WO2002082868A1 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
WO2002082868A1
WO2002082868A1 PCT/JP2001/005444 JP0105444W WO02082868A1 WO 2002082868 A1 WO2002082868 A1 WO 2002082868A1 JP 0105444 W JP0105444 W JP 0105444W WO 02082868 A1 WO02082868 A1 WO 02082868A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge lamp
switching elements
lighting device
lamp lighting
pair
Prior art date
Application number
PCT/JP2001/005444
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Wada
Shinsuke Funayama
Osamu Takahashi
Yoshitaka Igarashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Mitsubishi Electric Lighting Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Lighting Corporation filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO2002082868A1 publication Critical patent/WO2002082868A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a self-excited inverter-type discharge lamp lighting device, and particularly to a discharge lamp lighting device that performs dimming with a simple circuit.
  • a self-excited half-bridge type inverter discharge lamp lighting device can be configured at a lower circuit cost than other separately-excited half-bridge types, but a simple frequency control method has not been established and transformers and There are few devices that have large shapes such as switching elements and control continuous dimming with a simple circuit.
  • FIG. 9 is a circuit diagram of a conventional fluorescent lamp lighting device disclosed in, for example, Japanese Patent Application Laid-Open No. 8-111293 (conventional example 1).
  • FIG. 9 shows two switching transistors Q 1 and Q 2 is a self-excited inverter circuit that applies a pulse current via the oscillation transformer TR to the base of each switching transistor so as to alternately turn on and off the switching transistor 2.
  • a control coil LC that inserts an inductor coil LV in parallel with the wire W2 and variably controls the inductance value by combining with the inductor coil LV, and an auxiliary DC that supplies a DC control current i C flowing through this LC
  • Two diodes Dl and D2 and a smoothing capacitor C3 are provided in parallel between the transistor Q2 on the ground side and the ground of the power supply E as a power supply, and a current control variable connected in series with the control coil LC.
  • Resistor VR The current value of ic is adjusted by the variable resistor VR, and the frequency is changed by changing the L value of the secondary winding to perform continuous dimming.
  • FIG. 10 is a circuit diagram of a fluorescent lamp lighting device disclosed in Japanese Patent Application Laid-Open No. 4-286988 (conventional example 2).
  • FIG. 10 shows two switching transistors 19 and 2.
  • 0 is a self-excited jumper that turns on and off alternately.By opening and closing the switching element 24 by the switch circuit 29, the resistor 23 on the emitter side of one of the switching transistors 20 is short-circuited. Or released. This results in current feedback Since the voltage of the transformer 25 is changed, the saturation point is corrected, and the duty ratio of the switching transistor 20 or the oscillation frequency as the impedance is corrected, the light intensity of the fluorescent lamp LA, which is a load on the inverter, is variable. Is done.
  • the fluorescent lamp lighting device of Conventional Example 1 as described above has a problem that the number of components is large and the circuit is not inexpensive and simple.
  • the present invention has been made to solve the above-described problems.Since a simple circuit configuration, inexpensive parts, sufficient preheating can be obtained at the time of starting the discharge lamp, step dimming can be performed, and the device can be downsized. It is an object of the present invention to provide a discharge lamp lighting device that can be used. Disclosure of the invention
  • a discharge lamp lighting device is a self-excited heater that alternately turns on and off the pair of switching elements by applying a pulse current to the gates of the pair of switching elements via a secondary winding of an inductor. And a series circuit of a resistor and a switch, which is connected between the gate and the source of any one of the pair of switching elements and changes the voltage of the gate.
  • a self-excited type inverter for alternately turning on and off the pair of switching elements by applying a pulse current to the gates of the pair of switching elements via a secondary winding of an inductor; and the pair of switching elements.
  • a series circuit of a zener diode and a switch connected between any one of the gate and the source for changing the voltage of the gate.
  • FIG. 1 is a configuration diagram of a discharge lamp lighting device according to a first embodiment of the present invention
  • FIG. 2 is a waveform diagram illustrating an operation of the discharge lamp lighting device
  • FIG. FIG. 4 is a waveform diagram illustrating the operation of the discharge lamp lighting device according to the first embodiment of the present invention
  • FIG. 5 is a diagram illustrating the operation of the discharge lamp lighting device according to the first embodiment of the present invention.
  • FIG. 6 is a waveform diagram
  • FIG. 6 is a resonance curve diagram of a resonance circuit of the discharge lamp lighting device of the discharge lamp lighting device according to the first embodiment of the present invention
  • FIG. 7 is a discharge curve showing the second embodiment of the present invention.
  • FIG. 8 is a waveform diagram illustrating the operation of the electric lamp lighting device
  • FIG. 8 is a waveform diagram illustrating the operation of the discharge lamp lighting device according to the second embodiment of the present invention
  • FIG. 10 is a configuration diagram of a conventional discharge lamp lighting device.
  • FIG. 1 is a circuit diagram of a discharge lamp lighting device using a self-excited half-bridge type impeller according to a first embodiment of the present invention
  • FIGS. 2, 4, and 5 are waveform diagrams for explaining the operation
  • FIG. 3 is a resonance circuit.
  • FIG. 4 is a resonance curve diagram of FIG. Fig. 1 shows the discharge lamp lighting with high-frequency power generated by a self-excited half-bridge type inverter.
  • E is a DC power supply
  • T1 is an inductor
  • Ql and Q2 are inductors T1 and T2.
  • resistors R l and R 2 are resistors that limit the current flowing through the gates of the switching elements Q 1 and Q 2.
  • R3 is a resistor connected in series with the switch SW between the gate of the switching element Q2 and the source of the power supply E, and 1 is a switch control circuit for controlling the switch SW.
  • LA is a discharge lamp
  • C1 is a resonance capacitor
  • T1 is an inductor
  • C2 is a coupling capacitor
  • a resonance circuit is formed by the resonance capacitor C1 and the inductor T1.
  • Figure 4 shows the gate voltage waveforms of the switching elements Ql and Q2 and the voltage waveform at the connection point of the switching elements Q1 and Q2 when a resistor is inserted into the gate of the transistor Q2.
  • Fig. 5 shows an enlarged comparison of a part of the gate waveform of the switching element Q2 in Figs. 2 and 4.
  • FIG. 1 the case where the switch SW and the switch SW are turned off will be described with reference to FIGS.
  • This case is the same as the basic circuit of a conventional discharge lamp lighting device using a self-excited half-bridge impeller.
  • the switching element Q2 is turned on by the DC power supply E, and a current flows through the resonance circuit including the inductor T1 and the starting capacitor C1, and the secondary windings T1A and T1 of the inductor T1 are turned on.
  • the signal is fed back to the gates of switching elements Q 1 and Q 2 by B, switching element Q 1 turns on and switching element Q 2 turns off.Current flows from the DC power supply E to the resonance circuit, and switching is performed again by the inductor T 1.
  • the feedback is made to the elements Q 1 and Q 2, the switching element Q 1 is turned off, the switching element Q 2 is turned on, and the same operation is repeated thereafter to start oscillation at the resonance frequency of the resonance circuit.
  • the current flowing through the resonance circuit preheats the filament of the discharge lamp LA, and the resonance voltage at both ends of the starting capacitor C1 rises, and when the discharge starting voltage of the discharge lamp LA is reached, the discharge lamp LA is started. Then light up.
  • the discharge voltage decreases due to the fact that the discharge lamp LA itself has a resistance component, but the discharge current is stabilized because the current is limited by the inductor T1.
  • the high-side gate voltage of the switching element Q1, the low-side gate voltage waveform of the switching element Q2, and the half-bridge middle point voltage waveform that is the connection point of the switching elements Q1 and Q2 are shown in FIGS. 2 (a) and 2 (b), respectively.
  • the dotted line indicates the threshold voltage.
  • the relationship between the oscillation frequency due to resonance and the resonance voltage, and the relationship between the starting and lighting of the discharge lamp LA are as follows.
  • the oscillation frequency is fl
  • the discharge lamp LA operates on the preheating-starting curve.
  • the filament of the discharge lamp LA is preheated.
  • the oscillation frequency is lowered and the resonance voltage rises
  • the discharge lamp LA is started and lit at the frequency f2, and the operating voltage moves to the resonance curve at the time of lighting.
  • f 3 is the dimming frequency.
  • the beak value Vp 2 of the gate voltage of the switching element Q2 is lower than the beak value Vp1 of the gate voltage of the switching element Q2 when the switch SW is turned off, and the gate voltage waveform of the switching elements Ql and Q2 Figure 4 shows the voltage waveform at the connection point of the switching elements Ql and Q2.
  • one cycle when the switch SW is on is T2-T3 + TD + T5 + TD. Since T 4> T 5, T 1> ⁇ 2, and the time of one cycle when the switch SW is on is shorter than that when the switch SW is off. Therefore, the frequency is 1 / T 2> 1 / T1, and the frequency when the switch SW is on is higher than that when the switch SW is off.
  • the frequency is lowered when the switch SW is turned off after the switch SW is turned on to increase the frequency and the filament of the discharge lamp LA is properly pre-ripened.
  • the resonance voltage increases and the discharge lamp LA starts at the frequency f1.
  • the switch SW is turned on during the lighting, and as shown in FIG. 6, the frequency is increased and the resonance voltage is decreased to perform step dimming.
  • sufficient preheating and step dimming can be performed with a simple circuit configuration and inexpensive components, and small components can be used, so that the device can be downsized.
  • FIG. 7 is a circuit diagram of a discharge lamp lighting device using a self-excited half-bridge type inverter according to a second embodiment of the present invention
  • FIG. 8 is a waveform diagram showing an operation. In the figure, the same parts as those in FIG.
  • D Z is a zener diode connected in series with the switch SW between the gate of the switching element Q2 and the source of the power supply E.
  • the same preheating and light control as in the first embodiment can be performed by turning on and off the switch SW.
  • sufficient preheating and step dimming can be performed with a simple circuit configuration and inexpensive components, and small components can be used, so that the device can be downsized.
  • Embodiments 1 and 2 described above use the secondary winding of the inductor T1, a current transformer may be used instead of the secondary winding of the inductor T1.
  • the resistor R 3 or the Zener diode DZ is connected.
  • the switching element Q2 it may be connected to the gate of the switching element Q1.
  • the circuit may be simplified by using an N-type MOS-FET for the switching element Q1 and a P-type MOS-FET for the switching element Q2.
  • the DC power supply E may be a commercial AC power supply and smoothed by full-wave or half-wave. Further, a booster circuit using an active filter or the like may be used ( further, an AC-AD conversion power supply may be used.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

A discharge lamp lighting device, comprising a self-exciting inverter alternately turning on and off a pair of switching elements (Q1, Q2) by applying a pulse voltage to the gates of the pair of switching elements (Q1, Q2) through the secondary winding (T1) of an inductor and a series circuit formed of a resistance (R3) and a switch (SW) connected between either of the gates of the pair of switching elements (Q1, Q2) and a source and varying a gate voltage.

Description

明細書  Specification
放電灯点灯装置 技術分野 Discharge lamp lighting device Technical field
この発明は、 自励式インバー夕式の放電灯点灯装置に係わり、 特に簡単な回路 で調光を行う放電灯点灯装置に関する。 背景技術  The present invention relates to a self-excited inverter-type discharge lamp lighting device, and particularly to a discharge lamp lighting device that performs dimming with a simple circuit. Background art
従来、 自励ハーフブリッジ方式インバー夕の放電灯点灯装置は、 他の他励式ハ 一フブリッジ方式に比べ、 回路コストが安く構成できるが、 簡単な周波数制御方 式が確立されておらず、 トランス及びスイッチング素子等形状が大きく、 簡単な 回路で連続調光等の制御を行うものが少なかった。  Conventionally, a self-excited half-bridge type inverter discharge lamp lighting device can be configured at a lower circuit cost than other separately-excited half-bridge types, but a simple frequency control method has not been established and transformers and There are few devices that have large shapes such as switching elements and control continuous dimming with a simple circuit.
図 9は例えば、 特開平 8— 1 1 1 2 9 3号公報に示された従来の蛍光灯点灯装 置の回路図である (従来例 1 ) o 図は 2個のスイッチングトランジスタ Q 1、 Q 2を交互にオン ·オフするように各々スィツチングトランジスタのベースに発振 トランス T Rを介してパルス電流を印加する自励式ィンバ一夕回路であり、 連続 調光機能として発振トランス T Rの一方のドライブ巻線 W 2に並列にィンダク夕 コイル L Vを挿入するとともに、 インダク夕コイル L Vと結合してインダクタン ス値を可変制御する制御コイル L Cと、 この L Cに流す直流制御電流 i Cを供給 する補助直流電源として、 接地側のトランジス夕 Q 2と電源 Eの接地間に並列に 2個のダイオード D l、 D 2と平滑コンデンサ C 3が設けられ、 制御コイル L C と直列接続された電流制御用の可変抵抗器 VRとを備え、 可変抵抗器 V Rにより i cの電流値を調整し、 2次巻線の L値を変化させることにより周波数を変化さ せて連続調光をする。  FIG. 9 is a circuit diagram of a conventional fluorescent lamp lighting device disclosed in, for example, Japanese Patent Application Laid-Open No. 8-111293 (conventional example 1). FIG. 9 shows two switching transistors Q 1 and Q 2 is a self-excited inverter circuit that applies a pulse current via the oscillation transformer TR to the base of each switching transistor so as to alternately turn on and off the switching transistor 2. A control coil LC that inserts an inductor coil LV in parallel with the wire W2 and variably controls the inductance value by combining with the inductor coil LV, and an auxiliary DC that supplies a DC control current i C flowing through this LC Two diodes Dl and D2 and a smoothing capacitor C3 are provided in parallel between the transistor Q2 on the ground side and the ground of the power supply E as a power supply, and a current control variable connected in series with the control coil LC. Resistor VR The current value of ic is adjusted by the variable resistor VR, and the frequency is changed by changing the L value of the secondary winding to perform continuous dimming.
また、 図 1 0は特開平 4— 2 8 6 8 9 8号公報に示された蛍光灯点灯装置の回 路図である (従来例 2 ) o 図は 2個のスィツチングトランジスタ 1 9、 2 0が交 互にオン ·オフする自励式ィンパ一夕であり、 スィツチ回路 2 9によりスィツチ ング素子 2 4を開閉させることにより、 一方のスィツチング用トランジスタ 2 0 のェミツ夕側の抵抗 2 3が短絡され、 あるいは開放される。 この結果、 電流帰還 トランス 2 5の電圧が変わり、 飽和点が修正され、 スイッチング用トランジスタ 2 0のデューティ比ないしはィンパ一夕としての発振周波数が修正されるので、 ィンバ一夕の負荷となる蛍光灯 L Aの光量が可変される。 FIG. 10 is a circuit diagram of a fluorescent lamp lighting device disclosed in Japanese Patent Application Laid-Open No. 4-286988 (conventional example 2). FIG. 10 shows two switching transistors 19 and 2. 0 is a self-excited jumper that turns on and off alternately.By opening and closing the switching element 24 by the switch circuit 29, the resistor 23 on the emitter side of one of the switching transistors 20 is short-circuited. Or released. This results in current feedback Since the voltage of the transformer 25 is changed, the saturation point is corrected, and the duty ratio of the switching transistor 20 or the oscillation frequency as the impedance is corrected, the light intensity of the fluorescent lamp LA, which is a load on the inverter, is variable. Is done.
上記のような従来例 1の蛍光灯点灯装置では、 部品数が多く安価で簡単な回路 ではないという問題があった。  The fluorescent lamp lighting device of Conventional Example 1 as described above has a problem that the number of components is large and the circuit is not inexpensive and simple.
また、 従来例 2の蛍光灯点灯装置では、 電力部をスィッチするため、 部品が大 きくなり、 発熱も多く安価な部品では形成できず、 また、 共振の強さを変えて周 波数を変化させるので微妙な周波数の変化ができず、 また、 設計の自由度も少な いという問題があった。  In addition, in the fluorescent lamp lighting device of Conventional Example 2, since the power part is switched, the components become large, and heat is generated, so that inexpensive components cannot be formed, and the frequency is changed by changing the resonance intensity. Therefore, there was a problem that a delicate frequency change was not possible, and the degree of freedom in design was also small.
この発明は上記のような問題点を解消するためになされたもので、 簡単な回路 構成で、 安価な部品により、 放電灯始動時に十分な予熱が得られ、 段調光ができ、 装置を小型にすることができる放電灯点灯装置を提供することを目的とする。 発明の開示  The present invention has been made to solve the above-described problems.Since a simple circuit configuration, inexpensive parts, sufficient preheating can be obtained at the time of starting the discharge lamp, step dimming can be performed, and the device can be downsized. It is an object of the present invention to provide a discharge lamp lighting device that can be used. Disclosure of the invention
この発明に係る放電灯点灯装置は、 一対のスィツチング素子のゲートにインダ クタの二次巻線を介してパルス電流を印加して前記一対のスィツチング素子を交 互にオン ·オフさせる自励式ィンバ一夕と、 前記一対のスィツチング素子のいす れかの前記ゲ一卜とソース間に接続され、 前記ゲートの電圧を変える抵抗とスィ ツチの直列回路とを備える。 このことによって、 簡単な回路構成で、 安価な部品 により、 放電灯始動時に十分な予熱が得られ、 段調光ができ、 装置を小型にする ことができる。  A discharge lamp lighting device according to the present invention is a self-excited heater that alternately turns on and off the pair of switching elements by applying a pulse current to the gates of the pair of switching elements via a secondary winding of an inductor. And a series circuit of a resistor and a switch, which is connected between the gate and the source of any one of the pair of switching elements and changes the voltage of the gate. As a result, sufficient preheating can be obtained at the time of starting the discharge lamp with a simple circuit configuration and inexpensive components, stepwise dimming can be performed, and the device can be downsized.
また、 一対のスィツチング素子のゲートにインダク夕の二次巻線を介してパル ス電流を印加して前記一対のスィツチング素子を交互にオン ·オフさせる自励式 ィンバ一夕と、 前記一対のスィツチング素子のいすれかの前記ゲートとソース間 に接続され、 前記ゲートの電圧を変えるヅェナ一ダイォードとスィツチの直列回 路とを備える。 このことによって、 簡単な回路構成で、 安価な部品により、 放電 灯始動時に十分な予熱が得られ、 段調光ができ、 装置を小型にすることができる c また、 インダク夕の二次卷線に代えて、 カレント トランスを使用したものであ る。 このことによって、 放電灯が複数でも適用することができる。 また、 一対のスィツチング素子は N型 M O S— F E Tと P型 M 0 S— F E Tを 使用しコンプリメン夕リ回路とした.ものである。 このことによって、 より簡単な 回路とすることができる。 図面の簡単な説明 A self-excited type inverter for alternately turning on and off the pair of switching elements by applying a pulse current to the gates of the pair of switching elements via a secondary winding of an inductor; and the pair of switching elements. And a series circuit of a zener diode and a switch connected between any one of the gate and the source for changing the voltage of the gate. Thereby, with a simple circuit configuration, an inexpensive component, sufficient preheating is obtained at the time of the discharge lamp start-up, can stage dimming, c the device can be miniaturized Further, inductor evening secondary卷線Instead of using a current transformer. Thus, even a plurality of discharge lamps can be applied. In addition, a pair of switching elements is a complementary circuit using an N-type MOS-FET and a P-type M0S-FET. This allows for a simpler circuit. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態 1を示す放電灯点灯装置の構成図、 第 2図は、 放電灯点灯装置の動作を示す波形図、 第 3は、 放電灯点灯装置の共振回路の共振 曲線図、 第 4図は、 この発明の実施の形態 1を示す放電灯点灯装置の動作を示す 波形図、 第 5図は、 この発明の実施の形態 1を示す放電灯点灯装置の動作を示す 波形図、 第 6図は、 この発明の実施の形態 1を示す放電灯点灯装置の放電灯点灯 装置の共振回路の共振曲線図、 第 7図は、 この発明の実施の形態 2を示す放電灯 点灯装置の動作を示す波形図、 第 8図は、 この発明の実施の形態 2を示す放電灯 点灯装置の動作を示す波形図、 第 9図は、 従来の放電灯点灯装置の構成図、 第 1 0図は、 従来の放電灯点灯装置の構成図である。 発明を実施するための最良の形態  FIG. 1 is a configuration diagram of a discharge lamp lighting device according to a first embodiment of the present invention, FIG. 2 is a waveform diagram illustrating an operation of the discharge lamp lighting device, and FIG. FIG. 4 is a waveform diagram illustrating the operation of the discharge lamp lighting device according to the first embodiment of the present invention. FIG. 5 is a diagram illustrating the operation of the discharge lamp lighting device according to the first embodiment of the present invention. FIG. 6 is a waveform diagram, FIG. 6 is a resonance curve diagram of a resonance circuit of the discharge lamp lighting device of the discharge lamp lighting device according to the first embodiment of the present invention, and FIG. 7 is a discharge curve showing the second embodiment of the present invention. FIG. 8 is a waveform diagram illustrating the operation of the electric lamp lighting device, FIG. 8 is a waveform diagram illustrating the operation of the discharge lamp lighting device according to the second embodiment of the present invention, FIG. FIG. 10 is a configuration diagram of a conventional discharge lamp lighting device. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 . Embodiment 1
図 1はこの発明の実施の形態 1を示す自励式ハーフブリッジ式ィンパ一夕を用 いた放電灯点灯装置の回路図、 図 2、 4、 5は動作説明の波形図、 図 3は共振回 路の共振曲線図である。 図 1は自励式ハ一フブリッジ式ィンバ一夕による高周波 電力で放電灯を点灯させるものであり、 図において Eは直流電源、 T 1はインダ クタ、 Q l , Q 2はインダク夕 T 1の 2次卷線 T 1 A、 T I Bの電圧をゲート信 号としてオン、 オフするスイッチング素子、 抵抗 R l、 R 2はスイッチング素子 Q 1 , Q 2のゲートに流れる電流を制限する抵抗である。  FIG. 1 is a circuit diagram of a discharge lamp lighting device using a self-excited half-bridge type impeller according to a first embodiment of the present invention, FIGS. 2, 4, and 5 are waveform diagrams for explaining the operation, and FIG. 3 is a resonance circuit. FIG. 4 is a resonance curve diagram of FIG. Fig. 1 shows the discharge lamp lighting with high-frequency power generated by a self-excited half-bridge type inverter. In the figure, E is a DC power supply, T1 is an inductor, and Ql and Q2 are inductors T1 and T2. A switching element that turns on and off the voltage of the next winding T 1 A and TIB as a gate signal, and resistors R l and R 2 are resistors that limit the current flowing through the gates of the switching elements Q 1 and Q 2.
R 3はスィツチング素子 Q 2のゲートと電源 Eのソース間にスィツチ S Wと直 列に接続された抵抗、 1はスィッチ S Wを制御するスィッチ制御回路である。 L Aは放電灯、 C 1は共振用コンデンサ、 T 1はインダクタ、 C 2はカップリング コンデンサであり、 共振用コンデンサ C 1とインダクタ T 1で共振回路を形成し ている。 次に、 動作を図 1〜図 5により説明する。 図 2は抵抗 R 3、 スィッチ SW及び スィツチ制御回路 1を除いた時のスィツチング素子 Q 1, Q 2のゲート電圧波形 とスイッチング素子 Q l, Q 2の接続点の電圧波形を示し、 図 3は共振回路の共 振曲線図、 図 4はトランジスタ Q 2のゲートに抵抗を挿入時の、 スイッチング素 子 Q l, Q 2のゲート電圧波形とスイッチング素子 Q 1 , Q 2の接続点の電圧波 形を示し、 図 5は図 2と図 4のスィッチング素子 Q 2のゲート波形の一部を拡大 して比較して示している R3 is a resistor connected in series with the switch SW between the gate of the switching element Q2 and the source of the power supply E, and 1 is a switch control circuit for controlling the switch SW. LA is a discharge lamp, C1 is a resonance capacitor, T1 is an inductor, C2 is a coupling capacitor, and a resonance circuit is formed by the resonance capacitor C1 and the inductor T1. Next, the operation will be described with reference to FIGS. Fig. 2 shows the gate voltage waveforms of the switching elements Q1 and Q2 and the voltage waveform at the connection point of the switching elements Ql and Q2 when the resistor R3, the switch SW and the switch control circuit 1 are removed. Figure 4 shows the resonance curve of the resonant circuit. Figure 4 shows the gate voltage waveforms of the switching elements Ql and Q2 and the voltage waveform at the connection point of the switching elements Q1 and Q2 when a resistor is inserted into the gate of the transistor Q2. Fig. 5 shows an enlarged comparison of a part of the gate waveform of the switching element Q2 in Figs. 2 and 4.
まず、 図 1において、 スィッチ S W及をオフとした時について図 1〜3により 説明する。 この場合は従来の自励式ハーフブリッジ式インパー夕を用いた放電灯 点灯装置の基本的な回路と同じである。  First, in FIG. 1, the case where the switch SW and the switch SW are turned off will be described with reference to FIGS. This case is the same as the basic circuit of a conventional discharge lamp lighting device using a self-excited half-bridge impeller.
まず、 直流電源 Eにより、 スイッチング素子 Q 2がオンになり、 インダク夕 T 1と始動コンデンサ C 1からなる共振回路に電流が流れて、 インダク夕 T 1の二 次巻線 T 1 A、 T 1 Bによりスイッチング素子 Q 1、 Q 2のゲートに帰還され、 スイッチング素子 Q 1がオン、 スイッチング素子 Q 2がオフになり、 直流電源 E より共振回路に電流が流れて、 インダク夕 T 1により再びスィツチング素子 Q 1、 Q 2に帰還され、 スイッチング素子 Q 1がオフ、 スイッチング素子 Q 2がオンに なり、 以下同様の動作を繰り返すことによって、 共振回路の共振周波数で発振が 開始される。  First, the switching element Q2 is turned on by the DC power supply E, and a current flows through the resonance circuit including the inductor T1 and the starting capacitor C1, and the secondary windings T1A and T1 of the inductor T1 are turned on. The signal is fed back to the gates of switching elements Q 1 and Q 2 by B, switching element Q 1 turns on and switching element Q 2 turns off.Current flows from the DC power supply E to the resonance circuit, and switching is performed again by the inductor T 1. The feedback is made to the elements Q 1 and Q 2, the switching element Q 1 is turned off, the switching element Q 2 is turned on, and the same operation is repeated thereafter to start oscillation at the resonance frequency of the resonance circuit.
さらに、 共振回路に流れる電流により放電灯 L Aのフイラメントが予熱される とともに、 始動コンデンサ C 1の両端の共振電圧が上昇し、 放電灯 L Aの放電開 始電圧になった時に、 放電灯 L Aが始動し、 次に点灯する。  Furthermore, the current flowing through the resonance circuit preheats the filament of the discharge lamp LA, and the resonance voltage at both ends of the starting capacitor C1 rises, and when the discharge starting voltage of the discharge lamp LA is reached, the discharge lamp LA is started. Then light up.
なお、 放電が開始された後は、 放電灯 L A自身順が抵抗成分の要素を持つこと によつて放電電圧が低下するがインダク夕 T 1によって電流が制限されるので放 電電流は安定する。  After the discharge is started, the discharge voltage decreases due to the fact that the discharge lamp LA itself has a resistance component, but the discharge current is stabilized because the current is limited by the inductor T1.
このときのスィツチング素子 Q 1のハイサイ ドゲート電圧, Q 2のローサイ ド ゲート電圧波形及びスイツチング素子 Q 1, Q 2の接続点であるハーフブッリツ ジ中点電圧波形は各々図 2 ( a ) 、 ( b ) ( c ) に示すようになり、 共振による 周波数は、 インダクタ T 1の二次側に発生する電圧とスイッチング素子 Q 1, Q 2のスレツショルド電圧で決定される。 すなわち、 1周期は図 2に示すように、 T 1 =T 3 + TD + T4 + TDであり、 周波数は 1/T lとなる。 なお、 図にお いて点線はスレツショルド電圧を示す。 At this time, the high-side gate voltage of the switching element Q1, the low-side gate voltage waveform of the switching element Q2, and the half-bridge middle point voltage waveform that is the connection point of the switching elements Q1 and Q2 are shown in FIGS. 2 (a) and 2 (b), respectively. As shown in (c), the frequency due to resonance is determined by the voltage generated on the secondary side of the inductor T1 and the threshold voltages of the switching elements Q1 and Q2. That is, as shown in Fig. 2, one cycle is T 1 = T 3 + TD + T4 + TD, and the frequency is 1 / Tl. In the figure, the dotted line indicates the threshold voltage.
また、 共振による発振周波数と共振電圧の関係及び放電灯 L Aの始動と点灯の 関係は図 3に示すように、 発振周波数 f l のときにとき、 放電灯 LAは予熱 - 始動カーブ上で動作し、 放電灯 LAのフィラメントが予熱される。 その後、 発振 周波数を下げて共振電圧が上昇すると周波数 f 2で放電灯 L Aが始動、 点灯し、 動作電圧が点灯時の共振カーブに移動する。 f 3は調光周波数である。  As shown in Fig. 3, the relationship between the oscillation frequency due to resonance and the resonance voltage, and the relationship between the starting and lighting of the discharge lamp LA are as follows.When the oscillation frequency is fl, the discharge lamp LA operates on the preheating-starting curve. The filament of the discharge lamp LA is preheated. Thereafter, when the oscillation frequency is lowered and the resonance voltage rises, the discharge lamp LA is started and lit at the frequency f2, and the operating voltage moves to the resonance curve at the time of lighting. f 3 is the dimming frequency.
次に、 スィッチ SWをオンとした場合は、 基本的な動作は、 スィッチ SWをォ フとした時と同様なので、 スィツチ SWをスィツチ制御回路 1によりオンとした 場合による動作について説明する。 スィツチ制御回路 1をオンとすると抵抗 R 3 によりゲート電圧が分圧されて小さくなる。  Next, when the switch SW is turned on, the basic operation is the same as when the switch SW is turned off. Therefore, the operation when the switch SW is turned on by the switch control circuit 1 will be described. When the switch control circuit 1 is turned on, the gate voltage is divided by the resistor R 3 and becomes smaller.
スィツチング素子 Q 2のゲート電圧のビーク値 Vp 2は、 スィツチ SWをオフ とした場合のスィツチング素子 Q 2のゲート電圧のビーク値 Vp 1よりも低くな り、 スイッチング素子 Ql, Q 2のゲート電圧波形とスイッチング素子 Ql, Q 2の接続点の電圧波形は図 4に示すようになる。  The beak value Vp 2 of the gate voltage of the switching element Q2 is lower than the beak value Vp1 of the gate voltage of the switching element Q2 when the switch SW is turned off, and the gate voltage waveform of the switching elements Ql and Q2 Figure 4 shows the voltage waveform at the connection point of the switching elements Ql and Q2.
スィツチング素子 Q 2のゲートに接続された抵抗 R 2によって分圧されるため、 図 4に示すようにトランジスタ Q 2のスレツショルド電圧を越えている時間が短 くなり トランジスタ Q2がオンしている時間が短くなる。 このときの 1周期は T 2 = T 3 +TD + T 5 +TDであり、 周波数は 1/T2である。  Since the voltage is divided by the resistor R2 connected to the gate of the switching element Q2, the time during which the threshold voltage of the transistor Q2 is exceeded is reduced as shown in FIG. 4, and the time during which the transistor Q2 is on is shortened. Be shorter. One cycle at this time is T2 = T3 + TD + T5 + TD, and the frequency is 1 / T2.
この周波数をスィッチ SWがオフの場合と比較すると、 図 5に示すように、 ス イツチング素子 Q 2のオン期間 Τ 4が抵抗 R 3がない場合のスィッチング素子 Q 2のオン期間 Τ 4より短くなる。  When this frequency is compared with the case where the switch SW is off, as shown in Fig. 5, the on-period of the switching element Q2 Τ 4 is shorter than the on-period of the switching element Q2 without the resistor R3 Τ 4. .
一方、 スィツチ SWがオフの時の 1周期は T 1=T3+TD + T4 + TDであ り、 スィツチ SWがオンの時の 1周期は T 2-T3 + TD + T5 + TDであり、 上記のように T 4 >T 5であることから T 1>Τ2となり、 スィツチ SWがオン の時の 1周期の時間はスィッチ SWがオフの時より短くなる。 従って、 周波数は 1/T 2 > 1/T1となり、 スィッチ SWがオンの時のの周波数がスィッチ S Wがオフの時より高くなる。  On the other hand, one cycle when the switch SW is off is T1 = T3 + TD + T4 + TD, and one cycle when the switch SW is on is T2-T3 + TD + T5 + TD. Since T 4> T 5, T 1> Τ2, and the time of one cycle when the switch SW is on is shorter than that when the switch SW is off. Therefore, the frequency is 1 / T 2> 1 / T1, and the frequency when the switch SW is on is higher than that when the switch SW is off.
そして、 抵抗 R 3の値を小さくするほど、 スイッチング素子 Q 2のゲート電圧 のビーク値 V p 2がさらに低下し、 スィツチング素子 Q 2のオン期間 T 5が短く なり、 周波数を高くすることができる。 And, the smaller the value of the resistor R 3, the more the gate voltage of the switching element Q 2 The beak value Vp2 of the switching element Q2 further decreases, the on-period T5 of the switching element Q2 decreases, and the frequency can be increased.
従って、 放電灯 L Aの予熟時に、 スィッチ S Wをオンとして周波数を高くして 放電灯 L Aのフイラメン卜が適切な予熟をされた後に、 スィツチ S Wをオフとす ると周波数が低くなり、 図 3に示すように共振電圧が高くなり周波数 f 1で放電 灯 L Aが始動する。  Therefore, when the discharge lamp LA is pre-ripened, the frequency is lowered when the switch SW is turned off after the switch SW is turned on to increase the frequency and the filament of the discharge lamp LA is properly pre-ripened. As shown in Fig. 3, the resonance voltage increases and the discharge lamp LA starts at the frequency f1.
そして、 点灯中にスィッチ S Wをオンとして、 図 6に示すように周波数を高く して共振電圧を低くして段調光を行う。  Then, the switch SW is turned on during the lighting, and as shown in FIG. 6, the frequency is increased and the resonance voltage is decreased to perform step dimming.
以上のように、 簡単な回路構成で、 安価な部品により、 十分な予熱と段調光が でき、 小型の部品が使用できるので装置を小型にすることができる。  As described above, sufficient preheating and step dimming can be performed with a simple circuit configuration and inexpensive components, and small components can be used, so that the device can be downsized.
実施の形態 2 . Embodiment 2
実施の形態 1で使用した抵抗をツエナ一ダイオードに代えたものであるる。 図 7はこの発明の実施の形態 2を示す自励式ハ一フブリッジ式ィンバ一夕を用いた 放電灯点灯装置の回路図、 図 8は動作を示す波形図である。 図において実施の形 態の図 1と同一部分には同一の符号を付し説明を省略する。  A resistor used in the first embodiment is replaced with a Zener diode. FIG. 7 is a circuit diagram of a discharge lamp lighting device using a self-excited half-bridge type inverter according to a second embodiment of the present invention, and FIG. 8 is a waveform diagram showing an operation. In the figure, the same parts as those in FIG.
D Zはスィツチング素子 Q 2のゲートと電源 Eのソース間にスィツチ SWと直 列に接続されたツエナーダイオードである。  D Z is a zener diode connected in series with the switch SW between the gate of the switching element Q2 and the source of the power supply E.
次に、 図 8により動作を説明する。 ツエナーダイオード D Zに電流が流れると、 ィンダク夕 T 1とコンデンサ C 1の共振回路の共振の強さ Qが低くなり、 ィンダ クタ T 1の二次側のゲート電圧が低くなり、 図 8 ( b ) に示すようにスィッチン グ素子 Q 2の夕一ンオン時間 (T 6 ) が短くなり、 その結果周波数が高い方に移 動する。  Next, the operation will be described with reference to FIG. When a current flows through the Zener diode DZ, the resonance intensity Q of the resonance circuit of the inductor T1 and the capacitor C1 decreases, and the gate voltage on the secondary side of the inductor T1 decreases. As shown in the figure, the turn-on time (T 6) of the switching element Q 2 is shortened, and as a result, the frequency shifts to a higher frequency.
従ってスィッチ S Wのオン、 オフにより実施の形態 1と同様な予熱、 調光を行 うことができる。  Therefore, the same preheating and light control as in the first embodiment can be performed by turning on and off the switch SW.
以上のように、 簡単な回路構成で、 安価な部品により、 十分な予熱と段調光が でき、 小型の部品が使用できるので装置を小型にすることができる。  As described above, sufficient preheating and step dimming can be performed with a simple circuit configuration and inexpensive components, and small components can be used, so that the device can be downsized.
なお、 以上に示した実施の形態 1、 2はインダクタ T 1の二次卷線を使用して いるがィンダク夕 T 1の二次巻線の代わりにカレント トランスを使用してもよい; また、 実施の形態 1、 2では抵抗 R 3、 または、 ツエナーダイオード D Zをス ィツチング素子 Q 2に接続しているが、 スィツチング素子 Q 1のゲートに接続し てもよい。 Although Embodiments 1 and 2 described above use the secondary winding of the inductor T1, a current transformer may be used instead of the secondary winding of the inductor T1. In the first and second embodiments, the resistor R 3 or the Zener diode DZ is connected. Although connected to the switching element Q2, it may be connected to the gate of the switching element Q1.
また、 スイッチング素子 Q 1に N型 MOS— FET、 スイッチング素子 Q 2に P型 MOS— FETを使用しコンプリメン夕リ回路とし、 回路をより簡単にして もよい。  The circuit may be simplified by using an N-type MOS-FET for the switching element Q1 and a P-type MOS-FET for the switching element Q2.
なお、 直流電源 Eは、 商用交流電源と全波、 もしくは、 半波で平滑したもので もよい。 また、 アクティブフィルタ等を使用した昇圧回路を用いたものでもよい ( さらに、 AC— AD変換電源であってもよい。 The DC power supply E may be a commercial AC power supply and smoothed by full-wave or half-wave. Further, a booster circuit using an active filter or the like may be used ( further, an AC-AD conversion power supply may be used.

Claims

請求の範囲 The scope of the claims
1 . 一対のスィツチング素子のゲートにィンダク夕の二次卷線を介してパルス電 流を印加して前記一対のスィツチング素子を交互にオン ·オフさせる自励式ィン バー夕と、 1. A self-excited inverter that applies a pulse current to the gates of the pair of switching elements via the secondary winding of the inductor to alternately turn on and off the pair of switching elements;
前記一対のスィッチング素子のいすれかの前記ゲ一卜とソース間に接続され、 前記ゲートの電圧を変える抵抗とスィツチの直列回路とを備えることを特徴とす る放電灯点灯装置。  A discharge lamp lighting device, comprising: a series circuit of a switch and a resistor that is connected between the gate and the source of any of the pair of switching elements and that changes the voltage of the gate.
2 . 一対のスィツチング素子のゲートにィンダク夕の二次巻線を介してパルス電 流を印加して前記一対のスィツチング素子を交互にオン ·オフさせる自励式ィン バ一夕と、  2. A self-excited inverter that applies a pulse current to the gates of the pair of switching elements via the secondary winding of the inductor to alternately turn on and off the pair of switching elements;
前記一対のスィツチング素子のいすれかの前記ゲートとソース間に接続され、 前記ゲートの電圧を変えるツエナーダイォードとスィツチの直列回路とを備える ことを特徴とする放電灯点灯装置。  A discharge lamp lighting device, comprising: a series circuit of a zener diode and a switch, which is connected between the gate and the source of any of the pair of switching elements and changes a voltage of the gate.
3 . インダク夕の二次巻線に代えて、 カレントトランスを使用したことを特徴と する請求項 1〜 2のいずれかに記載の放電灯点灯装置。  3. The discharge lamp lighting device according to claim 1, wherein a current transformer is used instead of the secondary winding of the inductor.
4 . 一対のスィツチング素子は N型 M O S— F E Tと P型 M O S— F E Tを使用 しコンプリメン夕リ回路としたことを特徴とする請求項 1〜 3のいずれかに記載 の放電灯点灯装置。  4. The discharge lamp lighting device according to any one of claims 1 to 3, wherein the pair of switching elements is a complementary circuit using an N-type MOS-FET and a P-type MOS-FET.
PCT/JP2001/005444 2001-03-30 2001-06-26 Discharge lamp lighting device WO2002082868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001098482A JP2002299097A (en) 2001-03-30 2001-03-30 Discharge lamp lighting device
JP2001-98482 2001-03-30

Publications (1)

Publication Number Publication Date
WO2002082868A1 true WO2002082868A1 (en) 2002-10-17

Family

ID=18952129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005444 WO2002082868A1 (en) 2001-03-30 2001-06-26 Discharge lamp lighting device

Country Status (3)

Country Link
JP (1) JP2002299097A (en)
TW (1) TW529321B (en)
WO (1) WO2002082868A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167694A (en) * 1995-12-14 1997-06-24 Sansha Electric Mfg Co Ltd Power source device for discharge lamp
JPH10191654A (en) * 1996-12-24 1998-07-21 Harumi Suzuki Inverter circuit, and illumination device using the circuit
JPH118084A (en) * 1997-06-19 1999-01-12 Iwasaki Electric Co Ltd Discharge lamp lighting device
JP2000106293A (en) * 1998-09-28 2000-04-11 Nec Home Electronics Ltd Lighting device for rare gas discharge lamp
JP2000353598A (en) * 1999-06-09 2000-12-19 Matsushita Electric Ind Co Ltd Fluorescent lamp lighting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634598A (en) * 1986-06-25 1988-01-09 三菱電機株式会社 Discharge lamp lighter
JPH0696888A (en) * 1992-09-10 1994-04-08 Toshiba Lighting & Technol Corp Discharge lamp lighting device and luminaire
JPH06290884A (en) * 1993-03-31 1994-10-18 Toshiba Lighting & Technol Corp Discharge lamp lighting device
JP3322005B2 (en) * 1994-07-29 2002-09-09 松下電工株式会社 Discharge lamp lighting device
DE19751063A1 (en) * 1997-11-18 1999-05-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Free-running oscillator circuit with simple start-up circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167694A (en) * 1995-12-14 1997-06-24 Sansha Electric Mfg Co Ltd Power source device for discharge lamp
JPH10191654A (en) * 1996-12-24 1998-07-21 Harumi Suzuki Inverter circuit, and illumination device using the circuit
JPH118084A (en) * 1997-06-19 1999-01-12 Iwasaki Electric Co Ltd Discharge lamp lighting device
JP2000106293A (en) * 1998-09-28 2000-04-11 Nec Home Electronics Ltd Lighting device for rare gas discharge lamp
JP2000353598A (en) * 1999-06-09 2000-12-19 Matsushita Electric Ind Co Ltd Fluorescent lamp lighting device

Also Published As

Publication number Publication date
JP2002299097A (en) 2002-10-11
TW529321B (en) 2003-04-21

Similar Documents

Publication Publication Date Title
US5568041A (en) Low-cost power factor correction circuit and method for electronic ballasts
US7990070B2 (en) LED power source and DC-DC converter
JP3547837B2 (en) Inverter device
US7019988B2 (en) Switching-type power converter
US5977723A (en) Ballast circuit for fluorescent lamp
US9013106B2 (en) Lamp ballast having filament heating apparatus for gas discharge lamp
US6700331B2 (en) Control circuit for dimming fluorescent lamps
KR0137181B1 (en) Discharge lamp lighting device
JP3821454B2 (en) Fluorescent lamp lighting device
TW453134B (en) Resonant converter circuit
JP2008153198A (en) Current driven toroid-free feedback type ballast
US5608292A (en) Single transistor ballast with filament preheating
JP3151932B2 (en) Power supply circuit
CN114362546A (en) Self-oscillating high-frequency converter with power factor correction
WO2002082868A1 (en) Discharge lamp lighting device
US8354795B1 (en) Program start ballast with true parallel lamp operation
JP3687177B2 (en) Discharge lamp lighting device and lighting device
JP2006513540A (en) Circuit and method for supplying power to a load, particularly a high intensity discharge lamp
JP2744009B2 (en) Power converter
JP4845399B2 (en) Inverter circuit for inorganic EL elements
JP3277551B2 (en) Power circuit
KR100419180B1 (en) Ballast stabilizer capable of heat ignition in the conditions of preheating
US20110018455A1 (en) Discharge lamp lighting apparatus
WO2002082867A1 (en) Discharge lamp lighting device
JP3322005B2 (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase