WO2002066907A1 - Dispositif a cycle de refrigeration - Google Patents

Dispositif a cycle de refrigeration Download PDF

Info

Publication number
WO2002066907A1
WO2002066907A1 PCT/JP2002/001441 JP0201441W WO02066907A1 WO 2002066907 A1 WO2002066907 A1 WO 2002066907A1 JP 0201441 W JP0201441 W JP 0201441W WO 02066907 A1 WO02066907 A1 WO 02066907A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
oil
pressure
compressor
Prior art date
Application number
PCT/JP2002/001441
Other languages
English (en)
French (fr)
Inventor
Noriho Okaza
Masami Funakura
Fumitoshi Nishiwaki
Yuji Yoshida
Yuuichi Yakumaru
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP02703853A priority Critical patent/EP1363084A1/en
Priority to KR10-2003-7010845A priority patent/KR20030081454A/ko
Priority to JP2002566186A priority patent/JPWO2002066907A1/ja
Priority to US10/467,576 priority patent/US6871511B2/en
Publication of WO2002066907A1 publication Critical patent/WO2002066907A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/03Suction accumulators with deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle

Definitions

  • the present invention (hereinafter referred to as C 0 2) carbon dioxide as a refrigerant bright relates frozen Ikuru apparatus using refrigerant.
  • Air conditioners, car air conditioners, electric (refrigerated) refrigerators, refrigerated or frozen warehouses, showcases, etc. use refrigeration cycle devices that connect compressors, radiators, decompressors, evaporators, etc. Be me! / As a matter of fact, hydrocarbons containing fluorine atoms have been used as the refrigerant sealed in the refrigeration cycle apparatus.
  • hydrocarbons containing both fluorine and chlorine atoms have been widely used in refrigeration cycle equipment because of their good performance, non-flammability, and non-toxicity to the human body.
  • HCFCs have a chlorine atom, they reveal that the ozone layer will burst if it is released into the atmosphere and reaches the stratosphere.
  • HFCs fluoride-free fluorocarbons
  • they do not have the property of depleting the ozone layer, but have a long green life in the atmosphere, and have a large greenhouse effect. It is not always a satisfactory coolant in preventing the problem of global warming.
  • the refrigeration cycle apparatus using the same can be a trans-critical cycle described using FIG.
  • Figure 4 is a Mollier diagram of a refrigeration cycle using a C0 2 as a refrigerant.
  • A—B—C—D—A the compression process (A—B) in which the compressor compresses the gaseous state C0 2 refrigerant with the high-temperature, high-pressure supercritical state C0 2 cooling step to cool the refrigerant by the radiator (gas cooler) (BC), then vacuum stroke (C one D) to more reduced to decompressor, an evaporator for evaporating the C0 2 refrigerant becomes a gas-liquid two-phase state During the evaporating process (DA), heat is removed from the external fluid such as air by latent heat of evaporation to cool the external fluid.
  • DA evaporating process
  • the transition from the saturated vapor region (gas-liquid two-phase region) to the heated vapor region (gas phase region) in the evaporation process (DA) is performed in the same way as in the case of 110 (class ⁇ 11?).
  • the line (B-C) is located on the high pressure side due to the gas-liquid critical point CC, and does not cross the saturated liquid line and the saturated vapor line.
  • the operating pressure of the refrigeration cycle apparatus using a C0 2 refrigerant is 3. about 5 MPa
  • to become high-pressure side pressure is about 1 OMP a, compared to the case of using HCFC's and HFC's
  • the operating pressure increases, and the high-pressure side and low-pressure side pressures are about 5 to 10 times that of refrigeration cycle devices using HCFCs and HFCs.
  • the operating pressure of a refrigeration cycle device that operates at such transcritical high pressure is Depending on several factors, such as filling volume, element volume and cooling stroke temperature, deviating from the optimal high pressure during operation may result in relatively low refrigeration capacity and low efficiency There is. For this reason, it is necessary to make the high pressure side pressure during operation equal to the optimum high pressure side pressure by the refrigerant charging amount adjusted when the refrigeration cycle device is stopped, thereby achieving relatively high refrigeration capacity and high efficiency.
  • the volume of the high-side circuit should be relatively large compared to the volume of the low-side circuit, and more specifically, the volume of the high-side circuit is 70% of the total internal volume. % or more and that it should, refrigerant charge of C 0 2 refrigerant, when based on the total ⁇ unit volume, per Ritsuta 0.5 0.7 5 0 Kirogu should be the amount of ram.
  • JP No. 2804844 The entire disclosure of the document of Japanese Patent No. 2850484 is incorporated herein by reference in its entirety.
  • the refrigerant flow path of the heat exchanger used for the radiator and the evaporator of such a refrigeration cycle device has a small diameter as shown in the schematic diagram of FIG.
  • a flat tube 51 composed of a plurality of through holes 51a is used.
  • the compressor has a low-pressure shell type shell.
  • the volume of the low-pressure side circuit including the compressor shell space is larger than that of the high-pressure side circuit. It is relatively large compared to.
  • the volume of the high-pressure side circuit is usually less than 70% of the total internal volume.
  • the high-pressure side circuit refers to a relatively high pressure in the closed circuit constituting the refrigeration cycle device when the refrigeration cycle device is operated.
  • the low pressure side circuit specifically, such as a pressure reducer - evaporator - compressor
  • connecting pipes that low There C 0 2 refrigerant relatively pressure operated is intended to refer to.
  • An object of the present invention is to provide a refrigeration cycle apparatus capable of alleviating a sudden increase in pressure in a refrigerant circuit as compared with a conventional refrigeration cycle apparatus in consideration of the above-described problems of the conventional refrigeration cycle apparatus.
  • the first present invention (corresponding to the first aspect of the present invention) provides a refrigerant circuit including at least a compressor, a pressure reducer, a radiator, and an evaporator, and the refrigerant circuit includes carbon dioxide (carbon dioxide).
  • (co 2 ) is a refrigeration cycle device in which a refrigerant mainly containing: a refrigerant circuit, wherein the internal volume of the high-pressure side circuit of the refrigerant circuit is 7 times the total internal volume of the refrigerant circuit. Less than 0%,
  • a refrigeration cycle apparatus including a predetermined container member in the middle of the high-pressure side circuit.
  • the container member is a container having a pipe cross-sectional area larger than a pipe cross-sectional area of the refrigerant circuit.
  • the refrigeration cycle apparatus according to the first aspect of the present invention including Z or oil separating means.
  • the container is a cylindrical container, and the container member is (1) above the cylindrical container.
  • An inlet pipe provided near the end and tangential to an inner peripheral surface of the cylindrical container; (2) an inner pipe extending through a central portion of an upper end of the cylindrical container; (3) an oil outlet tube provided at the lower end of the container; and (4) a swirl for giving a swirling motion to the refrigerant and oil provided in the container.
  • a refrigeration cycle apparatus comprising:
  • a fourth aspect of the present invention (corresponding to the present invention according to claim 4) is that a refrigerant cooling means for cooling the refrigerant by utilizing a part of the high-pressure side circuit and a part of the low-pressure side circuit.
  • the container member is the refrigeration cycle device according to any one of the first to third aspects of the present invention, which is provided between the refrigerant cooling unit and the pressure reducer.
  • a fifth aspect of the present invention (corresponding to the present invention according to claim 5) provides a refrigerant cooling unit for cooling the refrigerant by utilizing a part of a high pressure side circuit and a part of a low pressure side circuit.
  • the refrigerant cooling means may further include a radiator formed between an outlet side of the radiator and an inlet side of the pressure reducer.
  • the fourth heat exchanger which is an auxiliary heat exchanger that exchanges heat between the refrigerant passage on the side and the evaporation-side refrigerant passage formed from the outlet side of the evaporator to the suction part of the compressor. It is a refrigeration cycle device of the invention.
  • a seventh aspect of the present invention (corresponding to the seventh aspect of the present invention) is that the ratio of the oil weight to the carbon dioxide (co 2 ) refrigerant weight circulating in the high pressure side circuit during the operation of the refrigeration cycle apparatus is as follows.
  • the refrigeration cycle device according to any one of the first to sixth aspects, wherein the content is 2% or less.
  • An eighth aspect of the present invention (corresponding to the present invention according to claim 8) is that, in a part of the refrigerant circuit, an amount of carbon dioxide (C ⁇ 2 ) refrigerant of 0.25 kg or less per unit liter is provided.
  • the refrigeration cycle apparatus according to any one of the first to seventh aspects of the present invention, wherein is filled.
  • a ninth aspect of the present invention is to provide an oil within a volume of less than 50% of the shell internal volume excluding the volume of the compression mechanism in the volume of the compressor.
  • the refrigeration cycle apparatus according to any one of the first to eighth aspects of the present invention, which is enclosed.
  • a tenth aspect of the present invention is any one of the first to ninth aspects, wherein the compressor is an oil-less type or oil-poor type renewable compressor.
  • 3 is a refrigeration cycle device of the present invention of 3.
  • the radiator includes a plurality of flat tubes each having a hydraulic equivalent diameter of 0.2 mm to 6.0 mm.
  • the refrigeration cycle apparatus according to any one of the first to tenth aspects, wherein the through-hole serves as a refrigerant flow path.
  • a twenty-second invention (corresponding to the invention according to claim 12) is characterized in that the oil sealed in the compressor is an oil insoluble in carbon dioxide (co 2 ) refrigerant.
  • a refrigeration cycle device according to any one of items 1 to 11 of the present invention.
  • At least a compressor circuit, a decompressor, a radiator, and an evaporator constitute a refrigerant circuit, circuit Wherein the internal volume of the refrigeration cycle is less than 70% of the total internal volume of the refrigerant circuit,
  • a refrigeration cycle apparatus in which the inside of the refrigerant circuit is filled with carbon dioxide (co 2 ) refrigerant in an amount of 0.25 kg or less per unit litter.
  • a fifteenth aspect of the present invention (corresponding to the present invention according to claim 14) is an oil weight based on the weight of carbon dioxide (co 2 ) refrigerant that circulates through the high pressure side circuit when the refrigeration cycle apparatus is operating. In the thirteenth aspect, the ratio is 2% or less.
  • the fifteenth invention (corresponding to the invention according to claim 15) is characterized in that, of the volume of the compressor, less than 50% of the internal volume of the shell excluding the volume of the compression mechanism is reduced to oil.
  • a refrigeration cycle apparatus according to the thirteenth or fourteenth aspect of the present invention, wherein a refrigeration cycle device is provided.
  • a sixteenth aspect of the present invention is any one of the first to thirteenth to fifteenth aspects, wherein the compressor is an oilless type or oil poor type linear compressor.
  • Fig. 3 shows two refrigeration cycle devices of the present invention.
  • the radiator includes a plurality of flat tubes each having a hydraulic equivalent diameter of 0.2 mm to 6.0 mm.
  • the refrigeration cycle apparatus according to any one of the first to thirteenth aspects, wherein the through hole is used as a refrigerant flow path.
  • Amount of CO 2 refrigerant and oil charged in a refrigeration cycle device that has means, or a refrigeration cycle device that prevents sudden pressure rise Can provide an appropriate relationship.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of an oil separator according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic configuration diagram of a refrigeration cycle device according to Embodiment 4 of the present invention.
  • FIG. 4 is a schematic Mollier diagram of a refrigeration cycle using carbon dioxide.
  • FIG. 5 is a schematic configuration diagram of a flat tube constituting a heat exchanger.
  • FIG. 6 is a schematic configuration diagram of a refrigeration cycle device according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic configuration diagram showing a modification of the refrigeration cycle device according to Embodiment 4 of the present invention.
  • FIG. 1 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • 11 is a low-pressure shell type linear compressor
  • 12 is a radiator having a plurality of through holes formed in a flat tube as a refrigerant flow path
  • 13 is a decompressor
  • 14 is a flat tube.
  • a heat-release-side refrigerant flow path which is a refrigerant flow path from the outlet of the radiator 12 to the inlet of the decompressor 13, and a refrigerant flow path from the outlet of the evaporator 14 to the suction part of the compressor 11.
  • An evaporative refrigerant flow path and an auxiliary heat exchanger 16 for exchanging heat with the evaporator are provided.
  • an oil separator 15 is provided between the compressor 11 and the radiator 12, and the oil separated by the oil separator 15 is supplied from the oil outlet pipe of the oil separator 15 to the auxiliary outlet.
  • the pressure is reduced by an auxiliary path 18 connected to the compressor 11 via a pressure reducer 17. It is configured to be returned to the contractor 11.
  • the hydraulic equivalent diameter of the plurality of through holes formed in the flat tube was set to 0.6 mm in order to withstand the pressure of the high-pressure coolant.
  • the internal volume of the high-pressure side circuit of the refrigeration cycle device thus configured was less than 70% of the total internal volume.
  • the container member of the present invention corresponds to the oil separator 15. Further, the refrigerant cooling means of the present invention corresponds to the auxiliary heat exchanger 16.
  • the CO 2 refrigerant compressed by the compressor 11 (in the present embodiment, the pressure is reduced to, for example, about 10 MPa) is brought into a high-temperature and high-pressure state and introduced into the radiator 12.
  • the CO 2 refrigerant since the CO 2 refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to a medium such as air or water. Thereafter, the heat is further cooled in the heat-radiation-side refrigerant flow path from the outlet of the radiator 12 to the inlet of the pressure reducer 13 in the auxiliary heat exchanger 16.
  • the pressure reducer 13 the pressure is reduced (in the present embodiment, the pressure is reduced to, for example, about 3.5 MPa), and a low-pressure gas-liquid two-phase state is introduced into the evaporator 14. Further, C 0 2 refrigerant, the evaporator 1 4, and absorbs heat from the air, etc. In addition, the evaporation side refrigerant flow to the suction portion of the compressor 1 1 from the outlet of the evaporator 1 4 in the auxiliary heat exchanger 1 6 It becomes a gas state in the road and is sucked into the compressor 11 again.
  • the radiator 12 performs a heating action by heat radiation
  • the evaporator 14 performs a cooling action by heat absorption.
  • auxiliary heat exchanger 16 a relatively high-temperature refrigerant that exits the radiator 12 and goes to the pressure reducer 13 and a relatively low-temperature refrigerant that exits the evaporator 14 and goes to the compressor 11. And heat exchange is performed. Therefore, since the C 0 2 refrigerant leaving the radiator 1 2 is further reduced pressure is cooled in a vacuum vessel 1 3, inlet Entarubi the evaporator 1 4 is reduced, with the inlet and outlet of the evaporator 1 4 The difference in enthalpy increases, and the heat absorption capacity (cooling capacity) increases.
  • the CO 2 refrigerant retained in the low-pressure side circuit moves to the high-pressure side circuit, causing a sharp rise in pressure, especially when starting the refrigeration cycle equipment. If the pressure in the high-pressure side circuit rises sharply, the high-pressure protection mechanism will work to stop the compressor in order to protect the withstand pressure of the radiator, evaporator and compressor of the refrigeration cycle device. There was also a problem such as.
  • an oil separator 15 is provided between the compressor 11 and the radiator 12 as shown in FIG.
  • the oil discharged together with the co 2 refrigerant from the compressor 11 is separated in the oil separator 15, and from the oil outlet pipe of the oil separator 15 via the auxiliary pressure reducer 17.
  • the auxiliary path 18 connected to the compressor 11 via piping connects the compressor 11 in the low-pressure side circuit to the compressor 11 in order to prevent rapid reduction in the volume of the high-pressure side circuit due to oil discharge. can do.
  • the amount of refrigerant that dissolves in the oil can be reduced by using an insoluble oil or reducing the oil amount to less than 50% of the internal volume of the low-pressure shell. This is because disturbance caused when the balance of the amount of refrigerant retained in the high-pressure side circuit and the low-pressure side circuit suddenly changes due to the foaming of the refrigerant dissolved in the mixture.
  • the internal volume of the high-pressure side circuit was found to be between 0.2 mm and 6.0 mm. It has been found that in a refrigeration cycle device with less than 70% of the total internal volume, it is possible to reduce the rapid pressure rise in the high-pressure side circuit.
  • the basis for limiting the hydraulic equivalent diameter to 0.2 mm or more is that if the diameter is less than 0.2 mm, the hole is too small and the hole is blocked by a small amount of oil. This is because there was a possibility that the pressure rise in the side circuit could not be reduced.
  • the co 2 refrigerant enclosed in the circuit in order to prevent a sudden increase in pressure at startup, the co 2 refrigerant enclosed in the circuit must be used. It has been found that the amount should be less than 0.25 kg per liter, based on the total internal volume of the circuit. Incidentally, C_ ⁇ 2 Ryonakadachi amount, based on the total interior volume, even when less than the 1 per liter 0.2 5 kg, since the internal volume of the high-pressure side circuit is as small as less than 7 0% of the total internal volume Furthermore, it is possible to match the high pressure side pressure during operation to the optimum high pressure side pressure, and to operate with relatively high refrigeration capacity and high efficiency.
  • the oil separator 15 is located between the compressor 11 and the radiator 12 as shown in Fig. 1, the oil in the radiator 12 may impede the heat transfer of the CO 2 refrigerant. However, it also has the additional advantage that the pressure loss can be prevented from increasing and the heat exchange efficiency of the radiator can be improved.
  • the position of the oil separator 15 need only be located in a part of the high pressure side circuit, and may be located between the radiator 12 and the pressure reducer 13.
  • the temperature of the oil returned to the compressor 11 can be reduced by the radiator 12 and the auxiliary heat exchanger: I6, so that the temperature in the low-pressure shell of the compressor 11 is prevented from rising, It has the secondary advantage that the efficiency of the compressor can be improved.
  • FIG. 2 is a schematic configuration diagram of the oil separator 15 in the first embodiment.
  • an oil separator 15 has an inlet pipe 22 provided at the top of a cylindrical container 21 so that CO 2 refrigerant and oil flow in a tangential direction to the inner peripheral surface thereof.
  • An oil outlet pipe 26 is provided at the lower end of the container 21.
  • the refrigerant outlet tube 23 is provided so as to extend downward through the center of the upper end of the container 21.
  • a swirl plate 25 is provided on the outer periphery of the refrigerant outlet pipe 23 in the container 21.
  • the auxiliary pressure reducer 17 provided in the auxiliary circuit 18 may be controlled to automatically open when the amount of oil stored in the oil separator 15 reaches a certain level, or may be controlled periodically. It may be controlled to open.
  • the oil separator of this structure in order to separate the C 0 2 refrigerant and the oil, the container 2 1 requires a certain degree of internal volume, by connecting the oil separator to the high-pressure side circuit.
  • the container 21 since the container 21 temporarily holds the refrigerant and serves as a buffer to mitigate a sudden change in the amount of the refrigerant, there is also a secondary advantage that the pressure in the high-pressure side circuit can be abruptly increased. Occurs.
  • a fibrous metal wire is braided in the lower part of the container 21 in order to capture and separate oil droplets and prevent the oil stored in the lower part of the container from flowing out of the refrigerant outlet pipe 23.
  • a demister 27, which is a fine net, or a metal plate 28 having a plurality of holes for holding the demister 27 may be provided.
  • the refrigerant storage chamber of the present invention has an internal space of the container 21 (however, oil is If it is stored, it corresponds to the space except the oil storage part).
  • the oil separating means of the present invention corresponds to the revolving plate 25 and the like.
  • Embodiment 3 of the present invention is a low-pressure shell-type compressor as the compressor 11 in FIG. 1, wherein (1) an oilless type using no oil, or (2) an oil pump using a small amount of oil. This type uses a linear compressor.
  • the linear compressor is a compressor that compresses and discharges a refrigerant by reciprocating a piston slidably supported by a cylinder in a shell by a linear motor.
  • a linear motor When using an oil-less or Oirupua type linear compressor, or the oil discharged together with the C 0 2 refrigerant from the compressor 1 1 is not to become a very small amount, the refrigeration cycle apparatus of FIG. 1, an oil It is possible to omit the separator 15, the sub-pressure reducer 17 and the auxiliary path 18.
  • Linear compressors require sliding operation in a state where the cylinder and piston are in contact with each other.However, since the bearings required for conventional compressors that use rotary motors are not required, other components are not necessarily required. No sliding operation in the contact state is required. Therefore, by performing surface treatment on the piston or cylinder, the durability is improved, the coefficient of friction is reduced, and the piston or cylinder can be operated without using oil. In addition, by using a gas bearing that allows the refrigerant gas circulating in the refrigeration cycle device to flow at a high pressure between the piston and the cylinder, it can be operated without using oil.
  • the internal volume of the high-pressure side circuit is naturally less than 70% of the total internal volume.
  • an oilless or oil-poor type linear compressor is used, Since the amount of oil is low or extremely small, it is possible to prevent a sudden decrease in the volume of the high-pressure side circuit due to oil discharge, and to reduce a sudden increase in pressure in the high-pressure side circuit. Can be.
  • the hydraulic equivalent diameter of the plurality of through holes formed in the flat tube constituting the radiator 12 is 0.2 mm to 6.0 mm, and the internal volume of the high-pressure side circuit is 70% of the total internal volume. less across at refrigeration cycle apparatus, to prevent sudden pressure increase at startup, 0 per liter of the total internal volume of C_ ⁇ 2 refrigerant quantity circuitry enclosed within the circuit. 2 5 kg to less Is desirable as in the case of the first embodiment.
  • the high-pressure side pressure during operation is adjusted to the optimum high-pressure level. It is possible to operate with relatively high refrigeration capacity and high efficiency by matching the side pressure.
  • FIG. 3 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. Note that, in FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and description thereof will be omitted.
  • a refrigerant storage container 31 is provided between the auxiliary heat exchanger 16 and the pressure reducer 13.
  • This refrigerant storage container 31 is a mere substantially cylindrical hollow container provided with openings for connecting pipes at both ends.
  • the internal volume of the high-pressure side circuit was less than 70% of the total internal volume even when the refrigerant storage container 31 of the refrigeration cycle device having such a configuration was included.
  • refrigerant storage container 3 1 separates the C 0 2 refrigerant and oil, because it is impossible to feed back the oil to the compressor, a reduction in the volume of sudden high pressure side circuit by the oil is discharged Although it cannot be prevented, the refrigerant storage container 31 temporarily holds the refrigerant and plays the role of a buffer that alleviates a sudden change in the amount of refrigerant, so that the pressure in the high-pressure side circuit can be suddenly increased. Such benefits remain.
  • the refrigerant storage container 31 is connected to the outlet side of the heat-radiating-side refrigerant channel formed from the outlet side of the radiator to the inlet side of the pressure reducer in the auxiliary heat exchanger 16.
  • C_ ⁇ 2 refrigerant at this position after being cooled by the radiator 1 2, the auxiliary heat exchanger 1 6, a further cooled refrigerant, and the state in the high-pressure side circuit, have even even One density large Has become.
  • the refrigerant storage container 3 1 miniaturized, even by reducing the internal volume, for the density of the C 0 2 refrigerant is greatly summer, such sufficiently, can relieve pressure rapid increase in the high-pressure side circuit sub
  • the container member of the present invention corresponds to the refrigerant storage container 31.
  • the cooling means of the present invention corresponds to the auxiliary heat exchanger 16.
  • the container member of the present invention is realized as the refrigerant storage container 31 .
  • the present invention is not limited to this.
  • FIG. 0 may be a structure that also has the function of the refrigerant storage container 31. That is, in this case, the internal pressure of the high-pressure side circuit 160 a constituting the auxiliary heat exchanger 160 is larger than that of the high-pressure side circuit of the auxiliary heat exchanger 16 shown in FIGS. Therefore, it is possible to provide not only a heat exchange function with the low-pressure side circuit 160b but also a function of storing the refrigerant. As a result, the same effect as described above is exerted.
  • FIG. 6 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • the same components as those in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and description thereof will be omitted.
  • the high-pressure side circuit was not provided with a refrigerant storage container, and the internal volume of the high-pressure side circuit in the refrigeration cycle device having such a configuration was less than 70% of the entire internal volume.
  • the oil cannot be returned to the compressor 11 as in the first embodiment, and furthermore, a buffer for temporarily holding the refrigerant and mitigating a sudden change in the amount of the refrigerant is used.
  • a buffer for temporarily holding the refrigerant and mitigating a sudden change in the amount of the refrigerant is used.
  • sudden high pressure side circuit result of studying measures to avoid the pressure increase, liter C 0 2 total internal volume of the refrigerant amount the circuitry sealed entry in the circuit It was found that a pressure of 0.25 kDa or less per unit could reduce a sudden increase in pressure in the high-pressure side circuit. That is, the pressure of the high-pressure side circuit starts to rise as the amount of refrigerant retained in the low-pressure side circuit is moved to the high-pressure side circuit.
  • the high-pressure side pressure during operation is adjusted to the optimum high-pressure level. It is possible to operate with relatively high refrigeration capacity and high efficiency by matching the side pressure.
  • the ratio of oil dullness to the weight of CO 2 refrigerant circulating in the high-pressure side circuit during operation of the refrigeration cycle device can be reduced to 2% or less, or C 0 (2) Use insoluble oil in the refrigerant, or fill oil to a volume of less than 50% of the internal volume of the low-pressure shell excluding the volume of the high-pressure compression mechanism, or equivalent to hydraulic power of multiple through holes
  • the radiator 12 is composed of a flat tube with a diameter of 0.2 mm to 6.0 mm, or if an oilless or oil-poor type linear compressor is used as the compressor 11, sudden high pressure
  • the fact that the pressure rise in the side circuit can be further reduced is the same as in the above-described first and third embodiments.
  • the auxiliary heat exchanger 16 is provided only between the radiator 12 and the evaporator 14 .
  • the present invention is not limited to this.
  • the oil separator 15 A heat exchange function may be provided by passing a part of the low pressure side circuit through the inside of the oil separator, so that the temperature of the oil separator 15 may be reduced.
  • the present invention is not limited to this, and the internal volume of the high-pressure side circuit in the refrigerant circuit is the same as that of the entire refrigerant circuit. Any type of compressor may be used as long as it is less than 70% of the internal volume.
  • one radiator may be formed of a plurality of types of through-holes having a diameter in the range of 0.2 mm to 6.0 mm.
  • the refrigerant can be temporarily held in the refrigerant container, and a sudden rise in pressure in the high-pressure side circuit can be reduced. it can.
  • the oil can be filled by filling the CO 2 refrigerant with insoluble oil or filling less than 50% of the internal volume of the low-pressure shell excluding the volume of the high-pressure compression force section. Since the amount of refrigerant that dissolves in the refrigerant can be reduced, disturbances that occur when the balance between the amounts of refrigerant retained in the high-pressure side circuit and the low-pressure side circuit suddenly change can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Lubricants (AREA)

Description

冷凍サイクル装置 技術分野
本発明は、 冷媒として二酸化炭素 (以下 C 02と記す) 冷媒を用いた冷凍サ ィクル装置に関するものである明。
背景技術 田 空調機、 カーエアコン、 電気 (冷凍) 冷蔵庫、 冷蔵または冷凍倉庫、 ショ 一ケース等には、 圧縮機、 放熱器、 減圧器、 蒸発器等を接続してなる冷凍サ ィクル装置が使われて!/、るが、 この冷凍サイクル装置内に封入される冷媒と しては、 フッ素原子を含有する炭化水素類が用いられてきた。
特にフッ素原子と塩素原子をともに含有する炭化水素 (H C F C、 ハイド 口クロ口フルォロカーボン) 類は性能がよく、 かつ不燃性、 人体に対して無 毒であることから、 冷凍サイクル装置に広く用いられてきた。
し力 し、 H C F C (ハイド口クロ口フルォロカーボン) 類は塩素原子を有 しているがゆえに、 大気に放出されて成層圏に達してしまった場合にオゾン 層を破壌してしまうことが明らかになり、 これらに代わって塩素原子を含ま ない H F C (ハイ ド口フルォロカーボン) が使用されつつあるが、 オゾン層 を破壊する性質は有しないものの大気中での寿命が長いために温室効果が大 きく、 近年問題になっている地球温暖化を防止する上では必ずしも満足な冷 媒とはいえない。
上記ハ口ゲン原子を含有する H C F C類や H F C類の代わりに、 ォゾン破 壌係数がゼロでありかつ地球温暖化係数もハロゲン原子を含有する炭化水素 類に比べれば格段に小さい C O 2を冷媒として用レ、る冷凍サイクル装置の可能 性が検討されつつある。 例えば、 特公平 7— 18602号公報には、 C02を 使用した冷凍サイクル装置が提案されている。
ここで C〇2の臨界温度は 31. 1°C、 臨界圧力は 7372 k P aであり、 これを用いた冷凍サイクル装置では、 図 4を用い説明する遷臨界サイクルと なりうる。
図 4は、 C02を冷媒として用いる冷凍サイクルのモリエル線図である。 図中の A— B— C— D— Aで示されるように、 圧縮機で気相状態の C02冷 媒を圧縮する圧縮行程 (A— B) 、 この高温高圧の超臨界状態の C02冷媒を 放熱器 (ガスクーラ) にて冷却する冷却行程 (B-C) 、 そして、 減圧器に より減圧する減圧行程 (C一 D) 、 気液二相状態となった C02冷媒を蒸発さ せる蒸発器の蒸発行程 (D— A) により、 蒸発潜熱で空気等の外部流体から 熱を奪つて外部流体を冷却する。 '
図 4において、 蒸発行程 (D-A) における飽和蒸気領域 (気液二相領域 ) から加熱蒸気領域 (気相領域) への移行は、 110 ( 類ゃ11?( 類の場合 と同様に行われるが、 線 (B— C) は、 気液の臨界点 CCにより高圧側に位 置していて、 飽和液線及ぴ飽和蒸気線に交差することはない。
すなわち、 臨界点 CCを越える領域 (超臨界領域) においては、 HCFC 類や H F C類の場合のような凝縮行程が存在せず、 C 02冷媒が液化すること なく冷却される冷却行程となる。
このとき、 C02冷媒を用いた冷凍サイクル装置の作動圧力は、 低圧側圧力 は 3. 5MPa程度、 高圧側圧力は 1 OMP a程度となるため、 HCFC類 や HFC類を用いた場合に比較して、 作動圧力が高くなり、 高圧側圧力と低 圧側圧力は、 HCFC類や HFC類を用いた冷凍サイクル装置の約 5〜10 倍となる。
このような遷臨界の高圧で作動する冷凍サイクル装置の作動圧力は、 冷媒 充填量、 要素容積そして冷却行程温度のような幾つかの要因に依存しており 、 作動中に最適な高圧側圧力から掛け離れると、 相対的に低い冷凍能力且つ 低効率になってしまう可能性がある。 このため、 冷凍サイクル装置の停止時 に調整した冷媒充填量により、 作動中の高圧側圧力を最適な高圧側圧力に一 致させ、 相対的に高い冷凍能力且つ高い効率とする必要がある。
この手法として、 高圧側回路の容積は、 低圧側回路の容積に比べて相対的 に大きくなるべきであり、 より具体的には、 高圧側回路の容積は、 全内部容 積に対して 7 0 %以上とすべきであること、 C 02冷媒の冷媒充填量は、 全內 部容積を基準とした場合に、 1リツター当たり 0 . 5 5から0. 7 0キログ ラムの量とすべきであることが、 特許第 2 8 0 4 8 4 4号公報に提案されて いる。 尚、 特許第 2 8 0 4 8 4 4号公報の文献の全ての開示は、 そっくりそ のまま引用することにより、 ここに一体化する。
しかしながら、 このような冷凍サイクル装置の放熱器や蒸発器に用いられ る熱交換器の冷媒流路は、 高圧冷媒の圧力に耐えるために、 図 5の概略構成 図に示すように、 小口径の複数の貫通孔 5 1 aから構成される扁平チューブ 5 1が用いられる。
また、 熱交換器内や、 接続配管での冷媒の圧力損失を低減するためには、 高圧側冷媒回路の断面積よりも、 低圧側冷媒回路の断面積を大きくした方が 望ましい。
更に、 圧縮機は、 高圧冷媒の圧力に耐えるために、 圧縮機のシェルを低圧 シェルタイプとするのが望ましく、 圧縮機のシェル空間を含む低圧側回路の 容積の方が、 高圧側回路の容積に比べて相対的に大きくなってしまうもので ある。
具体的には、 高圧側回路の容積は、 通常は、 全内部容積に対して 7 0 %未 満となってしまうものである。 ここで、 高圧側回路とは、 冷凍サイクル装置 を構成する閉回路のうち、 冷凍サイクル装置の運転時において、 相対的に圧 力の高い c o2冷媒が動作する構成要素や接続配管 (具体的には、 圧縮機吐出 部〜放熱器〜減圧器など) をさす。 又、 低圧側回路とは、 相対的に圧力の低 い C 02冷媒が動作する構成要素や接続配管 (具体的には、 減圧器〜蒸発器〜 圧縮機など) をさすものである。
このような高圧側回路の容積が全内部容積に対して 7 0 %未満となる冷凍 サイクル装置において、 C O 2冷媒充填量が多い場合、 あるいは C〇2冷媒と ともに吐出されるオイル量が多い場合には、 急激に高圧側回路の圧力が上昇 する恐れがある。
これは、 低圧側回路に保有される冷媒量が相対的に容積の小さい高圧側回 路へと移動させられることにより高圧側回路での C O 2冷媒密度が増加してし まう、 あるいは、 c o2冷媒とともに吐出されるオイルが、 相対的に容積の小 さい高圧側回路の容積をさらに小さくすることから、 急激な圧力上昇が生じ るものであり、 特に冷凍サイクル装置の起動時などの場合に生じやすい。 急 激な高圧側回路の圧力上昇が生じると、 冷凍サイクル装置の放熱器や蒸発器 や圧縮機の耐圧を保護するために、 高圧保護機構が働レヽて圧縮機を停止させ てしまい、 うまく起動できない、 等の問題があるものであった。 発明の開示
本発明は、 この様な従来の冷凍サイクル装置の上記課題を考慮し、 冷媒回 路における急激な圧力上昇を従来に比べて緩和することが出来る冷凍サイク ル装置を提供することを目的とする。
第 1の本発明 (請求項 1記載の本発明に対応) は、 少なくとも圧縮機と、 減圧器と、 放熱器と、 蒸発器とから冷媒回路を構成し、 その冷媒回路に二酸 化炭素 (c o2) を主成分とする冷媒を封入した冷凍サイクル装置であって、 前記冷媒回路の高圧側回路の内部容積が、 前記冷媒回路の全内部容積の 7 0 %未満であり、
前記高圧側回路の途中に、 所定の容器部材を備えた冷凍サイクル装置であ る。
又、 第 2の本発明 (請求項 2記載の本発明に対応) は、 前記容器部材は、 前記冷媒回路の配管断面積よりも広い配管断面積を有する容器であり、 内部 に冷媒貯留室及び Z又は油分離手段を含む上記第 1の本発明の冷凍サイクル 装置である。
又、 第 3の本発明 (請求項 3記載の本発明に対応) は、 前記容器.部材は、 円筒状の容器であって、 且つ、 前記容器部材は (1 ) 前記円筒状の容器の上 端の近傍であって、 前記円筒状の容器の内周面に対して接線方向に設けられ た入口管と、 (2 ) 前記円筒状の容器の上端の中央部を貫通して前記容器内 部の下方に向けて設けられた冷媒出口管と、 (3 ) 前記容器の下端に設けら れたオイル出口管と、 (4 ) 前記容器内に設けられた冷媒とオイルに旋回運 動を与える旋回板とを備えた上記第 2の本発明の冷凍サイクル装置である。 又、 第 4の本発明 (請求項 4記載の本発明に対応) は、 高圧側回路の一部 と低圧側回路の一部とを利用して、 前記冷媒を冷却するための冷媒冷却手段 を備え、
前記容器部材は、 前記冷媒冷却手段と前記減圧器の間に設けられている上 記第 1〜 3の何れか一つの本発明の冷凍サイクル装置である。
又、 第 5の本発明 (請求項 5記載の本発明に対応) は、 高圧側回路の一部 と低圧側回路の一部とを利用して、 前記冷媒を冷却するための冷媒冷却手段 を備え、
前記高圧側回路の一部が、 前記容器部材を兼ねている上記第 1の本発明の 冷凍サイクル装置である。
又、 第 6の本発明 (請求項 6記載の本発明に対応) は、 前記冷媒冷却手段 は、 前記放熱器の出口側から前記減圧器の入口側までの間に形成された放熱 側冷媒流路と、 前記蒸発器の出口側から前記圧縮機の吸入部までの間に形成 された蒸発側冷媒流路との間で熱交換を行う補助熱交換器である上記第 4の 本発明の冷凍サイクル装置である。
又、 第 7の本発明 (請求項 7記載の本発明に対応) は、 前記冷凍サイクル 装置の運転時に、 前記高圧側回路を循環する、 二酸化炭素 (c o2) 冷媒重量 に対するオイル重量の比が 2 %以下である上記第 1〜 6の何れか一つの本発 明の冷凍サイクノレ装置である。
又、 第 8の本発明 (請求項 8記載の本発明に対応) は、 前記冷媒回路の內 部には、 単位リツター当たり、 0 . 2 5キログラム以下の量の二酸化炭素 ( C〇2) 冷媒が充填されている上記第 1〜 7の何れか一つの本発明の冷凍サイ クル装置である。
又、 第 9の本発明 (請求項 9記載の本発明に対応) は、 前記圧縮機の容積 の内、 圧縮機構部の容積を除くシェル内部容積の、 5 0 %未満の容積にオイ ルを封入した上記第 1〜 8の何れか一つの本発明の冷凍サイクル装置である。 又、 第 1 0の本発明 (請求項 1 0記載の本発明に対応) は、 前記圧縮機は 、 オイルレス型またはオイルプア型のリユア圧縮機である上記第 1〜 9のい ずれか一^ 3の本発明の冷凍サイクル装置である。
又、 第 1 1の本発明 (請求項 1 1記載の本発明に対応) は、 前記放熱器は 、 扁平チューブに形成された水力相当直径が 0 . 2 mmから 6 . 0 mmであ る複数の貫通孔を冷媒流路とする構成である上記第 1〜 1 0のいずれか一つ の本発明の冷凍サイクル装置である。
又、 第 1 2の本発明 (請求項 1 2記載の本発明に対応) は、 前記圧縮機に 封入されるオイルが二酸化炭素 (c o2) 冷媒に不溶解性オイルである上記第 :!〜 1 1のいずれか一つの本発明の冷凍サイクノレ装置である。
又、 第 1 3の本発明 (請求項 1 3記載の本発明に対応) は、 少なぐとも圧 縮機と、 減圧器と、 放熱器と、 蒸発器とから冷媒回路を構成し、 高圧側回路 の内部容積が前記冷媒回路の全内部容積の 7 0 %未満となる冷凍サイクル装 置であって、
前記冷媒回路の内部には、 単位リツター当たり、 0 . 2 5キログラム以下 の量の二酸化炭素 (c o 2) 冷媒が充填されている冷凍サイクル装置である。 又、 第 1 4の本発明 (請求項 1 4記載の本発明に対応) は、 前記冷凍サイ クル装置の運転時に、 前記高圧側回路を循環する、 二酸化炭素 (c o 2) 冷媒 重量に対するオイル重量の比が 2 %以下である上記第 1 3の本発明の冷凍サ イタル装置である。
又、 第 1 5の本発明 (請求項 1 5記載の本発明に対応) は、 前記圧縮機の 容積の内、 圧縮機構部の容積を除くシェル内部容積の、 5 0 %未満の容積に オイルを封入した上記第 1 3又は、 第 1 4の本発明の冷凍サイクル装置であ る。
又、 第 1 6の本発明 (請求項 1 6記載の本発明に対応) は、 前記圧縮機は 、 オイルレス型またはオイルプア型のリニア圧縮機である上記第 1 3〜1 5 のいずれか一つの本発明の冷凍サイクル装置である。
又、 第 1 7の本発明 (請求項 1 7記載の本発明に対応) は、 前記放熱器は 、 扁平チューブに形成された水力相当直径が 0 . 2 mmから 6 . O mmであ る複数の貫通孔を冷媒流路とする構成である上記第 1 3〜1 6のいずれか一 つの本発明の冷凍サイクル装置である。
又、 第 1 8の本発.明 (請求項 1 8記載の本発明に対応) は、 前記圧縮機に 封入されるオイルが二酸ィヒ炭素 (C 02) 冷媒に不溶解性オイルである上記第 1 3〜1 7のいずれか一つの本発明の冷凍サイクル装置である。
上記構成により、 例えば、 小口径の複数の貫通孔からなる扁平チューブを 放熱器や蒸発器の冷媒流路として用い、 C O 2冷媒を用いた冷凍サイクル装置 であって、 急激な圧力上昇を緩和する手段を有する冷凍サイクル装置や、 急 激な圧力上昇を防止する冷凍サイクル装置に充填される C O 2冷媒とオイル量 の適切な関係を提供することが出来る。 図面の簡単な説明
第 1図は、 本発明の実施の形態 1における冷凍サイクル装置の概略構成図 である。
第 2図は、 本発明の実施の形態 2における油分離器の概略構成図である。 第 3図は、 本発明の実施の形態 4における冷凍サイクル装置の概略構成図 である。
第 4図は、 二酸化炭素を用いた冷凍サイクルの模式的なモリエル線図であ る。
第 5図は、 熱交換器を構成する扁平チューブの概略構成図である。
第 6図は、 本発明の実施の形態 5における冷凍サイクル装置の概略構成図 である。
第 7図は、 本発明の実施の形態 4における冷凍サイクル装置の変形例を示 す概略構成図である。
(符号の説明)
1 1 圧縮機
1 2 放熱器
1 3 減圧器
1 4 蒸発器
1 5 油分離器
1 6 補助熱交換器
1 7 副減圧器
2 2 冷媒入口管
2 3 冷媒出口管 2 5 旋回板
2 6 オイル出口管
2 7 デミスタ
3 1 冷媒貯留容器
5 1 扁平チューブ
5 1 a 孑し 発明を実施するための最良の形態
以下、 本発明の実施の形態について説明する。
(実施の形態 1 )
本発明の実施の形態 1における冷凍サイクル装置の概略構成を、 図 1に示 す。
同図において、 1 1は低圧シェルタイプのリニア圧縮機、 1 2は扁平チュ ーブに形成された複数の貫通孔を冷媒流路として有する放熱器、 1 3は減圧 器、 1 4は扁平チューブに形成された複数の貫通孔を冷媒流路として有する 蒸発器であり、 これらを配管接続することにより閉回路を形成し、 図中矢印 の方向に冷媒が循環する冷凍サイクルを構成し、 放熱側となる経路 (圧縮機 1 1の吐出部〜放熱器 1 2〜減圧器 1 3入口部までの流路) で超臨界状態と なり得る c o2が冷媒として封入されている。
さらに、 放熱器 1 2の出口から減圧器 1 3の入口までの冷媒流路である放 熱側冷媒流路と、 蒸発器 1 4の出口から圧縮機 1 1の吸入部までの冷媒流路 である蒸発側冷媒流路と、 で熱交換を行う補助熱交換器 1 6を備えている。 また、 圧縮機 1 1と放熱器 1 2との間に油分離器 1 5が設けられており、 油分離器 1 5で分離されるオイルは、 油分離器 1 5のオイル出口管から、 副 減圧器 1 7を介して、 圧縮機 1 1に配管接続された補助経路 1 8により、 圧 縮機 1 1に帰還される構成となっている。
また、 扁平チューブに形成された複数の貫通孔の水力相当直径は、 高圧冷 媒の圧力に耐えるために、 0 . 6 mmとした。 このように構成した冷凍サイ クル装置の高圧側回路の内部容積は全内部容積の 7 0 %未満であった。
尚、 本発明の容器部材は、 油分離器 1 5に対応する。 又、 本発明の冷媒冷 却手段は、 補助熱交換器 1 6に対応する。
以上のような構成を有する冷凍サイクル装置の動作について説明する。 圧縮機 1 1で圧縮 (本実施の形態では、 圧力は、 例えば約 1 0 MP aに圧 縮する) された C O 2冷媒は高温高圧状態となり、 放熱器 1 2へ導入される。 放熱器 1 2では、 C O 2冷媒は超臨界状態であるので、 気液二相状態とはなら ずに、 空気や水などの媒体に放熱する。 その後、 補助熱交換器 1 6における 放熱器 1 2の出口から減圧器 1 3の入口までの放熱側冷媒流路においてさら に冷却される。
減圧器 1 3では減圧 (本実施の形態では、 圧力は例えば、 約 3 . 5 MP a に減圧する) されて、 低圧の気液二相状態となり蒸発器 1 4へ導入される。 さらに、 C 02冷媒は、 蒸発器 1 4で、 空気などから吸熱して、 さらに、 補助 熱交換器 1 6における蒸発器 1 4の出口から圧縮機 1 1の吸入部までの蒸発 側冷媒流路においてガス状態となり、 再び圧縮機 1 1に吸入される。
このようなサイクルを繰り返すことにより、 放熱器 1 2で放熱による加熱 作用、 蒸発器 1 4で吸熱による冷却作用を行う。
ここで、 補助熱交換器 1 6では、 放熱器 1 2を出て減圧器 1 3に向かう比 較的高温の冷媒と、 蒸発器 1 4を出て圧縮機 1 1に向かう比較的低温の冷媒 とで熱交換が行われる。 このため、 放熱器 1 2を出た C 02冷媒がさらに冷却 されて減圧器 1 3で減圧されるため、 蒸発器 1 4の入口ェンタルビが減少し て、 蒸発器 1 4の入口と出口でのェンタルピ差が大きくなり、 吸熱能力 (冷 却能力) が増大する。 このような高圧側回路の容積が比較的小さレ、冷凍サイクル装置において、 従来のように、 圧縮機 1 1と放熱器 1 2との間に油分離器 1 5を備えない場 合には、 圧縮機 1 1から C〇2冷媒とともにオイルが吐出されると、 特に小口 径の複数の貫通孔の冷媒流路で構成される放熱器 1 2において、 C〇2冷媒と ともに吐出されるオイルが、 容積の小さい高圧側回路の容積をさらに小さく してしまう。
それと同時に、 低圧側回路に保有される C O 2冷媒が高圧側回路へと移動す ることから、 急激な圧力上昇が生じるものであり、 特に冷凍サイクル装置の 起動時などの場合に生じやすい。 急激な高圧側回路の圧力上昇が生じると、 冷凍サイクル装置の放熱器や蒸発器や圧縮機の耐圧を保護するために、 高圧 保護機構が働いて圧縮機を停止させてしまい、 うまく起動できない、 等の問 題もあるものであった。
し力 し、 本発明の実施の形態 1では、 図 1に示すような圧縮機 1 1と放熱 器 1 2との間に油分離器 1 5を備えている。
このような場合には、 圧縮機 1 1から c o 2冷媒とともに吐出されるオイル は油分離器 1 5において分離され、 油分離器 1 5のオイル出口管から、 副減 圧器 1 7を介して、 圧縮機 1 1に配管接続された補助経路 1 8により、 低圧 側回路にある圧縮機 1 1に順次、 帰還させることにより、 オイルが吐出され ることによる急激な高圧側回路の容積の縮小を防止することができる。
このため、 急激な高圧側回路の圧力上昇を低減することができ、 冷凍サイ クル装置の起動時において、 急激に高圧が上昇したり高圧保護機構が働くこ ともない冷凍サイクノレ装置を実現することができる。
油分離器 1 5の種々の構成検討により、 オイルが吐出されることによる急 激な高圧側回路の容積の縮小を防止し、 急激な高圧側回路の圧力上昇を低減 するには、 冷凍サイクル装置の運転時に高圧側回路を循環する、 c o2冷媒重 量に対するオイル重量の比が 2 %以下となるの状態が望ましいことが判明し た。
さらに、 圧縮機 1 1には、 急激な高圧側回路の圧力上昇を低減できる点に おいて、 C O 2冷媒に不溶解性のオイルを用いることが望ましいことが判明し た。 また、 高圧となる圧縮メカ部の容積を除く低圧シェルの内部容積の 5 0 %未満の容積にオイルを充填することが望ましい。
この理由は、 不溶解性オイルを用いたり、 オイル量を低圧シェルの内部容 積の 5 0 %未満の量とすることで、 オイルへ溶け込む冷媒の量を低減できる ために、 起動時に、 オイ/レに溶け込んでいた冷媒が発泡することで、 高圧側 回路と低圧側回路に保有される冷媒量のバランスが急激に変化するといつた 外乱を低減できるためである。
また、 放熱器 1 2を構成する扁平チューブに形成された複数の貫通孔の水 力相当直径を検討した結果、 水力相当直径が 0 . 2 mmから 6 . 0 mmでは 、 高圧側回路の内部容積が全内部容積の 7 0 %未満となる冷凍サイクル装置 において、 急激な高圧側回路の圧力上昇を低減出来ることが判明した。
ここで、 水力相当直径を 0 . 2 mm以上に限定した根拠は、 0 . 2 mm未 満の場合には、 穴が小さすぎるために少量のオイルによっても穴が閉塞する などし、 急激な高圧側回路の圧力上昇を低減できない可能性が生じたためで ある。
一方、 6 . 0 mm以下に限定した根拠は、 6 . 0 mmより大きい場合では 、 高圧となる c o2冷媒の圧力に耐える強度設計を行うと肉扁平チューブの肉 厚が厚くなり放熱器が大型化したり、 伝熱性能が低下するといつた別の不具 合が生じるためである。
さらに、 このような高圧側回路の内部容積が全内部容積の 7 0 %未満であ る冷凍サイクル装置では、 起動時の急激な圧力上昇を防止するには、 回路内 に封入される c o2冷媒量を、 回路の全内部容積を基準とした場合に、 1リツ ター当たり 0 . 2 5キログラム以下とすることが望ましい事が判明した。 なお、 C〇2令媒量を、 全内部容積を基準として、 その 1リッター当たり 0 . 2 5キログラム以下とした場合でも、 高圧側回路の内容積が全内部容積の 7 0 %未満と小さいために、 作動中の高圧側圧力を最適な高圧側圧力に一致さ せ、 相対的に高い冷凍能力且つ高い効率で運転することが可能である。
また、 図 1に示すように油分離器 1 5の位置を圧縮機 1 1と放熱器 1 2の 間とする場合には、 放熱器 1 2において、 オイルが C O 2冷媒の伝熱阻害した り、 圧力損失を増大させたりすることを防止でき、 放熱器の熱交換効率も向 上させることができるといった副次的なメリットも有する。
また、 油分離器 1 5の位置は、 高圧側回路の一部に有りさえすればよく、 放熱器 1 2と減圧器 1 3の間としても良い。
この場合には、 圧縮機 1 1に帰還させるオイルの温度を放熱器 1 2や補助 熱交換器: I 6によって低減できるために、 圧縮機 1 1の低圧シェル内の温度 の上昇を防止し、 圧縮機の効率を向上させることができるといった副次的な メリツ卜 有する。
(実施の形態 2 )
図 2は、 前記実施の形態 1における油分離器 1 5の概略構成図である。
同図において、 油分離器 1 5は、 円筒状の容器 2 1の上部にはその内周面 に対して接線方向に C O 2冷媒とオイルとが流入するように設けられた入口管 2 2が、 容器 2 1の下端にはオイル出口管 2 6がそれぞれ設けられている。 冷媒出口管 2 3は容器 2 1の上端中央を貫通して下方に伸長するように設け られている。 さらに、 容器 2 1内の冷媒出口管 2 3の外周には旋回板 2 5が 設けられている。
このような構造を有する油分離器の動作について、 図 1との関係もあわせ て説明する。 圧縮機 1 1から吐出された C〇2冷媒とオイルは入口管 2 2から 流入したのち、 旋回板 2 5に衝突し、 旋回運動を与えられて、 C 02冷媒より 密度の大きいオイルの液滴は遠心力により分離される。 オイルの分離された c o2冷媒は、 ガス冷媒であるため、 容器内に伸長して設けられた冷媒出口管 2 3を通り、 冷媒出口管 2 3から配管接続された放熱器 1 2へと流出する。 一方、 分離されたオイルの液滴は、 重力により落下し、 容器 2 1の下部に 貯められ、 オイル出口管 2 6から圧縮機 1 1に配管接続された補助経路 1 8 を介して、 圧縮機 1 1に帰還される。
なお、 補助回路 1 8に設けられた副減圧器 1 7は、 油分離器 1 5内に貯ま つたオイル量が一定レベルに達すると自動で開くように制御されていても良 いし、 定期的に開くように制御されていても良い。
このような構造の油分離器を設け、 低圧側回路にある圧縮機 1 1に順次、 オイルを帰還させることにより、 オイルが吐出されることによる急激な高圧 側回路の容積の縮小を防止することができ、 急激な高圧側回路の圧力上昇を 低減することができる。
さらに、 このような構造の油分離器では、 C 02冷媒とオイルを分離するた めに、 容器 2 1はある程度の内容積を必要とするが、 油分離器を高圧側回路 に接続することで、 容器 2 1は一時的に冷媒を保持し、 急激な冷媒量の変化 を緩和するバッファの役目を担うために、 急激な高圧側回路の圧力上昇を緩 和できるといった副次的なメリットも生じる。
したがって、 このような構造の油分離器を高圧側回路に接続することで、 冷凍サイクル装置の起動時において、 急激に高圧が上昇したり高圧保護機構 が働くこともない冷凍サイクル装置を実現することができる。
なお、 容器 2 1内下部には、 オイルの液滴を補足、 分離し、 容器內下部に 貯まったオイルが冷媒出口管 2 3から流出するのを防止する目的で、 繊維状 の金属線を編んだ細かいネットであるデミスタ 2 7や、 デミスタ 2 7を保持 するために、 複数の穴を有する金属プレート 2 8などが設けられていても良 い。
尚、 本発明の冷媒貯留室は、 容器 2 1の内部空間 (但し、 底部にオイルが 貯留している場合には、 そのオイル貯留部分を除く空間) に対応する。 又、 本発明の油分離手段は、 旋回板 2 5等に対応する。
(実施の形態 3 )
本発明の実施の形態 3は、 図 1における圧縮機 1 1として、 低圧シェルタ イブの圧縮機であって、 (1 ) オイルを用いないオイルレス型、 又は (2 ) オイルの使用が少量のオイルプア型のリニァ圧縮機を用いたものである。
リニア圧縮機は、 シェル内のシリンダに摺動自在に支持されるピストンを リニァモータで往復動ざせて冷媒を圧縮して吐出する圧縮機である。 オイル レス型やオイルプア型のリニア圧縮機を用いる場合には、 圧縮機 1 1から C 02冷媒とともに吐出されるオイルが無いか、 きわめて少量となるために、 図 1の冷凍サイクル装置において、 油分離器 1 5や副減圧器 1 7や補助経路 1 8を省略することが可能である。
リニア圧縮機は、 シリンダとピストンとは接触状態での摺動動作を必要と するが、 回転式モータを用いた従来の圧縮機で必要となる軸受が不要となる ため、 その他の部材は、 必ずしも接触状態での摺動動作を必要としない。 従って、 ピストン又はシリンダに表面処理を施すことで、 耐久性が向上し 、 低摩擦係数化の効果があり、 オイルを用いないで動作させることができる。 また、 冷凍サイクル装置内を循環する冷媒ガスを、 ピストンとシリンダの 間に高圧で流入させるガスベアリングを採用することにより、オイルを用い ないで動作させることができる。
また、 ピストン又はシリンダに多孔性表面層を形成することで、 多孔性表 面層でオイルを保持するため、 極めて少ないオイルで動作させることもでき る。
このような構成の冷凍サイクル装置では、 当然のことながら、 高圧側回路 の内部容積は全内部容積の 7 0 %未満となる。 しかしながら、 オイルレス型 やオイルプア型のリニア圧縮機を用いる場合には、 圧縮機 1 1から吐出され るオイルが無いか、 きわめて少量となるために、 オイルが吐出されることに よる急激な高圧側回路の容積の縮小を防止することができ、 急激な高圧側回 路の圧力上昇を低減することができる。
したがって、 冷凍サイクル装置の起動時において、 急激に高圧が上昇した り高圧保護機構が働くこともない冷凍サイクル装置を実現することができる。 また、 オイルが吐出されることによる急激な高圧側回路の容積の縮小を防 止し、 急激な高圧側回路の圧力上昇を低減するには、 冷凍サイクル装置の運 転時に高圧側回路を循環する、 C 02冷媒重量に対するオイル重量の比が 2 % 以下になるようなオイルプアの状態が望ましいことが判明した。
さらに、 放熱器 1 2を構成する扁平チューブに形成された複数の貫通孔の 水力相当直径が 0 . 2 mmから 6 . 0 mmであり、 高圧側回路の内部容積が 全内部容積の 7 0 %未満である冷凍サイクル装置では、 起動時の急激な圧力 上昇を防止するには、 回路内に封入される C〇2冷媒量を回路の全内部容積の リッター当たり 0 . 2 5キログラム以下とすることが望ましい事は実施の形 態 1の場合と同様である。
なお、 全内部容積のリツター当たり 0 . 2 5キログラム以下とした場合で も、 高圧側回路の内容積が全內部容積の 7 0 %未満と小さいために、 作動中 の高圧側圧力を最適な高圧側圧力に一致させ、 相対的に高い冷凍能力且つ高 い効率で運転することが可能である。
(実施の形態 4 )
本発明の実施の形態 4における冷凍サイクル装置の概略構成を、 図 3に示 す。 なお、 図 3において、 図 1と同じ構成要素は図 1と同じ番号とし、 説明 を省略する。
本実施の形態 4では、 補助熱交換器 1 6と減圧器 1 3との間に冷媒貯留容 器 3 1を備えている。 この冷媒貯留容器 3 1は、 両端に配管接続用の開口部 を備えた、 単なる略円筒状の中空容器である。 なお、 このような構成の冷凍サイクル装置の冷媒貯留容器 3 1を含めても 高圧側回路の内部容積は全内部容積の 7 0 %未満であった。
このような冷媒貯留容器 3 1では、 C 02冷媒とオイルを分離し、 オイルを 圧縮機に帰還させることはできないために、 オイルが吐出されることによる 急激な高圧側回路の容積の縮小を防止することはできないが、 冷媒貯留容器 3 1は一時的に冷媒を保持し、 急激な冷媒量の変化を緩和するバッファの役 目を担うために、 急激な高圧側回路の圧力上昇を緩和できるといったメリッ トは残る。
また、 冷媒貯留容器 3 1は、 補助熱交換器 1 6において放熱器の出口側か ら減圧器の入口側までの間に形成された放熱側冷媒流路の出口側に接続され ている。 この位置での C〇2冷媒は、 放熱器 1 2により冷却された後、 補助熱 交換器 1 6により、 さらに冷却された冷媒であり、 高圧側回路において、 も つとも密度が大 い状態となっている。
すなわち、 冷媒貯留容器 3 1を小型化し、 内容積を小さくしても、 C 02冷 媒の密度が大きくなつているために、 十分に、 急激な高圧側回路の圧力上昇 を緩和できるといった副次的なメリットが出てくるものである。
したがって、 冷媒貯留容器 3 1を高圧側回路に接続すること、 特に、 高圧 側回路のうち、 C O 2冷媒の密度の大きい位置に接続することで、 冷凍サイク ル装置の起動時において、 急激に高圧が上昇したり高圧保護機構が働くこと もない冷凍サイクル装置を実現することができる。
尚、 本発明の容器部材は、 冷媒貯留容器 3 1に対応する。 又、 本発明の冷 媒冷却手段は、 補助熱交換器 1 6に対応する。
尚、 本発明の容器部材は、 本実施の形態では、 冷媒貯留容器 3 1として実 現する場合について説明したが、 これに限らず例えば、 図 7に示す様に、 補 助熱交換器 1 6 0が、 冷媒貯留容器 3 1の機能をも兼ねた構造であっても良 レ、。 即ち、 この場合、 補助熱交換器 1 6 0を構成する高圧側回路 1 6 0 a力 図 1, 3に示す補助熱交換器 1 6の高圧側回路に比べて、 その内容積が広く 形成されているので、 低圧側回路 1 6 0 bとの間の熱交換機能とともに、 冷 媒を貯留する機能をも備えることが出来る。 これにより、 上記と同様の効果 を発揮する。
(実施の形態 5 )
本発明の実施の形態 5における冷凍サイクル装置の概略構成を、 図 6に示 す。 なお、 図 6において、 図 1と同じ構成要素は図 1と同じ番号とし、 説明 を省略する。
本実施の形態 5では、 高圧側回路に冷媒貯留容器を備えておらず、 このよ うな構成の冷凍サイクル装置における高圧側回路の内部容積は全内部容積の 7 0 %未満であった。
このような冷凍サイクル装置では、 実施の形態 1のようにオイルを圧縮機 1 1に帰還させることはできず、 さらに、 一時的に冷媒を保持して急激な冷 媒量の変化を緩和するバッファの役目を担う冷媒貯留器も備えていないため 、 急激な高圧側回路の圧力上昇を回避する対策を検討した結果、 回路内に封 入される C 02冷媒量を回路の全内部容積のリッター当たり 0 . 2 5キロダラ ム以下とすれば、 急激な高圧側回路の圧力上昇を低減できることが判明した。 即ち、 低圧側回路に保有される冷媒量が高圧側回路へと移動させられるこ とで高圧側回路の圧力が上昇し始める。 これに対して、 低圧側回路では、 回 路内に封入される C 02冷媒量が回路の全内部容積のリツター当たり 0 . 2 5 キログラム以下と少ないため、 低圧側回路に保有される冷媒量の減少による 低圧側回路の圧力が低下して、 圧縮機 1 1に吸入される c o2冷媒の密度低下 により、 低圧側から高圧側へと移動させられる C O 2冷媒量が低下するため、 急激な高圧側回路の圧力上昇が低減でき、 急激な高圧上昇による高圧保護機 構が働くことのない冷凍サイクル装置を実現することができる。 なお、 全内部容積のリツター当たり 0 . 2 5キログラム以下とした場合で も、 高圧側回路の内容積が全內部容積の 7 0 %未満と小さいために、 作動中 の高圧側圧力を最適な高圧側圧力に一致させ、 相対的に高い冷凍能力かつ高 い効率で運転することが可能である。
さらに、 圧縮機 1 1に油分離機構を内蔵させることなどにより、 冷凍サイ クル装置の運転時に高圧側回路を循環する C O 2冷媒重量に対するオイル重暈 の比を 2 %以下としたり、 あるいは C 02冷媒に不溶解性のオイルを用いたり 、 あるいは高圧となる圧縮メカ部の容積を除く低圧シェルの内部容積の 5 0 %未満の容積にオイルを充填したり、 あるいは複数の貫通孔の水力相当直径 が 0 . 2 mmから 6 . 0 mmの扁平チューブで放熱器 1 2を構成したり、 あ るいは圧縮機 1 1としてオイルレス型またはオイルプア型のリニア圧縮機を 用いたりすると、 急激な高圧側回路の圧力上昇がさらに低減できることは、 上述の実施の形態 1や実施の形態 3の場合と同様である。
尚、 上記実施の形態 1では、 補助熱交換器 1 6は、 放熱器 1 2と蒸発器 1 4との間にのみ設けた場合について説明したが、 これに限らず例えば、 油分 離器 1 5の内部に、 低圧側回路の一部を通すことにより熱交換機能も持たせ て、 油分離器 1 5の温度を下げる様に構成しても良い。
又、 上記実施の形態では、 圧縮機として低圧シェルタイプの圧縮機を用い た場合について説明したが、 これに限らず要するに、 冷媒回路の内、 高圧側 の回路の内部容積が、 冷媒回路の全内部容積の 7 0 %未満でありさえすれば 、 どの様なタイプの圧縮機を用いても構わない。
又、 上記実施の形態では、 一つの放熱器を構成する複数の貫通孔の水力相 当直径が、 0 . 2 mm〜6 . 0 mmの範囲内の何れか一つに該当する場合に ついて説明したが、 これに限らず例えば、 一つの放熱器が、 上記 0 . 2 mm 〜 6 . 0 mmの範囲内に属する複数種類の直径の貫通孔から構成されていて も良い。 以上述べたことから明らかなように、 本発明によれば、 油分離器を設けた り、 オイルレス型やオイルプア型のリニア圧縮機を用いたことにより、 望ま しくは、 冷凍サイクル装置の運転時に高圧側回路を循環する、 c o2冷媒重量 に対するオイノレ重量の比を 2 %以下とすることで、 オイルが吐出されること による急激な高圧側回路の容積の縮小を防止することができ、 急激な高圧側 回路の圧力上昇を低減することができる。 ,
さらに、 高圧側回路の一部に油分離器や、 冷媒貯蔵容器などの冷媒容器を 設けることで、 冷媒容器に一時的に冷媒を保持し、 急激な高圧側回路の圧力 上昇を低減することができる。
また、 さらに、 回路内に封入される c o2冷媒量を回路の全内部容積のリツ ター当たり 0. 2 5キログラム以下とすることで、 起動時の急激な圧力上昇 を緩和することができる。
さらに、 C O 2冷媒に不溶解性のオイルを充填したり、 また、 高圧となる圧 縮メ力部の容積を除く低圧シェルの内部容積の 5 0 %未満にオイルを充填す ることで、 オイルへ溶け込む冷媒の量を低減できるために高圧側回路と低圧 側回路に保有される冷媒量のバランスが急激に変化するといつた外乱を低減 できる。
以上のように、 本発明によれば、 c o2冷媒を用いた冷凍サイクル装置の起 動時などにおいて、 急激に高圧が上昇したり高圧保護機構が働くこともない 冷凍サイクル装置を実現することができる。 産業上の利用可能性
以上述べたことから明らかな様に本発明によれば、 冷媒回路における急激 な圧力上昇を従来に比べて緩和することが出来るという長所を有する。

Claims

求 の
1 . 少なくとも圧縮機と、 減圧器と、 放熱器と、 蒸発器とから冷媒回路 を構成し、 その冷媒回路に二酸化炭素 (C 02) を主成分とする冷媒を封入し た冷凍サイクル装置であって、
前記冷媒回路の高圧側回路の内部容積が、 前記冷媒回路の全内部容積の 7 0 %未満であり、
前記高圧側回路の途中に、 所定の容器部材を備えた冷凍サイクル装置。
2 . 前記容器部材は、 前記冷媒回路の配管断面積よりも広い配管断面積 を有する容器であり、 内部に冷媒貯留室及び Z又は油分離手段を含む請求項
1記載の冷凍サイクル装置。
3 . 前記容器部材は、 円筒状の容器であって、 且つ、 前記容器部材は ( 1 ) 前記円筒状の容器の上端の近傍であって、 前記円筒状の容器の内周面に 対して接線方向に設けられた入口管と、 (2 ) 前記円筒状の容器の上端の中 央部を貫通して前記容器内部の下方に向けて設けられた冷媒出口管と、 (3 ) 前記容器の下端に設けられたオイル出口管と、 (4 ) 前記容器内に設けら れた冷媒とオイルに旋回運動を与える旋回板とを備えた請求項 2記載の冷凍
4. 高圧側回路の一部と低圧側回路の一部とを利用して、 前記冷媒を冷 却するための冷媒冷却手段を備え、
前記容器部材は、 前記冷媒冷却手段と前記減圧器の間に設けられている請 求項 1〜 3の何れか一つに記載の冷凍サイクル装置。
5 . 高圧側回路の一部と低圧側回路の一部とを利用して、 前記冷媒を冷 却するための冷媒冷却手段を備え、
前記高圧側回路の一部が、 前記容器部材を兼ねている請求項 1記載の冷凍
6. 前記冷媒冷却手段は、 前記放熱器の出口側から前記減圧器の入口側 までの間に形成された放熱側冷媒流路と、 前記蒸発器の出口側から前記圧縮 機の吸入部までの間に形成された蒸発側冷媒流路との間で熱交換を行う補助 熱交換器である請求項 4記載の冷凍サイクル装置。
7. 前記冷凍サイクル装置の運転時に、 前記高圧側回路を循環する、 二 酸化炭素 (C02) 冷媒重量に対するオイル重量の比が 2%以下である請求項 1〜 6の何れか一つに記載の冷凍サイクル装置。
8. 前記冷媒回路の内部には、 単位リツター当たり、 0. 25キロダラ ム以下の量の二酸化炭素 (C02) 冷媒が充填されている請求項 1〜7の何れ か一^ 3に記載の冷凍サイクル装置。
9. 前^圧縮機の容積の内、 圧縮機構部の容積を除くシェル内部容積の 、 50 %未満の容積にオイルを封入した請求項 1〜 8の何れか一つに記載の 冷凍サイクル装置。
10. 前記圧縮機は、 オイルレス型またはオイルプア型のリニア圧縮機で ある請求項 1〜 9のいずれか一つに記載の冷凍サイクル装置。
1 1. 前記放熱器は、 扁平チューブに形成された水力相当直径が 0. 2 m mから 6. 0mmである複数の貫通孔を冷媒流路とする構成である請求項 1 〜10のいずれか一つに記載の冷凍サイクル装置。
1 2. 前記圧縮機に封入されるオイルが二酸化炭素 (C02) 冷媒に不溶解 性オイルである請求項 1〜 1 1のいずれか一つに記載の冷凍サイクル装置。
1 3. 少なくとも圧縮機と、 減圧器と、 放熱器と、 蒸発器とから冷媒回路 を構成し、 高圧側回路の内部容積が前記冷媒回路の全内部容積の 70%未満 となる冷凍サイクル装置であって、
前記冷媒回路の内部には、 単位リツター当たり、 0. 25キログラム以下 の量の二酸化炭素 (co2) 冷媒が充填されている冷凍サイクル装置。
14. 前記冷凍サイクル装置の運転時に、 前記高圧側回路を循環する、 二 酸化炭素 (C02) 冷媒重量に対するオイル重量の比が 2%以下である請求項 13に記載の冷凍サイクル装置。
15. 前記圧縮機の容積の内、 圧縮機構部の容積を除くシェル内部容積の 、 50%未満の容積にオイルを封入した請求項 13又は、 14に記載の冷凍 サイクル装置。
16. 前記圧縮機は、 オイルレス型またはオイルプア型のリニア圧縮機で ある請求項 13〜15のいずれか一つに記載の冷凍サイクル装置。
17. 前記放熱器は、 扁平チューブに形成された水力相当直径が 0. 2 m mから 6. 0 mmである複数の貫通孔を冷媒流路とする構成である請求項 1 3〜16のいずれか一つに記載の冷凍サイクル装置。
18. 前記圧縮機に封入されるオイルが二酸化炭素 (C02) 冷媒に不溶解 性オイルである請求項 13〜17のいずれか一つに記載の冷凍サイクル装置。
PCT/JP2002/001441 2001-02-21 2002-02-20 Dispositif a cycle de refrigeration WO2002066907A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02703853A EP1363084A1 (en) 2001-02-21 2002-02-20 Refrigeration cycle device
KR10-2003-7010845A KR20030081454A (ko) 2001-02-21 2002-02-20 냉동 사이클장치
JP2002566186A JPWO2002066907A1 (ja) 2001-02-21 2002-02-20 冷凍サイクル装置
US10/467,576 US6871511B2 (en) 2001-02-21 2002-02-20 Refrigeration-cycle equipment

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-044725 2001-02-21
JP2001044725 2001-02-21
JP2002008400 2002-01-17
JP2002-008400 2002-01-17
JP2002-008390 2002-01-17
JP2002008390 2002-01-17

Publications (1)

Publication Number Publication Date
WO2002066907A1 true WO2002066907A1 (fr) 2002-08-29

Family

ID=27346050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001441 WO2002066907A1 (fr) 2001-02-21 2002-02-20 Dispositif a cycle de refrigeration

Country Status (6)

Country Link
US (1) US6871511B2 (ja)
EP (1) EP1363084A1 (ja)
JP (1) JPWO2002066907A1 (ja)
KR (1) KR20030081454A (ja)
CN (1) CN1492986A (ja)
WO (1) WO2002066907A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021164A1 (en) * 2001-09-03 2003-03-13 Sinvent As Compression system for cooling and heating purposes
CN100356120C (zh) * 2003-05-30 2007-12-19 三洋电机株式会社 冷却装置
CN100387916C (zh) * 2003-06-04 2008-05-14 三洋电机株式会社 冷却装置及冷却装置的制冷剂封入量设定方法
WO2008102454A1 (ja) * 2007-02-23 2008-08-28 Daikin Industries, Ltd. 油分離器及び冷凍装置
WO2016202195A1 (en) * 2015-06-15 2016-12-22 Byd Company Limited Air conditioning system for vehicle and vehicle having same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196774B2 (ja) * 2003-07-29 2008-12-17 株式会社デンソー 内部熱交換器
JP4731806B2 (ja) * 2003-12-01 2011-07-27 パナソニック株式会社 冷凍サイクル装置およびその制御方法
EP1541943B1 (en) * 2003-12-09 2009-06-03 Fujikoki Corporation Gas liquid separator
TWI324242B (en) * 2004-02-12 2010-05-01 Sanyo Electric Co Refrigerant cycle apparatus
US7861541B2 (en) * 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration
JP2006077998A (ja) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置および制御方法
KR100565257B1 (ko) * 2004-10-05 2006-03-30 엘지전자 주식회사 압축기를 이용한 이차냉매사이클 및 이를 구비한 공기조화기
JP2007162561A (ja) * 2005-12-13 2007-06-28 Toyota Industries Corp 冷媒圧縮機
JP4694365B2 (ja) * 2005-12-26 2011-06-08 サンデン株式会社 オイルセパレータ付き減圧器モジュール
US20080289350A1 (en) * 2006-11-13 2008-11-27 Hussmann Corporation Two stage transcritical refrigeration system
JP4245044B2 (ja) * 2006-12-12 2009-03-25 ダイキン工業株式会社 冷凍装置
US20090192514A1 (en) * 2007-10-09 2009-07-30 Feinberg Stephen E Implantable distraction osteogenesis device and methods of using same
US8087256B2 (en) * 2007-11-02 2012-01-03 Cryomechanics, LLC Cooling methods and systems using supercritical fluids
FR2942656B1 (fr) 2009-02-27 2013-04-12 Danfoss Commercial Compressors Dispositif de separation de lubrifiant d'un melange lubrifiant-gaz frigorigene
JP5502459B2 (ja) * 2009-12-25 2014-05-28 三洋電機株式会社 冷凍装置
JP5971633B2 (ja) * 2011-05-26 2016-08-17 パナソニックIpマネジメント株式会社 冷凍サイクル装置
US8978394B2 (en) * 2012-06-21 2015-03-17 Cps Products, Inc. Convertible refrigerant recovery, recycle, and recharge system
EP2926064B1 (en) 2012-11-29 2022-07-13 Johnson Controls Tyco IP Holdings LLP Pressure control for refrigerant system
JP6655534B2 (ja) 2013-11-25 2020-02-26 ザ コカ・コーラ カンパニーThe Coca‐Cola Company 油分離器を備えた圧縮機
KR101673676B1 (ko) 2014-10-10 2016-11-07 현대자동차주식회사 폐냉매로부터 고비등 잔류물을 제거하는 장치 및 방법
CN107606832A (zh) * 2017-10-26 2018-01-19 何铭 一种用于co2空气源热泵的油分离器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255063U (ja) * 1988-10-14 1990-04-20
JP2804844B2 (ja) * 1992-12-11 1998-09-30 シンヴェント・アクシェセルスカープ 超臨界蒸気圧縮装置
JPH11173688A (ja) * 1997-12-05 1999-07-02 Daikin Ind Ltd リニア圧縮機および冷凍装置
JPH11351680A (ja) * 1998-06-08 1999-12-24 Calsonic Corp 冷房装置
JP2000046421A (ja) * 1998-07-27 2000-02-18 Calsonic Corp 二酸化炭素冷凍サイクル用熱交換器
JP2000046420A (ja) * 1998-07-31 2000-02-18 Zexel Corp 冷凍サイクル
JP2000110725A (ja) * 1998-10-08 2000-04-18 Matsushita Refrig Co Ltd 圧縮機
JP2000161213A (ja) * 1998-12-01 2000-06-13 Matsushita Refrig Co Ltd 振動式圧縮機
JP2000274890A (ja) * 1999-03-18 2000-10-06 Nippon Soken Inc 超臨界サイクル
JP2000515958A (ja) * 1996-01-26 2000-11-28 コンヴェクタ アクチェンゲゼルシャフト 圧縮冷却装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718602A (ja) 1993-06-29 1995-01-20 Sekisui Chem Co Ltd 埋込栓
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255063U (ja) * 1988-10-14 1990-04-20
JP2804844B2 (ja) * 1992-12-11 1998-09-30 シンヴェント・アクシェセルスカープ 超臨界蒸気圧縮装置
JP2000515958A (ja) * 1996-01-26 2000-11-28 コンヴェクタ アクチェンゲゼルシャフト 圧縮冷却装置
JPH11173688A (ja) * 1997-12-05 1999-07-02 Daikin Ind Ltd リニア圧縮機および冷凍装置
JPH11351680A (ja) * 1998-06-08 1999-12-24 Calsonic Corp 冷房装置
JP2000046421A (ja) * 1998-07-27 2000-02-18 Calsonic Corp 二酸化炭素冷凍サイクル用熱交換器
JP2000046420A (ja) * 1998-07-31 2000-02-18 Zexel Corp 冷凍サイクル
JP2000110725A (ja) * 1998-10-08 2000-04-18 Matsushita Refrig Co Ltd 圧縮機
JP2000161213A (ja) * 1998-12-01 2000-06-13 Matsushita Refrig Co Ltd 振動式圧縮機
JP2000274890A (ja) * 1999-03-18 2000-10-06 Nippon Soken Inc 超臨界サイクル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETTERSEN J. ET AL.: "Development of compact heat exchangers for CO2 air-conditioning systems", INTERNATIONAL JOURNAL OF REFRIGERATION, vol. 21, no. 3, 1998, pages 180 - 193, XP004287241 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021164A1 (en) * 2001-09-03 2003-03-13 Sinvent As Compression system for cooling and heating purposes
US7131291B2 (en) 2001-09-03 2006-11-07 Sinvent As Compression system for cooling and heating purposes
CN100356120C (zh) * 2003-05-30 2007-12-19 三洋电机株式会社 冷却装置
CN100387916C (zh) * 2003-06-04 2008-05-14 三洋电机株式会社 冷却装置及冷却装置的制冷剂封入量设定方法
WO2008102454A1 (ja) * 2007-02-23 2008-08-28 Daikin Industries, Ltd. 油分離器及び冷凍装置
WO2016202195A1 (en) * 2015-06-15 2016-12-22 Byd Company Limited Air conditioning system for vehicle and vehicle having same

Also Published As

Publication number Publication date
KR20030081454A (ko) 2003-10-17
US6871511B2 (en) 2005-03-29
JPWO2002066907A1 (ja) 2004-09-30
US20040089018A1 (en) 2004-05-13
CN1492986A (zh) 2004-04-28
EP1363084A1 (en) 2003-11-19

Similar Documents

Publication Publication Date Title
WO2002066907A1 (fr) Dispositif a cycle de refrigeration
KR100520583B1 (ko) 냉동사이클장치
JP5539996B2 (ja) 遷臨界冷媒サイクルにおける液体および蒸気の分離
US7401475B2 (en) Thermodynamic systems operating with near-isothermal compression and expansion cycles
JP3813702B2 (ja) 蒸気圧縮式冷凍サイクル
KR100991345B1 (ko) 냉동장치
JP3365273B2 (ja) 冷凍サイクル
JP2005539194A (ja) 液インジェクション付のスクロール圧縮機を有する極低温冷凍システム
KR100990782B1 (ko) 냉동장치
WO2008112566A2 (en) Refrigeration system
JP2007162988A (ja) 蒸気圧縮式冷凍サイクル
JPH08500177A (ja) 単段圧縮機を有する極低温冷凍機
JP2006125823A (ja) エジェクタサイクル
JPWO2002095302A1 (ja) 冷凍サイクル装置
JP4294351B2 (ja) Co2冷凍サイクル
JP2000055488A (ja) 冷凍装置
JP2010236706A (ja) 空気調和装置
WO2010035419A1 (ja) 冷凍装置
JP2001343173A (ja) Co2冷媒用冷凍サイクル装置
EP1312875A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JP4720510B2 (ja) 冷媒サイクル装置
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JP2008151374A (ja) 蒸気圧縮式冷凍サイクル
EP3217117A1 (en) Air-conditioning/hot-water supply system
CN113994150A (zh) 具有多个压缩机的冷却器***

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002566186

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002703853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028051467

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037010845

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037010845

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002703853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10467576

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002703853

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020037010845

Country of ref document: KR