WO2002092903A1 - Glass cloth and use thereof - Google Patents

Glass cloth and use thereof Download PDF

Info

Publication number
WO2002092903A1
WO2002092903A1 PCT/JP2002/004668 JP0204668W WO02092903A1 WO 2002092903 A1 WO2002092903 A1 WO 2002092903A1 JP 0204668 W JP0204668 W JP 0204668W WO 02092903 A1 WO02092903 A1 WO 02092903A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
treated
glass cloth
weight
glass
Prior art date
Application number
PCT/JP2002/004668
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Kimura
Daisuke Matsude
Original Assignee
Asahi-Schwebel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi-Schwebel Co., Ltd. filed Critical Asahi-Schwebel Co., Ltd.
Priority to JP2002590158A priority Critical patent/JP3897699B2/en
Publication of WO2002092903A1 publication Critical patent/WO2002092903A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles

Definitions

  • the present invention relates to a glass cloth, particularly to a glass cloth for producing a glass cloth reinforced resin laminate used for a printed wiring board, and to a pre-predder used for the printed wiring board.
  • Conventional technology is a glass cloth, particularly to a glass cloth for producing a glass cloth reinforced resin laminate used for a printed wiring board, and to a pre-predder used for the printed wiring board.
  • the printed wiring board uses surface-treated glass cloth that has been previously surface-treated with a silane coupling agent, surfactant, etc., with the aim of improving the affinity and adhesiveness with the matrix resin. It is produced.
  • a printed wiring board is prepared by preparing a pre-preda prepared by applying a synthetic resin such as an epoxy resin to a surface-treated glass cloth, heating and applying a pressure, and then preparing a copper-clad glass-reinforced resin-clad laminate. It is manufactured through various processing steps such as patterning, through-hole formation, and multi-layering.
  • the temperature of the soldering process for mounted components tends to be set higher due to the use of lead-free solder, which does not contain lead, which is a concern for the environment, as the printed circuit board has a negative impact on the environment.
  • lead-free solder which does not contain lead
  • the printed circuit board has a negative impact on the environment.
  • the matrix resin used for printed wiring boards has rapidly increased in a) high elastic modulus, b) reduced polar functional groups, and c) high glass transition temperature. Progressing. Naturally, glass cloth for printed wiring boards is required to solve the following problems.
  • Moisture-absorbing printed wiring boards called the solder heat resistance reduction phenomenon, generate cracks and blisters between layers of the printed wiring board due to thermal shock and rapid expansion of moisture during the soldering process. The phenomenon is more likely to occur. In particular, this phenomenon of lowering solder heat resistance is particularly remarkable in a multilayer printed wiring board having a circuit between layers of the printed wiring board.
  • epoxy resins have a multifunctional epoxy resin structure with a large number of epoxy groups in one molecule, structural improvements such as an epoxy resin with a rigid and bulky skeleton introduced in the molecule, Attempts have been made to introduce polyfunctional phenol nopolak resins and acid anhydrides as the curing agents.
  • the application of polyfunctional resin increases the crosslink density of the resin and has a great effect on increasing the glass transition temperature.
  • the use of polyfunctional resins is accompanied by a decrease in toughness and an increase in hygroscopicity with an increase in free volume between crosslinks.
  • a resin with a rigid and bulky skeleton has the effect of improving toughness and reducing hygroscopicity, but has a small effect of increasing the glass transition temperature and has a poor reaction with the glass cloth surface treatment, and therefore has an adhesive property.
  • the effect of improvement is small.
  • the improvement of the properties required for the matrix resin and the improvement for preventing the accompanying adverse effects have conflicting portions in the resin composition, and have not solved the problem.
  • a new curing system such as bismaleimidoriazine (BT) resin, cyanate resin, polyimide resin, and a combination resin of the high heat-resistant thermoplastic resin and the thermosetting resin exemplified above, is also available. Attempts have been made to improve the heat resistance by using a simple resin, but this is not enough to solve the problem, as is the case with the epoxy resin.
  • the surface treatment of glass cloth includes improving the heat resistance, adhesiveness, and moisture absorption resistance of silane coupling agents, etc., to improve the properties of the matrix resin. Attempts have been made to resolve cracking and ii) reduced solder heat resistance.
  • the improved silane coupling agents include N- ⁇ - ( ⁇ -vinylbenzylaminoethyl) - ⁇ /- ⁇ aminoprovir trimethoxysilane hydrochloride, ⁇ -] 3- ( ⁇ -benzylamine Noethylamino propyl) trimethoxysilane hydrochloride and the like.
  • the inorganic functional group that reacts with the glass of the silane coupling agent can achieve strong adhesion to the glass by the condensation reaction between the glass and the silane coupling agent, but the effect of imparting toughness is small, and the problem is solved. Has not been reached. Disclosure of the invention
  • An object of the present invention is to provide a glass cloth capable of obtaining a printed wiring board having both advanced characteristics and basic characteristics in which cracks during soldering and reduction in solder heat resistance of the printed wiring substrate are suppressed.
  • Another object of the present invention is to provide a pre-printer for producing a printed wiring board using a matrix resin having high elasticity and a high glass transition temperature, having both high use performance and processing characteristics.
  • the present inventors considered that, in addition to a silane coupling agent as a surface treatment agent composition, a resin having a glass transition temperature of a cured product of 130 ° C or higher and a matrix resin.
  • a composition comprising a resin having at least one functional group selected from the group consisting of a reactive epoxy group, a phenol group and an aryl group, or a resin containing a resin containing a mixed resin thereof as a main component.
  • the inventors have found that the following effects can be imparted to glass cloth, and have reached the present invention.
  • the surface treatment is performed with a silane coupling agent and a surface treatment agent composition containing a treatment resin having a glass transition temperature of 130 ° C. or higher of a cured product.
  • a surface-treating agent composition comprising a resin having at least one functional group selected from an epoxy group, a phenol group, and a aryl group in which the fat reacts with the matrix resin, or a resin mixture thereof; Is a glass cloth characterized by being attached in an amount of 0.1% by weight or more and less than 1.0% by weight relative to the entire surface-treated glass cloth.
  • the composition containing the treated resin contains a thermosetting resin having a glass transition temperature of 130 ° C or higher and a thermoplastic resin having a glass transition temperature of 130 ° C or higher. Is preferred.
  • Another preferred embodiment of the glass cloth of the present invention is a glass cloth which has been subjected to a surface treatment, wherein the surface treatment is a silane coupling agent, and a naphthol aralkyl type epoxy resin having a glass transition temperature of 130 ° C. or more of a cured product. And a composition containing the surface treatment agent formed from a composition containing 0.1% by weight or more and less than 1.0% by weight relative to the entire glass cloth. It is a glass cross.
  • the surface-treated glass cloth of the present invention is a treatment liquid obtained by diluting, with water, an emulsion of a treatment resin emulsified by adding a surfactant to a treatment resin in advance using water as a main solvent.
  • a treatment liquid obtained by adding a surfactant to a treatment resin directly or after dissolving it in a water-soluble organic solvent and then pouring it into water, or a dispersion treatment liquid in which a powdery treatment resin is dispersed in water It is also a preferable embodiment to perform the process by any one of the above.
  • the present invention provides a pre-printer to be used for a surface-treated glass cloth and a printed wiring board made of a matrix resin having a higher glass transition temperature than the treated resin adhering to the glass cross. Can be provided.
  • the glass cloth applied to the present invention may be a glass cloth using any glass such as E glass, A glass, D glass, and S glass.
  • the glass cloth has a weave density of 10 to 200 fibers / 25 mm, preferably 15 to 100 fibers / 25 mm, and a mass of 5 to 400 g / m. 2 , preferably 10 to 300 g / m 2 , and weaving methods such as plain weave, satin weave, twill weave, and Nanako weave can be used. Further, a glass cloth woven with glass threads subjected to texture processing on both or both sides may be used.
  • glass cloth at the stage where the sizing agent necessary for weaving is attached glass crossing at the stage at which the sizing agent is removed, or glass cloth at which the sizing agent is removed by incineration or washing may be used.
  • a glass mouth which has been subjected to physical processing such as columnar flow or water flow by a high-frequency vibration method such as fiber opening may be used.
  • the treated resin used in the present invention includes a resin having at least one functional group selected from an epoxy group, a phenol group, and an aryl group, or a resin mixture thereof, and a cured product having a glass transition temperature of 130.
  • Any resin having a temperature of at least ° C can be used. That is, a resin having a glass transition temperature of 130 ° C. or higher of the cured product is appropriately selected and used.
  • any resin having an epoxy group and having a glass transition temperature of 130 ° C. or higher of a cured product can be used.
  • compounds obtained from polyfunctional phenols represented by the following general formulas (1) and (2) as raw materials can be mentioned.
  • R H or CH 3 m: 0 to 20
  • compounds represented by the following general formulas (3), (4), (5), (6) 7) and (8) may be used. it can.
  • a resin having a bulky dicyclopentadiene, naphthalene ring, benzene ring, or the like in the resin skeleton is selected as a treatment resin.
  • these resins are exemplified by the following general formula (9), general formula (10), general formula (11), and the like.
  • the naphthol aralkyl type epoxy resin represented by the general formula (10) is most preferably used because it has a bulky naphthalene ring in the resin skeleton and has good water dispersibility. 01
  • any resin having a phenol group and having a glass transition temperature of 130 ° C. or higher of a cured product can be used.
  • novolak-type polyfunctional phenol resins represented by the following general formulas (12) and () can be mentioned.
  • any resin having an aryl group and having a cured product having a glass transition temperature of 130 ° C. or more can be used.
  • the aryl resin-based monomers represented by the following general formulas (17), (18), (19), and (20) can be exemplified.
  • the selection of the functional group to be possessed by the treated resin takes into account the curing reaction of the matrix resin used for the printed wiring board.
  • the matrix resin is an epoxy resin, epoxy and phenol groups are added.
  • a resin having an acryl group as a treatment resin.
  • a resin having an aryl group is treated.
  • it is selected as a fat.
  • the treated resin may have two or more groups selected from an epoxy group, a phenol group, and an aryl group simultaneously, and may have a functional group other than the epoxy group, the phenol group, and the aryl group. Is also good.
  • the treated resin is a resin having at least one functional group selected from the epoxy group, phenol group and aryl group specified in the present invention. Or a mixed resin thereof and a compound having a functional group such as an amino group, a methacryl group, a carboxyl group, or a hydroxyl group.
  • the treated resin having a glass transition temperature of 130 ° C. or higher of the present invention refers to a pseudo resin prepared by using a phenol nopolak resin having a softening point of 80 ° C. as a curing agent when the treated resin has an epoxy group, It shows that the cured product has a glass transition temperature of 130 ° C or higher. If the treated resin has a phenol group, an orthocresol novolak-type epoxy resin with a melting point of 75 ° C and a pseudo resin are prepared. It shows that the cured product has a glass transition temperature of 130 ° C. or higher.
  • the glass transition temperature of a cured product cured with an organic peroxide is 130 ° C. or higher.
  • the cured product of the pseudo resin is prepared by mixing the epoxy group and the phenol group in an equivalent amount, and adding 2-ethyl-4-methylimidazole: 1.0 part by weight.
  • the curing condition is a cured product obtained at 180 ° C. for 3 hours under pressure.
  • the treated resin has an aryl group
  • a cured product is prepared under pressure-curing conditions for 3 hours.
  • the glass transition temperature here is the temperature of the peak of tan ⁇ according to the viscoelasticity measurement method.
  • the glass transition temperature of the matrix resin of the printed wiring board is 130 ° C to 300 ° C, depending on the application, and the glass transition temperature of the treated resin is less than 130 ° C. In this case, the glass transition temperature of the treated resin must be at least 130 ° C, and preferably at least 135 ° C, even though the adhesive strength is improved, but the solder heat resistance is reduced. More preferably, the temperature is 140 ° C. or higher.
  • the upper limit of the glass transition temperature of the treated resin is not limited, but generally, the higher the glass transition temperature, the lower the adhesiveness.Therefore, the upper limit is preferably 350 ° C or lower, and more preferably 350 ° C or lower. It is even more preferable.
  • the cured resin has a glass transition point of at least 130 ° C.
  • Compounds having a functional group can be mixed within the range described below.
  • a compound having an epoxy group starting from bisphenol A and Z or tetrabromobisphenol A represented by the following general formula (22) may be exemplified. it can. ( twenty two )
  • thermoplastic resin any of a thermoplastic resin having no functional group that reacts with the matrix resin and a thermoplastic resin having a functional group that reacts can be used.
  • thermoplastic resin whose thermoplastic resin itself has a glass transition temperature of 130 ° C or more into the treated resin, it does not adversely affect the heat resistance of the matrix resin and does not adversely affect the treated resin.
  • the glass transition temperature of the thermoplastic resin is preferably 130 ° C. or higher, more preferably 150 ° C. or higher.
  • the following general formulas (26), (27), (28), (29), (30), and (3) The thermoplastic resins represented by 1) and (32) can be exemplified.
  • R H or aryl group or amino group or propargyl group
  • polyphenylene ether o , polyphenylene sulfide, and polyacrylate having low hygroscopicity are preferable, and polyphenylene ether is particularly preferable.
  • the blending amount is 5 parts by weight or more and 70 parts by weight or less based on 100 parts by weight of the treated resin. And more preferably 10 parts by weight or more and 60 parts by weight or less. If the amount of the thermoplastic resin is less than 5 parts by weight, the toughness is not improved and the low moisture absorption effect is not exhibited. If the amount is more than 70 parts by weight, the reaction between the matrix resin and the treated resin is poor, so that the adhesive strength is reduced.
  • the blending amount of the thermoplastic resin is preferably 5 parts by weight or more and 70 parts by weight or less with respect to 100 parts by weight of the total amount of the treated resin.
  • silane coupling agent that can be used in the present invention
  • a silane coupling agent represented by the following general formula (33) can be used.
  • X represents an alkoxy group
  • Y represents a functional group
  • R represents a hydrocarbon group having 6 or less carbon atoms
  • n represents an integer of 1 or more and less than 3. Any form can be used as the alkoxy group, and an alkoxy group having 5 or less carbon atoms is preferable for stabilizing glass cross.
  • silane coupling agents that can be specifically used. These can be used alone or as a mixture.
  • the selection of the silane coupling agent is not particularly limited, but is preferably selected in consideration of the reaction with the treated resin and the curing reaction of the matrix resin.
  • the matrix resin is an epoxy resin
  • the silane coupling agent having is a matrix resin that cures by radical polymerization, such as epoxy acrylate, diaryl phthalate, or triaryl isocyanate, select a resin having an aryl group as the treated resin.
  • the functional group of the silane coupling agent is selected from silane coupling agents having a beer benzyl group, a methacryl group, an acryl group, and an amino group.
  • a procedure for treating the glass cloth with the silane coupling agent and then treating the treated resin a procedure for treating the glass cloth with the silane coupling agent.
  • Procedure for mixing and liquefying treated resin and treating at the same time After the glass cloth is first treated with the silane coupling agent, the silane coupling agent and the treated resin can be mixed and liquefied, and the treatment can be performed simultaneously.
  • a method is preferred in which a treated liquid in which the treated resin is dissolved or dispersed in a solvent (hereinafter referred to as a treated liquid) is treated and dried to remove the solvent component.
  • a solvent water, an organic solvent and the like can be used and are not limited, but from the viewpoint of safety and protection of the global environment, it is preferable to use water as a main solvent.
  • a treatment liquid is obtained by diluting the treatment resin emulsion obtained by adding a surfactant to the treatment resin in advance and emulsifying with water.
  • any method is possible, such as a method of adding a surfactant to the treated resin and directly or after dissolving it in a water-soluble organic solvent, and then pouring it into water to obtain a treated liquid.
  • a processing liquid in a dispurged state in which a powdery processing resin is dispersed in water.
  • the maximum particle size is 50 Zm or less in consideration of the penetration of the treated resin liquid into the yarn bundle. And more preferably 40 ⁇ or less.
  • the minimum particle size is not particularly limited, it is preferably at least 10 nm, more preferably at least 20 nm, in order to suppress deterioration due to contact between the functional group of the treated resin and water in a water-dispersed state. Is more preferable.
  • any method such as a method of directly pouring into water or a method of dissolving in a water-soluble organic solvent and then pouring it into water to obtain a treatment liquid is possible. It is. Further, in order to improve the water dispersibility stability of the treatment solution of the silane coupling agent, a surfactant can be used in combination.
  • the concentration of the silane coupling agent and the processing resin in the processing solution is not particularly limited, and the coating method It is necessary to select a more suitable concentration.
  • the method of applying the treatment liquid to the glass cloth is as follows: (a) After the treatment liquid is stored in a path and passed through the glass cloth, a predetermined amount of the treatment liquid is impregnated and coated on the glass cloth. (B) Impregnating and coating a certain amount of processing solution directly on glass cloth with a roll coater, die coater, gravure coater, etc. Method, etc. are possible.
  • the application method is not particularly limited.
  • the temperature of the glass cloth for heating and drying is not particularly limited, but is preferably 90 ° C or more, and more preferably 100 ° C or more in consideration of the reaction of the silane coupling agent with the glass. More preferred. In the case of drying by heating, the temperature is preferably 300 ° C. or less, and preferably 200 ° C. or less, in consideration of the deterioration of the functional group of the silane coupling agent, the epoxy group, the phenol group, and the aryl group of the treated resin. It is more preferable if there is.
  • the adhesion amount of the surface treating agent composition containing the treated resin and the silane coupling agent is 0.10% by weight or more to 1.0% by weight or more with respect to the entire glass cloth. It must be less than wt%. If the amount of the surface treating agent composition is less than 0.1% by weight, the effect of the treated resin on the interface cannot be obtained. If the amount is more than 1.0% by weight, the matrix resin has a high elastic modulus and high heat resistance. Influences on the characteristics of matrix resin such as surface treatment and improvement of electrical properties. Therefore, the amount of the surface treatment agent composition to be applied should be 0.1% by weight or more and less than 1.0% by weight.
  • the content be 0.12% by weight or more and less than 0.90% by weight, and more preferably 0.13% by weight or more and less than 0.80% by weight.
  • the amount of each of the silane coupling agent and the treated resin in the state of the treated glass cloth is not particularly limited, but the functional group of the silane coupling agent and the epoxy group of the treated resin, Considering that the phenol group and the aryl group react and the reactivity with the matrix resin is reduced, 100 parts by weight or more of the treated resin is 100 parts by weight or more based on 100 parts by weight of the silane coupling agent. Is preferably less than 75 parts by weight and more preferably less than 500 parts by weight.
  • a method for confirming the amount of the surface treating agent composition attached to the whole glass cloth is as follows. From the difference between the weight after drying the glass cloth at 110 ° C for 20 minutes (dry weight) and the weight after incineration of the heat treatment agent at 63 ° C for 20 minutes (weight after incineration), the following formula (1) Can be confirmed by the method (incineration weight measurement). is there.
  • Adhesion (%) (dry weight-weight after incineration) /
  • the pre-preda of the present invention uses a conventional method such as immersion or squeezing of a glass varnish of a matrix resin having a higher glass transition temperature than the treated resin on the glass cloth subjected to the surface treatment described above. It is prepared after saturating a predetermined amount and drying it.
  • a desired number of prepregs are stacked, a copper foil having a predetermined thickness is adhered to a desired surface, and then laminated by applying pressure and heating to be applied to a printed wiring board.
  • the glass cloth was treated with acetic acid: 0.5 weight 0 / o, N- ⁇ - (p- (vinylbenzyl) aminoethyl) - ⁇ -aminopropyl built-in methoxysilane hydrochloride (trade name: SZ600) 32 2, Toray Dako Inc.) After immersion in a silane coupling agent treatment solution in which 0.5% by weight is dissolved in water, the treatment solution has an adhesion amount of 25% by weight to the glass cloth. The excess treatment liquid was squeezed out using a mangle so as to obtain a glass cloth treated with a silane coupling agent, which was dried at 125 ° C. for 10 minutes.
  • Nonylphenol ethylene oxide adduct with an HLB value of 18.8 (trade name: Nonipol (registered trademark) 800, manufactured by Sanyo Chemical Co., Ltd.), Noel phenol having an HLB value of 13.3 with ethylene oxide Product (trade name: Nonipol (registered trademark) 100, manufactured by Sanyo Chemical Co., Ltd.), a nonylphenol having an HLB value of 8.9 with ethylene oxide (trade name: Nonipol (registered trademark) 40, (Sanyo Kasei Co., Ltd.) were mixed to prepare a mixed surfactant in the same amount by weight.
  • Example 1 Example 1
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin-treated solution.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product.
  • a glass cross of the present invention was obtained which was treated with a resin having an epoxy group at C or higher and the amount of the surface treatment agent composition applied was 0.2% by weight with respect to the glass cloth.
  • Dicyclopentadiene epoxy resin (cured glass transition temperature:
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin-treated solution.
  • a glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (2), and the treatment liquid has an adhesion amount of 25% by weight to the glass cloth.
  • the excess resin treatment liquid was squeezed out using a mangle as described above, dried at 125 ° C for 10 minutes, washed with running water, dried again at 125 ° C for 10 minutes, and dried.
  • the coating agent has a glass transition temperature of 130 ° C. or higher between the coating agent and the cured product and is treated with a resin having an epoxy group, and the amount of the surface treatment agent composition is 0.2000% by weight based on the glass cloth.
  • the glass cross of the invention was obtained.
  • Naphthalene-type epoxy resin (cured glass transition temperature: 150 ° C, trade name: HP-4032, Dainippon Ink & Chemicals, Inc.) 100 parts by weight, 300 parts by weight of N, N —Dissolved in dimethylformamide to prepare a resin pre-dissolution solution to which 5 parts by weight of the mixed surfactant was added.
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product.
  • Naphth aralkyl type epoxy resin Glass transition temperature of cured product:
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin-treated solution.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid has an adhesion amount of 25% by weight with respect to the glass cloth. After drying at 125 ° C for 10 minutes, washing with running water and drying again at 125 ° C for 10 minutes, the glass transition temperature of the silane coupling agent and the cured product becomes 130 ° C.
  • the glass cloth of the present invention which was treated with a resin having an epoxy group at c or more and the amount of the surface treatment agent composition applied was 0.200% by weight based on the glass cloth.
  • Naphthol aralkyl type epoxy resin (cured glass transition temperature: 160 ° C, trade name: ESN-170, Nippon Steel Chemical Co., Ltd.) 100 parts by weight, 300 parts by weight of N, N —Dissolved in dimethylformamide to prepare a resin pre-dissolution liquid to which 5 parts by weight of the mixed surfactant was added.
  • a glass cloth treated with a silane coupling agent is immersed in a resin treatment liquid, and excess resin treatment liquid is squeezed out using a angle so that the treatment liquid has an adhesion amount of 25% by weight with respect to the glass cloth. After drying at 5 ° C for 10 minutes, it is washed with running water, dried again at 125 ° C for 10 minutes, and epoxied when the glass transition temperature of the silane coupling agent and the cured product is 130 ° C or more.
  • the glass cloth of the present invention was obtained in which the resin having a group was treated and the amount of the organic substance forming the surface treatment was 0.50% by weight with respect to the glass cloth.
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
  • Naphthalene-type epoxy resin (cured product glass transition temperature: 150 ° C, product name: HP—430, Dainippon Ink and Chemicals, Inc.) 100 parts by weight, 300 parts by weight of N, N —Dissolved in dimethylformamide to prepare a resin pre-dissolution solution to which 5 parts by weight of the mixed surfactant was added.
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solid content concentration of 0.550% by weight to form a water dispersion, and the polymer surfactant (discoat) was added.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. And 1 25 ° C After washing with running water for 10 minutes, and drying again at 125 ° C for 10 minutes, the silane coupling agent and the cured product have an epoxy group at a glass transition temperature of 130 ° C or more.
  • the glass cloth of the present invention which is treated with a resin and a thermoplastic resin having a glass transition temperature of 210 ° C., and the amount of the surface treatment agent composition applied is 0.3000% by weight based on the glass cloth. I got
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solids concentration of 0.80% by weight to form an aqueous dispersion, thereby preparing a resin-treated solution.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, washing with running water and drying again at 125 ° C for 10 minutes, the glass transition temperature of the silane coupling agent and the cured product becomes 130
  • a glass cloth of the present invention which was treated with a resin having a phenol group at a temperature of not less than ° C and the adhesion amount of the surface treatment agent composition was 0.2000% by weight based on the glass cloth, was obtained.
  • a self-emulsifying cresol nopolak epoxy resin (cured glass transition temperature: 180 ° C, trade name: Epiretz (registered trademark) 600 W 70, Japan Epoxy Resin Co., Ltd.) and water are stirred. Meanwhile, water was added to water so that the resin solid content concentration became 0.80% by weight to prepare a water-dispersed resin treatment liquid.
  • a glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (1), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, washing with running water and drying again at 125 ° C for 10 minutes, the glass transition temperature of the silane coupling agent and the cured product becomes 130 A glass cloth of the present invention, which was treated with a resin having an epoxy group at a temperature of not less than ° C and the amount of the surface treating agent composition applied was 0.2% by weight with respect to the glass cloth.
  • Diaryl monoglycidylsocyanuric acid Glass transition temperature of cured product
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.550% by weight to form a water dispersion, and the polymer type surfactant (discoat) was added.
  • the polymer type surfactant (Registered trademark) N-14, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) in an amount of 0.05% by weight. 0.5% by weight of polyphenylene ether powder (glass transition temperature: 210 ° C., number average molecular weight: 700,000) passing through 20 ⁇ m was added to prepare a resin treatment liquid. .
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product.
  • the resin is treated with a resin having an epoxy group and an aryl group at C or higher, and a thermoplastic resin having a glass transition temperature of 210 ° C., and the amount of the surface treating agent composition applied is 0.30 with respect to the glass cross. A surface-treated glass cross which was 0% by weight was obtained.
  • B a-type benzoxazine (cured product glass transition temperature: 180 ° C., trade name: B_a-type benzoxazine, Shikoku Chemicals Co., Ltd.) 100 parts by weight, 300 parts by weight of N, The resin was dissolved in N-dimethylformamide, and a resin pre-dissolution solution was prepared by adding 5 parts by weight of the mixed surfactant.
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solids concentration of 0.80% by weight to form an aqueous dispersion, thereby preparing a resin-treated solution.
  • a glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (2), and the treatment liquid has an adhesion amount of 25% by weight to the glass cloth.
  • the excess resin treatment liquid was squeezed out using a mangle as described above, dried at 125 ° C for 10 minutes, washed with running water, dried again at 125 ° C for 10 minutes, and treated with silane. It is treated with a resin having latent phenolic groups at a glass transition temperature of 130 ° C. or higher between the pressing agent and the cured product, and the amount of the surface treating agent composition applied to the glass cloth is 0.3%. 200% by weight of the glass cloth of the present invention was obtained.
  • Prepolymer of disophthalic acid (cured product glass transition temperature: 250 ° C, trade name: Daiso Isodap (registered trademark), manufactured by Daiso Corporation) 100 parts by weight, 300 parts by weight It was dissolved in N, N-dimethylformamide, and a preliminarily dissolved resin solution was prepared by adding 5 parts by weight of the mixed surfactant.
  • the resin pre-dissolved solution of (1) was added to water so as to have a resin solids concentration of 0.80% by weight to form an aqueous dispersion, thereby preparing a resin-treated solution.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid has an adhesion amount of 25% by weight to the glass cloth. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product.
  • a glass cross of the present invention was treated with a resin having an aryl group at C or higher, and the amount of the surface treating agent composition applied was 0.200% by weight based on the glass cloth.
  • Comparative Example 1 The glass cloth treated with the silane coupling agent was washed with running water and dried again at 125 ° C. for 10 minutes to obtain a glass cloth treated with the silane coupling agent that had not been treated with the resin.
  • o-Cresol novolak epoxy resin (cured product glass transition temperature: 180 ° C, trade name: Epicoat (registered trademark) 180 S65, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight The resin was dissolved in 300 parts by weight of N, N-dimethylformamide to prepare a resin pre-dissolution liquid to which 5 parts by weight of the mixed surfactant was added.
  • the resin pre-dissolved solution of (1) was added to water so that the resin solid content concentration was 0.10% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid has an adhesion amount of 25% by weight to the glass cloth.
  • the glass transition temperature of the silane coupling agent and the cured product becomes 130
  • a glass cloth which was treated with a resin having an epoxy group at a temperature of not less than ° C and the amount of the surface treating agent composition applied was 0.070% by weight relative to the glass cloth was obtained.
  • o-Taresol novolak epoxy resin (cured material glass transition temperature: 180 ° C, trade name: Epicote (registered trademark) 180 S65, 100 parts by weight (manufactured by Pan Epoxy Resin Co., Ltd.) was dissolved in 300 parts by weight of N, N-dimethylformamide to prepare a resin pre-dissolved solution to which 5 parts by weight of the mixed surfactant was added.
  • the resin pre-dissolved solution of (1) was added to water so that the resin solid content concentration became 5.0% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid has an adhesion amount of 25% by weight to the glass cloth. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 for 10 minutes.
  • the glass transition temperature of the silane coupling agent and the cured product is 130 ° C. treated with a resin having an epoxy group at C or higher, the adhesion amount of the surface treatment composition was obtained Garasuku loss 1. 5 0 0 weight 0/0 for glass cloth.
  • Bisphenol A-type epoxy resin (cured material glass transition temperature: 125 ° C Trade name: Epicoat (registered trademark) 100 1 manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight, 300 parts by weight of N , N-dimethylformamide, and 5 parts by weight of the mixed surfactant was added to prepare a resin pre-dissolved solution.
  • the glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 for 10 minutes. The glass transition temperature of the silane coupling agent and the cured product is 125 ° C. To obtain a glass cloth in which the amount of the surface treating composition applied was 0.2% by weight with respect to the glass cloth.
  • the glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (1), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product. is processed with a resin having no organic functional group reactive with Conclusions Li box resin C or more, the adhesion amount of the surface treatment composition is a glass cloth is 0.2 0 0 weight 0/0 for glass cloth Obtained.
  • An epoxy resin varnish having the composition shown in Table 1 was prepared.
  • the resins are all (registered trademark) manufactured by Japan Epoxy Resin Co., Ltd.
  • Table 2 shows the preparation of diaryl phthalate resin varnish with the composition shown in Table 2.
  • the copper foil of the laminate was removed by etching, washed with water, cut into 50 mm ⁇ 50 mm, and dried by heating at 130 at 2 hours.
  • Exposure was carried out at 40 ° C for a certain period of time at a relative humidity of 90%.
  • the laminate was cut in the weft direction (width) lcm x the warp direction (length) 15 cm of the glass cloth.
  • One side of the laminated plate composed of four layers of glass cloth of the sample of 4-1 was separated between the outermost one and two layers of glass cloth by 5 cm in the length direction using a cutter knife.
  • the output intensity was the average of the peak values of the five points from the lowest point and the five points from the highest point to show a wave shape with high and low peaks.
  • the viscoelastic behavior was measured at a heating rate of 3 ° C / min using RDAIII (manufactured by Rheometrics Co., Ltd.), and the temperature at which the peak of ta ⁇ appeared was defined as the glass transition temperature.
  • the surface treatment agent compositions obtained in Examples 1 to 12 were prepared using the conventional surface treatment composition.
  • the glass transition temperature of the cured product B) a resin having a temperature of at least 130 ° C and having at least one functional group selected from an epoxy group, a phenol group, and an aryl group that reacts with the matrix resin, or a resin thereof;
  • the laminate prepared using the glass cloth of the present invention adhered in a range less than or equal to 1 was treated with a treatment liquid containing the silane coupling agent of Comparative Example 1 as a main component and containing no treatment resin.
  • the laminated board has better solder heat resistance and delamination strength, and is also a laminated board No decrease in the glass transition temperature is also observed.
  • the glass cloth of the present invention is used for a matrix resin in a printed wiring board using a high elastic modulus and a high glass transition temperature matrix resin.
  • This is a surface-treated glass cloth that enhances the processing performance, such as through-hole processing and soldering processing, of printed wiring boards by increasing the adhesion to glass cloth while maintaining mechanical strength.
  • the glass cross of the present invention it is induced as a result of increasing the elastic modulus, reducing the number of polar functional groups, and increasing the glass transition temperature of the matrix resin constituting the printed wiring board i) It is possible to suppress the occurrence of cracks during machining and ii) a reduction in solder heat resistance, so that a printed wiring board having both advanced characteristics and basic characteristics can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A surface-treated glass cloth which, in a printed wiring board employing a matrix resin having a high modulus and a high glass transition temperature, heightens the adhesion of the resin to the glass cloth while maintaining the mechanical strength of the matrix resin and heightens the processability of the printed wiring board, such as suitability for through-hole formation, soldering, etc. The glass cloth is characterized by having been surface-treated with a surface-treating agent composition comprising as major components a silane coupling agent and one or more resins which each has at least one kind of functional groups selected among epoxy, phenol, and allyl groups and gives a cured resin having a glass transition temperature of 130°C or higher, the amount of the surface-treating agent composition adherent to the glass cloth being 0.10 to 1.00 wt.%, excluding 1.00 wt.%, on a solid basis based on the whole surface-treated glass cloth.

Description

明 細 書 ガラスク ロスとその用途  Description Glass cross and its use
技術分野 Technical field
本発明は、 ガラスク ロス、 特にプリ ント配線基板に使用されるガ ラスクロス補強樹脂積層板を作るためのガラスクロス及びプリ ント 配線基板に用いるプリ プレダに関する。 従来技術 .  The present invention relates to a glass cloth, particularly to a glass cloth for producing a glass cloth reinforced resin laminate used for a printed wiring board, and to a pre-predder used for the printed wiring board. Conventional technology.
プリ ント配線基板は、 マ ト リ ックス樹脂との親和性、 接着性を向 上させることを目的として、 予めシランカップリ ング剤、 界面活性 剤等による表面処理が施された表面処理ガラスク ロスを用いて製作 される。 一般に、 プリ ント配線基板は、 表面処理ガラスク ロスにェ ポキシ樹脂等の合成樹脂を塗工したプリプレダを調製し、 加熱、 加 圧工程を経て、 ガラスク ロス補強樹脂銅張り積層板を調製し、 更に パターン、 スルーホール形成、 多層化等の加工諸工程を経て製造さ れてレヽる。  The printed wiring board uses surface-treated glass cloth that has been previously surface-treated with a silane coupling agent, surfactant, etc., with the aim of improving the affinity and adhesiveness with the matrix resin. It is produced. In general, a printed wiring board is prepared by preparing a pre-preda prepared by applying a synthetic resin such as an epoxy resin to a surface-treated glass cloth, heating and applying a pressure, and then preparing a copper-clad glass-reinforced resin-clad laminate. It is manufactured through various processing steps such as patterning, through-hole formation, and multi-layering.
近年、 移動体通信機器、 コンピュータ一等の軽薄短小化の要求か ら、 プリ ント配線基板も軽薄短小化が進んでいる。 薄く製作された プリ ント配線基板は、 搭载部品の重量でたわむ現象が生じ易く、 搭 载部品とのハンダ接合部の劣化要因となる。 そこで、 このたわみ現 象を抑制すべく、 マ ト リ ックス樹脂の構造改良、 無機粉体の混合に よる高弾性率化が必要とされている。  In recent years, printed wiring boards have been becoming lighter and thinner due to the demand for lighter and thinner mobile communication devices and computers. A thin printed wiring board is liable to bend due to the weight of the mounted components, which causes deterioration of the solder joints with the mounted components. Therefore, in order to suppress this bending phenomenon, it is necessary to improve the structure of the matrix resin and increase the elastic modulus by mixing inorganic powder.
電子機器における演算速度の向上及び安定した信号伝達を確保す るために、 プリ ント基板の低誘電率化、 低誘電正接化等が望まれて いる。 この要求に応えるため、 マ ト リ ツタス樹脂の低誘電率化、 低 誘電正接化が検討されており、 樹脂骨格中の水酸基等の極性官能基 を減少させた樹脂が必要とされている。 In order to improve the operation speed and ensure stable signal transmission in electronic devices, it is desired to reduce the dielectric constant and the dielectric loss tangent of the printed circuit board. To meet this demand, low dielectric constant and low Consideration has been given to dielectric loss tangent, and a resin having a reduced number of polar functional groups such as hydroxyl groups in the resin skeleton is required.
さ らには、 プリ ント基板には環境に悪影響が懸念される鉛を含ま ない鉛フリ一ハンダ化により、 搭載部品のハンダ付け工程の温度が 高く設定される傾向にあり、 この温度上昇にも耐えうる熱特性をマ ト リ ツタス樹脂に付与するため、 マ ト リ ツクス榭脂の高ガラス転移 濃度化が必要とされている。  Furthermore, the temperature of the soldering process for mounted components tends to be set higher due to the use of lead-free solder, which does not contain lead, which is a concern for the environment, as the printed circuit board has a negative impact on the environment. In order to impart to the matrix resin with durable thermal properties, it is necessary to increase the glass transition concentration of the matrix resin.
上述した理由で、 プリ ント配線基板に使用されるマ ト リ ックス榭 脂は、 樹脂の a ) 高弾性率化、 b ) 極性官能基の低減化、 c ) 高ガ ラス転移温度化が急速に進行している。 当然のことながら、 プリ ン ト配線基板用のガラスクロスには下記する問題の解決が求められて レヽる。  For the reasons mentioned above, the matrix resin used for printed wiring boards has rapidly increased in a) high elastic modulus, b) reduced polar functional groups, and c) high glass transition temperature. Progressing. Naturally, glass cloth for printed wiring boards is required to solve the following problems.
i ) ガラスク ロスのガラスとマ ト リ ックス樹脂の接着性の低下、 靱性、 可と う性の低下を招き、 プリ ン ト配線基板の穴あけ加工、 パ ンチング加工におけるクラックの発生頻度を高める。  i) To reduce the adhesion, toughness, and flexibility between the glass of glass cross and the matrix resin, and to increase the frequency of cracking in drilling and punching of printed wiring boards.
i i ) ハンダ耐熱性低下現象と呼ばれる、 吸湿状態のプリ ント配 線基板がハンダ付け工程の熱衝撃、 水分の急激膨張により、 プリ ン ト配線基板の積層板の層間にクラック、 フク レが発生する現象が生 じやすくなる。 特に、 このハンダ耐熱性低下現象はプリ ント配線基 板の層間に回路を有する多層プリ ン ト配線基板において特に顕著で める。  ii) Moisture-absorbing printed wiring boards, called the solder heat resistance reduction phenomenon, generate cracks and blisters between layers of the printed wiring board due to thermal shock and rapid expansion of moisture during the soldering process. The phenomenon is more likely to occur. In particular, this phenomenon of lowering solder heat resistance is particularly remarkable in a multilayer printed wiring board having a circuit between layers of the printed wiring board.
これらの課題を解決するため、 エポキシ樹脂では一分子内のェポ キシ基の数を多く した多官能エポキシ樹脂構造化、 分子内に剛直、 嵩高な骨格を導入したエポキシ樹脂等の構造改良や、 その硬化剤と して、 多官能性であるフエノールノポラック樹脂、 酸無水物、 を導 入する試みがなされている。 多官能樹脂の応用は、 樹脂の架橋密度 を上げ、 高ガラス転移温度化に大きな効果を有する。 しかしながら 、 多官能樹脂の使用は、 靱性の低下、 架橋間の自由体積の増加に伴 う吸湿性の増加を伴う。 それに対して剛直、 嵩高骨格を導入した樹 脂は靱性向上、 吸湿性の低減に効果を有する反面、 高ガラス転移温 度化効果が小さ く、 ガラスクロス表面処理との反応に乏しいので、 接着性の向上効果が小さい。 このように、 マ ト リ ックス樹脂に要求 される特性向上と、 それに付随する弊害を防ぐ改良は、 樹脂構成上 相反する部分があり、 課題を解決するに至っていない。 また、 硬化 系を一新したビスマレイ ミ ドト リアジン (B T ) 樹脂、 サイァネー ト榭脂、 ポリイ ミ ド樹脂、 高耐熱性の熱可塑性樹脂と先に例示した 熱硬化性樹脂との併用樹脂等の新規な樹脂の使用による高耐熱化の 改良が試みられているが、 エポキシ樹脂の改良と同様に課題解決に は不十分である。 In order to solve these problems, epoxy resins have a multifunctional epoxy resin structure with a large number of epoxy groups in one molecule, structural improvements such as an epoxy resin with a rigid and bulky skeleton introduced in the molecule, Attempts have been made to introduce polyfunctional phenol nopolak resins and acid anhydrides as the curing agents. The application of polyfunctional resin increases the crosslink density of the resin and has a great effect on increasing the glass transition temperature. However However, the use of polyfunctional resins is accompanied by a decrease in toughness and an increase in hygroscopicity with an increase in free volume between crosslinks. On the other hand, a resin with a rigid and bulky skeleton has the effect of improving toughness and reducing hygroscopicity, but has a small effect of increasing the glass transition temperature and has a poor reaction with the glass cloth surface treatment, and therefore has an adhesive property. The effect of improvement is small. As described above, the improvement of the properties required for the matrix resin and the improvement for preventing the accompanying adverse effects have conflicting portions in the resin composition, and have not solved the problem. In addition, a new curing system, such as bismaleimidoriazine (BT) resin, cyanate resin, polyimide resin, and a combination resin of the high heat-resistant thermoplastic resin and the thermosetting resin exemplified above, is also available. Attempts have been made to improve the heat resistance by using a simple resin, but this is not enough to solve the problem, as is the case with the epoxy resin.
一方、 ガラスク ロスの表面処理と しては、 シランカップリ ング剤 等の耐熱性、 接着性、 耐吸湿性改良を行う ことによって、 マト リ ツ タス樹脂の特性改良に伴う、 i ) 機械加工時のクラック発生、 i i ) ハンダ耐熱性低下を解決することが試みられている。 改良された シランカツプリ ング剤と しては、 N - β - ( Ν —ビニルベンジルァ ミ ノェチル) 一 τ/ —ァミ ノプロ ビル ト リ メ トキシシランの塩酸塩、 Ν - ]3 - ( Ν —べンジルアミ ノエチルァミ ノプロ ピル) ト リ メ トキ シシランの塩酸塩等が例示される。 しかし、 シランカップリ ング剤 のガラスと反応する無機官能基は、 ガラス、 シランカップリ ング剤 同士の縮合反応によ り、 ガラスとの強固な接着を得られる反面、 靱 性付与効果は小さく、 課題解決には至っていない。 発明の開示  On the other hand, the surface treatment of glass cloth includes improving the heat resistance, adhesiveness, and moisture absorption resistance of silane coupling agents, etc., to improve the properties of the matrix resin. Attempts have been made to resolve cracking and ii) reduced solder heat resistance. Examples of the improved silane coupling agents include N-β- (Ν-vinylbenzylaminoethyl) -τ /-ァ aminoprovir trimethoxysilane hydrochloride, Ν-] 3- (Ν-benzylamine Noethylamino propyl) trimethoxysilane hydrochloride and the like. However, the inorganic functional group that reacts with the glass of the silane coupling agent can achieve strong adhesion to the glass by the condensation reaction between the glass and the silane coupling agent, but the effect of imparting toughness is small, and the problem is solved. Has not been reached. Disclosure of the invention
本発明の目的は、 a ) 高弾性率化、 b ) 極性官能基の低減化、 c ) 高ガラス転移温度化された高機能マ ト リ ックス樹脂を用いるプリ ント配線基板における機械加工時のクラック発生並びにハンダ耐熱 性低下が抑制された高度な特性と基本特性を兼ね備えたプリ ント配 線基板を得ることができるガラスクロスを提供するこ とにある。 本発明の他の目的は、 高度な使用性能と加工特性を兼備した高弾 性、 高ガラス転移温度を有するマ ト リ クス樹脂とするプリ ント配線 基板製作用プリ プレダを提供することにある。 It is an object of the present invention to provide a prepolymer using a high-performance matrix resin having a) high elastic modulus, b) reduction of polar functional groups, and c) high glass transition temperature. An object of the present invention is to provide a glass cloth capable of obtaining a printed wiring board having both advanced characteristics and basic characteristics in which cracks during soldering and reduction in solder heat resistance of the printed wiring substrate are suppressed. Another object of the present invention is to provide a pre-printer for producing a printed wiring board using a matrix resin having high elasticity and a high glass transition temperature, having both high use performance and processing characteristics.
本発明者等は、 ガラスク ロスの表面処理において、 表面処理剤組 成物としてシランカツプリ ング剤に加えて、 硬化物のガラス転移温 度が 1 3 0 °C以上の樹脂でマ ト リ ツクス樹脂と反応するエポキシ基 、 フエノール基、 ァリル基から選ばれる 1種以上の官能基を有した 樹脂、 又はそれらの混合樹脂を含む樹脂を主成分と した処理樹脂で 構成される組成物を用いることによ り、 ガラスク ロスに特に下記す る作用効果を付与できることを見出し、 本発明に到達した。  In the surface treatment of glass cloth, the present inventors considered that, in addition to a silane coupling agent as a surface treatment agent composition, a resin having a glass transition temperature of a cured product of 130 ° C or higher and a matrix resin. By using a composition comprising a resin having at least one functional group selected from the group consisting of a reactive epoxy group, a phenol group and an aryl group, or a resin containing a resin containing a mixed resin thereof as a main component. In particular, the inventors have found that the following effects can be imparted to glass cloth, and have reached the present invention.
i ) 靱性を有し、 かつ耐熱性を有する処理樹脂を界面に配するた め界面の靱性改良効果が得られること  i) The effect of improving the toughness of the interface is obtained because the toughness and heat-resistant treated resin are arranged at the interface.
i i ) ' まずシランカップリ ング剤と処理樹脂の反応、 次いでマ ト リ ッタス樹脂と処理樹脂とが反応するので、 マ ト リ ツタス樹脂の硬 化反応と同じ反応でガラスク ロスに付着した処理樹脂とマ ト リ ック ス樹脂とが反応して内部応力の残留が少ない接着接合が形成される こと  ii) 'First, the reaction between the silane coupling agent and the treated resin, and then the matrix resin and the treated resin react, so that the cured resin adhering to the glass cloth by the same reaction as the curing reaction of the matrix resin. Reacts with the matrix resin to form an adhesive bond with little residual internal stress
i i i ) ガラスクロスに対する処理樹脂とシランカ ップリ ング剤 の界面における付着量を制御することで、 複合される高弾性率、 高 耐熱、 電気特性等のマ ト リ ックス樹脂特性を損う こ となく所定の表 面処理層を形成することができること  iii) By controlling the amount of adhesion between the treated resin and the silane coupling agent on the glass cloth at the interface, it can be specified without impairing the matrix resin properties such as composite high elastic modulus, high heat resistance and electrical properties. That a surface treatment layer of
すなわち、 本発明は、 表面処理されたガラスク ロスにおいて、 表 面処理がシランカツプリ ング剤と、 硬化物のガラス転移温度が 1 3 0 °C以上である処理樹脂を含む表面処理剤組成物で行われ、 処理樹 脂がマ ト リ ッ クス樹脂と反応するエポキシ基、 フエノール基、 ァリ ル基から選ばれる 1種以上の官能基を有した樹脂、 又はそれらの混 合樹脂を含み、 かつ表面処理剤組成物が表面処理されたガラスク口 ス全体に対する重量分率で 0 . 1 0重量%以上 1 . 0 0重量%未満 で付着していることを特徴とするガラスクロスである。 That is, according to the present invention, in a surface-treated glass cloth, the surface treatment is performed with a silane coupling agent and a surface treatment agent composition containing a treatment resin having a glass transition temperature of 130 ° C. or higher of a cured product. , Processing tree A surface-treating agent composition comprising a resin having at least one functional group selected from an epoxy group, a phenol group, and a aryl group in which the fat reacts with the matrix resin, or a resin mixture thereof; Is a glass cloth characterized by being attached in an amount of 0.1% by weight or more and less than 1.0% by weight relative to the entire surface-treated glass cloth.
本発明の表面処理されたガラスクロスにおいて、 処理樹脂を含む 組成物がガラス転移温度 1 3 0 °C以上の熱硬化性樹脂と、 ガラス転 移温度 1 3 0 °C以上の熱可塑性樹脂を含むことが好ましい。  In the surface-treated glass cloth of the present invention, the composition containing the treated resin contains a thermosetting resin having a glass transition temperature of 130 ° C or higher and a thermoplastic resin having a glass transition temperature of 130 ° C or higher. Is preferred.
本発明のガラスク ロスのもう一つの好適な態様は、 表面処理され たガラスク ロスにおいて、 表面処理がシランカツプリ ング剤と、 硬 化物のガラス転移温度が 1 3 0 °C以上のナフ トールァラルキル型ェ ポキシ樹脂を含む組成物とから形成される表面処理剤組成物で行わ れ、 かつ表面処理剤がガラスク ロス全体に対する重量分率で 0 . 1 0重量%以上、 1 . 0 0重量%未満付着してなるガラスク ロスであ る。  Another preferred embodiment of the glass cloth of the present invention is a glass cloth which has been subjected to a surface treatment, wherein the surface treatment is a silane coupling agent, and a naphthol aralkyl type epoxy resin having a glass transition temperature of 130 ° C. or more of a cured product. And a composition containing the surface treatment agent formed from a composition containing 0.1% by weight or more and less than 1.0% by weight relative to the entire glass cloth. It is a glass cross.
本発明の表面処理されたガラスク ロスは、 表面処理が水を主溶媒 と して、 予め処理樹脂に界面活性剤を添加して乳化した処理樹脂の 乳化液を水で希釈して得た処理液、 処理樹脂に界面活性剤を添加し 直接又は水溶性有機溶媒に溶解した後、 水に投入して得た処理液、 または粉体状の処理樹脂を水に分散させたディスパージョン状態の 処理液、 のいずれかによつて行われることも好ましい態様である。  The surface-treated glass cloth of the present invention is a treatment liquid obtained by diluting, with water, an emulsion of a treatment resin emulsified by adding a surfactant to a treatment resin in advance using water as a main solvent. A treatment liquid obtained by adding a surfactant to a treatment resin directly or after dissolving it in a water-soluble organic solvent and then pouring it into water, or a dispersion treatment liquid in which a powdery treatment resin is dispersed in water It is also a preferable embodiment to perform the process by any one of the above.
かく して、 本発明は、 表面処理されたガラスク ロス及び、 該ガラ スク ロスに付着している処理樹脂よ り もガラス転移温度が高いマ ト リ ックス樹脂からなるプリ ント配線基板に用いるプリ プレダを提供 することができる。  Thus, the present invention provides a pre-printer to be used for a surface-treated glass cloth and a printed wiring board made of a matrix resin having a higher glass transition temperature than the treated resin adhering to the glass cross. Can be provided.
以下に、 本発明のガラスクロスについて詳細に説明する。  Hereinafter, the glass cloth of the present invention will be described in detail.
( A ) ガラスク ロス 本発明に適用するガラスクロスは、 Eガラス、 Aガラス、 Dガラ ス、 Sガラス等のいずれのガラスを用いたガラスクロ スでもよい。 また、 ガラスクロスと しては、 織り密度は 1 0〜 2 0 0本 / 2 5 m m、 好ましく は 1 5〜 1 0 0本 / 2 5 mmであり、 質量は 5〜 4 0 0 g /m2 、 好ましくは 1 0〜 3 0 0 g /m2 であり、 織り方は平 織り、 朱子織り、 綾織り、 ななこ織り等が使用できる。 また、 双方 またはいっぽうがテクスチャー ド加工を施されたガラス糸で製織さ れたガラスク ロスであっても良い。 また、 製織に必要な集束剤が付 着している段階のガラスクロスゃ集束剤を除去した段階のガラスク ロ ス、 あるいは集束剤が焼却、 洗浄によ り除去されたガラスク ロ ス のいずれでも良い。 また、 表面処理する前、 及び又は後に、 柱状流 、 高周波振動法による水流で開繊'等の物理加工を施したガラスク口 スであってもよレヽ。 (A) Glass cross The glass cloth applied to the present invention may be a glass cloth using any glass such as E glass, A glass, D glass, and S glass. The glass cloth has a weave density of 10 to 200 fibers / 25 mm, preferably 15 to 100 fibers / 25 mm, and a mass of 5 to 400 g / m. 2 , preferably 10 to 300 g / m 2 , and weaving methods such as plain weave, satin weave, twill weave, and Nanako weave can be used. Further, a glass cloth woven with glass threads subjected to texture processing on both or both sides may be used. In addition, either glass cloth at the stage where the sizing agent necessary for weaving is attached, glass crossing at the stage at which the sizing agent is removed, or glass cloth at which the sizing agent is removed by incineration or washing may be used. . Further, before and / or after the surface treatment, a glass mouth which has been subjected to physical processing such as columnar flow or water flow by a high-frequency vibration method such as fiber opening may be used.
(B) 処理樹脂  (B) Treated resin
本発明に用いられる処理樹脂は、 エポキシ基、 フエノール基、 ァ リル基から選ばれる 1種以上の官能基を有する樹脂、 又はそれらの 混合樹脂を含み、 かつ硬化物のガラス転移温度が 1 3 0 °C以上を有 する樹脂であれば使用できる。 すなわち硬化物のガラス転移温度が 1 3 0 °C以上を示す樹脂を適宜選択して用いる。  The treated resin used in the present invention includes a resin having at least one functional group selected from an epoxy group, a phenol group, and an aryl group, or a resin mixture thereof, and a cured product having a glass transition temperature of 130. Any resin having a temperature of at least ° C can be used. That is, a resin having a glass transition temperature of 130 ° C. or higher of the cured product is appropriately selected and used.
エポキシ基を有する処理樹脂と しては、 エポキシ基を有し、 かつ 硬化物のガラス転移温度が 1 3 0 °C以上の樹脂であれば使用できる 。 例えば、 次の一般式 ( 1 ) 、 ( 2 ) で示される多官能フエノール を原料とする化合物が挙げられる。  As the treated resin having an epoxy group, any resin having an epoxy group and having a glass transition temperature of 130 ° C. or higher of a cured product can be used. For example, compounds obtained from polyfunctional phenols represented by the following general formulas (1) and (2) as raw materials can be mentioned.
一般式 ( 1 ) R :— CH。— or -CH,General formula (1) R: — CH. — Or -CH,
Figure imgf000009_0001
Figure imgf000009_0001
or CH  or CH
CH.  CH.
Y : H or CH3 Y: H or CH 3
m : 0〜20 一般式 ( 2 )  m: 0-20 General formula (2)
Figure imgf000009_0002
Figure imgf000009_0002
R: H or CH3 m : 0〜 20 また、 次に例示される一般式 ( 3 ) 、 ( 4) 、 ( 5 ) 、 ( 6 )7 ) 、 ( 8 ) で示される化合物も用いるこ とができる。 H JO R: H or CH 3 m: 0 to 20 In addition, compounds represented by the following general formulas (3), (4), (5), (6) 7) and (8) may be used. it can. H JO
Figure imgf000010_0001
Figure imgf000010_0001
( 9 ) ¾一 山  (9) Mt.
Figure imgf000010_0002
Figure imgf000010_0002
( )  ()
Figure imgf000010_0003
Figure imgf000010_0003
( )  ()
O o O o
/ ヽ  / ヽ
¾一 HO—。 H ¾ 一 HO—. H
O  O
/ ヽ / ヽ
Figure imgf000010_0004
Figure imgf000010_0004
( ε ) ^m~ - 9爾 Odf/ェ:) d C06Z60/Z0 OAV 一般式 ( 7 ) (ε) ^ m ~-9 Od / D :) d C06Z60 / Z0 OAV General formula (7)
Figure imgf000011_0001
Figure imgf000011_0001
X : -CH or H 一般式 ( 8 )  X: -CH or H General formula (8)
2
Figure imgf000011_0002
Two
Figure imgf000011_0002
これらの化合物は、 水分散化変性したものであることもできる。 特に、 界面の靱性付与効果、 及び低吸湿性付与効果を得るためには 、 樹脂骨格に嵩高な、 ジシクロペンタジェン、 ナフタレン環、 ベン ゼン環、 等を有している樹脂を処理樹脂として選択することが好ま しく、 これらの樹脂は 次の一般式 ( 9 ) 、 一般式 ( 1 0 ) 、 一般 式 ( 1 1 ) などで例示される。 特に一般式 ( 1 0 ) で現されるナフ トールァラルキル型エポキシ樹脂は、 榭脂骨格に嵩高いナフタレン 環を有し、 かつ、 水分散性がよいために最も好ましく使用すること ができる。 01
Figure imgf000012_0001
These compounds may be modified by dispersing in water. In particular, in order to obtain an effect of imparting interface toughness and an effect of imparting low hygroscopicity, a resin having a bulky dicyclopentadiene, naphthalene ring, benzene ring, or the like in the resin skeleton is selected as a treatment resin. Preferably, these resins are exemplified by the following general formula (9), general formula (10), general formula (11), and the like. In particular, the naphthol aralkyl type epoxy resin represented by the general formula (10) is most preferably used because it has a bulky naphthalene ring in the resin skeleton and has good water dispersibility. 01
Figure imgf000012_0001
(o x )  (o x)
0 Z〜 0 : 山 0 Z to 0: Mountain
Figure imgf000012_0002
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0003
(6 ) -9爾 Odf/ェ:) d C06Z60/Z0 OAV
Figure imgf000013_0001
(6) -9 Od / D: C06Z60 / Z0 OAV
Figure imgf000013_0001
R 一 CHく O "∞ - m : 0〜 20  R one CHoku O "∞-m: 0〜20
また、 フエノール基を有する処理樹脂と しては、 フ Iノール基を 有し、 かつ硬化物のガラス転移温度が 1 3 0 °C以上の樹脂であれば 使用できる。 例えば、 次の一般式 ( 1 2 ) 、 ( で示されるノ ボラ ック型多官能フェノール樹脂が挙げられる。 As the treated resin having a phenol group, any resin having a phenol group and having a glass transition temperature of 130 ° C. or higher of a cured product can be used. For example, novolak-type polyfunctional phenol resins represented by the following general formulas (12) and () can be mentioned.
一般式 ( 1 2 ) General formula (1 2)
Figure imgf000013_0002
Y : H or CH£
Figure imgf000013_0002
Y: H or CH £
m : 0〜20  m: 0-20
11 般 11 General
 Expression
1 1
3  Three
Figure imgf000014_0001
Figure imgf000014_0001
m: 0~20  m: 0 ~ 20
また、 次の一般式 ( 1 4 ) ( 1 5 ) で示される化合物ももちレ、 るこ とができる。  Further, compounds represented by the following general formulas (14) and (15) can be obtained.
一般式 ( 1 4 )  General formula (14)
Figure imgf000014_0002
R :ー C¾
Figure imgf000014_0002
R : ー C¾
Figure imgf000015_0001
Figure imgf000015_0001
or CH CH  or CH CH
CH. CH3 m 0〜20 一般式 ( 1 5 ) CH. CH 3 m 0-20 General formula (15)
Figure imgf000015_0002
Figure imgf000015_0002
1〜1 0000 m: 0〜 1 0000 n: 0〜 1 0000 また次の一般式 ( 1 6 ) に示されるよ うな、 加熱によ り フエノー ル基を発生する化合物 (潜在型フ ノール樹脂ともいう) ももちい るこ とができる。  1 to 10000 m: 0 to 10000 n: 0 to 10000 A compound that generates a phenol group by heating as shown in the following general formula (16) (also called a latent phenol resin). ) Can also be used.
一般式 ( 1 6 )  General formula (16)
Figure imgf000015_0003
Figure imgf000016_0001
m 1 1 0, 00
Figure imgf000015_0003
Figure imgf000016_0001
m 1 1 0, 00
また、 ァリル基を有する処理樹脂と しては、 ァリル基を有し、 か つ硬化物のガラス転移温度が 1 3 0 °C以上の樹脂であれば使用でき る。 例えば、 次の一般式 ( 1 7 ) 、 ( 1 8 ) 、 ( 1 9 ) 、 ( 2 0 ) で示されるァリル樹脂系モノ マーを例示することができる。  As the treated resin having an aryl group, any resin having an aryl group and having a cured product having a glass transition temperature of 130 ° C. or more can be used. For example, the aryl resin-based monomers represented by the following general formulas (17), (18), (19), and (20) can be exemplified.
一般式 ( 1 7 )  General formula (17)
Figure imgf000016_0002
Figure imgf000016_0002
CH, or 、  CH, or,
一般式 ( 1 8 )  General formula (18)
OO
R CH一 CH=CH R CH-CH = CH
パヽ or Or
-N N-R  -N N-R
l I  l I
o=c C=0  o = c C = 0
ヽ z CH CH— CH,  ヽ z CH CH— CH,
N ヽ Z  N ヽ Z
ヽ o  ヽ o
R 般式 ( 1 9) R General formula (1 9)
Figure imgf000017_0001
Figure imgf000017_0001
0一 R o 一般式 (2 0)  0- 1 R o General formula (2 0)
Figure imgf000017_0002
また、 次の一般式 (2 1) で示されるァリル系樹脂プレボリマ などが例示される。
Figure imgf000017_0002
Further, an example of an aryl resin preformima represented by the following general formula (21) is exemplified.
一般式 (2 1 )  General formula (2 1)
Figure imgf000017_0003
Figure imgf000017_0003
m : 1 0 0~ 1 0 0 0 処理樹脂の有すべき官能基の選択は、 プリ ント配線基板に使用さ れるマ ト リ ツタス樹脂の硬化反応を考慮することが好ましい。 マ ト リ ックス樹脂がエポキシ樹脂の場合、 エポキシ基、 フエノール基を 有する樹脂を処理樹脂として選択するのが好ましく、 エポキシァク リ レー ト、 ジァリルフタレー ト、 ト リ アリルイ ソシァネー ト等の、 ラジカル重合により硬化するマ ト リ ツタス樹脂に対しては、 ァリル 基を有する樹脂を処理榭脂として選択することが好ましい。 又、 処 理樹脂にエポキシ基を有した樹脂、 フエノール基を有した樹脂、 ァ リル基を有した樹脂を混合した樹脂を使用することも可能である。 そして処理樹脂は、 エポキシ基、 フエノール基、 ァリル基から選ば れる 2種以上の基を同時に有していてもよく、 又エポキシ基、 フ エ ノール基、 ァリル基以外の官能基を有していてもよい。 m: 100 to 100 It is preferable that the selection of the functional group to be possessed by the treated resin takes into account the curing reaction of the matrix resin used for the printed wiring board. When the matrix resin is an epoxy resin, epoxy and phenol groups are added. It is preferable to select a resin having an acryl group as a treatment resin.For a matrix resin that cures by radical polymerization, such as epoxyacrylate, diarylphthalate, and triallylsocyanate, a resin having an aryl group is treated. Preferably, it is selected as a fat. It is also possible to use a resin obtained by mixing a resin having an epoxy group, a resin having a phenol group, and a resin having an aryl group as a treatment resin. The treated resin may have two or more groups selected from an epoxy group, a phenol group, and an aryl group simultaneously, and may have a functional group other than the epoxy group, the phenol group, and the aryl group. Is also good.
さ らに、 マ ト リ ックス樹脂との濡れ性等を改善する 目的で、 処理 樹脂は本発明で指定したエポキシ基、 フ ノール基、 ァリル基から 選ばれる 1種以上の官能基を有した樹脂、 又はそれらの混合樹脂と アミ ノ基、 メタク リル基、 カルボキシル基、 水酸基等の官能基を有 する化合物とを併用しても良い。  Further, for the purpose of improving the wettability with the matrix resin, etc., the treated resin is a resin having at least one functional group selected from the epoxy group, phenol group and aryl group specified in the present invention. Or a mixed resin thereof and a compound having a functional group such as an amino group, a methacryl group, a carboxyl group, or a hydroxyl group.
また、 本発明のガラス転移温度 1 3 0 °C以上の処理樹脂とは、 処 理樹脂がエポキシ基を有する場合、 軟化点 8 0 °Cのフエノールノポ ラック樹脂を硬化剤として疑似樹脂を調製し、 その硬化物のガラス 転移温度が 1 3 0 °C以上であることを示し、 処理樹脂がフエノール 基を有する場合、 融点 7 5 °Cのォルソクレゾールノボラック型ェポ キシ樹脂と疑似樹脂を調製し、 その硬化物のガラス転移温度が 1 3 0 °C以上であることを示す。 また、 処理樹脂がァリル基を有する樹 脂の場合、 有機過酸化物で硬化させた硬化物のガラス転移温度が、 1 3 0 °C以上であることを示す。 処理樹脂がエポキシ基、 フエノー ル基を有する場合の疑似樹脂の硬化物は、 エポキシ基とフエノール 基を当量配合し、 2 —ェチル— 4 —メチルイ ミダゾール : 1 . 0重 量部を添加した配合で、 その硬化条件は 1 8 0 °Cで 3時間加圧の条 件で得られた硬化物である。 また、 処理樹脂がァリル基を有する場 合は、 有機過酸化物 ·· 1, 4 ( 0 r 1, 3 ) —ビス ( ( t 一ブチル ジォキシ) イ ソプロピル) ベンゼンを樹脂に対して 2 0重量部添加 し、 1 8 0 °Cで 3時間加圧の硬化条件で硬化物を調製する。 また、 ここでいうガラス転移温度は、 粘弾性測定法による t a n δのピー クの温度である。 エポキシ基、 フエノール基、 ァリル基を有した樹 脂を併用した場合は、 混合した状態で上記に示した条件にそって、 それぞれの官能基が硬化反応する疑似樹脂を調製し、 そのガラス転 移温度を測定する。 Further, the treated resin having a glass transition temperature of 130 ° C. or higher of the present invention refers to a pseudo resin prepared by using a phenol nopolak resin having a softening point of 80 ° C. as a curing agent when the treated resin has an epoxy group, It shows that the cured product has a glass transition temperature of 130 ° C or higher.If the treated resin has a phenol group, an orthocresol novolak-type epoxy resin with a melting point of 75 ° C and a pseudo resin are prepared. It shows that the cured product has a glass transition temperature of 130 ° C. or higher. In addition, when the treated resin is a resin having an aryl group, the glass transition temperature of a cured product cured with an organic peroxide is 130 ° C. or higher. When the treated resin has an epoxy group or a phenol group, the cured product of the pseudo resin is prepared by mixing the epoxy group and the phenol group in an equivalent amount, and adding 2-ethyl-4-methylimidazole: 1.0 part by weight. The curing condition is a cured product obtained at 180 ° C. for 3 hours under pressure. Also, if the treated resin has an aryl group, In this case, add 20 parts by weight of organic peroxide to the resin, and add 1,4 (0r1,3) -bis ((t-butyldioxy) isopropyl) benzene at 180 ° C. A cured product is prepared under pressure-curing conditions for 3 hours. The glass transition temperature here is the temperature of the peak of tan δ according to the viscoelasticity measurement method. When resins containing epoxy group, phenol group, and aryl group are used together, a mixed resin is prepared under the conditions shown above to prepare a pseudo resin in which each functional group undergoes a curing reaction, and its glass transfer is performed. Measure the temperature.
プリ ント配線基板のマ ト リ ックス樹脂のガラス転移温度は、 用途 によ り異なるが 1 3 0 °C〜 3 0 0 °Cであり、 処理樹脂のガラス転移 温度が 1 3 0 °C未満の場合、 接着強度の向上は認められても、 ハン ダ耐熱性の低下を生じる為、 処理樹脂のガラス転移温度は 1 3 0 °C 以上である必要があり、 好ましく は 1 3 5 °C以上、 よ り好ましく は 1 4 0 °C以上である。 処理樹脂のガラス転移温度の上限は限定され るものではないが、 一般にガラス転移温度が高いほど接着性が低下 する傾向にあるため、 3 5 0 °C以下が好ましく、 3 2 5 °C以下であ ればよ り好ましい。  The glass transition temperature of the matrix resin of the printed wiring board is 130 ° C to 300 ° C, depending on the application, and the glass transition temperature of the treated resin is less than 130 ° C. In this case, the glass transition temperature of the treated resin must be at least 130 ° C, and preferably at least 135 ° C, even though the adhesive strength is improved, but the solder heat resistance is reduced. More preferably, the temperature is 140 ° C. or higher. The upper limit of the glass transition temperature of the treated resin is not limited, but generally, the higher the glass transition temperature, the lower the adhesiveness.Therefore, the upper limit is preferably 350 ° C or lower, and more preferably 350 ° C or lower. It is even more preferable.
また、 接着性、 靱性を処理樹脂に付与するため、 単体の硬化物の ガラス転移点が 1 3 0 °C未満の樹脂であっても、 処理樹脂としてガ ラス転移点が 1 3 0 °C以上になる範囲で官能基を有する化合物を混 合することが可能である。 例えば、 この官能基を有する化合物とし ては、 次の一般式 ( 2 2 ) で示されるビスフエノール A、 及び Z又 はテ トラブロモビスフェノール Aを原料とするエポキシ基を有する 化合物を例示することができる。 ( 2 2 ) In addition, in order to impart adhesion and toughness to the treated resin, even if the resin has a glass transition point of less than 130 ° C, the cured resin has a glass transition point of at least 130 ° C. Compounds having a functional group can be mixed within the range described below. For example, as a compound having this functional group, a compound having an epoxy group starting from bisphenol A and Z or tetrabromobisphenol A represented by the following general formula (22) may be exemplified. it can. ( twenty two )
Figure imgf000020_0001
Figure imgf000020_0001
また、 次の一般式 ( 2 3 ) 、 ( 2 4 ) 、 ( 2 5 ) で示される化合 物などが例示される。  Further, compounds represented by the following general formulas (23), (24) and (25) are exemplified.
一般式 ( 2 3 )  General formula (2 3)
Figure imgf000020_0002
Figure imgf000020_0002
一般式 ( 2 4 )
Figure imgf000020_0003
General formula (2 4)
Figure imgf000020_0003
^ -CH2-CH― CH2 ^ -CH 2 -CH- CH 2
Ep : ヽ/ n : 1 00~1 0000  Ep: ヽ / n: 1 00 ~ 1 0000
o  o
'般式 ( 2 5 ) 'General formula (25)
O O
/ \  / \
CH - CH2 CH-CH 2
HO+CH2 - CH=CH - CH2 - CH2-CH一 CH2 - CH - CH- CH2| OH HO + CH 2 -CH = CH-CH 2 -CH 2 -CH 1 CH 2 -CH-CH- CH 2 | OH
\ Z a n : 1 00〜1 0000 0 また、 靱性向上、 低吸湿性を処理樹脂に付与するために、 処理樹 脂のガラス転移点が 1 3 0 °C以上の範囲で、 処理樹脂に熱可塑性樹 脂を添加することも可能である。 熱可塑性樹脂と しては、 マ ト リ ツ タス樹脂と反応する官能基がない熱可塑性樹脂、 反応する官能基を 有する熱可塑性樹脂の何れも、 使用することができる。 特に、 熱可 塑性榭脂自体のガラス転移温度が 1 3 0 °C以上の熱可塑性樹脂を処 理樹脂に混合することで、 マ ト リ ックス樹脂の耐熱性に悪影響を与 えず、 処理樹脂の低吸湿性、 靱性向上による効果が顕著となり、 ハ ンダ耐熱性、 接着性が向上する。 この為、 処理樹脂に熱可塑性樹脂 を配合する場合には、 熱可塑性樹脂のガラス転移温度が 1 3 0 °C以 上であることが好ましく、 よ り好ましくは 1 5 0 °C以上である。 1 3 0 °C以上のガラス転移点を有する熱可塑性樹脂としては、 次の一 般式 ( 2 6 ) 、 ( 2 7 ) 、 ( 2 8 ) 、 ( 2 9 ) 、 ( 3 0 ) 、 ( 3 1 ) 、 ( 3 2 ) で示される熱可塑性樹脂を挙げることができる。 \ Z a n: 1 00~1 0000 0 It is also possible to add a thermoplastic resin to the treated resin so that the glass transition point of the treated resin is in the range of 130 ° C or more to improve toughness and impart low moisture absorption to the treated resin. . As the thermoplastic resin, any of a thermoplastic resin having no functional group that reacts with the matrix resin and a thermoplastic resin having a functional group that reacts can be used. In particular, by mixing a thermoplastic resin whose thermoplastic resin itself has a glass transition temperature of 130 ° C or more into the treated resin, it does not adversely affect the heat resistance of the matrix resin and does not adversely affect the treated resin. The effect of low moisture absorption and improvement in toughness is remarkable, and solder heat resistance and adhesiveness are improved. Therefore, when a thermoplastic resin is added to the treated resin, the glass transition temperature of the thermoplastic resin is preferably 130 ° C. or higher, more preferably 150 ° C. or higher. The following general formulas (26), (27), (28), (29), (30), and (3) The thermoplastic resins represented by 1) and (32) can be exemplified.
一般式 ( 2 6 ) : ポリ フエ二レンエーテル  General formula (26): polyphenylene ether
H
Figure imgf000021_0001
H
Figure imgf000021_0001
m : 1 00〜 20000 n: 1 00—20000 般式 (27) : 変性ポリ フヱニレンエーテル m: 100 ~ 20000 n: 1 00-20000 General formula (27): Modified polyphenylene ether
Figure imgf000022_0001
Figure imgf000022_0005
Figure imgf000022_0001
Figure imgf000022_0005
R : H or ァリル基 or アミノ基 or プロパギル基  R: H or aryl group or amino group or propargyl group
or 無水マレイン酸 等  or maleic anhydride, etc.
m: 100〜 20000 n : 0〜 10000  m: 100-20000 n: 0-10000
般式 (28) : ポリ フエ二レンサルファイ ド  General formula (28): Polyphenylene sulfide
m : 1 00〜20000
Figure imgf000022_0002
一般式 ( 29 ) : ポリ スノレホン
m: 100 to 20000
Figure imgf000022_0002
General formula (29): Poly snorehon
Figure imgf000022_0003
Figure imgf000022_0003
m: 1 00〜20000  m: 100 to 20000
般式 (30) : ポリ エーテルスルフォン  General formula (30): Polyethersulfone
Figure imgf000022_0004
ノ m m: 1 00〜20000 般式 ( 3 1 ) : ポリ アリ レー ト
,
Figure imgf000022_0004
No mm: 100 to 20000 General formula (31): Polyarylate
ベ (J Be (J
J m J m
Figure imgf000023_0001
Figure imgf000023_0001
m: 1 00〜20000 一般式 ( 3 2 ) : 芳香族ポリ アミ ド  m: 100 to 20000 General formula (32): Aromatic polyamide
Figure imgf000023_0002
Figure imgf000023_0002
m 1 00〜20000 n : 1 00〜20000 丽  m 1 00 to 20000 n: 1 00 to 20000 丽
その中でも吸湿性の低いポ リ フエ二レンエーテル o= 、 ポリ フエニレ ンサルフ アイ ド、 ポ リ ア リ レー トが好ましく、 特にポ リ フエ二レン エーテルが好ましい。 r  Among them, polyphenylene ether o =, polyphenylene sulfide, and polyacrylate having low hygroscopicity are preferable, and polyphenylene ether is particularly preferable. r
処理樹脂にガラス転移点が 1 3 0 °C以上の熱可塑性樹脂を配合す る場合、 その配合量は処理樹脂の総量 : 1 0 0重量部に対して、 5 重量部以上 7 0重量部以下が好ましく、 1 0重量部以上 6 0重量部 以下であればよ り好ましい。 熱可塑性樹脂が 5重量部未満では靱性 向上、 低吸湿効果は現れず、 7 0重量部を越えるとマ ト リ ッ クス樹 脂と処理樹脂の反応が乏しくなるため、 接着力の低下が起こるので 熱可塑性樹脂の配合量は、 処理樹脂の総量 : 1 0 0重量部に対して 、 5重量部以上 7 0重量部以下が好ましい。  When a thermoplastic resin having a glass transition point of 130 ° C or more is blended with the treated resin, the blending amount is 5 parts by weight or more and 70 parts by weight or less based on 100 parts by weight of the treated resin. And more preferably 10 parts by weight or more and 60 parts by weight or less. If the amount of the thermoplastic resin is less than 5 parts by weight, the toughness is not improved and the low moisture absorption effect is not exhibited.If the amount is more than 70 parts by weight, the reaction between the matrix resin and the treated resin is poor, so that the adhesive strength is reduced. The blending amount of the thermoplastic resin is preferably 5 parts by weight or more and 70 parts by weight or less with respect to 100 parts by weight of the total amount of the treated resin.
(C) シランカツプリ ング剤  (C) Silane cutting agent
本発明に使用できるシランカップリ ング剤は、 次の一般式 ( 3 3 ) で示されるシラン化合物で示されるシランカップリ ング剤を使用 することができる。 一般式 ( 3 3 ) As the silane coupling agent that can be used in the present invention, a silane coupling agent represented by the following general formula (33) can be used. General formula (33)
Y - Si'Rn'(X)n— ι 式中 Xはアルコキシ基、 Yは官能基、 Rは炭素数 6以下の炭化水素 基、 nは 1以上 3未満の整数を表わす。 アルコキシ基としては、 何 れの形態も使用でき、 ガラスク ロスへの安定処理化のためには、 炭 素数 5以下のアルコキシ基が好ましい。 以下は、 具体的に使用でき るシランカップリ ング剤の例である。 これらは、 単体でも、 混合物 でも用いるこ とができる。 Y-Si'Rn '(X) n -ι In the formula, X represents an alkoxy group, Y represents a functional group, R represents a hydrocarbon group having 6 or less carbon atoms, and n represents an integer of 1 or more and less than 3. Any form can be used as the alkoxy group, and an alkoxy group having 5 or less carbon atoms is preferable for stabilizing glass cross. The following are examples of silane coupling agents that can be specifically used. These can be used alone or as a mixture.
y 一 ( 2 —ァミ ノェチル) ァミ ノプロ ピルト リ メ トキシシラン、 y - ( 2 —アミ ノエチル) アミ ノプロ ピルメチルジメ トキシシラン y- (2-Aminoethyl) aminopropyl pyrrimethyoxysilane, y- (2-aminopropyl) aminopropylmethyldimethoxysilane
3—ァミ ノプロ ピル ト リ エ トキシシラン、 3-aminopropyltriethoxysilane,
3—アミ ノプロ ピルメチルジェ トキシシラン、  3-aminopropylmethylethoxysilane,
N— jS — (N—ビニノレペンジノレアミ ノェチノレ) _ γ —ァミ ノプロ ピ ノレト リ メ トキシシラン及びその塩酸塩、  N—jS— (N—bininole penzinoleaminochinore) _γ—aminopropylinoletrimethoxysilane and its hydrochloride,
Ν— β — (Ν—ビニルベンジルアミ ノエチル) 一 γ —ァミ ノプロ ピ ルメチルジメ トキシシラン及びその塩酸塩、  Ν-β- (Ν-vinylbenzylaminoethyl) -γ-aminopropylmethyldimethoxysilane and its hydrochloride,
Ν - J3 - (Ν—べンジルアミ ノエチルァミ ノプロ ピル) ト リ メ トキ シシラン及びその塩酸塩、  Ν-J3-(Ν-benzylaminoethylaminopropyl) trimethoxysilane and its hydrochloride,
Ν - β - (Ν—べンジルアミ ノエチノレアミ ノプロ ピル) メチルジメ トキシシラン及びその塩酸塩、  Ν-β- (Ν-benzylaminoetinoreaminopropyl) methyldimethoxysilane and its hydrochloride,
Ν—フエ二ルー γ —ァミ ノプロ ビル ト リ メ トキシシラン、  Ν-Fenil γ-Aminoprovir trimethoxysilane,
Ν—フエニル一 γ —アミ ノプロ ピルメチルジメ トキシシラン、 Ν-phenyl-1-γ-aminopropylmethyldimethoxysilane,
Ν - β - (Ν _ビュルべンジルアミノエチル) — Ν— γ _ (Ν—ビ ニルベンジル) 一 ! ーァミ ノプロ ピルト リ メ トキシシラン及びその 塩酸塩、 N - 3 - ( N—ジ (ビエルベンジル) アミ ノエチル) 一 γ—アミ ノ プロ ピルト リ メ トキシシラン及びその塩酸塩、 Ν-β- (Ν_Bulbenylaminoethyl) — Ν—γ_ (Ν—vinylbenzyl) One! -Aminopropyl methoxysilane and its hydrochloride, N-3- (N-di (bierbenzyl) aminoethyl) -γ-aminopropyltrimethoxysilane and its hydrochloride,
Ν - j3 - ( N—ジ (ビエルベンジル) アミ ノエチル) 一 Ν— γ— ( Ν -ビニルベンジル) 一 γ —アミ ノプロ ピルト リ メ トキシシラン及 びその塩酸塩、  Ν-j3- (N-di (bierbenzyl) aminoethyl) mono-γ- (Ν-vinylbenzyl) mono-γ-aminopropyl pyrrimethoxysilane and its hydrochloride,
γ —グリ シ ドキシプロ ビルト リ メ トキシシラン、  γ-glycidoxypro-built methoxy silane,
γ —ダリ シ ドキシプロ ピルメチルジェ トキシシラン、  γ—Dalicydoxypropyl methylmethyl ethoxysilane,
Υ —メ タク リ ロキシプロ ビル ト リ メ トキシシラン、 Υ— methacryloxyprovir trimethoxysilane,
γ —メ タク リ ロキシプロ ピルメチルジメ トキシシラン、  γ—methacryloxypropyl propylmethyldimethoxysilane,
0 / —メルカプ トプロ ピルト リ メ トキシシラン、  0 / —mercaptopropiltrimethoxysilane,
シランカ ツプリ ング剤の選択は特に限定されるものではないが、 処理樹脂との反応、 マ ト リ ックス樹脂の硬化反応を考慮し、 選択す るこ とが好ましい。 マ ト リ ックス榭脂がエポキシ樹脂の場合、 処理 樹脂にエポキシ基、 フエノール基を有する樹脂を選択し、 シラン力 ップリ ング剤の官能基と してはァミ ノ基、 エポキシ基、 メルカプ ト 基を有するシランカップリ ング剤を選択するのが好ましい。 また、 マ ト リ ックス樹脂がエポキシァク リ レー ト、 ジァリルフタレー ト、 ト リ ァリルイ ソシァネー ト等の、 ラジカル重合によ り硬化するマ ト リ ッタス樹脂の場合、 処理樹脂にァリル基を有する樹脂を選択する こ とが好ま しく 、 シランカ ップリ ング剤の官能基と しては、 ビエル ベンジル基、 メ タク リル基、 アク リル基、 アミ ノ基を有するシラン カツプリ ング剤を選択することが好ましい。  The selection of the silane coupling agent is not particularly limited, but is preferably selected in consideration of the reaction with the treated resin and the curing reaction of the matrix resin. If the matrix resin is an epoxy resin, select a resin that has an epoxy group or phenol group as the treated resin, and use amino group, epoxy group, or mercapto group as the functional group of the silane coupling agent. It is preferable to select a silane coupling agent having If the matrix resin is a matrix resin that cures by radical polymerization, such as epoxy acrylate, diaryl phthalate, or triaryl isocyanate, select a resin having an aryl group as the treated resin. Preferably, the functional group of the silane coupling agent is selected from silane coupling agents having a beer benzyl group, a methacryl group, an acryl group, and an amino group.
( D ) 表面処理方法  (D) Surface treatment method
本発明では、 ガラスク ロスにシランカップリ ング剤、 処理樹脂を 表面処理する手順と して、 ガラスク ロスにシランカップリ ング剤を 処理した後、 処理樹脂を処理する手順、 ガラスク ロスにシランカツ プリ ング剤と処理樹脂を混合処理液化し同時に処理する手順、 さ ら にガラスクロスにシランカツプリ ング剤を処理した後、 シランカツ プリ ング剤と処理樹脂を混合処理液化し同時に処理する手順で処理 することができる。 In the present invention, as a procedure for surface-treating the glass cloth with the silane coupling agent and the treated resin, a procedure for treating the glass cloth with the silane coupling agent and then treating the treated resin, and a procedure for treating the glass cloth with the silane coupling agent. Procedure for mixing and liquefying treated resin and treating at the same time After the glass cloth is first treated with the silane coupling agent, the silane coupling agent and the treated resin can be mixed and liquefied, and the treatment can be performed simultaneously.
ガラスクロスにシランカツプリ ング剤及び処理樹脂を処理する際 には、 処理樹脂を溶媒に溶解又は分散させた処理液 (以下処理液) を処理し、 乾燥して溶媒成分を除去する方法が好ましい。 溶媒は、 水、 有機溶媒等が使用でき限定されるものではないが、 安全性、 地 球環境保護の観点から、 水を主溶媒と して用いることが好ましい。 処理樹脂の処理液を得る方法において、 水を主溶媒として処理液 を得る場合、 予め処理樹脂に界面活性剤を添加して乳化した処理樹 脂の乳化液を水で希釈して処理液を得る方法、 処理樹脂に界面活性 剤を添加し、 直接、 又は水溶性有機溶媒に溶解した後、 水に投入し 処理液を得る方法等、 何れの方法も可能である。 さらに、 粉体状の 処理樹脂を水に分散させたディスパージヨ ン状態の処理液を使用す ることも可能である。 処理樹脂の処理液が、 水中に樹脂の粒子が乳 化、 粉体で分散されている場合、 糸束内部への処理樹脂液の浸透を 考慮して、 その最大粒子径は 5 0 Z m以下が好ましく、 4 0 μ ιη以 下であればよ り好ましい。 また、 最小の粒子経は特に限定されるも のではないが、 水分散状態で処理樹脂の官能基と水との接触による 劣化を抑制する意味で、 1 0 n m以上が好ましく、 2 0 n m以上で あればよ り好ましい。  When treating the glass cloth with the silane coupling agent and the treated resin, a method is preferred in which a treated liquid in which the treated resin is dissolved or dispersed in a solvent (hereinafter referred to as a treated liquid) is treated and dried to remove the solvent component. As the solvent, water, an organic solvent and the like can be used and are not limited, but from the viewpoint of safety and protection of the global environment, it is preferable to use water as a main solvent. In the method for obtaining a treatment liquid for the treatment resin, when water is used as the main solvent to obtain the treatment liquid, a treatment liquid is obtained by diluting the treatment resin emulsion obtained by adding a surfactant to the treatment resin in advance and emulsifying with water. Any method is possible, such as a method of adding a surfactant to the treated resin and directly or after dissolving it in a water-soluble organic solvent, and then pouring it into water to obtain a treated liquid. Furthermore, it is also possible to use a processing liquid in a dispurged state in which a powdery processing resin is dispersed in water. When the resin particles of the treated resin are emulsified or dispersed in powder in water, the maximum particle size is 50 Zm or less in consideration of the penetration of the treated resin liquid into the yarn bundle. And more preferably 40 μιη or less. Although the minimum particle size is not particularly limited, it is preferably at least 10 nm, more preferably at least 20 nm, in order to suppress deterioration due to contact between the functional group of the treated resin and water in a water-dispersed state. Is more preferable.
シランカツプリ ング剤の水を主溶媒として処理液を得る方法とし ては、 直接水に投入する方法、 水溶性有機溶媒に溶解した後、 水に 投入し処理液を得る方法等、 何れの方法も可能である。 また、 シラ ンカツプリ ング剤の処理液の水分散性安定性を向上させるために、 界面活性剤を併用することも可能である。 処理液中のシランカップ リ ング剤、 処理樹脂濃度は特に限定されるものではなく、 塗布方法 によ り適した濃度を選択する必要がある。 As a method of obtaining a treatment liquid using water of the silane coupling agent as a main solvent, any method such as a method of directly pouring into water or a method of dissolving in a water-soluble organic solvent and then pouring it into water to obtain a treatment liquid is possible. It is. Further, in order to improve the water dispersibility stability of the treatment solution of the silane coupling agent, a surfactant can be used in combination. The concentration of the silane coupling agent and the processing resin in the processing solution is not particularly limited, and the coating method It is necessary to select a more suitable concentration.
処理液を、 ガラスクロスに塗布する方法には、 ( a ) 処理液をパ スに溜め、 ガラスクロスを通過させた後、 ガラスクロスに処理液が 所定量含浸、 塗布されるようにス リ ッ ト、 又はマンダルで余剰処理 液を除去し一定量の処理液塗布量を得る方法、 ( b ) ロールコータ 一、 ダイコーター、 グラビアコーター等でガラスク ロ スに直接一定 量の処理液を含浸、 塗工する方法、 等が可能である。  The method of applying the treatment liquid to the glass cloth is as follows: (a) After the treatment liquid is stored in a path and passed through the glass cloth, a predetermined amount of the treatment liquid is impregnated and coated on the glass cloth. (B) Impregnating and coating a certain amount of processing solution directly on glass cloth with a roll coater, die coater, gravure coater, etc. Method, etc. are possible.
また、 ガラスク ロスに処理液を塗布した後、 溶媒を乾燥させる方 法と しては、 熱風、 電磁波、 等公知の方法が可能であり、 特に適用 方法が限定されるものではない。 加熱乾燥する場合の、 ガラスクロ スの温度も特に限定されるものではないが、 シランカツプリ ング剤 のガラスとの反応を考慮して、 9 0 °C以上が好ましく、 1 0 0 °C以 上であればよ り好ましい。 また、 加熱乾燥する場合、 シランカップ リ ング剤の官能基、 処理樹脂のエポキシ基、 フエノール基、 ァリル 基の劣化を考慮して、 3 0 0 °C以下が好ましく、 2 0 0 °C以下であ ればより好ましい。  In addition, as a method of applying the treatment liquid to the glass cloth and then drying the solvent, known methods such as hot air and electromagnetic waves can be used, and the application method is not particularly limited. The temperature of the glass cloth for heating and drying is not particularly limited, but is preferably 90 ° C or more, and more preferably 100 ° C or more in consideration of the reaction of the silane coupling agent with the glass. More preferred. In the case of drying by heating, the temperature is preferably 300 ° C. or less, and preferably 200 ° C. or less, in consideration of the deterioration of the functional group of the silane coupling agent, the epoxy group, the phenol group, and the aryl group of the treated resin. It is more preferable if there is.
本発明では、 処理されたガラスク ロスの状態で、 処理樹脂とシラ ンカツプリ ング剤を含む表面処理剤組成物の付着量がガラスクロス 全体に対する重量分率 : 0. 1 0重量%以上 1. 0 0重量%未満で ある必要がある。 表面処理剤組成物の付着量が 0. 1 0重量%未満 では、 界面への処理樹脂の効果が得られず、 1. 0重量%以上では マ ト リ ックス樹脂の高弾性率化、 高耐熱化、 電気特性向上等のマ ト リ ックス樹脂特有の特性向上に影響を及ぼす為、 表面処理剤組成物 の付着量は重量分率 : 0. 1 0重量%以上 1. 0 0重量%未満であ る必要があり、 0. 1 2重量%以上 0. 9 0重量%未満であれば好 ましく、 0. 1 3重量%以上 0. 8 0重量%未満であればよ り好ま しい。 本発明では、 処理されたガラスクロスの状態で、 シランカツプリ ング剤と処理樹脂のそれぞれの付着量は特に限定されるものではな いが、 シランカップリ ング剤の官能基と処理樹脂のエポキシ基、 フ ェノール基、 ァリル基が反応し、 マ ト リ ックス樹脂との反応性が低 下することを考慮し、 シランカツプリ ング剤 1 0 0重量部に対し、 処理樹脂 5 0重量部以上 1 0 0 0重量部未満であることが好ましく 、 処理樹脂 7 5重量部以上 5 0 0重量部未満であればよ り好ましい 表面処理剤組成物のガラスクロス全体に対するの付着量の確認方 法と しては、 処理ガラスク ロスを 1 1 0 °C 2 0分間乾燥後の重量 ( 乾燥重量) と、 6 3 0 °C 2 0分間加熱処理剤焼却後の重量 (焼却後 重量) の差から次の式 ( 1 ) で確認する方法 (焼却重量測定) が可 能である。 In the present invention, in the state of the treated glass cloth, the adhesion amount of the surface treating agent composition containing the treated resin and the silane coupling agent is 0.10% by weight or more to 1.0% by weight or more with respect to the entire glass cloth. It must be less than wt%. If the amount of the surface treating agent composition is less than 0.1% by weight, the effect of the treated resin on the interface cannot be obtained. If the amount is more than 1.0% by weight, the matrix resin has a high elastic modulus and high heat resistance. Influences on the characteristics of matrix resin such as surface treatment and improvement of electrical properties. Therefore, the amount of the surface treatment agent composition to be applied should be 0.1% by weight or more and less than 1.0% by weight. It is preferable that the content be 0.12% by weight or more and less than 0.90% by weight, and more preferably 0.13% by weight or more and less than 0.80% by weight. In the present invention, the amount of each of the silane coupling agent and the treated resin in the state of the treated glass cloth is not particularly limited, but the functional group of the silane coupling agent and the epoxy group of the treated resin, Considering that the phenol group and the aryl group react and the reactivity with the matrix resin is reduced, 100 parts by weight or more of the treated resin is 100 parts by weight or more based on 100 parts by weight of the silane coupling agent. Is preferably less than 75 parts by weight and more preferably less than 500 parts by weight. A method for confirming the amount of the surface treating agent composition attached to the whole glass cloth is as follows. From the difference between the weight after drying the glass cloth at 110 ° C for 20 minutes (dry weight) and the weight after incineration of the heat treatment agent at 63 ° C for 20 minutes (weight after incineration), the following formula (1) Can be confirmed by the method (incineration weight measurement). is there.
付着量 (%) = (乾燥重量一焼却後重量) /  Adhesion (%) = (dry weight-weight after incineration) /
(乾燥重量) X 1 0 0 ( 1 ) (Dry weight) X 100 (1)
( E ) プリ プレグの調製 (E) Preparation of prepreg
本発明のプリ プレダは、 前述の表面処理を施されたガラスク ロス に、 浸漬、 搾液等の常法手段を用いて、 処理樹脂より もガラス転移 温度が高いマ ト リ ックス榭脂のワニスを所定量飽充させ、 所定の乾 燥を経て、 調製される。  The pre-preda of the present invention uses a conventional method such as immersion or squeezing of a glass varnish of a matrix resin having a higher glass transition temperature than the treated resin on the glass cloth subjected to the surface treatment described above. It is prepared after saturating a predetermined amount and drying it.
プリ プレダは、 所望枚数重ねて、 所望の面に所定の厚みをもつ銅 箔を貼付した後、 加圧加熱を適用して積層しプリ ント配線基板に加 ェされる。  A desired number of prepregs are stacked, a copper foil having a predetermined thickness is adhered to a desired surface, and then laminated by applying pressure and heating to be applied to a printed wiring board.
以下に詳述する本発明の実施例及び比較例は、 本発明の着想を具 体的に説明するものであって、 本発明を限定するものではない。  The examples and comparative examples of the present invention described below in detail explain the idea of the present invention specifically, and do not limit the present invention.
(ガラスク ロス) 焼却法によ り製織用集束剤を除去したスタイル 2 1 1 6 (旭シュ エーベル (株) 製) を使用した。 (Glass cloth) Style 211 (manufactured by Asahi Schwebel Co., Ltd.) from which weaving sizing agent was removed by the incineration method was used.
• シランカツプリ ング剤処理ガラスク口スの調製  • Preparation of glass mouth treated with silane coupling agent
ガラスク ロスを、 酢酸 : 0 . 5重量0 /o、 N— β — (Ν—ジ (ビニ ルベンジル) アミ ノエチル) 一 γ —ァミ ノプロ ビルト リ メ トキシシ ランの塩酸塩 (商品名 : S Z 6 0 3 2、 東レダウコ一二ング株式会 社製) 0 . 5重量%を水に溶解したシランカップリ ング剤処理液に 浸漬した後、 ガラスクロスに対して処理液が 2 5重量%の付着量に なるようにマングルを用いて余剰な処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させて、 シランカップリ ング剤処理ガラスクロスを 得た。 The glass cloth was treated with acetic acid: 0.5 weight 0 / o, N-β- (p- (vinylbenzyl) aminoethyl) -γ-aminopropyl built-in methoxysilane hydrochloride (trade name: SZ600) 32 2, Toray Dako Inc.) After immersion in a silane coupling agent treatment solution in which 0.5% by weight is dissolved in water, the treatment solution has an adhesion amount of 25% by weight to the glass cloth. The excess treatment liquid was squeezed out using a mangle so as to obtain a glass cloth treated with a silane coupling agent, which was dried at 125 ° C. for 10 minutes.
•樹脂処理液用混合界面活性剤の調製  • Preparation of mixed surfactant for resin processing solution
H L B値が 1 8 . 8のノニルフエノールのエチレンォキシ ド付加 物 (商品名 : ノニポール (登録商標) 8 0 0、 三洋化成株式会社製 ) 、 H L B値が 1 3 . 3のノエルフエノールのエチレンォキシ ド付 加物 (商品名 : ノ二ポール (登録商標) 1 0 0、 三洋化成株式会社 製) 、 H L B値が 8 . 9のノニルフエノールのエチレンォキシ ド付 加物 (商品名 : ノニポール (登録商標) 4 0、 三洋化成株式会社) をそれぞれ、 重量比で同量を混ぜた混合界面活性剤を調製した。 実施例 1  Nonylphenol ethylene oxide adduct with an HLB value of 18.8 (trade name: Nonipol (registered trademark) 800, manufactured by Sanyo Chemical Co., Ltd.), Noel phenol having an HLB value of 13.3 with ethylene oxide Product (trade name: Nonipol (registered trademark) 100, manufactured by Sanyo Chemical Co., Ltd.), a nonylphenol having an HLB value of 8.9 with ethylene oxide (trade name: Nonipol (registered trademark) 40, (Sanyo Kasei Co., Ltd.) were mixed to prepare a mixed surfactant in the same amount by weight. Example 1
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
0 —ク レゾールノボラックエポキシ樹脂 (硬化物ガラス転移温度 : 1 8 0 °C商品名 : ェピコー ト (登録商標) 1 8 0 S 6 5、 ジャパ ンエポキシレジン株式会社製) 1 0 0重量部を、 3 0 0重量部の N , N—ジメチルホルムァミ ドに溶解させ、 上記混合界面活性剤を 5 重量部添加して樹脂予備溶解液を調製した。 ( 2 ) 樹脂処理液の調製 0 — Cresol novolak epoxy resin (cured product glass transition temperature: 180 ° C; trade name: Epicoat (registered trademark) 180 S65, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight The resin was dissolved in 300 parts by weight of N, N-dimethylformamide, and 5 parts by weight of the above mixed surfactant was added to prepare a resin pre-dissolved solution. (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 8 0重量%になるように水に添加して水分散液化し、 樹脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin-treated solution.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 付着量がガラスクロスに対して 0. 2 0 0重量%である本発明のガ ラスク ロスを得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product. A glass cross of the present invention was obtained which was treated with a resin having an epoxy group at C or higher and the amount of the surface treatment agent composition applied was 0.2% by weight with respect to the glass cloth.
実施例 2  Example 2
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
ジシクロペンタジェン型エポキシ榭脂 (硬化物ガラス転移温度 : Dicyclopentadiene epoxy resin (cured glass transition temperature:
1 6 0 °C、 商品名 : H P— 7 2 0 0、 大日本ィンキ化学工業株式会 社) 1 0 0重量部を、 3 0 0重量部の N, N—ジメチルホルムアミ ドに溶解させ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解 液を調製した。 160 ° C, Product name: HP-720, Dainippon Ink and Chemicals Co., Ltd.) Dissolve 100 parts by weight in 300 parts by weight of N, N-dimethylformamide, A resin pre-dissolution solution containing 5 parts by weight of the mixed surfactant was prepared.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 8 0重量%になるように水に添加して水分散液化し、 樹脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin-treated solution.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °c以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 の付着量がガラスクロスに対して 0. 2 0 0重量%である本発明の ガラスク ロスを得た。 A glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (2), and the treatment liquid has an adhesion amount of 25% by weight to the glass cloth. The excess resin treatment liquid was squeezed out using a mangle as described above, dried at 125 ° C for 10 minutes, washed with running water, dried again at 125 ° C for 10 minutes, and dried. The coating agent has a glass transition temperature of 130 ° C. or higher between the coating agent and the cured product and is treated with a resin having an epoxy group, and the amount of the surface treatment agent composition is 0.2000% by weight based on the glass cloth. The glass cross of the invention was obtained.
実施例 3  Example 3
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
ナフタレン型エポキシ樹脂 (硬化物ガラス転移温度 : 1 5 0 °C 商品名 : H P— 4 0 3 2、 大日本ィンキ化学工業株式会社) 1 0 0 重量部を、 3 0 0重量部の N, N—ジメチルホルムアミ ドに溶解さ せ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解液を調製し た。  Naphthalene-type epoxy resin (cured glass transition temperature: 150 ° C, trade name: HP-4032, Dainippon Ink & Chemicals, Inc.) 100 parts by weight, 300 parts by weight of N, N —Dissolved in dimethylformamide to prepare a resin pre-dissolution solution to which 5 parts by weight of the mixed surfactant was added.
( 2 ) 樹脂処理液調製  (2) Preparation of resin treatment solution
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 8 0重量%になるように水に添加して水分散液化し、 榭脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 の付着量がガラスク ロスに対して 0. 2 0 0重量%である本発明の ガラスクロスを得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product. A glass cloth of the present invention, which was treated with a resin having an epoxy group at C or higher and the amount of the surface treatment agent composition applied was 0.20% by weight based on the glass cloth.
実施例 4 ( 1 ) 樹脂予備溶解液の調製 Example 4 (1) Preparation of resin pre-solution
ナフ トールァラルキル型エポキシ樹脂 (硬化物ガラス転移温度 : Naphth aralkyl type epoxy resin (Glass transition temperature of cured product:
1 6 0 °C、 商品名 : E S N— 1 7 0、 新日鐡化学株式会社) 1 0 0 重量部を、 3 0 0重量部の N, N—ジメチルホルムアミ ドに溶解さ せ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解液を調製し た。 160 ° C, trade name: ESN-170, Nippon Steel Chemical Co., Ltd.) Dissolve 100 parts by weight in 300 parts by weight of N, N-dimethylformamide and mix A resin pre-dissolution solution containing 5 parts by weight of a surfactant was prepared.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 8 0重量%になるように水に添加して水分散液化し、 樹脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin-treated solution.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落とし、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカップリ ング剤と硬化物のガラス転移温度が 1 3 0 °c以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 の付着量がガラスクロスに対して 0. 2 0 0重量%である本発明の ガラスクロスを得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid has an adhesion amount of 25% by weight with respect to the glass cloth. After drying at 125 ° C for 10 minutes, washing with running water and drying again at 125 ° C for 10 minutes, the glass transition temperature of the silane coupling agent and the cured product becomes 130 ° C. The glass cloth of the present invention, which was treated with a resin having an epoxy group at c or more and the amount of the surface treatment agent composition applied was 0.200% by weight based on the glass cloth.
実施例 5  Example 5
( 1 ) 樹脂予備溶解液作成  (1) Preparation of resin pre-solution
ナフ トールァラルキル型エポキシ樹脂 (硬化物ガラス転移温度 : 1 6 0 °C、 商品名 : E S N— 1 7 0、 新日鐡化学株式会社) 1 0 0 重量部を、 3 0 0重量部の N, N—ジメチルホルムアミ ドに溶解さ せ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解液を作成し た。  Naphthol aralkyl type epoxy resin (cured glass transition temperature: 160 ° C, trade name: ESN-170, Nippon Steel Chemical Co., Ltd.) 100 parts by weight, 300 parts by weight of N, N —Dissolved in dimethylformamide to prepare a resin pre-dissolution liquid to which 5 parts by weight of the mixed surfactant was added.
( 2 ) 樹脂処理液作成 水を撹拌しながら、 樹脂予備溶解液を該樹脂固形分濃度で 2. 4 0重量%になるよ うに水に添加して水分散液化し、 樹脂処理液を調 整した。 (2) Preparation of resin treatment liquid While stirring the water, the resin pre-dissolved solution was added to water so as to have a resin solid content concentration of 2.40% by weight to form a water dispersion, thereby preparing a resin treatment solution.
( 3 ) 樹脂処理  (3) Resin treatment
シランカツプリ ング剤処理ガラスクロスを樹脂処理液に浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になるようにマ ングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °Cで 1 0分 間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾燥させて 、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上 でエポキシ基を有する樹脂が処理され、 表面処理を形成する有機物 の付着量がガラスクロスに対して 0. 5 0 0重量%である本発明の ガラスク ロスを得た。  A glass cloth treated with a silane coupling agent is immersed in a resin treatment liquid, and excess resin treatment liquid is squeezed out using a angle so that the treatment liquid has an adhesion amount of 25% by weight with respect to the glass cloth. After drying at 5 ° C for 10 minutes, it is washed with running water, dried again at 125 ° C for 10 minutes, and epoxied when the glass transition temperature of the silane coupling agent and the cured product is 130 ° C or more. The glass cloth of the present invention was obtained in which the resin having a group was treated and the amount of the organic substance forming the surface treatment was 0.50% by weight with respect to the glass cloth.
実施例 6  Example 6
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
( a ) ナフタレン型エポキシ樹脂 (硬化物ガラス転移温度 : 1 5 0 °C、 商品名 : E S N— 1 7 0、 新日鐡化学株式会社) 7 0重量部 と、 ( b ) ビスフエノール A型エポキシ樹脂 (硬化物ガラス転移温 度 : 1 2 5 °C 商品名 : ェピコート (登録商標) 1 0 0 1、 ジャパ ンエポキシレジン株式会社) 3 0重量部を、 3 0 0重量部の N, N —ジメチルホルムアミ ドに溶解させ、 該混合界面活性剤を 5重量部 添加した樹脂予備溶解液を調製した。 このとき、 ( a ) 、 ( b ) の 混合物のガラス転移温度は 1 4 0 °Cであった。  (a) Naphthalene type epoxy resin (cured product glass transition temperature: 150 ° C, trade name: ESN-170, Nippon Steel Chemical Co., Ltd.) 70 parts by weight and (b) bisphenol A type epoxy Resin (cured product glass transition temperature: 125 ° C Trade name: Epikote (registered trademark) 1001, Japan Epoxy Resin Co., Ltd.) 30 parts by weight, and 300 parts by weight of N, N— The resin was dissolved in dimethylformamide, and a resin pre-dissolution solution was prepared by adding 5 parts by weight of the mixed surfactant. At this time, the glass transition temperature of the mixture of (a) and (b) was 140 ° C.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 8 0重量%になるように水に添加して水分散液化し、 榭脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
( 3 ) 樹脂処理 シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °c以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 の付着量がガラスクロスに対して 0. 2 0 0重量%である本発明の ガラスク ロスを得た。 (3) Resin treatment The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product. The glass cloth of the present invention, which was treated with a resin having an epoxy group at c or more and the amount of the surface treating agent composition applied was 0.2% by weight with respect to the glass cloth.
実施例 7  Example 7
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
ナフタレン型エポキシ樹脂 (硬化物ガラス転移温度 : 1 5 0 °C 商品名 : H P— 4 0 3 2、 大日本ィンキ化学工業株式会社) 1 0 0 重量部を、 3 0 0重量部の N, N—ジメチルホルムアミ ドに溶解さ せ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解液を調製し た。  Naphthalene-type epoxy resin (cured product glass transition temperature: 150 ° C, product name: HP—430, Dainippon Ink and Chemicals, Inc.) 100 parts by weight, 300 parts by weight of N, N —Dissolved in dimethylformamide to prepare a resin pre-dissolution solution to which 5 parts by weight of the mixed surfactant was added.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 5 0重量%になるように水に添加して水分散液化し、 高分子 型界面活性剤 (ディスコート (登録商標) N— 1 4、 第一工業製薬 (株) 製) を 0. 0 5重量0 /0添加した後、 J I S . Z 8 8 0 1の目 の開き 2 0 ミ クロンを通過するポリ フエユレンエーテル粉末 (ガラ ス転移温度 : 2 1 0 °C、 数平均分子量 7 0 0 0 ) を 0. 5 0重量% 添加して、 樹脂処理液を調製した。 While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid content concentration of 0.550% by weight to form a water dispersion, and the polymer surfactant (discoat) was added. (R) N-1 4, Dai-ichi Kogyo Seiyaku Co., Ltd.) 0.0 5 wt 0/0 after addition of the poly passing through the JIS. 2 0 micron opening of Z 8 8 0 1 eye 0.55% by weight of phenylene ether powder (glass transition temperature: 210 ° C., number average molecular weight: 700,000) was added to prepare a resin treatment liquid.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でエポキシ基を有する樹脂、 及びガラス転移温度が 2 1 0 °Cである熱可塑性榭脂で処理され、 表面処理剤組成物の付着量がガ ラスクロスに対して 0 . 3 0 0重量%である本発明のガラスクロス を得た。 The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. And 1 25 ° C After washing with running water for 10 minutes, and drying again at 125 ° C for 10 minutes, the silane coupling agent and the cured product have an epoxy group at a glass transition temperature of 130 ° C or more. The glass cloth of the present invention, which is treated with a resin and a thermoplastic resin having a glass transition temperature of 210 ° C., and the amount of the surface treatment agent composition applied is 0.3000% by weight based on the glass cloth. I got
実施例 8  Example 8
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
ポリ 一パラービュルフヱノール (硬化物ガラス転移温度 : 1 9 0 Polyparabutylphenol (cured glass transition temperature: 190
°C 商品名 : マルカリ ンカ (登録商標) 一 M、 丸善石油化学株式会 社) 1 0 0重量部を、 3 0 0重量部の N, N—ジメチルホルムアミ ドに溶解させ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解 液を調製した。 ° C Product name: Marcalinka (registered trademark) 1M, Maruzen Petrochemical Co., Ltd.) Dissolve 100 parts by weight in 300 parts by weight of N, N-dimethylformamide, and prepare the mixed surfactant. A resin pre-dissolution solution containing 5 parts by weight of the agent was prepared.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0 . 8 0重量%になるように水に添加して水分散液化し、 樹脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solids concentration of 0.80% by weight to form an aqueous dispersion, thereby preparing a resin-treated solution.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスクロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカップリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でフェノ一ル基を有する樹脂で処理され、 表面処理剤組成 物の付着量がガラスクロスに対して 0 . 2 0 0重量%である本発明 のガラスクロスを得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, washing with running water and drying again at 125 ° C for 10 minutes, the glass transition temperature of the silane coupling agent and the cured product becomes 130 A glass cloth of the present invention, which was treated with a resin having a phenol group at a temperature of not less than ° C and the adhesion amount of the surface treatment agent composition was 0.2000% by weight based on the glass cloth, was obtained.
実施例 9 ( 1 ) 樹脂処理液の調製 Example 9 (1) Preparation of resin treatment liquid
自己乳化型ークレゾールノポラックエポキシ樹脂 (硬化物ガラス 転移温度 : 1 8 0 °C、 商品名 : ェピレッツ (登録商標) 6 0 0 6 W 7 0、 ジャパンエポキシレジン株式会社) を、 水を撹拌しながら、 樹脂固形分濃度で 0. 8 0重量%になるよ うに水に添加して水分散 樹脂処理液を調製した。  A self-emulsifying cresol nopolak epoxy resin (cured glass transition temperature: 180 ° C, trade name: Epiretz (registered trademark) 600 W 70, Japan Epoxy Resin Co., Ltd.) and water are stirred. Meanwhile, water was added to water so that the resin solid content concentration became 0.80% by weight to prepare a water-dispersed resin treatment liquid.
( 2 ) 樹脂処理  (2) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 1 ) の樹脂処理液に 浸漬し、 ガラスクロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカップリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 の付着量がガラスクロスに対して 0. 2 0 0重量%である本発明の ガラスクロスを得た。  A glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (1), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, washing with running water and drying again at 125 ° C for 10 minutes, the glass transition temperature of the silane coupling agent and the cured product becomes 130 A glass cloth of the present invention, which was treated with a resin having an epoxy group at a temperature of not less than ° C and the amount of the surface treating agent composition applied was 0.2% by weight with respect to the glass cloth.
実施例 1 0  Example 10
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
ジァリルモノグリシジルイ ソシァヌル酸 (硬化物ガラス転移温度 Diaryl monoglycidylsocyanuric acid (Glass transition temperature of cured product)
: 1 8 0 °C、 商品名 : DA— MG I C、 四国化成工業株式会社) 1 0 0重量部を、 3 0 0重量部の N, N—ジメチルホルムアミ ドに溶 解させ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解液を調 製した。 : 180 ° C, Trade name: DA-MG IC, Shikoku Chemicals Co., Ltd.) Dissolve 100 parts by weight in 300 parts by weight of N, N-dimethylformamide, and mix the mixed interface. A resin pre-dissolution solution containing 5 parts by weight of an activator was prepared.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 5 0重量%になるよ うに水に添加して水分散液化し、 高分子 型界面活性剤 (ディスコート (登録商標) N— 1 4、 第一工業製薬 (株) 製) を 0. 0 5重量%添加した後、 J I S . Z 8 8 0 1の目 の開き 2 0 ミクロンを通過するポリ フエ二レンエーテル粉末 (ガラ ス転移温度 : 2 1 0 °C 数平均分子量 7 0 0 0 ) を 0 . 5 0重量% 添加して、 樹脂処理液を調製した。 While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.550% by weight to form a water dispersion, and the polymer type surfactant (discoat) was added. (Registered trademark) N-14, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) in an amount of 0.05% by weight. 0.5% by weight of polyphenylene ether powder (glass transition temperature: 210 ° C., number average molecular weight: 700,000) passing through 20 μm was added to prepare a resin treatment liquid. .
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスクロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でエポキシ基とァリル基を有する樹脂、 及びガラス転移温 度が 2 1 0 °Cである熱可塑性樹脂で処理され、 表面処理剤組成物の 付着量がガラスク ロスに対して 0 . 3 0 0重量%である表面処理ガ ラスク ロスを得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product. The resin is treated with a resin having an epoxy group and an aryl group at C or higher, and a thermoplastic resin having a glass transition temperature of 210 ° C., and the amount of the surface treating agent composition applied is 0.30 with respect to the glass cross. A surface-treated glass cross which was 0% by weight was obtained.
実施例 1 1  Example 1 1
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
B— a型べンゾォキサジン (硬化物ガラス転移温度 : 1 8 0 °C、 商品名 : B _ a型べンゾォキサジン、 四国化成工業株式会社) 1 0 0重量部を、 3 0 0重量部の N, N —ジメチルホルムアミ ドに溶解 させ、 該混合界面活性剤を 5重量部添加した樹脂予備溶解液を調製 した。  B—a-type benzoxazine (cured product glass transition temperature: 180 ° C., trade name: B_a-type benzoxazine, Shikoku Chemicals Co., Ltd.) 100 parts by weight, 300 parts by weight of N, The resin was dissolved in N-dimethylformamide, and a resin pre-dissolution solution was prepared by adding 5 parts by weight of the mixed surfactant.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0 . 8 0重量%になるように水に添加して水分散液化し、 樹脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solids concentration of 0.80% by weight to form an aqueous dispersion, thereby preparing a resin-treated solution.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シラン力ップリ ング剤と硬化物のガラス転移温度が 1 3 0 °c以上で潜在型のフエノ一ル基を有する樹脂で処理され、 表面処 理剤組成物の付着量がガラスク ロスに対して 0 . 2 0 0重量%であ る本発明のガラスク ロスを得た。 A glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (2), and the treatment liquid has an adhesion amount of 25% by weight to the glass cloth. The excess resin treatment liquid was squeezed out using a mangle as described above, dried at 125 ° C for 10 minutes, washed with running water, dried again at 125 ° C for 10 minutes, and treated with silane. It is treated with a resin having latent phenolic groups at a glass transition temperature of 130 ° C. or higher between the pressing agent and the cured product, and the amount of the surface treating agent composition applied to the glass cloth is 0.3%. 200% by weight of the glass cloth of the present invention was obtained.
実施例 1 2  Example 1 2
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
ィ ソフタル酸ジァリ ルのプレボリマー (硬化物ガラス転移温度 : 2 5 0 °C、 商品名 : ダイソーイソダップ (登録商標) 、 ダイソー株 式会社製) 1 0 0重量部を、 3 0 0重量部の N, N—ジメ チルホル ムアミ ドに溶解させ、 該混合界面活性剤を 5重量部添加した樹脂予 備溶解液を調製した。  Prepolymer of disophthalic acid (cured product glass transition temperature: 250 ° C, trade name: Daiso Isodap (registered trademark), manufactured by Daiso Corporation) 100 parts by weight, 300 parts by weight It was dissolved in N, N-dimethylformamide, and a preliminarily dissolved resin solution was prepared by adding 5 parts by weight of the mixed surfactant.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0 . 8 0重量%になるように水に添加して水分散液化し、 樹脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solids concentration of 0.80% by weight to form an aqueous dispersion, thereby preparing a resin-treated solution.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスク ロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でァリル基を有する樹脂で処理され、 表面処理剤組成物付 着量がガラスクロスに対して 0 . 2 0 0重量%である本発明のガラ スク ロスを得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid has an adhesion amount of 25% by weight to the glass cloth. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product. A glass cross of the present invention was treated with a resin having an aryl group at C or higher, and the amount of the surface treating agent composition applied was 0.200% by weight based on the glass cloth.
比較例 1 シランカップリ ング剤処理ガラスク ロスを流水で洗浄し、 再度 1 2 5 °Cで 1 0分間乾燥させて、 樹脂が処理されていないシランカツ プリ ング剤処理ガラスク ロスを得た。 Comparative Example 1 The glass cloth treated with the silane coupling agent was washed with running water and dried again at 125 ° C. for 10 minutes to obtain a glass cloth treated with the silane coupling agent that had not been treated with the resin.
比較例 2  Comparative Example 2
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
o—ク レゾールノボラックエポキシ樹脂 (硬化物ガラス転移温度 : 1 8 0 °C商品名 : ェピコー ト (登録商標) 1 8 0 S 6 5、 ジャパ ンエポキシレジン株式会社製) 1 0 0重量部を、 3 0 0重量部の N , N—ジメチルホルムアミ ドに溶解させ、 該混合界面活性剤を 5重 量部添加した樹脂予備溶解液を調製した。  o-Cresol novolak epoxy resin (cured product glass transition temperature: 180 ° C, trade name: Epicoat (registered trademark) 180 S65, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight The resin was dissolved in 300 parts by weight of N, N-dimethylformamide to prepare a resin pre-dissolution liquid to which 5 parts by weight of the mixed surfactant was added.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 1 0重量%になるように水に添加して水分散液化し、 榭脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so that the resin solid content concentration was 0.10% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスク ロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカップリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 の付着量がガラスク ロスに対して 0. 0 7 0重量%であるガラスク ロスを得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid has an adhesion amount of 25% by weight to the glass cloth. After drying at 125 ° C for 10 minutes, washing with running water and drying again at 125 ° C for 10 minutes, the glass transition temperature of the silane coupling agent and the cured product becomes 130 A glass cloth which was treated with a resin having an epoxy group at a temperature of not less than ° C and the amount of the surface treating agent composition applied was 0.070% by weight relative to the glass cloth was obtained.
比較例 3  Comparative Example 3
( 1 ) 樹脂予備溶解液の調製  (1) Preparation of resin pre-solution
o—タ レゾールノボラックエポキシ樹脂 (硬化物ガラス転移温度 : 1 8 0 °C、 商品名 : ェピコート (登録商標) 1 8 0 S 6 5、 ジャ パンエポキシレジン株式会社製) 1 0 0重量部を、 3 0 0重量部の N, N—ジメ チルホルムアミ ドに溶解させ、 該混合界面活性剤を 5 重量部添加した樹脂予備溶解液を調製した。 o-Taresol novolak epoxy resin (cured material glass transition temperature: 180 ° C, trade name: Epicote (registered trademark) 180 S65, 100 parts by weight (manufactured by Pan Epoxy Resin Co., Ltd.) was dissolved in 300 parts by weight of N, N-dimethylformamide to prepare a resin pre-dissolved solution to which 5 parts by weight of the mixed surfactant was added.
( 2 ) 榭脂処理液の調製  (2) Preparation of fat treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 5. 0 0重量%になるように水に添加して水分散液化し、 榭脂処 理液を調製した。  While stirring the water, the resin pre-dissolved solution of (1) was added to water so that the resin solid content concentration became 5.0% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid.
( 3 ) 樹脂処理  (3) Resin treatment
シランカップリ ング剤処理ガラスク ロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5でで 1 0分間乾 燥させて、 シランカップリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でエポキシ基を有する樹脂で処理され、 表面処理剤組成物 の付着量がガラスクロスに対して 1 . 5 0 0重量0 /0であるガラスク ロスを得た。 The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid has an adhesion amount of 25% by weight to the glass cloth. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 for 10 minutes.The glass transition temperature of the silane coupling agent and the cured product is 130 ° C. treated with a resin having an epoxy group at C or higher, the adhesion amount of the surface treatment composition was obtained Garasuku loss 1. 5 0 0 weight 0/0 for glass cloth.
比較例 4  Comparative Example 4
( 1 ) 榭脂予備溶解液の調製  (1) Preparation of pre-dissolved resin
ビスフエノール A型エポキシ樹脂 (硬化物ガラス転移温度 : 1 2 5 °C 商品名 : ェピコート (登録商標) 1 0 0 1 ジャパンェポキ シレジン株式会社製) 1 0 0重量部を、 3 0 0重量部の N, N—ジ メ チルホルムアミ ドに溶解させ、 該混合界面活性剤を 5重量部添加 した樹脂予備溶解液を調製した。  Bisphenol A-type epoxy resin (cured material glass transition temperature: 125 ° C Trade name: Epicoat (registered trademark) 100 1 manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight, 300 parts by weight of N , N-dimethylformamide, and 5 parts by weight of the mixed surfactant was added to prepare a resin pre-dissolved solution.
( 2 ) 樹脂処理液の調製  (2) Preparation of resin treatment liquid
水を撹拌しながら、 ( 1 ) の樹脂予備溶解液を該樹脂固形分濃度 で 0. 8 0重量%になるように水に添加して水分散液化し、 榭脂処 理液を調製した。 ( 3 ) 樹脂処理 While stirring the water, the resin pre-dissolved solution of (1) was added to water so as to have a resin solid concentration of 0.80% by weight, and the mixture was dispersed in water to prepare a resin treatment liquid. (3) Resin treatment
シランカップリ ング剤処理ガラスクロスを ( 2 ) の樹脂処理液に 浸漬し、 ガラスク ロスに対して処理液が 2 5重量%の付着量になる よ うにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5でで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 2 5 °Cでエポキシ基を有する樹脂で処理され、 表面処理剤組成物の付 着量がガラスクロスに対して 0. 2 0 0重量%であるガラスクロス を得た。  The glass cloth treated with the silane coupling agent is immersed in the resin treatment liquid of (2), and excess resin treatment liquid is squeezed using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 for 10 minutes.The glass transition temperature of the silane coupling agent and the cured product is 125 ° C. To obtain a glass cloth in which the amount of the surface treating composition applied was 0.2% by weight with respect to the glass cloth.
比較例 5  Comparative Example 5
( 1 ) 榭脂処理液の調製  (1) Preparation of fat treatment liquid
水を撹拌しながら、 高分子型界面活性剤 (ディスコート (登録商 標) N— 1 4、 第一工業製薬 (株) 製) を 0. 0 5重量%添加した 後、 J I S · Z 8 8 0 1の 目の開き 2 0 ミ ク ロ ンを通過するポ リ フ ェニレンエーテル粉末 (ガラス転移温度 : 2 1 0 °C 数平均分子量 7 0 0 0 ) を 0. 8 0重量%添加して、 樹脂処理液を調製した。  While stirring the water, add 0.05% by weight of a polymer type surfactant (DISCOAT (registered trademark) N-14, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), and then add JIS / Z88. 0 1 eye opening 0.80 wt% of polyphenylene ether powder (glass transition temperature: 210 ° C, number average molecular weight 700,000) passing through 20 micron was added. A resin treatment liquid was prepared.
( 2 ) 樹脂処理  (2) Resin treatment
シランカップリ ング剤処理ガラスク ロスを ( 1 ) の樹脂処理液に 浸漬し、 ガラスクロスに対して処理液が 2 5重量%の付着量になる ようにマングルを用いて余剰な樹脂処理液を絞り落と し、 1 2 5 °C で 1 0分間乾燥させた後、 流水で洗浄し再度 1 2 5 °Cで 1 0分間乾 燥させて、 シランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C以上でマ ト リ ックス樹脂と反応する有機官能基のない樹脂で処 理され、 表面処理剤組成物の付着量がガラスクロスに対して 0. 2 0 0重量0 /0であるガラスクロスを得た。 The glass cloth treated with a silane coupling agent is immersed in the resin treatment liquid of (1), and excess resin treatment liquid is squeezed out using a mangle so that the treatment liquid adheres to the glass cloth by 25% by weight. After drying at 125 ° C for 10 minutes, wash with running water and dry again at 125 ° C for 10 minutes to obtain a glass transition temperature of 130 ° C between the silane coupling agent and the cured product. is processed with a resin having no organic functional group reactive with Conclusions Li box resin C or more, the adhesion amount of the surface treatment composition is a glass cloth is 0.2 0 0 weight 0/0 for glass cloth Obtained.
ガラスクロスの使用例  Example of using glass cloth
( 1 ) ガラスク ロスを使用した樹脂積層板の特性評価方法) く l >エポキシ樹脂積層板調製 (1) Method for evaluating characteristics of resin laminate using glass cloth) L> Epoxy resin laminate preparation
1 — 1. エポキシ樹脂ワニス調製  1 — 1. Epoxy resin varnish preparation
第 1表に示す組成のエポキシ樹脂ワニスを調製した。 樹脂はす てジャパンエポキシレジン株式会社製 (登録商標) である。  An epoxy resin varnish having the composition shown in Table 1 was prepared. The resins are all (registered trademark) manufactured by Japan Epoxy Resin Co., Ltd.
表 1  table 1
Figure imgf000042_0001
Figure imgf000042_0001
1 - 2. プリ プレダ調製 1-2. Pre-prepader preparation
1 一 1. の樹脂ワニスに、 ガラスク ロスを浸漬し、 0. 3 5 m mの隙間のス リ ッ トで余剰樹脂ワニスを搔き落とし、 1 7 0 °Cで 3 分間乾燥しェポキシ樹脂プリ プレダを得た。  1.Immerse the glass cloth in the resin varnish of Step 1., wipe off the excess resin varnish with a slit with a gap of 0.35 mm, dry at 170 ° C for 3 minutes, and dry the epoxy resin pre-preparer. I got
1 一 3. 積層板の成型  1 1. 3. Molding of laminated board
プリ プレダを 4枚重ね、 その両表層に厚さ 1 8 μ πιの銅箔を重 ねて、 1 9 0、 1 2 0 M · P aの条件で 1 8 0分間加圧加熱成形し 、 厚さ 0. 8 mmの両面銅張り積層板を調製した。 Pre-layered four layers of pre-paeder, and layered 18 μππι thick copper foil on both surface layers. It was pressed and heated under the conditions of 190 and 120 M · Pa for 180 minutes to prepare a 0.8 mm thick double-sided copper-clad laminate.
< 2 >ジァリルフタレート樹脂積層板の調製  <2> Preparation of diaryl phthalate resin laminate
2— 1. 樹脂ワニスの調製  2— 1. Preparation of resin varnish
第 2表に示す組成のジァ リ ルフタ レー ト樹脂ワニスを調製した 表 2  Table 2 shows the preparation of diaryl phthalate resin varnish with the composition shown in Table 2.
Figure imgf000043_0001
Figure imgf000043_0001
2 - 2. プリ プレダの調製  2-2. Preparation of Pre-Preda
2— 1. の樹脂ワニスに、 ガラスク ロスを浸漬し、 0. 3 5 m mの隙間のス リ ッ トで余剰樹脂ワニスを搔き落と し、 9 0 °Cで 5分 間乾燥しジァリルフタレート樹脂プリ プレダを得た。  2—Dip glass cloth into the resin varnish of 1., wipe off excess resin varnish with a slit with a gap of 0.35 mm, dry at 90 ° C for 5 minutes, and diaryl A phthalate resin pre-preda was obtained.
2 - 3. 積層板の成型  2-3. Molding of laminated board
プリ プレダを 4枚重ね、 その両表層に厚さ 1 8 μ mの銅箔を重 ねて、 1 9 0 °C、 1 2 0 M . P aの条件で 1 8 0分間加圧加熱成形 し、 厚さ 0. 8 mmの両面銅張り積層板を調製した。 < 3 〉吸湿ハンダ耐熱性の評価 Four pre-prepaders are stacked, and a copper foil with a thickness of 18 μm is overlaid on both surface layers, and pressed and heat-formed at 190 ° C and 120 Mpa for 180 minutes. A double-sided copper-clad laminate having a thickness of 0.8 mm was prepared. <3> Evaluation of moisture absorption solder heat resistance
3 - 1 . サンプルの調製  3-1. Sample preparation
積層板の銅箔をエッチングにより除去、 水洗した後、 5 0 m m X 5 0 m mに切断し、 1 3 0でで 2時間加熱乾燥した。  The copper foil of the laminate was removed by etching, washed with water, cut into 50 mm × 50 mm, and dried by heating at 130 at 2 hours.
3 - 2 . 吸湿  3-2. Moisture absorption
4 0 °Cで関係湿度 9 0 %の条件に一定時間暴露した。  Exposure was carried out at 40 ° C for a certain period of time at a relative humidity of 90%.
3 - 3 . ハンダ試験  3-3. Solder test
2 8 8 °Cの溶融ハンダに 2 0秒間浸漬した際の発生する欠点状 況を、 〇 : 変化無し、 △ : 小さなフク レ発生、 X : フク レ発生に分 類、 評価した。  The defects generated when immersed in molten solder at 288 ° C for 20 seconds were classified into に: no change, Δ: small blistering, and X: blistering.
く 4〉層間剥離強度の評価  <4> Evaluation of delamination strength
4一 1 . サンプル形状  4-1 1. Sample shape
積層板をガラスク ロスの横糸方向 (幅) l c m X経糸方向 (長 さ) 1 5 c mに切断した。  The laminate was cut in the weft direction (width) lcm x the warp direction (length) 15 cm of the glass cloth.
4一 2 . サンプルの調製  4-1 2. Sample preparation
4— 1 . のサンプルのガラスクロス 4層からなる積層板の片側 最外層のガラスクロス 1層と 2層の間をカッターナイフを用いて長 さ方向 5 c m剥離させた。  One side of the laminated plate composed of four layers of glass cloth of the sample of 4-1 was separated between the outermost one and two layers of glass cloth by 5 cm in the length direction using a cutter knife.
4 - 3 . 強度の測定  4-3. Measurement of strength
オートグラフ (島津製作所株式会社製 登録商標) を用いて、 5 . 0 c m /分の速度で 9 0度方向に、 4一 2で剥離した最外層側 を 5 . 0 c m剥離させた際の強度を測定した。 出力強度は、 高低の ピークを有する波形状を示すため、 最低点からの 5点と、 最高点か らの 5点のピーク値の平均値と した。  Using an autograph (registered trademark, manufactured by Shimadzu Corporation) at 5.0 cm / min in a direction of 90 degrees, the outermost layer that was peeled off by 4.2 was separated by 5.0 cm. Was measured. The output intensity was the average of the peak values of the five points from the lowest point and the five points from the highest point to show a wave shape with high and low peaks.
< 5 >積層板のガラス転移温度の評価  <5> Evaluation of glass transition temperature of laminates
5 - 1 . サンプルの調製  5-1. Sample preparation
積層板の銅箔をエッチングによ り除去、 水洗した後、 ガラスク ロスの横糸方向 1 0 mm X経糸方向 5 0 mmに切断し、 1 3 0 °Cで 2時間加熱乾燥した。 After removing the copper foil of the laminate by etching and washing with water, The loss was cut into 10 mm in the weft direction and 50 mm in the warp direction, and dried by heating at 130 ° C. for 2 hours.
5 - 2. ガラス転移温度の測定  5-2. Measurement of glass transition temperature
R D A I I (レオメ ト リ ックス (株) 製) で、 昇温速度 3 °C/ 分で粘弾性挙動を測定し、 t a η δのピークの現れる温度をガラス 転移温度と した。  The viscoelastic behavior was measured at a heating rate of 3 ° C / min using RDAIII (manufactured by Rheometrics Co., Ltd.), and the temperature at which the peak of taηδ appeared was defined as the glass transition temperature.
実施例 1〜 1 0、 比較例 1〜 5におけるエポキシ樹脂積層板の試 験結果を第 3表〜第 6表に、 実施例 9、 実施例 1 1, 比較例 1 にお けるジァリルフタレー ト樹脂積層板の評価結果を第 7表にそれぞれ 示す。 The test results of the epoxy resin laminates in Examples 1 to 10 and Comparative Examples 1 to 5 are shown in Tables 3 to 6, and the diaryl phthalate resin laminates in Example 9, Example 11 and Comparative Example 1 are shown. Table 7 shows the evaluation results of the plates.
表 3 評価 No 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 ジシクロ ナフトーナフ トーTable 3 Evaluation No.Example 1 Example 2 Example 3 Example 4 Example 5 Dicyclonaphthonaphtau
1 オルソク 1 Orsok
- ヽ ヽノノク cノS 十ノ フノ ゾ レ i し  -ヽ ヽ
ノレ ノ ノ ノ ノレ ノ ノノ レゾーノレ  No no no no no no no no resonore
処理樹脂 ェン型ェ ン型ェポ キル型ェ キル型ェ 型ェポキ Treated resin En-type en-type e-kill type e-type e-type
2 ポキシ樹キシ樹脂ポキシ樹ポキシ樹 シ榭脂  2 Poxy resin Poxy resin Poxy resin
脂 脂 脂 処理樹脂 1 エポキシエポキシエポキシエポキシエポキシ 官能基 2  Fat Fat Resin 1 Epoxy Epoxy Epoxy Epoxy Epoxy functional group 2
表面処理剤組成物  Surface treatment composition
0.200 0.200 0.200 0.200 0.500 付着量 〔%〕  0.200 0.200 0.200 0.200 0.500 Adhesion [%]
エポキシ 72時間 〇 〇 〇 〇 〇 積層板の 86時間 〇 〇 〇 〇 〇 ハンダ 120時間 〇 〇 〇 〇 〇 耐熱性 144時間 Δ △ Δ △ △ エポキシ積層板 Epoxy 72 hours 〇 〇 〇 〇 86 86 hours of laminate 〇 〇 〇 〇 120 Solder 120 hours 〇 〇 〇 〇 〇 Heat resistance 144 hours Δ △ Δ △ △ Epoxy laminate
200 200 200 200 200 ガラス転移温度 C] エポキシ積層板  200 200 200 200 200 Glass transition temperature C] Epoxy laminate
900 920 950 900 900 層間剥離強度  900 920 950 900 900 Delamination strength
(8.8N) (9. ON) (9.3N) (8.8N) (8.8N)
Figure imgf000046_0001
(8.8N) (9.ON) (9.3N) (8.8N) (8.8N)
Figure imgf000046_0001
表 4 評価 No 実施例 6 実施例 7 実施例 8 実施例 9 ナフタレン ナフタレン Table 4 Evaluation No Example 6 Example 7 Example 8 Example 9 Naphthalene Naphthalene
1 型エポキシ 型エポキシ  1 type epoxy type epoxy
自己乳化型 樹脂 樹脂 ポリパラビ  Self-emulsifying resin Resin Polyparabi
オルソクレ 処理樹脂 ールフエノ  Orthocre treated resin
ポリ フ 二 ゾール型ェ ビスフエノ ール  Polyphenol type bisphenol
レンエーテ ポキシ樹脂 Lenete epoxy resin
2 ール A型ェ 2 A
ル熱可塑性  Le thermoplastic
ポキシ樹脂  Poxy resin
樹脂  Resin
処理樹脂 1 フエノール Treated resin 1 phenol
エポキシ基 エポキシ基 エポキシ基 官能基 2  Epoxy group Epoxy group Epoxy group Functional group 2
表面処理剤組成物  Surface treatment composition
0.200 0.300 0.200 0.200 付着量 〔%〕  0.200 0.300 0.200 0.200 Adhesion [%]
エポキシ 72時間 〇 〇 〇 〇 積層板の 96時間 〇 〇 〇 〇 ハンダ 120時間 〇 〇 〇 〇 耐熱性 144時間 〇 〇 Δ Δ エポキシ積層板 Epoxy 72 hours 〇 〇 〇 96 96 hours of laminate 〇 〇 〇 ン ダ Solder 120 hours 〇 〇 〇 耐熱 Heat resistance 144 hours 〇 〇 Δ Δ Epoxy laminate
200 200 200 200 ガラス転移温度 [°c] エポキシ積層板  200 200 200 200 Glass transition temperature [° c] Epoxy laminate
900 920 900 900 層間剥離強度  900 920 900 900 Delamination strength
(8.8N) (9. ON) (8.8N) (8.8N)
Figure imgf000047_0001
表 5 評価 No 実施例 10 実施例 11 比較例 1 比較例 2 ジァリルモ
(8.8N) (9.ON) (8.8N) (8.8N)
Figure imgf000047_0001
Table 5 Evaluation No Example 10 Example 11 Comparative Example 1 Comparative Example 2 Diarylmo
ノグリシジ  Nogurijiji
1  1
ルイソシァ ^. £.撤 Ί¾ Λ脂Η ハ、、  Louisiana ^. £.
_ a型 し オルソクレ ヌル酸 B  _ a-type ortho-creulic acid B
処理樹脂 ベンゾ シラン力ッ ゾール型ェ ポリ フエ二 Treated resin Benzo silane
ォキサジン プリ ング剤 ポキシ樹脂 レンエーテ  Oxazine printing agent Poxy resin Renate
2 処理  2 Processing
ル熱可塑性  Le thermoplastic
樹脂  Resin
エポキシ其  Epoxy
処理樹脂 1 Processing resin 1
及び フエノール なし エポキシ基 官能基 2 ァリル基 ¾  And phenol None Epoxy group Functional group 2 Aryl group ¾
表面処理剤組成物  Surface treatment composition
0.300 0.200 0.050 0.070 付着量 〔%〕  0.300 0.200 0.050 0.070 Adhesion amount [%]
エポキシ 72時間 〇 〇 〇 X 積層板の 96時間 〇 〇 △ X ハンダ 120時間 〇 〇 X X 耐熱性 144時間 〇 Δ X X エポキシ積層板 Epoxy 72 hours 〇 〇 〇 96 hours of X laminate 〇 〇 △ X Solder 120 hours 〇 〇 X X Heat resistance 144 hours 〇 Δ X X Epoxy laminate
200 200 200 200 ガラス転移温度 [°c] エポキシ積層板  200 200 200 200 Glass transition temperature [° c] Epoxy laminate
920 900 850 920 層間剥離強度  920 900 850 920 Delamination strength
(9. ON) (8.8N) (8.3Ν) (9. ON)
Figure imgf000048_0001
表 6 評価 No 比較例 3 比較例 4 比較例 5
(9.ON) (8.8N) (8.3Ν) (9.ON)
Figure imgf000048_0001
Table 6 Evaluation No Comparative Example 3 Comparative Example 4 Comparative Example 5
AIヽ 1ソ1 フノ エャ "一 ~~ AI ヽ 1 SO 1 Funo Aya "One ~~
1 オルソク レ ビスフエノ 1 Orsok Le Bishueno
レンエーテ 処理樹脂 ゾール型ェ ール A型ェ  Lenete-treated resin Sol type gel A type
ル熱可塑性 Le thermoplastic
2 ポキシ樹脂 ポキシ樹脂 2 Poxy resin Poxy resin
樹脂 処理樹脂 1  Resin Treated resin 1
エポキシ基 エポキシ基 ' なし 官能基 2  Epoxy group Epoxy group な し None Functional group 2
表面処理剤組成物  Surface treatment composition
1.500 0.200 0.200 付着量 〔%〕  1.500 0.200 0.200 Adhesion amount [%]
エポキシ 72時間 〇 〇 〇 積層板の 96時間 X X X ハンダ 120時間 X X X 耐熱性 144時間 X X X エポキシ積層板 Epoxy 72 hours 〇 〇 96 Laminate 96 hours X X X Solder 120 hours X X X Heat resistance 144 hours X X X Epoxy laminate
195 195 200 ガラス転移温度 C] エポキシ積層板  195 195 200 Glass transition temperature C] Epoxy laminate
950 920 800 層間剥離強度  950 920 800 Delamination strength
(9.3N) (9. ON) (7.8N) gfZcm / cm) (9.3N) (9.ON) (7.8N) gfZcm / cm)
表 7 Table 7
Figure imgf000050_0001
第 3表、 第 4表、 第 5表、 第 5表、 第 6表及び第 7表において明 らかなよ うに、 実施例 1 〜 1 2で得られた、 表面処理剤組成物が従 来のシランカップリ ング剤に加えて、 ( a ) 硬化物のガラス転移温 度が 1 3 0 °C以上の樹脂で ( b ) マ ト リ ックス榭脂と反応するェポ キシ基、 フヱノール基、 ァリル基から選ばれる 1種以上の官能基を 有した樹脂、 又はそれらの混合樹脂を含有する樹脂を主成分とした 処理樹脂で構成され、 ( c ) 該表面処理剤組成物がガラスク ロス全 体に対する重量分率 : 0 . 1 0重量%以上、 1 . 0 0重量%未満の 範囲で付着した本発明のガラスク ロスを使用して調製された積層板 は、 比較例 1 のシラ ンカップリ ング剤を主成分と し、 処理樹脂が含 有されていない処理液で処理されたガラスクロスを使用した積層板 、 比較例 2 の表面処理剤組成物がガラスク ロスに対する重量分率 : 0 . 1 0重量%未満で付着されたガラスク ロスを使用した積層板、 比較例 3の表面処理剤組成物がガラスクロスに対する重量分率 1 . 0 0重量%以上付着されたガラスク ロスを使用した積層板、 比較例 4のシランカツプリ ング剤と硬化物のガラス転移温度が 1 3 0 °C未 満の樹脂で処理されたガラスク ロスを使用した積層板、 比較例 5の 表面処理剤組成物が、 従来のシランカップリ ング剤に加えて、 ( a ) 硬化物のガラス転移温度が 1 3 0 °C以上の樹脂で ( b ) マ ト リ ツ クス樹脂と反応する官能基を持たない樹脂を主成分と した有機物で 構成されているガラスクロスを使用した積層板に比較して、 積層板 ハンダ耐熱性、 層間剥離強度に優れており、 なおかつ積層板のガラ ス転移温度の低下も認めらない。
Figure imgf000050_0001
As is clear from Tables 3, 4, 5, 5, 6, and 7, the surface treatment agent compositions obtained in Examples 1 to 12 were prepared using the conventional surface treatment composition. In addition to the silane coupling agent, (a) the glass transition temperature of the cured product (B) a resin having a temperature of at least 130 ° C and having at least one functional group selected from an epoxy group, a phenol group, and an aryl group that reacts with the matrix resin, or a resin thereof; (C) a weight fraction of the surface treatment composition relative to the whole glass cloth: 0.10% by weight or more, 1.00% by weight The laminate prepared using the glass cloth of the present invention adhered in a range less than or equal to 1 was treated with a treatment liquid containing the silane coupling agent of Comparative Example 1 as a main component and containing no treatment resin. Laminated plate using glass cloth; Laminated plate using glass cloth to which the surface treating agent composition of Comparative Example 2 was attached in a weight fraction of less than 0.10% by weight; and Surface treatment of Comparative Example 3 Weight ratio of the agent composition to glass cloth 1. Laminated plate using glass cloth adhered to at least 100% by weight, lamination using glass cloth treated with a resin having a glass transition temperature of less than 130 ° C between the silane coupling agent and the cured product of Comparative Example 4 In addition to the conventional silane coupling agent, (a) a resin having a cured product having a glass transition temperature of 130 ° C. or higher, and (b) matrix Compared to a laminated board using a glass cloth composed of an organic material whose main component is a resin that does not have a functional group that reacts with the resin, the laminated board has better solder heat resistance and delamination strength, and is also a laminated board No decrease in the glass transition temperature is also observed.
以上の比較から、 本発明のガラスク ロスを使用することで、 積層 板の諸特性を向上させながら、 かつマ ト リ ックス樹脂の特徴的性能 が損なわれない積層板が生産できることが理解される。 産業上の利用可能性  From the above comparison, it is understood that by using the glass cloth of the present invention, it is possible to produce a laminate in which various characteristics of the laminate are improved and the characteristic performance of the matrix resin is not impaired. Industrial applicability
本発明のガラスク ロスは、 高弾性率、 高ガラス転移温度マ ト リ ツ クス樹脂を用いるプリ ント配線基板におけるマト リ ツクス榭脂の機 械的強度を維持したままガラスク ロスとの接着性を高めて、 プリ ン ト配線基板のスルーホール加工、 はんだ付け加工等の加工性能を高 める表面処理ガラスクロスである。 本発明のガラスク ロスを用いる ことで、 プリ ント配線基板を構成するマ ト リ ツタス樹脂の高弾性率 化、 極性官能基の低減化、 高ガラス転移温度化の結果と して誘発さ れる i ) 機械加工時のクラック発生、 i i ) ハンダ耐熱性低下を抑 制することができるので、 高度な特性と、 基本特性を兼ね備えたプ リ ント配線基板を得ることができる。 The glass cloth of the present invention is used for a matrix resin in a printed wiring board using a high elastic modulus and a high glass transition temperature matrix resin. This is a surface-treated glass cloth that enhances the processing performance, such as through-hole processing and soldering processing, of printed wiring boards by increasing the adhesion to glass cloth while maintaining mechanical strength. By using the glass cross of the present invention, it is induced as a result of increasing the elastic modulus, reducing the number of polar functional groups, and increasing the glass transition temperature of the matrix resin constituting the printed wiring board i) It is possible to suppress the occurrence of cracks during machining and ii) a reduction in solder heat resistance, so that a printed wiring board having both advanced characteristics and basic characteristics can be obtained.

Claims

求 の 範 Scope of request
1 . 表面処理されたガラスクロスにおいて、 シランカップリ ング 剤と、 硬化物のガラス転移温度が 1 3 0 °C以上、 かつマ ト リ ックス 樹脂と反応するエポキシ基、 フエノール基、 ァリ ル基から選ばれる 1種以上の官能基を有する処理樹脂又は処理混合樹脂とを主成分と する表面処理剤組成物で処理され、 該表面処理剤組成物の付着固形 分が表面処理されたガラスクロス全体に対する重量分率で 0. 1 0 重量%以上、 1. 0 0重量%未満で付着されてなることを特徴とす るガラスク ロ ス。 1. In the surface-treated glass cloth, the silane coupling agent and the epoxy, phenol, and aryl groups that have a glass transition temperature of more than 130 ° C and react with the matrix resin A treated resin having at least one selected functional group or a treated mixed resin as a main component is treated with a surface treating agent composition, and an adhered solid content of the surface treating agent composition is applied to the entire surface-treated glass cloth. A glass cloth characterized by being attached in a weight fraction of 0.10% by weight or more and less than 1.0% by weight.
2. 表面処理されたガラスクロスにおいて、 処理樹脂を含む組成 物が、 ガラス転移温度 1 3 0 °C以上の熱硬化性樹脂と、 ガラス転移 温度 1 3 0 °C以上の熱可塑性樹脂を含むことを特徴とする請求項 1 に記载のガラスクロス。  2. In the surface-treated glass cloth, the composition containing the treated resin contains a thermosetting resin with a glass transition temperature of 130 ° C or higher and a thermoplastic resin with a glass transition temperature of 130 ° C or higher. The glass cloth according to claim 1, wherein:
3. 表面処理されたガラスクロスにおいて、 表面処理が、 シラン カツプリ ング剤と、 硬化物のガラス転移温度が 1 3 0 °C以上のナフ トールァラルキル型エポキシ樹脂を含む処理樹脂とから形成される 表面処理剤組成物で行われ、 かつ表面処理剤組成物の付着量が表面 処理されたガラスク口ス全体に対する重量分率で 0. 1 0重量%以 上、 1. 0 0重量%未満で付着されてなることを特徴とする請求項 3. In the surface-treated glass cloth, the surface treatment is performed using a silane coupling agent and a treated resin containing a naphthol aralkyl-type epoxy resin having a cured product having a glass transition temperature of 130 ° C or more. And the amount of the surface treatment agent composition is 0.10% by weight or more and less than 1.0% by weight relative to the entire surface-treated glass paste. Claims characterized in that
1に記載のガラスクロス。 Glass cloth according to 1.
4. 表面処理されたガラスクロスにおいて、 表面処理が水を主溶 媒と して、 ( 1 ) 予め処理樹脂に界面活性剤を添加して乳化した処 理樹脂の乳化液を水で希釈して得た処理液、 ( 2 ) 処理樹脂に界面 活性剤を添加し直接又は水溶性有機溶媒に溶解した後、 水に投入し て得た処理液、 または ( 3 ) 粉体状の処理樹脂を水に分散させたデ イスパージョ ン状態の処理液、 のいずれかで処理されていることを 特徴とする請求項 1、 請求項 2、 または請求項 3に記載されたガラ スク ロス。 4. In the surface-treated glass cloth, the surface treatment uses water as the main solvent, and (1) dilutes the emulsified solution of the treated resin, which has been emulsified by adding a surfactant to the treated resin in advance, with water. (2) adding a surfactant to the treated resin and dissolving it directly or after dissolving in a water-soluble organic solvent, and then pouring it into water; or (3) treating the powdered treated resin with water. That it is being treated with one of the dispersion liquids A glass cross according to claim 1, claim 2, or claim 3.
5 . プリ ント配線基板に用いるプリプレダにおいて、 請求項 1 、 請求項 2または請求項 3のいずれかに記載された表面処理されたガ ラスクロス及びガラスク ロスに付着している処理樹脂より もガラス 転移温度が高いマ トリ ツタス樹脂からなることを特徴とするプレブ リ グ。  5. In the pre-predder used for the printed wiring board, the glass transition temperature is higher than that of the treated resin adhering to the surface-treated glass cloth and the glass cross described in any one of claims 1, 2, and 3. A prepreg characterized by high tritium resin.
PCT/JP2002/004668 2001-05-15 2002-05-14 Glass cloth and use thereof WO2002092903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002590158A JP3897699B2 (en) 2001-05-15 2002-05-14 Glass cloth and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001144989 2001-05-15
JP2001-144989 2001-05-15

Publications (1)

Publication Number Publication Date
WO2002092903A1 true WO2002092903A1 (en) 2002-11-21

Family

ID=18990863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004668 WO2002092903A1 (en) 2001-05-15 2002-05-14 Glass cloth and use thereof

Country Status (2)

Country Link
JP (1) JP3897699B2 (en)
WO (1) WO2002092903A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016165A1 (en) * 2013-07-30 2015-02-05 日本ゼオン株式会社 Substrate for electronic material
JP2017538048A (en) * 2014-12-02 2017-12-21 シントマー ドイチェラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer latex composition for fiber bonding
KR20200009140A (en) * 2015-04-27 2020-01-29 아사히 가세이 가부시키가이샤 Glass cloth
CN113914099A (en) * 2021-11-30 2022-01-11 泰山玻璃纤维邹城有限公司 Electronic-grade low-dielectric glass fiber cloth treating agent and preparation method thereof
CN115698421A (en) * 2020-07-27 2023-02-03 日东纺绩株式会社 Surface-treated glass cloth, prepreg, and printed wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448911A (en) * 1983-04-12 1984-05-15 Owens-Corning Fiberglas Corporation Aqueous epoxy sizing composition for glass fibers and fibers sized therewith
JPH05295643A (en) * 1992-02-21 1993-11-09 Shin Kobe Electric Mach Co Ltd Laminated board, glass fiber nonwoven fabric for laminated board and production of glass fiber nonwoven fabric
JPH07267689A (en) * 1994-03-31 1995-10-17 Mitsubishi Rayon Co Ltd Polymer-coated glass fiber and its production
JPH1160692A (en) * 1997-08-19 1999-03-02 Hitachi Chem Co Ltd Resin composition for printed wiring board and printed wiring board using the same
JP2000302843A (en) * 1999-04-21 2000-10-31 Matsushita Electric Works Ltd Epoxy resin composition and insulating substrate using the composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448911A (en) * 1983-04-12 1984-05-15 Owens-Corning Fiberglas Corporation Aqueous epoxy sizing composition for glass fibers and fibers sized therewith
JPH05295643A (en) * 1992-02-21 1993-11-09 Shin Kobe Electric Mach Co Ltd Laminated board, glass fiber nonwoven fabric for laminated board and production of glass fiber nonwoven fabric
JPH07267689A (en) * 1994-03-31 1995-10-17 Mitsubishi Rayon Co Ltd Polymer-coated glass fiber and its production
JPH1160692A (en) * 1997-08-19 1999-03-02 Hitachi Chem Co Ltd Resin composition for printed wiring board and printed wiring board using the same
JP2000302843A (en) * 1999-04-21 2000-10-31 Matsushita Electric Works Ltd Epoxy resin composition and insulating substrate using the composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016165A1 (en) * 2013-07-30 2015-02-05 日本ゼオン株式会社 Substrate for electronic material
JP2017538048A (en) * 2014-12-02 2017-12-21 シントマー ドイチェラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer latex composition for fiber bonding
KR20200009140A (en) * 2015-04-27 2020-01-29 아사히 가세이 가부시키가이샤 Glass cloth
KR102458088B1 (en) 2015-04-27 2022-10-24 아사히 가세이 가부시키가이샤 Glass cloth
CN115698421A (en) * 2020-07-27 2023-02-03 日东纺绩株式会社 Surface-treated glass cloth, prepreg, and printed wiring board
CN113914099A (en) * 2021-11-30 2022-01-11 泰山玻璃纤维邹城有限公司 Electronic-grade low-dielectric glass fiber cloth treating agent and preparation method thereof
WO2022247607A1 (en) * 2021-11-30 2022-12-01 泰山玻璃纤维邹城有限公司 Electronic-grade low-dielectric glass fiber cloth treatment agent and preparation method therefor
KR102506702B1 (en) * 2021-11-30 2023-03-06 타이산 파이버글라스 조우청 컴퍼니 리미티드 Electronic-grade low-k glass fiber fabric treatment agent and manufacturing method thereof
CN113914099B (en) * 2021-11-30 2023-10-31 泰山玻璃纤维邹城有限公司 Electronic grade low dielectric glass fiber cloth treating agent and preparation method thereof

Also Published As

Publication number Publication date
JPWO2002092903A1 (en) 2004-09-02
JP3897699B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
EP2070963B1 (en) Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board
JP5181221B2 (en) Low thermal expansion low dielectric loss prepreg and its application
CN102807658B (en) Polyphenyl ether resin composite and prepreg and copper clad laminate made of polyphenyl ether resin composite
US20040132925A1 (en) Poly(phenylene oxide) resin composition, prepreg, laminates sheet, printed wiring board, and multilayer printed wiring board
WO2015131448A1 (en) Thermosetting resin composition and use thereof
WO2006059363A1 (en) Epoxy resin composition for prepreg, prepreg, and multilayered printed wiring board
EP2595460A1 (en) Composite material and high frequency circuit substrate manufactured with the composite material and the manufacturing method thereof
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
EP0240919A2 (en) Method for coating fibers
CN109233244B (en) Thermosetting resin composition, prepreg, laminate, and printed wiring board
CN110114407B (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP2020506982A (en) Resin composition for semiconductor package, prepreg and metal foil laminate using the same
KR102054093B1 (en) Epoxy Resin Compositions and Prepregs, Laminates, and Printed Circuit Boards Containing the Same
JP2021515823A (en) A resin composition, a prepreg containing the resin composition, a laminated board containing the resin composition, and a resin-attached metal foil containing the resin composition.
TW200942093A (en) Solid powder formulations for the preparation of resin-coated foils and their use in the manufacture of printed circuit boards
CN112266572B (en) Resin composition, prepreg, laminate, and circuit board
KR20200044975A (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board and multilayer printed wiring board
WO2002092903A1 (en) Glass cloth and use thereof
JP7274105B2 (en) Thermosetting composition, prepreg, laminate, metal foil clad laminate, printed wiring board and multilayer printed wiring board
TWI730608B (en) Thermosetting resin composition for semiconductor package, prepreg and metal clad laminate using the same
JP2005015616A (en) Resin composition for laminated board, organic base prepreg, metallic foil-clad laminated board, and printed wiring board
JP3581857B2 (en) Manufacturing method of prepreg
JP3720337B2 (en) Organic base prepreg, laminate and printed wiring board
TWI814835B (en) Resin composition, prepreg, laminate, metal foil clad laminate and printed circuit board
JP4487590B2 (en) Resin composition used for production of laminate, prepreg and laminate using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002590158

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase