WO2002071464A1 - System and method for forming film - Google Patents

System and method for forming film Download PDF

Info

Publication number
WO2002071464A1
WO2002071464A1 PCT/JP2002/001668 JP0201668W WO02071464A1 WO 2002071464 A1 WO2002071464 A1 WO 2002071464A1 JP 0201668 W JP0201668 W JP 0201668W WO 02071464 A1 WO02071464 A1 WO 02071464A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
source
source gas
processing chamber
film forming
Prior art date
Application number
PCT/JP2002/001668
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Matsumoto
Hiroshi Shinriki
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2002071464A1 publication Critical patent/WO2002071464A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45582Expansion of gas before it reaches the substrate

Definitions

  • the present invention relates to a film forming apparatus and a film forming method, and more particularly to a film forming apparatus and a film forming method used for producing a multi-component metal oxide thin film by a chemical vapor synthesis method.
  • PZT film is multi-component metal oxide thin film is a crystalline film of Pb (Z r X _ X T i J ⁇ 3 Bae Rob Sukaito structure.
  • X is in the range of 0 X ⁇ l.
  • PZT film generally, as a. an organometallic material produced by depositing on a substrate by reacting the CVD apparatus and a 2 for example N0 as an oxidant gas of the organic metal material, for example, Pb (DPM) 2 , Z r ( ⁇ one t _Bu) 4, and T i (O- i-P r ) 4 is used. also, with these feed gases ⁇ Pisani ⁇ gas, as a diluent gas nitrogen gas (N In some cases, an inert gas such as 2 ) is used.
  • Organometallic materials are supplied to the CVD system in gaseous form, but the materials themselves are solid or liquid at room temperature. Therefore, in order to supply the organometallic material to the CVD device, the organometallic material is heated to be sublimated or evaporated to be converted into a gas. The vapor pressure of organometallic materials, such as those used for CVD, is often very low.
  • FIG. 1 is a simplified diagram showing the configuration of a conventional CVD apparatus for forming a PZT film.
  • the CVD apparatus shown in FIG. 1 is an apparatus for depositing a PZT film on a semiconductor wafer W disposed in the processing chamber 2.
  • a mounting table 2a for mounting the wafer W is provided in the processing chamber 2.
  • a heater is embedded in the mounting table 2a, and heats the wafer W mounted on the mounting table 2a to a predetermined processing temperature.
  • the processing chamber 2 is connected to a vacuum pump (not shown) via an exhaust port 2b. Is evacuated to maintain a predetermined degree of vacuum.
  • the shower head 4 is provided above the processing chamber 2 so as to face the mounting table 2a. The shower head 4 mixes a raw material gas and an oxidizing gas as processing gases and supplies them to the processing chamber 2.
  • Pb (DPM) 2 (hereinafter referred to as Pb raw material) gas
  • Zr (0-t-Bu) 4 (hereinafter referred to as Zr raw material)
  • T i raw material a gas of T i ( ⁇ i i_P r) 4
  • N 2 nitrogen gas
  • N ⁇ 2 nitrogen dioxide
  • a perforated gas dispersion plate called a showerhead is often used in order to uniformly supply a source gas onto a wafer. This is because the source gas is stored in the shower head (while maintaining the gas pressure high) and the gas is jetted out uniformly from each hole of the shower head, thereby achieving uniformity of the source gas supplied to the shower head.
  • a general object of the present invention is to provide an improved and useful film forming apparatus and a film forming method that solve the above-mentioned problems.
  • a more specific object of the present invention is to provide a film forming apparatus and a film forming method using a gas supply device capable of efficiently mixing a raw material gas having a low vapor pressure and supplying the raw material gas to a shield head. It is to be.
  • a film forming apparatus for forming a thin film on a substrate, comprising: a processing chamber; A mounting table for mounting the substrate, a shower head provided in the processing chamber and supplying a source gas to the substrate mounted on the mounting table, and exhausting gas in the processing chamber.
  • Exhaust means for maintaining the processing chamber at a predetermined vacuum pressure, a source gas mixing chamber to which a plurality of types of source gases are individually supplied and for mixing the supplied source gases; a source gas mixing chamber and the chamber; And a mixed gas supply passage for mixing the plurality of types of source gases flowing from the mixed gas more uniformly and supplying the mixed gas to the shower head.
  • a film forming apparatus is provided.
  • the source gas supply passage for individually supplying a plurality of types of source gases, and the dilution gas supply passage for supplying a dilution gas for diluting the source gas are formed by the source gas. Even if it is connected to the mixing chamber. Further, the opening of the dilution gas supply passage is arranged to eject the dilution gas toward the opening of the mixed gas supply passage, and the inside of the source gas mixing chamber is formed by a bench lily effect due to the ejection of the dilution gas. The raw material gas may be drawn into the mixed gas supply passage.
  • the raw material gas mixing chamber is formed in a substantially columnar shape, and a predetermined gap is formed by a protruding portion in which a part of the upper inner surface protrudes from the bottom surface. It is also possible that an opening of the mixed gas supply passage is provided on the bottom surface.
  • the source gas mixing chamber is formed in a substantially columnar shape, the inner diameter of the mixed gas supply passage is smaller than the inner diameter of the source gas mixing chamber, and the length of the mixed gas supply passage is determined by the amount of the source gas passing therethrough. It is also characterized in that it is set to a predetermined length so that it is uniformly mixed. Further, the size of the predetermined gap may be variable.
  • the film forming apparatus includes a first pressure gauge connected to at least one of the source gas supply passages and measuring a pressure of the source gas supplied to the source gas mixing chamber; A second pressure gauge for measuring a pressure of the mixed gas in the room; and a third pressure gauge for measuring a pressure of the mixed gas in the shower head, wherein the size of the predetermined gap is The control may be based on the pressure measured by the first, second and third pressure gauges.
  • the film forming apparatus according to the present invention is connected to at least one of the source gas supply passages, and the source gas supplied to the source gas mixing chamber.
  • a first pressure gauge for measuring the pressure of the mixed gas a second pressure gauge for measuring the pressure of the mixed gas in the raw material gas mixing chamber, and a second pressure gauge for measuring the pressure of the mixed gas in the chamber.
  • a flow rate of the gas for dilution may be controlled based on pressure measured by the first, second and third pressure gauges.
  • a film forming method for forming a thin film on a substrate wherein a plurality of types of source gases are individually supplied to a source gas mixing chamber; Mixing the source gases in the mixing chamber; supplying the plurality of types of source gases to a mixed gas supply passage to mix them more evenly; and mixing the plurality of the source gases uniformly in the mixed gas supply passage.
  • the plurality of types of source gases include Pb (DPM) 2 sublimated or vaporized Pb source gas and Zr (O-t-Bu).
  • 4 is a Zr raw material gas generated by sublimating or vaporizing 4 and Ti raw gas generated by sublimating or vaporizing Ti (O—i_Pr) 4.
  • the method may include a step of generating a PZT film on a substrate disposed in the processing chamber by supplying an agent gas.
  • the plurality of types of source gases include a Pb source gas containing a Pb (lead) element, a Zr source gas containing a Zr (zirconium) element, and a Ti (titanium) element.
  • the method may further include a step of generating a PZT film on a substrate disposed in the processing chamber by supplying an oxidizing gas to the processing chamber.
  • the plurality of types of source gases include an Sr source gas containing an Sr (strontium) element, a Bi source gas containing a Bi (bismuth) element, and a Ta (tantalum) element.
  • the method may further include a step of generating an SBT film on a substrate disposed in the processing chamber by supplying an oxidizing gas to the processing chamber.
  • the source gas is a Ba source gas containing Ba (barium) element, an Sr source gas containing Sr (strontium) element, and a Ti source gas containing Ti (titanium) element.
  • a plurality of types of source gases are mixed to some extent in the raw gas mixing chamber, and then the mixed gas is supplied to the shower head after passing through the mixed gas supply passage. It is mixed more uniformly in the passage. Therefore, the thin film formed on the substrate by the mixed gas supplied from the shower head becomes a uniform film having a uniform composition.
  • the diluting gas when mixing the diluting gas with the source gas, the diluting gas is ejected toward the mixed gas supply passage, and the source gas can be drawn into the mixed gas passage by a bench lily effect. As a result, even when the source gas has a low vapor pressure, a sufficient amount can be supplied to the shower head. Further, since the bench lily portion has a small volume, even when a plurality of source gases are used, the plurality of source gases are uniformly mixed when passing through the bench lily portion.
  • the present invention provides a Pb raw gas produced by sublimating or vaporizing Pb (DPM) 2 and a Zb produced by sublimating or vaporizing Zr (0-t-Bu) 4.
  • DPM sublimating or vaporizing Pb
  • Zr Zr
  • a great effect is obtained by applying the present invention to a film forming apparatus that generates a PZT film using a source gas and a Ti source gas generated by sublimating or vaporizing T i (O—i—P r) 4. Can be played.
  • FIG. 1 is a simplified diagram showing a configuration of a conventional CVD device for forming a PZT film.
  • FIG. 2 is a schematic configuration diagram of a CVD device according to a first embodiment of the present invention.
  • FIG. 3 is a simplified plan view of the source gas mixing chamber shown in FIG.
  • FIG. 4 is a schematic configuration diagram of a CVD device according to a second embodiment of the present invention.
  • FIG. 5 is a simplified plan view of the source gas mixing chamber shown in FIG. 6A and 6B are simplified configuration diagrams of a CVD apparatus configured to supply an acid gas from the bottom of a processing chamber.
  • FIG. 7A and 7B are simplified configuration diagrams showing another example of a CVD device configured to supply an oxidizing gas from the bottom of a processing chamber.
  • FIG. 2 is a schematic configuration diagram of the CVD device according to the first embodiment of the present invention.
  • the CVD apparatus 10 shown in FIG. 2 is a film forming apparatus for forming a PZT film on a semiconductor wafer.
  • the CVD apparatus 10 has a processing chamber 2.
  • a mounting table 2a on which the semiconductor wafer W is mounted is provided in the processing chamber 2.
  • the processing chamber 2 has an exhaust port 2b, the gas in the processing chamber 2 is exhausted by a vacuum pump (not shown) through the exhaust port 2b, and the inside of the processing chamber 2 has a predetermined degree of vacuum. Is maintained.
  • a shower head 12 is provided above the mounting table 2a, and a processing gas is supplied from the shower head 12 to the semiconductor wafer W mounted on the mounting table 2a.
  • the first head 12 is connected to the original gas mixing chamber 16 via a bench lily tube 14.
  • the raw material gas is mixed in the raw gas mixing chamber 16 and supplied to the shower head 12 through the bench lily tube 14.
  • FIG. 3 is a simplified plan view of the source gas mixing chamber 16. As shown in FIG. 3, three gas supply passages are connected to the raw material gas mixing chamber 16 from the circumferential direction.
  • the Pb raw material supply passage 16a is provided to supply a Pb raw material gas generated by heating and sublimating or vaporizing Pb (DPM) 2 as a raw material gas to the raw material gas mixing chamber 16.
  • the Zr raw material supply passage 16b is provided to supply the Zr raw material gas generated by heating and sublimating or vaporizing Zr (Ot-Bu) 4 as the raw material gas to the raw material gas mixing chamber 16. Have been killed.
  • the Ti raw material supply passage 16 c is used to supply Ti raw gas generated by heating and sublimating or vaporizing Ti ( ⁇ i i—P r) 4 as a raw material gas to the raw material gas mixing chamber 16. Is provided.
  • the raw material gas mixing chamber 16 is formed as a thin cylindrical space, and the Pb raw material supply passage 16a, the Zr raw material supply passage 16b, and the Ti raw material supply passage 16c And extends radially from the outer periphery of the mixing chamber 16.
  • the bench lily pipe 14 is connected to the center of the bottom of the source gas mixing chamber 16.
  • a protrusion 16 d protruding toward the bottom is formed above the opening of the bench lily tube 14 at the bottom of the source gas mixing chamber 16, and the gap between the bottom and the protrusion 16 d is It is a predetermined narrow gap.
  • An opening of the dilution gas supply passage 16 e is provided at the center of the protruding portion 16 d, that is, at the center of the source gas mixing chamber 16 so as to face the opening of the bench lily tube 14. I have.
  • the dilution gas supply passage 16 e is provided at the opening of the bench lily tube 14 to supply N 2 gas as a dilution gas.
  • the opening of the dilution gas supply passage 16 e is provided so as to face the opening of the bench lily tube 14.
  • the diameter of the opening of the dilution gas supply passage 16 e is set smaller than the diameter of the opening of the bench lily tube 14, and the N 2 gas flowing out of the dilution gas supply passage 16 e is It is configured to flow into the bench lily tube 14 at a predetermined flow rate.
  • the source gas in the source gas mixing chamber 16 is caused by the bench lily effect.
  • Bench lily tube 14 is drawn into.
  • the source gases (Pb source gas, Zr source gas, and Ti source gas) in the source gas mixing chamber 16 are mixed to some extent in the source gas mixing chamber 16 in advance, but the As they are drawn in, they are mixed more evenly.
  • the raw material gas drawn into the bench lily tube 14 flows toward the shower head 12 together with the N 2 gas, the raw material gas is further mixed and completely mixed into the shower head 12. Flow in. Therefore, the mixed gas of the source gas and the diluent gas ejected from the shower head 12 is uniformly mixed, and a uniform PZT film can be formed (deposited) on the semiconductor wafer W.
  • the source gas is forcibly sent to the shear head 12 by the bench lily effect due to the ejection of the N 2 gas, so that the pressure in the source gas mixing chamber 16 can be kept low. That is, even if the source gas has a low vapor pressure, a sufficient amount of the source gas can be supplied to the source gas mixing chamber 16, and as a result, a sufficient amount of the source gas can be supplied to the shower head 12. Can be supplied.
  • the opening of the dilution gas supply passage 16 e and the opening of the venturi tube 14 are arranged in the center of the raw material gas mixing chamber 16, but are not necessarily located in the center. No need to place.
  • the opening of the dilution gas supply passage 16 e and the opening of the venturi tube 14 are moved from the center of the source gas mixing chamber 16 in consideration of the flow of the source gas flowing into the source gas mixing chamber 16. It may be placed in a shifted position.
  • a pressure gauge VG1 is provided in the Pb gas supply passage 16a, a pressure gauge VG2 is provided in the raw material gas mixing chamber 16, and a pressure gauge VG2 is provided in the gas head 12.
  • the pressure gauge VG1 is provided between the raw material tank and a flow controller (mass flow controller (MFC)), and substantially measures the pressure in the raw material tank.
  • MFC mass flow controller
  • the dilution gas (N) supplied to the bench lily tube 14 is set so that the pressure V2 indicated by the pressure gauge VG2 becomes about 1/2 to 1 to 100 of the pressure VI indicated by the pressure gauge VG1. 2 ) Control the flow rate.
  • the pressure V3 in the shower head 12 needs to be maintained at a certain pressure or higher.
  • V1 of the source gas is a very low pressure such as the vapor pressure of the Pb source gas
  • V3> V1 may be satisfied.
  • the raw material gas cannot be introduced into the processing chamber, or the mixed raw material gas may flow backward from the shirt head 12.
  • the source gas in the source gas mixing chamber 16 is sent out to the shower head 12 using the bench lily tube 14, so that even if V3> V2, the flow of the dilution gas As a result, the source gas is sent out to the shower head 12.
  • the pressure V 3 in the chamber 12 is higher than the supply pressure V 1 of the source gas (V3> V1), the source gas is passed through the Processing chamber 2 can be supplied.
  • the diluent gas for generating the Venturi effect required to send the source gas at the pressure V1 overcoming the pressure V3 of the shear head is required. It is necessary to know the flow rate. Therefore, in this embodiment, pressure gauges VG1, VG2, and VG3 are provided and the pressure data is fed back to the flow controller for the dilution gas.
  • the flow rate of the dilution gas may be kept constant, and the pressure at each part may be adjusted to the optimum pressure by changing the distance of the gap between the bench lilies.
  • the bench lily tube 14 and the raw material gas mixing chamber 16 constitute a gas supply device for supplying the raw material gas to the shower head 12.
  • the supply passage of the NO 2 gas as an oxidant is not shown, the NO 2 gas may be supplied to the shower head 12 or may be supplied directly to the processing chamber 2. ,.
  • FIG. 4 is a schematic configuration diagram of a CVD device according to a second embodiment of the present invention.
  • the CVD apparatus 20 shown in FIG. 4 is a film forming apparatus for forming a PZT film on a semiconductor wafer.
  • the CVD device 20 shown in FIG. 4 has the same configuration as the processing chamber 2 and the shroud head 12 of the CVD device 10 shown in FIG. The parts that supply the source gas and the dilution gas are different. That is, the CVD device 20 shown in FIG. 4 is a gas supply device that includes a raw gas mixing chamber 22 and a mixed gas passage 24 that connects the raw gas mixing chamber 22 to the chamber 12.
  • a gas supply device that includes a raw gas mixing chamber 22 and a mixed gas passage 24 that connects the raw gas mixing chamber 22 to the chamber 12.
  • the source gas mixing chamber 22 is formed as a substantially cylindrical space, and is supplied with a source gas and a dilution gas. That is, as shown in FIG. 5, four gas supply passages are connected to the outer periphery or upper part of the raw material gas mixing chamber 22.
  • the Pb raw material supply passage 22 a is provided to supply the Pb raw material gas generated by heating and sublimating or vaporizing Pb (DPM) 2 as a raw material gas to the raw material gas mixing chamber 22.
  • the Zr raw material supply passage 22 b is provided to supply the Zr raw material gas generated by heating and sublimating or vaporizing Zr ( ⁇ 1t-1Bu) 4 as the raw material gas to the raw material gas mixing chamber 22. Have been.
  • the raw material supply passage 22 c is provided to supply a raw material gas to the raw material gas mixing chamber 22, which is a Ti raw gas generated by heating and sublimating or vaporizing Ti ( ⁇ i—P r) 4 as a raw material gas. ing.
  • the dilution gas supply passage 22 d is provided to supply N 2 gas as a dilution gas to the raw gas mixing chamber 22.
  • a mixed gas supply passage 24 is connected to the center of the bottom of the source gas mixing chamber 22, and the other end of the mixed gas supply passage 24 is connected to the shower head 12.
  • the mixed gas supply passage 24 is formed as a substantially cylindrical passage.
  • the diameter of the mixed gas supply passage 24 is smaller than the diameter of the raw material gas mixing chambers 2 and 2, but the mixed gas supply passage 24 is supplied to the raw gas mixing chamber 22 and the mixed raw gas and dilution gas pass through. It has a relatively large diameter to avoid large flow resistance (conductance).
  • the length of the mixed gas supply passage 24 is, for example, about 30 Omm so that the source gas is sufficiently mixed by the effect of diffusion while flowing from the source gas mixing chamber to the shower head. Is set to
  • the source gas Pb source gas, Zr source gas, Ti source gas
  • the diluting gas N 2 gas
  • the mixed gas of the raw material gas and the diluent gas flowing into the mixed gas supply passage 24 passes through the mixed gas supply passage 24 and is supplied to the shower head 12. At this time, since the diameter of the mixed gas supply passage 24 is smaller than the diameter of the raw material gas mixing chamber 22 and the length of the mixed gas supply passage 24 is relatively long, the raw material gas and the dilution gas are mixed gas. It mixes more evenly by diffusion while flowing through the supply channel 24.
  • the mixed gas of the source gas and the diluent gas supplied to the shower head 12 is uniformly mixed, and a uniform PZT film can be generated (deposited) on the semiconductor wafer W.
  • the gas supply device of the CVD device 20 has a simple structure and can be easily configured.
  • a rotor 26 is provided in the mixed gas supply passage 24.
  • the inner diameter of the mixed gas supply passage 24 can be made larger, and the gas conductance can be reduced. Further, the length of the mixed gas supply passage 24 can be reduced, and the gas supply device and the film formation device can be downsized.
  • the rotary blade 26 is configured to rotate while being supported by a magnetic force or an air bearing or the like, so that the rotary blade 26 and its rotating shaft do not contact the mixed gas supply passage 24. As a result, no dust is generated due to friction of the bearing due to the operation of the rotary wing 26, and the contamination of the wafer due to the generation of such dust can be prevented.
  • the NO 2 gas may be supplied to the shower head 12 or may be supplied directly to the processing chamber 2. ,.
  • the premix method has a problem that the oxidizing gas and the source gas react in the shower head, and in some cases, deposit as dust on the wafer, and the post-mix method is often used. . Even though the post-mix method is used, a structure in which the inside of the shower head is divided into a passage for the source gas and a passage for the acid gas is often used. The oxidizing gas and the source gas may react due to leakage of water. Also, even in the post-mix method, the oxidizing gas If the gas is supplied to the processing chamber from a position near the chassis, the oxidizing gas may enter the reactor and react.
  • the oxidizing gas does not necessarily need to be supplied uniformly depending on the film forming pressure in the processing chamber, and it is sufficient that the inside of the processing chamber is maintained in an oxygen atmosphere. Therefore, it is conceivable that the oxidant gas reacts with the source gas for the first time on the semiconductor wafer by supplying the oxidant gas from a position away from the shower head.
  • FIG. 6A and 6B are simplified configuration diagrams of a CVD apparatus configured to supply NO 2 gas from the bottom of the processing chamber 2.
  • the CVD device shown in FIG. 6A has basically the same configuration as the CVD device according to the above-described embodiment, but has an oxidizing gas supply passage for supplying NO 2 gas as an oxidizing agent.
  • 2 c is connected to the bottom of processing chamber 2.
  • the exhaust port 2 b is connected to the side of the processing chamber 2.
  • the exhaust port 2b is provided, for example, at a position largely separated from the opening of the oxidizing gas supply passage 2c, and the position in the height direction is substantially the same as that of the mounting table 2a.
  • a baffle plate (rectifying plate) 30 is provided between the outer periphery of the mounting table 2a and the inner surface of the processing chamber.
  • the baffle plate 30 is a plate provided with a large number of holes, and has a function of controlling the gas flow by giving resistance to the gas flow in the processing chamber 2.
  • NO 2 gas as an oxidizing agent is supplied from the bottom of the processing chamber 2 through the oxidizing agent gas supply passage 2c.
  • N0 2 gas supplied to the bottom of the process Chang server 2 flows toward the inside of the processing chamber 2 upward, reaching the surface of the semiconductor wafer W from the periphery of the mounting table 2 a.
  • the NO 2 gas reacts with the source gas (mixed gas) supplied from the shutter head 12 to form (deposit) a PZT film on the semiconductor wafer W.
  • Unreacted and unnecessary mixed gas and NO 2 gas, and unnecessary reaction products are exhausted from the exhaust port 2b provided on the side of the processing chamber 2 to the outside of the processing chamber 2 by a vacuum pump (not shown). )).
  • the raw material gas when the mixed gas of the raw material gas goes under the mounting table 2a, the raw material gas is cooled. There is a possibility that a problem will occur that the solidified or liquefied liquid will adhere to the vicinity of the bottom of the mounting table 2a. That is, the vicinity of the bottom of the mounting table 2a is far from the heater, and there is a portion where the temperature is low.
  • the source gas comes into contact with the low temperature part, the source gas solidifies or liquefies and adheres to that part. Therefore, conventionally, an inert gas is caused to flow upward from the bottom of the processing chamber 2 so that the source gas does not flow below the mounting table 2a.
  • the oxidizing gas is supplied from the shower head 12 or from a portion close to the shutter head.
  • the oxidizing gas (NO 2 ) flows from the bottom of the processing chamber 2 and is exhausted from the side of the processing chamber 2, so that the N 2 A gas flow is created to prevent the source gas from flowing to the bottom of the mounting table 2a.
  • an oxidizing agent gas is supplied to the semiconductor wafer W (the mounting table 2a) from the opposite side of the shear head 12 and the processing chamber 2 at the same height as the mounting table 2a. By exhausting from the side, the flow of the oxidizing gas toward the shower head 12 is prevented. Therefore, it is possible to prevent the acid agent gas from entering the shower head 12 and reacting with the source gas.
  • C VD apparatus shown in FIG. 6 B is that have a C VD device similar configuration shown in FIG. 6 A, head to a shower for supplying oxidant gas (N0 2) into the processing chamber 2 32 is provided at the bottom of the processing chamber 2.
  • oxidant gas N0 2
  • the oxidizing gas can be uniformly supplied.
  • the flow of the oxidizing gas flowing upward around the periphery of the gas can be made more uniform.
  • the oxidizing agent necessary for the reaction was supplied from the bottom of the processing chamber instead of the inert gas.
  • the supply prevents the source gas from flowing into the bottom of the mounting table 2a.
  • FIGS. 6A and 6B show a modification of the CVD device shown in FIGS. 6A and 6B.
  • the exhaust port 2b is connected to the upper part of the processing chamber. That is, the exhaust port 2 b is as high as the shower head 12. Or connected to the side of the processing chamber above the shower surface.
  • an effect equivalent to or better than the ⁇ 30 apparatus shown in FIG. 6 can be obtained.
  • the CVD apparatus shown in FIG. 7B has the same configuration as the CVD apparatus shown in FIG. 7A, but has a shower head 3 for supplying an oxidizing gas (N 0 2 ) into the processing chamber 2. 2 is provided at the bottom of the processing chamber 2. Of the process chamber 2 to the bottom mustard catcher Wa one with head 3 2 by supplying the oxidant gas into the processing Chiyanba 2, it is possible to uniformly supply the Sani ⁇ gas, the processing chamber 2 The flow of the acid gas flowing upward from the bottom to the periphery of the mounting table 2a can be made more uniform.
  • the flow rate of the oxidizing gas is sufficient to prevent the raw material gas from flowing under the mounting table 2a, only the oxidizing gas may be supplied from the bottom of the processing chamber 2. However, if the flow rate of the oxidizing gas is not enough to prevent the raw material gas from flowing to the lower side of the mounting table 2a, supply a gas that appropriately mixes nitrogen gas and inert gas. You can do it.
  • the baffle plate 30 is provided to control the flow of the oxidizing gas such that the oxidizing gas flows uniformly from around the mounting table 2a to the periphery of the semiconductor processing device W. When the flow does not substantially affect the film forming process, it is not always necessary to provide the flow.
  • the oxidizing gas is supplied into the processing chamber 2 from the lower side of the mounting table 2a (heater) incorporating a heater.
  • the oxidizing gas and the raw material gas are supplied into the processing chamber 2 from the lower side of the mounting table 2a (heater) incorporating a heater.
  • the shower head for supplying the raw material gas is A shower head of a type may be used, and the design of the shower head is simplified, so that the period and cost required for manufacture can be reduced.
  • a Pb source gas containing a Pb (lead) element As the source gas of the organometallic material, a Pb source gas containing a Pb (lead) element, a Zr source gas containing a Zr (zirconium) element, and T i (The process of generating a PZT film on a wafer placed in the processing chamber 2 by supplying an oxidizing gas to the processing chamber 2 using a Ti raw material gas containing a titanium (Titanium) element has been described. Such a process can be applied to the formation of a film other than the PZT film.
  • the SBT film contains Sr (strontium) element-containing Sr source gas, Bi (bismuth) element-containing Bi source gas, and Ta (tantalum) element as source gases of the organometallic material. It is produced by using the Ta source gas. That is, the SBT film can be formed on a substrate disposed in the processing chamber by supplying the source gas and the oxidizing gas to the processing chamber.
  • the BST film is composed of a Ba source gas containing a Ba (barium) element, an Sr source gas containing an Sr (strontium) element, and a Ti (titanium) element as source gases of the organometallic material. It is produced by using a Ti source gas containing In other words, the BST film can be formed on the substrate placed in the processing chamber by supplying the source gas and the oxidizing gas to the processing chamber.

Abstract

A plurality of kinds of material gas are supplied individually to a material gas mixing chamber (16). A diluting gas is ejected toward the opening of a Venturi tube (14) and the material gas in the material gas mixing chamber (16) is sucked into the Venturi tube (14) by Venturi effect. The material gas mixed uniformly in the Venturi tube (14) is supplied to a shower head (12). Consequently, a material gas having a low vapor pressure can be supplied to the shower head while being mixed efficiently.

Description

明細書 成膜装置及び成膜方法  Description Film forming apparatus and film forming method
技術分野  Technical field
本発明は成膜装置及び成膜方法に係わり、 特に多元系金属酸化物薄膜を化学的 気相合成法により生成するために使用される成膜装置及び成膜方法に関する。 背景技術  The present invention relates to a film forming apparatus and a film forming method, and more particularly to a film forming apparatus and a film forming method used for producing a multi-component metal oxide thin film by a chemical vapor synthesis method. Background art
• 近年、 プレーナスタック型 F e RAMのメモリキャパシタ材として P Z T膜の 使用が注目されており、 高品質な P Z T膜を短時間で生成する技術の開発が進め られている。  • In recent years, attention has been paid to the use of PZT film as a memory capacitor material for planar stack type Fe RAM, and technology for producing high-quality PZT film in a short time is being developed.
多元系金属酸化物薄膜である PZT膜は、 Pb (Z r X_XT i J 〇 3のぺロブ スカイト構造の結晶膜である。 ここで、 Xは、 0 x≤ lの範囲である。 PZT 膜は、 一般に、 有機金属材料のガスと酸化剤として例えば N02とを CVD装置 により反応させて基体上に堆積させることにより生成される。 有機金属材料とし ては、 例えば Pb (DPM) 2、 Z r (〇一 t _Bu) 4、 及び T i (O— i—P r) 4が用いられる。 また、 これら原料ガス及ぴ酸ィ匕ガスと共に、 希釈用ガスと して窒素ガス (N2) 等の不活性ガスを用いる場合もある。 ■ PZT film is multi-component metal oxide thin film is a crystalline film of Pb (Z r X _ X T i J 〇 3 Bae Rob Sukaito structure. Here, X is in the range of 0 X ≤ l. PZT film, generally, as a. an organometallic material produced by depositing on a substrate by reacting the CVD apparatus and a 2 for example N0 as an oxidant gas of the organic metal material, for example, Pb (DPM) 2 , Z r (〇 one t _Bu) 4, and T i (O- i-P r ) 4 is used. also, with these feed gases及Pisani匕gas, as a diluent gas nitrogen gas (N In some cases, an inert gas such as 2 ) is used.
有機金属材料は気体の状態で CVD装置に供給されるが、 材料そのものとして は室温において固体又は液体である。 したがって、 有機金属材料を CVD装置に 供給するためには、 有機金属材料を加熱することにより昇華又は蒸発させて気体 に変換する。 CVDに用いられるような有機金属材料の蒸気圧は非常に低い場合 が多い。  Organometallic materials are supplied to the CVD system in gaseous form, but the materials themselves are solid or liquid at room temperature. Therefore, in order to supply the organometallic material to the CVD device, the organometallic material is heated to be sublimated or evaporated to be converted into a gas. The vapor pressure of organometallic materials, such as those used for CVD, is often very low.
図 1は P Z T膜を成膜するための従来の CVD装置の構成を示す簡略図である 。 図 1に示す CVD装置は、 処理チャンバ 2内に配置された半導体ウェハ W上に PZT膜を堆積するための装置である。  FIG. 1 is a simplified diagram showing the configuration of a conventional CVD apparatus for forming a PZT film. The CVD apparatus shown in FIG. 1 is an apparatus for depositing a PZT film on a semiconductor wafer W disposed in the processing chamber 2.
処理チャンバ 2内にはウェハ Wを载置するための載置台 2 aが設けられている 。 载置台 2 aにはヒータが埋め込まれており、 载置台 2 aに载置されたウェハ W を所定の処理温度に加熱する。 処理チャンバ 2は排気ポート 2 bを介して真空ポ ンプ (図示せず) に接続されており、 真空ポンプにより処理チャンバ 2内のガス を排気して所定の真空度に維持する。 シャワーヘッド 4は、 载置台 2 aに対向し た状態で処理チヤンバ 2の上部に設けられており、 処理ガスとして原料ガス及び 酸化ガスを混合して処理チャンバ 2内に供給する。 In the processing chamber 2, a mounting table 2a for mounting the wafer W is provided. A heater is embedded in the mounting table 2a, and heats the wafer W mounted on the mounting table 2a to a predetermined processing temperature. The processing chamber 2 is connected to a vacuum pump (not shown) via an exhaust port 2b. Is evacuated to maintain a predetermined degree of vacuum. The shower head 4 is provided above the processing chamber 2 so as to face the mounting table 2a. The shower head 4 mixes a raw material gas and an oxidizing gas as processing gases and supplies them to the processing chamber 2.
P Z T膜を生成するためには、 上述のように、 P b (D PM) 2 (以下 P b原 料と称する) のガス、 Z r (0 - t - B u ) 4 (以下 Z r原料と称する) のガス 、 及び T i (〇一 i _ P r ) 4 (以下 T i原料と称する) のガスをシャワーへッ ド 4に供給する。 また、 シャワーヘッド 4には、 希釈用ガスとして窒素ガス (N 2) 及び酸化剤ガスとして二酸化窒素 (N〇2) も供給される。 In order to form a PZT film, as described above, Pb (DPM) 2 (hereinafter referred to as Pb raw material) gas, Zr (0-t-Bu) 4 (hereinafter referred to as Zr raw material) ) And a gas of T i (〇i i_P r) 4 (hereinafter referred to as T i raw material) are supplied to the shower head 4. The shower head 4 is also supplied with nitrogen gas (N 2 ) as a diluting gas and nitrogen dioxide (N〇 2 ) as an oxidizing gas.
一般的に、 ウェハ上に原料ガスを均一に供給するために、 シャワーヘッドと呼 ばれる孔開きのガス分散板を用いることが多い。 これは、 シャワーヘッド内に原 料ガスをため込んで (ガスの圧力を高く維持して) シャワーヘッドの各孔から均 一にガスを噴出させることにより、 ゥヱハ上に供給される原料ガスの均一性を高 めるものである。  In general, a perforated gas dispersion plate called a showerhead is often used in order to uniformly supply a source gas onto a wafer. This is because the source gas is stored in the shower head (while maintaining the gas pressure high) and the gas is jetted out uniformly from each hole of the shower head, thereby achieving uniformity of the source gas supplied to the shower head. To increase the
また、 原料ガスが複数である場合には、 これら各原料を混合するために、 シャ ヮ一へッドに原料ガスを導入する前に全ての原料ガスをー且小さな空間に集め、 そこで各原料を混合する手法がよく用いられる。  When there are a plurality of source gases, all the source gases are collected in a small space before introducing the source gases into the shear head in order to mix these source materials. Are often used.
し力 し、 元々の蒸気圧が低い有機金属原料に対しては、 これらの手法をそのま ま用いることはできない。 なぜなら、 原料ガスを混合し均一にウェハ上に供給す るために必要な原料ガス蒸気圧は、 原料タンクにおける原料蒸気圧より高いため 、 原料ガスが原料タンクから処理チャンバに流れない (もしくは原料ガスの逆流 'を起こす) ためである。  However, these methods cannot be used directly for organometallic raw materials with low vapor pressure. This is because the source gas vapor pressure required to mix and uniformly supply the source gas onto the wafer is higher than the source vapor pressure in the source tank, so that the source gas does not flow from the source tank to the processing chamber (or the source gas). To cause 'backflow').
発明の開示 Disclosure of the invention
本発明の総括的な目的は、 上述の問題を解消した改良された有用な成膜装置及 ぴ成膜方法を提供することである。  A general object of the present invention is to provide an improved and useful film forming apparatus and a film forming method that solve the above-mentioned problems.
本発明のより具体的な目的は、 蒸気圧の低い原料ガスを効率よく混合し且つシ ャヮ—へッドに供給することのできるガス供給装置を用いた成膜装置及び成膜方 法を提供することである。  A more specific object of the present invention is to provide a film forming apparatus and a film forming method using a gas supply device capable of efficiently mixing a raw material gas having a low vapor pressure and supplying the raw material gas to a shield head. It is to be.
上述の目的を達成するために、 本発明の一つの面によれば、 基体上に薄膜を形 成する成膜装置であって、 処理チャンバと、 該処理チャンパ内に設けられ、 前記 基体を載置する載置台と、 前記処理チャンバに設けられ、 前記載置台に載置され た基体に対して原料ガスを供給するシャワーへッドと、 前記処理チャンバ内のガ スを排気して前記処理チヤンバを所定の真空圧に維持する排気手段と、 複数の種 類の原料ガスが個別に供給され、 供給された原料ガスを混合する原料ガス混合室 と、 該原料ガス混合室と前記シャヮ一^ >ッドとの間に設けられ、 前記混合ガスか ら流入する複数の種類の原料ガスを更に均一に混合して前記シャワーへッドに供 給する混合ガス供給通路とを有することを特徴とする成膜装置が提供される。 上述の発明による成膜装置において、 複数の種類の原料ガスを個別に供給する 原料ガス供給通路と、 原料ガスを希釈するための希釈用ガスを供給する希釈用ガ ス供給通路とが前記原料ガス混合室に接続されていることとしてもよレ、。 また、 前記希釈用ガス供給通路の開口部は、 前記混合ガス供給通路の開口部に向かって 希釈用ガスを噴出するように配置され、 希釈用ガスの噴出によるベンチユリ効果 により前記原料ガス混合室内の原料ガスを前記混合ガス供給通路に引き込むこと としてもよレ、。 さらに、 前記原料ガス混合室は略円柱状に形成され、 上部内面の 一部分が底面に対して突出した突出部により所定の間隙が形成され、 該突出部に 前記希釈用ガス供給通路の開口部が設けられ、 底面に前記混合ガス供給通路の開 口部が設けられることとしてもよレ、。 To achieve the above object, according to one aspect of the present invention, there is provided a film forming apparatus for forming a thin film on a substrate, comprising: a processing chamber; A mounting table for mounting the substrate, a shower head provided in the processing chamber and supplying a source gas to the substrate mounted on the mounting table, and exhausting gas in the processing chamber. Exhaust means for maintaining the processing chamber at a predetermined vacuum pressure, a source gas mixing chamber to which a plurality of types of source gases are individually supplied and for mixing the supplied source gases; a source gas mixing chamber and the chamber; And a mixed gas supply passage for mixing the plurality of types of source gases flowing from the mixed gas more uniformly and supplying the mixed gas to the shower head. A film forming apparatus is provided. In the film forming apparatus according to the invention described above, the source gas supply passage for individually supplying a plurality of types of source gases, and the dilution gas supply passage for supplying a dilution gas for diluting the source gas are formed by the source gas. Even if it is connected to the mixing chamber. Further, the opening of the dilution gas supply passage is arranged to eject the dilution gas toward the opening of the mixed gas supply passage, and the inside of the source gas mixing chamber is formed by a bench lily effect due to the ejection of the dilution gas. The raw material gas may be drawn into the mixed gas supply passage. Further, the raw material gas mixing chamber is formed in a substantially columnar shape, and a predetermined gap is formed by a protruding portion in which a part of the upper inner surface protrudes from the bottom surface. It is also possible that an opening of the mixed gas supply passage is provided on the bottom surface.
また、 前記原料ガス混合室は略円柱状に形成され、 前記混合ガス供給通路の内 径は前記原料ガス混合室の内径より小さく、 前記混合ガス供給通路の長さは、 通 過する原料ガスが均一に混合するように所定の長さに設定されていることを特徴 としてもよレ、。 さらに、 前記所定の間隙の寸法は可変であることを特徴としても よい。  Further, the source gas mixing chamber is formed in a substantially columnar shape, the inner diameter of the mixed gas supply passage is smaller than the inner diameter of the source gas mixing chamber, and the length of the mixed gas supply passage is determined by the amount of the source gas passing therethrough. It is also characterized in that it is set to a predetermined length so that it is uniformly mixed. Further, the size of the predetermined gap may be variable.
また、 本発明による成膜装置は、 少なくとも一つの前記原料ガス供給通路に接 続され、 前記原料ガス混合室に供給される原料ガスの圧力を測定する第 1の圧力 計と、 前記原料ガス混合室内の混合ガスの圧力を測定する第 2の圧力計と、 前記 シャワーへッド内の混合ガスの圧力を測定する第 3の圧力計とを更に有し、 前記 所定の間隙の寸法を、 前記第 1、 第 2及び第 3の圧力計による測定圧力に基づい て制御することとしてもよレ、。 また、 本発明による成膜装置は、 少なくとも一つ の前記原料ガス供給通路に接続され、 前記原料ガス混合室に供給される原料ガス の圧力を測定する第 1の圧力計と、 前記原料ガス混合室内の混合ガスの圧力を測 定する第 2の圧力計と、 前記シャヮ一^、ッド内の混合ガスの圧力を測定する第 3 の圧力計とを更に有し、 前記希釈用ガスの流量を、 前記第 1、 第 2及び第 3の圧 力計による測定圧力に基づいて制御することとしてもよい。 In addition, the film forming apparatus according to the present invention includes a first pressure gauge connected to at least one of the source gas supply passages and measuring a pressure of the source gas supplied to the source gas mixing chamber; A second pressure gauge for measuring a pressure of the mixed gas in the room; and a third pressure gauge for measuring a pressure of the mixed gas in the shower head, wherein the size of the predetermined gap is The control may be based on the pressure measured by the first, second and third pressure gauges. Further, the film forming apparatus according to the present invention is connected to at least one of the source gas supply passages, and the source gas supplied to the source gas mixing chamber. A first pressure gauge for measuring the pressure of the mixed gas, a second pressure gauge for measuring the pressure of the mixed gas in the raw material gas mixing chamber, and a second pressure gauge for measuring the pressure of the mixed gas in the chamber. And a flow rate of the gas for dilution may be controlled based on pressure measured by the first, second and third pressure gauges.
また、 本発明の他の面によれば、 基体上に薄膜を生成する成膜方法であって、 複数の種類の原料ガスを原料ガス混合室に個別に供給する工程と、 該複数の種類 の原料ガスを前記混合室内で混合する工程と、 前記複数の種類の原料ガスを混合 ガス供給通路に供給して更に均一に混合する工程と、 前記混合ガス供給通路にて 均一に混合した前記複数の原料ガスを前記シャワーへッドに供給する工程と、 前 記複数の種類の原料ガスを前記シャワーへッドから処理チャンバに供給する工程 と、 前記処理チャンバ内を所定の真空圧に維持しながら、 前記シャワーヘッドか ら供給された複数の原料ガスと酸化剤ガスとを反応させて前記処理チヤンバ内に 配置された基体上に薄膜を生成する工程とを有することを特徴とする成膜方法が 提供される。  According to another aspect of the present invention, there is provided a film forming method for forming a thin film on a substrate, wherein a plurality of types of source gases are individually supplied to a source gas mixing chamber; Mixing the source gases in the mixing chamber; supplying the plurality of types of source gases to a mixed gas supply passage to mix them more evenly; and mixing the plurality of the source gases uniformly in the mixed gas supply passage. A step of supplying a source gas to the shower head; a step of supplying the plurality of types of source gases from the shower head to a processing chamber; and maintaining the inside of the processing chamber at a predetermined vacuum pressure. Reacting a plurality of source gases supplied from the shower head with an oxidizing gas to form a thin film on a substrate disposed in the processing chamber. Provided .
上述の発明による成膜方法において、 前記複数の種類の原料ガスは、 P b (D PM) 2を昇華又は気化させることにより生成した P b原料ガスと、 Z r (O— t - B u ) 4を昇華又は気化させることにより生成した Z r原料ガスと、 T i ( O— i _ P r ) 4を昇華又は気化させることにより生成した T i原料ガスであり 、 前記処理チャンバに酸ィヒ剤ガスを供給することにより、 前記処理チャンバ内に 配置された基体上に P Z T膜を生成する工程を有することとしてもよい。 In the film forming method according to the above-described invention, the plurality of types of source gases include Pb (DPM) 2 sublimated or vaporized Pb source gas and Zr (O-t-Bu). 4 is a Zr raw material gas generated by sublimating or vaporizing 4 and Ti raw gas generated by sublimating or vaporizing Ti (O—i_Pr) 4. The method may include a step of generating a PZT film on a substrate disposed in the processing chamber by supplying an agent gas.
また、 前記複数の種類の原料ガスは、 P b (鉛) 元素を含んだ P b原料ガスと 、 Z r (ジルコニウム) 元素を含んだ Z r原料ガスと、 T i (チタン) 元素を含 んだ T i原料ガスであり、 前記処理チヤンバに酸化剤ガスを供給することにより 、 前記処理チャンバ内に配置された基体上に P Z T膜を生成する工程を有するこ ととしてもよレ、。 あるいは、 前記複数の種類の原料ガスは、 S r (ストロンチウ ム) 元素を含んだ S r原料ガスと、 B i (ビスマス) 元素を含んだ B i原料ガス と、 T a (タンタル) 元素を含んだ T a原料ガスであり、 前記処理チャンバに酸 化剤ガスを供給することにより、 前記処理チャンバ内に配置された基体上に S B T膜を生成する工程を有することとしてもよレ、。 代わりに、 前記複数の種類の原 料ガスは、 B a (バリウム) 元素を含んだ B a原料ガスと、 S r (ストロンチウ ム) 元素を含んだ S r原料ガスと、 T i (チタン) 元素を含んだ T i原料ガスで あり、 前記処理チャンバに酸化剤ガスを供給することにより、 前記処理チャンバ 内に配置された基体上に B S T膜を生成する工程を有することとしてもよレ、。 上記した本発明によれば、 複数の種類の原料ガスは原科ガス混合室内において ある程度混合され、 次に、 混合ガス供給通路を通過してシャワーヘッドに到達す るまでの間に、 混合ガス供給通路内で更に均一に混合される。 したがって、 シャ ヮーヘッドから供給される混合ガスにより、 基体上の生成される薄膜は、 均質な 組成で均一な膜膜となる。 Further, the plurality of types of source gases include a Pb source gas containing a Pb (lead) element, a Zr source gas containing a Zr (zirconium) element, and a Ti (titanium) element. The method may further include a step of generating a PZT film on a substrate disposed in the processing chamber by supplying an oxidizing gas to the processing chamber. Alternatively, the plurality of types of source gases include an Sr source gas containing an Sr (strontium) element, a Bi source gas containing a Bi (bismuth) element, and a Ta (tantalum) element. The method may further include a step of generating an SBT film on a substrate disposed in the processing chamber by supplying an oxidizing gas to the processing chamber. Instead, the multiple types of source The source gas is a Ba source gas containing Ba (barium) element, an Sr source gas containing Sr (strontium) element, and a Ti source gas containing Ti (titanium) element. And a step of supplying a oxidizing gas to the processing chamber to form a BST film on a substrate disposed in the processing chamber. According to the present invention described above, a plurality of types of source gases are mixed to some extent in the raw gas mixing chamber, and then the mixed gas is supplied to the shower head after passing through the mixed gas supply passage. It is mixed more uniformly in the passage. Therefore, the thin film formed on the substrate by the mixed gas supplied from the shower head becomes a uniform film having a uniform composition.
また、 希釈用ガスを原料ガスに混合する際に希釈用ガスを混合ガス供給通路に 向かって噴出し、 ベンチユリ効果により原料ガスを混合ガス通路に引き込むこと ができる。 これにより、 蒸気圧が低い原料ガスであっても、 十分な量をシャワー ヘッドに供給することができる。 また、 ベンチユリ部はその体積が小さいので、 複数の原料ガスを使用した場合でも、 これらの複数の原料ガスはベンチユリ部を 通過する際に均一に混合される。  Further, when mixing the diluting gas with the source gas, the diluting gas is ejected toward the mixed gas supply passage, and the source gas can be drawn into the mixed gas passage by a bench lily effect. As a result, even when the source gas has a low vapor pressure, a sufficient amount can be supplied to the shower head. Further, since the bench lily portion has a small volume, even when a plurality of source gases are used, the plurality of source gases are uniformly mixed when passing through the bench lily portion.
本発明は、 P b (D PM) 2を昇華又は気ィ匕させることにより生成した P b原 料ガスと、 Z r (0 - t - B u ) 4を昇華又は気化させることにより生成した Z r原料ガスと、 T i (O— i— P r ) 4を昇華又は気化させることにより生成し た T i原料ガスとを用いて P Z T膜を生成する成膜装置に適用することにより、 大きな効果を奏することができる。 The present invention provides a Pb raw gas produced by sublimating or vaporizing Pb (DPM) 2 and a Zb produced by sublimating or vaporizing Zr (0-t-Bu) 4. A great effect is obtained by applying the present invention to a film forming apparatus that generates a PZT film using a source gas and a Ti source gas generated by sublimating or vaporizing T i (O—i—P r) 4. Can be played.
本発明の他の目的、 特徴及び利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより、 一層明瞭となるであろう。  Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は P Z T膜を成膜するための従来の C VD装置の構成を示す簡略図である 図 2は本発明の第 1実施例による C V D装置の概略構成図である。  FIG. 1 is a simplified diagram showing a configuration of a conventional CVD device for forming a PZT film. FIG. 2 is a schematic configuration diagram of a CVD device according to a first embodiment of the present invention.
図 3は図 2に示す原料ガス混合室の簡略平面図である。  FIG. 3 is a simplified plan view of the source gas mixing chamber shown in FIG.
図 4は本発明の第 2実施例による C V D装置の概略構成図である。  FIG. 4 is a schematic configuration diagram of a CVD device according to a second embodiment of the present invention.
図 5は図 4に示す原料ガス混合室の簡略平面図である。 図 6 A及び 6 Bは酸ィヒ剤ガスを処理チャンバの底部から供給するよう構成した C VD装置の簡略構成図である。 FIG. 5 is a simplified plan view of the source gas mixing chamber shown in FIG. 6A and 6B are simplified configuration diagrams of a CVD apparatus configured to supply an acid gas from the bottom of a processing chamber.
図 7 A及び 7 Bは酸化剤ガスを処理チヤンバの底部から供給するよう構成した C V D装置の他の例を示す簡略構成図である。  7A and 7B are simplified configuration diagrams showing another example of a CVD device configured to supply an oxidizing gas from the bottom of a processing chamber.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の第 1実施例について、 図 2及ぴ図 3を参照しながら説明する。 図 2は本発明の第 1実施例による C V D装置の概略構成図である。 図 2に示す C V D装置 1 0は半導体ウェハ上に P Z T膜を生成する成膜装置である。  Next, a first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a schematic configuration diagram of the CVD device according to the first embodiment of the present invention. The CVD apparatus 10 shown in FIG. 2 is a film forming apparatus for forming a PZT film on a semiconductor wafer.
C VD装置 1 0は、 処理チャンバ 2を有している。 処理チャンバ 2内には、 半 導体ウェハ Wを載置する载置台 2 aが設けられている。 処理チャンバ 2は排気ポ 一ト 2 bを有しており、 処理チャンバ 2内のガスは排気ポート 2 bを介して真空 ポンプ (図示せず) により排気され、 処理チャンバ 2内は所定の真空度に維持さ れる。  The CVD apparatus 10 has a processing chamber 2. In the processing chamber 2, a mounting table 2a on which the semiconductor wafer W is mounted is provided. The processing chamber 2 has an exhaust port 2b, the gas in the processing chamber 2 is exhausted by a vacuum pump (not shown) through the exhaust port 2b, and the inside of the processing chamber 2 has a predetermined degree of vacuum. Is maintained.
载置台 2 aの上方にはシャワーへッド 1 2が設けられ、 載置台 2 aに載置され た半導体ウェハ Wに対してシャワーヘッド 1 2から処理ガスが供給される。 シャ ヮ一へッド 1 2は、 ベンチユリ管 1 4を介して原科ガス混合室 1 6に接続されて いる。 原料ガス混合室 1 6において原料ガスが混合され、 ベンチユリ管 1 4を通 つてシャワーへッド 1 2に供給される。  シ ャ ワ ー A shower head 12 is provided above the mounting table 2a, and a processing gas is supplied from the shower head 12 to the semiconductor wafer W mounted on the mounting table 2a. The first head 12 is connected to the original gas mixing chamber 16 via a bench lily tube 14. The raw material gas is mixed in the raw gas mixing chamber 16 and supplied to the shower head 12 through the bench lily tube 14.
図 3は原料ガス混合室 1 6の簡略平面図である。 図 3に示すように、 原料ガス 混合室 1 6には、 円周方向から 3本のガス供給通路が接続されている。 P b原料 供給通路 1 6 aは、 原料ガスとして P b (D PM) 2を加熱昇華又は気化させて 生成した P b原料ガスを原料ガス混合室 1 6に供給するために設けられている。 Z r原料供給通路 1 6 bは、 原料ガスとして Z r (O— t— B u) 4を加熱昇華 又は気化させて生成した Z r原料ガスを原料ガス混合室 1 6に供給するために設 けられている。 T i原料供給通路 1 6 cは、 原料ガスとして T i (〇一 i— P r ) 4を加熱昇華又は気化させて生成した T i原料ガスを原料ガス混合室 1 6に供 給するために設けられている。 FIG. 3 is a simplified plan view of the source gas mixing chamber 16. As shown in FIG. 3, three gas supply passages are connected to the raw material gas mixing chamber 16 from the circumferential direction. The Pb raw material supply passage 16a is provided to supply a Pb raw material gas generated by heating and sublimating or vaporizing Pb (DPM) 2 as a raw material gas to the raw material gas mixing chamber 16. The Zr raw material supply passage 16b is provided to supply the Zr raw material gas generated by heating and sublimating or vaporizing Zr (Ot-Bu) 4 as the raw material gas to the raw material gas mixing chamber 16. Have been killed. The Ti raw material supply passage 16 c is used to supply Ti raw gas generated by heating and sublimating or vaporizing Ti (〇i i—P r) 4 as a raw material gas to the raw material gas mixing chamber 16. Is provided.
原料ガス混合室 1 6は、 薄い円柱形の空間として形成されており、 P b原料供 給通路 1 6 a、 Z r原料供給通路 1 6 b及び T i原料供給通路 1 6 cは、 原料ガ ス混合室 1 6の外周から放射状に延在している。 そして、 ベンチユリ管 1 4は、 原料ガス混合室 1 6の底部の中央部分に接続されている。 原料ガス混合室 1 6の 底部におけるベンチユリ管 1 4の開口部の上部には、 底部に向かって突出した突 出部 1 6 dが形成されており、 底部と突出部 1 6 dとの間隙は所定の狭い間隙で ある。 そして、 突出部 1 6 dの中央、 すなわち、 原料ガス混合室 1 6の中央には 、 ベンチユリ管 1 4の開口部と対向して希釈用ガス供給通路 1 6 eの開口部が設 けられている。 希釈用ガス供給通路 1 6 eは、 ベンチユリ管 1 4の開口部に、 希 釈用ガスとしての N 2ガスを供給するために設けられている。 The raw material gas mixing chamber 16 is formed as a thin cylindrical space, and the Pb raw material supply passage 16a, the Zr raw material supply passage 16b, and the Ti raw material supply passage 16c And extends radially from the outer periphery of the mixing chamber 16. The bench lily pipe 14 is connected to the center of the bottom of the source gas mixing chamber 16. A protrusion 16 d protruding toward the bottom is formed above the opening of the bench lily tube 14 at the bottom of the source gas mixing chamber 16, and the gap between the bottom and the protrusion 16 d is It is a predetermined narrow gap. An opening of the dilution gas supply passage 16 e is provided at the center of the protruding portion 16 d, that is, at the center of the source gas mixing chamber 16 so as to face the opening of the bench lily tube 14. I have. The dilution gas supply passage 16 e is provided at the opening of the bench lily tube 14 to supply N 2 gas as a dilution gas.
したがって、 希釈用ガス供給通路 1 6 eの開口部は、 ベンチユリ管 1 4の開口 部に対向した状態で設けられる。 そして、 希釈用ガス供給通路 1 6 eの開口部の 直径は、 ベンチユリ管 1 4の開口部の直径より小さく設定されており、 希釈用ガ ス供給通路 1 6 eから流出する N2ガスは、 所定の流速でベンチユリ管 1 4に流 れ込むように構成されている。 Therefore, the opening of the dilution gas supply passage 16 e is provided so as to face the opening of the bench lily tube 14. The diameter of the opening of the dilution gas supply passage 16 e is set smaller than the diameter of the opening of the bench lily tube 14, and the N 2 gas flowing out of the dilution gas supply passage 16 e is It is configured to flow into the bench lily tube 14 at a predetermined flow rate.
以上のような構成において、 希釈用ガス供給通路 1 6 eから N2ガスが所定の 流速 (勢い) でベンチユリ管 1 4に流れ込むと、 原料ガス混合室 1 6内の原料ガ スはベンチユリ効果によりベンチユリ管 1 4内に引き込まれる。 原料ガス混合室 1 6内の原料ガス (P b原料ガス、 Z r原料ガス、 T i原料ガス) は、 予め原料 ガス混合室 1 6内である程度混合されているが、 ベンチユリ管 1 4内に引き込ま れる際に更に均一に混合される。 In the above configuration, when the N 2 gas flows from the dilution gas supply passage 16 e into the bench lily tube 14 at a predetermined flow rate (force), the source gas in the source gas mixing chamber 16 is caused by the bench lily effect. Bench lily tube 14 is drawn into. The source gases (Pb source gas, Zr source gas, and Ti source gas) in the source gas mixing chamber 16 are mixed to some extent in the source gas mixing chamber 16 in advance, but the As they are drawn in, they are mixed more evenly.
また、 ベンチユリ管 1 4に引き込まれた原料ガスは、 N2ガスと共にシャワー へッド 1 2に向かって流れる際に、 更に混合され完全に均一に混合された状態で シャワーへッド 1 2に流れ込む。 したがって、 シャワーへッド 1 2から噴出され る原料ガス及び希釈用ガスの混合ガスは、 均一に混合されており、 半導体ウェハ W上に均質な P Z T膜を生成 (堆積) することができる。 Also, when the raw material gas drawn into the bench lily tube 14 flows toward the shower head 12 together with the N 2 gas, the raw material gas is further mixed and completely mixed into the shower head 12. Flow in. Therefore, the mixed gas of the source gas and the diluent gas ejected from the shower head 12 is uniformly mixed, and a uniform PZT film can be formed (deposited) on the semiconductor wafer W.
更に、 N 2ガスの噴出によるベンチユリ効果により、 原料ガスは強制的にシャ ヮ一へッド 1 2に送られるため、 原料ガス混合室 1 6内の圧力を低く維持するこ とができる。 すなわち、 蒸気圧の低い原料ガスであっても、 十分な量の原料ガス を原料ガス混合室 1 6に供給することができ、 その結果、 十分な量の原料ガスを シャワーへッド 1 2に供給することができる。 なお、 図 2及び図 3に示す例では、 希釈用ガス供給通路 16 eの開口部及びべ ンチユリ管 14の開口部を、 原料ガス混合室 16の中央部分に配置しているが、 必ずしも中央に配置する必要はない。 すなわち、 原料ガス混合室 16に流入して くる原料ガスの流れ等を考慮して、 希釈用ガス供給通路 16 eの開口部及びベン チユリ管 14の開口部を、 原料ガス混合室 16の中心からずれた位置に配置して あよい。 Further, the source gas is forcibly sent to the shear head 12 by the bench lily effect due to the ejection of the N 2 gas, so that the pressure in the source gas mixing chamber 16 can be kept low. That is, even if the source gas has a low vapor pressure, a sufficient amount of the source gas can be supplied to the source gas mixing chamber 16, and as a result, a sufficient amount of the source gas can be supplied to the shower head 12. Can be supplied. In the examples shown in FIGS. 2 and 3, the opening of the dilution gas supply passage 16 e and the opening of the venturi tube 14 are arranged in the center of the raw material gas mixing chamber 16, but are not necessarily located in the center. No need to place. That is, the opening of the dilution gas supply passage 16 e and the opening of the venturi tube 14 are moved from the center of the source gas mixing chamber 16 in consideration of the flow of the source gas flowing into the source gas mixing chamber 16. It may be placed in a shifted position.
また、 本実施例では、 図 2·に示すように、 P bガス供給通路 16 aに圧力計 V G 1を設け、 原料ガス混合室 16に圧力計 VG 2を設け、 シャヮ一へッド 12に 圧力計 VG 3を設けて、 各部位の圧力を測定する。 すなわち、 圧力計 VG1によ り Pbガス供給通路 16 a内の圧力 VIを測定し、 圧力計 VG2により原料ガス 混合室 16内の圧力 V 2を測定し、 圧力計 VG 3によりシャワーへッド 12内の 圧力 V 3を測定する。 なお、 圧力計 VG1は、 原料タンクと流量制御器 (マスフ ローコントローラ (MFC) ) との間に設けられ、 実質的に原料タンク内の圧力 を測定する。  In this embodiment, as shown in FIG. 2, a pressure gauge VG1 is provided in the Pb gas supply passage 16a, a pressure gauge VG2 is provided in the raw material gas mixing chamber 16, and a pressure gauge VG2 is provided in the gas head 12. Install a pressure gauge VG3 and measure the pressure at each part. That is, the pressure VI in the Pb gas supply passage 16a is measured by the pressure gauge VG1, the pressure V2 in the raw material gas mixing chamber 16 is measured by the pressure gauge VG2, and the shower head 12 is measured by the pressure gauge VG3. Measure the pressure V3 inside. The pressure gauge VG1 is provided between the raw material tank and a flow controller (mass flow controller (MFC)), and substantially measures the pressure in the raw material tank.
ここで、 本実施例では、 圧力計 VG 2の示す圧力 V 2が圧力計 VG1の示す圧 力 VIの 1/2〜1ノ100程度となるようにベンチユリ管 14に供給する希釈 用ガス (N2)の流量を制御する。 Here, in this embodiment, the dilution gas (N) supplied to the bench lily tube 14 is set so that the pressure V2 indicated by the pressure gauge VG2 becomes about 1/2 to 1 to 100 of the pressure VI indicated by the pressure gauge VG1. 2 ) Control the flow rate.
シャワーヘッド 12に供給された混合原料ガスがシャワーヘッド 12から均等 に噴出されるためには、 シャワーへッド 12内の圧力 V 3をある一定圧力以上に 維持する必要がある。 このとき、 原料ガスの圧力 V 1が P b原料ガスの蒸気圧の ように非常に低い圧力であると、 V 3 >V1となってしまうことがある。 このよ うな場合、 原料ガスを処理室に導くことができなレ、か、 あるいはシャツヮ一へッ ド 12から混合原料ガスが逆流するおそれがある。  In order for the mixed raw material gas supplied to the shower head 12 to be uniformly ejected from the shower head 12, the pressure V3 in the shower head 12 needs to be maintained at a certain pressure or higher. At this time, if the pressure V1 of the source gas is a very low pressure such as the vapor pressure of the Pb source gas, V3> V1 may be satisfied. In such a case, the raw material gas cannot be introduced into the processing chamber, or the mixed raw material gas may flow backward from the shirt head 12.
し力 し、 本実施例においては、 ベンチユリ管 14を用いて原料ガス混合室 16 内の原料ガスをシャワーヘッド 12に送り出しているので、 たとえ V3>V2と なったとしても、 希釈用ガスの流れにより原料ガスはシャワーヘッド 12に送り 出される。 すなわち、 シャヮ一^ ^ッド 12内の圧力 V 3が原料ガスの供給圧力 V 1より高い (V3〉V1) という圧力条件となったとしても、 原料ガスをシャヮ 一へッド 12を介して処理チヤンバ 2に供給することができる。 そのような条件の下で原料ガスを供給するには、 圧力 V 1の原料ガスをシャヮ 一へッドの圧力 V 3に打ち勝って送るために必要なベンチュリ効果を発生させる ための希釈用ガスの流量を知る必要がある。 そのため、 本実施例では圧力計 VG 1, V G 2 , VG 3を設けて圧力データを希釈用ガスの流量制御器にフィードバ ックさせている。 However, in the present embodiment, the source gas in the source gas mixing chamber 16 is sent out to the shower head 12 using the bench lily tube 14, so that even if V3> V2, the flow of the dilution gas As a result, the source gas is sent out to the shower head 12. In other words, even if the pressure V 3 in the chamber 12 is higher than the supply pressure V 1 of the source gas (V3> V1), the source gas is passed through the Processing chamber 2 can be supplied. In order to supply the source gas under such conditions, the diluent gas for generating the Venturi effect required to send the source gas at the pressure V1 overcoming the pressure V3 of the shear head is required. It is necessary to know the flow rate. Therefore, in this embodiment, pressure gauges VG1, VG2, and VG3 are provided and the pressure data is fed back to the flow controller for the dilution gas.
なお、 ベンチユリ効果の程度は、 ベンチユリ部の隙間の距離により変化する。 したがって、 希釈用ガスの流量は一定とし、 代わりにベンチユリ部の隙間の距離 を変化させることにより各部位の圧力が最適な圧力となるように調整することと してもよレ、。  The extent of the bench lily effect varies depending on the distance of the gap between the bench lilies. Therefore, the flow rate of the dilution gas may be kept constant, and the pressure at each part may be adjusted to the optimum pressure by changing the distance of the gap between the bench lilies.
なお、 上述の実施例において、 ベンチユリ管 1 4及び原料ガス混合室 1 6は、 シャワーへッド 1 2に原料ガスを供給するためのガス供給装置を構成する。 また、 酸化剤としての N O 2ガスの供給通路は図示していないが、 N O 2ガスは 、 シャワーヘッド 1 2に供給されてもよく、 また、 処理チャンバ 2に直接供給す ることとしてもよレ、。 In the above embodiment, the bench lily tube 14 and the raw material gas mixing chamber 16 constitute a gas supply device for supplying the raw material gas to the shower head 12. Although the supply passage of the NO 2 gas as an oxidant is not shown, the NO 2 gas may be supplied to the shower head 12 or may be supplied directly to the processing chamber 2. ,.
次に、 本発明の第 2実施例による C VD装置について、 '図 4を参照しながら説 明する。 図 4は本発明の第 2実施例による C VD装置の概略構成図である。 図 4 に示す C VD装置 2 0は半導体ウェハ上に P Z T膜を生成する成膜装置である。 図 4に示す C V D装置 2 0は、 図 2に示す C VD装置 1 0の処理チャンバ 2及 びシャヮ一へッド 1 2と同等な構成を有しており、 シャヮ一へッド 1 2に原料ガ ス及ぴ希釈用ガスを供給する部分が相違する。 すなわち、 図 4に示す C VD装置 2 0は、 ガス供給装置として、 原料ガス混合室 2 2と、 原料ガス混合室 2 2をシ ャヮ一^、ッド 1 2に接続する混合ガス通路 2 4とを有している。  Next, a CVD apparatus according to a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic configuration diagram of a CVD device according to a second embodiment of the present invention. The CVD apparatus 20 shown in FIG. 4 is a film forming apparatus for forming a PZT film on a semiconductor wafer. The CVD device 20 shown in FIG. 4 has the same configuration as the processing chamber 2 and the shroud head 12 of the CVD device 10 shown in FIG. The parts that supply the source gas and the dilution gas are different. That is, the CVD device 20 shown in FIG. 4 is a gas supply device that includes a raw gas mixing chamber 22 and a mixed gas passage 24 that connects the raw gas mixing chamber 22 to the chamber 12. And
原料ガス混合室 2 2は略円柱状の空間として形成され、 原料ガス及び希釈用ガ スが供給される。 すなわち、 図 5に示すように、 原料ガス混合室 2 2の外周又は 上部には、 4本のガス供給通路が接続されている。 P b原料供給通路 2 2 aは、 原料ガスとして P b (D PM) 2を加熱昇華又は気化させて生成した P b原料ガ スを原料ガス混合室 2 2に供給するために設けられている。 Z r原料供給通路 2 2 bは、 原料ガスとして Z r (〇一 t一 B u) 4を加熱昇華又は気化させて生成 した Z r原料ガスを原料ガス混合室 2 2に供給するために設けられている。 T i 原料供給通路 2 2 cは、 原料ガスとして T i (〇一 i— P r ) 4を加熱昇華又は 気化させて生成した T i原料ガスを原料ガス混合室 2 2に供給するために設けら れている。 また、 希釈用ガス供給通路 2 2 dは、 希釈用ガスとして N 2ガスを原 料ガス混合室 2 2に供給するために設けられている。 The source gas mixing chamber 22 is formed as a substantially cylindrical space, and is supplied with a source gas and a dilution gas. That is, as shown in FIG. 5, four gas supply passages are connected to the outer periphery or upper part of the raw material gas mixing chamber 22. The Pb raw material supply passage 22 a is provided to supply the Pb raw material gas generated by heating and sublimating or vaporizing Pb (DPM) 2 as a raw material gas to the raw material gas mixing chamber 22. . The Zr raw material supply passage 22 b is provided to supply the Zr raw material gas generated by heating and sublimating or vaporizing Zr (〇1t-1Bu) 4 as the raw material gas to the raw material gas mixing chamber 22. Have been. T i The raw material supply passage 22 c is provided to supply a raw material gas to the raw material gas mixing chamber 22, which is a Ti raw gas generated by heating and sublimating or vaporizing Ti (〇i—P r) 4 as a raw material gas. ing. The dilution gas supply passage 22 d is provided to supply N 2 gas as a dilution gas to the raw gas mixing chamber 22.
原料ガス混合室 2 2の底部の中央には、 混合ガス供給通路 2 4が接続されてお り、 混合ガス供給通路 2 4の他端はシャワーヘッド 1 2に接続されている。 混合 ガス供給通路 2 4は略円柱状の通路として形成されている。 混合ガス供給通路 2 4の直径は、 原料ガス混合室 2, 2の直径より小さレ、が、 原料ガス混合室 2 2に供 給されて混合された原料ガス及び希釈用ガスが通過する際に大きな流路抵抗 (コ ンダクタンス) とならないように、 比較的大きな直径を有する。 また、 混合ガス 供給通路 2 4の長さは、 原料ガスが原料ガス混合室からシャワーへッドまで流れ てくる間に拡散の効果によって十分混合されるように、 例えば 3 0 O mm程度の 長さに設定されている。  A mixed gas supply passage 24 is connected to the center of the bottom of the source gas mixing chamber 22, and the other end of the mixed gas supply passage 24 is connected to the shower head 12. The mixed gas supply passage 24 is formed as a substantially cylindrical passage. The diameter of the mixed gas supply passage 24 is smaller than the diameter of the raw material gas mixing chambers 2 and 2, but the mixed gas supply passage 24 is supplied to the raw gas mixing chamber 22 and the mixed raw gas and dilution gas pass through. It has a relatively large diameter to avoid large flow resistance (conductance). The length of the mixed gas supply passage 24 is, for example, about 30 Omm so that the source gas is sufficiently mixed by the effect of diffusion while flowing from the source gas mixing chamber to the shower head. Is set to
上述のような構成のガス供給装置において、 原料ガス (P b原料ガス、 Z r原 料ガス、 T i原料ガス) 及び希釈用ガス (N 2ガス) は、 夫々の通路から個別に 原料ガス混合室 2 2へと供給される。 そして、 原料ガス混合室 2 2に供給された 原料ガス及び希釈用ガスの混合ガスは、 原料ガス混合室 2 2内においてある程度 混合され、 混合ガス供給通路 2 4に流入する。 In the gas supply device configured as described above, the source gas (Pb source gas, Zr source gas, Ti source gas) and the diluting gas (N 2 gas) are individually mixed with the source gas through the respective passages. Room 22 is supplied. Then, the mixed gas of the source gas and the diluent gas supplied to the source gas mixing chamber 22 is mixed to some extent in the source gas mixing chamber 22 and flows into the mixed gas supply passage 24.
混合ガス供給通路 2 4に流入した原料ガス及ぴ希釈用ガスの混合ガスは、 混合 ガス供給通路 2 4を通過してシャワーヘッド 1 2に供給される。 この際、 混合ガ ス供給通路 2 4の直径は原料ガス混合室 2 2の直径より小さく、 また混合ガス供 給通路 2 4の長さは比較的長いので、 原料ガス及び希釈ガスは、 混合ガス供給通 路 2 4を流れる間に拡散によつて更に均一に混合される。  The mixed gas of the raw material gas and the diluent gas flowing into the mixed gas supply passage 24 passes through the mixed gas supply passage 24 and is supplied to the shower head 12. At this time, since the diameter of the mixed gas supply passage 24 is smaller than the diameter of the raw material gas mixing chamber 22 and the length of the mixed gas supply passage 24 is relatively long, the raw material gas and the dilution gas are mixed gas. It mixes more evenly by diffusion while flowing through the supply channel 24.
したがって、 シャワーへッド 1 2に供給される原料ガス及び希釈ガスの混合ガ スは均一に混合されており、 半導体ウェハ W上に均質な P Z T膜を生成 (堆積) することができる。  Therefore, the mixed gas of the source gas and the diluent gas supplied to the shower head 12 is uniformly mixed, and a uniform PZT film can be generated (deposited) on the semiconductor wafer W.
上述の実施例による C V D装置 2 0のガス供給装置は簡単な構造であり、 容易 に構成することができる。  The gas supply device of the CVD device 20 according to the above-described embodiment has a simple structure and can be easily configured.
また、 図 4に示すように、 混合ガス供給通路 2 4に回転翼 2 6を設けることと してもよレ、。 すなわち、 混合ガスが混合ガス供給通路 2 4を流れる際に回転翼 2 6を回転することにより、 原料ガスをより均一に混合することができる。 すなわ ち、 回転翼の回転による攪拌作用により、 原料ガスの混合を促進する。 これによ り、 混合ガス供給通路 2 4の内径をより大きくすることができ、 ガスのコンダク タンスを減少することができる。 また、 混合ガス供給通路 2 4の長さを減少する ことができ、 ガス供給装置及び成膜装置を小型化することができる。 In addition, as shown in FIG. 4, a rotor 26 is provided in the mixed gas supply passage 24. You can. That is, by rotating the rotary blade 26 when the mixed gas flows through the mixed gas supply passage 24, the raw material gas can be more uniformly mixed. In other words, the mixing of the source gases is promoted by the stirring action of the rotating blades. As a result, the inner diameter of the mixed gas supply passage 24 can be made larger, and the gas conductance can be reduced. Further, the length of the mixed gas supply passage 24 can be reduced, and the gas supply device and the film formation device can be downsized.
回転翼 2 6は、 磁気力又は空気ベアリング等により支持されて回転するよう構 成され、 回転翼 2 6およびその回転軸が混合ガス供給通路 2 4に接触しないよう になっている。 これにより、 回転翼 2 6の作動に起因して軸受けの摩擦による塵 埃が発生することはなく、 このような塵埃の発生によるウェハの汚染を防止する ことができる。  The rotary blade 26 is configured to rotate while being supported by a magnetic force or an air bearing or the like, so that the rotary blade 26 and its rotating shaft do not contact the mixed gas supply passage 24. As a result, no dust is generated due to friction of the bearing due to the operation of the rotary wing 26, and the contamination of the wafer due to the generation of such dust can be prevented.
なお、 酸化剤としての N02ガスの供給通路は図示していないが、 N02ガスは 、 シャワーヘッド 1 2に供給されてもよく、 また、 処理チャンバ 2に直接供給す ることとしてもよレ、。 Although the supply passage of the NO 2 gas as an oxidizing agent is not shown, the NO 2 gas may be supplied to the shower head 12 or may be supplied directly to the processing chamber 2. ,.
ここで、 酸ィヒ剤としての N02ガスの供給方法及ぴ処理チャンバからの排気方 法について説明する。 一般に、 原料ガスと酸化ガスの混合方式としては、 処理チ ヤンバにおいてこれらのガスを混合させるポストミックス方式と、 処理チャンバ に入る前にこれらのガスを混合させるプレミックス方式とがある。 上述のように 、 酸化剤としての N02ガスはシャワーヘッド 1 2からではなく、 処理チャンバ 2に直接供給することができる。 このような酸化剤ガスの供給方法はポストミツ タス方式の一種であるといえる。 これに対して、 酸化剤ガスをシャワーヘッドに 供給して原料ガスと混合してから処理チャンバに供給する方法は、 代表的なプレ ミックス方式といえる。 Here, a description will be given of an exhaust how from supplying method及Pi processing chamber N0 2 gas as the acid I inhibit agent. In general, as a method of mixing the raw material gas and the oxidizing gas, there are a post-mix method in which these gases are mixed in the processing chamber and a pre-mix method in which these gases are mixed before entering the processing chamber. As described above, NO 2 gas as an oxidizing agent can be supplied directly to the processing chamber 2 instead of from the shower head 12. It can be said that such a method of supplying the oxidizing gas is a kind of the post-mittens method. On the other hand, a method of supplying an oxidizing gas to a shower head to mix it with a source gas and then supplying the mixed gas to a processing chamber can be said to be a typical premix method.
プレミツタス方式は、 酸化剤ガスと原料ガスとがシャワーへッド内で反応し、 場合によっては塵となってウェハ上に堆積するという問題を有しており、 ポスト ミックス方式が多く用いられている。 し力 し、 ポストミックス方式といっても、 シャワーへッド内を原料ガスの通路と、 酸ィヒ剤ガスの通路とに区切った構造が多 く用いられており、 シャワーへッド内での漏れにより酸化剤ガスと原料ガスとが 反応してしまうことがある。 また、 ポストミックス方式であっても、 酸化剤ガス をシャヮ一^ ^ッドに近い位置から処理チャンバに供給すると、 酸化剤ガスがシャ ヮ一へッド内に進入して反応してしまうこともある。 The premix method has a problem that the oxidizing gas and the source gas react in the shower head, and in some cases, deposit as dust on the wafer, and the post-mix method is often used. . Even though the post-mix method is used, a structure in which the inside of the shower head is divided into a passage for the source gas and a passage for the acid gas is often used. The oxidizing gas and the source gas may react due to leakage of water. Also, even in the post-mix method, the oxidizing gas If the gas is supplied to the processing chamber from a position near the chassis, the oxidizing gas may enter the reactor and react.
ここで、 ウェハ状に均一な膜を生成するためには、 原料ガスをウェハの成膜面 に対して均一に供給する必要がある。 一方、 酸化剤ガスについては、 処理チャン バ内の成膜圧力によっては必ずしも均一に供給する必要はなく、 処理チャンバ内 が酸ィヒ雰囲気に維持されていればよい。 そこで、 酸化剤ガスをシャワーヘッドか ら離れた位置から供給することにより、 半導体ウェハ上で初めて酸化剤ガスと原 料ガスとを反応させることが考えられる。  Here, in order to generate a uniform film in a wafer shape, it is necessary to supply the source gas uniformly to the film formation surface of the wafer. On the other hand, the oxidizing gas does not necessarily need to be supplied uniformly depending on the film forming pressure in the processing chamber, and it is sufficient that the inside of the processing chamber is maintained in an oxygen atmosphere. Therefore, it is conceivable that the oxidant gas reacts with the source gas for the first time on the semiconductor wafer by supplying the oxidant gas from a position away from the shower head.
図 6 A及び図 6 Bは NO 2ガスを処理チャンバ 2の底部から供給するよう構成 した C VD装置の簡略構成図である。 図 6 Aに示す C VD装置は、 上述の実施の 形態による C VD装置と基本的に同様な構成を有しているが、 酸化剤としての N O 2ガスを供給するための酸化剤ガス供給通路 2 cが処理チャンバ 2の底部に接 続されている。 そして、 排気ポート 2 bは、 処理チャンバ 2の側面に接続されて. いる。 排気ポート 2 bは、 例えば酸化ガス供給通路 2 cの開口部と大きく離間す るような位置に設けられ、 その高さ方向の位置は載置台 2 aとほぼ同じである。 処理チャンバ 2内において、 载置台 2 aの外周と処理チャンバの内面との間に はバッフル板 (整流板) 3 0が設けられている。 バッフル板 3 0は多数の孔が設 けられた板であり、 処理チャンバ 2内のガスの流れに抵抗を与えてガスの流れを 制御する機能を有している。 6A and 6B are simplified configuration diagrams of a CVD apparatus configured to supply NO 2 gas from the bottom of the processing chamber 2. The CVD device shown in FIG. 6A has basically the same configuration as the CVD device according to the above-described embodiment, but has an oxidizing gas supply passage for supplying NO 2 gas as an oxidizing agent. 2 c is connected to the bottom of processing chamber 2. The exhaust port 2 b is connected to the side of the processing chamber 2. The exhaust port 2b is provided, for example, at a position largely separated from the opening of the oxidizing gas supply passage 2c, and the position in the height direction is substantially the same as that of the mounting table 2a. In the processing chamber 2, a baffle plate (rectifying plate) 30 is provided between the outer periphery of the mounting table 2a and the inner surface of the processing chamber. The baffle plate 30 is a plate provided with a large number of holes, and has a function of controlling the gas flow by giving resistance to the gas flow in the processing chamber 2.
以上のような構成の C VD装置において、 酸化剤としての N02ガスは、 酸ィ匕 剤ガス供給通路 2 cを通じて処理チャンバ 2の底部から供給される。 処理チャン バ 2の底部に供給された N02ガスは、 処理チャンバ 2内を上方に向かって流れ 、 載置台 2 aの周囲から半導体ウェハ Wの表面に至る。 ここで、 N02ガスはシ ' ャヮ一へッド 1 2から供給された原料ガス (混合ガス) と反応して、 半導体ゥェ ハ W上に P Z T膜が生成 (堆積) される。 In the CVD apparatus having the above configuration, NO 2 gas as an oxidizing agent is supplied from the bottom of the processing chamber 2 through the oxidizing agent gas supply passage 2c. N0 2 gas supplied to the bottom of the process Chang server 2 flows toward the inside of the processing chamber 2 upward, reaching the surface of the semiconductor wafer W from the periphery of the mounting table 2 a. Here, the NO 2 gas reacts with the source gas (mixed gas) supplied from the shutter head 12 to form (deposit) a PZT film on the semiconductor wafer W.
未反応の不要になった混合ガス及ぴ N O 2ガス、 及び不要な反応生成物は、 処 理チャンバ 2の側面に設けられた排気ポート 2 bから処理チャンバ 2の外部へと 真空ポンプ (図示せず) により排気される。 Unreacted and unnecessary mixed gas and NO 2 gas, and unnecessary reaction products are exhausted from the exhaust port 2b provided on the side of the processing chamber 2 to the outside of the processing chamber 2 by a vacuum pump (not shown). )).
ここで、 原料ガスの混合ガスが載置台 2 aの下側に回りこむと、 原料ガスが冷 却されて固化又は液化して載置台 2 aの底部付近に付着するという問題が発生す るおそれがある。 すなわち、 載置台 2 aの底部付近はヒータから離れており、 温 度が低い部分が存在する。 この温度の低い部分 原料ガスが接触すると原料ガス が固化又は液ィヒしてその部分に付着する。 そこで、 従来は不活性ガスを処理チヤ ンバ 2の底部から上方に向かって流して、 原料ガスが載置台 2 aの下側に回りこ まないようにしていた。 この場合、 酸化剤ガスはシャワーヘッド 1 2から又はシ ャヮ一へッドに近接した部分から供給されることとなる。 Here, when the mixed gas of the raw material gas goes under the mounting table 2a, the raw material gas is cooled. There is a possibility that a problem will occur that the solidified or liquefied liquid will adhere to the vicinity of the bottom of the mounting table 2a. That is, the vicinity of the bottom of the mounting table 2a is far from the heater, and there is a portion where the temperature is low. When the source gas comes into contact with the low temperature part, the source gas solidifies or liquefies and adheres to that part. Therefore, conventionally, an inert gas is caused to flow upward from the bottom of the processing chamber 2 so that the source gas does not flow below the mounting table 2a. In this case, the oxidizing gas is supplied from the shower head 12 or from a portion close to the shutter head.
図 6 Aに示す C VD装置では、 酸化剤ガス (N O 2) を処理チャンバ 2の底部 から流し、 処理チャンバ 2の側面から排気することにより、 載置台 2 aの底部か ら上方に向かう N02ガスの流れをつくり、 原料ガスが載置台 2 aの底部へ回り 込むことを防止している。 また、 半導体ウェハ W (載置台 2 a ) に対してシャヮ 一へッド 1 2の反対側から酸ィ匕剤ガスを供給し、 且つ載置台 2 aと同じ程度の高 さにおける処理チャンバ 2の側面から排気することにより、 酸化剤ガスのシャヮ 一ヘッド 1 2に向かう流れを防止している。 したがって、 酸^;剤ガスがシャワー ヘッド 1 2に進入して原料ガスと反応することを防止できる。 In the CVD apparatus shown in FIG. 6A, the oxidizing gas (NO 2 ) flows from the bottom of the processing chamber 2 and is exhausted from the side of the processing chamber 2, so that the N 2 A gas flow is created to prevent the source gas from flowing to the bottom of the mounting table 2a. Further, an oxidizing agent gas is supplied to the semiconductor wafer W (the mounting table 2a) from the opposite side of the shear head 12 and the processing chamber 2 at the same height as the mounting table 2a. By exhausting from the side, the flow of the oxidizing gas toward the shower head 12 is prevented. Therefore, it is possible to prevent the acid agent gas from entering the shower head 12 and reacting with the source gas.
図 6 Bに示す C VD装置は、 図 6 Aに示す C VD装置と同様な構成を有してい るが、 酸化剤ガス (N02) を処理チャンバ 2内に供給するためのシャワーへッ ド 3 2が処理チャンバ 2の底部に設けられている。 処理チャンバ 2の底部からシ ャヮーヘッド 3 2を用いて酸化剤ガスを処理チャンバ 2内に供給することにより 、 酸化剤ガスを均一に供給することができるため、 処理チャンバ 2の底部から載 置台 2 aの周囲を上方に向かう酸化剤ガスの流れをより均一な流れとすることが できる。 C VD apparatus shown in FIG. 6 B is that have a C VD device similar configuration shown in FIG. 6 A, head to a shower for supplying oxidant gas (N0 2) into the processing chamber 2 32 is provided at the bottom of the processing chamber 2. By supplying the oxidizing gas into the processing chamber 2 from the bottom of the processing chamber 2 using the shutter head 32, the oxidizing gas can be uniformly supplied. The flow of the oxidizing gas flowing upward around the periphery of the gas can be made more uniform.
以上のように、 従来成膜のための反応に寄与しない不活性ガスを処理チャンバ の底部から供給していたのに対し、 不活性ガスの代わりに反応に必要な酸化剤を 処理チャンバの底部から供給することにより、 原料ガスが載置台 2 aの底部に回 りこまないようにしている。  As described above, while the inert gas that does not contribute to the reaction for film formation was conventionally supplied from the bottom of the processing chamber, the oxidizing agent necessary for the reaction was supplied from the bottom of the processing chamber instead of the inert gas. The supply prevents the source gas from flowing into the bottom of the mounting table 2a.
図 7 A及び図 7 Bは、 図 6 A及び図 6 Bに示す C VD装置の変形例を示してい る。 図 7 Aに示す C VD装置では、 排気ポート 2 bが処理チャンバの上部に接続 されている。 すなわち、 排気ポート 2 bは、 シャワーヘッド 1 2と同じ程度の高 さ又はシャワー面よりも上方の処理チャンバの側面に接続されている。 このよう な構成の場合、 排気ポートから直接ウェハが見えないので、 図 6 に示す<3 0 装置と同等、 もしくはそれ以上の効果を奏することができる。 7A and 7B show a modification of the CVD device shown in FIGS. 6A and 6B. In the CVD apparatus shown in FIG. 7A, the exhaust port 2b is connected to the upper part of the processing chamber. That is, the exhaust port 2 b is as high as the shower head 12. Or connected to the side of the processing chamber above the shower surface. In such a configuration, since the wafer is not directly visible from the exhaust port, an effect equivalent to or better than the <30 apparatus shown in FIG. 6 can be obtained.
図 7 Bに示す C V D装置は、 図 7 Aに示す C V D装置と同様な構成を有してい るが、 酸化剤ガス (N 0 2) を処理チャンバ 2内に供給するためのシャワーへッ ド 3 2が処理チャンバ 2の底部に設けられている。 処理チャンバ 2の底部からシ ャヮ一へッド 3 2を用いて酸化剤ガスを処理チヤンバ 2内に供給することにより 、 酸ィ匕剤ガスを均一に供給することができるため、 処理チャンバ 2の底部から載 置台 2 aの周囲を上方に向かう酸ィヒ剤ガスの流れをより均一な流れとすることが できる。 The CVD apparatus shown in FIG. 7B has the same configuration as the CVD apparatus shown in FIG. 7A, but has a shower head 3 for supplying an oxidizing gas (N 0 2 ) into the processing chamber 2. 2 is provided at the bottom of the processing chamber 2. Of the process chamber 2 to the bottom mustard catcher Wa one with head 3 2 by supplying the oxidant gas into the processing Chiyanba 2, it is possible to uniformly supply the Sani匕剤gas, the processing chamber 2 The flow of the acid gas flowing upward from the bottom to the periphery of the mounting table 2a can be made more uniform.
なお、 酸化剤ガスの流量が、 載置台 2 aの下側への原料ガスの回り込みを防止 するのに十分な場合は、 酸化剤ガスのみを処理チャンバ 2の底部から供給するこ ととしてもよいが、 酸化剤ガスの流量が载置台 2 aの下側への原料ガスの回り込 みを防止するのに不十分な場合は、 窒素ガスや不活性ガスを適宜混ぜたガスを供 給することとしてもよレ、。  If the flow rate of the oxidizing gas is sufficient to prevent the raw material gas from flowing under the mounting table 2a, only the oxidizing gas may be supplied from the bottom of the processing chamber 2. However, if the flow rate of the oxidizing gas is not enough to prevent the raw material gas from flowing to the lower side of the mounting table 2a, supply a gas that appropriately mixes nitrogen gas and inert gas. You can do it.
また、 バッフル板 3 0は、 酸化剤ガスが載置台 2 aの周囲から均一に半導体ゥ 工ハ Wの周囲に流れるように酸化剤ガスの流れを制御するために設けられている 1S 酸化剤ガスの流れが実質的に成膜処理に影響を及ぼさない場合は、 必ずしも 設ける必要はない。  The baffle plate 30 is provided to control the flow of the oxidizing gas such that the oxidizing gas flows uniformly from around the mounting table 2a to the periphery of the semiconductor processing device W. When the flow does not substantially affect the film forming process, it is not always necessary to provide the flow.
図 6 A、 図 6 B、 図 7 A及び図 7 Bに示す C V D装置のように、 酸化剤ガスを ヒータが組み込まれた载置台 2 a (ヒータ) の下側から処理チャンバ 2内に供給 することにより、 酸化剤ガスと原料ガスとがシャヮ一へッド内で反応することを 防止することができる。 したがって、 シャワーヘッド内で反応した場合の生成物 が塵となってウェハ上に堆積するといつた問題を回避することができ、 ウェハ製 造の歩留まりを向上することができる。  As in the CVD apparatus shown in FIGS. 6A, 6B, 7A and 7B, the oxidizing gas is supplied into the processing chamber 2 from the lower side of the mounting table 2a (heater) incorporating a heater. Thereby, it is possible to prevent the oxidizing gas and the raw material gas from reacting in the shower head. Therefore, it is possible to avoid the problem that the product produced when reacted in the showerhead becomes dust and accumulates on the wafer, thereby improving the yield of wafer production.
また、 酸ィ匕剤ガスを処理チャンバ 2の底部に設けられたシャワーへッドから供 給することにより、 原料ガスと酸化剤ガスを同一のシャッヮ一へッドから供給す るような複雑なボストミックス型シャワーへッドとする必要がなくなる。 すなわ ち、 原料ガスを供給するためのシャワーヘッドは、 原料ガスのみを供給する一層 タイプのシャワーヘッドでよく、 シャワーヘッドの設計が簡略ィ匕され、 製作に要 する期間及び費用を短縮することができる。 Further, by supplying the oxidizing gas from the shower head provided at the bottom of the processing chamber 2, it is complicated to supply the raw material gas and the oxidizing gas from the same shower head. Eliminates the need for a bottom mix shower head. In other words, the shower head for supplying the raw material gas is A shower head of a type may be used, and the design of the shower head is simplified, so that the period and cost required for manufacture can be reduced.
また、 場合によっては、 ヒータが設けられた载置台 2 aの下側から供給するパ ージ用の不活性ガスの供給通路を設ける必要がなくなり、 製造コストを削減する こともできる。  In some cases, it is not necessary to provide a supply path for an inert gas for purging to be supplied from the lower side of the mounting table 2a provided with the heater, so that manufacturing costs can be reduced.
なお、 上述の実施例では、 有機金属材料の原料ガスとして、 P b (鉛) 元 素を含んだ P b原料ガスと、 Z r (ジルコニウム) 元素を含んだ Z r原料ガスと 、 T i (チタン) 元素を含んだ T i原料ガスを用い、 処理チャンバ 2に酸化剤ガ スを供給することにより、 処理チヤンバ 2内に配置されたウェハ上に P Z T膜を 生成するプロセスについて説明したが、 このようなプロセスは P Z T膜以外の膜 の生成にも適用することができる。  In the above-described embodiment, as the source gas of the organometallic material, a Pb source gas containing a Pb (lead) element, a Zr source gas containing a Zr (zirconium) element, and T i ( The process of generating a PZT film on a wafer placed in the processing chamber 2 by supplying an oxidizing gas to the processing chamber 2 using a Ti raw material gas containing a titanium (Titanium) element has been described. Such a process can be applied to the formation of a film other than the PZT film.
すなわち、 P Z T膜と同様なプロセスにより生成される膜として、 例えば S B T膜及び B S T膜がある。 '  That is, as a film generated by the same process as the PZT film, for example, there is an SBT film and a BST film. '
S B T膜は、 有機金属材料の原料ガスとして、 S r (ストロンチウム) 元素を 含んだ S r原料ガスと、 B i (ビスマス) 元素を含んだ B i原料ガスと、 T a ( タンタル) 元素を含んだ T a原料ガスとを用いることにより生成される。 すなわ ち、 S B T膜は、 これらの原料ガスと酸化剤ガスとを処理チャンバに供給するこ とにより、 処理チャンバ内に配置された基体上に生成することができる。  The SBT film contains Sr (strontium) element-containing Sr source gas, Bi (bismuth) element-containing Bi source gas, and Ta (tantalum) element as source gases of the organometallic material. It is produced by using the Ta source gas. That is, the SBT film can be formed on a substrate disposed in the processing chamber by supplying the source gas and the oxidizing gas to the processing chamber.
また、 B S T膜は、 有機金属材料の原料ガスとして、 B a (バリウム) 元素を 含んだ B a原料ガスと、 S r (ストロンチウム) 元素を含んだ S r原料ガスと、 T i (チタン) 元素を含んだ T i原料ガスを用いることにより生成される。 すな わち、 B S T膜は、 これらの原料ガスと酸ィ匕剤ガスとを処理チャンバに供給する ことにより、 処理チャンパ内に配置された基体上に生成することができる。  In addition, the BST film is composed of a Ba source gas containing a Ba (barium) element, an Sr source gas containing an Sr (strontium) element, and a Ti (titanium) element as source gases of the organometallic material. It is produced by using a Ti source gas containing In other words, the BST film can be formed on the substrate placed in the processing chamber by supplying the source gas and the oxidizing gas to the processing chamber.
本発明は具体的に説明された上述の実施例に限られず、 本発明の範囲内で様々 な変形例及ぴ改良例がなされるであろう。  The present invention is not limited to the above-described embodiments, and various modifications and improvements may be made within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1 . 基体上に薄膜を形成する成膜装置であって、 1. A film forming apparatus for forming a thin film on a substrate,
処理チャンバと、  A processing chamber;
該処理チャンバ内に設けられ、 前記基体を载置する載置台と、  A mounting table provided in the processing chamber, for mounting the base;
前記処理チヤ.ンバに設けられ、 前記載置台に載置された基体に対して原料ガス を供給するシャヮ一へッドと、  A shower head provided on the processing chamber and supplying a raw material gas to a substrate mounted on the mounting table;
前記処理チヤンバ内のガスを排気して前記処理チヤンバを所定の真空圧に維持 する排気手段と、  Exhaust means for exhausting gas in the processing chamber to maintain the processing chamber at a predetermined vacuum pressure;
複数の種類の原料ガスが個別に供給され、 供給された原料ガスを混合する原料 ガス混合室と、  A source gas mixing chamber in which a plurality of types of source gases are individually supplied, and the supplied source gases are mixed;
該原料ガス混合室と前記シャヮ一^、、フドとの間に設けられ、 前記混合ガスから 流入する複数の種類の原料ガスを更に均一に混合して前記シャヮ一へッドに供給 する混合ガス供給通路と  A mixed gas provided between the raw material gas mixing chamber and the showerhead and the hood, for further uniformly mixing a plurality of types of raw material gases flowing from the mixed gas and supplying the mixed gas to the showerhead; Supply passage and
を有することを特徴とする成膜装置。  A film forming apparatus comprising:
2. 請求の範囲第 1項記載の成膜装置であって、 2. The film forming apparatus according to claim 1, wherein
複数の種類の原料ガスを個別に供給する原料ガス供給通路と、 原料ガスを希釈 するための希釈用ガスを供給する希釈用ガス供給通路とが前記原料ガス混合室に 接続されていることを特徴とする成膜装置。  A source gas supply passage for individually supplying a plurality of types of source gases and a dilution gas supply passage for supplying a dilution gas for diluting the source gas are connected to the source gas mixing chamber. Film forming apparatus.
3 . 請求の範囲第 2項記載の成膜装置であって、 3. The film forming apparatus according to claim 2, wherein
前記希釈用ガス供給通路の開口部は、 前記混合ガス供給通路の開口部に向かつ て希釈用ガスを噴出するように配置され、 希釈用ガスの噴出によるベンチユリ効 果により前記原料ガス混合室内の原料ガスを前記混合ガス供給通路に引き込むこ とを特徴とする成膜装置。  The opening of the dilution gas supply passage is arranged so as to eject the dilution gas toward the opening of the mixed gas supply passage, and the inside of the source gas mixing chamber is formed by the bench lily effect of the ejection of the dilution gas. A film forming apparatus, wherein a source gas is drawn into the mixed gas supply passage.
4 . 請求の範囲第 3項記載の成膜装置であって、 4. The film forming apparatus according to claim 3, wherein
前記原料ガス混合室は略円柱状に形成され、 上部内面の一部分が底面に対して 突出した突出部により所定の間隙が形成され、 該突出部に前記希釈用ガス供給通 路の開口部が設けられ、 底面に前記混合ガス供給通路の開口部が設けられること を特徴とする成膜装置。 The raw material gas mixing chamber is formed in a substantially columnar shape, and a part of the upper inner surface is A predetermined gap is formed by the projecting protrusion, an opening of the dilution gas supply passage is provided at the protrusion, and an opening of the mixed gas supply passage is provided at the bottom surface. apparatus.
;
5 . 請求の範囲第 2項記載の成膜装置であって、 5. The film forming apparatus according to claim 2, wherein
前記原料ガス混合室は略円柱状に形成され、 前記混合ガス供給通路の内径は前 記原料ガス混合室の内径より小さく、 前記混合ガス供給通路の長さは、 通過する 原料ガスが均一に混合するように所定の長さに設定きれていることを特徴とする  The source gas mixing chamber is formed in a substantially columnar shape, the inner diameter of the mixed gas supply passage is smaller than the inner diameter of the source gas mixing chamber, and the length of the mixed gas supply passage is such that the passing source gas is uniformly mixed. It is characterized by being set to a predetermined length so that
6 . 請求の範囲第 4項記載の成膜装置であって、 6. The film forming apparatus according to claim 4, wherein
前記所定の間隙の寸法は可変であることを特徴とする成膜装置。  The dimension of the predetermined gap is variable.
7 . 請求の範囲第 6項記載の成膜装置であって、 7. The film forming apparatus according to claim 6, wherein
少なくとも一つの前記原料ガス供給通路に接続され、 前記原料ガス混合室に供 給される原料ガスの圧力を測定する第 1の圧力計と、  A first pressure gauge connected to at least one of the source gas supply passages and measuring a pressure of the source gas supplied to the source gas mixing chamber;
前記原料ガス混合室内の混合ガスの圧力を測定する第 2の圧力計と、 前記シャワーへッ ド内の混合ガスの圧力を測定する第 3の圧力計と  A second pressure gauge that measures the pressure of the mixed gas in the raw material gas mixing chamber; and a third pressure gauge that measures the pressure of the mixed gas in the shower head.
を更に有し、  Further having
前記所定の間隙の寸法を、 前記第 1、 第 2及ぴ第 3の圧力計による測定圧力に 基づいて制御することを特徴とする成膜装置。  A film forming apparatus, wherein the size of the predetermined gap is controlled based on the pressure measured by the first, second and third pressure gauges.
8 . 請求の範囲第 4項記載の成膜装置であって、 8. The film forming apparatus according to claim 4, wherein
少なくとも一つの前記原料ガス供給通路に接続され、 前記原料ガス混合室に供 給される原料ガスの圧力を測定する第 1の圧力計と、  A first pressure gauge connected to at least one of the source gas supply passages and measuring a pressure of the source gas supplied to the source gas mixing chamber;
前記原料ガス混合室内の混合ガスの圧力を測定する第 2の圧力計と、 前記シャワーへッ ド内の混合ガスの圧力を測定する第 3の圧力計と  A second pressure gauge that measures the pressure of the mixed gas in the raw material gas mixing chamber; and a third pressure gauge that measures the pressure of the mixed gas in the shower head.
を更に有し、  Further having
前記希釈用ガスの流量を、 前記第 1、 第 2及び第 3の圧力計による測定圧力に 基づいて制御することを特徴とする成膜装置。 The flow rate of the dilution gas is changed to the pressure measured by the first, second, and third pressure gauges. A film forming apparatus characterized in that control is performed based on the information.
9 . 基体上に薄膜を生成する成膜方法であって、 9. A film forming method for forming a thin film on a substrate,
複数の種類の原料ガスを原料ガス混合室に個別に供給する工程と、  A step of individually supplying a plurality of types of source gases to the source gas mixing chamber,
該複数の種類の原料ガスを前記混合室内で混合する工程と、  Mixing the plurality of types of source gases in the mixing chamber;
前記複数の種類の原料ガスを混合ガス供給通路に供給して更に均一に混合する 工程と、  Supplying the plurality of types of source gases to a mixed gas supply passage and mixing them more uniformly;
前記混合ガス供給通路にて均一に混合した前記複数の原料ガスを前記シャワー へッドに供給する工程と、  Supplying the plurality of source gases uniformly mixed in the mixed gas supply passage to the shower head;
前記複数の種類の原料ガスを前記シャワーへッドから処理チャンバに供給する 工程と、  Supplying the plurality of types of source gases from the shower head to a processing chamber;
前記処理チャンバ内を所定の真空圧に維持しながら、 前記シャワーへッドから 供給された複数の原料ガスと酸化剤ガスとを反応させて前記処理チャンバ内に配 置された基体上に薄膜を生成する工程と  While maintaining the inside of the processing chamber at a predetermined vacuum pressure, a plurality of source gases supplied from the shower head react with an oxidizing gas to form a thin film on a substrate disposed in the processing chamber. The process of generating
を有することを特徴とする成膜方法。  A film forming method comprising:
1 0 . 請求の範囲第 9項記載の成膜方法であって、 10. The film forming method according to claim 9, wherein
前記複数の種類の原料ガスは、 P b (D PM) 2を昇華又は気化させることに より生成した P b原料ガスと、 Z r (0 - t - B u ) 4を昇華又は気化させるこ とにより生成した Z r原料ガスと、 T i (O— i— P r ) 4を昇華又は気化させ ることにより生成した T i原料ガスであり、 前記処理チャンバに酸ィヒ剤ガスを供 給することにより、 前記処理チャンバ内に配置された基体上に P Z T膜を生成す る工程を有することを特徴とする成膜方法。 The plurality of types of source gases are Pb (DPM) 2 sublimated or vaporized, and Pb source gas and Zr (0-t-Bu) 4 are sublimated or vaporized. Source gas generated by sublimation or vaporization of Ti (O—i—P r) 4 and Zr source gas generated by the above method, and an oxygen source gas is supplied to the processing chamber. A step of forming a PZT film on the substrate disposed in the processing chamber.
1 1 . 請求の範囲第 9項記載の成膜方法であって、 11. The film forming method according to claim 9, wherein
前記複数の種類の原料ガスは、 P b (鉛) 元素を含んだ P b原料ガスと、 Z r (ジルコニウム) 元素を含んだ Z r原料ガスと、 丁 i (チタン) 元素を含んだ T i原料ガスであり、 前記処理チャンバに酸化剤ガスを供給することにより、 前記 処理チャンバ内に配置された基体上に p z T膜を生成する工程を有することを特 徴とする成膜方法。 The plurality of types of source gases include a Pb source gas containing a Pb (lead) element, a Zr source gas containing a Zr (zirconium) element, and a Ti containing a Ti (titanium) element. A source gas; and supplying a oxidizing gas to the processing chamber to form a pzT film on a substrate disposed in the processing chamber. Characteristic film formation method.
1 2. 請求の範囲第 9項記載の成膜方法であって、 1 2. The film forming method according to claim 9, wherein
前記複数の種類の原料ガスは、 S r (ストロンチウム) 元素を含んだ S r原料 ; ガスと、 B i (ビスマス) 元素を含んだ B i原料ガスと、 T a (タンタル) 元素 を含んだ T a原料ガスであり、 前記処理チヤンバに酸化剤ガスを供給することに より、 前記処理チャンバ内に配置された基体上に S B T膜を生成する工程を有す ることを特徴とする成膜方法。  The plurality of types of source gases include an Sr (strontium) element-containing Sr source gas; a gas; a Bi source gas containing a Bi (bismuth) element; and a T source containing a Ta (tantalum) element. a A film forming method comprising: a source gas; and supplying an oxidizing gas to the processing chamber to generate an SBT film on a substrate disposed in the processing chamber.
1 3 . 請求の範囲第 9項記載の成膜方法であって、 13. The film forming method according to claim 9, wherein
前記複数の種類の原料ガスは、 B a (バリウム) 元素を含んだ B a原料ガスと 、 S r (ストロンチウム) 元素を含んだ S r原料ガスと、 T i (チタン) 元素を 含んだ T i原料ガスであり、 前記処理チヤンバに酸化剤ガスを供給することによ り、 前記処理チャンバ内に配置された基体上に B S T膜を生成する工程を有する ことを特徴とする成膜方法。  The plurality of types of source gases include a Ba source gas containing Ba (barium) element, a Sr source gas containing Sr (strontium) element, and a Ti containing Ti (titanium) element. A film forming method, comprising: supplying a oxidizing gas to the processing chamber as a source gas to form a BST film on a substrate disposed in the processing chamber.
PCT/JP2002/001668 2001-02-26 2002-02-25 System and method for forming film WO2002071464A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001051144A JP2002252219A (en) 2001-02-26 2001-02-26 Film forming apparatus and film forming method
JP2001-51144 2001-02-26

Publications (1)

Publication Number Publication Date
WO2002071464A1 true WO2002071464A1 (en) 2002-09-12

Family

ID=18911991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001668 WO2002071464A1 (en) 2001-02-26 2002-02-25 System and method for forming film

Country Status (2)

Country Link
JP (1) JP2002252219A (en)
WO (1) WO2002071464A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073850A1 (en) * 2003-02-14 2004-09-02 Tokyo Electron Limited Gas feeding apparatus
EP4257724A1 (en) * 2022-04-05 2023-10-11 ISSA, Esmail Method and reactor configuration for the production of oxide or oxynitride layers

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204886B2 (en) 2002-11-14 2007-04-17 Applied Materials, Inc. Apparatus and method for hybrid chemical processing
WO2005081269A1 (en) * 2004-02-20 2005-09-01 Kaneka Corporation Method and equipment for forming transparent conductive film
JP4494942B2 (en) * 2004-11-19 2010-06-30 積水化学工業株式会社 Plasma processing equipment
JP2008231571A (en) * 2007-02-23 2008-10-02 Tohcello Co Ltd Thin film, and method for manufacturing the thin film
JP5253838B2 (en) * 2007-02-23 2013-07-31 三井化学東セロ株式会社 Thin film manufacturing method
JP5008420B2 (en) * 2007-02-23 2012-08-22 三井化学東セロ株式会社 Thin film and method for manufacturing the same
US7670964B2 (en) * 2007-03-22 2010-03-02 Tokyo Electron Limited Apparatus and methods of forming a gas cluster ion beam using a low-pressure source
JP5427344B2 (en) 2007-05-23 2014-02-26 株式会社渡辺商行 Vaporization apparatus and film forming apparatus equipped with vaporization apparatus
JP4900956B2 (en) * 2007-06-25 2012-03-21 東京エレクトロン株式会社 Gas supply mechanism and substrate processing apparatus
JP5615412B2 (en) * 2013-07-24 2014-10-29 株式会社渡辺商行 Vaporization apparatus and film forming apparatus equipped with vaporization apparatus
TWI552203B (en) * 2013-12-27 2016-10-01 Hitachi Int Electric Inc A substrate processing apparatus, a manufacturing method of a semiconductor device, and a computer-readable recording medium
KR102071501B1 (en) * 2015-07-07 2020-01-30 주식회사 원익아이피에스 Apparatus for treating substrate
KR101747648B1 (en) * 2015-10-30 2017-06-27 주식회사 테스 Gas supply unit and thin film deposition apparatus having the same
KR101789021B1 (en) * 2016-01-29 2017-10-23 주식회사 테스 Thin film deposition apparatus
KR102156390B1 (en) * 2016-05-20 2020-09-16 어플라이드 머티어리얼스, 인코포레이티드 Gas distribution showerhead for semiconductor processing
CN108058369B (en) * 2017-12-21 2019-09-17 重庆馨康阁科技有限公司 Ambulance method for adhering film
JP6955260B2 (en) * 2017-12-28 2021-10-27 株式会社エー・シー・イー Gas supply device
CN110158055B (en) * 2019-05-15 2022-01-14 拓荆科技股份有限公司 Multi-section spraying assembly
JP2023048726A (en) 2021-09-28 2023-04-07 東京エレクトロン株式会社 Apparatus for performing substrate processing, gas shower head, and method for performing substrate processing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275548A (en) * 1993-01-25 1994-09-30 Osaka Gas Co Ltd Formation of cvd thin film
US5683537A (en) * 1993-10-04 1997-11-04 Tokyo Electron Limited Plasma processing apparatus
JP2000012534A (en) * 1998-06-18 2000-01-14 Kokusai Electric Co Ltd Substrate processing apparatus
EP1031641A2 (en) * 1999-02-24 2000-08-30 Applied Materials, Inc. Method and apparatus for depositing an insulating film
JP2001023905A (en) * 1999-07-06 2001-01-26 Matsushita Electric Ind Co Ltd Cvd device and formation method of film
EP1122335A1 (en) * 2000-02-01 2001-08-08 Applied Materials, Inc. Methods and apparatus for vaporization of liquids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275548A (en) * 1993-01-25 1994-09-30 Osaka Gas Co Ltd Formation of cvd thin film
US5683537A (en) * 1993-10-04 1997-11-04 Tokyo Electron Limited Plasma processing apparatus
JP2000012534A (en) * 1998-06-18 2000-01-14 Kokusai Electric Co Ltd Substrate processing apparatus
EP1031641A2 (en) * 1999-02-24 2000-08-30 Applied Materials, Inc. Method and apparatus for depositing an insulating film
JP2001023905A (en) * 1999-07-06 2001-01-26 Matsushita Electric Ind Co Ltd Cvd device and formation method of film
EP1122335A1 (en) * 2000-02-01 2001-08-08 Applied Materials, Inc. Methods and apparatus for vaporization of liquids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073850A1 (en) * 2003-02-14 2004-09-02 Tokyo Electron Limited Gas feeding apparatus
US7540305B2 (en) 2003-02-14 2009-06-02 Tokyo Electron Limited Chemical processing system and method
EP4257724A1 (en) * 2022-04-05 2023-10-11 ISSA, Esmail Method and reactor configuration for the production of oxide or oxynitride layers

Also Published As

Publication number Publication date
JP2002252219A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
WO2002071464A1 (en) System and method for forming film
US7673856B2 (en) Vaporizer and various devices using the same and an associated vaporizing method
CN100519834C (en) Device and method for manufacturing thin films
EP1452626B9 (en) Mixer, and device and method for manufacturing thin film
JP2003133300A (en) Apparatus and method for forming film
US5835677A (en) Liquid vaporizer system and method
US5776254A (en) Apparatus for forming thin film by chemical vapor deposition
EP1643003A1 (en) Vaporizer for CVD apparatus
WO2001036702A1 (en) Method of vaporizing liquid sources and apparatus therefor
KR20050106509A (en) Vaporizer, film forming apparatus including the same, method of vaporization and method of forming film
JP2007531256A (en) Method and apparatus for depositing metal oxide etc. by discharging discontinuous precursors
EP1492160A1 (en) Vaporizer, various devices using the same, and vaporizing method
JPH06252134A (en) Vapor growth method of silicon dioxide film
JP4391413B2 (en) Vaporizer, disperser, film forming apparatus, and vaporization method
EP1492159A1 (en) Method of depositing cvd thin film
JPH10168572A (en) Injection head of reactive gas
JP2000104172A (en) Coating film forming method, coating film forming apparatus and solid raw material
JP4880175B2 (en) Vapor growth apparatus and vapor growth method
JP4595356B2 (en) Raw material vaporizer for metalorganic chemical vapor deposition equipment
JP4110576B2 (en) Vaporizer for CVD, solution vaporization type CVD apparatus, and vaporization method for CVD
JP2013038169A (en) Thin film manufacturing method and thin film manufacturing apparatus
JP4370529B2 (en) Film forming apparatus, raw material introducing method, and film forming method
TW201807241A (en) HfN film manufacturing method and HfN film
JP2004260024A (en) Vapor phase epitaxial growth process
JP2016195214A (en) Film forming method and film forming device for forming nitride film using mocvd apparatus, and shower head

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase