WO2002065622A1 - Coil removing method and removing auxiliary device - Google Patents

Coil removing method and removing auxiliary device Download PDF

Info

Publication number
WO2002065622A1
WO2002065622A1 PCT/JP2001/004615 JP0104615W WO02065622A1 WO 2002065622 A1 WO2002065622 A1 WO 2002065622A1 JP 0104615 W JP0104615 W JP 0104615W WO 02065622 A1 WO02065622 A1 WO 02065622A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
temperature
core
gas
heating
Prior art date
Application number
PCT/JP2001/004615
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Nakaya
Hiroshi Fujigiwa
Fumihisa Akai
Original Assignee
Taga Manufacturing Co.,Ltd.
Daiwa Electronics Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taga Manufacturing Co.,Ltd., Daiwa Electronics Co.,Ltd. filed Critical Taga Manufacturing Co.,Ltd.
Priority to JP2002564820A priority Critical patent/JPWO2002065622A1/en
Publication of WO2002065622A1 publication Critical patent/WO2002065622A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention belongs to the technical field related to remodeling or repair of an electric device provided with a coil such as a motor or a transformer, and more specifically to the technical field of extracting a coil from a core on which the coil is wound.
  • motors and transformers may cause insulation failure when used for many years.
  • mass-produced general-purpose motors may require changes in frequency, voltage, etc. when installed for driving various devices.
  • it is practiced to re-roll the coils of the motor stator and transformer. At the time of this coil winding, it is necessary to take out the existing coil which has been wound.
  • the AC motor 110 which is frequently used as a general purpose motor, has a shape as shown in FIG.
  • the fan cover is divided into components such as 1 1 5.
  • a stator in which a coil is wound is incorporated inside the stator frame W.
  • the coil a of the stator S incorporated in the motor 110 is a groove formed by opening on the inner circumferential surface of the cylindrical stator core b ( Slotted slot c) is penetrated with adhesive d and insulating material e.
  • the coil a is passed through the groove c and impregnated with the adhesive d including the inside of the coil to form the stator S.
  • the coil a, the adhesive d, and the bundle of the insulating material e are firmly fixed to the groove c, and particularly in a motor called a cage AC motor, the groove c of the stator core b is an opening on the inner peripheral surface
  • the coil a is pulled from the groove c of the stator core b because it is narrowed toward the There are considerable difficulties in taking out.
  • the bonding agent d is used to absorb the vibration of the stator S by bonding a large number of wires and to further ensure insulation by the insulating material e.
  • the transformer H has a structure in which a coil aa on the primary side and a coil ab on the secondary side are wound opposite to a rectangular frame-shaped iron core g.
  • the coils aa and ab are firmly fixed by the adhesive d. Although these coils do not enter the grooves as with the motor, they can not be pulled out in one direction, so removal of the coils is not easy.
  • the device of the above method is shown in Japanese Patent Application Laid-Open No. 53-12011. Further, although a gas burner is not used, an apparatus for mechanically pushing a coil from an iron core is disclosed in Japanese Patent Application Laid-Open No. 3-155355. Further, according to JP-A-H06-121435, a core with coil is placed in a sealed container, the inside is replaced with nitrogen gas to heat the inside of the container, and heating is completed after completion of heating. The technology of taking out the iron core and taking the coil from the iron core is shown.
  • the fixing agent d consisting of an epoxy resin, a silicone varnish, etc. may be burned and carbonized by a gas pana flame, a new iron core is used. Carbides are deposited and formed, which prolongs the working time, generates harmful gases and degrades the working environment.
  • stator core b Furthermore, there is a problem that the magnetic properties (magnetostriction, relative permeability, resistivity, etc.) of the stator core b are adversely affected by heating, which causes performance degradation of the motor.
  • the present invention has been made in consideration of such problems, and it is possible to shorten the operation time for taking out the coil from the core to which the coil is fixed, and to take out the coil easily and safely. It is an object of the present invention to provide a coil extraction assisting apparatus suitable for carrying out the method of Disclosure of the invention
  • the method for taking out a coil according to the present invention is a method in which a core wound with a coil is placed in an atmosphere of noncombustible gas, the coil is electrically heated, and a coil fixed with a binder is taken out from the core.
  • the bonding agent when the bonding agent is heated to a high temperature, the bonding agent may be fluidized, liquefied or gasified as in a semi-molten state. The fluidized or liquefied binder drops from the core downward.
  • gasification in the case of evaporation as a complete gas, or in the form of liquid particles instead of a complete gas, or the adhesive becomes fine particles and diffuses into non-combustible gas and spreads.
  • the noncombustible gas is a gas that does not contain at least oxygen, and is a gas that has the property of not burning or carbonizing the bonding agent even when the temperature of the bonding agent becomes fluid, liquid or gasified.
  • the coil can be taken out without burning or carbonizing the fixing agent.
  • the fluidization, liquefaction or gasification of the adhesive is performed by electric heating of the coil, it is possible to prevent the core from being unnecessarily heated.
  • the melting point and boiling point of the adhesive are lower than the enamel insulation coated on the copper wire of the coil, and the electric heating causes an electrification failure such as a short circuit before the adhesive is fluidized, gasified or liquefied. There is no.
  • the core is a motor stator or a transformer.
  • the coil is taken out from the stator of the motor or the transformer by the above method.
  • the noncombustible gas is an inert gas, water vapor, or a mixed gas of an inert gas and water vapor.
  • the temperature rising core is not adversely affected by the effect of the heating coil.
  • the water vapor referred to here is, as is well known, that water boils at 100 ° C. and becomes water vapor at atmospheric pressure under atmospheric pressure, and in order to maintain the state of water vapor, it is 100 ° C. It is necessary to hold C or more . Further, water vapor exceeding 100 ° C. is called heating water vapor, and the water vapor in the present invention contains heating water vapor.
  • Water vapor is an inert gas at atmospheric pressure, and when cooled, it partially condenses and returns to water.
  • the coil extraction method of the present invention at least one or both of the temperature of the coil and the temperature of the core are detected when the coil is heated by electric conduction, and the electric heating is performed so that the coil can be extracted.
  • the heating of the coil is controlled so that the magnetic properties of the core are not easily deteriorated.
  • the coil extraction method of the present invention is characterized in that the coils are electrically heated so as to make the calorific value of the plurality of coils uniform.
  • a plurality of coils are used for the motor.
  • the coil extraction assisting device of the present invention comprises: a processing chamber for accommodating a core wound with a coil; a gas supply means for supplying a noncombustible gas to the processing chamber; And will be equipped.
  • the coil extraction assisting device of the present invention is characterized in that the core is a stator of a motor or a transformer. As a result, the coil is taken out of the motor stator or the transformer using the takeout auxiliary device. Further, the coil extraction assisting device of the present invention is characterized in that the noncombustible gas is an inert gas, water vapor, or a mixed gas of an inert gas and water vapor. As a result, the device does not adversely affect the core whose temperature rises due to the effect of the heating coil.
  • the water vapor referred to here is the water vapor as described in the coil extraction method of the present invention.
  • the coil extraction assisting device of the present invention is characterized in that a coil temperature is detected.
  • the coil temperature or core temperature or both are detected as the coil is energized and heated, and energization of the coil is controlled by the controller instruction to prevent overheating of the core.
  • the coil extraction assisting device of the present invention is characterized in that the electric heating means comprises a switching circuit for switching electric heating to a plurality of coils. As a result, the coil to be energized and heated is selected by the switching of the switching circuit to be energized and heated.
  • the coil extraction assisting device of the present invention is characterized in that the gas supply means comprises at least two supply paths different in temperature of the supplied gas. In this way, non-combustible gases of different temperatures are used to rapidly change the temperature of the processing chamber.
  • the electric heating means comprises a power supply section which uses an alternating current to heat the coil, and a frequency changing means capable of changing the frequency of the alternating current. It is characterized by Thus, the coil is energized and heated by the alternating current, and the frequency of the alternating current is given a frequency suitable for the energization heating of the coil.
  • FIG. 1 is a configuration diagram showing a first example of an embodiment of a coil extraction method and an auxiliary extraction device according to the present invention.
  • FIG. 2 is a configuration diagram regarding control of the main part of FIG.
  • FIG. 3 is an electric circuit diagram of the main parts of FIGS. 1 and 2.
  • FIG. 4 is another electric circuit diagram of the main parts of FIGS. 1 and 2.
  • FIG. 5 is another electric circuit diagram of the main part of FIGS. 1 and 2.
  • FIG. 6 is a flow chart showing a control example in the embodiment of the coil extraction method and the auxiliary extraction device according to the present invention.
  • FIG. 7 is a flowchart of the continuation of FIG.
  • FIG. 8 is a continuation of the flowchart of FIG.
  • FIG. 9 is a flowchart of the continuation of FIG.
  • FIG. 10 is a cross-sectional view showing a winding structure of a coil in a general motor stator.
  • FIG. 11 is a configuration diagram regarding control of the main part of FIG. 1;
  • FIG. 12 is a perspective view showing an outline of a general transformer.
  • FIG. 13 is an electrical circuit diagram of a general transformer.
  • FIG. 14 is a perspective view showing the appearance of a typical mobile.
  • FIG. 15 is an exploded perspective view of FIG.
  • FIG. 16 is a configuration diagram showing a second example of the embodiment of the method for taking out a coil and the auxiliary taking-out device according to the present invention.
  • FIG. 17 is a configuration diagram showing a third example of the embodiment of the coil extraction method and the auxiliary extraction device according to the present invention.
  • 1 to 15 show a first example of the best mode for carrying out the present invention.
  • the coil extraction assisting device 100 of the first example is a temperature sensor which is a processing chamber 1, a gas supply means 2, an electrification heating means 3 and a core temperature detecting means. 4, mainly composed of an oxygen concentration sensor 5, a controller 6, a coil temperature detection means 62, and an exhaust treatment means 7.
  • a coil extraction assist device 100 will be described by taking a stator core b of a motor as an example of a core for extracting the coil a.
  • the processing chamber 1 places the stator frame W including the stator S to which the coil a is fixed with the adhesive d under an atmosphere of noncombustible gas, and one stator frame W is accommodated. It consists of an airtight container provided with Usually, since the stator S is fixed so as not to be disassembled with the stator frame W, it is desirable to enter the processing chamber 1 as it is. In addition, three air supply ports 1 1, 1 2, 1 3 and one exhaust port 14 connected to the outside are opened in the processing chamber 1, and a part of the processing chamber 1 is provided with a stator S There is an open / close door (not shown) for taking in and out. In addition, inside the processing chamber 1, a connection terminal 15 to which the lead L of the coil a of the stator S can be connected is attached.
  • the gas supply means 2 is for supplying and filling a non-combustible gas, here an inert gas, in the processing chamber 1, and a bomb 21 filled with nitrogen gas N, which is one of the inert gases,
  • the supply path 22 is composed of the second supply path 23 and the third supply path 24.
  • nitrogen gas N is inactive at room temperature but not strictly (chemically) inert gas at high temperatures.
  • this invention also uses it in that sense.
  • the first supply path 22 is connected to one air supply port 1 1 of the processing chamber 1 and is connected to a solenoid valve 2 2 a which is a flow control valve also serving as an on-off valve.
  • a pressurized air supply path 25 is branched and connected to the first supply path 22 between the solenoid valve 2 2 a and the air inlet 11 of the processing chamber 1.
  • the pressurized air supply path 25 is connected to the compressor 25 b via the solenoid valve 25 a which is a flow rate adjusting valve also serving as an on-off valve, and the electric heating is ended and the gas in the processing chamber 1 is predetermined. After the temperature has been lowered, pressurized air can be supplied so that the stator core b can be cooled efficiently.
  • the second supply path 23 is connected to the other one air supply port 12 of the processing chamber 1 and heats the nitrogen gas N and the solenoid valve 23 a which is a flow control valve also serving as an on-off valve. Heat sink 2 3 b is connected.
  • the third supply path 24 is connected to the remaining one air supply port 13 of the processing chamber 1 and includes a solenoid valve 24a which is a flow control valve also serving as an on-off valve and a heater for heating nitrogen gas N 2 4 b is connected.
  • a common heating source is used for the heater 23 b of the second supply path 23 and the heater 24 b of the third supply path 24. 26 are connected.
  • the heating source 26 is configured to feed pack a signal such as a temperature sensor (not shown) to control the heating temperature of the nitrogen gas N.
  • the heating means 3 is for heating and heating the coil a of the stator S housed in the processing chamber 1 and connected to the switching circuit 31 connected to the connection terminal 15 of the processing chamber 1 and the switching circuit 31 Power supply unit 32 and
  • the switching circuit 31 shown in FIGS. 3 to 5 is a circuit diagram in the case of using a single-phase AC power supply, and is shown in FIG. 1, FIG. 2, FIG. 11, FIG. A power supply unit 32 shown in the figure shows a single-phase AC power supply that outputs.
  • the switching circuit 31 is supplied with power from the power supply section 32 via the terminals 31 1 and 32 1, and is connected to the connection terminal 15 via the switches 15 a, 15 b and 15 c.
  • 3 1 and 3 lead wires provided to the three-phase AC motor 3 pairs of switches 3 1 a and 3 1 a ', 31 1 b and 3 1 b, and 3 1 c
  • 3 1 c ' is provided, and one set of switches 3 1 a and 3 1 a', 3 1 b and 3 1 b ', 3 1 c and 3 1 c' according to the coil connection method.
  • the coil is heated electrically.
  • the switch circuit 31 shown in FIG. 3 is used, and electric heating is performed for every two coils. Specifically, coil a 1 and coil a 2 are energized and heated by turning on switches 3 1 a and 3 1 a ′, and after a predetermined time, switch N 3 1 b and 3 1 b ′ are switched on.
  • the coil a 2 and the coil a 3 are energized and heated, and after a predetermined time, the switches 31 c and 31 c ′ are turned on, whereby the coil a 3 and the coil a 1 are energized and heated. It is assumed to be 1. In addition, it is also possible to determine a predetermined amount of time so that the amount of electric power obtained by multiplying the above-mentioned predetermined time by the product of the current and the voltage during electric heating, that is, the calorific value becomes uniform in each coil.
  • the switch circuit 31 shown in FIG. 4 is used, and at the same time, the three coils are energized and heated. .
  • one of the coils is strong It is necessary to switch each switch in turn, since the other two coils are each heated by their strength of 1/4.
  • FIG. 4 by turning switch 3 1 a, 3 1 a 'N N, coil a 1 is strongly heated, and coil a 2 and coil a 3 have their strength of 1/4.
  • the coil a 2 is strongly heated by turning on the switches 31 b and 31 b 'after a predetermined time, and the coil a 3 and the coil a 1 are heated with the strength of 1 Z 4. After a predetermined time, coil a 3 is strongly heated by turning on switches 31 c and 31 c ′, and coils a and l and coil a 2 are heated with the strength of 1 c and 4 c.
  • a switch circuit 31 is used.
  • the coils a 1, a 2 and a 3 may not be connected, and there may be a case where six lead wires L are drawn out.
  • the switch circuit 3 1 shown in FIG. It is assumed that each coil is a switch circuit 31 in which one coil is energized and heated.
  • FIG. 1, etc. it is shown that the connection terminal 15 is connected by three lead wires, but in the case of the switch circuit 31 shown in FIG. 5, the terminals 15a to Six of l 5 f will be connected to connection terminal 1 5, and also to stator S will be connected by 6 leads.
  • the switching circuit (switch circuit) of transformer H is the same as that of the motor. That is, for example, as shown in FIG. 13, the transformer H is a coil aa on the primary side formed by Y-connecting three coils a11, a12, and a13, and the iron core g is In between, there is a coil ab on the secondary side in which three coils a 2 1, a 2 2, and a 2 3 are connected by parallel connection.
  • the coil aa on the primary side and the coil ab on the secondary side each correspond to a coil of a motor, and the switch circuit is heated similarly to the motor according to the wire connection method of the coil.
  • 3 1 Is selected.
  • connection terminal 15 should be the secondary side coil ab It is desirable to reheat the secondary side coil ab and then take out both coils.
  • the power supply unit 32 is a three-phase alternating current power supply (R, S, T) as shown in FIG.
  • An isolation transformer 321 connected to the DC / DC converter for buck-boost and leakage prevention, a DC stabilization unit 322 for obtaining stable DC, a PWM control unit 323 for PWM control (pulse width modulation control) for DC and a pulse waveform, It is comprised of an inverter 324 which makes it possible to change the positive / negative and frequency of the pulse waveform, and a detection unit 33 which detects the current and voltage output from the power supply unit 32.
  • the motor is operated at a frequency of 50 to 60 Hz, but such a frequency is not suitable for heating the coil a, and the power supply unit 32 is a frequency changing means (PWM control unit 323, inverter 324, the central processing unit 61) changes the frequency to create a circuit configuration that can perform electrical heating at a higher frequency (for example, 400 Hz).
  • a frequency changing means PWM control unit 323, inverter 324, the central processing unit 61
  • the detection unit 33 detects the resistance value (direct current component) and the inductance of the coil as shown below by the current and voltage preliminarily applied to the coil a, and feeds back to the central processing unit unit 61. Then, the electric heating method is selected based on the detection result by the coil information detection unit 64 incorporated in the controller 6 or the like.
  • the following two control methods are general, one is a constant current method and the other is a constant voltage method.
  • V I ⁇ ⁇ R 2 + (2 ⁇ f L) 2 ⁇ (2)
  • the voltage is measured at 33, and the coil information detection unit 64 back-calculates the equation (1) to detect the resistance value R (DC component) of the coil a. It is possible to Temperature T. Initial resistance value R ⁇ at . Is detected in this way.
  • the resistance value R of the detected coil a and inductance coefficient L are used so that the current value I calculated by equation (1) becomes constant, and in the case of constant voltage control (2)
  • the voltage or current for energizing and heating the coil is determined so that the voltage value V calculated by the equation is constant.
  • whether the method of electric current heating is a constant current method or a constant voltage method depends on the capacity of motor (electric equipment), connection method (Del evening connection, Y connection, etc.), impedance, etc. select.
  • a suitable one is selected depending on the capacity of the motor (electrical equipment), the wiring system, and impedance.
  • the coil temperature detection means 62 is incorporated in the controller 6 and detects the coil temperature T using the constant mass temperature coefficient of the wire of the coil a as described below. First, the temperature T of the wire of coil a. Constant mass temperature coefficient Q! T at . Calculate the following formula.
  • the temperature of the coil a is applied to the coil by applying a preset current I for constant current control and a preset voltage V for constant voltage control.
  • the coil information detection unit 64 calculates a coil resistance value RT that changes with temperature rise.
  • the coil temperature detection means 62 is configured to be able to detect the coil temperature ⁇ without using a thermometer.
  • the temperature sensor 4 is a core temperature detection means for detecting the temperature of the stator core b housed in the processing chamber 1, and is mounted in contact with the stator core b housed in the processing chamber 1.
  • the oxygen concentration sensor 5 detects the oxygen concentration inside the processing chamber 1 to which nitrogen gas N is supplied by the gas supply means 2.
  • the oxygen concentration sensor 5 detects the oxygen concentration inside the processing chamber 1 from the air supply ports 1 1, 1 2, 1 3. It is desirable to be mounted at a remote position.
  • the exhaust processing means 7 is connected to the exhaust port 14 of the processing chamber 1 and discharges air and the like inside the processing chamber 1 and is a flow control valve which also functions as an on-off valve. It comprises an exhaust pump 72 equipped with a filter having a cleaning function.
  • the controller 6 controls the electric heating means 3, the switching circuit (switch circuit) 3 1 and the heating source 26, and mainly comprises the central processing unit 61, the coil temperature detecting means 62 described above, and the input unit 63. Ru. Further, a temperature sensor 4 and an oxygen concentration sensor 5 are connected to the controller 6.
  • the central processing unit 61 is connected to the PWM control unit 323 and the inverter 324 based on the input information (motor capacity, impedance, etc.) from the input unit 63, the input information from the temperature sensor 4 and the oxygen concentration sensor 5, etc.
  • Optimal communication Command the electric heating method.
  • the signals from the detection unit 33, the temperature sensor 4, and the oxygen concentration sensor 5 are fed back to the central processing unit 61.
  • the process of removing the adhesive d of the stator S of the motor will be described with reference to the flow charts of FIG. 6 to FIG.
  • the same process can be applied to cores other than transformers and other motors, so here we will use a motor.
  • the stator frame W including the stator S is accommodated in the processing chamber 1.
  • the lead wire L when the lead wire L is connected to the coil a of the stator S taken out of the motor, the lead wire L can be connected to the connection terminal 15 of the processing chamber 1, so wire connection is made to the coil a There is no need.
  • the lead wire L is not connected to the coil a of the stator S taken out, the lead wire L is newly connected to the terminal block of the stator S and connected to the connection terminal 15 of the processing chamber 1.
  • the inside of the processing chamber 1 is supplied from the gas supply means 2 so as to be filled with nitrogen gas N.
  • the air is discharged by opening the solenoid valve 71 of the exhaust treatment means 7, filling of nitrogen gas N into the inside of the processing chamber 1 becomes smooth.
  • the coil a of the stator S can be preheated by heating the nitrogen gas supplied into the processing chamber 1.
  • the temperature sensor 4 detects the initial temperature of the stator core b (the temperature of the coil a is considered to be the same as the temperature of the stator core b), and the controller 6 reads it. Further, when the detected value of the oxygen concentration sensor 5 is read and the oxygen concentration inside the processing chamber 1 becomes lower than a certain reference value, the detection unit 33 detects the impedance Z of the coil a of the stator S for each winding phase. It detects every. The method of detecting the impedance Z is as described above.
  • the central processing unit 61 is designed to determine the frequency of the constant current method or the constant voltage method corresponding to the detected impedance a of the coil a of the stator S and the initial temperature of the stator core b. Select the pattern of optimum electric current heating, such as whether to use z, and instruct electric current heating to coil a from electric current heating means 3.
  • central processing unit 61 has switch circuit 31 connected to heating means 3. Instructs switching to turn on only one set of switches 3 1 a and 3 1 a ′. Therefore, one coil of coil a is energized and heated, or two or three coils are energized and heated at the same time, or it differs depending on the wiring system, but here it has the 6 terminals of FIG. In the case of coils as an example, the case where one coil is energized and heated will be described.
  • the first coil a 1 is heated by electric conduction.
  • the central processing unit 61 monitors the coil temperature by the coil temperature detecting means 62 and the temperature of the stator core b by the temperature sensor 4 while the first coil a1 is energized by the heating means 3. doing.
  • the coil resistance RT usually increases compared to the initial (before starting the heating) coil resistance RT 0 ((4) See the equation).
  • an excessive current flows in coil a coil a has an abnormality, so the heating in this stage is terminated.
  • the coil temperature is checked, and if the coil temperature does not exceed its upper limit (for example, 400 ° C.), the stator is further Check the temperature of iron core b, and if the temperature of stator iron core b does not exceed the upper limit (for example, 150 ° C), continue to heat the first coil a1.
  • its upper limit for example, 400 ° C.
  • the central processing unit 61 instructs the heating means 3 to stop the power supply to the first coil a 1. Then, check the temperature of the stator core b, and if the temperature of the stator core b is not lower than the lower limit (for example, 80 ° C), stop the current-carrying heating of the first coil. If the temperature falls below the lower limit (for example, 80 ° C.) (descent time), the central processing unit 61 shifts the current heating means 3 to the second coil a 2 and instructs resumption of current heating.
  • the upper limit for example, 400 ° C.
  • the coil temperature does not exceed the upper limit
  • the temperature of the stator core b is at the upper limit (for example, 1 5
  • the central processing unit 61 instructs the heating means 3 to stop the power supply to the first coil a 1. Then, check the temperature of the stator core b, and if the temperature of the stator core b is not lower than the lower limit (for example, 80 ° C), stop the current-carry
  • the central processing unit 61 switches to the electric heating means 3 so that the switch circuit 31 turns on only the next set of switches 31 b and 31 b '. Instruct Therefore, only the coil next to coil a (second coil a 2) is energized and heated. Such control is repeated for the first coil a1 to the third coil a3, and is continued until the set time input from the input unit 63 to the timer circuit of the central processing unit 61 has elapsed. Ru. If the insulation layer of the coil a melts and an overcurrent flows, the energization of the coil a by the energization heating means 3 is stopped, and the energization heating is finished.
  • the coil temperature T raised by the electric heating means 3 is 300 ° C. or higher by feedback control of the value detected by the coil temperature detection means 62 by the controller 6, and the enamel coating of the coil a is
  • the heating is controlled to a temperature that does not cause gasification (usually 400 ° ( ⁇ 550)) or less
  • the heated coil a heats the surrounding binder d and fluidizes the binder d and makes it liquid or liquid.
  • the binder d is surrounded by the inert gas and is in an oxygen-free atmosphere, oxidation of the binder d is prevented and formation of an oxide from the binder d is prevented. .
  • the heating of the coil a is conducted so that the magnetic properties of the stator core b are not deteriorated by the heating of the coil a by the heating means 3 and the temperature of the stator core b is increased too much. Intermittent control is performed. As a specific temperature, the temperature of the stator core b is controlled by feeding back the signal of the temperature sensor 4 so that the temperature is at most 200 ° C. or less, preferably 150 ° C. or less. Therefore, thermal deterioration of the stator core b is prevented. Further, since the energization of the heating means 3 is an alternating current, the heating can be controlled without magnetizing the stator core b.
  • the coil temperature and the temperature of the stator core b are significantly different because a material of low thermal conductivity consisting of the adhesive d of the coil a and the insulating material e is inserted into the stator core b and the coil temperature is This is because it is difficult to transmit to the core b, and the temperature of the stator core b is delayed due to the temperature rising rapidly when heating the coil.
  • the upper limit value of the coil temperature is not suddenly set to the maximum temperature (for example, 400 ° C)
  • the first time is 200
  • the second time is 3 0 It may be done stepwise like 0 ° C.
  • the electromagnetic valve 71 of the exhaust treatment means 7 may be closed, but from the gas supply means 2 to the nitrogen gas N By continuing the supply of nitrogen and the discharge of nitrogen gas N from the exhaust gas treatment means 7, the removal of the sticking agent d can also be promoted.
  • the evaporation component and the like of the fixing agent d are captured by the filter 72 of the exhaust treatment means 7.
  • Stator frame W is housed in processing chamber 1 of coil extraction assist device 100, and fluidizing, liquefying or gasifying binder d by electric heating .
  • the temperature of the fixing agent d is increased by the temperature sensor 4 because the stator S, which has become fluidized, liquefied or gasified, does not have a temperature decrease until it is easily touched by hand even if it is left in the processing chamber 1 even if the energization is stopped.
  • the detected stator temperature falls below a predetermined temperature
  • air is flowed from the compressor 25 b into the processing chamber 1 to accelerate the cooling.
  • the temperature of the stator S decreases until it is touched by hand, it is taken out of the processing chamber 1, and the wire of the coil a is cut off by wire cut at the end face side of the stator core b and pliers etc. It is pulled in the axial direction of the groove c.
  • the coil a from which the fixing agent d has been removed is released from the fixing of the stator core b to the groove, and no carbides of the fixing agent d adhere to the periphery of the coil a. Removal work is easy.
  • the adhesion between the coil a and the groove c of the stator core b is weakened, so the coil a is taken out from the groove c. Becomes easier.
  • the working time for blowing the flame of the gas pana of the prior art example described above to the adhesive d to soften and melt the adhesive d and crushing the adhesive d with fleas etc. is omitted, and the hand involved in taking out the coil a. Work time is reduced.
  • the method for taking out the coil according to the present invention as described above the implementation of the takeout auxiliary device
  • the apparatus was actually manufactured and tested for the form, when the adhesive d is fluidized or liquefied and falls below the stator frame W, it vaporizes and evaporates or diffuses into the nonflammable gas. After cooling the stator frame W, the stator frame W was taken out of the processing chamber 1, and the coil could be easily taken out as shown below.
  • the above-mentioned high-efficiency motor is a motor that is expected to increase production from the demand for energy saving because the space factor that indicates the density at which the coil a is wound is high and coil removal is not easy. Is shown.
  • the coil extraction method according to the present invention and the apparatus thereof according to the present invention described above provide 0.5 hours, 6 to 7 hours, and 1.5 hours, respectively. It took 8 to 9 hours in total. Among them, the time required for manual work was 2 hours. On the other hand, because it took a total of 14 hours in the above-mentioned conventional example, it became possible to achieve an efficiency of 36% to 43% in the whole hours and an efficiency of 86% on the manual time. .
  • the coils are heated by direct current conduction, and intermittent heating is performed while monitoring the coil temperature and the stator core temperature, so the thermal efficiency can be extremely high compared to the conventional method in which the inside of the processing chamber is heated by heating or the like. Power consumption was reduced to 1/5 to 1/8.
  • the embodiment has been described for a motor having a general structure in which the outer peripheral portion is a stator wound with a coil and the central portion is a rotor.
  • a motor in which the outer peripheral portion is a rotor and the central portion is a stator wound with a coil.
  • such a motor is also difficult to pick up the coil by the conventional method, and the present invention can be applied to achieve significant efficiency.
  • the transformer H since the firmly adhering fixing agent d is removed by fluidization, liquidation or gasification, the coil can be easily taken out of the transformer H.
  • the present invention can be applied to an electric device having a core with a coil wound, such as a choke coil for DC smoothing circuit, a reactor for power factor improvement, and an anode reactor for a thyristor valve device, so that coil extraction is easy. Ru.
  • the temperature of the coil a is determined by the calculation method indicated by the coil temperature detection means 62, and the heating by conduction is controlled using both of the core temperature detection means (temperature sensor 4).
  • the detection means 4 it is also possible to substitute an estimated value based on an experiment on the core temperature (with reference to the temperature of the coil).
  • the coil temperature detecting means 62 it is possible to substitute the temperature of the coil a with the predicted value based on the experiment (with reference to the temperature of the core).
  • the amount of heat generation can be obtained from the product of the current and voltage to be heated and the current and voltage, and the current can be heated to equalize the amount of heat generated by the multiple coils.
  • the inert gas is nitrogen gas N.
  • the inert gas is not limited to nitrogen gas N.
  • argon gas can be used.
  • FIG. 16 shows a second example of the best mode for carrying out the invention.
  • the coil extraction assisting device 200 uses steam J instead of the inert gas N used as the noncombustible gas of the first example.
  • Water vapor J is produced by Poira 27. That is, water M is supplied from the outside to the steam tank 2 7 b of the poiler 2 7 and heated in the heat oven 2 7 a to produce the water vapor J. This water vapor condenses below 100 °, so unlike the case of the inert gas, the first supply path 22 shown in FIG. The system is configured to be fed to the processing chamber 1 through the second supply path 2 3 and the third supply path 2 4 equipped with a heat exchanger.
  • the water When heated to 100 ° by the poiler, the water turns into steam J, opens the valve and passes through the second feed path 23 or the third feed path 24 at a pressure of Poira 27 and below 100 ° C. It is heated to the processing chamber 1 so as not to decrease.
  • the solenoid valve 71 is opened for a predetermined time to supply water vapor J, and the inside of the processing chamber is heated to 100 ° C. or higher. At this time, a small amount of water vapor J may condense, but this water can be released through drain pipe 2 8 and drain valve 2 8 a.
  • the processing chamber 1 is filled with water vapor J of 100 ° C. or higher, then the coil a is heated by electric conduction as described in the first example, and the coil a can be easily removed from the core b. .
  • an inexpensive coil extraction assisting device 200 can be configured.
  • FIG. 17 shows a third example of the best mode for carrying out the invention.
  • the coil extraction assisting device 300 of this third example is a combination of the noncombustible gas of the first example with the inert gas N of the first example and the water vapor J of the second example.
  • the inert gas N is sent to the processing chamber 1 through the supply path 23.
  • the water vapor J is supplied to the processing chamber 1 through the supply path 24 and mixed in the processing chamber 1.
  • the solenoid valve 2 3 a of the supply path 2 3 and the solenoid valve 2 4 a of the feed path 2 4 are flow control valves, inert gas N and water vapor J should be mixed gas in any ratio. Can.
  • the condensation of the water vapor J is more difficult than in the case of the water vapor J alone, and even if the water vapor J is condensed, the water condensed by the inert gas N is evaporated again. become.
  • the inert gas N mixed with the gasified components of the fixing agent d may have a strong odor. In such a case, the steam J is mixed at an appropriate ratio. , It becomes possible to reduce the odor. In addition, since the consumption of inert gas N can be reduced, the cost as a gas is also reduced.
  • the power supply unit 32 of the conduction heating means 3 is a single-phase output, but the power supply unit 32 may be a three-phase output.
  • the switching circuit (switch circuit) 31 is not necessary. That is, in the case where the coil a is delta connection or Y connection, the three terminals may be connected directly to the power supply unit.
  • each coil a 1, a 2 and a 3 is not connected, so the lead wire If 6 cables are pulled out, make the Y connection and connect 3 terminals to the power supply.
  • non-combustible gas is also a gas that is harmless to the human body in order to ensure the safety of this device.
  • the coil is electrically heated to make the adhesive flow, liquid or gasified, and the coil is taken out from the core, thereby breaking the adhesive using the conventional governor or tool.
  • the bonding agent is fluidized, liquidated or gasified in an atmosphere of noncombustible gas, the formation of carbides is prevented, no harmful gas is generated, and there is almost no odor (even if there is an exhaust gas or a filter etc. Can be used to improve the working environment for coil removal from the core.
  • the fluidization, liquefaction, or gasification of the adhesive is performed by electric heating of the coil, unnecessary heating of the core is avoided, and deterioration of the magnetic properties of the core can be prevented, and an electric device equipped with the coil Maintain the performance of
  • the coil extraction assisting apparatus of the present invention uses the coil to conduct current and heats the binder, thereby fluidizing, liquidifying, or gasifying the power, and therefore consumes more power than heating the inside of the processing chamber with a heater or the like.
  • the power supply unit that performs electric heating is output as an alternating current, and the frequency of this alternating current can be changed by the frequency changing unit, so that the current flowing to the coil can be suppressed without magnetizing the core. You can make the unit smaller and make the power supply unit cheaper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A method and device for removing a coil from a core having the coil wound thereon. The coil removing method comprises the steps of placing a core (b) having a coil (a) wound thereon in an atmosphere of noncombustible gas (N), and passing electricity through the coil (a) for heating so as to remove from the core (b) the coil (a) bonded by a binder (d). Further, the coil removing auxiliary device comprises a processing chamber (1) for storing a core (b) having a coil (a) wound thereon, a gas feeding means (2) for feeding a noncombustible gas (N) to the processing chamber (1), and an electricity passing and heating means (3) for passing electricity through the coil (a) for heating. According to the coil removing method and removing auxiliary device, the coil (a) can be easily removed from the core (b).

Description

明細書  Specification
コイルの取出方法、 取出補助装置 技術分野  Extraction method of coil, extraction auxiliary device Technical field
本発明は、 モータや変圧器などのコイルを備える電気機器の改造また は修繕に係る技術分野に属し、 より詳細には、 コイルが巻回されたコア からコイルを取出す技術分野に属する。 背景技術  The present invention belongs to the technical field related to remodeling or repair of an electric device provided with a coil such as a motor or a transformer, and more specifically to the technical field of extracting a coil from a core on which the coil is wound. Background art
一般に、 モー夕及び変圧器などは、 経年使用すると絶縁不良を起こす 場合がある。 また、 大量生産された汎用モー夕は各種機器の駆動用とし て設置される際に、 周波数、 電圧等の変更を必要とする場合がある。 こ れらに対応するためモー夕の固定子や変圧器などのコイルを巻直すこと が行われている。 このコイル巻直しに際しては、 巻回されている既存の コイルを取出す必要がある。  In general, motors and transformers may cause insulation failure when used for many years. In addition, mass-produced general-purpose motors may require changes in frequency, voltage, etc. when installed for driving various devices. In order to cope with these problems, it is practiced to re-roll the coils of the motor stator and transformer. At the time of this coil winding, it is necessary to take out the existing coil which has been wound.
汎用モー夕として使用頻度の高い交流モータ 1 1 0は第 1 4図に示 すような形状をしている。 交流モー夕 1 1 0を分解すると、 第 1 5図に 示すように、 固定子枠 W、 回転子 1 1 1、 前側軸受ブラケット 1 1 2、 後側軸受ブラケット 1 1 3、 冷却ファン 1 1 4、 ファンカバー 1 1 5な どの構成部品に分けられる。 ここで固定子枠 Wの内側にはコイルが巻回 された固定子が組み込まれている。  The AC motor 110, which is frequently used as a general purpose motor, has a shape as shown in FIG. When the AC motor 1 1 0 is disassembled, as shown in FIG. 1 5, the stator frame W, the rotor 1 1 1, the front bearing bracket 1 1 2, the rear bearing bracket 1 1 3, the cooling fan 1 1 4 The fan cover is divided into components such as 1 1 5. Here, inside the stator frame W, a stator in which a coil is wound is incorporated.
このようにモー夕 1 1 0に組み込まれている固定子 Sのコイル aは、 第 1 0図に示すように、 円筒形の固定子鉄心 bの内周面に開口して形成 された溝 (スロット) cに固着剤 d、 絶縁材 eとともに揷通されている 。 コイル aは溝 cに揷通された後にコイル内部を含めて固着剤 dが含浸 され、 固定子 Sが形成されている。 したがって、 コイル aと固着剤 dと 絶縁材 eの束は、 強固に溝 cに固着されており、 特にかご形交流モータ と呼ばれるモー夕では、 固定子鉄心 bの溝 cが内周面の開口へ向かって 絞込まれた形状になっているため、 固定子鉄心 bの溝 cからコイル aを 取出すのには、 かなりの困難がある。 なお、 固着剤 dは多数の線材を固 着することで固定子 Sの振動を吸収し、 また、 絶縁材 eによる絶縁をよ り確実にするために用いられている。 Thus, as shown in FIG. 10, the coil a of the stator S incorporated in the motor 110 is a groove formed by opening on the inner circumferential surface of the cylindrical stator core b ( Slotted slot c) is penetrated with adhesive d and insulating material e. The coil a is passed through the groove c and impregnated with the adhesive d including the inside of the coil to form the stator S. Therefore, the coil a, the adhesive d, and the bundle of the insulating material e are firmly fixed to the groove c, and particularly in a motor called a cage AC motor, the groove c of the stator core b is an opening on the inner peripheral surface The coil a is pulled from the groove c of the stator core b because it is narrowed toward the There are considerable difficulties in taking out. The bonding agent d is used to absorb the vibration of the stator S by bonding a large number of wires and to further ensure insulation by the insulating material e.
次に、 変圧器 Hは、 第 1 2図に示すように、 四角形の枠形状をした鉄 心 gに 1次側のコイル a aと、 2次側のコイル a bが対向して巻回され た構造をしており、 各コイル a a、 a bは固着剤 dで強固に固定されて いる。 これらのコイルはモ一夕のように溝に入ってはいないが、 一方向 に引き出せないので、 コイルの取出は容易ではない。  Next, as shown in FIG. 12, the transformer H has a structure in which a coil aa on the primary side and a coil ab on the secondary side are wound opposite to a rectangular frame-shaped iron core g. The coils aa and ab are firmly fixed by the adhesive d. Although these coils do not enter the grooves as with the motor, they can not be pulled out in one direction, so removal of the coils is not easy.
また、 モータの固定子、 または変圧器以外にも、 コイルが巻回された コアを有する電気機器としては、 直流平滑回路用チョークコイル、 リア クタンス作用による力率改善用リアクトル、 直流送電機器のひとつであ るサイリス夕バルブ装置のァノードリアクトルなどがある。  In addition to motor stators or transformers, other electric devices that have a coil-wound core include a DC smoothing circuit choke coil, a reactor for power factor improvement by reaction, a DC power transmission device. There is a nodeless reactor, etc. of the Phyris evening valve system.
従来、 このようなコアに巻回されたコイルを取出す方法としては、 例 えば、 モ一夕では、 コイル aが固定子鉄心 bの端面側へ露出している部 分をワイヤーカツ夕等で切断し、 ガスパーナの火焰を固着剤 dに吹付け て固着剤 dを軟化、 溶融させる。 そして、 ノミなどの工具で固着剤 dと 絶縁材 e (—部線材を含め) を破砕して、 コイル aの線材をペンチ等で 溝 cの軸方向に引っ張って取出す方法が知られている。  Conventionally, as a method of taking out a coil wound around such a core, for example, in the case of a motor, for example, a portion where the coil a is exposed to the end face side of the stator core b is cut with a wire cutter or the like. Then, spray the flame of gas pana against the binder d to soften and melt the binder d. Then, a method is known in which the adhesive d and the insulating material e (including the-part wire rod) are crushed with a tool such as a chisel, and the wire rod of the coil a is pulled out in the axial direction of the groove c with a pliers or the like.
上記方法を装置化したものが特開昭 5 3 - 1 1 7 7 0 1号公報に示さ れている。 また、 ガスバーナは使用しないが、 機械的にコイルを鉄心か ら押し出す装置が特開平 3— 1 5 5 3 5 5号公報に示されている。 また、 特開平 6— 1 2 1 4 9 5号公報には、 コイル付鉄心を密封容器 に入れ、 内部を窒素ガスで置換して容器内部を加熱し、 加熱完了後、 密 封容器からコィル付鉄心を取出して、 鉄心からコィルを取出す技術が示 されている。  The device of the above method is shown in Japanese Patent Application Laid-Open No. 53-12011. Further, although a gas burner is not used, an apparatus for mechanically pushing a coil from an iron core is disclosed in Japanese Patent Application Laid-Open No. 3-155355. Further, according to JP-A-H06-121435, a core with coil is placed in a sealed container, the inside is replaced with nitrogen gas to heat the inside of the container, and heating is completed after completion of heating. The technology of taking out the iron core and taking the coil from the iron core is shown.
前述のコイル端部を切断しガスパーナで加熱してコイルを取出す従 来のコイル取出技術では、 ほとんどの作業が手作業からなるため、 コィ ル aの取出にかかる作業時間が長くなるという問題点がある。 また、 特 開平 3— 1 5 5 3 5 5号公報に示されているような装置を用いても固着 剤で強固に固定されたコイルは機械的に押し出して取出すには巨大な力 を必要とし、 高価な装置になるとともに、 固定子を損傷させる可能性が 高い。 In the conventional coil extraction technology in which the coil end is cut and heated with a gas pana to take out the coil, most of the work is manually done, so the time taken for coil a extraction is extended. is there. In addition, even when using an apparatus as disclosed in Japanese Patent Application Laid-Open No. 3-5555. The coil firmly fixed by the agent requires huge force to push it out mechanically and it becomes an expensive device and it is likely to damage the stator.
また、 特開昭 5 3— 1 1 7 7 0 1号公報などの装置では、 ガスパーナ の火焰でエポキシ樹脂やシリコンワニス等からなる固着剤 dが燃焼して 炭化することがあるため、 鉄心に新たな炭化物が付着、 形成され、 作業 時間を長くするとともに、 有害なガスを発生させ作業環境を悪化させる という問題がある。  Also, in devices such as Japanese Patent Application Laid-Open No. 5 3-1701, since the fixing agent d consisting of an epoxy resin, a silicone varnish, etc. may be burned and carbonized by a gas pana flame, a new iron core is used. Carbides are deposited and formed, which prolongs the working time, generates harmful gases and degrades the working environment.
さらには、 加熱により固定子鉄心 bの磁性特性 (磁気ひずみ、 比透磁 率、 抵抗率など) が悪影響を受け、 モー夕の性能劣化を引き起こすとい う問題がある。  Furthermore, there is a problem that the magnetic properties (magnetostriction, relative permeability, resistivity, etc.) of the stator core b are adversely affected by heating, which causes performance degradation of the motor.
また、 特開平 6— 1 2 1 4 9 5号公報に示された技術によれば、 密封 容器内でコイル付鉄心を加熱するため、 鉄心の温度が大きく上昇して鉄 心の磁気特性の劣化が避けられない。 また、 固着剤が加熱により軟化し た状態でコイルを取出す必要があるが、 鉄心が高温状態にあるため密封 容器からコイル付鉄心を取出すのに危険を伴い、 また、 高温状態にある コイル付鉄心から手作業でコイルを取出すことができない。 したがって 、 密封容器からコイル付鉄心を取出す装置、 及び、 コイル付鉄心からコ ィルを取出す装置が必要なことで、 装置全体が大がかりになるという問 題がある。  Further, according to the technique disclosed in Japanese Patent Application Laid-Open No. Hei 6-12549, since the coiled iron core is heated in the sealed container, the temperature of the iron core rises significantly and the magnetic characteristics of the iron core are deteriorated. Is inevitable. In addition, it is necessary to take out the coil in a state where the fixing agent has been softened by heating, but there is a danger in taking out the coiled core from the sealed container because the core is at high temperature. Can not manually remove the coil from the Therefore, there is a problem that the entire apparatus becomes large-scaled by requiring a device for taking out the coiled core from the sealed container and a device for taking out the coil from the coiled core.
本発明は、 このような問題を考慮してなされたもので、 コイルが固着 したコアからコイルを取出す作業時間を短くでき、 コイルの取出作業を 容易で安全にできるコイルの取出方法と、 このコイルの取出方法を実施 するのに好適なコイル取出補助装置とを提供することを目的とする。 発明の開示  The present invention has been made in consideration of such problems, and it is possible to shorten the operation time for taking out the coil from the core to which the coil is fixed, and to take out the coil easily and safely. It is an object of the present invention to provide a coil extraction assisting apparatus suitable for carrying out the method of Disclosure of the invention
本発明のコイルの取出方法は、 コイルが巻回されたコアを不燃性ガス の雰囲気下におき、 上記コイルを通電加熱して固着剤で固着されたコィ ルをコアから取出す方法である。 ここで、 固着剤が加熱され高温となると、 固着剤は半溶融状態のよう に流動化する場合と、 液体化する場合と、 気体化する場合がある。 流動 化したり液体化した固着剤はコアから下方に落ちるようになる。 一方、 気体化する場合、 完全な気体となって蒸発する場合と、 完全な気体とは ならずに液体の粒になって、 または、 固着剤が微粒子になり不燃性ガス に拡散して広がっていくように、 気体と液体 (または固体) が混入した 状態となる場合が存在する。 したがって、 この発明において気体化する 場合は蒸発に加え、 固着剤が液体または微粒子状態 (煙のようなもの) になって気体に混入する状態 (ここでは拡散と呼ぶ) を含んでいる。 また、 不燃性ガスとは、 少なくとも酸素を含まないガスであり、 固着 剤が流動化、 液体化または気体化する温度になっても固着剤を燃焼また は炭化させない特性を備えたガスである。 The method for taking out a coil according to the present invention is a method in which a core wound with a coil is placed in an atmosphere of noncombustible gas, the coil is electrically heated, and a coil fixed with a binder is taken out from the core. Here, when the bonding agent is heated to a high temperature, the bonding agent may be fluidized, liquefied or gasified as in a semi-molten state. The fluidized or liquefied binder drops from the core downward. On the other hand, in the case of gasification, in the case of evaporation as a complete gas, or in the form of liquid particles instead of a complete gas, or the adhesive becomes fine particles and diffuses into non-combustible gas and spreads. There are cases where gas and liquid (or solid) are mixed. Therefore, in the case of gasification in the present invention, in addition to evaporation, a state in which the fixing agent is in a liquid or particulate state (like smoke) and mixed in a gas (referred to as diffusion here) is included. The noncombustible gas is a gas that does not contain at least oxygen, and is a gas that has the property of not burning or carbonizing the bonding agent even when the temperature of the bonding agent becomes fluid, liquid or gasified.
上記コイルの取出方法によれば、 固着剤が不燃性ガスの雰囲気下で流 動化したり液体化または気体化して分離するので、 固着剤を燃焼、 炭化 させることがなくコイルが取出される。 なお、 固着剤の流動化、 液体化 または気体化がコイルの通電加熱によって行われるため、 コアが必要以 上に加熱されるのを避けられる。 固着剤の融点及び沸点は、 コイルの銅 線に被覆されるエナメル絶縁物より低い温度であり、 通電加熱において 固着剤が流動化、 気体化または液体化する前に短絡などの通電不具合を 起こすことはない。  According to the method for taking out the coil, since the fixing agent is fluidized, liquefied or gasified and separated in the atmosphere of nonflammable gas, the coil can be taken out without burning or carbonizing the fixing agent. In addition, since the fluidization, liquefaction or gasification of the adhesive is performed by electric heating of the coil, it is possible to prevent the core from being unnecessarily heated. The melting point and boiling point of the adhesive are lower than the enamel insulation coated on the copper wire of the coil, and the electric heating causes an electrification failure such as a short circuit before the adhesive is fluidized, gasified or liquefied. There is no.
さらに、 本発明のコイルの取出方法は、 上記コアはモータの固定子、 または変圧器であることを特徴とする。 これにより、 モータの固定子、 または変圧器から上記方法によりコイルが取出される。  Furthermore, in the coil extraction method of the present invention, the core is a motor stator or a transformer. Thereby, the coil is taken out from the stator of the motor or the transformer by the above method.
また、 本発明のコイルの取出方法は、 上記不燃性ガスは、 不活性ガス 、 水蒸気、 または不活性ガスと水蒸気の混合ガスであることを特徴とす る。 これにより、 通電加熱するコイルの影響で温度上昇するコアに悪影 響を及ぼさない。 なお、 ここでいう水蒸気は、 よく知られたように大気 圧下では 1 0 0 °Cで水が沸縢して水蒸気となるもので、 水蒸気が気体の 状態を維持するためには 1 0 0 °C以上に保持する必要があるものである 。 また、 1 0 0 °Cを越えた水蒸気は加熱水蒸気と呼ばれ、 この発明でい う水蒸気は加熱水蒸気を含んでいる。 なお、 水蒸気は大気圧下では不活 性の気体であり、 冷却すると一部は凝結して水に戻る特性を有する。 また、 本発明のコイルの取出方法は、 コイルを通電加熱する際に、 コ ィルの温度、 コアの温度の少なくとも一方または双方を検出し、 コイル を取出可能な温度となるように通電加熱するとともに、 コアの磁気特性 が劣化しにくいようにコイルの通電加熱を制御することを特徴とする。 これにより、 コイルに固着した固着剤が流動化、 液体化または気体化す るとともに、 コイルの通電加熱に伴うコアへの過熱が防止される。 さらに、 本発明のコイルの取出方法は、 複数のコイルの発熱量を均一 にするようにコイルを通電加熱することを特徴とする。 モータは通常、 複数のコイルが使用されており、 この方法により、 モータのコイルがデ ルタ結線方式、 Y結線方式など、 各種結線方式で結線されている場合で も、 コイルの発熱量を均一にするように通電加熱される。 In the coil extraction method of the present invention, the noncombustible gas is an inert gas, water vapor, or a mixed gas of an inert gas and water vapor. As a result, the temperature rising core is not adversely affected by the effect of the heating coil. It is to be noted that the water vapor referred to here is, as is well known, that water boils at 100 ° C. and becomes water vapor at atmospheric pressure under atmospheric pressure, and in order to maintain the state of water vapor, it is 100 ° C. It is necessary to hold C or more . Further, water vapor exceeding 100 ° C. is called heating water vapor, and the water vapor in the present invention contains heating water vapor. Water vapor is an inert gas at atmospheric pressure, and when cooled, it partially condenses and returns to water. Further, according to the coil extraction method of the present invention, at least one or both of the temperature of the coil and the temperature of the core are detected when the coil is heated by electric conduction, and the electric heating is performed so that the coil can be extracted. In addition, it is characterized in that the heating of the coil is controlled so that the magnetic properties of the core are not easily deteriorated. As a result, the bonding agent adhering to the coil is fluidized, liquefied or gasified, and the core is prevented from overheating due to the electric heating of the coil. Furthermore, the coil extraction method of the present invention is characterized in that the coils are electrically heated so as to make the calorific value of the plurality of coils uniform. Usually, a plurality of coils are used for the motor. By this method, even if the motor coils are connected by various connection methods such as delta connection method and Y connection method, heat generation amount of the coil is made uniform. It is energized and heated.
また、 本発明のコイルの取出補助装置は、 コイルが巻回されたコアを 収容する処理室と、 処理室に不燃性ガスを供給するガス供給手段と、 上 記コイルを通電加熱する通電加熱手段とを備えてなる。  Further, the coil extraction assisting device of the present invention comprises: a processing chamber for accommodating a core wound with a coil; a gas supply means for supplying a noncombustible gas to the processing chamber; And will be equipped.
これにより、 コアを収容した処理室の内部に不燃性ガスを供給充満さ せ不燃性ガスの雰囲気を形成し、 コイルを通電加熱すること 、 固着剤 を流動化、 液体化または気体化しコアから除去する装置が構成される。 また、 本発明のコイルの取出補助装置は、 上記コアはモータの固定子 、 または変圧器であることを特徴とする。 これにより、 モータの固定子 、 または変圧器から上記取出補助装置を用いてコイルが取出される。 また、 本発明のコイルの取出補助装置は、 上記不燃性ガスは、 不活性 ガス、 水蒸気、 または不活性ガスと水蒸気の混合ガスであることを特徴 とする。 これにより、 通電加熱するコイルの影響で温度上昇するコアに 悪影響を及ぼさない装置となる。 なお、 ここでいう水蒸気は、 上記本発 明のコイルの取出方法で述べた通りの水蒸気である。  As a result, a nonflammable gas is supplied to fill the inside of the processing chamber containing the core to form an atmosphere of the nonflammable gas, and the coil is electrically heated, and the binder is fluidized, liquefied or gasified, and removed from the core. Devices are configured. Also, the coil extraction assisting device of the present invention is characterized in that the core is a stator of a motor or a transformer. As a result, the coil is taken out of the motor stator or the transformer using the takeout auxiliary device. Further, the coil extraction assisting device of the present invention is characterized in that the noncombustible gas is an inert gas, water vapor, or a mixed gas of an inert gas and water vapor. As a result, the device does not adversely affect the core whose temperature rises due to the effect of the heating coil. The water vapor referred to here is the water vapor as described in the coil extraction method of the present invention.
また、 本発明のコイルの取出補助装置は、 コイルの温度を検出するコ ィル温度検出手段、 コアの温度を検出するコア温度検出手段の少なくと も一方または双方と、 検出したコイル温度、 コア温度の少なくとも一方 または双方に基づきコイルの通電加熱を制御するコントローラとを備え た。 Further, the coil extraction assisting device of the present invention is characterized in that a coil temperature is detected. The coil temperature detection means, at least one or both of the core temperature detection means for detecting the core temperature, and a controller for controlling the electric heating of the coil based on at least one or both of the detected coil temperature and core temperature The
これにより、 コイルの通電加熱に伴い、 コイル温度またはコア温度、 もしくは双方を検出し、 コントローラの指示でコイルへの通電を制御し て、 コアの過熱を防止する。'  As a result, the coil temperature or core temperature or both are detected as the coil is energized and heated, and energization of the coil is controlled by the controller instruction to prevent overheating of the core. '
また、 本発明のコイルの取出補助装置は、 通電加熱手段は複数のコィ ルへの通電加熱を切り替える切替回路を備えたことを特徴とする。 これ により、 通電加熱されるコイルが切替回路の切換えで選択されて通電加 熱される。  Further, the coil extraction assisting device of the present invention is characterized in that the electric heating means comprises a switching circuit for switching electric heating to a plurality of coils. As a result, the coil to be energized and heated is selected by the switching of the switching circuit to be energized and heated.
また、 本発明のコイルの取出補助装置は、 ガス供給手段は供給される ガスの温度が異なる少なくとも 2つの供給経路を備えていることを特徴 とする。 これにより、 異なる温度の不燃性ガスが処理室の温度を急激に 変化させるのに利用される。  Further, the coil extraction assisting device of the present invention is characterized in that the gas supply means comprises at least two supply paths different in temperature of the supplied gas. In this way, non-combustible gases of different temperatures are used to rapidly change the temperature of the processing chamber.
また、 本発明のコイルの取出補助装置は、 通電加熱手段はコイルを通 電加熱する電流を交流電流とする電源部と、 上記交流電流の周波数を変 更可能とする周波数変更手段とを備えたことを特徴とする。 これにより 、 交流電流によりコイルが通電加熱され、 その交流の周波数はコイルの 通電加熱に適した周波数が与えられる。  Further, in the coil extraction assisting device of the present invention, the electric heating means comprises a power supply section which uses an alternating current to heat the coil, and a frequency changing means capable of changing the frequency of the alternating current. It is characterized by Thus, the coil is energized and heated by the alternating current, and the frequency of the alternating current is given a frequency suitable for the energization heating of the coil.
本発明の他の目的、 特長を添付の図面に基づく以下の詳細な説明で明 らかにする。 図面の簡単な説明  Other objects and features of the present invention will become apparent from the following detailed description based on the attached drawings. Brief description of the drawings
第 1図は、 本発明に係るコイルの取出方法、 取出補助装置の実施の形 態の第 1例を示す構成図である。  FIG. 1 is a configuration diagram showing a first example of an embodiment of a coil extraction method and an auxiliary extraction device according to the present invention.
第 2図は、 第 1図の要部の制御に関する構成図である。  FIG. 2 is a configuration diagram regarding control of the main part of FIG.
第 3図は、 第 1図、 第 2図の要部の電気回路図である。  FIG. 3 is an electric circuit diagram of the main parts of FIGS. 1 and 2.
第 4図は、 第 1図、 第 2図の要部の他の電気回路図である。 第 5図は、 第 1図、 第 2図の要部の他の電気回路図である。 FIG. 4 is another electric circuit diagram of the main parts of FIGS. 1 and 2. FIG. 5 is another electric circuit diagram of the main part of FIGS. 1 and 2.
第 6図は、 本発明に係るコイルの取出方法、 取出補助装置の実施の形 態における制御例を示すフローチャートである。  FIG. 6 is a flow chart showing a control example in the embodiment of the coil extraction method and the auxiliary extraction device according to the present invention.
第 7図は、 第 6図の続きのフローチャートである。  FIG. 7 is a flowchart of the continuation of FIG.
第 8図は、 第 7図の続きのフローチャートである。  FIG. 8 is a continuation of the flowchart of FIG.
第 9図は、 第 8図の続きのフローチャートである。  FIG. 9 is a flowchart of the continuation of FIG.
第 1 0図、 は一般的なモー夕の固定子におけるコイルの巻回構造を示 す断面図である。  FIG. 10 is a cross-sectional view showing a winding structure of a coil in a general motor stator.
第 1 1図は、 第 1図の要部の制御に関する構成図である。  FIG. 11 is a configuration diagram regarding control of the main part of FIG. 1;
第 1 2図は、 一般的な変圧器の概要を示す斜視図である。  FIG. 12 is a perspective view showing an outline of a general transformer.
第 1 3図は、 一般的な変圧器の電気回路図である。  FIG. 13 is an electrical circuit diagram of a general transformer.
第 1 4図は、 一般的なモ一夕の外観を示す斜視図である。  FIG. 14 is a perspective view showing the appearance of a typical mobile.
第 1 5図は、 第 1 4図の分解斜視図である。  FIG. 15 is an exploded perspective view of FIG.
第 1 6図は、 本発明に係るコイルの取出方法、 取出補助装置の実施の 形態の第 2例を示す構成図である。  FIG. 16 is a configuration diagram showing a second example of the embodiment of the method for taking out a coil and the auxiliary taking-out device according to the present invention.
第 1 7図は、 本発明に係るコイルの取出方法、 取出補助装置の実施の 形態の第 3例を示す構成図である。 発明を実施するための最良の形態  FIG. 17 is a configuration diagram showing a third example of the embodiment of the coil extraction method and the auxiliary extraction device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図〜第 1 5図は、 本発明を実施するための最良の形態の第 1例を 示すものである。  1 to 15 show a first example of the best mode for carrying out the present invention.
この第 1例のコイルの取出補助装置 1 0 0は、 第 1図、 第 2図に示す ように、 処理室 1、 ガス供給手段 2、 通電加熱手段 3、 コア温度検出手 段である温度センサ 4、 酸素濃度センサ 5、 コントローラ 6、 コイル温 度検出手段 6 2、 排気処理手段 7で主に構成されている。 なお、 以下の 説明ではコイル aを取出すコアとしてモータの固定子鉄心 bを例にとり 、 コイルの取出補助装置 1 0 0について説明する。  As shown in FIGS. 1 and 2, the coil extraction assisting device 100 of the first example is a temperature sensor which is a processing chamber 1, a gas supply means 2, an electrification heating means 3 and a core temperature detecting means. 4, mainly composed of an oxygen concentration sensor 5, a controller 6, a coil temperature detection means 62, and an exhaust treatment means 7. In the following description, a coil extraction assist device 100 will be described by taking a stator core b of a motor as an example of a core for extracting the coil a.
処理室 1は、 固着剤 dでコイル aが固着された固定子 Sを含む固定子 枠 Wを不燃性ガスの雰囲気下におくもので、 1個の固定子枠 Wが収容さ れる空間を備えた密閉容器からなる。 通常、 固定子 Sは固定子枠 Wと分 解しにくいように固定されているので、 固定子枠 Wのまま処理室 1に入 れるのが望ましい。 また、 処理室 1には、 外部に連結される 3つの給気 口 1 1 、 1 2 、 1 3と 1つの排気口 1 4とが開口され、 処理室 1の一部 には、 固定子 Sを出し入れするための開閉扉 (図示せず) が設けられて いる。 また、 処理室 1の内部には、 固定子 Sのコイル aのリード線 Lを 接続可能な接続端子 1 5が取付けられている。 The processing chamber 1 places the stator frame W including the stator S to which the coil a is fixed with the adhesive d under an atmosphere of noncombustible gas, and one stator frame W is accommodated. It consists of an airtight container provided with Usually, since the stator S is fixed so as not to be disassembled with the stator frame W, it is desirable to enter the processing chamber 1 as it is. In addition, three air supply ports 1 1, 1 2, 1 3 and one exhaust port 14 connected to the outside are opened in the processing chamber 1, and a part of the processing chamber 1 is provided with a stator S There is an open / close door (not shown) for taking in and out. In addition, inside the processing chamber 1, a connection terminal 15 to which the lead L of the coil a of the stator S can be connected is attached.
ガス供給手段 2は、 処理室 1に不燃性ガス、 ここでは不活性ガスを供 給充満させるもので、 不活性ガスの一つである窒素ガス Nが充填された ボンべ 2 1と、 第 1供合経路 2 2、 第 2供給経路 2 3、 第 3供給経路 2 4などで構成されている。 なお、 窒素ガス Nは常温では不活性ながら高 温になると厳密には (化学的には) 不活性ガスではない。 しかし、 工業 的には他の物質とほとんど反応しない性質から不活性ガスとして用いら れているので、 この発明でもその意味で用いている。  The gas supply means 2 is for supplying and filling a non-combustible gas, here an inert gas, in the processing chamber 1, and a bomb 21 filled with nitrogen gas N, which is one of the inert gases, The supply path 22 is composed of the second supply path 23 and the third supply path 24. Note that nitrogen gas N is inactive at room temperature but not strictly (chemically) inert gas at high temperatures. However, since it is industrially used as an inert gas because it hardly reacts with other substances, this invention also uses it in that sense.
第 1供給経路 2 2は、 処理室 1の 1つの給気口 1 1に接続されるもの で、 開閉弁兼用の流量調整弁である電磁弁 2 2 aが接続されている。 こ の第 1供給経路 2 2には、 電磁弁 2 2 aと処理室 1の給気口 1 1との間 で加圧空気供給経路 2 5が分岐接続されている。 加圧空気供給経路 2 5 は、 開閉弁兼用の流量調整弁である電磁弁 2 5 aを介してコンプレッサ 2 5 bが接続されたもので、 通電加熱を終了し処理室 1の気体が所定の 温度まで低下した後、 固定子鉄心 bを効率よく冷却できるように加圧し た空気を供給可能としたものである。  The first supply path 22 is connected to one air supply port 1 1 of the processing chamber 1 and is connected to a solenoid valve 2 2 a which is a flow control valve also serving as an on-off valve. A pressurized air supply path 25 is branched and connected to the first supply path 22 between the solenoid valve 2 2 a and the air inlet 11 of the processing chamber 1. The pressurized air supply path 25 is connected to the compressor 25 b via the solenoid valve 25 a which is a flow rate adjusting valve also serving as an on-off valve, and the electric heating is ended and the gas in the processing chamber 1 is predetermined. After the temperature has been lowered, pressurized air can be supplied so that the stator core b can be cooled efficiently.
第 2供給経路 2 3は、 処理室 1の他の 1つの給気口 1 2に接続される もので、 開閉弁兼用の流量調整弁である電磁弁 2 3 aと、 窒素ガス Nを 加熱するヒー夕 2 3 bとが接続されている。  The second supply path 23 is connected to the other one air supply port 12 of the processing chamber 1 and heats the nitrogen gas N and the solenoid valve 23 a which is a flow control valve also serving as an on-off valve. Heat sink 2 3 b is connected.
第 3供給経路 2 4は、 処理室 1の残る 1つの給気口 1 3に接続される もので、 開閉弁兼用の流量調整弁である電磁弁 2 4 aと、 窒素ガス Nを 加熱するヒータ 2 4 bとが接続されている。 なお、 第 2供給経路 2 3の ヒータ 2 3 bと第 3供給経路 2 4のヒータ 2 4 bとには、 共通の加熱源 26が接続されている。 加熱源 26は、 図示しない温度センサ等の信号 をフィードパックして窒素ガス Nの加熱温度を制御するように構成され ている。 The third supply path 24 is connected to the remaining one air supply port 13 of the processing chamber 1 and includes a solenoid valve 24a which is a flow control valve also serving as an on-off valve and a heater for heating nitrogen gas N 2 4 b is connected. A common heating source is used for the heater 23 b of the second supply path 23 and the heater 24 b of the third supply path 24. 26 are connected. The heating source 26 is configured to feed pack a signal such as a temperature sensor (not shown) to control the heating temperature of the nitrogen gas N.
通電加熱手段 3は、 処理室 1に収容された固定子 Sのコイル aを通電 加熱するもので、 処理室 1の接続端子 1 5と接続された切替回路 3 1と 、 切替回路 3 1に接続された電源部 32とからなる。 なお、 第 3図〜第 5図に示した切替回路 3 1は単相交流電源を用いる場合の回路図であり 、 第 1図、 第 2図、 第 1 1図、 第 16図、 第 1 7図で示す電源部 32は 、 単相交流電源で出力するものを示している。  The heating means 3 is for heating and heating the coil a of the stator S housed in the processing chamber 1 and connected to the switching circuit 31 connected to the connection terminal 15 of the processing chamber 1 and the switching circuit 31 Power supply unit 32 and The switching circuit 31 shown in FIGS. 3 to 5 is a circuit diagram in the case of using a single-phase AC power supply, and is shown in FIG. 1, FIG. 2, FIG. 11, FIG. A power supply unit 32 shown in the figure shows a single-phase AC power supply that outputs.
切替回路 3 1は、 電源部 32から端子 3 1 1及び 3 1 2を介して電源 を供給され、 接続端子 1 5に端子 1 5 a、 1 5 b、 1 5 cを介して接続 するスィッチ回路 3 1であり、 三相交流のモー夕が備える 3本のリード 線 Lに 3組のスィツチ 3 1 aと 3 1 a' 、 3 1 bと 3 1 b, 、 3 1 cと The switching circuit 31 is supplied with power from the power supply section 32 via the terminals 31 1 and 32 1, and is connected to the connection terminal 15 via the switches 15 a, 15 b and 15 c. 3 1 and 3 lead wires provided to the three-phase AC motor 3 pairs of switches 3 1 a and 3 1 a ', 31 1 b and 3 1 b, and 3 1 c
3 1 c ' を備えており、 コイルの結線方式に応じて各組のスィッチ 3 1 aと 3 1 a' 、 3 1 bと 3 1 b ' 、 3 1 cと 3 1 c ' のうち 1組のみを 選択的に〇Nとすることによって、 コイルを通電加熱するものである。 例えば、 コイルが Y結線 (Y字型の各辺にコイルを配置した結線方式) の場合、 第 3図に示すスィッチ回路 3 1が用いられ、 2つのコイルごと に通電加熱が行われる。 具体的には、 スィッチ 3 1 a、 3 1 a' を ON することにより、 コイル a 1とコイル a 2が通電加熱され、 所定時間後 、 スィッチ 3 1 b、 3 1 b' を〇Nすることにより、 コイル a 2とコィ ル a 3が通電加熱され、 所定時間後、 スィッチ 3 1 c、 3 1 c ' を ON することにより、 コイル a 3とコイル a 1が通電加熱されるスィッチ回 路 3 1としている。 なお、 通電加熱中の電流と電圧の積に対し、 上記所 定時間を掛けた電力量、 すなわち発熱量を各コイルで均一にするように 所定時間を決めることも可能である。 3 1 c 'is provided, and one set of switches 3 1 a and 3 1 a', 3 1 b and 3 1 b ', 3 1 c and 3 1 c' according to the coil connection method. By selectively making only NN, the coil is heated electrically. For example, in the case where the coils are Y-connected (connection method in which the coils are arranged on each side of Y-shape), the switch circuit 31 shown in FIG. 3 is used, and electric heating is performed for every two coils. Specifically, coil a 1 and coil a 2 are energized and heated by turning on switches 3 1 a and 3 1 a ′, and after a predetermined time, switch N 3 1 b and 3 1 b ′ are switched on. The coil a 2 and the coil a 3 are energized and heated, and after a predetermined time, the switches 31 c and 31 c ′ are turned on, whereby the coil a 3 and the coil a 1 are energized and heated. It is assumed to be 1. In addition, it is also possible to determine a predetermined amount of time so that the amount of electric power obtained by multiplying the above-mentioned predetermined time by the product of the current and the voltage during electric heating, that is, the calorific value becomes uniform in each coil.
また、 コイルがデル夕結線 (三角形の各辺にコイルを配置した結線方 式) されている場合は、 第 4図に示すスィッチ回路 3 1が用いられ、 同 時に 3つのコイルが通電加熱される。 ただし、 その内 1つのコイルが強 く加熱され、 他の 2つのコイルは各々その 1 / 4の強さで加熱されるの で、 各スィッチを順に切り替える必要がある。 具体的には、 第 4図で、 スィッチ 3 1 a、 3 1 a ' を〇Nすることにより、 コイル a 1は強く加 熱され、 コイル a 2とコイル a 3はその 1 / 4の強さで加熱され、 所定 時間後、 スィッチ 3 1 b、 3 1 b ' を O Nすることにより、 コイル a 2 は強く加熱され、 コイル a 3とコイル a 1はその 1 Z 4の強さで加熱さ れ、 さらに所定時間後、 スィッチ 3 1 c、 3 1 c ' を O Nすることによ り、 コイル a 3は強く加熱され、 コイル a, lとコイル a 2はその 1ノ4 の強さで加熱されるスィツチ回路 3 1としている。 Also, when the coils are connected in a Delwell connection (connection method in which the coils are arranged on each side of a triangle), the switch circuit 31 shown in FIG. 4 is used, and at the same time, the three coils are energized and heated. . However, one of the coils is strong It is necessary to switch each switch in turn, since the other two coils are each heated by their strength of 1/4. Specifically, in FIG. 4, by turning switch 3 1 a, 3 1 a 'N N, coil a 1 is strongly heated, and coil a 2 and coil a 3 have their strength of 1/4. The coil a 2 is strongly heated by turning on the switches 31 b and 31 b 'after a predetermined time, and the coil a 3 and the coil a 1 are heated with the strength of 1 Z 4. After a predetermined time, coil a 3 is strongly heated by turning on switches 31 c and 31 c ′, and coils a and l and coil a 2 are heated with the strength of 1 c and 4 c. A switch circuit 31 is used.
なお、 各コイル a 1、 a 2、 a 3が結線されず、 リード線 Lが 6本弓 I き出されている場合もあり、 この場合は第 5図に示すスィッチ回路 3 1 が用いられ、 各コイルが 1つずっ通電加熱されるスィッチ回路 3 1とし ている。 ここで、 第 1図などでは、 接続端子 1 5に 3本のリード線で接 続されるように示されているが、 第 5図に示すスィッチ回路 3 1の場合 は、 端子 1 5 a〜 l 5 f の 6本で接続端子 1 5に接続され、 固定子 Sに も 6本のリード線で接続されることになる。  The coils a 1, a 2 and a 3 may not be connected, and there may be a case where six lead wires L are drawn out. In this case, the switch circuit 3 1 shown in FIG. It is assumed that each coil is a switch circuit 31 in which one coil is energized and heated. Here, in FIG. 1, etc., it is shown that the connection terminal 15 is connected by three lead wires, but in the case of the switch circuit 31 shown in FIG. 5, the terminals 15a to Six of l 5 f will be connected to connection terminal 1 5, and also to stator S will be connected by 6 leads.
なお、 変圧器 Hの切替回路 (スィッチ回路) については、 モータのも のと同様である。 すなわち、 変圧器 Hは、 例えば第 1 3図に示すように 1次側のコイル a aは 3個のコイル a 1 1、 a 1 2、 a 1 3を Y結線し たものであり、 鉄心 gを間にして、 2次側のコイル a bは 3個のコイル a 2 1、 a 2 2、 a 2 3をデル夕結線したものがある。 この場合、 1次 側のコイル a a、 2次側のコイル a b各々がモ一夕のコイルに相当する ものとなっており、 モータと同じくコイルの結線方式に応じて通電加熱 されるスィッチ回路 3 1が選択される。 ただし、 1次側のコイル a aと 2次側のコイル a bを同時に通電加熱するのは危険を伴うので、 1次側 のコイル a aを通電加熱終了後、 接続端子 1 5を 2次側のコイル a bに つなぎ替え、 2次側のコイル a bを通電加熱してから両方のコイルを取 出すのが望ましい。  The switching circuit (switch circuit) of transformer H is the same as that of the motor. That is, for example, as shown in FIG. 13, the transformer H is a coil aa on the primary side formed by Y-connecting three coils a11, a12, and a13, and the iron core g is In between, there is a coil ab on the secondary side in which three coils a 2 1, a 2 2, and a 2 3 are connected by parallel connection. In this case, the coil aa on the primary side and the coil ab on the secondary side each correspond to a coil of a motor, and the switch circuit is heated similarly to the motor according to the wire connection method of the coil. 3 1 Is selected. However, it is dangerous to simultaneously heat the primary side coil aa and the secondary side coil ab at the same time, so after heating the primary side coil aa, the connection terminal 15 should be the secondary side coil ab It is desirable to reheat the secondary side coil ab and then take out both coils.
電源部 3 2は、 第 1 1図に示すように、 3相交流電源 (R、 S、 T) に接続され昇降圧や漏電防止を行う絶縁変圧器 321と、 安定した直流 を得る直流安定化部 322と、 直流を PWM制御 (パルス幅変調制御) してパルス波形を作る PWM制御部 323と、 そのパルス波形の正負及 び周波数を変更可能にするインパー夕 324と、 電源部 32から出力す る電流、 電圧を検出する検出部 33とで構成される。 一般にモー夕は 5 0ないし 60Hzの周波数で運転されるが、 このような周波数ではコィ ル aを通電加熱するのには適しておらず、 電源部 32は周波数変更手段 (PWM制御部323、 インバータ 324、 中央処理装置部 61) によ り周波数を変更して、 これよりも高い周波数 (例えば 400Hz) で通 電加熱が可能な回路構成としている。 The power supply unit 32 is a three-phase alternating current power supply (R, S, T) as shown in FIG. An isolation transformer 321 connected to the DC / DC converter for buck-boost and leakage prevention, a DC stabilization unit 322 for obtaining stable DC, a PWM control unit 323 for PWM control (pulse width modulation control) for DC and a pulse waveform, It is comprised of an inverter 324 which makes it possible to change the positive / negative and frequency of the pulse waveform, and a detection unit 33 which detects the current and voltage output from the power supply unit 32. In general, the motor is operated at a frequency of 50 to 60 Hz, but such a frequency is not suitable for heating the coil a, and the power supply unit 32 is a frequency changing means (PWM control unit 323, inverter 324, the central processing unit 61) changes the frequency to create a circuit configuration that can perform electrical heating at a higher frequency (for example, 400 Hz).
検出部 33は、 コイル aに予備的に与える電流、 電圧によりコイルの 抵抗値 (直流成分) 及びインダクタンスが以下に示すように検出され、 中央処理装置部 61にフィードバックされるものである。 そして、 コン トロ一ラ 6に内蔵されるコイル情報検出部 64による検出結果などを基 に通電加熱方法が選択される。 ところで、 交流で通電加熱する場合、 次 の 2通りの制御方式が一般的であり、 一つは定電流方式、 もう一つは定 電圧方式である。  The detection unit 33 detects the resistance value (direct current component) and the inductance of the coil as shown below by the current and voltage preliminarily applied to the coil a, and feeds back to the central processing unit unit 61. Then, the electric heating method is selected based on the detection result by the coil information detection unit 64 incorporated in the controller 6 or the like. By the way, when conducting heating with alternating current, the following two control methods are general, one is a constant current method and the other is a constant voltage method.
定電流方式の場合の電流値 Iは、 電圧を V、 コイル aの抵抗値 (直流 成分) を R、 コイル aのインダクタンスを L、 交流電流の正弦波の周波 数を f とすると、  In the case of the constant current method, assuming that the voltage is V, the resistance of the coil a (DC component) is R, the inductance of the coil a is L, and the frequency of a sine wave of alternating current is f,
I =N /f {R2+ (27T f L) 2} (1) 式 I = N / f {R 2 + (27 T f L) 2 } (1)
で計算される。 Calculated by
また、 定電圧方式の場合の電圧値 Vは、  Also, the voltage value V in the case of the constant voltage system is
V= I · {R2+ (2 π f L) 2} (2) 式 V = I · {R 2 + (2 π f L) 2 } (2)
で計算され (1) 式は電圧 Vを、 (2) 式は電流 Iを可変とする。 (1) makes the voltage V, and (2) makes the current I variable.
ここで、 PWM制御部 323及びィンバ一夕 324で直流を作ること もできるので (直流は、 交流電流の周波数 f == 0とする) 、 コイル aに 直流の微弱定電流を印加し、 検出部 33で電圧を測定し、 コイル情報検 出部 64で (1) 式を逆算し、 コイル aの抵抗値 R (直流成分) を検出 することが可能となつている。 温度 T。における初期抵抗値 R τ。はこの ように検出されるものである。 Here, since a direct current can also be produced by the PWM control unit 323 and the inverter 324 (the direct current is the frequency of the alternating current f == 0), a weak constant current of direct current is applied to the coil a. The voltage is measured at 33, and the coil information detection unit 64 back-calculates the equation (1) to detect the resistance value R (DC component) of the coil a. It is possible to Temperature T. Initial resistance value R τ at . Is detected in this way.
さらに、 交流の微弱定電流を印加し、 検出部 33で電圧を測定して ( 2) 式を逆算し、 コイル aのインピーダンス Ζ、 すなわち、 {R2 + (27t f L) 2} を求め、 先に検出したコイル aの抵抗値 Rを用いてィ ンダクタンス Lを検出することが可能となっている。 Furthermore, a weak alternating constant current is applied, the voltage is measured by the detection unit 33, the equation (2) is back-calculated, and the impedance コ イ ル of the coil a, that is, {R 2 + (27t f L) 2 } is determined. It is possible to detect the inductance L using the resistance value R of the coil a detected earlier.
検出されたコイル aの抵抗値 Rとィンダク夕ンス Lを用いて、 定電流 制御の場合は (1) 式で計算される電流値 Iを一定とするように、 また 、 定電圧制御の場合は (2) 式で計算される電圧値 Vを一定とするよう に、 コイルを通電加熱する電圧または電流が決められる。 なお、 通電加 熱の方式を定電流方式とするか、 定電圧方式とするかは、 モータ (電気 機器) の容量、 結線方式 (デル夕結線、 Y結線など) 、 インピーダンス などで最適な方式を選択する。 また、 電源部 32の出力を単相交流にす るか 3相交流にするかについてもモータ (電気機器) の容量、 結線方式 、 インピーダンスなどで適した方を選択する。  In the case of constant current control, the resistance value R of the detected coil a and inductance coefficient L are used so that the current value I calculated by equation (1) becomes constant, and in the case of constant voltage control (2) The voltage or current for energizing and heating the coil is determined so that the voltage value V calculated by the equation is constant. In addition, whether the method of electric current heating is a constant current method or a constant voltage method depends on the capacity of motor (electric equipment), connection method (Del evening connection, Y connection, etc.), impedance, etc. select. Also, as to whether the output of the power supply unit 32 is to be single-phase AC or three-phase AC, a suitable one is selected depending on the capacity of the motor (electrical equipment), the wiring system, and impedance.
コイル温度検出手段 62は、 コントローラ 6に内蔵され、 以下に示す ようにコイル aの線材の定質量温度係数を用いてコィル温度 Tを検出す るものである。 まず、 コイル aの線材の温度 T。における定質量温度係 数 Q!T。を、 以下の式で算出する。 The coil temperature detection means 62 is incorporated in the controller 6 and detects the coil temperature T using the constant mass temperature coefficient of the wire of the coil a as described below. First, the temperature T of the wire of coil a. Constant mass temperature coefficient Q! T at . Calculate the following formula.
すなわち、 銅の導電率を C c (%) とすると、  That is, assuming that the conductivity of copper is C c (%),
ατο= 1/ (1/ (α20 · C c/ 1 00) + (TQ— 20)) α τ = = 1 / (1 / (α 20 · C c / 100) + (T Q -20))
(3) 式 で計算される。 (ここで、 o!2 Q : 20°Cにおけるコイル aの定質量温度 係数。 また、 初期温度 T。は、 通電加熱を開始する前に、 後述する温度 センサ 4が検出する固定子鉄心 bの初期温度と同一と見なすか、 図示し ない温度計で計測しておく。) Calculated by equation (3). (Here, o! 2 Q : constant mass temperature coefficient of coil a at 20 ° C.) Initial temperature T. Also, before starting electric heating, stator core b detected by temperature sensor 4 described later It is regarded as the same as the initial temperature or measured with a thermometer not shown.)
コイル aの材料が硬銅の場合、 導電率は C c = 100であり、 その 2 0 における定質量温度係数 αί 2。は、 0. 00393である。 また、 コ ィル aの材料が軟銅の場合、 その導電率は C c = 97であり、 その 20 °Cにおける定質量温度係数 a; 2。は、 0. 0038 1である。 When the material of the coil a is hard copper, the conductivity is C c = 100, and its constant mass temperature coefficient αί 2 at 2 0. Is 0. 000393. Also, when the material of core a is soft copper, its conductivity is C c = 97, Constant mass temperature coefficient in ° C a; 2 . Is 0. 0038 1.
ここで、 通電加熱が開始された場合、 定電流制御の場合は予め設定し た電流 Iを、 定電圧制御の場合は予め設定した電圧 Vをコイルに印加す ることで、 コイル aの温度が上昇するが、 その際、 コイル情報検出部 6 4で温度上昇により変化するコイル抵抗値 RTを算出する。 ここで、 コ ィル抵抗値 R τとコィル温度 Τと定質量温度係数ひ τ。には、 Here, when electric current heating is started, the temperature of the coil a is applied to the coil by applying a preset current I for constant current control and a preset voltage V for constant voltage control. At that time, the coil information detection unit 64 calculates a coil resistance value RT that changes with temperature rise. Here, the coil resistance value R τ , the coil temperature Τ, and the constant mass temperature coefficient τ τ . To
RT=RT。 ( 1 + ατο (Τ— Τ。)) (4) 式 R T = R T. (1 + α το (Τ- Τ .)) (4) formula
の関係がある。 Relationship.
この式からコイル温度 Τを求める式に変形すると、  If it transforms into the formula which calculates coil temperature Τ from this formula,
T= (RTO (Q!T O - T0- 1) + RT) / / (R T O · το) ( 5) 式 が得られる。 このようにしてコイル温度検出手段 6 2は、 コイル温度 Τ を温度計を使わずに検出できる構成となっている。 T = (R TO (Q! TO -T 0-1 ) + R T ) / / (R TO · το ) (5) The equation is obtained. Thus, the coil temperature detection means 62 is configured to be able to detect the coil temperature ず without using a thermometer.
温度センサ 4は、 処理室 1に収容された固定子鉄心 bの温度を検出す るコア温度検出手段であり、 処理室 1に収容された固定子鉄心 bに接触 して取り付けられている。  The temperature sensor 4 is a core temperature detection means for detecting the temperature of the stator core b housed in the processing chamber 1, and is mounted in contact with the stator core b housed in the processing chamber 1.
酸素濃度センサ 5は、 ガス供給手段 2によって窒素ガス Nが供給され た処理室 1の内部の酸素濃度を検出するもので、 処理室 1の内部の給気 口 1 1、 1 2、 1 3から離れた位置に取り付けられるのが望ましい。 排気処理手段 7は、 処理室 1の排気口 14に接続され、 処理室 1の内 部の空気等を排出するもので、 開閉弁兼用の流量調整弁である電磁弁 7 1と、 吸塵、 気体清浄化機能を有するフィルタを備えた排気ポンプ 72 などからなる。  The oxygen concentration sensor 5 detects the oxygen concentration inside the processing chamber 1 to which nitrogen gas N is supplied by the gas supply means 2. The oxygen concentration sensor 5 detects the oxygen concentration inside the processing chamber 1 from the air supply ports 1 1, 1 2, 1 3. It is desirable to be mounted at a remote position. The exhaust processing means 7 is connected to the exhaust port 14 of the processing chamber 1 and discharges air and the like inside the processing chamber 1 and is a flow control valve which also functions as an on-off valve. It comprises an exhaust pump 72 equipped with a filter having a cleaning function.
コントローラ 6は、 通電加熱手段 3、 切替回路 (スィッチ回路) 3 1 及び加熱源 26を制御するもので、 中央処理装置部 6 1、 前述のコイル 温度検出手段 62、 入力部 63で主に構成される。 また、 コントローラ 6には温度センサ 4、 酸素濃度センサ 5が接続されている。  The controller 6 controls the electric heating means 3, the switching circuit (switch circuit) 3 1 and the heating source 26, and mainly comprises the central processing unit 61, the coil temperature detecting means 62 described above, and the input unit 63. Ru. Further, a temperature sensor 4 and an oxygen concentration sensor 5 are connected to the controller 6.
中央処理装置部 6 1は、 入力部 63からの入力情報 (モータの容量、 インピーダンスなど) 、 温度センサ 4や酸素濃度センサ 5からの入力情 報などに基づき、 PWM制御部 323及びインバー夕 324に最適な通 電加熱方法を指令する。 そして、 検出部 3 3、 温度センサ 4、 酸素濃度 センサ 5からの信号などが中央処理装置部 6 1にフィードバックされる ように構成されている。 The central processing unit 61 is connected to the PWM control unit 323 and the inverter 324 based on the input information (motor capacity, impedance, etc.) from the input unit 63, the input information from the temperature sensor 4 and the oxygen concentration sensor 5, etc. Optimal communication Command the electric heating method. The signals from the detection unit 33, the temperature sensor 4, and the oxygen concentration sensor 5 are fed back to the central processing unit 61.
以上の構成に基づき、 この実施の形態によりモー夕の固定子 Sの固着 剤 dを除去する過程について第 6図〜第 9図のフローチャートを参照し て説明する。 なお、 変圧器などモ一夕以外のコアについても同様の過程 が適用可能なので、 ここではモータで説明する。 まず、 処理室 1に固定 子 Sを含む固定子枠 Wを収容する。 ここで、 モ一夕から取出した固定子 Sのコイル aにリード線 Lが接続されている場合はリード線 Lを処理室 1の接続端子 1 5に接続できるので、 コイル aに配線接続をする必要は ない。 取出した固定子 Sのコイル aにリード線 Lが接続されていない場 合は新たにリード線 Lを固定子 Sの端子台に接続して処理室 1の接続端 子 1 5に接続する。  Based on the above configuration, the process of removing the adhesive d of the stator S of the motor according to this embodiment will be described with reference to the flow charts of FIG. 6 to FIG. The same process can be applied to cores other than transformers and other motors, so here we will use a motor. First, the stator frame W including the stator S is accommodated in the processing chamber 1. Here, when the lead wire L is connected to the coil a of the stator S taken out of the motor, the lead wire L can be connected to the connection terminal 15 of the processing chamber 1, so wire connection is made to the coil a There is no need. When the lead wire L is not connected to the coil a of the stator S taken out, the lead wire L is newly connected to the terminal block of the stator S and connected to the connection terminal 15 of the processing chamber 1.
次に、 処理室 1の内部にガス供給手段 2から窒素ガス Nを充満させる ように供給する。 このとき、 排気処理手段 7の電磁弁 7 1を開放して空 気が排出されるようにすると、 処理室 1の内部への窒素ガス Nの充満が 円滑になる。 また、 処理室 1の内部に供給される窒素ガスを加熱してお くことで、 固定子 Sのコイル aを予備加熱することもできる。  Next, the inside of the processing chamber 1 is supplied from the gas supply means 2 so as to be filled with nitrogen gas N. At this time, if the air is discharged by opening the solenoid valve 71 of the exhaust treatment means 7, filling of nitrogen gas N into the inside of the processing chamber 1 becomes smooth. In addition, the coil a of the stator S can be preheated by heating the nitrogen gas supplied into the processing chamber 1.
そして、 温度センサ 4で固定子鉄心 bの初期温度 (コイル aの温度は 、 固定子鉄心 bの温度と同一と見なす) を検出し、 コントローラ 6に読 み込む。 また、 酸素濃度センサ 5の検出値を読み込み、 処理室 1の内部 の酸素濃度が一定の基準値以下になった場合には、 検出部 3 3により固 定子 Sのコイル aのインピーダンス Zを各巻相ごとに検出する。 インピ 一ダンス Zの検出の仕方は前述の通りである。  Then, the temperature sensor 4 detects the initial temperature of the stator core b (the temperature of the coil a is considered to be the same as the temperature of the stator core b), and the controller 6 reads it. Further, when the detected value of the oxygen concentration sensor 5 is read and the oxygen concentration inside the processing chamber 1 becomes lower than a certain reference value, the detection unit 33 detects the impedance Z of the coil a of the stator S for each winding phase. It detects every. The method of detecting the impedance Z is as described above.
さらに、 中央処理装置部 6 1は、 検出された固定子 Sのコイル aのィ ンピーダンス Zと固定子鉄心 bの初期温度とに対応して、 定電流方式か 定電圧方式か、 周波数を何 H zにするかなど、 最適な通電加熱のパター ンを選択し、 通電加熱手段 3よりコイル aへの通電加熱を指示する。 こ のとき、 中央処理装置部 6 1は、 通電加熱手段 3にスィッチ回路 3 1が 1組のスィッチ 3 1 a、 3 1 a ' のみを O Nとするように切換えを指示 する。 したがって、 コイル aの 1つのコイルが通電加熱されるか、 同時 に 2つまたは 3つのコィルが通電加熱されるようになるか、 結線方式に より異なるが、 ここでは第 5図の 6端子を有するコイルを例にとって 1 つのコイル毎に通電加熱される場合を説明する。 In addition, the central processing unit 61 is designed to determine the frequency of the constant current method or the constant voltage method corresponding to the detected impedance a of the coil a of the stator S and the initial temperature of the stator core b. Select the pattern of optimum electric current heating, such as whether to use z, and instruct electric current heating to coil a from electric current heating means 3. At this time, central processing unit 61 has switch circuit 31 connected to heating means 3. Instructs switching to turn on only one set of switches 3 1 a and 3 1 a ′. Therefore, one coil of coil a is energized and heated, or two or three coils are energized and heated at the same time, or it differs depending on the wiring system, but here it has the 6 terminals of FIG. In the case of coils as an example, the case where one coil is energized and heated will be described.
まず、 第 1コイル a 1が通電加熱される。 通電加熱手段 3による第 1 コイル a 1への通電中には、 中央処理装置部 6 1がコイル温度検出手段 6 2によりコイル温度を、 また、 温度センサ 4により固定子鉄心 bの温 度を監視している。 ここで、 通電加熱を行ってコイルの温度が上昇して いくと、 通常、 コイル抵抗値 R Tは初期 (通電加熱開始前) のコイル抵 抗値 R T 0に比べて増大する ( (4 ) 式を参照) 。 しかし、 コイル aに過 電流が流れた場合にはコイル aに異常を生じているので、 その段階で通 電加熱を終了する。 First, the first coil a 1 is heated by electric conduction. The central processing unit 61 monitors the coil temperature by the coil temperature detecting means 62 and the temperature of the stator core b by the temperature sensor 4 while the first coil a1 is energized by the heating means 3. doing. Here, when the temperature of the coil rises by conducting heating, the coil resistance RT usually increases compared to the initial (before starting the heating) coil resistance RT 0 ((4) See the equation). However, if an excessive current flows in coil a, coil a has an abnormality, so the heating in this stage is terminated.
コイル抵抗値 R Tが通常の変化をしていれば、 次にコイル温度をチェ ックし、 コイル温度がその上限値 (たとえば、 4 0 0 °C) を超えていな ければ、 さらに固定子鉄心 bの温度をチェックし、 固定子鉄心 bの温度 がその上限値 (たとえば、 1 5 0 °C) を超えていなければ第 1コイル a 1の通電加熱を継続する。 If the coil resistance RT is changing normally, then the coil temperature is checked, and if the coil temperature does not exceed its upper limit (for example, 400 ° C.), the stator is further Check the temperature of iron core b, and if the temperature of stator iron core b does not exceed the upper limit (for example, 150 ° C), continue to heat the first coil a1.
コイル温度がその上限値 (たとえば、 4 0 0 °C) を超えている場合、 あるいは、 コイル温度がその上限値を超えていなくても固定子鉄心 bの 温度がその上限値 (たとえば、 1 5 0 °C ) を超えた (上昇時) 場合には 、 中央処理装置部 6 1が通電加熱手段 3に第 1コイル a 1への通電の停 止を指示する。 そして、 固定子鉄心 bの温度をチェックし、 固定子鉄心 bの温度がその下限値 (たとえば、 8 0 °C ) を下回っていなければ第 1 コイルの通電加熱の停止状態を継続する。 下限値 (たとえば、 8 0 °C) を下回った (降下時) 場合には、 中央処理装置部 6 1が通電加熱手段 3 に第 2コイル a 2へシフトして通電加熱の再開を指示する。  If the coil temperature exceeds the upper limit (for example, 400 ° C.) or the coil temperature does not exceed the upper limit, the temperature of the stator core b is at the upper limit (for example, 1 5 When the temperature exceeds 0 ° C. (when rising), the central processing unit 61 instructs the heating means 3 to stop the power supply to the first coil a 1. Then, check the temperature of the stator core b, and if the temperature of the stator core b is not lower than the lower limit (for example, 80 ° C), stop the current-carrying heating of the first coil. If the temperature falls below the lower limit (for example, 80 ° C.) (descent time), the central processing unit 61 shifts the current heating means 3 to the second coil a 2 and instructs resumption of current heating.
このとき、 中央処理装置部 6 1は、 通電加熱手段 3にスィッチ回路 3 1が次の 1組のスィッチ 3 1 b、 3 1 b ' のみを O Nとするように切換 えを指示する。 したがって、 コイル aの次のコイルのみ (第 2コイル a 2 ) が通電加熱される。 このような制御は、 第 1コイル a 1から第 3コ ィル a 3について繰返され、 入力部 6 3から中央処理装置部 6 1のタイ マー回路に入力された設定時間が経過するまで継続される。 なお、 万が 一、 コイル aの絶縁層が溶融して過電流が流れた場合には、 通電加熱手 段 3によるコイル aへの通電を停止し、 通電加熱を終了する。 At this time, the central processing unit 61 switches to the electric heating means 3 so that the switch circuit 31 turns on only the next set of switches 31 b and 31 b '. Instruct Therefore, only the coil next to coil a (second coil a 2) is energized and heated. Such control is repeated for the first coil a1 to the third coil a3, and is continued until the set time input from the input unit 63 to the timer circuit of the central processing unit 61 has elapsed. Ru. If the insulation layer of the coil a melts and an overcurrent flows, the energization of the coil a by the energization heating means 3 is stopped, and the energization heating is finished.
ここで、 通電加熱手段 3によって上昇するコイル温度 Tはコイル温度 検出手段 6 2で検出した値をコントローラ 6にフィードバック制御され ることで、 3 0 0 °C以上であり、 コイル aのエナメル被覆が気体化しな い温度 (通常 4 0 0 ° ( 〜 5 5 0 ) 以下に加熱制御される。 加熱された コイル aは、 周囲の固着剤 dを加熱し、 固着剤 dを流動化、 液体化また は気体化させる。 このとき、 固着剤 dが不活性ガスに囲まれ、 無酸素の 雰囲気下にあるため、 固着剤 dの酸化が阻止され、 固着剤 dからの酸化 物の生成が防止される。  Here, the coil temperature T raised by the electric heating means 3 is 300 ° C. or higher by feedback control of the value detected by the coil temperature detection means 62 by the controller 6, and the enamel coating of the coil a is The heating is controlled to a temperature that does not cause gasification (usually 400 ° (~ 550)) or less The heated coil a heats the surrounding binder d and fluidizes the binder d and makes it liquid or liquid. At this time, since the binder d is surrounded by the inert gas and is in an oxygen-free atmosphere, oxidation of the binder d is prevented and formation of an oxide from the binder d is prevented. .
また、 通電加熱手段 3によるコイル aの通電加熱で、 固定子鉄心 bの 温度が上昇しすぎて固定子鉄心 bの磁気特性を悪化させないように、 前 述のようにコイル aへの通電加熱を断続制御することが行われる。 具体 的な温度としては、 固定子鉄心 bの温度は高くても 2 0 0 °C以下、 望ま しくは 1 5 0 °C以下になるように温度センサ 4の信号をフィードバック して制御される。 したがって、 固定子鉄心 bの熱劣化が防止される。 ま た、 通電加熱手段 3の通電が交流電流であるため、 固定子鉄心 bを磁化 させずに通電加熱を制御できる。  In addition, as described above, the heating of the coil a is conducted so that the magnetic properties of the stator core b are not deteriorated by the heating of the coil a by the heating means 3 and the temperature of the stator core b is increased too much. Intermittent control is performed. As a specific temperature, the temperature of the stator core b is controlled by feeding back the signal of the temperature sensor 4 so that the temperature is at most 200 ° C. or less, preferably 150 ° C. or less. Therefore, thermal deterioration of the stator core b is prevented. Further, since the energization of the heating means 3 is an alternating current, the heating can be controlled without magnetizing the stator core b.
なお、 コイル温度と固定子鉄心 bの温度に著しく差があるのは、 固定 子鉄心 bにコイル aの固着剤 dと絶縁材 eからなる熱伝導率の低い材料 が挿通されコイル温度が固定子鉄心 bに伝わりにくいため、 及び、 コィ ルを加熱する際に高速に温度上昇させるために固定子鉄心 bの温度が上 昇遅れを生じるためである。  It should be noted that the coil temperature and the temperature of the stator core b are significantly different because a material of low thermal conductivity consisting of the adhesive d of the coil a and the insulating material e is inserted into the stator core b and the coil temperature is This is because it is difficult to transmit to the core b, and the temperature of the stator core b is delayed due to the temperature rising rapidly when heating the coil.
なお、 図 7〜図 9に示した制御では、 コイル温度の上限値をいきなり 最高温度 (例えば 4 0 0 °C) にせず、 1回目は 2 0 0で、 2回目は 3 0 0 °Cのように段階的に行っても構わない。 In the control shown in Figs. 7 to 9, the upper limit value of the coil temperature is not suddenly set to the maximum temperature (for example, 400 ° C), the first time is 200 and the second time is 3 0 It may be done stepwise like 0 ° C.
また、 通電加熱手段 3による固定子 Sのコイル aへの通電加熱の際に は、 排気処理手段 7の電磁弁 7 1は閉じておいても構わないが、 ガス供 給手段 2から窒素ガス Nの供給と排気処理手段 7からの窒素ガス Nの排 出を継続することで、 固着剤 dの除去を促進することもできる。 なお、 固着剤 dの蒸発成分等については、 排気処理手段 7のフィルタ 7 2で捕 捉される。  In addition, when heating the coil a of the stator S by the electric heating means 3, the electromagnetic valve 71 of the exhaust treatment means 7 may be closed, but from the gas supply means 2 to the nitrogen gas N By continuing the supply of nitrogen and the discharge of nitrogen gas N from the exhaust gas treatment means 7, the removal of the sticking agent d can also be promoted. The evaporation component and the like of the fixing agent d are captured by the filter 72 of the exhaust treatment means 7.
本発明に係るコイルの取出方法の実施の形態は、 モー夕を分解して固 定子 Sを含む固定子枠 Wを取出した後 (コイル a、 固定子枠 W以外の付 属物はできるだけ取外しされる。 変圧器についても同様。 ) 、 コイルの 取出補助装置 1 0 0の処理室 1に固定子枠 Wを収容して、 通電加熱によ り固着剤 dを流動化、 液体化または気体化させる。  In the embodiment of the coil extraction method according to the present invention, after removing the stator frame W including the stator S by disassembling the motor (the accessories other than the coil a and the stator frame W are removed as much as possible) The same applies to transformers.) Stator frame W is housed in processing chamber 1 of coil extraction assist device 100, and fluidizing, liquefying or gasifying binder d by electric heating .
固着剤 dが流動化、 液体化または気体化した固定子 Sは、 通電を停止 しても、 処理室 1に置いたままでは容易に手で触れるまで温度が低下し ないので、 温度センサ 4で検出される固定子温度が所定温度以下になつ たときに、 コンプレッサ 2 5 bから空気を処理室 1に流し込み、 冷却を 早める。 そして、 固定子 Sは手で触れるまで温度が低下した後、 処理室 1から取出され、 コイル aの線材が固定子鉄心 bの端面側で露出部分を ワイヤーカツ夕等で切断され、 ペンチ等で溝 cの軸方向に引っ張られる 。 このとき、 固着剤 dが除去されたコイル aは、 固定子鉄心 bの溝じへ の固着が解除され、 また、 コイル aの周囲に固着剤 dの炭化物等が付着 していないので、 コイル aの取出作業が容易になる。 なお、 固着剤 dの 一部が流動化、 液体化または気体化した状態でも、 コイル aと固定子鉄 心 bの溝 cとの固着力が弱められるため、 コイル aを溝 cから取出すこ とが容易になる。  The temperature of the fixing agent d is increased by the temperature sensor 4 because the stator S, which has become fluidized, liquefied or gasified, does not have a temperature decrease until it is easily touched by hand even if it is left in the processing chamber 1 even if the energization is stopped. When the detected stator temperature falls below a predetermined temperature, air is flowed from the compressor 25 b into the processing chamber 1 to accelerate the cooling. Then, after the temperature of the stator S decreases until it is touched by hand, it is taken out of the processing chamber 1, and the wire of the coil a is cut off by wire cut at the end face side of the stator core b and pliers etc. It is pulled in the axial direction of the groove c. At this time, the coil a from which the fixing agent d has been removed is released from the fixing of the stator core b to the groove, and no carbides of the fixing agent d adhere to the periphery of the coil a. Removal work is easy. In addition, even if a part of the bonding agent d is fluidized, liquefied or gasified, the adhesion between the coil a and the groove c of the stator core b is weakened, so the coil a is taken out from the groove c. Becomes easier.
したがって、 前述の従来例のガスパーナの火焰を固着剤 dに吹付けて 固着剤 dを軟化、 溶融させ、 ノミなどで固着剤 dを破砕するという作業 時間が省略され、 コイル aの取出に関わる手作業時間が短縮される。 なお、 前述の本発明に係るコイルの取出方法、 取出補助装置の実施の 形態について、 実際に装置を製作し試験を行ったところ、 固着剤 dが流 動化または液体化して固定子枠 Wの下方に落ちる場合と、 気体化して不 燃性ガス中に蒸発や拡散するのが確認でき、 また、 固定子枠 Wを冷却後 、 処理室 1から取出し、 以下に示すように、 コイルを容易に取出すこと ができた。 Therefore, the working time for blowing the flame of the gas pana of the prior art example described above to the adhesive d to soften and melt the adhesive d and crushing the adhesive d with fleas etc. is omitted, and the hand involved in taking out the coil a. Work time is reduced. In addition, the method for taking out the coil according to the present invention as described above, the implementation of the takeout auxiliary device When the apparatus was actually manufactured and tested for the form, when the adhesive d is fluidized or liquefied and falls below the stator frame W, it vaporizes and evaporates or diffuses into the nonflammable gas. After cooling the stator frame W, the stator frame W was taken out of the processing chamber 1, and the coil could be easily taken out as shown below.
その容易さを証明する結果として、 製作した装置を用いてコイルの取 出の作業時間を計測したところ、 モータ容量 1 5 k wの高効率モータで 、 固定子 Sの処理室 1への収容と各種の設定等に 0 . 5時間を要し、 通 電加熱による固着剤 dの除去に 4時間を要し、 コイル aの線材及び残存 した固着剤 dの除去の手作業に 1時間を要し、 合計 5 . 5時間を要した 。 このうち、 手作業に要した時間は 1 . 5時間であった。 これに対して 、 前述の従来例について作業時間を計測したところ、 合計 1 2時間を要 したので、 時間数全体では 5 4 %の効率化、 手作業時間に関しては 8.8 %の効率化が可能になった。  As a result of proving the easiness, when the working time of coil extraction was measured using the manufactured device, housing of the stator S in the processing chamber 1 of the motor capacity of 15 kw and various Setting etc. takes 0.5 hours, removal of the fixing agent d by electric heating takes 4 hours, manual operation for removing the wire of the coil a and the remaining fixing agent d takes 1 hour, It took a total of 5.5 hours. Of this, the time required for the manual work was 1.5 hours. On the other hand, when the working time was measured for the above-mentioned conventional example, it took a total of 12 hours, so efficiency improvement of 54% for the whole number of hours and 8.8% for the manual time can be achieved became.
なお、 上記高効率モータとは、 コイル aが巻回されている密度を示す 占積率が高いため、 コイル取出が容易でなく、 省エネルギの要求から今 後増産が期待されているモータのことを示している。  The above-mentioned high-efficiency motor is a motor that is expected to increase production from the demand for energy saving because the space factor that indicates the density at which the coil a is wound is high and coil removal is not easy. Is shown.
また、 モー夕容量 2 2 k wの高効率モー夕では、 前述の本発明に係る コイルの取出方法およびその装置の実施の形態で、 それぞれ 0 . 5時間 、 6〜7時間、 1 . 5時間を要し、 合計 8〜 9時間を要した。 このうち 、 手作業に要した時間は 2時間であった。 これに対して、 前述の従来例 で合計 1 4時間を要したので、 時間数全体では 3 6 %〜4 3 %の効率化 、 手作業時間に関しては 8 6 %の効率化が可能になった。  In the high efficiency motor having a motor capacity of 22 kw, the coil extraction method according to the present invention and the apparatus thereof according to the present invention described above provide 0.5 hours, 6 to 7 hours, and 1.5 hours, respectively. It took 8 to 9 hours in total. Among them, the time required for manual work was 2 hours. On the other hand, because it took a total of 14 hours in the above-mentioned conventional example, it became possible to achieve an efficiency of 36% to 43% in the whole hours and an efficiency of 86% on the manual time. .
さらに、 コイルを直接通電加熱し、 かつ、 コイル温度と固定子鉄心温 度を監視しながら断続加熱をしたので、 処理室内部をヒー夕などで加熱 する従来の方法に比べ熱効率を極めて高くでき、 消費電力を 1 / 5〜 1 / 8に低減できた。  Furthermore, the coils are heated by direct current conduction, and intermittent heating is performed while monitoring the coil temperature and the stator core temperature, so the thermal efficiency can be extremely high compared to the conventional method in which the inside of the processing chamber is heated by heating or the like. Power consumption was reduced to 1/5 to 1/8.
なお、 この実施の形態では、 外周部がコイルの巻かれた固定子で中心 部が回転子である一般的な構造のモータを対象に実施の形態を説明した が、 外周部が回転子で中心部がコイルの巻かれた固定子であるモータも ある。 このようなモータも従来の方法ではコィルを取出すことは困難で あり、 本発明を適用し大幅な効率化が図れることは前述の通りである。 また、 変圧器 Hの場合も、 強固に固着した固着剤 dが流動化、 液体化 または気体化されて除去されるので、 変圧器 Hからコイルを容易に取出 すことができるようになる。 In this embodiment, the embodiment has been described for a motor having a general structure in which the outer peripheral portion is a stator wound with a coil and the central portion is a rotor. However, there is also a motor in which the outer peripheral portion is a rotor and the central portion is a stator wound with a coil. As described above, such a motor is also difficult to pick up the coil by the conventional method, and the present invention can be applied to achieve significant efficiency. Also in the case of the transformer H, since the firmly adhering fixing agent d is removed by fluidization, liquidation or gasification, the coil can be easily taken out of the transformer H.
また、 直流平滑回路用チョークコイル、 力率改善用リアクトル、 サイ リス夕バルブ装置のアノードリアクトルなど、 コィルが巻回されたコア を有する電気機器についても本発明を適用でき、 コイル取出が容易にな る。  In addition, the present invention can be applied to an electric device having a core with a coil wound, such as a choke coil for DC smoothing circuit, a reactor for power factor improvement, and an anode reactor for a thyristor valve device, so that coil extraction is easy. Ru.
なお、 この実施の形態では、 コイル aの温度をコイル温度検出手段 6 2で示した計算方法により求め、 コア温度検出手段 (温度センサ 4 ) の 双方を用いて通電加熱を制御したが、 コア温度検出手段 4を用いずにコ ァ温度を実験に基づく予想値で代用する (コイルの温度を参考にして) ことも可能である。 また、 その逆に、 コイル温度検出手段 6 2を用いず にコイル aの温度を実験に基づく予想値で代用する (コアの温度を参考 にして) ことも可能である。  In this embodiment, the temperature of the coil a is determined by the calculation method indicated by the coil temperature detection means 62, and the heating by conduction is controlled using both of the core temperature detection means (temperature sensor 4). Instead of using the detection means 4, it is also possible to substitute an estimated value based on an experiment on the core temperature (with reference to the temperature of the coil). Also, conversely, without using the coil temperature detecting means 62, it is possible to substitute the temperature of the coil a with the predicted value based on the experiment (with reference to the temperature of the core).
また、 コイルやコアの温度を検出せず、 通電加熱する電流と電圧と通 電時間の積により発熱量を求め、 複数のコイルの発熱量を均一にするよ うに通電加熱することもできる。  In addition, without detecting the temperature of the coil or core, the amount of heat generation can be obtained from the product of the current and voltage to be heated and the current and voltage, and the current can be heated to equalize the amount of heat generated by the multiple coils.
また、 この実施の形態では、 不活性ガスは窒素ガス Nとしたが、 窒素 ガス Nに限るものではなく、 例えばアルゴンガスが使用可能である。 第 1 6図は、 発明を実施するための最良の形態の第 2例を示すもので ある。 このコイルの取出補助装置 2 0 0は、 第 1例の不燃性ガスとして 用いた不活性ガス Nの代わりに、 水蒸気 Jを用いたものである。  In this embodiment, the inert gas is nitrogen gas N. However, the inert gas is not limited to nitrogen gas N. For example, argon gas can be used. FIG. 16 shows a second example of the best mode for carrying out the invention. The coil extraction assisting device 200 uses steam J instead of the inert gas N used as the noncombustible gas of the first example.
水蒸気 Jはポイラ 2 7により作られる。 すなわち、 ポイラ 2 7の蒸気 タンク 2 7 bに外部から水 Mが供給されヒー夕 2 7 aで加熱されて水蒸 気 Jが作られる。 この水蒸気は 1 0 0 以下では結露するので、 不活性 ガスの場合と異なり、 第 1図で示した第 1供給経路 2 2をなくし、 経路 にヒー夕を備えた第 2供給経路 2 3、 第 3供給経路 2 4を通って処理室 1に送り込まれる構成としている。 Water vapor J is produced by Poira 27. That is, water M is supplied from the outside to the steam tank 2 7 b of the poiler 2 7 and heated in the heat oven 2 7 a to produce the water vapor J. This water vapor condenses below 100 °, so unlike the case of the inert gas, the first supply path 22 shown in FIG. The system is configured to be fed to the processing chamber 1 through the second supply path 2 3 and the third supply path 2 4 equipped with a heat exchanger.
ポイラにより 1 0 0 まで加熱されると、 水は水蒸気 Jとなり、 弁を 開放しポイラ 2 7の圧力で第 2供給経路 2 3または第 3供給経路 2 4を 通り、 1 0 0 °C以下に低下しないように加温されて処理室 1に送り込ま れる。 ここで、 通電加熱の開始前に所定時間、 電磁弁 7 1を開放して水 蒸気 Jを送り込み、 処理室内部を 1 0 0 °C以上に加温しておく。 このと き、 水蒸気 Jは少量結露する可能性があるが、 その水はドレン配管 2 8 及びドレンバルブ 2 8 aを介して放出可能とする。  When heated to 100 ° by the poiler, the water turns into steam J, opens the valve and passes through the second feed path 23 or the third feed path 24 at a pressure of Poira 27 and below 100 ° C. It is heated to the processing chamber 1 so as not to decrease. Here, before starting the electric heating, the solenoid valve 71 is opened for a predetermined time to supply water vapor J, and the inside of the processing chamber is heated to 100 ° C. or higher. At this time, a small amount of water vapor J may condense, but this water can be released through drain pipe 2 8 and drain valve 2 8 a.
処理室 1が 1 0 0 °C以上の水蒸気 Jで満たされれば、 その後は第 1例 で述べた通りにコイル aの通電加熱が行われ、 コア bよりコイル aが容 易に取出可能となる。  If the processing chamber 1 is filled with water vapor J of 100 ° C. or higher, then the coil a is heated by electric conduction as described in the first example, and the coil a can be easily removed from the core b. .
なお、 水蒸気 Jを用いる場合は、 通電加熱中に電磁弁 7 1を開放した まま水蒸気 Jを送り続ける方が望ましい。 その理由は、 水蒸気 Jが安価 である (水 Mとボイラー 2 7があれば足りる) ことと、 処理室の密封性 能をあまり高いものにしなくてすむためである。 また、 ここで用いる水 蒸気 Jは、 純度の高いものが望ましく、 不純物となる酸素の濃度は 1 % 以下にする必要がある。 2 %以上の酸素濃度になると固着剤 dが酸化す る可能性があるためである。 さらに、 コイル aの通電加熱制御で、 処理 室 1の温度が 1 0 0 以下に下がらないように制御することも必要であ る。  When steam J is used, it is preferable to keep sending the steam J while the solenoid valve 71 is open during electric heating. The reason is that steam J is cheap (water M and boiler 27 are sufficient) and the sealing performance of the processing chamber can not be made very high. In addition, it is desirable that the water vapor J used here has high purity, and the concentration of oxygen as impurity should be 1% or less. If the oxygen concentration is 2% or more, the binder d may be oxidized. Furthermore, it is also necessary to control the temperature of the processing chamber 1 so that the temperature does not fall below 100 ° by the electric heating control of the coil a.
このように水蒸気 Jを用いることで安価なコイルの取出補助装置 2 0 0を構成できる。  By using the water vapor J in this way, an inexpensive coil extraction assisting device 200 can be configured.
第 1 7図は、 発明を実施するための最良の形態の第 3例を示すもので ある。 この第 3例のコイルの取出補助装置 3 0 0は、 第 1例の不燃性ガ スを第 1例の不活性ガス Nと、 第 2例の水蒸気 Jとを組み合わせたもの である。  FIG. 17 shows a third example of the best mode for carrying out the invention. The coil extraction assisting device 300 of this third example is a combination of the noncombustible gas of the first example with the inert gas N of the first example and the water vapor J of the second example.
すなわち、 不活性ガス Nのタンク 2 1と、 水蒸気 Jを発生させるボイ ラ 2 7とを備え、 不活性ガス Nを供給経路 2 3を介して処理室 1に送り 込み、 水蒸気 Jを供給経路 2 4を介して処理室 1に送り込み、 処理室 1 の内部で混合される構成である。 供給経路 2 3の電磁弁 2 3 a、 及び、 供給経路 2 4の電磁弁 2 4 aは流量調整弁としているので、 不活性ガス Nと水蒸気 Jを任意の割合で混合した混合ガスとすることができる。 この構成では、 コイル aを通電加熱する際に、 コイル aやコア bを急 速に冷却する場合は、 水蒸気 Jは供給を停止し、 不活性ガス Nを低温状 態 (ヒータ 2 4 bを非作動とする) で送り込むようにする。 また、 コィ ル aやコア bの温度を上げているときは水蒸気 Jまたは不活性ガス Nど ちらかをヒ一夕 2 3 bまたはヒータ 2 4 bで加温して送り込むようにす ればよい。 That is, it comprises a tank 21 for inert gas N and a boiler 27 for generating water vapor J, and the inert gas N is sent to the processing chamber 1 through the supply path 23. The water vapor J is supplied to the processing chamber 1 through the supply path 24 and mixed in the processing chamber 1. Because the solenoid valve 2 3 a of the supply path 2 3 and the solenoid valve 2 4 a of the feed path 2 4 are flow control valves, inert gas N and water vapor J should be mixed gas in any ratio. Can. In this configuration, when the coil a and the core b are rapidly cooled when the coil a is energized and heated, the supply of the steam J is stopped, and the inert gas N is in the low temperature state (the heater 24 b is not Make it work by sending). In addition, when the temperature of core a or core b is increased, either steam J or inert gas N may be heated by heating with heat 23 b or heater 24 b. .
これによれば、 水蒸気 Jのみの場合に比べ水蒸気 Jの結露がしにくく なり、 仮に水蒸気 Jが結露した場合でも不活性ガス Nにより結露した水 を再度蒸発させるので、 ドレン配管 2 8などが不要になる。 また、 固着 剤 dの種類によっては固着剤 dのガス化した成分が混入した不活性ガス Nは臭いが強くなる可能性があり、 そのようなとき水蒸気 Jを適度な割 合で混合することで、 臭いを低減することが可能となる。 また、 不活性 ガス Nの消費量も低減できるので、 ガスとしてのコストも低くなる。 なお、 各実施の形態では、 固着剤 dを完全にコイル aから分離させれ ばコイル取出は問題ないが、 固着剤 dの一部 (例えば固着剤の体積で 5 0 %程度) をコイル aから分離させることでもコイル取出が容易になる 。 したがって、 コア bの形状やコイル aの巻き方、 コイル aの結線方式 などで固着剤 dの流動化、 液体化または気体化させる程度を適度に選択 することも可能であり、 省エネルギーとすることができる。  According to this, the condensation of the water vapor J is more difficult than in the case of the water vapor J alone, and even if the water vapor J is condensed, the water condensed by the inert gas N is evaporated again. become. In addition, depending on the type of fixing agent d, the inert gas N mixed with the gasified components of the fixing agent d may have a strong odor. In such a case, the steam J is mixed at an appropriate ratio. , It becomes possible to reduce the odor. In addition, since the consumption of inert gas N can be reduced, the cost as a gas is also reduced. In each embodiment, there is no problem in coil removal if the adhesive d is completely separated from the coil a, but a portion of the adhesive d (for example, about 50% by volume of the adhesive) The separation also facilitates coil removal. Therefore, it is possible to appropriately select the degree of fluidization, liquefaction or gasification of the bonding agent d by the shape of the core b, the winding method of the coil a, the wire connection method of the coil a, etc. it can.
また、 各実施の形態では、 通電加熱手段 3の電源部 3 2を単相出力と したが、 電源部 3 2が三相出力にすることも可能である。 この場合、 各 コイル間に一定の電圧が印可され各コイルの発熱量が均一になるため、 切替回路 (スィッチ回路) 3 1は必要なくなる。 すなわち、 コイル aが デルタ結線、 または、 Y結線の場合は 3端子をそのまま電源部に接続す ればよい。 また各コイル a 1、 a 2、 a 3が結線されず、 リード線 が 6本引き出されている場合には Y結線にして 3端子を電源部に接続すれ ばよい。 Further, in each of the embodiments, the power supply unit 32 of the conduction heating means 3 is a single-phase output, but the power supply unit 32 may be a three-phase output. In this case, since a constant voltage is applied between the coils and the amount of heat generation of each coil becomes uniform, the switching circuit (switch circuit) 31 is not necessary. That is, in the case where the coil a is delta connection or Y connection, the three terminals may be connected directly to the power supply unit. In addition, each coil a 1, a 2 and a 3 is not connected, so the lead wire If 6 cables are pulled out, make the Y connection and connect 3 terminals to the power supply.
また、 不燃性ガスは、 上記各特性を有することに加え、 人体に無害の ガスにすることもこの装置の安全性を確保するために、 必要な条件であ ることは当然である。 産業上の利用可能性  In addition to having the above-mentioned characteristics, it is natural that non-combustible gas is also a gas that is harmless to the human body in order to ensure the safety of this device. Industrial applicability
以上のように、 本発明によれば、 コイルを通電加熱して固着剤を流動 ィ匕、 液体化または気体化させコアからコイルを取出すことで、 従来のガ スパーナ、 工具による固着剤の破砕作業が不要になり、 コイル aの取出 に関わる手作業時間が短縮され、 コアのコイル巻き直しを容易にするコ ィルの取出方法、 取出補助装置として利用できる。  As described above, according to the present invention, the coil is electrically heated to make the adhesive flow, liquid or gasified, and the coil is taken out from the core, thereby breaking the adhesive using the conventional governor or tool. This eliminates the need for time-consuming manual operation related to the removal of coil a, and can be used as a method of removal of a coil that facilitates coil winding of the core, and as a removal assist device.
また、 固着剤が不燃性ガスの雰囲気下で流動化、 液体化または気体化 するため、 炭化物の生成が防止され、 有害なガスを発生させず、 悪臭も ほとんどない (あっても排気されフィルタなどで除去される) ので、 コ ァからコイルの取出に関わる作業環境を改善させることができる。 また、 固着剤の流動化、 液体化または気体化がコイルの通電加熱によ つて行われるため、 コアへの無用な加熱が避けられ、 コアの磁気特性の 劣化を防止でき、 コイルを備える電気機器の性能を維持できる。  In addition, since the bonding agent is fluidized, liquidated or gasified in an atmosphere of noncombustible gas, the formation of carbides is prevented, no harmful gas is generated, and there is almost no odor (even if there is an exhaust gas or a filter etc. Can be used to improve the working environment for coil removal from the core. In addition, since the fluidization, liquefaction, or gasification of the adhesive is performed by electric heating of the coil, unnecessary heating of the core is avoided, and deterioration of the magnetic properties of the core can be prevented, and an electric device equipped with the coil Maintain the performance of
さらに、 本発明のコイルの取出補助装置は、 コイルを通電加熱するこ とで固着剤を流動化、 液体化または気体化させるため、 処理室内部をヒ 一夕などで加熱する場合に比べ消費電力を 1 / 5〜 1 / 8に低減できる また、 固着剤の除去作業が自動化されたので、 作業者の作業ミスによ りモー夕などのコアに欠陥を生じさせることなどが未然に防げる。 また、 通電加熱を行う電源部を交流電流で出力し、 この交流電流の周 波数を周波数変更手段により変更可能としたので、 コァを磁化すること なくコイルに流れる電流を抑制することができ、 電源部を小型化し、 電 源部を安価にできる。  Furthermore, the coil extraction assisting apparatus of the present invention uses the coil to conduct current and heats the binder, thereby fluidizing, liquidifying, or gasifying the power, and therefore consumes more power than heating the inside of the processing chamber with a heater or the like. In addition, since the removal of the adhesive is automated, it is possible to prevent in advance the occurrence of defects in the core such as a mower due to a worker's mistake. In addition, the power supply unit that performs electric heating is output as an alternating current, and the frequency of this alternating current can be changed by the frequency changing unit, so that the current flowing to the coil can be suppressed without magnetizing the core. You can make the unit smaller and make the power supply unit cheaper.

Claims

請求の範囲 The scope of the claims
1 . コイルが巻回されたコアを不燃性ガスの雰囲気下におき、 上記コィ ルを通電加熱して固着剤で固着されたコイルをコアから取出すコイルの 取出方法。 1. A method of taking out a coil in which a core wound with a coil is placed in an atmosphere of noncombustible gas, the coil is energized and heated, and a coil fixed with a fixing agent is taken out from the core.
2 . 請求の範囲 1に記載のコイルの取出方法において、 上記コアはモ一 夕の固定子、 または変圧器であることを特徴とするコイルの取出方法。 2. The method of taking out a coil according to claim 1, wherein the core is a motor stator or a transformer.
3 . 請求の範囲 1または 2に記載のコイルの取出方法において、 上記不 燃性ガスは、 不活性ガス、 水蒸気、 または不活性ガスと水蒸気の混合ガ スであることを特徴とするコイルの取出方法。 3. The coil extraction method according to claim 1 or 2, wherein the noncombustible gas is an inert gas, water vapor, or a mixed gas of an inert gas and water vapor. Method.
4 . 請求の範囲 1〜3のいずれかに記載のコイルの取出方法において、 コイルを通電加熱する際に、 コイルの温度、 コアの温度の少なくとも一 方または双方を検出し、 コイルを取出可能な温度となるように通電加熱 するとともに、 コアの磁気特性が劣化しにくいようにコィルの通電加熱 を制御することを特徴とするコイルの取出方法。  4. In the method for taking out a coil according to any one of claims 1 to 3, at least one or both of the temperature of the coil and the temperature of the core can be detected when the coil is energized and heated, and the coil can be taken out. A coil extraction method characterized by conducting heating so as to reach a temperature and controlling conducting heating of the coil so that the magnetic properties of the core are less likely to deteriorate.
5 . 請求の範囲 1〜4のいずれかに記載のコイルの取出方法において、 複数のコイルの発熱量を均一にするようにコイルを通電加熱することを 特徴とするコイルの取出方法。  5. The coil extraction method according to any one of claims 1 to 4, characterized in that the coils are electrically heated to make the calorific value of the plurality of coils uniform.
6 . コイルが巻回されたコアを収容する処理室と、 処理室に不燃性ガス を供給するガス供給手段と、 上記コイルを通電加熱する通電加熱手段と を備えてなるコイルの取出補助装置。  6. A coil extraction assisting device comprising: a processing chamber containing a core wound with a coil; gas supply means for supplying a noncombustible gas to the processing chamber; and energization heating means for energizing and heating the coil.
7 . 請求の範囲 6に記載のコイルの取出補助装置において、 上記コアは モータの固定子、 または変圧器であることを特徴とするコイルの取出補 助装置。  7. The coil extraction assisting device according to claim 6, wherein the core is a motor stator or a transformer.
8 . 請求の範囲 6または 7に記載のコイルの取出補助装置において、 上 記不燃性ガスは、 不活性ガス、 水蒸気、 または不活性ガスと水蒸気の混 合ガスであることを特徴とするコイルの取出補助装置。  8. The coil extraction assisting device according to claim 6 or 7, wherein the noncombustible gas is an inert gas, water vapor, or a mixed gas of an inert gas and water vapor. Removal aid device.
9 . 請求の範囲 6〜 8のいずれかに記載のコイルの取出補助装置におい て、 コイルの温度を検出するコイル温度検出手段、 コアの温度を検出す るコア温度検出手段の少なくとも一方または双方と、 検出したコイル温 度、 コア温度の少なくとも一方または双方に基づきコイルの通電加熱を 制御するコントローラとを備えたことを特徴とするコィルの取出補助装 9. In the coil extraction assisting device according to any one of claims 6 to 8, coil temperature detecting means for detecting the temperature of the coil, and the temperature of the core are detected. And a controller for controlling electric heating of the coil based on at least one or both of the core temperature detection means and the detected coil temperature and / or core temperature.
1 0 . 請求の範囲 6〜 9のいずれかに記載のコイルの取出補助装置にお いて、 通電加熱手段は複数のコイルへの通電加熱を切り替える切替回路 を備えたことを特徴とするコイルの取出補助装置。 10. In the coil extraction assisting device according to any one of claims 6 to 9, the electric heating means comprises a switching circuit for switching electric heating to a plurality of coils. Auxiliary equipment.
1 1 . 請求の範囲 6〜 1 0のいずれかに記載のコイルの取出補助装置に おいて、 ガス供給手段は供給されるガスの温度が異なる少なくとも 2つ の供給経路を備えていることを特徴とするコイルの取出補助装置。 1 1. In the coil extraction assisting device according to any one of claims 6 to 10, the gas supply means includes at least two supply paths different in temperature of the supplied gas. Coil takeout assistance device.
1 2 . 請求の範囲 6〜 1 1のいずれかに記載のコイルの取出補助装置に おいて、 通電加熱手段はコイルを通電加熱する電流を交流電流とする電 源部と、 上記交流電流の周波数を変更可能とする周波数変更手段とを備 えたことを特徴とするコイルの取出補助装置。 In the coil extraction assisting device according to any one of claims 6 to 11, the electric heating means comprises: a power source section for converting the electric current for heating the coil into an alternating current; and the frequency of the alternating current What is claimed is: 1. A coil extraction assisting device comprising:
PCT/JP2001/004615 2001-02-13 2001-05-31 Coil removing method and removing auxiliary device WO2002065622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002564820A JPWO2002065622A1 (en) 2001-02-13 2001-05-31 Coil removal method, removal assist device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-36037 2001-02-13
JP2001036037 2001-02-13

Publications (1)

Publication Number Publication Date
WO2002065622A1 true WO2002065622A1 (en) 2002-08-22

Family

ID=18899380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004615 WO2002065622A1 (en) 2001-02-13 2001-05-31 Coil removing method and removing auxiliary device

Country Status (2)

Country Link
JP (1) JPWO2002065622A1 (en)
WO (1) WO2002065622A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086954A (en) * 2003-09-10 2005-03-31 Aisin Aw Co Ltd Heat treatment device for winding coil of rotating electric machine
EP2683064A1 (en) * 2012-07-03 2014-01-08 Alstom Technology Ltd. Method for removing bars or coils from slots of an electric machine
WO2015012725A3 (en) * 2013-07-23 2015-05-14 Алексей Александрович МАКАРОВ Apparatus for extracting a winding of an electric machine or a part thereof
JP2015136242A (en) * 2014-01-17 2015-07-27 トヨタ自動車株式会社 Stator electric heating apparatus
KR102414175B1 (en) * 2021-10-22 2022-06-28 주식회사 디알텍 Core heating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543938A (en) * 1978-09-20 1980-03-28 Toshiba Corp Method of controlling inverter device
JPH02290928A (en) * 1989-04-27 1990-11-30 Toshiba Corp Method for disjointing mold apparatus
JPH06121495A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Method for taking out coil for electric apparatus
JPH09271197A (en) * 1996-03-29 1997-10-14 Daikin Ind Ltd Control equipment of motor
EP0801137A1 (en) * 1996-04-08 1997-10-15 Matsushita Electric Industrial Co., Ltd. Process for recovering copper from insulated copper wire windings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543938A (en) * 1978-09-20 1980-03-28 Toshiba Corp Method of controlling inverter device
JPH02290928A (en) * 1989-04-27 1990-11-30 Toshiba Corp Method for disjointing mold apparatus
JPH06121495A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Method for taking out coil for electric apparatus
JPH09271197A (en) * 1996-03-29 1997-10-14 Daikin Ind Ltd Control equipment of motor
EP0801137A1 (en) * 1996-04-08 1997-10-15 Matsushita Electric Industrial Co., Ltd. Process for recovering copper from insulated copper wire windings

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086954A (en) * 2003-09-10 2005-03-31 Aisin Aw Co Ltd Heat treatment device for winding coil of rotating electric machine
EP2683064A1 (en) * 2012-07-03 2014-01-08 Alstom Technology Ltd. Method for removing bars or coils from slots of an electric machine
WO2014006029A1 (en) * 2012-07-03 2014-01-09 Alstom Technology Ltd Method for removing bars or coils from slots of an electric machine
EP3076527A1 (en) * 2012-07-03 2016-10-05 General Electric Technology GmbH Method for removing bars or coils from slots of an electric machine
US9871428B2 (en) 2012-07-03 2018-01-16 General Electric Technology Gmbh Method for removing bars or coils from slots of an electric machine
WO2015012725A3 (en) * 2013-07-23 2015-05-14 Алексей Александрович МАКАРОВ Apparatus for extracting a winding of an electric machine or a part thereof
JP2015136242A (en) * 2014-01-17 2015-07-27 トヨタ自動車株式会社 Stator electric heating apparatus
KR102414175B1 (en) * 2021-10-22 2022-06-28 주식회사 디알텍 Core heating device

Also Published As

Publication number Publication date
JPWO2002065622A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US9140445B2 (en) Superheated steam generation container, superheated steam generator, and superheated steam generation method
TW200805422A (en) Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator
CN101720563A (en) Power supply for radio frequency heating apparatus
US10930943B2 (en) Fuel cell system including inductive heating element and method of using same
US20040084443A1 (en) Method and apparatus for induction heating of a wound core
WO2002065622A1 (en) Coil removing method and removing auxiliary device
KR102323793B1 (en) Induction heating device using fan coil
WO2001030117A1 (en) Portable induction heating apparatus and method including a hand holdable induction heating member
JP3852655B2 (en) Plasma generator and operation method thereof
WO2015095582A1 (en) Method and apparatus for dehumidification of generator winding insulation
CN101257742A (en) High frequency heating device
JP3672765B2 (en) Heating method and heating apparatus
JP4005973B2 (en) Superconducting winding heating device
CN111638738B (en) Power transformer low-frequency heating critical frequency calculation and automatic control method
KR100693305B1 (en) Electronic induction heater and temperature control method thereof
KR100571680B1 (en) Apparatus for drying food using overheated steam produced by induction heating
JP4472844B2 (en) Equipment for melting and / or purifying inorganic compounds
CN220606117U (en) Intermediate frequency capacitor switching device and intermediate frequency induction heating system
CN218041820U (en) Metal heater
JP2003004204A (en) High temperature steam generating device
KR102355180B1 (en) Induction heating type aerosol generator using dual coil
US6080964A (en) Process for predrying a coil block containing at least one winding and solid insulation
WO2003030347A1 (en) Method and apparatus for heating canned motor for high-melting-point liquid, and device thereof, and operating device of canned motor for high-melting-point liquid
CN117987624A (en) Heat treatment device
JP4685980B2 (en) Electric heating method of furnace for heat treatment of metal workpieces

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002564820

Country of ref document: JP

122 Ep: pct application non-entry in european phase