 donne une représentation de l'évolution des pressionsThe raw gas to be treated G, brought under pressure and completely free of undesirable compounds (hydrocarbons, water, oil), is admitted into one of the tanks A, B, C, by opening for example a valve 71 of the tank A. gas passes through this tank filled with the specific adsorbent. The impure gas is adsorbed under pressure and the purified gas, not adsorbed, leaves the tank A via a valve 72 and the tank F towards use. During this period of time (of the order of 30 to 60 seconds), the reservoir B, initially pressurized, is gradually discharged to the atmosphere at 75, or is put under vacuum, by opening the valve 73 '. The impure gas is thus partially desorbed. Simultaneously, the tank C is filled with purified gas and pressurized by opening the valve 72 ", so that the upper part of the tank C is completely desorbed of the impure gas by such a purified gas sweep. After a delay fixed (30 to 60 seconds), the circuits are inverted by the operation of nine valves 71 to 73 and 71 'to 73' as well as 71 "to 73", to send raw gas and produce purified gas in the reservoir C, carry out a vacuum desorption of the reservoir A, and a re-pressurization of the reservoir B, etc. And the cycle thus initiated can continue Figure 2 gives a representation of the evolution of the pressures
P en fonction du temps t pour le système que l'on vient de décrire. Inconvénients des technologies connues On connaît la consommation d'énergie importante des systèmes PSA, VPSA : elle est par exemple de 0,4 kWh par m3 de O2, lors d'une séparation de l'air pour produire de l'oxygène en basse pression. Le rapport gaz brut / gaz épuré est aussi élevé et de l'ordre de 10 à 15 dans le cas de l'oxygène, car la desorption du gaz impur est très incomplète malgré la remise en pression avec du gaz épuré qui déplace, vers le bas le contenu en gaz impur. La fréquence des phases de procédé de ces systèmes est dictée et limitée par la résistance mécanique des vannes, en raison du grand nombre d'opérations d'ouverture et de fermeture des vannes, bien au-delà de 500.000 par an. Ces vannes subissent des efforts considérables et doivent être équipées de moyens de contrôle de position assurant la mise à l'arrêt en cas de non fonctionnement programmé. Elles sont d'un coût élevé en équipement et en entretien.P as a function of time t for the system just described. Disadvantages of known technologies The high energy consumption of PSA and VPSA systems is known: it is for example 0.4 kWh per m 3 of O 2 , during separation of the air to produce oxygen in low pressure. The raw gas / purified gas ratio is also high and of the order of 10 to 15 in the case of oxygen, since the desorption of the impure gas is very incomplete despite the re-pressure with purified gas which moves towards the low impure gas content. The frequency of the process phases of these systems is dictated and limited by the mechanical strength of the valves, due to the large number of valve opening and closing operations, well in excess of 500,000 per year. These valves undergo considerable efforts and must be equipped with position control means ensuring the shutdown in the event of programmed non-operation. They are expensive in terms of equipment and maintenance.
Les matières d'adsorption de fabrication récente permettent cependant d'augmenter la fréquence des opérations pour un fonctionnement optimal si l'on disposait de vannes idéales, en particulier pour des capacités de production élevées.The adsorption materials of recent manufacture however make it possible to increase the frequency of the operations for an optimal operation if one had ideal valves, in particular for high production capacities.
Le procédé suivant la présente l'invention permet de supprimer les désavantages cités ci-dessus, tant par la procédure choisie pour le cycle de production que par le mode de passage des gaz dans les masses de séparation et par la suppression des vannes séquentielles décrites ci-dessus, suite à l'utilisation d'un dispositif mécanique centralisé original. Les performances de production ainsi obtenues sont améliorées :The method according to the present invention makes it possible to eliminate the disadvantages mentioned above, both by the procedure chosen for the production cycle and by the mode of passage of the gases in the separation masses and by the elimination of the sequential valves described above, following the use of a original centralized mechanical device. The production performances thus obtained are improved:
- baisse de la consommation d'énergie pour ne nécessiter que ≈ 0,2 kWh/m3 dans le cas d'oxygène,- reduction in energy consumption to require only ≈ 0.2 kWh / m 3 in the case of oxygen,
- besoins réduits en matière adsorbante et- reduced requirements for adsorbent material and
- diminution des coûts d'équipements et d'entretien. Description sommaire de l'invention- reduction in equipment and maintenance costs. Brief description of the invention
Le procédé de séparation de gaz de l'invention est basé sur l'adsorption préférentielle de composés d'un gaz brut dans des masses adsorbantes spécifiques, et fonctionne par changement de pression à température ambiante, suivi de la désoφtion des composés adsorbés suivant les systèmes V.P.S.A. en deux réacteurs.The gas separation process of the invention is based on the preferential adsorption of compounds of a raw gas in specific adsorbent masses, and operates by pressure change at room temperature, followed by the desoφtion of the compounds adsorbed according to the systems. VPSA into two reactors.
Suivant l'invention, on utilise un cycle à quatre phases distinctes et successives dont la première phase comporte, dans un des deux réacteurs, une adsorption sous pression des composés du gaz brut dans la matière adsorbante, et une évacuation, vers une utilisation, du gaz épuré non adsorbé, et simultanément dans le second réacteur, une désoφtion des composés de gaz qui y sont adsorbés, par réduction de la pression évacuée vers l'atmosphère ou par une pompe à vide.According to the invention, a cycle is used with four distinct and successive phases, the first phase of which, in one of the two reactors, adsorption under pressure of the compounds of the raw gas in the adsorbent material, and an evacuation, towards use, of the purified gas not adsorbed, and simultaneously in the second reactor, a desoφtion of the gas compounds which are adsorbed there, by reduction of the pressure discharged towards the atmosphere or by a vacuum pump.
La deuxième phase comporte une poursuite de l'adsorption dans le premier réacteur, un arrêt de la desorption dans le second réacteur et une remise sous pression de celui-ci par injection rapide de gaz épuré à contre- courant.The second phase includes a continuation of the adsorption in the first reactor, a stop of the desorption in the second reactor and a pressurization of the latter by rapid injection of purified gas against the current.
La troisième phase comporte une alimentation en gaz brut du second réacteur sous pression avec adsorption de composants du gaz dans la masse adsorbante et une évacuation de gaz épuré et, simultanément, une desorption des composés adsorbés dans le premier réacteur, par évacuation de la pression vers l'atmosphère ou par une pompe à vide. Enfin, la quatrième phase comporte une poursuite de l'adsorption de gaz sous pression dans le second réacteur et une évacuation du gaz épuré vers l'utilisation ainsi qu'un arrêt de la desorption dans le premier réacteur et une remise sous pression de celui-ci par injection rapide, à contre-courant, de gaz épuré, sans perte de ce gaz vers l'extérieur.The third phase includes a supply of raw gas to the second pressurized reactor with adsorption of gas components in the adsorbent mass and an evacuation of purified gas and, simultaneously, a desorption of the compounds adsorbed in the first reactor, by evacuation of the pressure to the atmosphere or by a vacuum pump. Finally, the fourth phase includes a continuation of the adsorption of gas under pressure in the second reactor and an evacuation of the purified gas towards the use as well as a stop of the desorption in the first reactor and a re-pressure of it ci by rapid injection, against the current, of purified gas, without loss of this gas to the outside.
Suivant un mode de réalisation de l'invention, on met en œuvre une injection de gaz épuré, à contre-courant, dans le réacteur en cours de désoφtion, dosée de manière à provoquer un abaissement complémentaire de la pression partielle des composés adsorbés, de façon à éliminer une quantité accrue de gaz adsorbé de la masse adsorbante.According to one embodiment of the invention, an injection of purified gas is implemented, against the current, into the reactor during desoφtion, dosed so as to cause a further lowering of the partial pressure of the adsorbed compounds, so as to remove an increased quantity of adsorbed gas from the adsorbent mass.
Avantageusement, on organise le mode d'écoulement des gaz dans le réacteur depuis la périphérie du réacteur vers le centre de celui-ci pendant l'adsorption sous pression, et depuis le centre du réacteur vers sa périphérie en phase de desorption, afin d'assurer, d'une part, au gaz brut et, d'autre part, aux composés désorbés une vitesse de passage constante et optimale.Advantageously, the mode of flow of the gases in the reactor is organized from the periphery of the reactor to the center of the latter during the adsorption under pressure, and from the center of the reactor towards its periphery in the desorption phase, in order to ensure, on the one hand, the raw gas and, on the other hand, the desorbed compounds a constant and optimal speed of passage.
La présente invention concerne aussi un dispositif pour la mise en oeuvre du procédé de l'invention.The present invention also relates to a device for implementing the method of the invention.
A cet effet, il est prévu dans ledit dispositif un appareil de distribution des gaz et composants du gaz qui comporte, d'une part, un stator raccordé à la source de gaz brut à épurer, aux deux réacteurs, à la conduite de décharge de composé(s) désorbé(s), au stockage et/ou utilisation du gaz épuré et, d'autre part, disposé dans le stator, un rotor à fonctionnement séquentiel, agencé pour distribuer les gaz brut et épuré et composants désorbés vers leur destination programmée en respectant les différentes phases et sans utilisation de vannes séquentielles, le rotor et le stator comportant chacun des orifices à mettre sélectivement en regard en fonction des phases du procédé.For this purpose, there is provided in said device a device for distributing gases and gas components which comprises, on the one hand, a stator connected to the source of raw gas to be purified, to the two reactors, to the discharge line of compound (s) desorbed (s), for the storage and / or use of the purified gas and, on the other hand, arranged in the stator, a rotor with sequential operation, arranged to distribute the raw and purified gases and desorbed components towards their destination programmed by respecting the different phases and without the use of sequential valves, the rotor and the stator each having orifices to be selectively compared according to the phases of the process.
Le stator comporte avantageusement cinq étages superposés ou successifs et dont, en suivant leurs numéros d'ordre successifs de I à V. Deux étages sont connectés directement aux deux réacteurs, l'étage III en commun à une entrée de gaz brut de chacun des réacteurs, et l'étage V en commun à une sortie de gaz épuré de chaque réacteur. L'étage I est raccordé à une arrivée de gaz brut sous pression. L'étage II est raccordé à une sortie du gaz désorbé vers l'atmosphère ou une pompe à vide. L'étage IV est raccordé à un stockage et/ou utilisation du gaz épuré. Le rotor approprié est cylindrique et divisé en deux groupes, séparés de manière étanche et supeφosés, de chaque fois quatre compartiments égaux entre eux en volume dans chaque groupe et disposés autour d'un axe de rotation du rotor. Un premier groupe est agencé pour mettre sélectivement en communication de passage de gaz les étages I, Il et III du stator. Le second groupe est agencé pour mettre sélectivement en communication de passage de gaz les étages IV et V.The stator advantageously comprises five superimposed or successive stages and of which, following their successive order numbers from I to V. Two stages are connected directly to the two reactors, stage III in common with a raw gas inlet of each of the reactors , and stage V in common with a purified gas outlet from each reactor. Stage I is connected to a pressurized raw gas inlet. Stage II is connected to an outlet of the desorbed gas to the atmosphere or to a vacuum pump. Stage IV is connected to a storage and / or use of the purified gas. The appropriate rotor is cylindrical and divided into two groups, sealed and supeφosed, each time four compartments equal to each other in volume in each group and arranged around an axis of rotation of the rotor. A first group is arranged to selectively connect the gas stages I, II and III of the stator. The second group is arranged to selectively connect the gas stages to stages IV and V.
Une étanchéité entre stator et rotor peut être réalisée par une buse en matériau d'usure, notamment du graphite ou du bronze, appliquée sous pression contre le rotor au niveau des orifices d'un étage et coulissant dans un conduit associé du stator, un joint torique pouvant être disposé entre la buse et le conduit.A seal between stator and rotor can be achieved by a nozzle made of wear material, in particular graphite or bronze, applied under pressure against the rotor at the orifices of a stage and sliding in an associated duct of the stator, a seal O-ring that can be placed between the nozzle and the duct.
Entre chaque étage du distributeur rotatif, il peut être prévu un joint d'étanchéité torique entre le rotor et le stator, afin d'éviter les fuites de gaz entre étages, avantageusement le stator portant de plus un ou des joints circulaires de centrage du rotor.Between each stage of the rotary distributor, an O-ring seal can be provided between the rotor and the stator, in order to avoid gas leaks between stages, advantageously the stator carrying one or more circular centering rings for centering the rotor. .
Des conduits et vannes peuvent être installés pour un contrôle d'un débit de gaz épuré à des fins de rinçage dans le but de faciliter la desorption de gaz au cours des phases de desorption.Ducts and valves can be installed to control the flow of purified gas for flushing purposes in order to facilitate the desorption of gas during the desorption phases.
Des grilles de diffusion des gaz et de séparation des matières adsorbantes et/ou dessicatives peuvent assurer une distribution uniforme et radiale des gaz dans les matières adsorbantes. Ces grilles, notamment de forme cylindrique, peuvent être composées d'éléments trapézoïdaux non obturables et comportant des supports métalliques rigides empêchant les mouvements latéraux liés aux fluctuations de pression. D'autres détails et particularités de l'invention ressortiront de la description des dessins qui sont annexés au présent mémoire et qui illustrent, à titre d'exemples non limitatifs, le procédé et des formes de réalisation particulières du dispositif suivant l'invention.Gas diffusion grids and separation of adsorbent and / or desiccant materials can ensure a uniform and radial distribution of the gases in the adsorbent materials. These grids, in particular of cylindrical shape, can be composed of trapezoidal elements which cannot be closed and which include rigid metal supports preventing lateral movements linked to pressure fluctuations. Other details and particularities of the invention will emerge from the description of the drawings which are annexed to this specification and which illustrate, By way of nonlimiting examples, the method and particular embodiments of the device according to the invention.
Brève description des dessins La figure 1 représente schématiquement un dispositif pour la mise en oeuvre du procédé de l'invention.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically represents a device for implementing the method of the invention.
La figure 2 montre schématiquement un dispositif de l'état antérieur de la technique décrit ci-dessus.Figure 2 schematically shows a device of the prior art described above.
La figure 3 est un graphique de la pression en fonction du temps, observée lors de la mise en oeuvre du dispositif de la figure 2. La figure 4 est un graphique de la pression en fonction du temps, observée lors de la mise en oeuvre du procédé de l'invention dans le dispositif de l'invention.FIG. 3 is a graph of the pressure as a function of time, observed during the implementation of the device of FIG. 2. FIG. 4 is a graph of the pressure as a function of time, observed during the implementation of the device method of the invention in the device of the invention.
La figure 5 est une coupe axiale schématique d'un appareil de distribution de l'invention. Les figures 6 à 10 sont des coupes transversales respectives suivant les plans de coupe VI-VI à X-X respectifs de la figure 5, à travers les étages de l'appareil de distribution.Figure 5 is a schematic axial section of a dispensing apparatus of the invention. Figures 6 to 10 are respective cross sections along the respective section planes VI-VI to X-X of Figure 5, through the stages of the dispensing apparatus.
La figure 11 montre, en coupe schématique, un détail de moyens d'étanchéité mis en oeuvre suivant l'invention. La figure 12 montre schématiquement en coupe axiale un réservoir ou réacteur à utiliser suivant l'invention.Figure 11 shows, in schematic section, a detail of sealing means used according to the invention. FIG. 12 schematically shows in axial section a tank or reactor to be used according to the invention.
Dans les différentes figures, les mêmes notations de référence désignent des éléments identiques ou analogues.In the various figures, the same reference notations designate identical or analogous elements.
Description détaillée de modes et formes de réalisation de l'invention Le procédé de l'invention est mis en oeuvre (figure 1) dans deux réacteurs cylindriques D et E, équipés de grilles cylindriques séparant les matières adsorbantes spécifiques : dessicatifs 1 , tamis moléculaire 2, utilisés pour l'adsorption de gaz impur sous l'effet de la variation de la pression.Detailed description of modes and embodiments of the invention The process of the invention is implemented (FIG. 1) in two cylindrical reactors D and E, equipped with cylindrical grids separating the specific adsorbent materials: desiccants 1, molecular sieve 2 , used for the adsorption of impure gas under the effect of the pressure variation.
Un distributeur spécial 5 comportant un stator 6 est connecté à la partie médiane des réacteur D et E via des conduits 7, 7' et des filtres 8 et 8'.A special distributor 5 comprising a stator 6 is connected to the middle part of the reactors D and E via conduits 7, 7 'and filters 8 and 8'.
Le stator 6 du distributeur 5 est également connecté à l'alimentation en gaz brut sous pression via le conduit 9, ce gaz brut étant porté à pression grâce au compresseur 11 et réfrigérant 10.The stator 6 of the distributor 5 is also connected to supplying pressurized raw gas via line 9, this raw gas being brought to pressure by means of compressor 11 and refrigerant 10.
Le stator 6 est raccordé via le conduit 12 à une pompe à vide 13. La partie supérieure du stator 6, contenant du gaz épuré, est connectée a réservoir à gaz épuré 14 via un conduit 15, ainsi qu'à la partie supérieure des réacteurs D et E, via des filtres 18, 18' et des conduits 16, 16'.The stator 6 is connected via the conduit 12 to a vacuum pump 13. The upper part of the stator 6, containing purified gas, is connected to the purified gas tank 14 via a conduit 15, as well as to the upper part of the reactors D and E, via filters 18, 18 'and conduits 16, 16'.
Le rotor 4 (figure 5) du distributeur 5 est entraîné par un moteur (non représenté) suivant un mode séquentiel à quatre positions. Le rotor 4 est divisé en deux groupes de quatre compartiments étanches. A chacun des étages I à V du distributeur 5 sont prévues des ouvertures de communication avec les ouvertures pratiquées dans le stator 6. Une description de cet appareil distributeur 5 est donnée ci-dessous, voir la figure 5.The rotor 4 (FIG. 5) of the distributor 5 is driven by a motor (not shown) in a sequential mode with four positions. The rotor 4 is divided into two groups of four sealed compartments. On each of the stages I to V of the distributor 5 are provided openings for communication with the openings made in the stator 6. A description of this distributor apparatus 5 is given below, see FIG. 5.
Enfin, un conduit 16" relie les conduits 16 et 16', où un débit de rinçage en gaz épuré est contrôlé au moyen de la vanne 19. Fonctionnement du procédéFinally, a pipe 16 "connects the pipes 16 and 16 ', where a purified gas flushing rate is controlled by means of the valve 19. Operation of the process
Le gaz brut filtré est comprimé (figure 1 ) par la machine 11 à une pression de 0,5 bar dans le cas de production d'oxygène par séparation d'air ; il est refroidi dans l'échangeur 10 à température proche de l'ambiance ou proche de 0°C (séparation primaire de l'eau) et est envoyé au distributeur 5 via le conduit 9.The filtered raw gas is compressed (FIG. 1) by the machine 11 at a pressure of 0.5 bar in the case of oxygen production by air separation; it is cooled in the exchanger 10 to a temperature close to the ambient or close to 0 ° C (primary separation of the water) and is sent to the distributor 5 via the conduit 9.
Les dispositions des orifices prévus dans l'étage I du distributeur 5 conduisent le gaz vers le réacteur D via l'étage III du distributeur, le conduit 7, le filtre 8 et le conduit circulaire ceinturant la partie médiane du réacteur D.The arrangements of the orifices provided in stage I of the distributor 5 conduct the gas to the reactor D via stage III of the distributor, the conduit 7, the filter 8 and the circular conduit encircling the middle part of the reactor D.
Le gaz brut est diffusé uniformément au sein d'une masse adsorbante 1 captant un élément du gaz, H2O par exemple. Ce gaz, à passage radial, traverse une seconde masse adsorbante 2. Le gaz épuré est recueilli au centre du réacteur D et rejoint la partie supérieure du distributeur 5 via le conduit 16 et le filtre 18, puis le stator 6 (orifice), vers (figure 5) le canal du rotor 4, vers le conduit 15 (orifice), le réservoir de gaz épuré 14 et l'utilisation. Pendant cette première phase et simultanément, on procède au dégazage du réacteur E des composants adsorbés dans les masses d'adsorption par abaissement de la pression et rinçage au gaz épuré. A cet effet, le gaz désorbé quitte le réacteur E via le conduit 7', le filtre 8', le distributeur de gaz 5, la canalisation 12 et la pompe à vide 13, qui peut rejeter ce gaz à l'atmosphère. Pour faciliter le dégazage du réacteur E, on procède à un rinçage au gaz épuré par injection de ce gaz au sommet du réacteur via le conduit 16" et la vanne 19. Ce gaz épuré abaisse la pression partielle en gaz adsorbé et permet d'éliminer une plus grande part de ce gaz du tamis moléculaire 2.The raw gas is distributed uniformly within an adsorbent mass 1 capturing an element of the gas, H 2 O for example. This gas, with radial passage, passes through a second adsorbent mass 2. The purified gas is collected at the center of reactor D and joins the upper part of the distributor 5 via the conduit 16 and the filter 18, then the stator 6 (orifice), towards (Figure 5) the rotor channel 4, to the conduit 15 (orifice), the purified gas tank 14 and use. During this first phase and simultaneously, degassing of the reactor E of the components adsorbed in the masses adsorption by lowering the pressure and purging with purified gas. For this purpose, the desorbed gas leaves the reactor E via the conduit 7 ', the filter 8', the gas distributor 5, the pipe 12 and the vacuum pump 13, which can reject this gas to the atmosphere. To facilitate degassing of reactor E, purged gas is rinsed by injecting this gas at the top of the reactor via the 16 "conduit and valve 19. This purified gas lowers the partial pressure of adsorbed gas and makes it possible to eliminate more of this gas from the molecular sieve 2.
Après un temps limité, de 15 à 25 secondes, on passe à la seconde phase du procédé par rotation du rotor 4 du distributeur rotatif 5 d'un quart de tour. Dans cette seconde phase, le gaz brut poursuit un chemin identique vers le réacteur D via d'autres ouvertures et canaux du stator et rotor, qui continue à produire du gaz épuré via le conduit 16, le distributeur 5 et le réservoir d'oxygène 14. La désoφtion du réacteur E est terminée et on procède à la remise en pression rapide via le distributeur rotatif 5 en prélevant du gaz épuré du réservoir de gaz 14 via le conduit 16'. La durée de cette seconde phase est limitée à 3 à 5 secondes.After a limited time, from 15 to 25 seconds, we pass to the second phase of the process by rotation of the rotor 4 of the rotary distributor 5 by a quarter of a turn. In this second phase, the raw gas follows an identical path to the reactor D via other openings and channels of the stator and rotor, which continues to produce purified gas via the conduit 16, the distributor 5 and the oxygen tank 14 The desorption of the reactor E is finished and the rapid pressure redirection is carried out via the rotary distributor 5 by withdrawing purified gas from the gas tank 14 via the conduit 16 '. The duration of this second phase is limited to 3 to 5 seconds.
La troisième phase est démarrée ensuite par une nouvelle rotation du rotor 6 du distributeur rotatif.The third phase is then started by a new rotation of the rotor 6 of the rotary distributor.
Le gaz brut traverse radialement les couches d'adsorbant du réacteur E et y abandonne les gaz ou composés à adsorber. Le gaz épuré non adsorbé, recueilli au centre du réacteur, est évacué via les conduits 16', puis 15 et, après passage à travers le distributeur, vers le réservoir à gaz épuré 14 et l'utilisation.The raw gas passes radially through the adsorbent layers of reactor E and leaves the gases or compounds to be adsorbed there. The purified non-adsorbed gas, collected in the center of the reactor, is evacuated via the conduits 16 ′, then 15 and, after passage through the distributor, towards the purified gas tank 14 and the use.
Pendant cette phase, on procède à la desorption du gaz précédemment adsorbé dans le réacteur D, par la mise en communication de ce réacteur et de la pompe à vide 13, via le conduit 7, le distributeur 5, le conduit 12. La durée de cette troisième phase est de 15 à 25 secondes. La quatrième phase ensuite, est amorcée par rotation du rotor 4 d'un quart de tour : le gaz impur poursuit son chemin vers le réacteur E avec production poursuivie de gaz épuré et également une remise en pression du réacteur D par injection inverse de gaz épuré issu du réservoir 14 via le conduit 15, le distributeur et le conduit 16.During this phase, one proceeds to the desorption of the gas previously adsorbed in the reactor D, by the communication between this reactor and the vacuum pump 13, via the conduit 7, the distributor 5, the conduit 12. The duration of this third phase is 15 to 25 seconds. The fourth phase is then started by rotating the rotor 4 a quarter of a turn: the impure gas continues on its way to the reactor E with continued production of purified gas and also re-pressure of reactor D by reverse injection of purified gas from tank 14 via line 15, the distributor and line 16.
La représentation des différentes phases du procédé suivant l'invention est donnée à la figure 3.The representation of the different phases of the process according to the invention is given in FIG. 3.
Description du distributeur 5 suivant l'invention Elément essentiel du procédé, le distributeur 5 (figures 5 à 10) comporte le stator 6 à cinq étages I à V et le rotor 4 qui effectue des mouvements rotatifs séquentiels par quart de tour, entraîné par le moteur susdit contrôlé par un processeur.Description of the distributor 5 according to the invention An essential element of the process, the distributor 5 (FIGS. 5 to 10) comprises the stator 6 with five stages I to V and the rotor 4 which performs sequential rotary movements by quarter turn, driven by the Above-mentioned motor controlled by a processor.
Les réacteurs D et E sont reliés au stator 6 par les tubulures 7, 7', et par les tubulures 22 et 22'. Ces tubulures sont équipées de buses mobiles 23, en contact avec le rotor pour assurer l'étanchéité.The reactors D and E are connected to the stator 6 by the pipes 7, 7 ', and by the pipes 22 and 22'. These pipes are equipped with movable nozzles 23, in contact with the rotor to ensure sealing.
Le gaz à séparer, sous pression, est introduit au distributeur 5 à l'étage I de celui-ci, à la base, par le conduit 9 dans une enceinte circulaire 24.The gas to be separated, under pressure, is introduced into the distributor 5 on stage I thereof, at the base, through the conduit 9 in a circular enclosure 24.
A cet étage I, (figures 5 et 10) le stator 6 est pourvu de quatre orifices circulaires ou rectangulaires 25, permettant le passage du gaz brut vers un canal du rotor 4.At this stage I, (FIGS. 5 and 10) the stator 6 is provided with four circular or rectangular orifices 25, allowing the passage of the raw gas towards a channel of the rotor 4.
Le gaz désorbé est extrait de l'étage II (figures 5 et 9) du distributeur 5 via une enceinte circulaire 26. Le stator comporte à cet endroit quatre orifices 27 pour accéder à l'un des canaux du rotor 4.The desorbed gas is extracted from stage II (FIGS. 5 and 9) of the distributor 5 via a circular enclosure 26. The stator has at this location four orifices 27 to access one of the channels of the rotor 4.
Les parties médianes des deux réacteurs D et E (figures 5 et 8) sont connectées directement à l'étage III du distributeur via les tubulures 7 et 7' et les buses mobiles 23. L'étage IV du distributeur est muni (figures 5 et 7) d'une enceinte circulaire 28 raccordée au réservoir de gaz épuré via le conduit 15. A cet endroit, le stator 6 est muni de quatre orifices 29 de passage de gaz.The middle parts of the two reactors D and E (FIGS. 5 and 8) are connected directly to stage III of the distributor via the pipes 7 and 7 ′ and the movable nozzles 23. Stage IV of the distributor is provided (Figures 5 and 7) a circular enclosure 28 connected to the purified gas tank via the conduit 15. At this point, the stator 6 is provided with four orifices 29 for the passage of gas.
L'étage V du distributeur 5 est connecté (figures 5 et 6) via les tubulures 22, 22' au sommet des réacteurs D et E. Le stator 6 à cet endroit est percé de deux orifices dans lesquels coulissent les buses d'étanchéité 23 en contact avec le rotor. Le distributeur 5 est pourvu du rotor cylindrique 4, compartimenté en quatre canaux axiaux occupant toute la hauteur du stator. Ce rotor 4 est également pourvu d'une séparation entre sa partie inférieure contenant du gaz brut ou désorbé et sa partie supérieure contant du gaz épuré grâce à un plateau 30. Ainsi, il y a deux groupes de quatre compartiments.The stage V of the distributor 5 is connected (FIGS. 5 and 6) via the pipes 22, 22 'at the top of the reactors D and E. The stator 6 at this point is pierced with two orifices in which the sealing nozzles 23 slide in contact with the rotor. The distributor 5 is provided with the cylindrical rotor 4, compartmentalized in four axial channels occupying the entire height of the stator. This rotor 4 is also provided with a separation between its lower part containing raw or desorbed gas and its upper part containing purified gas thanks to a plate 30. Thus, there are two groups of four compartments.
Le rotor 4 est percé d'orifices permettant le passage des gaz : étage I (figure 10) : deux orifices 31 , étage II (figure 9) : un orifice 32, étage III (figure 8) : trois orifices 33, - étage IV (figure 7) : trois orifices 36, étage V (figure 6) : trois orifices 39.The rotor 4 is pierced with orifices allowing the passage of gases: stage I (figure 10): two orifices 31, stage II (figure 9): one orifice 32, stage III (figure 8): three orifices 33, - stage IV (figure 7): three orifices 36, stage V (figure 6): three orifices 39.
Afin d'assurer l'étanchéité du système, le stator 6 est équipé de joints d'étanchéité circulaires 42, voir la figure 5 et la figure 11 qui représente également un détail des buses d'étanchéité 23, comportant des ressorts 43 de pression des buses 23.In order to seal the system, the stator 6 is equipped with circular seals 42, see FIG. 5 and FIG. 11 which also represents a detail of the sealing nozzles 23, comprising springs 43 for pressure of the nozzles 23.
Le mouvement du rotor 4 est réalisé suivant une programmation liée au type de gaz à séparer et aux caractéristiques cinétiques des adsorbants utilisés.The movement of the rotor 4 is carried out according to a programming linked to the type of gas to be separated and to the kinetic characteristics of the adsorbents used.
Distribution des gaz dans les réacteurs Le procédé suivant l'invention comporte une distribution radiale des gaz suivant la figure 12.Distribution of gases in the reactors The process according to the invention comprises a radial distribution of the gases according to FIG. 12.
Les réacteurs D et E comportent une alimentation 43 périphérique pour l'admission de gaz brut sous pression et pour l'évacuation de gaz désorbé évacué vers la pompe à vide 13. Les réacteurs sont pourvus de grilles verticales cylindriques 44,The reactors D and E comprise a peripheral supply 43 for the admission of raw gas under pressure and for the evacuation of desorbed gas evacuated to the vacuum pump 13. The reactors are provided with cylindrical vertical grids 44,
45, 46, contenant les adsorbants 1 , 2 choisis (en fonction de H2O, N2 ...). Ces grilles sont constituées d'éléments de forme spéciale, trapézoïdale par exemple, non obturables par les matières adsorbantes insérées.45, 46, containing the adsorbents 1, 2 chosen (depending on H 2 O, N 2 ...). These grids are made up of elements of special shape, trapezoidal for example, not closable by the adsorbent materials inserted.
Les écoulements des gaz dans les matières adsorbantes, de la périphérie vers le centre à l'adsoφtion, et du centre vers la périphérie à la désoφtion, se font à vitesse quasi constante, assurant la meilleurs efficacité des opérations adsorption /desorption.The gas flows in the adsorbent materials, from the periphery towards the center at the adsorption, and from the center towards the periphery at the desoφtion, take place at almost constant speed, ensuring the best efficiency of the adsorption / desorption operations.
Il doit être entendu que l'invention n'est nullement limitée aux formes de réalisation décrites et que bien des modifications peuvent être apportées à ces dernières sans sortir du cadre des revendications. Rinçage au moven de gaz épuré à la desorptionIt should be understood that the invention is in no way limited to the embodiments described and that many modifications can be made to these without departing from the scope of the claims. Moven rinsing of gas purified by desorption
Cette opération, réalisée dans le contexte de l'invention, consiste (figure 1 ) à injecter dans le réacteur, en phase de désoφtion, du gaz épuré en tête du réacteur via la vanne 19 et la canalisation 16, 16' dans le but d'abaisser d'une façon significative la pression partielle en gaz adsorbé et, ainsi, réduire sensiblement la teneur résiduelle en gaz adsorbé en fin de la phase de désoφtion. Cette opération augmente sensiblement la capacité d'adsorption du système, ce qui se traduit, pour une capacité de production donnée, à une quantité limitée en adsorbant, réacteurs plus petits, coût d'investissement abaissé et une baisse en consommation d'énergie. Performances d'une unité suivant l'inventionThis operation, carried out in the context of the invention, consists (Figure 1) of injecting into the reactor, in the phase of desoφtion, purified gas at the head of the reactor via the valve 19 and the pipe 16, 16 'for the purpose of 'Significantly lower the partial pressure of adsorbed gas and, thus, significantly reduce the residual content of adsorbed gas at the end of the desoφtion phase. This operation significantly increases the adsorption capacity of the system, which translates, for a given production capacity, to a limited quantity of adsorbent, smaller reactors, lower investment cost and a drop in energy consumption. Performance of a unit according to the invention
Exemple : production d'oxygène par séparation d'air, tamis moléculaire LISX ou LITHIUM.Example: oxygen production by air separation, LISX or LITHIUM molecular sieve.
Phase 1 : durée 15-25 secondes, - phase 2 : durée 3-5 secondes, - phase 3 : durée 15-25 secondes, phase 4 : durée 3-5 secondes, total : durée 45-65 secondes,Phase 1: duration 15-25 seconds, - phase 2: duration 3-5 seconds, - phase 3: duration 15-25 seconds, phase 4: duration 3-5 seconds, total: duration 45-65 seconds,
Production d'oxygène = 30 T/jour (pur) = 876 N m3/h, qualité 93%. Besoins en adsorbant = 13 tonnes LISX et 8 tonnes en alumine active. Débit d'air, pression 1 ,5 bar a, Q = 6200 m3/h.Oxygen production = 30 T / day (pure) = 876 N m 3 / h, quality 93%. Adsorbent requirements = 13 tonnes LISX and 8 tonnes of active alumina. Air flow, pressure 1.5 bar a, Q = 6200 m 3 / h.
Débit de gaz désorbé, pression moyenne = 0,72 bar a, Q = 7300 m3/h. Puissance électrique totale (soufflante d'air, pompes à vide, accessoires, pertes moteur/transformateur) = 200 kW, soit une consommation de 0,23 kWh par m3 de O2. Desorbed gas flow, average pressure = 0.72 bar a, Q = 7300 m 3 / h. Total electrical power (air blower, vacuum pumps, accessories, motor / transformer losses) = 200 kW, i.e. consumption of 0.23 kWh per m 3 of O 2 .

Claims

Revendications claims
1. Procédé de séparation de gaz basé sur l'adsorption préférentielle de composés d'un gaz brut dans des masses adsorbantes spécifiques, fonctionnant par changement de pression à température ambiante, suivi de la desorption des composés adsorbés suivant les systèmes V.P.S.A. en deux réacteurs (D, E), caractérisé par l'utilisation d'un cycle à quatre phases distinctes et successives dont : la première phase comporte - dans un des deux réacteurs (D), une adsorption sous pression des composés du gaz brut dans la matière adsorbante, et une évacuation, vers une utilisation, du gaz épuré non adsorbé,1. Gas separation process based on the preferential adsorption of compounds from a raw gas in specific adsorbent masses, operating by pressure change at room temperature, followed by the desorption of the adsorbed compounds according to the V.P.S.A. in two reactors (D, E), characterized by the use of a cycle with four distinct and successive phases of which: the first phase comprises - in one of the two reactors (D), a pressure adsorption of the compounds of the raw gas in the adsorbent material, and an evacuation, for use, of the purified non-adsorbed gas,
- simultanément dans le second réacteur (E), une desorption des composés de gaz qui y sont adsorbés, par réduction de la pression évacuée vers l'atmosphère ou par une pompe à vide, la deuxième phase comporte- simultaneously in the second reactor (E), a desorption of the gas compounds which are adsorbed there, by reduction of the pressure discharged towards the atmosphere or by a vacuum pump, the second phase comprises
- une poursuite de l'adsoφtion dans le premier réacteur (D),- further addition to the first reactor (D),
- un arrêt de la désoφtion dans le second réacteur (E) et une remise sous pression de celui-ci par injection rapide de gaz épuré à contre- courant, la troisième phase comporte- a stop of the desoφtion in the second reactor (E) and a pressurization thereof by rapid injection of purified gas against the current, the third phase comprises
- une alimentation du second réacteur (E) sous pression en gaz brut avec adsoφtion de composants du gaz dans la masse adsorbante et évacuation de gaz épuré, - simultanément, une desorption des composés adsorbés dans le premier réacteur (D), par évacuation de la pression vers l'atmosphère ou par une pompe à vide, et la quatrième phase comporte- supplying the second reactor (E) under pressure with raw gas with the addition of gas components to the adsorbent mass and removal of purified gas, - simultaneously, desorption of the compounds adsorbed in the first reactor (D), by removal of the pressure to the atmosphere or by a vacuum pump, and the fourth phase involves
- une poursuite de l'adsorption de gaz sous pression dans le second réacteur (E) et une évacuation du gaz épuré vers l'utilisation et- a continuation of the adsorption of gas under pressure in the second reactor (E) and an evacuation of the purified gas towards the use and
- un arrêt de la desorption dans le premier réacteur (D) et une remise sous pression de celui-ci par injection rapide, à contre-courant, de gaz épuré, sans perte de ce gaz vers l'extérieur.- a desorption stop in the first reactor (D) and a return under pressure thereof by rapid injection, against the current, of purified gas, without loss of this gas to the outside.
2. Procédé suivant la revendication 1 , caractérisé par la mise en œuvre d'une injection de gaz épuré, à contre-courant, dans le réacteur en cours de desorption, dosée de manière à provoquer un abaissement complémentaire de la pression partielle des composés adsorbés, de façon à éliminer une quantité accrue de gaz adsorbé de la masse adsorbante.2. Method according to claim 1, characterized by the implementation of an injection of purified gas, against the current, in the reactor during desorption, dosed so as to cause a further lowering of the partial pressure of the adsorbed compounds , so as to remove an increased quantity of adsorbed gas from the adsorbent mass.
3. Procédé suivant l'une ou l'autre des revendications 1 et 2, caractérisé par le mode d'écoulement des gaz dans le réacteur (D, E) depuis la périphérie du réacteur vers le centre de celui-ci pendant l'adsorption sous pression, et depuis le centre du réacteur vers sa périphérie en phase de desorption, afin d'assurer d'une part au gaz brut et d'autre part aux composés désorbés une vitesse de passage constante et optimale.3. Method according to either of Claims 1 and 2, characterized by the mode of flow of the gases in the reactor (D, E) from the periphery of the reactor towards the center thereof during adsorption under pressure, and from the center of the reactor to its periphery in the desorption phase, in order to ensure, on the one hand, the raw gas and, on the other hand, the desorbed compounds a constant and optimal passage speed.
4. Dispositif pour la mise en oeuvre du procédé suivant l'une quelconque des revendications 1 à 3, caractérisé par un appareil de distribution des gaz et composants du gaz comportant4. Device for implementing the method according to any one of claims 1 to 3, characterized by an apparatus for distributing gases and gas components comprising
- un stator raccordé à la source de gaz brut à épurer, aux deux réacteurs, à la décharge de composé(s) désorbé(s), aux stockage et/ou utilisation du gaz épuré, et - disposé dans le stator, un rotor à fonctionnement séquentiel, agencé pour distribuer les gaz brut et épuré et composants désorbés vers leur destination programmée en respectant les différentes phases et sans utilisation de vannes séquentielles, le rotor et le stator comportant chacun des orifices à mettre sélectivement en regard en fonction des phases du procédé.- a stator connected to the source of raw gas to be purified, to the two reactors, to the discharge of desorbed compound (s), to the storage and / or use of the purified gas, and - placed in the stator, a rotor to sequential operation, arranged to distribute the raw and purified gases and desorbed components towards their programmed destination while respecting the different phases and without the use of sequential valves, the rotor and the stator each having orifices to be selectively compared according to the phases of the process .
5. Dispositif suivant la revendication 4, caractérisé en ce que le stator comporte cinq étages (I à V) superposés et dont, en suivant leurs numéros d'ordre successifs,5. Device according to claim 4, characterized in that the stator comprises five stages (I to V) superimposed and of which, following their successive order numbers,
- deux étages sont connectés directement aux deux réacteurs, l'étage III en commun à une entrée de gaz brut de chacun des réacteurs, et l'étage V en commun à une sortie de gaz épuré de chaque réacteur, et l'étage I est raccordé à une arrivée de gaz brut sous pression, l'étage II est raccordé à une sortie du gaz désorbé vers l'atmosphère ou une pompe à vide, l'étage IV est raccordé à un stockage et/ou utilisation du gaz épuré, et le rotor cylindrique est divisé en deux groupes, séparés de manière étanche et superposés, de chaque fois quatre compartiments égaux entre eux en volume dans chaque groupe et disposés autour d'un axe de rotation du rotor, un premier groupe étant agencé pour mettre sélectivement en communication de passage de gaz les étages I, Il et III du stator, le second groupe étant agencé pour mettre sélectivement en communication de passage de gaz les étages IV et V.two stages are connected directly to the two reactors, stage III in common with an inlet for raw gas from each of the reactors, and stage V in common with an outlet for purified gas from each reactor, and stage I is connected to an inlet of raw gas under pressure, stage II is connected to an outlet of the desorbed gas to the atmosphere or a vacuum pump, stage IV is connected to a storage and / or use purified gas, and the cylindrical rotor is divided into two groups, tightly separated and superimposed, each time four compartments equal in volume between them in each group and arranged around an axis of rotation of the rotor, a first group being arranged to selectively connect the gas stages I, II and III of the stator, the second group being arranged to selectively connect the gas stages IV and V.
6. Dispositif suivant la revendication 5, caractérisé en ce que, pour la communication entre le rotor et le stator, des orifices y sont prévus en nombres comme suit : étage I, rotor, deux, stator, quatre, étage II, rotor, un, stator, quatre, étage III, rotor, trois, stator, deux, étage IV, rotor, trois, stator, trois, - étage V, rotor, trois, stator, deux.6. Device according to claim 5, characterized in that, for the communication between the rotor and the stator, orifices are provided therein in numbers as follows: stage I, rotor, two, stator, four, stage II, rotor, a , stator, four, stage III, rotor, three, stator, two, stage IV, rotor, three, stator, three, - stage V, rotor, three, stator, two.
7. Dispositif suivant l'une quelconque des revendications 4 à 6, caractérisé par une étanchéité entre stator et rotor réalisée par une buse en matériau d'usure, notamment du graphite ou du bronze, appliquée sous pression contre le rotor au niveau des orifices d'un étage et coulissant dans un conduit associé du stator, un joint torique pouvant être disposé entre la buse et le conduit.7. Device according to any one of claims 4 to 6, characterized by a seal between the stator and the rotor produced by a nozzle made of wear material, in particular graphite or bronze, applied under pressure against the rotor at the orifices d 'a stage and sliding in an associated conduit of the stator, an O-ring can be disposed between the nozzle and the conduit.
8. Dispositif suivant l'une quelconque des revendications 4 à 7, caractérisé en ce qu'entre chaque étage du distributeur rotatif, il est prévu un joint d'étanchéité torique entre le rotor et le stator, afin d'éviter les fuites de gaz entre étages, avantageusement le stator portant de plus un ou des joints circulaires de centrage du rotor. 8. Device according to any one of claims 4 to 7, characterized in that between each stage of the rotary distributor, an O-ring seal is provided between the rotor and the stator, in order to avoid gas leaks between stages, advantageously the stator additionally carrying one or more circular centering rings for the rotor.
9. Dispositif suivant l'une quelconque des revendications 4 à 8, caractérisé par des conduits et vannes de contrôle d'un débit de gaz épuré à des fins de rinçage dans le but de faciliter la désoφtion de gaz au cours des phases de desorption. 9. Device according to any one of claims 4 to 8, characterized by conduits and valves for controlling a flow of purified gas for rinsing purposes in order to facilitate the desoφtion of gas during the desorption phases.
10. Dispositif suivant l'une quelconque des revendications 4 à 9, caractérisé par des grilles de diffusion des gaz et de séparation des matières adsorbantes et/ ou dessicatives, assurant une distribution uniforme et radiale des gaz dans les matières adsorbantes, ces grilles, notamment de forme cylindrique, étant composées d'éléments trapézoïdaux non obturables et comportant des supports métalliques rigides, empêchant les mouvements latéraux liés aux fluctuations de pression. 10. Device according to any one of claims 4 to 9, characterized by gas diffusion grids and separation of adsorbent and / or desiccant materials, ensuring a uniform and radial distribution of the gases in the adsorbent materials, these grids, in particular of cylindrical shape, being composed of trapezoidal elements which cannot be closed and comprising rigid metal supports, preventing lateral movements linked to pressure fluctuations.
PCT/BE2002/000078 2001-05-18 2002-05-16 Method and device for gas separation by adsorption, in particular for industrial oxygen production WO2002094417A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2001/0341 2001-05-18
BE2001/0341A BE1014185A3 (en) 2001-05-18 2001-05-18 PROCESS AND DEVICE FOR THE SEPARATION OF GAS BY ADSORPTION, PARTICULARLY FOR THE PRODUCTION OF INDUSTRIAL OXYGEN.

Publications (1)

Publication Number Publication Date
WO2002094417A1 true WO2002094417A1 (en) 2002-11-28

Family

ID=3896987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE2002/000078 WO2002094417A1 (en) 2001-05-18 2002-05-16 Method and device for gas separation by adsorption, in particular for industrial oxygen production

Country Status (2)

Country Link
BE (1) BE1014185A3 (en)
WO (1) WO2002094417A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071297A1 (en) * 2004-01-08 2005-08-04 Jacques Ribesse Continuously-operating rotary distributor
CN101912717A (en) * 2010-08-13 2010-12-15 浙江工业大学 Desorbing/absorbing process reinforcement integrated system based on baffle type revolving bed and technique thereof
CN104415641A (en) * 2013-08-16 2015-03-18 上海通学实业有限公司 Variable pressure gas adsorption separation apparatus
CN109323122A (en) * 2018-10-15 2019-02-12 杭州博大净化设备有限公司 A kind of efficient nitrogen purification equipment and its intermediate collection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877429A (en) * 1989-03-06 1989-10-31 Hunter Donald W Valve device for P.S.A. or R.P.S.A. systems
US5632804A (en) * 1992-08-18 1997-05-27 Jacques Ribesse Process and apparatus for separating constituents of a gas mixture by adsorption
WO1997032656A1 (en) * 1996-03-04 1997-09-12 Tamis Moleculaires Pour La Production D'oxygene Sprl (Tamox Sprl) Method and device for selectively separating at least one component from a gaseous mixture
US5779771A (en) * 1995-11-07 1998-07-14 Calgon Carbon Corporation Rotating flow distributor assembly for use in continuously distributing decontamination and regeneration fluid flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877429A (en) * 1989-03-06 1989-10-31 Hunter Donald W Valve device for P.S.A. or R.P.S.A. systems
US5632804A (en) * 1992-08-18 1997-05-27 Jacques Ribesse Process and apparatus for separating constituents of a gas mixture by adsorption
US5779771A (en) * 1995-11-07 1998-07-14 Calgon Carbon Corporation Rotating flow distributor assembly for use in continuously distributing decontamination and regeneration fluid flow
WO1997032656A1 (en) * 1996-03-04 1997-09-12 Tamis Moleculaires Pour La Production D'oxygene Sprl (Tamox Sprl) Method and device for selectively separating at least one component from a gaseous mixture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071297A1 (en) * 2004-01-08 2005-08-04 Jacques Ribesse Continuously-operating rotary distributor
BE1015848A3 (en) * 2004-01-08 2005-10-04 Jacques Ribesse Rotary continuously operating.
CN101912717A (en) * 2010-08-13 2010-12-15 浙江工业大学 Desorbing/absorbing process reinforcement integrated system based on baffle type revolving bed and technique thereof
CN101912717B (en) * 2010-08-13 2012-09-05 浙江工业大学 Desorbing/absorbing process reinforcement integrated system based on baffle type revolving bed and technique thereof
CN104415641A (en) * 2013-08-16 2015-03-18 上海通学实业有限公司 Variable pressure gas adsorption separation apparatus
CN109323122A (en) * 2018-10-15 2019-02-12 杭州博大净化设备有限公司 A kind of efficient nitrogen purification equipment and its intermediate collection method

Also Published As

Publication number Publication date
BE1014185A3 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
WO1994004249A1 (en) Method and device for separating gas components by adsorption
EP0218660B2 (en) Method and apparatus for the production of ozone
EP0480840B1 (en) Process and device for separating by adsorption at least one constituent of a gas mixture
EP1095689A1 (en) Installation for cyclic treatment of fluid by adsorption, comprising valves with improved tightness
EP2129449B1 (en) Purification or separation process and plant using several out-of-phase adsorbers
EP0938920A1 (en) Process and device for purifying gas by adsoprtion using fixed horizontal beds
EP0798028A1 (en) Pressure swing adsorption process for treating a gas mixture
EP1004343B1 (en) Pressure swing absorption process for separation of a gas mixture
WO2002094417A1 (en) Method and device for gas separation by adsorption, in particular for industrial oxygen production
WO2020169900A1 (en) Plant and process for aerial gas separation using a parallelepipedal adsorber
FR3006909A1 (en) PROCESS FOR PURIFYING A GAS MIXTURE AND GENERATOR THEREFOR
EP2179776B1 (en) Re-pressurisation of a CO2-VSA treating a gaseous mix containing a fuel
EP1752205B1 (en) Method of separating at least one gas mixture in a PSA unit
EP1714061B1 (en) Continuously-operating rotary distributor
BE1023605B1 (en) METHOD AND APPARATUS FOR COMPRESSING AND DRYING GAS
CA2923077A1 (en) Regeneration of a trap for impurities in hydrogen using the heat leaving a hydride reservoir
JP6231363B2 (en) Gas separation apparatus and method
EP0940164A1 (en) Process and apparatus for separating a gas mixture by adsorption
FR2846710A1 (en) Device for producing hot gas comprises oxidizing active material coating device's passages to produce energy, using cycle of oxidation, purging and reduction to regenerate material
FR2569574A1 (en) APPARATUS COMPRISING GAS DISTRIBUTORS FOR SEPARATING THE CONSTITUENTS OF A GASEOUS MIXTURE
EP3274074B1 (en) Method for producing oxygen by vpsa comprising four adsorbers
FR2755875A1 (en) PROCESS AND INSTALLATION FOR SEPARATION OF GAS MIXTURES BY ADSORPTION AT VARIATION OF PRESSURE
BE1010028A6 (en) Method and device for selective separation of at least one component of a gas mixture.
EP3266511B1 (en) Vsa oxygen production method with periodic regeneration
WO2008078028A2 (en) Radial absorbers installed in parallel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 02732249

Country of ref document: EP

Kind code of ref document: A1