WO2002075291A1 - Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device - Google Patents

Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device Download PDF

Info

Publication number
WO2002075291A1
WO2002075291A1 PCT/JP2002/002480 JP0202480W WO02075291A1 WO 2002075291 A1 WO2002075291 A1 WO 2002075291A1 JP 0202480 W JP0202480 W JP 0202480W WO 02075291 A1 WO02075291 A1 WO 02075291A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
wave
dielectric substance
optical
electromagnetic wave
Prior art date
Application number
PCT/JP2002/002480
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Takeda
Seiji Kojima
Seizi Nishizawa
Original Assignee
Japan Spectral Laboratory Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectral Laboratory Co. Ltd. filed Critical Japan Spectral Laboratory Co. Ltd.
Publication of WO2002075291A1 publication Critical patent/WO2002075291A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Definitions

  • the present invention relates to a method and an apparatus for optically measuring an optical physical constant of a dielectric substance, and a manufacturing system incorporating the apparatus.
  • the present invention relates to a method and an apparatus for optically measuring an optical physical constant of a dielectric substance, and a manufacturing system incorporating the apparatus.
  • ferroelectric memories FeRAMs: Ferroelectric Randam Accsess Memory
  • the Fe RAM is a memory element utilizing a switching phenomenon of a ferroelectric polarization state.
  • low-voltage driving is also possible. . Therefore, it is expected to be an effective memory for miniaturizing mobile phones, personal computers, and IC cards.
  • the dielectric constant is one of the important basic physical properties that influence the performance of the element (in the case of a memory element, its memory performance). . Therefore, in the actual manufacture of devices, it is essential to evaluate and inspect the dielectric constant of the formed ferroelectric thin film by some means, and the dielectric constant is the dielectric constant of light (electromagnetic waves) incident on the dielectric. It is an amount that indicates how the body responds, and is an amount that depends on the frequency of the light.
  • the dielectric constant for 0 static dielectric constant
  • This static permittivity can be theoretically obtained from the tangent at frequency 0 in the polariton wavenumber-frequency dispersion curve.
  • the polariton means that when an electromagnetic wave is incident on a dielectric, the wave of the electromagnetic wave is combined with the wave of the polarization field of the dielectric. It is known to generate a coupled wave (combined wave), but this coupled wave is quantized.
  • the boralitons are particularly called phonon polaritons.
  • the following shows the case of phonon polaritons.
  • the static permittivity of other polaritons can be obtained from the wave number-frequency dispersion relationship by the same method. For example, in the case of exciton polaritons, the centroid motion cannot be ignored, and the static permittivity can be obtained by considering the centroid motion in the wave number-frequency dispersion relationship.
  • the wave number-frequency dispersion relationship of a polariton is usually
  • k is the wave number of the coupled wave
  • is the angular frequency of the coupled wave
  • c is the speed of light
  • ⁇ ( ⁇ ) is the permittivity for angular frequency infinity
  • the wave number k of the polariton and the angular frequency ⁇ of the coupled wave have a proportional relationship.
  • t can be determined static dielectric constant of the dielectric material, in recent years, as a method for measuring the response of the dielectric material to the electromagnetic wave Ruth (TH Z) near to Terra, TH z- T DS (T ime A new type of infrared spectrometer, called Doma in Specroscopy, has been developed. Below, An outline of the principle of TH z—TDS will be explained.
  • a pulse excitation light having a predetermined time width is generated at a predetermined frequency from an excitation source, and is applied to the pulsed electromagnetic wave emitting element.
  • the pulsed electromagnetic wave radiating element irradiated with the pulsed excitation light emits a pulsed electromagnetic wave having a continuous spectrum distribution including a frequency range in the terahertz range, and the radiated pulsed electromagnetic wave is focused on a sample to be measured. I do. Then, each time-resolved signal of the electric field strength of the reflected or transmitted electromagnetic wave from the sample is detected by the detecting means.
  • each time-resolved signal is detected such that the pulse excitation light is delayed by a predetermined time interval with respect to the pulse excitation light by the delay means each time the pulse excitation light is incident on the pulsed electromagnetic wave radiation element once. ing.
  • time series data that is, a time waveform of the electric field strength of the reflected electromagnetic wave or the transmitted electromagnetic wave is obtained from each of the time-resolved signals.
  • This time waveform is subjected to Fourier transform processing, and the case where no sample is inserted is compared with the case where no sample is inserted. Get a vector.
  • TH Z — TDS shows the time series distribution (time waveform) of the electric field intensity of transmitted or reflected electromagnetic waves from a sample with a very short time width. Focusing on the capabilities that can be obtained, as a result of diligent studies, we came to the conclusion that it is possible to evaluate the dielectric constant (dielectric constant and dielectric loss) of dielectric materials using the main part of THz-TDS. It was done. In other words, the conventional infrared spectrometer was able to obtain spectral spectrum data of the intensity of the transmitted light or reflected light from the sample (or the transmittance of the intensity), but the spectral spectrum data of the phase of the intensity was obtained.
  • THz-TDS could not only use the spectral spectrum data of the intensity of the transmitted or reflected electromagnetic waves from the sample, but also the spectral amplitude of the electric field and its phase.
  • vector data can be obtained. Then, the spectral spectrum data on the amplitude and phase of the electric field of the transmitted or reflected electromagnetic wave from the dielectric substance sample is compared with the spectral spectrum data without the dielectric substance sample to determine the frequency.
  • Phase shift by the dielectric substance is obtained for each The wave number of the coupled wave (coupling wave) of the wave of the pulsed electromagnetic wave incident on the dielectric material from the shift and the wave of the polarization field in the dielectric material is obtained for each frequency, thereby obtaining the combined wave (or polarimetric wave). Ton), and to determine the dielectric dispersion and the static permittivity of the dielectric material from the dispersion relation.
  • the wave number of the coupled wave (coupling wave) of the wave of the pulsed electromagnetic wave incident on the dielectric material from the shift and the wave of the polarization field in the dielectric material is obtained for each frequency, thereby obtaining the combined wave (or polarimetric wave). Ton), and to determine the dielectric dispersion and the static permittivity of the dielectric material from the dispersion relation.
  • the present invention has been made in view of the above-mentioned circumstances, and utilizes the principle of “1” to “12-03” to determine the wave of a pulsed electromagnetic wave incident on a dielectric material and the polarization field in the dielectric material.
  • a method and apparatus for optically measuring the optical property constant of a dielectric substance which can obtain the dispersion relation of a coupled wave (or polariton) by obtaining the wave number of a coupled wave with a wave at each frequency. The purpose is to provide.
  • the present invention uses the principle of THz-TDS to calculate the wave number of a combined wave of the wave of the pulsed electromagnetic wave incident on the dielectric material and the wave of the polarization field in the dielectric material for each frequency.
  • the dielectric dispersion of the dielectric substance ⁇ the static dielectric constant (dielectric constant and dielectric loss) can be determined from the dispersion relation. It is an object of the present invention to provide a method and an apparatus for optically measuring the optical physical constants of the above.
  • the present invention relates to a ferroelectric memory and a ferroelectric field effect transistor (MF IS FET: Ferroelectric-Insulator-Semiconductor FET)) including: It is used to automatically measure the dielectric constant (dielectric constant and dielectric loss) of the dielectric material that is a component of the electronic device during the process.
  • MF IS FET Ferroelectric-Insulator-Semiconductor FET
  • TH z The optical property constant of the dielectric material using the principle of TDS. The purpose is to provide a measuring device.
  • a ferroelectric memory In addition, a ferroelectric memory, a ferroelectric field effect transistor, and an elastic surface that incorporate an optical measurement device for the optical physical constant of a dielectric material using the principle of THz-TDS, which can automatically measure the dielectric constant of a dielectric material. It is an object of the present invention to provide a manufacturing process system for an electronic device including a wave filter, a dielectric ceramic filter, and a multilayer ceramic capacitor. Disclosure of the invention
  • the present invention for achieving the above object has the following configuration.
  • the method for optically measuring the optical property constant of a dielectric material according to claim 1 includes the steps of: injecting a pulsed electromagnetic wave having a continuous spectrum distribution including a frequency range of a terahertz range into a dielectric material; Alternatively, the time waveform of the electric field intensity of the transmitted electromagnetic wave is measured, and the time waveform of the electric field intensity is subjected to Fourier transform to obtain spectral spectrum data on the amplitude and phase, and the spectral spectrum on the obtained amplitude and phase is obtained.
  • a phase shift due to the dielectric substance was obtained for each frequency, and the phase shift was applied to the dielectric substance from the phase shift. It is characterized in that a dispersion curve of the coupled wave is obtained by obtaining, for each frequency, a coupled wave of the pulsed electromagnetic wave and the polarization field in the dielectric substance.
  • the optical measurement method of the optical physical constant of the dielectric substance according to claim 2 is the optical measurement method of the optical physical constant of the dielectric substance according to claim 1, It is characterized in that the dielectric dispersion is determined.
  • the electromagnetic wave (which is the basic physical property of the dielectric material) Information about the properties of dielectric polarization due to the electric field.
  • MFIS Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static dispersion of ferroelectric thin film used in non-volatile memory devices such as FET, high dielectric constant thin film capacitor (ultra-high integration DRAM), etc.
  • Dielectric constant dielectric constant and dielectric loss
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined.
  • the complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined. It can determine the complex dielectric constant and dielectric loss variance of the piezoelectric material used in ultrasonic sensor (PZT) elements.
  • the dielectric constant and dielectric loss dispersion of a ferroelectric substance used in a pyroelectric infrared sensor element can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of the complex dielectric thin film laminated on the electroluminescent device can be determined.
  • the optical measurement method of the optical property constant of the dielectric substance according to claim 3 is the optical measurement method of the optical property constant of the dielectric substance according to claim 1; It is characterized by determining the static permittivity (dielectric constant and dielectric loss). According to the optical measurement method of the optical physical constant of the dielectric substance, the following effects can be obtained.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined.
  • the complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined.
  • Ultrasonic sensor ( ⁇ ⁇ ⁇ ) The complex dielectric constant and dielectric loss dispersion of the piezoelectric material used in the element can be determined.
  • the dielectric constant and dielectric loss dispersion of a ferroelectric substance used in a pyroelectric infrared sensor element can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of the complex dielectric thin film laminated on the electroluminescent device can be determined. It is possible to determine the phonon polariton dispersion curve and the phonon polariton relaxation constant of the electro-optical crystal used in the electro-optical element.
  • the method for optically measuring the optical property constant of a dielectric substance according to claim 4 is the method for optically measuring the optical property constant of a dielectric substance according to claim 1 or claim 2, wherein the polarization field is a phonon. It is characterized by having been done.
  • F ⁇ RAM, MFIS Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static of ferroelectric thin film used in nonvolatile memory devices such as FET, high dielectric constant thin film capacitor (ultra high integration DRAM), etc.
  • the dielectric constant (dielectric constant and dielectric loss) can be determined.
  • the complex dielectric constant and dielectric loss variance of the ferroelectric thin film used in the ferroelectric gate FET and the static dielectric constant and dielectric loss can be determined.
  • An optical measurement apparatus for measuring the optical property constant of a dielectric substance wherein: an excitation source that generates pulsed excitation light having a predetermined time width at a predetermined frequency; and a pulsed excitation light from the excitation source is irradiated. Then, a pulsed electromagnetic wave radiating element radiating a pulsed electromagnetic wave having a continuous spectrum distribution including a frequency range of a terahertz range and irradiating a dielectric substance to be measured, and a reflected electromagnetic wave from the dielectric substance are radiated.
  • a detecting means for detecting each time-resolved signal of the electric field amplitude of the transmitted electromagnetic wave, and then obtaining time-series data from each time-resolved signal, and performing a Fourier transform process on the time-series data to obtain the reflected electromagnetic wave or the transmitted electromagnetic wave.
  • a signal processing unit for obtaining spectral spectrum data on amplitude and phase; and a unit from the detection unit each time the pulsed excitation light enters the pulsed electromagnetic wave radiation element once.
  • a delay means for delaying the sampling pulse for instructing to take in the time-resolved signal at predetermined time intervals with respect to the pulse excitation light and supplying the sampling pulse to the detection means; and
  • the apparatus further comprising the reflection A phase for determining a phase shift due to the dielectric substance for each frequency by comparing spectral spectrum data on the amplitude and phase of the electromagnetic wave or transmitted electromagnetic wave with the spectral spectrum data without the dielectric substance.
  • a shift determining means, and a wave number for determining, for each frequency, a combined wave number of the wave of the pulsed electromagnetic wave incident on the dielectric material from the phase shift and the wave of the polarization field in the dielectric material.
  • Determining means, and dispersion curve creating means for obtaining a dispersion curve of the wave number and frequency of the coupled wave obtained by the wave number determining means.
  • the optical measuring device for measuring the optical property constant of the dielectric substance, the following operational effects are obtained.
  • the real part (ordinary refractive index) and the imaginary part (absorption constant) of the complex refractive index ⁇ complex Accurate measurement of the real part (normal dielectric constant) and imaginary part (dielectric loss) of the dielectric constant is also possible. Therefore, from the complex refractive index, the complex dielectric constant, and the dispersion curve, it is possible to obtain extensive knowledge on the optical properties of the dielectric substance.
  • dielectric constant dispersion and dielectric loss dispersion Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static of ferroelectric thin film used in nonvolatile memory devices such as F e RAM, MFIS-FET, high dielectric constant thin film capacitor (ultra high integration DRAM)
  • the dielectric constant can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined.
  • the complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined.
  • the dielectric constant and dielectric loss dispersion of a ferroelectric substance used in a pyroelectric infrared sensor element can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of the complex dielectric thin film laminated on the electroluminescent device can be determined.
  • the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 6 is the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 5, further comprising: obtaining from the dispersion curve creating means.
  • the optical measuring device for measuring the optical property constant of the dielectric substance, the following operational effects are obtained.
  • a dielectric constant including a static dielectric constant which is a basic physical property value of a dielectric substance.
  • dielectric constant dispersion and dielectric loss dispersion Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static of ferroelectric thin film used in nonvolatile memory devices such as Fe RAM, MFIS-FET, high dielectric constant thin film capacitor (ultra high integration DRAM), etc.
  • the dielectric constant (dielectric constant and dielectric loss) can be determined.
  • the complex dielectric constant and dielectric loss variance of the ferroelectric thin film used in the ferroelectric gate FET and the static dielectric constant and dielectric loss can be determined.
  • the optical measuring device for optical physical constants of a dielectric substance according to claim 7 is the optical measuring apparatus for optical physical constants of a dielectric substance according to claim 6, wherein the dielectric substance is a constituent element.
  • the method is characterized in that the dielectric constant of the dielectric substance is automatically measured during a manufacturing process of the electronic element.
  • the optical measuring device for optical physical constants of a dielectric substance according to claim 8 is a device according to claim 7.
  • the electronic element is a ferroelectric memory.
  • the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 9 is an optical measurement apparatus for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a ferroelectric field effect. It is a transistor.
  • the optical measurement device for the optical property constant of the dielectric substance according to claim 10 is the optical measurement apparatus for the optical property constant of the dielectric substance according to claim 7, wherein the electronic element is a surface acoustic wave filter. There is a feature.
  • the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 11 is the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a dielectric ceramic filter. There is a feature.
  • the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 12 is the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a multilayer ceramic capacitor. It is characterized by the following.
  • the inspection accuracy of the electronic element is improved.
  • the complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and the static dielectric constant (dielectric constant and dielectric loss) of ferroelectric thin films used in nonvolatile memory devices such as M) can be determined.
  • the dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
  • the dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined.
  • the dielectric constant and the dielectric loss variance of the resonant dielectric ceramic filter can be determined.
  • the complex dielectric constant and dielectric loss variance and the static dielectric constant and dielectric loss of the ferroelectric thin film used in the ferroelectric gate FET can be determined.
  • All measurements are non-contact, i n-s i t LI, and can be performed online and precisely automatically.
  • An electronic device manufacturing process system comprising the dielectric substance according to claim 13 as a component is characterized by incorporating the optical measurement device for the optical physical constant of the dielectric substance according to claim 7. .
  • An electronic device manufacturing process system is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a ferroelectric memory.
  • the electronic device manufacturing process system according to claim 15 is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a ferroelectric field effect transistor.
  • An electronic device manufacturing process system is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a surface acoustic wave filter.
  • An electronic element manufacturing process system is the electronic element manufacturing process system according to claim 13, wherein the electronic element is a dielectric ceramic filter.
  • An electronic device manufacturing process system is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a multilayer ceramic capacitor.
  • the inspection accuracy of the electronic element is improved.
  • the complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and the static dielectric constant (dielectric constant and dielectric loss) of ferroelectric thin films used in nonvolatile memory devices such as M) can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
  • the complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic condenser can be determined.
  • the complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined.
  • Dispersion of dielectric constant and dielectric loss and static dielectric constant and dielectric loss of ferroelectric thin film used for ferroelectric gate FET can be determined.
  • FIG. 1 is a graph showing the relationship between the wave number and the frequency dispersion of polaritons.
  • FIG. 2 is a schematic configuration diagram of a general TH z-TDS incorporated in the optical measurement apparatus for optical physical constants of a dielectric substance according to the present invention.
  • FIG. 3 is a schematic configuration diagram of an embodiment of the pulsed electromagnetic wave radiation element according to the present invention.
  • FIG. 4 is a schematic configuration diagram of an embodiment of the detector according to the present invention.
  • FIG. 5 is an explanatory diagram of a flow of signal processing of a general THz-TDS incorporated in the optical measurement apparatus for optical physical constants of a dielectric substance according to the present invention.
  • Fig. 6 is a graph showing the frequency dependence of the transmittance and phase shift of the electric field strength of the transmitted electromagnetic wave from B i 4 T i 30 and 2 , (a) for a-axis polarization, and (b) b-axis. This is the case for polarized light.
  • Fig. 7 shows (a) the wave number and frequency of the coupled wave in B i 4 T i 3 0 12 in the case of Fig. 6 (a).
  • 6 is a graph showing a dispersion curve of FIG. (B) A graph showing the dispersion curve of the wave number and frequency of the coupled wave in Bi 4 Ti 3 0 12 in the case of FIG. 6 (b).
  • General TH Z are incorporated optical measuring apparatus for an optical property constants of the dielectric material of the present invention in FIG. 2 - shows an overview of the TDS.
  • Reference numeral 1 denotes an excitation source, for example, a laser.
  • the femtosecond laser light L 1 emitted from the excitation source 1 is split by the beam splitter 2.
  • One femtosecond laser pulse is intermittently sent to the pulse electromagnetic wave emitting element 5 by the optical chopper 3 as the pulse excitation light L 1, is focused by the objective lens 4, and irradiates the pulse electromagnetic wave emitting element 5.
  • the pulsed electromagnetic wave radiating element 5 is, for example, a photoconductive element.
  • the terahertz pulse electromagnetic wave L 2 is collimated by the parabolic mirrors 6 and 7 and is irradiated on the dielectric substance 8 as a measurement sample.
  • the transmitted or reflected terahertz electromagnetic wave (here, the transmitted terahertz electromagnetic wave) L3 of the sample 8 is collected by the parabolic mirrors 10 and 11, and guided to the detector (detection means) 12 .
  • the other femtosecond laser is guided to the detector 12 as a sampling pulse light L4.
  • This detector 12 is also a photoconductive element, for example, irradiated with the sampling pulse light L4, becomes conductive only at that moment, and transmits terahertz electromagnetic waves from the sample 8 at that moment (hereinafter, also simply referred to as transmitted electromagnetic waves).
  • the intensity of the L3 electric field can be detected as a current.
  • the photoconductive element for detection detects the current due to the electric field of the transmitted electromagnetic wave L3 from the sample while irradiating the sampling pulsed light L4, but the time width of the sampling divided by the pulsed light is the time of the transmitted electromagnetic wave L3. It is considerably shorter than the width, about several tenths. That is, the irradiation time of the sampling pulse light L4 is shorter than the time from the first part to the last part of the transmitted electromagnetic wave L3. Therefore, the current flowing through the sampling photoconductive element during the irradiation with the pulsed light L 4 is the electric field of the transmitted electromagnetic wave L 3.
  • Each time-resolved data of the electric field strength of the transmitted terahertz electromagnetic wave of the sample 8 is processed by the signal processing means. That is, the data is transmitted to the computer 17 via the lock-in amplifier 16 and is sequentially stored as time-series data. A series of time-series data is subjected to Fourier transform processing by the computer 17 to obtain a frequency (frequency). By converting the space into space, a spectral spectrum of the amplitude and phase of the transmitted terahertz electromagnetic wave of the sample 8 can be obtained.
  • the pump source 1 is, for example, a mode-locked, erbium (Er) -doped fiber laser.
  • This mode-locked fiber laser 1 transmits, for example, an average power of 1 OmW, pulsed excitation light 1 at a wavelength of 780 nm, a time width of 120 fms, and a repetition frequency of 48.5 MHz.
  • the time width of the pulsed excitation light generated from the excitation source is set to 6 femto to 170 femtoseconds or less. More preferably, it is 15 to 70 Fm seconds. Most preferably, it is 30 femtoseconds.
  • the terahertz radiation electromagnetic wave L2 generated from the pulsed radiation device 5 is almost Includes light from millimeter to far infrared wavelengths in the wavenumber range 0 to 196 cm- 1 .
  • the terahertz radiation electromagnetic wave L2 generated from the pulsed radiation device 5 has an almost wave number range of 0 to 5556 cm— It includes near infrared light from 1 millimeter wave (as the excitation source, the electron beam oscillator, for example orbital radiation source (SOR), light ⁇ ring synchrotron radiation (P b SR) or the like can also be used.
  • the excitation source for example orbital radiation source (SOR), light ⁇ ring synchrotron radiation (P b SR) or the like can also be used.
  • the pulsed electromagnetic wave radiation element 5 for example, as shown in FIG. 3, a photoconductive switch element 31 having a dipole antenna structure formed on a silicon lens ZTL-GaAs substrate 30 is used. Then, in order to generate the terahertz radiation light L2, such a pulsed electromagnetic wave radiation element 5 is irradiated with the pulse excitation light L1, and the electron-hole free carriers are generated. By inducing the rear and modulating the ultra-high-speed current, the terahertz radiation is emitted and 2 is obtained. That is, when the pulse electromagnetic wave radiating element 5 to which the bias current is applied is irradiated with the pulse excitation light L1, the electric field fluctuates.
  • the pulsed electromagnetic wave emitting element 5 may be a bulk InAs (100) crystal.
  • the lattice plane (100) of the crystal is cut out of I n As (100), and has excellent electromagnetic wave radiation performance as compared with gallium arsenide (G a As).
  • the lattice plane (100) is irradiated with the pulsed excitation light L1, the terahertz radiation electromagnetic wave L2 is evenly generated in the entire radiation direction. Also, I 0 ⁇ 83 may be satisfied.
  • the pulsed electromagnetic wave emitting element 5 may be an electro-optical element, or may use an asymmetric double quantum well structure or a superlattice structure.
  • FIG. 4 shows a schematic diagram of the detector 12.
  • a photoconductive switch element 31 having a dipole antenna structure formed on a silicon lens ZTL-GaAs substrate 30 is also used for the detector 12 shown in FIG.
  • the detector 12 may be an electro-optical element.
  • Each of the delay means 13 and 14 outputs a sampling pulse for instructing to take in predetermined time-resolved data from the detector 12 each time the pulsed excitation light enters the pulsed electromagnetic wave emitting element 5 once.
  • the excitation light is supplied to the detector 12 with a delay at a predetermined time interval.
  • the delay means 13 and 14 control the time delay by, for example, an optical path difference sweeping stage.
  • the pulsed light emitted from the pulsed electromagnetic wave radiating element and having a continuous spectrum distribution including the frequency range of the terahertz region has a time waveform of the electric field strength as shown in the following equation shown in FIG. 5 (a).
  • the electric field strength E aa (t) of the transmitted light having such a time waveform is, for example, pumped into the photoconductive gap by sampling / pulsed light L4 using a detector 12 similar to the pulsed electromagnetic wave emitting element 5.
  • the detected carrier (number: N (t)) is detected as a flow (current).
  • the current density I (t) is the convolution of E aa (t) and the number of excited carriers N (t), that is,
  • I is the delay time difference between the sampling and the pulse light L4, and the delay time difference !: is scanned by a computer 17, an optical path difference sweeping stage 13 or the like, so that the sample transmits (reflects) the electric field strength of the electromagnetic wave. Is detected as the time axis signal I of the current intensity.
  • the intensity of the sample transmitted electromagnetic wave L 3 is optically sampled at an extremely short time interval by the sampling light L 4 synchronized with the pulse excitation light L 1 and delayed by a predetermined time ⁇ (see FIG. 5 (c)), and are detected as time-resolved signals of the electric field strength of the sample transmitted electromagnetic wave L3.
  • time-series data (t) represented by the following equation is obtained as shown in FIG. 5 (d).
  • ⁇ , ⁇ ( ⁇ ) ( ⁇ and c are the real part (normal refractive index) and the imaginary part (absorption constant) of the complex refractive index) incident on the dielectric material for each frequency. It is a quantity corresponding to the transmittance of the pulsed electromagnetic wave, and ⁇ , ⁇ ( ⁇ ) is the phase shift caused by the dielectric substance at each frequency.
  • phase shift determining means compares the spectral spectrum data on the amplitude and phase of the transmitted electromagnetic wave (reflected electromagnetic wave) with the spectral spectrum data without the dielectric substance, and compares the phase shift 0n, ( ⁇ ) is determined.
  • the wave number determining means determines, for each frequency, the wave number of a coupled wave (or polariton) of the wave of the pulsed electromagnetic wave incident on the dielectric material and the wave of the polarization field in the dielectric material from the phase shift. I do. Where the wave number of the coupled wave is the phase shift 0 ⁇ , It can be determined from ⁇ ( ⁇ ) and the thickness of the sample.
  • the thus obtained wave number for each frequency of the coupled wave is plotted as a wave number on the horizontal axis and a frequency on the vertical axis (or vice versa) by the dispersion curve creating means. Obtain a dispersion curve with frequency.
  • the dielectric constant determining means determines the static dielectric constant of the dielectric substance from the dispersion curve of the obtained wave number and frequency of the coupled wave.
  • the optical measurement apparatus for the optical physical constant of a dielectric substance used in the evaluation of the static dielectric constant of the dielectric substance of the present invention is an electronic device having a dielectric substance as a constituent element, for example, a ferroelectric memory, To automatically measure the static permittivity of the dielectric material constituting the electronic element during the manufacturing process such as a dielectric field effect transistor, a surface acoustic wave filter, a dielectric ceramic filter, and a multilayer ceramic capacitor. It can be used for In addition, all products can be tested for permittivity in real time.
  • the optical measurement device for measuring the optical property constant of a dielectric substance used for evaluating the static dielectric constant of the dielectric substance of the present invention is an electronic element having the dielectric substance as a constituent element, for example, a ferroelectric memory, It can also be incorporated into production lines such as ferroelectric field effect transistors, surface acoustic wave filters, dielectric ceramic filters, and multilayer ceramic capacitors. In this case, there is no need to take out the electronic element from the electronic element production line and measure the dielectric constant offline, thereby dramatically improving production efficiency. In addition, all products can be tested for permittivity in real time.
  • the B i 4 Ti 3 0 12 sample used was grown in a plane perpendicular to the c-axis, and its dimensions were 15 x 15 mm 2 and a single crystal with a thickness of 2 25 m. It is a thin film.
  • Single crystal thin film of the B i 4 T i 3 0, 2 has a cleavage property to the surface.
  • the excitation source using fiber laser mode-locked erbium (E r) Doping occurring at a frequency 4 8 MH Z repeated Fuwemuto seconds excitation pulse light output of the wavelength 7 8 0 nm, 2 0 mW .
  • Pulsed light that emits pulsed measurement light incident on the sample A photoconductive switch element made of GaAs grown at low temperature was used as the magnetic wave emitting element.
  • An excitation pulse from a mode-locked erbium-doped fiber laser was focused on a photoconductive switch element by an objective lens. Pulse electromagnetic wave photoconductive switch element is emitted is incident to the B i 4 T i 3 0, 2 cleavage plane of the single crystal thin film samples was measured the transmitted electromagnetic waves.
  • a photoconductive switch element made of GaAs grown at low temperature was also used as a detector for transmitted electromagnetic waves.
  • the sampling pulse light pulse light obtained by splitting the incident excitation pulse light from a mode-locked erbium-doped fiber laser with a beam splitter was used, and the gate for detecting the electric field signal of the transmitted light from the sample was opened and closed. All optics and samples were placed in a vacuum chamber to reduce absorption by water vapor. The measurement was performed at room temperature.
  • B i 4 T i 3 0 12 is Berobusukai Bok structure monoclinic at room temperature, the direction of spontaneous polarization is about 4. 5 ° inclined to the a-axis is monoclinic Akirajiku direction .
  • Figures 6 (a) and (b) show. Black circles indicate transmittance, and white circles indicate phase shift.
  • this material is understood to have an opaque region from 22 cm- 1 to 36 CM_ 1.
  • the A 'mode indicates that there is a band gap in which no phonon exists in this region.
  • the phase shift of the white circle it can be seen that go suddenly delayed from 22 cm_ 1 36 cm- in one of the band gap edge near neighbor.
  • FIGS. 7 (a) and (b) respectively, Figure 6 (a) and (b) phase shift by the dielectric material for each frequency shown in 0n, (sigma) and B i 4 T i 3 0 12 monocrystal
  • the wave number of the combined wave of the pulsed electromagnetic wave incident on the sample and the polarization field wave in the sample is determined for each frequency, and plotted as the wave number on the horizontal axis and the frequency on the vertical axis. It also shows the dispersion relationship between the wave number and frequency of the coupled wave. This dispersion relationship agrees well with the dispersion curve when the polarization field in the sample is phononed.
  • the present invention provides an optical measurement method of an optical physical constant of a dielectric substance, which can determine a dielectric dispersion of the dielectric substance ⁇ a static dielectric constant (dielectric constant and dielectric loss), an apparatus thereof, and an apparatus incorporating the same. It can be used to measure optical physical constants of various dielectric materials as a manufacturing system.

Abstract

An optical measuring method characterized by comprising the steps of obtaining spectroscopic spectrum data on the amplitude and phase by Fourier-transforming the time waveform of the field intensity of a reflected or transmitted electromagnetic wave from a dielectric substance by THz-TDS determining the phase shift by the dielectric substance for each frequency by comparing the spectroscopic spectrum data obtained on the amplitude and phase with the spectroscopic spectrum data of when the dielectric substance is not placed, and acquiring the dispersion curve of a coupled wave of the wave motion of a pulse electromagnetic wave incident on the dielectric substance and the wave motion of the polarized field in the dielectric substance by determining the wave number of the coupled wave for each frequency from the phase shift.

Description

明細書 誘電体物質の光物性定数の光学的測定方法及びその装置並びにその装置を組み込 んだ製造システム 技術分野  TECHNICAL FIELD The present invention relates to a method and an apparatus for optically measuring an optical physical constant of a dielectric substance, and a manufacturing system incorporating the apparatus.
本発明は、 誘電体物質の光物性定数の光学的測定方法及びその装置並びにその 装置を組み込んだ製造システムに関するものである。 背景技術  The present invention relates to a method and an apparatus for optically measuring an optical physical constant of a dielectric substance, and a manufacturing system incorporating the apparatus. Background art
近年、 強誘電体薄膜を用いた機能性電子素子、 特に強誘電体メモリ (F e R A M: Ferroe l ectr i c Randam Accsess Memory) ¾:代表とする半导体メモリ素子の実 用化研究が精力的に行われている。  In recent years, functional electronic devices using ferroelectric thin films, especially ferroelectric memories (FerRAMs: Ferroelectric Randam Accsess Memory) have been actively researched for practical use of semiconductor memory devices as a representative. Have been done.
前記 F e R A Mは、 強誘電体の分極状態のスィツチング現象を利用したメモリ 素子であり、 従来困難であった高速動作と不揮発性とが同時に達成できることに 加え、 低電圧駆動も可能とされている。 従って、 携帯電話、 パソコン、 I Cカー ド等の小型化■モパイル化に有効なメモリとして期待されている。  The Fe RAM is a memory element utilizing a switching phenomenon of a ferroelectric polarization state. In addition to being able to simultaneously achieve high-speed operation and non-volatility, which have been difficult in the past, low-voltage driving is also possible. . Therefore, it is expected to be an effective memory for miniaturizing mobile phones, personal computers, and IC cards.
ところで、 上記電子素子を構成する強誘電体薄膜の物性のうち特にその誘電率 は、 素子の性能 (メモリ素子の場合、 そのメモリ性能) を左右する重要な基本物 性のうちの一つである。 そのため、 実際の素子の製造においては、 形成された強 誘電体薄膜の誘電率を何らかの手段で評価■検査することは必要不可欠な工程で 誘電率は、 誘電体に入射した光 (電磁波) に関する誘電体の応答の仕方を示す 量であり、 その光の周波数に依存する量であるが、 強誘電体薄膜を用いた電子素 子においては、 低周波数の誘電率、 特にその低周波数極限である周波数 0に対す る誘電率 (静的誘電率) が重要である。  By the way, among the physical properties of the ferroelectric thin film constituting the electronic element, the dielectric constant is one of the important basic physical properties that influence the performance of the element (in the case of a memory element, its memory performance). . Therefore, in the actual manufacture of devices, it is essential to evaluate and inspect the dielectric constant of the formed ferroelectric thin film by some means, and the dielectric constant is the dielectric constant of light (electromagnetic waves) incident on the dielectric. It is an amount that indicates how the body responds, and is an amount that depends on the frequency of the light. The dielectric constant for 0 (static dielectric constant) is important.
この静的誘電率は、 理論的にはポラリ トンの波数一周波数分散曲線において、 周波数 0における接線から得ることができる。 ここで、 ポラリ トンとは、 誘電体 に電磁波を入射した場合、 その電磁波の波動と誘電体の分極場の波動とが結合し て連成波 (結合波) を発生することが知られているが、 この連成波を量子化した ものである。 This static permittivity can be theoretically obtained from the tangent at frequency 0 in the polariton wavenumber-frequency dispersion curve. Here, the polariton means that when an electromagnetic wave is incident on a dielectric, the wave of the electromagnetic wave is combined with the wave of the polarization field of the dielectric. It is known to generate a coupled wave (combined wave), but this coupled wave is quantized.
以下に、 ポラリトン (あるいは連成波) の波数一周波数分散曲線から静的誘電 率を決定する原理について概説する。  The principle of determining the static permittivity from the wave number-frequency dispersion curve of polaritons (or coupled waves) is outlined below.
電磁波と結合する誘電体の分極場が特にフオノン場である場合には、 前記ボラ リトンは特にフオノンポラリトンという。 以下に示すのはフオノンポラリトンの 場合であるが、 原理的には他のポラリトンについても同様の手法で波数一周波数 分散関係から静的誘電率を求めることができる。 例えば励起子ポラリトンの場合 はその重心運動が無視できなくなるので、 波数一周波数分散関係においてその重 心運動を考慮して、 静的誘電率を求めることができる。  When the polarization field of the dielectric substance that couples with the electromagnetic wave is particularly a phonon field, the boralitons are particularly called phonon polaritons. The following shows the case of phonon polaritons. In principle, the static permittivity of other polaritons can be obtained from the wave number-frequency dispersion relationship by the same method. For example, in the case of exciton polaritons, the centroid motion cannot be ignored, and the static permittivity can be obtained by considering the centroid motion in the wave number-frequency dispersion relationship.
ンポラリ トンの波数一周波数分散関係は、 通常、  The wave number-frequency dispersion relationship of a polariton is usually
L 2  L 2
2 Two
k ) = 一 (00) ヽ  k) = one (00) ヽ
c w c w
ノ と表され、 横軸に波数ベクトル、 縦軸に角周波数をとると図 1において実線で示 すような曲線のグラフとなる。 ここで、 kは連成波の波数、 ωは連成波の角周波 数、 cは光速、 ε (∞) は角周波数無限大に対する誘電率、 は光学縦波フオノ ンの角周波数、 ω τは光学横波フオノンの角周波数である。 When the horizontal axis represents the wave number vector and the vertical axis represents the angular frequency, a graph shown by the solid line in FIG. 1 is obtained. Here, k is the wave number of the coupled wave, ω is the angular frequency of the coupled wave, c is the speed of light, ε (∞) is the permittivity for angular frequency infinity, is the angular frequency of the optical longitudinal wave phonon, ω τ Is the angular frequency of the optical shear wave phonon.
低周波数 ω < < ω " ω τの場合には、 上式は For low frequency ω << ω ω τ , the above equation becomes
Figure imgf000004_0001
となる。
Figure imgf000004_0001
Becomes
また、 振動子が複数ある場合には,
Figure imgf000005_0001
となる。 以下、 振動子が単数の場合について説明する。
If there are multiple transducers,
Figure imgf000005_0001
Becomes Hereinafter, a case in which the number of transducers is one will be described.
ここで、 リディンーザックス一テラー (L y d d a n e— S a c h s— T e I e r ) の関係式  Where Riddin-Sachs-Teller (L y d d a n e— S a c h s— T e I e r)
s(0) s (0)
(00) ^ノ  (00) ^ ノ
を用いると、
Figure imgf000005_0002
C
With,
Figure imgf000005_0002
C
を得る。 ここで、 ω (0) は静的誘電率である。 Get. Where ω (0) is the static permittivity.
低周波数では、 ポラリトンの波数 kと連成波の角周波数 ωとは比例関係を有す る。 つまり、 静的誘電率 ω (0) が ω = 0における接線の傾きと評価できること を示している。  At low frequencies, the wave number k of the polariton and the angular frequency ω of the coupled wave have a proportional relationship. In other words, the static permittivity ω (0) can be evaluated as the slope of the tangent at ω = 0.
従って、 誘電体に入射された光 (電磁波) の波動と誘電体物質内の分極場の波 動との連成波あるいはポラリ トンの波数一周波数分散関係を何らかの測定手段に よって評価することができれば、 誘電体物質の静的誘電率を求めることができる t 一方、 近年、 テラへルツ (T H Z) 近傍の電磁波に対する誘電体物質の応答を 測定する方法として、 T H z— T DS (T i m e D oma i n S p e c t r o s c o p y) と称される新しいタイプの赤外分光装置が開発された。 以下に、 こ の T H z— T D Sの原理の概略を説明する。 Therefore, it is necessary to evaluate the coupled wave between the wave of light (electromagnetic wave) incident on the dielectric and the wave of the polarization field in the dielectric material or the wave number-frequency dispersion relationship of the polariton by some measuring means. if possible, whereas t can be determined static dielectric constant of the dielectric material, in recent years, as a method for measuring the response of the dielectric material to the electromagnetic wave Ruth (TH Z) near to Terra, TH z- T DS (T ime A new type of infrared spectrometer, called Doma in Specroscopy, has been developed. Below, An outline of the principle of TH z—TDS will be explained.
励起源から所定の時間幅のパルス励起光を所定の周波数で発生して、 パルス電 磁波放射素子に照射する。 パルス励起光が照射されたパルス電磁波放射素子は、 テラへルツ域の周波数範囲を含む連続スぺクトル分布を有するパルス電磁波を放 射するが、 この放射パルス電磁波を集束して測定する試料に入射する。 そして、 検出手段によって試料からの反射電磁波又は透過電磁波の電場強度の各時間分解 信号を検出する。 ここで、 各時間分解信号の検出は、 パルス励起光がパルス電磁 波放射素子に一回入射するごとに、 遅延手段によって、 パルス励起光に対し所定 の時間間隔づっ遅延させて行うように構成されている。 こうして前記各時間分解 信号から時系列データ、 すなわち、 反射電磁波又は透過電磁波の電場強度の時間 波形を得る。 この時間波形をフーリエ変換処理し、 試料を挿入しない場合とを比 較することにより、 テラへルツ電磁波領域を含む広い周波数にわたる反射電磁波 又は透過電磁波の強度の透過率■位相シフ卜についての分光スぺクトルを得る。 また、 T H Z— T D Sにょって、 複素屈折率の実部 (通常の屈折率) 及び虚部A pulse excitation light having a predetermined time width is generated at a predetermined frequency from an excitation source, and is applied to the pulsed electromagnetic wave emitting element. The pulsed electromagnetic wave radiating element irradiated with the pulsed excitation light emits a pulsed electromagnetic wave having a continuous spectrum distribution including a frequency range in the terahertz range, and the radiated pulsed electromagnetic wave is focused on a sample to be measured. I do. Then, each time-resolved signal of the electric field strength of the reflected or transmitted electromagnetic wave from the sample is detected by the detecting means. Here, each time-resolved signal is detected such that the pulse excitation light is delayed by a predetermined time interval with respect to the pulse excitation light by the delay means each time the pulse excitation light is incident on the pulsed electromagnetic wave radiation element once. ing. In this way, time series data, that is, a time waveform of the electric field strength of the reflected electromagnetic wave or the transmitted electromagnetic wave is obtained from each of the time-resolved signals. This time waveform is subjected to Fourier transform processing, and the case where no sample is inserted is compared with the case where no sample is inserted. Get a vector. Also, according to TH Z — TDS, the real part (normal refractive index) and the imaginary part of the complex refractive index
(吸収定数) ゃ複素誘電率の実部 (通常の誘電率) 及び虚部 (誘電損失) の計測 も可能である。 (Absorption constant) 実 It is also possible to measure the real part (normal dielectric constant) and imaginary part (dielectric loss) of complex permittivity.
本発明に係る発明者は、 この新しいタィプの赤外分光装置である T H Z— T D Sが非常に短い時間幅の試料からの透過電磁波又は反射電磁波の電場強度の時系 列分布 (時間波形) を得ることができる能力に注目し、 鋭意検討の結果、 T H z 一 T D Sの主要部を利用して、 誘電体物質の誘電率 (誘電定数及び誘電損失) を 評価することが可能であることに想到したものである。 すなわち、 従来の赤外分 光装置は、 試料からの透過光又は反射光の強度 (あるいは強度の透過率) の分光 スぺクトルデータを得ることはできたが強度の位相についての分光スぺクトルデ —タを得ることはできなかったのに対して、 T H z— T D Sでは試料からの透過 電磁波又は反射電磁波の強度の分光スぺクトルデータでけでなく電場の振幅とそ の位相についての分光スぺクトルデータを得ることができることに注目した。 そ して、 誘電体物質試料からの透過電磁波又は反射電磁波の電場の振幅及び位相に ついての分光スぺクトルデータを誘電体物質試料がない場合の分光スぺクトルデ ータと比較して各周波数毎に前記誘電体物質による位相シフ卜を求め、 その位相 シフ卜から誘電体物質に入射されたパルス電磁波の波動と誘電体物質内の分極場 の波動との連成波 (結合波) の波数を各周波数毎に求めることによってその連成 波 (あるいはポラリ トン) の分散関係を得ること、 さらにその分散関係から誘電 体物質の誘電分散及び静的誘電率を決定することに想到したのである。 The inventor of the present invention has proposed that this new type of infrared spectrometer, TH Z — TDS, shows the time series distribution (time waveform) of the electric field intensity of transmitted or reflected electromagnetic waves from a sample with a very short time width. Focusing on the capabilities that can be obtained, as a result of diligent studies, we came to the conclusion that it is possible to evaluate the dielectric constant (dielectric constant and dielectric loss) of dielectric materials using the main part of THz-TDS. It was done. In other words, the conventional infrared spectrometer was able to obtain spectral spectrum data of the intensity of the transmitted light or reflected light from the sample (or the transmittance of the intensity), but the spectral spectrum data of the phase of the intensity was obtained. Data could not be obtained, whereas the THz-TDS could not only use the spectral spectrum data of the intensity of the transmitted or reflected electromagnetic waves from the sample, but also the spectral amplitude of the electric field and its phase. We noticed that vector data can be obtained. Then, the spectral spectrum data on the amplitude and phase of the electric field of the transmitted or reflected electromagnetic wave from the dielectric substance sample is compared with the spectral spectrum data without the dielectric substance sample to determine the frequency. Phase shift by the dielectric substance is obtained for each The wave number of the coupled wave (coupling wave) of the wave of the pulsed electromagnetic wave incident on the dielectric material from the shift and the wave of the polarization field in the dielectric material is obtained for each frequency, thereby obtaining the combined wave (or polarimetric wave). Ton), and to determine the dielectric dispersion and the static permittivity of the dielectric material from the dispersion relation.
本発明は、 上述した事情に鑑みてなされたもので、 丁1"12—丁03の原理を利 用して、 誘電体物質に入射されたパルス電磁波の波動と誘電体物質内の分極場の 波動との連成波の波数を各周波数毎に求めることによってその連成波 (あるいは ポラリ トン) の分散関係を得ることができる誘電体物質の光物性定数の光学的測 定方法及びその装置を提供することを目的とする。  The present invention has been made in view of the above-mentioned circumstances, and utilizes the principle of “1” to “12-03” to determine the wave of a pulsed electromagnetic wave incident on a dielectric material and the polarization field in the dielectric material. A method and apparatus for optically measuring the optical property constant of a dielectric substance, which can obtain the dispersion relation of a coupled wave (or polariton) by obtaining the wave number of a coupled wave with a wave at each frequency. The purpose is to provide.
さらに、 本発明は、 TH z— TDSの原理を利用して、 誘電体物質に入射され たパルス電磁波の波動と誘電体物質内の分極場の波動との連成波の波数を各周波 数毎に求めることによってその連成波 (あるいはポラリ トン) の分散関係を得、 その分散関係から誘電体物質の誘電分散■静的誘電率 (誘電定数及び誘電損失) を決定することができる誘電体物質の光物性定数の光学的測定方法及びその装置 を提供することを目的とする。  Further, the present invention uses the principle of THz-TDS to calculate the wave number of a combined wave of the wave of the pulsed electromagnetic wave incident on the dielectric material and the wave of the polarization field in the dielectric material for each frequency. By obtaining the dispersion relation of the coupled wave (or polariton) by calculating the above, the dielectric dispersion of the dielectric substance ■ the static dielectric constant (dielectric constant and dielectric loss) can be determined from the dispersion relation. It is an object of the present invention to provide a method and an apparatus for optically measuring the optical physical constants of the above.
また、 本発明は、 強誘電体メモリ及び強誘電体電界効果トランジスタ (MF I S FET : Metaト Ferroelectric - Insulator - Semiconductor FET) ) ¾:含む 1¾電 体物質を構成要素とする電子素子の製造プロセスの工程中に当該電子素子の構成 要素である誘電体物質の誘電率 (誘電定数及び誘電損失) を自動測定するために 用いる TH z— TDSの原理を利用した誘電体物質の光物性定数の光学的測定装 置を提供することを目的とする。  Further, the present invention relates to a ferroelectric memory and a ferroelectric field effect transistor (MF IS FET: Ferroelectric-Insulator-Semiconductor FET)) including: It is used to automatically measure the dielectric constant (dielectric constant and dielectric loss) of the dielectric material that is a component of the electronic device during the process. TH z—The optical property constant of the dielectric material using the principle of TDS. The purpose is to provide a measuring device.
また、 誘電体物質の誘電率を自動測定できる TH z— TDSの原理を利用した 誘電体物質の光物性定数の光学的測定装置を組み込んだ強誘電体メモリ、 強誘電 体電界効果トランジスタ、 弾性表面波フィルタ、 誘電体セラミックフィルタ、 及 び積層セラミックコンデンサを含む電子素子の製造プロセスシステムを提供する ことを目的とする。 発明の開示  In addition, a ferroelectric memory, a ferroelectric field effect transistor, and an elastic surface that incorporate an optical measurement device for the optical physical constant of a dielectric material using the principle of THz-TDS, which can automatically measure the dielectric constant of a dielectric material. It is an object of the present invention to provide a manufacturing process system for an electronic device including a wave filter, a dielectric ceramic filter, and a multilayer ceramic capacitor. Disclosure of the invention
上記目的を達成するための本発明は、 以下の構成を採用した。 請求項 1に記載の誘電体物質の光物性定数の光学的測定方法は、 テラへルツ域 の周波数範囲を含む連続スぺクトル分布を有するパルス電磁波を誘電体物質に入 射し、 その反射電磁波又は透過電磁波の電場強度の時間波形を測定し、 その電場 強度の時間波形をフーリエ変換することによって振幅及び位相についての分光ス ぺクトルデータを得て、 得られた振幅及び位相についての分光スぺクトルデータ を前記誘電体物質がない場合の分光スぺクトルデータと比較して各周波数毎に前 記誘電体物質による位相シフ卜を求め、 その位相シフ卜から前記誘電体物質に入 射されたパルス電磁波の波動と前記誘電体物質内の分極場の波動との連成波の波 数を各周波数毎に求めることによってその連成波の分散曲線を得ることを特徴と する。 The present invention for achieving the above object has the following configuration. The method for optically measuring the optical property constant of a dielectric material according to claim 1 includes the steps of: injecting a pulsed electromagnetic wave having a continuous spectrum distribution including a frequency range of a terahertz range into a dielectric material; Alternatively, the time waveform of the electric field intensity of the transmitted electromagnetic wave is measured, and the time waveform of the electric field intensity is subjected to Fourier transform to obtain spectral spectrum data on the amplitude and phase, and the spectral spectrum on the obtained amplitude and phase is obtained. By comparing the spectrum data with the spectral spectrum data in the absence of the dielectric substance, a phase shift due to the dielectric substance was obtained for each frequency, and the phase shift was applied to the dielectric substance from the phase shift. It is characterized in that a dispersion curve of the coupled wave is obtained by obtaining, for each frequency, a coupled wave of the pulsed electromagnetic wave and the polarization field in the dielectric substance.
請求項 2に記載の誘電体物質の光物性定数の光学的測定方法は、 請求項 1に記 載の誘電体物質の光物性定数の光学的測定方法において、 前記分散曲線から前記 誘電体物質の誘電分散を決定することを特徴とする。  The optical measurement method of the optical physical constant of the dielectric substance according to claim 2 is the optical measurement method of the optical physical constant of the dielectric substance according to claim 1, It is characterized in that the dielectric dispersion is determined.
請求項 1及び請求項 2に記載の誘電体物質の光物性定数の光学的測定方法によ れば、 以下のような作用効果を得る。  According to the optical measurement method of the optical physical constant of the dielectric substance described in claim 1 and claim 2, the following operation and effect can be obtained.
誘電体物質に入射されたパルス電磁波の波動と前記誘電体物質内の分極場の波 動との連成波の波数と周波数との分散曲線から、 誘電体物質についてその基本物 性である電磁波 (電場) による誘電分極の特性についての情報を知得することが できる。  From the dispersion curve of the wave number and frequency of the coupled wave between the wave of the pulsed electromagnetic wave incident on the dielectric material and the wave of the polarization field in the dielectric material, the electromagnetic wave (which is the basic physical property of the dielectric material) Information about the properties of dielectric polarization due to the electric field.
F e R A M. M F I S— F E T、 高誘電率薄膜キャパシタ (超高集積 D R A M) 等の不揮発メモリ素子に使われている強誘電体薄膜の複素誘電分散 (誘電定 数分散と誘電損失分散) 及び静的誘電率 (誘電定数と誘電損失) を決定すること ができる。  F e RA M. MFIS—Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static dispersion of ferroelectric thin film used in non-volatile memory devices such as FET, high dielectric constant thin film capacitor (ultra-high integration DRAM), etc. Dielectric constant (dielectric constant and dielectric loss) can be determined.
テラへルツ帯弾性表面波フィルタの複素誘電定数分散及び誘電損失分散を決定 することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
積層セラミックコンデンサなどの機能性セラミック素子中の誘電体物質の複素 誘電定数分散及び誘電損失分散を決定することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined.
共振型誘電セラミックフィルタの複素誘電定数及び誘電損失分散を決定するこ とができる。 超音波センサ (P Z T ) 素子に使われている圧電物質の複素誘電定数及び誘電 損失分散を決定することができる。 The complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined. It can determine the complex dielectric constant and dielectric loss variance of the piezoelectric material used in ultrasonic sensor (PZT) elements.
焦電式赤外センサ素子に使われている強誘電体物質の誘電定数及び誘電損失分 散を決定することができる。  The dielectric constant and dielectric loss dispersion of a ferroelectric substance used in a pyroelectric infrared sensor element can be determined.
エレクト口ルミネセンス素子に積層された複素誘電体薄膜の複素誘電定数分散 及び誘電損失分散を決定することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of the complex dielectric thin film laminated on the electroluminescent device can be determined.
測定は、 全て非接触、 i n— s i t u、 オンラインで精密自動で行うことがで きる。  All measurements are non-contact, in-situ, on-line and can be performed automatically and precisely.
請求項 3に記載の誘電体物質の光物性定数の光学的測定方法は、 請求項 1に記 載の誘電体物質の光物性定数の光学的測定方法において、 前記分散曲線から前記 誘電体物質の静的誘電率 (誘電定数と誘電損失) を決定することを特徴とする。 この誘電体物質の光物性定数の光学的測定方法によれば、 以下のような作用効 果を得る。  The optical measurement method of the optical property constant of the dielectric substance according to claim 3 is the optical measurement method of the optical property constant of the dielectric substance according to claim 1; It is characterized by determining the static permittivity (dielectric constant and dielectric loss). According to the optical measurement method of the optical physical constant of the dielectric substance, the following effects can be obtained.
F e R A M , M F I S— F E T、 高誘電率薄膜キャパシタ (超高集積 D R A Μ) 等の不揮発メモリ素子に使われている強誘電体薄膜の複素誘電分散 (誘電定 数分散と誘電損失分散) 及び静的誘電率 (誘電定数と誘電損失) を決定すること ができる。  Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) of ferroelectric thin films used in nonvolatile memory devices such as FeRAM, MFIS-FET, high dielectric constant thin film capacitors (ultra high integration DRA II), and static Dielectric constant (dielectric constant and dielectric loss) can be determined.
テラへルツ帯弾性表面波フィルタの複素誘電定数分散及び誘電損失分散を決定 することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
積層セラミックコンデンサなどの機能性セラミック素子中の誘電体物質の複素 誘電定数分散及び誘電損失分散を決定することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined.
共振型誘電セラミックフィルタの複素誘電定数及び誘電損失分散を決定するこ とができる。  The complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined.
超音波センサ (Ρ Ζ Τ ) 素子に使われている圧電物質の複素誘電定数及び誘電 損失分散を決定することができる。  Ultrasonic sensor (Ρ Ζ Τ) The complex dielectric constant and dielectric loss dispersion of the piezoelectric material used in the element can be determined.
焦電式赤外センサ素子に使われている強誘電体物質の誘電定数及び誘電損失分 散を決定することができる。  The dielectric constant and dielectric loss dispersion of a ferroelectric substance used in a pyroelectric infrared sensor element can be determined.
エレクト口ルミネセンス素子に積層された複素誘電体薄膜の複素誘電定数分散 及び誘電損失分散を決定することができる。 電気光学素子に使われている電気光学結晶のフオノンポラリ 卜ン分散曲線の決 定及びフォノンポラリ 卜ン緩和定数を決定することができる。 The complex dielectric constant dispersion and the dielectric loss dispersion of the complex dielectric thin film laminated on the electroluminescent device can be determined. It is possible to determine the phonon polariton dispersion curve and the phonon polariton relaxation constant of the electro-optical crystal used in the electro-optical element.
測定は、 全て非接触、 i n— s i t u、 オンラインで精密自動で行うことがで きる。  All measurements are non-contact, in-situ, on-line and can be performed automatically and precisely.
請求項 4に記載の誘電体物質の光物性定数の光学的測定方法は、 請求項 1又は 請求項 2に記載の誘電体物質の光物性定数の光学的測定方法において、 前記分極 場がフォノンとされたことを特徴とする。  The method for optically measuring the optical property constant of a dielectric substance according to claim 4 is the method for optically measuring the optical property constant of a dielectric substance according to claim 1 or claim 2, wherein the polarization field is a phonon. It is characterized by having been done.
この誘電体物質の光物性定数の光学的測定方法によれば、 以下のような作用効 果を得る。  According to the optical measurement method of the optical physical constant of the dielectric substance, the following effects can be obtained.
F β R A M, M F I S— F E T、 高誘電率薄膜キャパシタ (超高集積 D R A M) 等の不揮発メモリ素子に使われている強誘電体薄膜の複素誘電分散 (誘電定 数分散と誘電損失分散) 及び静的誘電率 (誘電定数と誘電損失) を決定すること ができる。  F β RAM, MFIS— Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static of ferroelectric thin film used in nonvolatile memory devices such as FET, high dielectric constant thin film capacitor (ultra high integration DRAM), etc. The dielectric constant (dielectric constant and dielectric loss) can be determined.
電気光学素子に使われている電気光学結晶のフオノンポラリ 卜ン分散曲線の決 定及びフオノンポラリ トン緩和定数を決定することができる。  It is possible to determine the phonon polariton dispersion curve and the phonon polariton relaxation constant of the electro-optical crystal used in the electro-optical element.
強誘電体ゲ一卜 F E Tに使われている強誘電体薄膜の複素誘電定数及び誘電損 失の分散並びに静的誘電定数及び誘電損失を決定することができる。  The complex dielectric constant and dielectric loss variance of the ferroelectric thin film used in the ferroelectric gate FET and the static dielectric constant and dielectric loss can be determined.
請求項 5に記載の誘電体物質の光物性定数の光学的測定装置は、 所定の時間幅 のパルス励起光を所定の周波数で発生する励起源と、 前記励起源からのパルス励 起光が照射されると、 テラへルツ域の周波数範囲を含む連続スぺクトル分布を有 するパルス電磁波を放射し、 測定する誘電体物質に照射するパルス電磁波放射素 子と、 前記誘電体物質からの反射電磁波又は透過電磁波の電場振幅の各時間分解 信号を検出する検出手段と、 その時各時間分解信号から時系列データを得、 該時 系列データをフーリエ変換処理することによって前記の反射電磁波又は透過電磁 波の振幅及び位相についての分光スぺクトルデータを得る信号処理手段と、 前記 パルス励起光が前記パルス電磁波放射素子に一回入射するごとに、 前記検出手段 からの所定の時間分解信号の取り込みを指示するためのサンプリングバルスを、 該パルス励起光に対し所定の時間間隔づっ遅延させて前記検出手段に供給する遅 延手段と、 を備えた光物性定数の光学的測定装置において、 さらに、 前記の反射 電磁波又は透過電磁波の振幅及び位相についての分光スぺク トルデータを前記誘 電体物質がない場合の分光スぺクトルデータと比較して各周波数毎に前記誘電体 物質による位相シフトを決定する位相シフト決定手段と、 その位相シフ卜から前 記誘電体物質に入射されたパルス電磁波の波動と前記誘電体物質内の分極場の波 動との連成波の波数を各周波数毎に決定する波数決定手段と、 その波数決定手段 によって得られた連成波の波数と周波数との分散曲線を得る分散曲線作成手段と、 を備えたことを特徴とする An optical measurement apparatus for measuring the optical property constant of a dielectric substance according to claim 5, wherein: an excitation source that generates pulsed excitation light having a predetermined time width at a predetermined frequency; and a pulsed excitation light from the excitation source is irradiated. Then, a pulsed electromagnetic wave radiating element radiating a pulsed electromagnetic wave having a continuous spectrum distribution including a frequency range of a terahertz range and irradiating a dielectric substance to be measured, and a reflected electromagnetic wave from the dielectric substance are radiated. Or, a detecting means for detecting each time-resolved signal of the electric field amplitude of the transmitted electromagnetic wave, and then obtaining time-series data from each time-resolved signal, and performing a Fourier transform process on the time-series data to obtain the reflected electromagnetic wave or the transmitted electromagnetic wave. A signal processing unit for obtaining spectral spectrum data on amplitude and phase; and a unit from the detection unit each time the pulsed excitation light enters the pulsed electromagnetic wave radiation element once. A delay means for delaying the sampling pulse for instructing to take in the time-resolved signal at predetermined time intervals with respect to the pulse excitation light and supplying the sampling pulse to the detection means; and The apparatus further comprising the reflection A phase for determining a phase shift due to the dielectric substance for each frequency by comparing spectral spectrum data on the amplitude and phase of the electromagnetic wave or transmitted electromagnetic wave with the spectral spectrum data without the dielectric substance. A shift determining means, and a wave number for determining, for each frequency, a combined wave number of the wave of the pulsed electromagnetic wave incident on the dielectric material from the phase shift and the wave of the polarization field in the dielectric material. Determining means, and dispersion curve creating means for obtaining a dispersion curve of the wave number and frequency of the coupled wave obtained by the wave number determining means.
この誘電体物質の光物性定数の光学的測定装置によれば、 以下のような作用効 果を得る。  According to the optical measuring device for measuring the optical property constant of the dielectric substance, the following operational effects are obtained.
誘電体物質に入射されたパルス電磁波の波動と前記誘電体物質内の分極場の波 動との連成波の波数と周波数との分散曲線から、 誘電体物質についてその基本物 性である光 (電場) による誘電分極の特性について知得することができる。  From the dispersion curve of the wave number and frequency of the coupled wave of the pulsed electromagnetic wave incident on the dielectric substance and the polarization field within the dielectric substance, light (which is the basic physical property of the dielectric substance) is obtained. The characteristics of the dielectric polarization due to the electric field can be known.
また、 励起源とパルス電磁波放射素子と検出手段と信号処理手段と遅延手段と を含む T H z— T D S部によって、 複素屈折率の実部 (通常の屈折率) 及び虚部 (吸収定数) ゃ複素誘電率の実部 (通常の誘電率) 及び虚部 (誘電損失) の高精 度な計測も可能である。 従って、 それら複素屈折率と複素誘電率と前記分散曲線 とから、 誘電体物質の光物性の特性ついて広範な知見を得ることができる。  In addition, the real part (ordinary refractive index) and the imaginary part (absorption constant) of the complex refractive index ゃ complex Accurate measurement of the real part (normal dielectric constant) and imaginary part (dielectric loss) of the dielectric constant is also possible. Therefore, from the complex refractive index, the complex dielectric constant, and the dispersion curve, it is possible to obtain extensive knowledge on the optical properties of the dielectric substance.
F e R A M、 M F I S— F E T、 高誘電率薄膜キャパシタ (超高集積 D R A M) 等の不揮発メモリ素子に使われている強誘電体薄膜の複素誘電分散 (誘電定 数分散と誘電損失分散) 及び静的誘電率 (誘電定数と誘電損失) を決定すること ができる。  Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static of ferroelectric thin film used in nonvolatile memory devices such as F e RAM, MFIS-FET, high dielectric constant thin film capacitor (ultra high integration DRAM) The dielectric constant (dielectric constant and dielectric loss) can be determined.
テラへルツ帯弾性表面波フィルタの複素誘電定数分散及び誘電損失分散を決定 することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
積層セラミックコンデンサなどの機能性セラミック素子中の誘電体物質の複素 誘電定数分散及び誘電損失分散を決定することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined.
共振型誘電セラミックフィルタの複素誘電定数及び誘電損失分散を決定するこ とができる。  The complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined.
超音波センサ (P Z T ) 素子に使われている圧電物質の複素誘電定数及び誘電 損失分散を決定することができる。 焦電式赤外センサ素子に使われている強誘電体物質の誘電定数及び誘電損失分 散を決定することができる。 It can determine the complex dielectric constant and dielectric loss variance of the piezoelectric material used in ultrasonic sensor (PZT) elements. The dielectric constant and dielectric loss dispersion of a ferroelectric substance used in a pyroelectric infrared sensor element can be determined.
電気光学素子に使われている電気光学結晶のフオノンポラリ トン分散曲線の決 定及びフオノンポラリ 卜ン緩和定数を決定することができる。  It is possible to determine the phonon polariton dispersion curve and the phonon polariton relaxation constant of the electro-optical crystal used in the electro-optical element.
エレク ト口ルミネセンス素子に積層された複素誘電体薄膜の複素誘電定数分散 及び誘電損失分散を決定することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of the complex dielectric thin film laminated on the electroluminescent device can be determined.
測定は、 全て非接触、 i n— s i t u、 オンラインで精密自動で行うことがで さる。  All measurements are non-contact, in-situ, on-line and can be performed automatically and precisely.
請求項 6に記載の誘電体物質の光物性定数の光学的測定装置は、 請求項 5に記 載の誘電体物質の光物性定数の光学的測定装置において、 さらに、 前記分散曲線 作成手段から得られた分散曲線から前記誘電体物質の静的誘電率を含む誘電率を 決定する誘電率決定手段を備えたことを特徴とする。  The optical measurement apparatus for optical physical constants of a dielectric substance according to claim 6 is the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 5, further comprising: obtaining from the dispersion curve creating means. A dielectric constant determining means for determining a dielectric constant including a static dielectric constant of the dielectric substance from the obtained dispersion curve.
この誘電体物質の光物性定数の光学的測定装置によれば、 以下のような作用効 果を得る。  According to the optical measuring device for measuring the optical property constant of the dielectric substance, the following operational effects are obtained.
誘電体物質についてその基本物性値である静的誘電率を含む誘電率を知得する ことができる。  It is possible to obtain a dielectric constant including a static dielectric constant, which is a basic physical property value of a dielectric substance.
F e R A M、 M F I S— F E T、 高誘電率薄膜キャパシタ (超高集積 D R A M ) 等の不揮発メモリ素子に使われている強誘電体薄膜の複素誘電分散 (誘電定 数分散と誘電損失分散) 及び静的誘電率 (誘電定数と誘電損失) を決定すること ができる。  Complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and static of ferroelectric thin film used in nonvolatile memory devices such as Fe RAM, MFIS-FET, high dielectric constant thin film capacitor (ultra high integration DRAM), etc. The dielectric constant (dielectric constant and dielectric loss) can be determined.
電気光学素子に使われている電気光学結晶のフオノンポラリ トン分散曲線の決 定及びフォノンポラリ トン緩和定数を決定することができる。  It is possible to determine the phonon polariton dispersion curve and the phonon polariton relaxation constant of the electro-optic crystal used in the electro-optic element.
強誘電体ゲー卜 F E Tに使われている強誘電体薄膜の複素誘電定数及び誘電損 失の分散並びに静的誘電定数及び誘電損失を決定することができる。  The complex dielectric constant and dielectric loss variance of the ferroelectric thin film used in the ferroelectric gate FET and the static dielectric constant and dielectric loss can be determined.
請求項 7に記載の誘電体物質の光物性定数の光学的測定装置は、 請求項 6に記 載の誘電体物質の光物性定数の光学的測定装置において、 前記誘電体物質を構成 要素とする電子素子の製造プロセスの工程中に前記誘電体物質の誘電率を自動測 定することを特徴とする。  The optical measuring device for optical physical constants of a dielectric substance according to claim 7 is the optical measuring apparatus for optical physical constants of a dielectric substance according to claim 6, wherein the dielectric substance is a constituent element. The method is characterized in that the dielectric constant of the dielectric substance is automatically measured during a manufacturing process of the electronic element.
請求項 8に記載の誘電体物質の光物性定数の光学的測定装置は、 請求項 7に記 載の誘電体物質の光物性定数の光学的測定装置において、 前記電子素子が強誘電 体メモリであることを特徴とする。 The optical measuring device for optical physical constants of a dielectric substance according to claim 8 is a device according to claim 7. In the optical measuring device for optical physical constants of a dielectric substance described above, the electronic element is a ferroelectric memory.
請求項 9に記載の誘電体物質の光物性定数の光学的測定装置は、 請求項 7に記 載の誘電体物質の光物性定数の光学的測定装置において、 前記電子素子が強誘電 体電界効果トランジスタであることを特徴とする。  The optical measurement apparatus for optical physical constants of a dielectric substance according to claim 9 is an optical measurement apparatus for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a ferroelectric field effect. It is a transistor.
請求項 1 0に記載の誘電体物質の光物性定数の光学的測定装置は、 請求項 7に 記載の誘電体物質の光物性定数の光学的測定装置において、 前記電子素子が弾性 表面波フィルタであることを特徴とする。  The optical measurement device for the optical property constant of the dielectric substance according to claim 10 is the optical measurement apparatus for the optical property constant of the dielectric substance according to claim 7, wherein the electronic element is a surface acoustic wave filter. There is a feature.
請求項 1 1に記載の誘電体物質の光物性定数の光学的測定装置は、 請求項 7に 記載の誘電体物質の光物性定数の光学的測定装置において、 前記電子素子が誘電 体セラミックフィルタであることを特徴とする。  The optical measurement apparatus for optical physical constants of a dielectric substance according to claim 11 is the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a dielectric ceramic filter. There is a feature.
請求項 1 2に記載の誘電体物質の光物性定数の光学的測定装置は、 請求項 7に 記載の誘電体物質の光物性定数の光学的測定装置において、 前記電子素子が積層 セラミックコンデンサであることを特徴とする。  The optical measurement apparatus for optical physical constants of a dielectric substance according to claim 12 is the optical measurement apparatus for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a multilayer ceramic capacitor. It is characterized by the following.
請求項 7から請求項 1 2のいずれかに記載の誘電体物質の光物性定数の光学的 測定装置によれば、 以下のような作用効果を得る。  According to the optical measuring apparatus for optical physical constants of a dielectric substance according to any one of claims 7 to 12, the following operation and effect can be obtained.
高精度で誘電体物質の誘電率を決定できるので、 電子素子の検査精度が向上す る。  Since the dielectric constant of the dielectric substance can be determined with high accuracy, the inspection accuracy of the electronic element is improved.
電子素子の製造ラインから電子素子を取り出してオフラインで誘電率を測定す る必要がないので、 生産効率が飛躍的に向上する。  Since there is no need to take out the electronic device from the electronic device manufacturing line and measure the dielectric constant off-line, production efficiency is dramatically improved.
全ての製品に対して、 リアルタイムで誘電率の検査が可能である。  All products can be tested for permittivity in real time.
F e R A M , M F I S— F E T、 高誘電率薄膜キャパシタ (超高集積 D R A F E R A M, M F I S — F E T, High dielectric constant thin film capacitor (Ultra high integration D R A
M) 等の不揮発メモリ素子に使われている強誘電体薄膜の複素誘電分散 (誘電定 数分散と誘電損失分散) 及び静的誘電率 (誘電定数と誘電損失) を決定すること ができる。 The complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and the static dielectric constant (dielectric constant and dielectric loss) of ferroelectric thin films used in nonvolatile memory devices such as M) can be determined.
テラへルツ帯弾性表面波フィルタの誘電定数分散及び誘電損失分散を決定する ことができる。  The dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
積層セラミックコンデンサなどの機能性セラミック素子中の誘電体物質の誘電 定数分散及び誘電損失分散を決定することができる。 共振型誘電セラミックフィルタの誘電定数及び誘電損失分散を決定することが できる。 The dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic capacitor can be determined. The dielectric constant and the dielectric loss variance of the resonant dielectric ceramic filter can be determined.
強誘電体ゲート F E Tに使われている強誘電体薄膜の複素誘電定数及び誘電損 失の分散並びに静的誘電定数及び誘電損失を決定することができる。  The complex dielectric constant and dielectric loss variance and the static dielectric constant and dielectric loss of the ferroelectric thin film used in the ferroelectric gate FET can be determined.
測定は、 全て非接触、 i n— s i t LI、 オンラインで精密自動で行うことがで きる。  All measurements are non-contact, i n-s i t LI, and can be performed online and precisely automatically.
請求項 1 3に記載の誘電体物質を構成要素とする電子素子の製造プロセスシス テムは、 請求項 7に記載の誘電体物質の光物性定数の光学的測定装置を組み込ん だことを特徴とする。  An electronic device manufacturing process system comprising the dielectric substance according to claim 13 as a component is characterized by incorporating the optical measurement device for the optical physical constant of the dielectric substance according to claim 7. .
請求項 1 4に記載の電子素子の製造プロセスシステムは、 請求項 1 3に記載の 電子素子の製造プロセスシステムにおいて、 前記電子素子が強誘電体メモリであ ることを特徴とする。  An electronic device manufacturing process system according to claim 14 is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a ferroelectric memory.
請求項 1 5に記載の電子素子の製造プロセスシステムは、 請求項 1 3に記載の 電子素子の製造プロセスシステムにおいて、 前記電子素子が強誘電体電界効果ト ランジスタであることを特徴とする。  The electronic device manufacturing process system according to claim 15 is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a ferroelectric field effect transistor.
請求項 1 6に記載の電子素子の製造プロセスシステムは、 請求項 1 3に記載の 電子素子の製造プロセスシステムにおいて、 前記電子素子が弾性表面波フィルタ であることを特徴とする。  An electronic device manufacturing process system according to claim 16 is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a surface acoustic wave filter.
請求項 1 7に記載の電子素子の製造プロセスシステムは、 請求項 1 3に記載の 電子素子の製造プロセスシステムにおいて、 前記電子素子が誘電体セラミックフ ィルタであることを特徴とする。  An electronic element manufacturing process system according to claim 17 is the electronic element manufacturing process system according to claim 13, wherein the electronic element is a dielectric ceramic filter.
請求項 1 8に記載の電子素子の製造プロセスシステムは、 請求項 1 3に記載の 電子素子の製造プロセスシステムにおいて、 前記電子素子が積層セラミックコン デンサであることを特徴とする。  An electronic device manufacturing process system according to claim 18 is the electronic device manufacturing process system according to claim 13, wherein the electronic device is a multilayer ceramic capacitor.
請求項 1 3から請求項 1 8のいずれかに記載の電子素子の製造プロセスシステ ムによれば、 以下のような作用効果を得る。  According to the electronic device manufacturing process system according to any one of claims 13 to 18, the following effects can be obtained.
高精度で誘電体物質の誘電率を決定できるので、 電子素子の検査精度が向上す る。  Since the dielectric constant of the dielectric substance can be determined with high accuracy, the inspection accuracy of the electronic element is improved.
電子素子の製造ラインから電子素子を取り出してオフラインで誘電率を測定す る必要がないので、 生産効率が飛躍的に向上する。 Take out the electronic device from the electronic device production line and measure the dielectric constant offline Since there is no need to do this, production efficiency is dramatically improved.
全ての製品に対して、 リアルタィ厶で誘電率の挨査が可能である。  For all products, it is possible to check the permittivity in real time.
F e RAM. MF I S— FET、 高誘電率薄膜キャパシタ (超高集積 DRA F e RAM. MF I S—FET, high dielectric constant thin film capacitor (super high integration DRA
M) 等の不揮発メモリ素子に使われている強誘電体薄膜の複素誘電分散 (誘電定 数分散と誘電損失分散) 及び静的誘電率 (誘電定数と誘電損失) を決定すること ができる。 The complex dielectric dispersion (dielectric constant dispersion and dielectric loss dispersion) and the static dielectric constant (dielectric constant and dielectric loss) of ferroelectric thin films used in nonvolatile memory devices such as M) can be determined.
テラへルツ帯弾性表面波フィルタの複素誘電定数分散及び誘電損失分散を決定 することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a terahertz band surface acoustic wave filter can be determined.
積層セラミックコンデンザなどの機能性セラミック素子中の誘電体物質の複素 誘電定数分散及び誘電損失分散を決定することができる。  The complex dielectric constant dispersion and the dielectric loss dispersion of a dielectric material in a functional ceramic element such as a multilayer ceramic condenser can be determined.
共振型誘電セラミックフィルタの複素誘電定数及び誘電損失分散を決定するこ とができる。  The complex dielectric constant and dielectric loss variance of the resonant dielectric ceramic filter can be determined.
強誘電体ゲ一卜 F E Tに使われている強誘電体薄膜の誘電定数及び誘電損失の 分散並びに静的誘電定数及び誘電損失を決定することができる。  Dispersion of dielectric constant and dielectric loss and static dielectric constant and dielectric loss of ferroelectric thin film used for ferroelectric gate FET can be determined.
測定は、 全て非接触、 i n— s i t u、 オンラインで精密自動で行うことがで さる。 図面の簡単な説明  All measurements are non-contact, in-situ, on-line and can be performed automatically and precisely. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ポラリ トンの波数一周波数分散関係を示すグラフである。  FIG. 1 is a graph showing the relationship between the wave number and the frequency dispersion of polaritons.
図 2は、 本発明に係る誘電体物質の光物性定数の光学的測定装置に組み込まれ る一般的な TH z— TDSの概略構成図である。  FIG. 2 is a schematic configuration diagram of a general TH z-TDS incorporated in the optical measurement apparatus for optical physical constants of a dielectric substance according to the present invention.
図 3は、 本発明に係るパルス電磁波放射素子の一実施形態の概略構成図である 図 4は、 本発明に係る検出器の一実施形態の概略構成図である。  FIG. 3 is a schematic configuration diagram of an embodiment of the pulsed electromagnetic wave radiation element according to the present invention. FIG. 4 is a schematic configuration diagram of an embodiment of the detector according to the present invention.
図 5は、 本発明に係る誘電体物質の光物性定数の光学的測定装置に組み込まれ る一般的な T H z— T D Sの信号処理の流れの説明図である。  FIG. 5 is an explanatory diagram of a flow of signal processing of a general THz-TDS incorporated in the optical measurement apparatus for optical physical constants of a dielectric substance according to the present invention.
図 6は、 B i 4T i 30, 2からの透過電磁波の電場強度の透過率及び位相シフト の周波数依存性を示すグラフであり、 (a) a軸偏光の場合、 (b) b軸偏光の 合である。 Fig. 6 is a graph showing the frequency dependence of the transmittance and phase shift of the electric field strength of the transmitted electromagnetic wave from B i 4 T i 30 and 2 , (a) for a-axis polarization, and (b) b-axis. This is the case for polarized light.
図 7は、 (a) 図 6 (a) の場合の B i 4T i 3012内の連成波の波数と周波数 との分散曲線を示すグラフである。 (b ) 図 6 ( b ) の場合の B i 4 T i 3 0 1 2内 の連成波の波数と周波数との分散曲線を示すグラフである。 発明を実施するための最良の形態 Fig. 7 shows (a) the wave number and frequency of the coupled wave in B i 4 T i 3 0 12 in the case of Fig. 6 (a). 6 is a graph showing a dispersion curve of FIG. (B) A graph showing the dispersion curve of the wave number and frequency of the coupled wave in Bi 4 Ti 3 0 12 in the case of FIG. 6 (b). BEST MODE FOR CARRYING OUT THE INVENTION
図 2に本発明の誘電体物質の光物性定数の光学的測定装置に組み込まれる一般 的な T H Z— T D Sの概要を示す。 General TH Z are incorporated optical measuring apparatus for an optical property constants of the dielectric material of the present invention in FIG. 2 - shows an overview of the TDS.
符号 1は励起源であり、 例えば、 レーザーである。 励起源 1から放射されたフ ェムト秒レーザ光 L 1は、 ビームスプリッタ 2で分割される。 一方のフェムト秒 レーザパルスは、 パルス励起光 L 1として光チヨッパ 3により断続的にパルス電 磁波放射素子 5に送られ、 対物レンズ 4で集束されてパルス電磁波放射素子 5に 照射される。 このパルス電磁波放射素子 5は例えば光伝導素子であり、 パルス励 起光 L 1が照射されたときに瞬間的に電流が流れ、 テラへルツパルス電磁波 L 2 を放射する。 このテラへルツパルス電磁波 L 2は、 放物面鏡 6、 7により平行化 され測定試料である誘電体物質 8に照射される。 その試料 8の透過ないし反射テ ラヘルツ電磁波 (ここでは透過テラへルツ電磁波) L 3は、 放物面鏡 1 0、 1 1 により集光され、 検出器 (検出手段) 1 2に導光される。  Reference numeral 1 denotes an excitation source, for example, a laser. The femtosecond laser light L 1 emitted from the excitation source 1 is split by the beam splitter 2. One femtosecond laser pulse is intermittently sent to the pulse electromagnetic wave emitting element 5 by the optical chopper 3 as the pulse excitation light L 1, is focused by the objective lens 4, and irradiates the pulse electromagnetic wave emitting element 5. The pulsed electromagnetic wave radiating element 5 is, for example, a photoconductive element. When the pulsed excitation light L1 is applied, a current flows instantaneously, and radiates a terahertz pulsed electromagnetic wave L2. The terahertz pulse electromagnetic wave L 2 is collimated by the parabolic mirrors 6 and 7 and is irradiated on the dielectric substance 8 as a measurement sample. The transmitted or reflected terahertz electromagnetic wave (here, the transmitted terahertz electromagnetic wave) L3 of the sample 8 is collected by the parabolic mirrors 10 and 11, and guided to the detector (detection means) 12 .
他方のフェムト秒レーザは、 サンプリング 'パルス光 L 4として検出器 1 2に 導光される。 この検出器 1 2も例えば光伝導素子であり、 サンプリング 'パルス 光 L 4で照射され、 その瞬間だけ導電性となり、 その瞬間の試料 8からの透過テ ラヘルツ電磁波 (以下、 単に透過電磁波ともいう) L 3の電場の強度を電流とし て検出することができる。 ビームスプリッタ 2から検出器 1 2に到達するまでの 時間を遅延手段 1 3、 1 4で変えることにより、 試料を透過して来た透過電磁波 L 3の時間波形を得ることができる。  The other femtosecond laser is guided to the detector 12 as a sampling pulse light L4. This detector 12 is also a photoconductive element, for example, irradiated with the sampling pulse light L4, becomes conductive only at that moment, and transmits terahertz electromagnetic waves from the sample 8 at that moment (hereinafter, also simply referred to as transmitted electromagnetic waves). The intensity of the L3 electric field can be detected as a current. By changing the time from the beam splitter 2 to the detector 12 by the delay means 13 and 14, the time waveform of the transmitted electromagnetic wave L3 transmitted through the sample can be obtained.
検出用光伝導素子はサンプリング ·パルス光 L 4を照射している間の試料から の透過電磁波 L 3の電場による電流を検出するが、 サンプリング■パルス光の時 間幅は透過電磁波 L 3の時間幅よりも数十分の一程度とかなり短い。 すなわち、 透過電磁波 L 3の最初の部分から最後の部分までが到達する時間に比較してサン プリング ·パルス光 L 4の照射時間は短い。 そのため、 サンプリング .パルス光 L 4が照射している間の検出用光伝導素子に流れる電流は透過電磁波 L 3の電場 のごく短い照射時間部分に依存し、 透過電磁波 L 3の電場のうち遅延手段 1 3、 1 4による時間遅延によって決められた時間部分のみが電流として測定され、 さ らに時間遅延をずらしていくことにより透過電磁波 L 3の電場の他の部分も測定 でき、 透過電磁波 L 3の電場の時間波形を得ることができるのである。 The photoconductive element for detection detects the current due to the electric field of the transmitted electromagnetic wave L3 from the sample while irradiating the sampling pulsed light L4, but the time width of the sampling divided by the pulsed light is the time of the transmitted electromagnetic wave L3. It is considerably shorter than the width, about several tenths. That is, the irradiation time of the sampling pulse light L4 is shorter than the time from the first part to the last part of the transmitted electromagnetic wave L3. Therefore, the current flowing through the sampling photoconductive element during the irradiation with the pulsed light L 4 is the electric field of the transmitted electromagnetic wave L 3. Only the part of the electric field of the transmitted electromagnetic wave L3 determined by the time delay by the delay means 13 and 14 is measured as current, and the time delay is further shifted, depending on the extremely short irradiation time part Thus, other portions of the electric field of the transmitted electromagnetic wave L3 can be measured, and a time waveform of the electric field of the transmitted electromagnetic wave L3 can be obtained.
試料 8の透過テラへルツ電磁波の電場強度の各時間分解データは、 信号処理手 段によって処理される。 すなわち、 ロックイン■増幅器 1 6を介してコンビユー タ 1 7に伝送され、 順次、 時系列データに記憶され、 一連の時系列データを、 該 コンピュータ 1 7でフーリエ変換処理して振動数 (周波数) 空間に変換すること により、 試料 8の透過テラへルツ電磁波の振幅及び位相の分光スぺクトルが得ら れる。  Each time-resolved data of the electric field strength of the transmitted terahertz electromagnetic wave of the sample 8 is processed by the signal processing means. That is, the data is transmitted to the computer 17 via the lock-in amplifier 16 and is sequentially stored as time-series data. A series of time-series data is subjected to Fourier transform processing by the computer 17 to obtain a frequency (frequency). By converting the space into space, a spectral spectrum of the amplitude and phase of the transmitted terahertz electromagnetic wave of the sample 8 can be obtained.
励起源 1は、 例えばモード同期、 エルビウム (E r ) ドーピングのファイバレ 一ザである。 このモード同期ファイバレーザ 1は、 例えば平均パワー 1 O mW、 パルス励起光し 1を、 波長 7 8 0 n m、 時間幅 1 2 0フヱムト秒、 繰り返し周波 数 4 8 . 5 M H zで伝送する。  The pump source 1 is, for example, a mode-locked, erbium (Er) -doped fiber laser. This mode-locked fiber laser 1 transmits, for example, an average power of 1 OmW, pulsed excitation light 1 at a wavelength of 780 nm, a time width of 120 fms, and a repetition frequency of 48.5 MHz.
前記励起源から発生するパルス励起光の時間幅は、 6フェムトから 1 7 0フエ ム卜秒以下に設定する。 より好適には、 1 5フヱムト秒から 7 0フヱ厶ト秒以下 である。 最も好適には、 3 0フェムト秒である。  The time width of the pulsed excitation light generated from the excitation source is set to 6 femto to 170 femtoseconds or less. More preferably, it is 15 to 70 Fm seconds. Most preferably, it is 30 femtoseconds.
このとき、 モード同期ファイバレーザ 1で、 パルス励起光 L 1の時間幅を、 例 えば 1 7 0フェムト秒に設定すると、 該パルス電磁波放射素子 5から発生するテ ラヘルツ放射電磁波 L 2には、 ほぼ波数範囲 0〜 1 9 6 c m— 1のミリ波から遠赤 外波長光が含まれる。 また、 パルス励起光 L 1の時間幅を、 例えば 6フェムト秒 に設定すると、 該パルス電磁波放射素子 5から発生するテラへルツ放射電磁波 L 2には、 ほぼ波数範囲 0 ~ 5 5 5 6 c m— 1のミリ波から近赤外波長光が含まれる ( 励起源としては、 電子ビーム型発振器、 たとえば軌道放射光源 (S O R ) 、 光 蓄横リング放射光 (P b S R ) 等を用いることもできる。 At this time, if the time width of the pulsed excitation light L1 is set to, for example, 170 femtoseconds in the mode-locked fiber laser 1, the terahertz radiation electromagnetic wave L2 generated from the pulsed radiation device 5 is almost Includes light from millimeter to far infrared wavelengths in the wavenumber range 0 to 196 cm- 1 . Further, when the time width of the pulsed excitation light L1 is set to, for example, 6 femtoseconds, the terahertz radiation electromagnetic wave L2 generated from the pulsed radiation device 5 has an almost wave number range of 0 to 5556 cm— It includes near infrared light from 1 millimeter wave (as the excitation source, the electron beam oscillator, for example orbital radiation source (SOR), light蓄横ring synchrotron radiation (P b SR) or the like can also be used.
パルス電磁波放射素子 5には、 例えば、 図 3に示すように、 シリコンレンズ Z T L - G a A s基板 3 0に形成されたダイポールアンテナ構造の光伝導スィツチ 素子 3 1が用いられる。 そして、 テラへルツ放射光 L 2の発生には、 このような パルス電磁波放射素子 5に、 パルス励起光 L 1を照射し、 電子■正孔の自由キヤ リアを誘起させ、 超高速電流変調することによって、 そのテラへルツ放射し 2を 得ている。 すなわち、 バイアス電流印加のパルス電磁波放射素子 5に、 パルス励 起光 L 1が照射されると、 電場が揺り動かされる。 電場が揺り動かされると、 電 流が揺り動かされることにより、 パルス電磁波放射素子 5に照射されたパルス励 起光 L 1の時間幅 A tにより規定される振動数 (周波数) 範囲に渡り、 連続スべ クトル分布を持ったテラへルツ放射電磁波し 2が得られる。 As the pulsed electromagnetic wave radiation element 5, for example, as shown in FIG. 3, a photoconductive switch element 31 having a dipole antenna structure formed on a silicon lens ZTL-GaAs substrate 30 is used. Then, in order to generate the terahertz radiation light L2, such a pulsed electromagnetic wave radiation element 5 is irradiated with the pulse excitation light L1, and the electron-hole free carriers are generated. By inducing the rear and modulating the ultra-high-speed current, the terahertz radiation is emitted and 2 is obtained. That is, when the pulse electromagnetic wave radiating element 5 to which the bias current is applied is irradiated with the pulse excitation light L1, the electric field fluctuates. When the electric field is fluctuated, the current is fluctuated, so that the pulsed excitation light L1 applied to the pulsed electromagnetic wave radiating element 5 is continuously slid over the frequency (frequency) range defined by the time width At. Terahertz radiated electromagnetic wave 2 with a vector distribution is obtained.
また、 パルス電磁波放射素子 5は、 バルクの I n A s (1 00) 結晶でもよい。  Further, the pulsed electromagnetic wave emitting element 5 may be a bulk InAs (100) crystal.
I n A s (1 00) は、 結晶の格子面 (1 00) が切り出され、 ガリウム砒素 (G a A s) に比較し、 優れた電磁波の放射性能を持ち、 該 I n A s結晶の格子 面 (1 00) に、 パルス励起光 L 1が照射されると、 テラへルツ放射電磁波 L 2 が放射方向の全体にまんべんなく引き起こされる。 また、 I 0 ゃ0 3八3でも よい。  The lattice plane (100) of the crystal is cut out of I n As (100), and has excellent electromagnetic wave radiation performance as compared with gallium arsenide (G a As). When the lattice plane (100) is irradiated with the pulsed excitation light L1, the terahertz radiation electromagnetic wave L2 is evenly generated in the entire radiation direction. Also, I 0 ゃ 83 may be satisfied.
さらに、 パルス電磁波放射素子 5は、 電気光学素子でもよいし、 非対称二重量 子井戸構造や超格子構造を利用したものでもよい。  Further, the pulsed electromagnetic wave emitting element 5 may be an electro-optical element, or may use an asymmetric double quantum well structure or a superlattice structure.
図 4に、 検出器 1 2の概略図を示す。 同図に示す検出器 1 2にも、 例えば、 シ リコンレンズ ZT L-G a A s基板 30に形成されたダイポールアンテナ構造の 光伝導スィッチ素子 31が用いられる。 このような検出器 1 2に、 試料透過テラ ヘルツ電磁波 L 3とサンプリング■パルス光 L 4を同時に照射すると、 サンプリ ング ·パルス光 L 4が照射された短時間の試料透過テラへルツ電磁波 L 3の強度 を測定できる。 尚、 検出器 1 2は電気光学素子でもよい。  FIG. 4 shows a schematic diagram of the detector 12. For example, a photoconductive switch element 31 having a dipole antenna structure formed on a silicon lens ZTL-GaAs substrate 30 is also used for the detector 12 shown in FIG. When such a detector 12 is irradiated simultaneously with the sample transmitted terahertz electromagnetic wave L 3 and the sampling pulsed light L 4, the sample transmitted terahertz electromagnetic wave L 3 irradiated with the sampling pulsed light L 4 for a short time Can be measured. Note that the detector 12 may be an electro-optical element.
サンプリング■パルス光 L 4が検出器 1 2に到着する時間を制御しながら測定 することにより、 試料透過テラへルツ電磁波 L 3の強度の各時間分解データを測 定できる。  By measuring while controlling the time when the sampling / pulse light L4 arrives at the detector 12, it is possible to measure each time-resolved data of the intensity of the Terahertz electromagnetic wave L3 transmitted through the sample.
遅延手段 1 3、 1 4は、 パルス励起光がパルス電磁波放射素子 5に 1回入射す るごとに、 検出器 1 2からの所定の時間分解データの取り込みを指示するサンプ リングパルスを、 前記パルス励起光に対し所定の時間間隔づっ遅延させて検出器 1 2に供給する。 遅延手段 1 3、 1 4は、 例えば光路差掃引ステージにより時間 遅延を制御する。  Each of the delay means 13 and 14 outputs a sampling pulse for instructing to take in predetermined time-resolved data from the detector 12 each time the pulsed excitation light enters the pulsed electromagnetic wave emitting element 5 once. The excitation light is supplied to the detector 12 with a delay at a predetermined time interval. The delay means 13 and 14 control the time delay by, for example, an optical path difference sweeping stage.
次に、 上記のような TH z— TDSを組み込んだ本発明の誘電体物質の光物性 定数の光学的測定装置における具体的な信号処理について、 図 5を参照して説明 する。 Next, the optical properties of the dielectric substance of the present invention incorporating THz-TDS as described above Specific signal processing in the optical measurement device for constants will be described with reference to FIG.
パルス電磁波放射素子から放射されたテラへルツ域の周波数範囲を含む連続ス ベクトル分布を有するパルス光は、 図 5 (a) に示す以下の数式に示されるよう な電場強度の時間波形を有する。
Figure imgf000019_0001
The pulsed light emitted from the pulsed electromagnetic wave radiating element and having a continuous spectrum distribution including the frequency range of the terahertz region has a time waveform of the electric field strength as shown in the following equation shown in FIG. 5 (a).
Figure imgf000019_0001
このような強度の時間波形を有するパルス光が試料である誘電体物質に入射し 透過してくると、 その透過電磁波の電場強度の時間波形は、 図 5 (b) に示す以 下の数式に示されるようなものとなる。 透過 ) When pulsed light having a time waveform with such an intensity is incident on and transmitted through a dielectric substance as a sample, the time waveform of the electric field intensity of the transmitted electromagnetic wave is expressed by the following equation shown in Fig. 5 (b). It will be as shown. Transmission)
-2n<xs( t -- +Φ„,κ(σ)+φ。-2n <xs (t-+ Φ „, κ (σ) + φ.
Figure imgf000019_0002
このような強度の時間波形を有する透過光の電場強度 Eaa ( t ) は、 例えば、 パルス電磁波放射素子 5と同様の検出器 1 2を用いて、 サンプリング■パルス光 L4により光伝導ギャップに励起されたキャリア (数: N ( t ) ) の流れ (電 流) として検出される。
Figure imgf000019_0002
The electric field strength E aa (t) of the transmitted light having such a time waveform is, for example, pumped into the photoconductive gap by sampling / pulsed light L4 using a detector 12 similar to the pulsed electromagnetic wave emitting element 5. The detected carrier (number: N (t)) is detected as a flow (current).
その電流密度 I ( t ) は、 Eaa ( t ) と励起キャリア数 N ( t ) とのコンボリ ユージョン、 すなわち、 The current density I (t) is the convolution of E aa (t) and the number of excited carriers N (t), that is,
/(τ) ∞
Figure imgf000019_0003
― τ)ίτ となる。 ここで、 前記 I:はサンプリング■パルス光 L4の遅延時間差であり、 該 遅延時間差!:を、 コンピュータ 1 7、 光路差掃引ステージ 1 3等により走査する ことによって試料透過 (反射) 電磁波の電場強度の時間依存性を電流強度の時間 軸信号 I (て) として検出する。
/ (τ) ∞
Figure imgf000019_0003
-Τ) ίτ Becomes Here, I: is the delay time difference between the sampling and the pulse light L4, and the delay time difference !: is scanned by a computer 17, an optical path difference sweeping stage 13 or the like, so that the sample transmits (reflects) the electric field strength of the electromagnetic wave. Is detected as the time axis signal I of the current intensity.
そして、 試料透過電磁波 L 3の強度は、 パルス励起光 L 1に同期して、 所定の 時間 Δてづっ遅延されたサンプリング 'パルス光 L 4によって、 光学的に極めて 短時間隔でサンプリングされ (図 5 (c) 参照) 、 試料透過電磁波 L3の電場強 度の各時間分解信号として検出される。 このサンプリング幅 A t (s e c) は、 測定に要求される測光スペクトルの波数分解能 Δσ ( cm"1) に対して A t =1 Z27Γ Δ σで定められる。 Then, the intensity of the sample transmitted electromagnetic wave L 3 is optically sampled at an extremely short time interval by the sampling light L 4 synchronized with the pulse excitation light L 1 and delayed by a predetermined time Δ (see FIG. 5 (c)), and are detected as time-resolved signals of the electric field strength of the sample transmitted electromagnetic wave L3. The sampling width A t (sec) is determined by A t = 1 Z27Γ Δ σ with respect to the wave number resolution Δσ (cm ″ 1 ) of the photometric spectrum required for the measurement.
こうして得られた時各時間分解信号から、 図 5 (d) に示したように、 以下の 数式で表される時系列データ (t ) を得る。
Figure imgf000020_0001
From the time-resolved signals thus obtained, time-series data (t) represented by the following equation is obtained as shown in FIG. 5 (d).
Figure imgf000020_0001
ΛιΚ(σ)+φ0ΐσ)ΛιΚ (σ) + φ 0 ΐσ)
Figure imgf000020_0003
Figure imgf000020_0003
Figure imgf000020_0002
ここで、 ひ' η, κ (σ) (η、 cは複素屈折率の実部 (通常の屈折率) と虚部 (吸収定数) である) は、 各周波数毎の誘電体物質に入射したパルス電磁波の透 過率に対応する量であり、 また、 φη, κ (σ) は、 各周波数毎の誘電体物質に起 因した位相シフトである。
Figure imgf000020_0002
Where η, κ (σ) (η and c are the real part (normal refractive index) and the imaginary part (absorption constant) of the complex refractive index) incident on the dielectric material for each frequency. It is a quantity corresponding to the transmittance of the pulsed electromagnetic wave, and φη, κ (σ) is the phase shift caused by the dielectric substance at each frequency.
この ( t ) を信号処理手段に伝送し、 フーリエ変換処理することによって透 過電磁波 (反射電磁波) の振幅及び位相についての分光スペクトルデータを得る。 次いで、 位相シフト決定手段によって、 透過電磁波 (反射電磁波) の振幅及び 位相についての分光スぺクトルデータを誘電体物質がない場合の分光スぺクトル データと比較して各周波数毎の位相シフト 0n, (σ) を決定する。  This (t) is transmitted to the signal processing means and subjected to Fourier transform processing to obtain spectral data on the amplitude and phase of the transmitted electromagnetic wave (reflected electromagnetic wave). Next, the phase shift determining means compares the spectral spectrum data on the amplitude and phase of the transmitted electromagnetic wave (reflected electromagnetic wave) with the spectral spectrum data without the dielectric substance, and compares the phase shift 0n, (Σ) is determined.
さらに、 波数決定手段によって、 その位相シフトから誘電体物質に入射された パルス電磁波の波動と誘電体物質内の分極場の波動との連成波 (あるいはポラリ トン) の波数を各周波数毎に決定する。 ここで、 連成波の波数は位相シフト 0η, κ ( σ ) と試料の厚さとから決定することができる。 Furthermore, the wave number determining means determines, for each frequency, the wave number of a coupled wave (or polariton) of the wave of the pulsed electromagnetic wave incident on the dielectric material and the wave of the polarization field in the dielectric material from the phase shift. I do. Where the wave number of the coupled wave is the phase shift 0η, It can be determined from κ (σ) and the thickness of the sample.
こうして得られた連成波の周波数毎の波数について、 分散曲線作成手段によつ て横軸に波数、 縦軸に周波数 (もちろんその逆でも構わない) としてプロットさ れ、 連成波の波数と周波数との分散曲線を得る。  The thus obtained wave number for each frequency of the coupled wave is plotted as a wave number on the horizontal axis and a frequency on the vertical axis (or vice versa) by the dispersion curve creating means. Obtain a dispersion curve with frequency.
さらに、 誘電率決定手段によって、 得られた連成波の波数と周波数との分散曲 線から前記誘電体物質の静的誘電率を決定する。  Further, the dielectric constant determining means determines the static dielectric constant of the dielectric substance from the dispersion curve of the obtained wave number and frequency of the coupled wave.
本発明の誘電体物質の静的誘電率の評価に用いる誘電体物質の光物性定数の光 学的測定装置は、 誘電体物質を構成要素とする電子素子、 例えば、 強誘電体メモ リ、 強誘電体電界効果トランジスタ、 弾性表面波フィルタ、 誘電体セラミックフ ィルタ、 及び積層セラミックコンデンサのような製造プロセスの工程中に前記電 子素子を構成する誘電体物質の静的誘電率を自動測定するために用いることがで きる。 また、 全ての製品に対して、 リアルタイムで誘電率の検査が可能である。 また、 本発明の誘電体物質の静的誘電率の評価に用いる誘電体物質の光物性定 数の光学的測定装置は、 誘電体物質を構成要素とする電子素子、 例えば、 強誘電 体メモリ、 強誘電体電界効果トランジスタ、 弾性表面波フィルタ、 誘電体セラミ ックフィルタ、 及び積層セラミックコンデンサのような製造ラインに組み込むこ ともできる。 この場合、 電子素子の製造ラインから電子素子を取り出してオフラ インで誘電率を測定する必要がないので、 生産効率が飛躍的に向上する。 また、 全ての製品に対して、 リアルタィムで誘電率の検査が可能である。  The optical measurement apparatus for the optical physical constant of a dielectric substance used in the evaluation of the static dielectric constant of the dielectric substance of the present invention is an electronic device having a dielectric substance as a constituent element, for example, a ferroelectric memory, To automatically measure the static permittivity of the dielectric material constituting the electronic element during the manufacturing process such as a dielectric field effect transistor, a surface acoustic wave filter, a dielectric ceramic filter, and a multilayer ceramic capacitor. It can be used for In addition, all products can be tested for permittivity in real time. Further, the optical measurement device for measuring the optical property constant of a dielectric substance used for evaluating the static dielectric constant of the dielectric substance of the present invention is an electronic element having the dielectric substance as a constituent element, for example, a ferroelectric memory, It can also be incorporated into production lines such as ferroelectric field effect transistors, surface acoustic wave filters, dielectric ceramic filters, and multilayer ceramic capacitors. In this case, there is no need to take out the electronic element from the electronic element production line and measure the dielectric constant offline, thereby dramatically improving production efficiency. In addition, all products can be tested for permittivity in real time.
次に、 本発明の誘電体物質の光物性定数の光学的測定装置及びその方法によつ て誘電分散及び静的誘電率を決定した実施例として、 強誘電体 B i 4 τ ί 3 ο,2の 場合を示す。 Next, as an example of determining the dielectric dispersion and static dielectric constant Te cowpea in optical measuring apparatus and method of the optical property constants of the dielectric material of the present invention, the ferroelectric B i 4 τ ί 3 ο, The case of 2 is shown.
用いた B i 4 T i 3 0 1 2の試料は c軸に対して垂直な面方向に成長させたもので、 その寸法は 1 5 X 1 5 mm2で膜厚 2 2 5 mの単結晶薄膜である。 その B i 4 T i 3 0, 2の単結晶薄膜はその面に対して劈開性を有する。 The B i 4 Ti 3 0 12 sample used was grown in a plane perpendicular to the c-axis, and its dimensions were 15 x 15 mm 2 and a single crystal with a thickness of 2 25 m. It is a thin film. Single crystal thin film of the B i 4 T i 3 0, 2 has a cleavage property to the surface.
測定の概要を以下に説明する。  The outline of the measurement will be described below.
励起源としては、 波長 7 8 0 n m、 2 0 mWの出力のフヱムト秒励起パルス光 を繰り返し周波数 4 8 M H Zで発生するモード同期エルビウム (E r ) ドーピン グのファイバレーザを用いた。 試料へ入射するパルス測定光を放射するパルス電 磁波放射素子として、 低温で成長させた G a A sから成る光伝導スィツチ素子を 用いた。 モード同期エルビウムドーピングファイバレーザからの励起パルスは対 物レンズによって光伝導スィッチ素子に合焦した。 光伝導スィッチ素子が放射し たパルス電磁波は B i 4T i 30, 2単結晶薄膜試料の劈開面へ入射し、 その透過電 磁波を測定した。 透過電磁波の検出器としても低温で成長させた G a A sから成 る光伝導スィッチ素子を用いた。 サンプリング 'パルス光としては、 モード同期 エルビウムドーピングファイバレーザからの入射励起パルス光をビームスプリツ ターで分割したパルス光を用い、 試料からの透過光の電場信号の検出のゲートの 開閉を行った。 全ての光学装置及び試料は、 水蒸気による吸収を低減するため、 真空チャンバに配置した。 測定は室温で行った。 The excitation source, using fiber laser mode-locked erbium (E r) Doping occurring at a frequency 4 8 MH Z repeated Fuwemuto seconds excitation pulse light output of the wavelength 7 8 0 nm, 2 0 mW . Pulsed light that emits pulsed measurement light incident on the sample A photoconductive switch element made of GaAs grown at low temperature was used as the magnetic wave emitting element. An excitation pulse from a mode-locked erbium-doped fiber laser was focused on a photoconductive switch element by an objective lens. Pulse electromagnetic wave photoconductive switch element is emitted is incident to the B i 4 T i 3 0, 2 cleavage plane of the single crystal thin film samples was measured the transmitted electromagnetic waves. A photoconductive switch element made of GaAs grown at low temperature was also used as a detector for transmitted electromagnetic waves. As the sampling pulse light, pulse light obtained by splitting the incident excitation pulse light from a mode-locked erbium-doped fiber laser with a beam splitter was used, and the gate for detecting the electric field signal of the transmitted light from the sample was opened and closed. All optics and samples were placed in a vacuum chamber to reduce absorption by water vapor. The measurement was performed at room temperature.
B i 4T i 3012は室温で単斜晶系のベロブスカイ卜構造であり、 自発分極の方 向は、 単斜晶軸方向である a軸に対して約 4. 5° 傾斜している。 その a軸に対 して偏光した a軸偏光、 そしてその垂直方向である b軸偏光に対する試料の透過 電磁波の電場強度の透過率及び位相シフ卜の周波数依存性を示す測定結果をそれ ぞれ、 図 6 (a) 及び (b) に示す。 黒丸は透過率、 白丸は位相シフトを示して いる。 B i 4 T i 3 0 12 is Berobusukai Bok structure monoclinic at room temperature, the direction of spontaneous polarization is about 4. 5 ° inclined to the a-axis is monoclinic Akirajiku direction . The transmission results of the sample with respect to the a-axis polarized light polarized with respect to the a-axis and the b-axis polarized light perpendicular to the a-axis, and the measurement results showing the transmittance of the electric field intensity of the electromagnetic wave and the frequency dependence of the phase shift, respectively. Figures 6 (a) and (b) show. Black circles indicate transmittance, and white circles indicate phase shift.
図 6 (a) において、 黒丸で示した透過率からは、 この物質が 22 cm— 1から 36 cm_1に不透明領域を持つことがわかる。 すなわち、 A' モードではこの領 域にフオノンが存在しないバンドギャップが存在していることを示している。 ま た、 白丸の位相シフトは、 22 cm_1から 36 cm— 1のバンドギャップエッジ近 傍で急に遅れていくことが分かる。 In FIG. 6 (a), the transmittance from that shown by black circles, this material is understood to have an opaque region from 22 cm- 1 to 36 CM_ 1. In other words, the A 'mode indicates that there is a band gap in which no phonon exists in this region. In addition, the phase shift of the white circle, it can be seen that go suddenly delayed from 22 cm_ 1 36 cm- in one of the band gap edge near neighbor.
図 6 (b) において、 図 6 (a) と同じように、 A" モードでは 28 cm— 1か ら 43 cm— 1の領域にフオノンが存在しないバンドギャップが存在していること を示している。 また、 28 cm_1から 43 cm— 1のギャップエッジ近傍ではやは リ、 位相が急速に遅れることが分かる。 In Fig. 6 (b), as in Fig. 6 (a), in A "mode, a band gap without phonon exists in the region from 28 cm- 1 to 43 cm- 1 . . Moreover, early re phase it can be seen that delayed rapidly in the gap near the edges from 28 cm_ 1 43 cm- 1.
図 7 (a) 及び (b) はそれぞれ、 図 6 (a) 及び (b) で示した各周波数毎 の誘電体物質による位相シフト 0n, (σ) と B i 4T i 3012単結晶薄膜試料の 厚さとから、 試料に入射したパルス電磁波の波動と試料内の分極場の波動との連 成波の波数を各周波数毎に決定し、 横軸に波数、 縦軸に周波数としてプロットし た、 連成波の波数と周波数との分散関係を示している。 この分散関係は、 試料内 の分極場をフオノンした場合の分散曲線によく一致する。 この場合、 Ω = 0にお ける接線の傾きは、 c ε (0) を与えることから (段落 【001 0】 参照) 、 静的誘電率ど (0) は、 図 7 (a) の場合には 79. 2、 図 7 (b) の場合には 1 49. 0であると決定することができた。 産業上の利用の可能性 FIGS. 7 (a) and (b) respectively, Figure 6 (a) and (b) phase shift by the dielectric material for each frequency shown in 0n, (sigma) and B i 4 T i 3 0 12 monocrystal From the thickness of the thin film sample, the wave number of the combined wave of the pulsed electromagnetic wave incident on the sample and the polarization field wave in the sample is determined for each frequency, and plotted as the wave number on the horizontal axis and the frequency on the vertical axis. It also shows the dispersion relationship between the wave number and frequency of the coupled wave. This dispersion relationship agrees well with the dispersion curve when the polarization field in the sample is phononed. In this case, since the slope of the tangent at Ω = 0 gives c ε (0) (see paragraph [001 0]), the static permittivity and the like (0) are the same as those in Fig. 7 (a). Was determined to be 79.2, and in the case of FIG. 7 (b), 149.0. Industrial applicability
本発明は、 誘電体物質の誘電分散■静的誘電率 (誘電定数及び誘電損失) を決 定することができる誘電体物質の光物性定数の光学的測定方法及びその装置並び にその装置を組み込んだ製造システムとして、 様々な誘電体物質の光物性定数の 測定に利用することができる。  The present invention provides an optical measurement method of an optical physical constant of a dielectric substance, which can determine a dielectric dispersion of the dielectric substance ■ a static dielectric constant (dielectric constant and dielectric loss), an apparatus thereof, and an apparatus incorporating the same. It can be used to measure optical physical constants of various dielectric materials as a manufacturing system.

Claims

請求の範囲 The scope of the claims
1 . テラへルツ域の周波数範囲を含む連続スぺク トル分布を有するパルス電磁波 を誘電体物質に入射し、 その反射電磁波又は透過電磁波の電場強度の時間波形を 測定し、 その電場強度の時間波形をフーリェ変換することによって振幅及び位相 についての分光スぺクトルデータを得て、 得られた振幅及び位相についての分光 スぺクトルデータを前記誘電体物質がない場合の分光スぺクトルデータと比較し て各周波数毎に前記誘電体物質による位相シフトを求め、 その位相シフ卜から前 記誘電体物質に入射されたパルス電磁波の波動と前記誘電体物質内の分極場の波 動との連成波の波数を各周波数毎に求めることによってその連成波の分散曲線を 得る誘電体物質の光物性定数の光学的測定方法。 1. A pulse electromagnetic wave having a continuous spectrum distribution including the frequency range of the terahertz range is incident on a dielectric substance, and the time waveform of the electric field strength of the reflected or transmitted electromagnetic wave is measured, and the time of the electric field strength is measured. By performing Fourier transform on the waveform, spectral spectrum data on amplitude and phase is obtained, and the obtained spectral spectrum data on amplitude and phase is compared with the spectral spectrum data without the dielectric substance. Then, the phase shift due to the dielectric substance is obtained for each frequency, and the wave of the pulse electromagnetic wave incident on the dielectric substance from the phase shift is coupled with the wave of the polarization field in the dielectric substance. An optical measurement method of the optical property constant of a dielectric substance, in which the wave number of a wave is obtained for each frequency to obtain a dispersion curve of the coupled wave.
2 . 前記分散曲線から前記誘電体物質の誘電分散を決定する請求項 1に記載の誘 電体物質の光物性定数の光学的測定方法。 2. The method for optically measuring the optical physical constant of a dielectric substance according to claim 1, wherein the dielectric dispersion of the dielectric substance is determined from the dispersion curve.
3 . 前記分散曲線から前記誘電体物質の静的誘電率を決定する請求項 1に記載の 誘電体物質の光物性定数の光学的測定方法。 3. The method for optically measuring an optical physical constant of a dielectric material according to claim 1, wherein the static dielectric constant of the dielectric material is determined from the dispersion curve.
4 . 前記分極場がフォノンとされた請求項 1から請求項 3のいずれかに記載の誘 電体物質の光物性定数の光学的測定方法。 4. The method for optically measuring an optical physical constant of a dielectric substance according to any one of claims 1 to 3, wherein the polarization field is phonon.
5 . 所定の時間幅のパルス励起光を所定の周波数で発生する励起源と、 5. An excitation source for generating pulsed excitation light having a predetermined time width at a predetermined frequency;
前記励起源からのパルス励起光が照射されると、 テラへルツ域の周波数範囲を 含む連続スぺクトル分布を有するパルス電磁波を放射し、 測定する誘電体物質に 照射する / ルス電磁波放射素子と、  When irradiated with pulsed excitation light from the excitation source, the device emits a pulsed electromagnetic wave having a continuous spectrum distribution including a frequency range of a terahertz range, and irradiates a dielectric substance to be measured with a radiated electromagnetic wave emitting element. ,
前記誘電体物質からの反射電磁波又は透過電磁波の電場の各時間分解信号を検 出する検出手段と、  Detecting means for detecting each time-resolved signal of the electric field of the reflected or transmitted electromagnetic wave from the dielectric substance,
その時各時間分解信号から時系列データを得、 該時系列データをフーリエ変換 処理することによって前記の反射電磁波又は透過電磁波の振幅及び位相について の分光スぺクトルデータを得る信号処理手段と、 At that time, time-series data is obtained from each time-resolved signal, and the time-series data is subjected to Fourier transform processing to obtain the amplitude and phase of the reflected or transmitted electromagnetic wave. Signal processing means for obtaining spectral spectrum data of
前記パルス励起光が前記パルス電磁波放射素子に一回入射するごとに、 前記検 出手段からの所定の時間分解信号の取り込みを指示するためのサンプリングバル スを、 該パルス励起光に対し所定の時間間隔づっ遅延させて前記検出手段に供給 する遅延手段と、 を備えた光物性定数の光学的測定装置において、  Each time the pulsed excitation light is incident on the pulsed electromagnetic wave radiating element, a sampling pulse for instructing to take in a predetermined time-resolved signal from the detection means is provided for a predetermined time with respect to the pulsed excitation light. A delay means for delaying the signal by an interval and supplying it to the detection means.
さらに、 前記の反射電磁波又は透過電磁波の振幅及び位相についての分光スぺ クトルデータを前記誘電体物質がない場合の分光スぺクトルデータと比較して各 周波数毎に前記誘電体物質による位相シフトを決定する位相シフ卜決定手段と、 その位相シフ卜から前記誘電体物質に入射されたパルス電磁波の波動と前記誘 電体物質内の分極場の波動との連成波の波数を各周波数毎に決定する波数決定手 段と、  Further, the spectral spectrum data on the amplitude and the phase of the reflected electromagnetic wave or the transmitted electromagnetic wave is compared with the spectral spectrum data without the dielectric substance, and the phase shift caused by the dielectric substance is determined for each frequency. A phase shift determining means for determining; and a wave number of a coupled wave of the wave of the pulsed electromagnetic wave incident on the dielectric substance from the phase shift and the wave of the polarization field in the dielectric substance for each frequency. Means for determining the wave number to be determined,
その波数決定手段によって得られた連成波の波数と周波数との分散曲線を得る 分散曲線作成手段と、 を備えたことを特徴とする誘電体物質の光物性定数の光学 的測定装置。  An optical measuring device for measuring the optical property constant of a dielectric substance, comprising: a dispersion curve creating means for obtaining a dispersion curve between the wave number and the frequency of the coupled wave obtained by the wave number determining means.
6 . 前記分散曲線作成手段によって得られた分散曲線から前記誘電体物質の誘電 率を決定する誘電率決定手段を備えたことを特徴とする請求項 5に記載の誘電体 物質の光物性定数の光学的測定装置。 6. The dielectric material according to claim 5, further comprising a dielectric constant determining unit that determines a dielectric constant of the dielectric material from a dispersion curve obtained by the dispersion curve creating unit. Optical measuring device.
7 . 前記誘電体物質を構成要素とする電子素子の製造プロセスの工程中に前記誘 電体物質の誘電率を自動測定するために用いる請求項 6に記載の誘電体物質の光 物性定数の光学的測定装置。 7. The optical property of the dielectric substance according to claim 6, which is used for automatically measuring the dielectric constant of the dielectric substance during a manufacturing process of an electronic element including the dielectric substance as a constituent element. Measuring device.
8 . 前記電子素子が強誘電体メモリである請求項つに記載の誘電体物質の光物性 定数の光学的測定装置。 8. The optical measurement device for measuring optical properties of a dielectric substance according to claim 1, wherein the electronic element is a ferroelectric memory.
9 . 前記電子素子が強誘電体電界効果トランジスタである請求項 7に記載の誘電 体物質の光物性定数の光学的測定装置。 9. The optical measuring device for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a ferroelectric field effect transistor.
1 0 . 前記電子素子が弾性表面波フィルタである請求項 7に記載の誘電体物質の 光物性定数の光学的測定装置。 10. The optical measuring device for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a surface acoustic wave filter.
1 1 . 前記電子素子が誘電体セラミックフィルタである請求項 7に記載の誘電体 物質の光物性定数の光学的測定装置。  11. The optical measuring device for measuring a physical property constant of a dielectric substance according to claim 7, wherein the electronic element is a dielectric ceramic filter.
1 2 . 前記電子素子が積層セラミックコンデンサである請求項 7に記載の誘電体 物質の光物性定数の光学的測定装置。  12. The optical measuring device for optical physical constants of a dielectric substance according to claim 7, wherein the electronic element is a multilayer ceramic capacitor.
1 3 . 請求項 7に記載の誘電体物質の光物性定数の光学的測定装置を組み込んだ ことを特徴とする誘電体物質を構成要素とする電子素子の製造プロセスシステム。  13. An electronic device manufacturing process system comprising a dielectric material as a component, wherein the optical device for optically measuring a physical property constant of a dielectric material according to claim 7 is incorporated.
1 4 . 前記電子素子が強誘電体メモリである請求項 1 3に記載の電子素子の製造 プロセスシステム。  14. The electronic element manufacturing process system according to claim 13, wherein the electronic element is a ferroelectric memory.
1 5 . 前記電子素子が強誘電体電界効果トランジスタである請求項 1 3に記載の 電子素子の製造プロセスシステム。  15. The electronic device manufacturing process system according to claim 13, wherein the electronic device is a ferroelectric field effect transistor.
1 6 . 前記電子素子が弾性表面波フィルタである請求項 1 3に記載の電子素子の 製造プロセスシステム。  16. The electronic device manufacturing process system according to claim 13, wherein the electronic device is a surface acoustic wave filter.
1 7 . 前記電子素子が誘電体セラミックフィルタである請求項 1 3に記載の電子 素子の製造プロセスシステム。  17. The electronic device manufacturing process system according to claim 13, wherein the electronic device is a dielectric ceramic filter.
1 8 . 前記電子素子が積層セラミックコンデンサである請求項 1 3に記載の電子 素子の製造プロセスシステム。  18. The electronic device manufacturing process system according to claim 13, wherein the electronic device is a multilayer ceramic capacitor.
PCT/JP2002/002480 2001-03-15 2002-03-15 Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device WO2002075291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001074938A JP2002277394A (en) 2001-03-15 2001-03-15 Method for optical measurement of optical physical property constant of dielectric substance, instrument therefor, and manufacturing system with the instrument assembled therein
JP2001-74938 2001-03-15

Publications (1)

Publication Number Publication Date
WO2002075291A1 true WO2002075291A1 (en) 2002-09-26

Family

ID=18932108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002480 WO2002075291A1 (en) 2001-03-15 2002-03-15 Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device

Country Status (2)

Country Link
JP (1) JP2002277394A (en)
WO (1) WO2002075291A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396695A (en) * 2001-01-16 2004-06-30 Teraview Ltd Method for investigating a sample
EP1662249A1 (en) * 2003-08-22 2006-05-31 Japan Science and Technology Agency Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer
CN106596462A (en) * 2016-12-19 2017-04-26 中国矿业大学 Paper sheet quantitative detection method based on terahertz phase shifting characteristics and particle swarm algorithm
CN111965133A (en) * 2020-07-22 2020-11-20 中国南方电网有限责任公司电网技术研究中心 Method for detecting water content and polarization form of micro-water-containing oil-immersed insulating paperboard
CN112433970A (en) * 2020-12-02 2021-03-02 上海集成电路研发中心有限公司 Euse controller, chip and efuse read-write system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035780A1 (en) * 2004-09-30 2006-04-06 Japan Science And Technology Agency Infrared light radiation device, infrared light detection device, time-series conversion pulse spectrometer, and infrared light radiation method
JP4654996B2 (en) * 2006-07-12 2011-03-23 株式会社島津製作所 Terahertz wave response measuring device
CN103033282B (en) * 2012-10-29 2014-08-13 大连理工大学 Method detecting instant temperature of graphite tile of partial filter of magnetic confinement fusion device
CN102980859B (en) * 2012-11-22 2015-01-14 中国气象科学研究院 Smog monitoring device and smog monitoring method
US20160252451A1 (en) * 2013-10-15 2016-09-01 National Institute Of Advanced Industrial Science And Technology Optical measuring device and device having optical system
US10718708B2 (en) 2016-04-05 2020-07-21 Advanced Bio-Spectroscopy Co., Ltd Method for observing dynamic physical property of biological tissue and device for observing dynamic physical property of biological tissue

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875806A (en) * 1994-09-02 1996-03-22 Murata Mfg Co Ltd Nonlinear dielectric constant measuring instrument
JPH10130050A (en) * 1996-10-25 1998-05-19 Fuji Elelctrochem Co Ltd Preparation of dielectric material for low-temperature sintering
JPH1123493A (en) * 1997-06-27 1999-01-29 Atsukusu:Kk Method and apparatus for measuring properties of ceramic
JP2000247733A (en) * 1999-02-25 2000-09-12 Toshiba Corp Dielectric ceramic composition, multilayer ceramic capacitor and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875806A (en) * 1994-09-02 1996-03-22 Murata Mfg Co Ltd Nonlinear dielectric constant measuring instrument
JPH10130050A (en) * 1996-10-25 1998-05-19 Fuji Elelctrochem Co Ltd Preparation of dielectric material for low-temperature sintering
JPH1123493A (en) * 1997-06-27 1999-01-29 Atsukusu:Kk Method and apparatus for measuring properties of ceramic
JP2000247733A (en) * 1999-02-25 2000-09-12 Toshiba Corp Dielectric ceramic composition, multilayer ceramic capacitor and its production

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIJIMA T. ET AL.: "Preparation of Bi4Ti3O12 thin film on Si(100) substrate using Bi2SiO3 buffer layer and its electric characterization", JPN. J. APPL. PHYS., vol. 37, no. 9B, PART 1, 1998, pages 5171 - 5173, XP002920298 *
KOJIMA SEIJI ET AL.: "Jikan ryoiki terahertz bunko to kyo yudentai no tei shindosu polariton", MEETING ABSTRACTS OF THE PHYSICAL SOCIETY OF JAPAN, vol. 55, SEPARATE VOL. 4, no. 2, 2000, pages 860, ISSN1342-8349, XP002951812 *
YOSHIOKA S. ET AL.: "High frequency dielectric constant of KH2PO4 determined by polariton dispersion relation", PHYSICA B, vol. 263-264, 1999, pages 829 - 831, XP002951813 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214940B2 (en) 2001-01-16 2007-05-08 Teraview Limited Apparatus and method for investigating a sample
GB2396695B (en) * 2001-01-16 2005-05-04 Teraview Ltd Apparatus and method for investigating a sample
GB2396695A (en) * 2001-01-16 2004-06-30 Teraview Ltd Method for investigating a sample
US7705311B2 (en) 2003-08-22 2010-04-27 Japan Science And Technology Agency Optical-path-difference compensation mechanism for acquiring wave from signal of time-domain pulsed spectroscopy apparatus
EP1662249A4 (en) * 2003-08-22 2008-02-13 Japan Science & Tech Agency Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer
US7507966B2 (en) 2003-08-22 2009-03-24 Japan Science And Technology Agency Optical-path-difference compensation mechanism for acquiring wave form signal of time-domain pulsed spectroscopy apparatus
EP1662249A1 (en) * 2003-08-22 2006-05-31 Japan Science and Technology Agency Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer
CN1839307B (en) * 2003-08-22 2010-05-05 独立行政法人科学技术振兴机构 Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer
CN106596462A (en) * 2016-12-19 2017-04-26 中国矿业大学 Paper sheet quantitative detection method based on terahertz phase shifting characteristics and particle swarm algorithm
CN106596462B (en) * 2016-12-19 2019-09-10 中国矿业大学 Page quantification detection method based on Terahertz phase shift characteristics and particle swarm algorithm
CN111965133A (en) * 2020-07-22 2020-11-20 中国南方电网有限责任公司电网技术研究中心 Method for detecting water content and polarization form of micro-water-containing oil-immersed insulating paperboard
CN112433970A (en) * 2020-12-02 2021-03-02 上海集成电路研发中心有限公司 Euse controller, chip and efuse read-write system
CN112433970B (en) * 2020-12-02 2024-02-20 上海集成电路研发中心有限公司 efuse controller, chip and efuse read-write system

Also Published As

Publication number Publication date
JP2002277394A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
Dobroiu et al. Terahertz-wave sources and imaging applications
JP5173850B2 (en) Inspection device
Suter et al. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers
JP3950818B2 (en) Reflective terahertz spectrometer and measurement method
Waasem et al. Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity
JP2009075069A (en) Apparatus and method for obtaining information related to terahertz wave
WO2014099822A2 (en) System and method for identifying materials using a thz spectral fingerprint in a media with high water content
WO2002075291A1 (en) Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device
WO2009102949A2 (en) Method and apparatus of z-scan photoreflectance characterization
Jiusheng Optical parameters of vegetable oil studied by terahertz time-domain spectroscopy
JPWO2016139754A1 (en) Terahertz wave generator and spectroscopic device using the same
JP2009145223A (en) Device and method for measuring carrier concentration
RU2448399C2 (en) Method of detecting electromagnetic waves in terahertz range and apparatus for realising said method
WO2011089243A1 (en) Evanescent wave absorption based devices
Newnham et al. Pulsed terahertz attenuated total reflection spectroscopy
Strzałkowski et al. Simultaneous thermal and optical characterization of semiconductor materials exhibiting high optical absorption by photopyroelectric spectroscopy
US6798502B2 (en) Microwave regime surface spectroscopy
Jördens et al. Fibre-coupled terahertz transceiver head
Ogawa et al. Attenuated total reflection spectra of aqueous glycine in the terahertz region
JP2003279412A (en) Spectrometry device using white electromagnetic wave emitted from photonic crystal member generated by single pulse photoexcitation as light source
US10145675B2 (en) Using tunable lasers in the design, manufacture, and implementation of integrated optical elements
Sotsky et al. Sensitivity of reflecting terahertz sensors of aqueous solutions
US20160265910A1 (en) In-situ analysis of ice using surface acoustic wave spectroscopy
Zhang et al. Evidence for a shear horizontal resonance in supported thin films
Nabilkova et al. Influence of iron and neodymium doping on ZnSe crystals’ optical properties studied by femtosecond pump-probe spectroscopy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase