WO2002065183A1 - Lens-barrel, exposure device, and method of manufacturing device - Google Patents

Lens-barrel, exposure device, and method of manufacturing device Download PDF

Info

Publication number
WO2002065183A1
WO2002065183A1 PCT/JP2002/001231 JP0201231W WO02065183A1 WO 2002065183 A1 WO2002065183 A1 WO 2002065183A1 JP 0201231 W JP0201231 W JP 0201231W WO 02065183 A1 WO02065183 A1 WO 02065183A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens barrel
housing
gas
barrel
Prior art date
Application number
PCT/JP2002/001231
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Shibazaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2002564642A priority Critical patent/JPWO2002065183A1/en
Publication of WO2002065183A1 publication Critical patent/WO2002065183A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Definitions

  • the present invention relates to a lens barrel, an exposure apparatus and a device manufacturing method.
  • the present invention relates to, for example, a lens barrel and an exposure apparatus used in a photolithography step in a process for manufacturing a device such as a semiconductor device, a liquid crystal display device, an imaging device, and a thin film magnetic head, and a method for manufacturing the device.
  • a conventional exposure apparatus illuminates a mask such as a reticle or a photomask on which a predetermined pattern is formed with predetermined exposure light, and irradiates an image of the predetermined pattern with a photosensitive material such as a photoresist through a projection optical system. Transfer onto a substrate such as a wafer or a glass plate coated with.
  • the projection optical system includes a number of optical members, for example, a plurality of lens elements, and these lens elements are held in a lens barrel.
  • a drive mechanism such as a piezo element is connected to some of the lens elements. By driving the lens element by a driving mechanism, the imaging characteristics of the projection optical system are adjusted. .
  • exposure light having a short wavelength oxygen, water vapor, hydrocarbon gas, or the like in the lens barrel, or a vaporized organic substance that reacts with the exposure light to produce a cloudy substance on the surface of the lens element, etc.
  • short wavelength exposure light is absorbed.
  • a r F excimer laser light as exposure light when adopted the F 2 laser light, in the exposure light is absorbed by the gas and organic substances mentioned above
  • the energy of the exposure light emitted from the light source may be significantly reduced before reaching the substrate.
  • a drive mechanism for driving the lens element is provided.
  • a piezo element emits a small amount of organic substances to the outside, and is suitable as a driving device for the lens element.
  • the piezo element requires a power supply line and a signal supply line, and the possibility that a trace amount of an organic substance such as a plasticizer is generated from the covering material of the electric wire cannot be denied.
  • an exposure apparatus for purging the inside of the lens barrel with a predetermined gas has been developed. That is, a predetermined purge gas is supplied from one end of the lens barrel and discharged from the other end.
  • a predetermined purge gas is supplied from one end of the lens barrel and discharged from the other end.
  • the purge gas does not flow smoothly inside the lens barrel, and organic substances, oxygen, water vapor, hydrocarbons, etc. Stagnation in which gas such as gas remains may occur. When such a stagnation exists, there is a problem that a decrease in exposure performance of the exposure apparatus cannot be sufficiently suppressed.
  • An object of the present invention is to provide a lens barrel and an exposure apparatus that can efficiently purge the inside of the lens barrel with a predetermined gas and pass through while keeping the energy of exposure light high. .
  • Another object of the present invention is to provide a method for manufacturing a device using such an exposure apparatus.
  • the invention according to claim 1 has a lens barrel having a housing for holding a plurality of optical members, and supplying a predetermined purge gas into the housing.
  • One of a purge gas supply port for supplying the purge gas into the casing or a gas discharge port for discharging gas from the casing from the casing is connected to one end of the casing. And the other end of the purge gas supply port or the gas discharge port is provided between the one end and the other end of the housing.
  • a gas that absorbs exposure light such as oxygen, water vapor, and hydrocarbon gas existing in the housing
  • Evaporated organic substances which are collectively referred to as “absorptive gas”
  • the purge gas is supplied from the purge gas supply port at both ends of the housing to the gas discharge port provided between both ends, or from the purge gas supply port provided between both ends to the gas discharge ports provided at both ends.
  • the purge gas is efficiently circulated throughout the casing, and the gas containing the absorptive gas in the casing is efficiently exhausted as a whole. For this reason, the purge gas stagnates in a part of the housing, and the absorption gas is prevented from remaining outside the housing without being discharged.
  • the term “gas containing an absorbing gas” refers to, for example, air immediately after gas purging is performed after assembling and adjusting the exposure apparatus main body, and is performed after the gas purging is completed. A predetermined purge gas.
  • the invention of claim 2 is the invention according to claim 1, wherein the purge gas supply port is provided at one end and the other end of the housing, and the gas discharge port is provided at one end and the other end of the housing. It is characterized by being provided between.
  • stagnation of the absorbing gas occurs at both ends of the housing in which it is desirable to keep the energy of the exposure light higher. It is suppressed more reliably.
  • the invention according to claim 3 is the invention according to claim 1 or 2, wherein a drive mechanism for driving the optical member is connected to at least a part of the plurality of optical members. It is a feature.
  • the absorbing gas that can be generated from the members constituting the drive mechanism, etc. rides on the flow of the purge gas and quickly goes out of the housing. Is discharged. For this reason, fogging of the optical member is effectively suppressed, and high optical performance of the lens barrel is maintained.
  • the housing has a housing main body that holds the plurality of optical members, and a cover that covers at least a part of an outer peripheral surface of the housing main body, and the gas outlet is provided in the cover. It is characterized by being able to.
  • the pressure of the purge gas in the housing body can be reduced.
  • the pressure can be set higher than the pressure between the housing body and the cover, so that the absorbing gas is efficiently discharged from the housing body through which the exposure light passes.
  • the invention according to claim 5 is the invention according to claim 4, wherein at least one of the driving mechanisms connected to at least some of the plurality of optical members and driving the optical members is provided in the housing body.
  • An exposure limiting member for limiting exposure to the space is provided.
  • the absorption gas generated from the member constituting the drive mechanism is prevented from flowing into the housing body, The cleanliness inside is kept higher.
  • the invention according to claim 6 is the invention according to claim 4 or 5, wherein the cover covers an outer peripheral surface of a portion of the housing main body that holds the optical member to which the driving mechanism is connected. It is a feature.
  • the invention of claim 7 is the invention of claim 6, wherein the gas discharge port discharges the gas in the housing body through the driving mechanism.
  • An invention according to claim 8 is an exposure apparatus for transferring an image of a pattern formed on a mask onto a substrate, comprising the lens barrel according to any one of claims 1 to 7. It is characterized by the following.
  • the invention according to claim 9 is the invention according to claim 8, further comprising a projection optical system that projects an image of a pattern on the mask onto the substrate, wherein the projection optical system is configured as the scope of claim 1 To the lens barrel according to any one of claims 5 to 5.
  • the absorbing gas is efficiently exhausted from the lens barrel, the reduction in the efficiency of the exposure light and the occurrence of fogging in the optical member are suppressed, and the exposure accuracy can be improved.
  • a tenth aspect of the present invention is characterized in that a device is manufactured using the exposure apparatus according to the eighth and ninth aspects.
  • FIG. 1 is a schematic diagram showing an overall configuration of an exposure apparatus according to one embodiment of the present invention.
  • FIG. 2 is an enlarged view of the lens barrel of the exposure apparatus of FIG.
  • FIG. 3 is a partially enlarged sectional view of the lens barrel of FIG.
  • Figure 4 is a flowchart showing the device manufacturing method.
  • FIG. 5 is a flowchart showing a method of manufacturing a semiconductor device.
  • the exposure light source 1 as the exposure light EL, emitted for example K r F excimer Mareza light, A r F excimer laser light, the Panoresu light of F 2 laser beam or the like.
  • the exposure light EL as an optical integrator, is incident on, for example, a fly-eye lens 12 composed of a large number of lenses, and on the exit surface of the fly-eye lens 12, a large number of lenses corresponding to each lens element are provided.
  • a secondary light source image is formed.
  • the optical integrator may be a rod lens.
  • Exposure light EL emitted from the fly-eye lens 12 passes through a relay lens 13a, 13b, a reticle blind 14, a mirror 15 and a condenser lens 16 to form a circuit pattern of a semiconductor element or the like.
  • the combined system of the fly-eye lens 12, the relay lenses 13a and 13b, the mirror 15 and the capacitor lens 16 superimposes the secondary light source image on the reticle R and illuminates the reticle R with uniform illuminance.
  • the illumination optical system 17 is constructed.
  • Reticle blind 14 is arranged such that its light-shielding surface is conjugate with the pattern area of reticle R.
  • the reticle blind 14 is composed of a plurality of movable light shields (for example, two L-shaped movable light shields) that can be opened and closed by a reticle blind drive unit 1'8. By adjusting the size (slit width, etc.) of the opening formed by these movable light-shielding portions, the illumination area for illuminating the reticle R is set arbitrarily.
  • the reticle stage R ST holds the reticle R in a plane perpendicular to the optical axis AX of the exposure light EL so as to be finely movable in a two-dimensional direction.
  • the reticle stage R ST can be moved in a predetermined direction (traveling direction (Y direction)) by a reticle stage driving section 20 composed of a linear motor or the like.
  • the reticle stage R ST has a moving stroke that allows the entire surface of the reticle R to cross at least the optical axis AX of the exposure light EL.
  • the direction along the optical axis of the projection optical system PL is the Z direction
  • the direction orthogonal to the optical axis of the projection optical system PL and the paper is the X direction
  • the direction orthogonal to the optical axis of the projection optical system PL is the paper.
  • the direction along this is the Y direction.
  • a movable mirror 22 that reflects the laser beam from the interferometer 21 is fixed to an end of the reticle stage RST.
  • the position of the reticle stage R ST in the scanning direction is constantly detected by the interferometer 21, and the position information is sent to the reticle stage controller 23.
  • Reticle stage control section 23 controls reticle stage drive section 20 based on the position information of reticle stage RST, and moves reticle stage RST.
  • the exposure light EL that has passed through the reticle R enters, for example, a double-sided telecentric projection optical system PL.
  • the projection optical system PL serves as a substrate having a circuit pattern on the reticle R reduced to, for example, 1/5 or 1Z4, the surface of which is coated with a photoresist having photosensitivity to the exposure light EL.
  • Wafer W is held on wafer stage WST via wafer holder 30.
  • the wafer holder 30 is driven by a drive unit (not shown) to achieve optimal imaging of the projection optical system PL It can be tilted in any direction with respect to the plane, and can be finely moved in the optical axis AX direction (Z direction) of the projection optical system PL.
  • the wafer stage WST is configured to be movable not only in the scanning direction (Y direction) but also in a direction (X direction) perpendicular to the scanning direction by a wafer stage driving unit 31 such as a motor. I have. This makes it possible to perform a step-and-scan operation in which scanning exposure is repeated for each shot area on the wafer W.
  • a movable mirror 33 that reflects the laser beam from the interferometer 32 is fixed to the end of the wafer stage WST, and the position of the wafer stage WST in the X and Y directions is constantly detected by the interferometer 32. You.
  • the position information (or speed information) of the wafer stage WST is sent to the wafer stage control unit 34, and the wafer stage control unit 34 controls the wafer stage drive unit 31 based on the position information (or speed information). I do. '
  • the illumination area on reticle R is rectangular (slit) with reticle blind 14. It is shaped into a shape. This illumination area has a longitudinal direction perpendicular to the scanning direction (+ Y direction) on the reticle R side.
  • the circuit pattern on the reticle R is sequentially illuminated from one end to the other end in the slit-shaped illumination area by scanning the reticle R at a predetermined speed V 1- during exposure. Thereby, the circuit pattern on the reticle R in the illumination area is projected onto the wafer W via the projection optical system PL, and a projection area is formed.
  • the wafer W Since the wafer W is in an inverted imaging relationship with the reticle R, the wafer W is scanned at a predetermined speed V w in a direction opposite to the scanning direction of the reticle R (one Y direction) in synchronization with the scanning of the reticle R. . As a result, the entire shot area of the wafer W can be exposed.
  • the scanning speed ratio VwZVr is in accordance with the reduction magnification of the projection optical system PL, and the circuit pattern on the reticle R is accurately reduced and transferred onto each shot area on the wafer W.
  • the projection optical system PL is an optical system that is disposed between the reticle R and the wafer W and includes a plurality of optical members including lens elements 43 and 45.
  • the lens barrel 40 accommodating the projection optical system PL includes a lens barrel body 41 as a housing body that holds the lens elements 43 and 45, and a predetermined amount from the outer peripheral surface of the lens barrel body 41.
  • a cover 42 having one end fixed to the flange FLG and the other end fixed to the upper end of the lens barrel body 41 is provided.
  • the material forming the cover 42 is not particularly limited, and for example, a metal such as brass, stainless steel, aluminum, or titanium, or a thin film member or an elastic member described later can be employed.
  • a metal such as brass, stainless steel, aluminum, or titanium
  • a thin film member or an elastic member described later can be employed.
  • At least one of the upper and lower ends may be connected by a thin film member or an elastic member.
  • a preferred thin film member is a film material made of ethylene vinyl alcohol resin (EVOH resin), and a protective film with good elasticity made of polyethylene, which is adhered to the outer surface of the film material with an adhesive.
  • a laminated film comprising an aluminum layer deposited on the inner surface of the film material.
  • the thin film member is not limited to a laminated film as long as the generation of degassing is suppressed.
  • a preferable material for the elastic member is a chemical clean treatment (for example, a vapor deposition treatment for evaporating a metal such as aluminum on the surface, or a Teflon coat for covering the surface with Teflon (trademark)) so as to suppress generation of degassing. Treated) fluororubber and metal material.
  • the thin film member and the elastic member may be formed in a bellows shape. .
  • the lens barrel main body 41 is configured by fixing a plurality of partial lens barrels to each other. That is, in order from the reticle R side, the first partial barrel 41a, the second partial barrel 41b, the third partial barrel 41c , the fourth, fifth, sixth, seventh, eighth The ninth partial tube 41d, 41e, 41f41g, 41h, and 41i are divided. A flange FLG is provided between the fifth partial barrel 41e and the sixth partial barrel 41f.
  • the lens barrel 40 is divided into nine partial lens barrels 41a to 41i, but the number of divisions is not limited to this.
  • At least one lens element element 43, 45 ' is provided in the lens barrel provided with the partial lens barrel and the flange FLG.
  • Each of the partial barrels is held by a holding member.
  • Cover glass 46 is provided at the end of the first partial barrel 41 a on the reticle R side and at the end of the ninth partial barrel 41 i on the wafer W side.
  • the partial barrel provided with the flange FLG and the sixth to ninth partial barrels 41 f to 41 i arranged below the flange FLG, that is, on the wafer W side.
  • the stationary lens element 45 is held by a holding member (not shown).
  • the first to fifth partial lens barrels 41 a to 41 e include a support member 47 for supporting the movable lens element 43 and a piezo element 4 included in the drive mechanism. 9 is provided.
  • the lens elements 43 and 45 are held by the holding member at three places on the outer periphery thereof, for example, at three places, the lens elements 43 and 45 are disposed on the inner walls of the partial lens barrels 41a to 41i. , 45 and the holding member have a gap.
  • the spaces 55 to 57 defined by the cover glass 46, the lens elements 43, 45, and the lens barrel main body 41 are connected to the passages 47a formed in the support member 47 (see FIG. 3), and are communicated with each other through the gap and the like.
  • Each of the spaces 55 to 57 communicates with a space 58 between the outer surface of the lens barrel body 41 and the inner surface of the force bar 42 by a gap between the respective partial lens barrels.
  • the side walls of the partial lens barrel having the movable lens element 43 are provided with piezo elements 49 such that the expansion and contraction direction of the piezoelectric element 49 matches the tangential direction of the lens barrel. Is formed, and a link mechanism for transmitting the driving force of the piezo element 49 to the movable lens element 43 is formed. Since the housing space and the link mechanism are formed on the side wall of the partial barrel by electric discharge machining, the side wall of the partial barrel has a plurality of notches. Therefore, each of the spaces 55 to 57 communicates with the space 58 between the outer surface of the lens barrel main body 41 and the inner surface of the cover 42 through a plurality of notches.
  • Each support member 47 is connected to the lens barrel main body 41 via a piezo element 49.
  • a plurality of, for example, three piezo elements 49 are provided at equal angular intervals in the circumferential direction in each of the partial barrels 41 a to 41 e.
  • Each piezo element 4 9 expands and contracts
  • each support member 47 is slightly moved in the optical axis AX direction with respect to the lens barrel main body 41 via a link mechanism formed on the side wall of the partial lens barrel.
  • the piezo elements 49 are provided inside the respective partial barrels 41 a to 41 e.
  • a partition (inner cover) 54 is provided as an exposure restricting member for restricting direct exposure to the space.
  • the partition wall 54 may be formed integrally with the partial lens barrel, or may be another member.
  • Each piezo element 49 is connected to an imaging characteristic control unit 52 via a wiring 51 housed in a space 58 between the lens barrel body 41 and the cover 42.
  • the exposure light source 11, the reticle blind drive unit 18, the reticle stage control unit 23, and the wafer stage control unit 34, including the imaging characteristic control unit 52, are connected to the main control system 53. These components are operated under the control of the main control system 53, and the main control system 53 controls the whole series of exposure steps for transferring the image of the pattern formed on the reticle R onto the wafer W. are doing.
  • the lens barrel 40 is provided with a purge gas supply port 60 for supplying a purge gas therein and a gas discharge port 61 for discharging gas from the lens barrel 40 °.
  • a purge gas such as nitrogen, helium, argon, neon, and krybton is used.
  • the purge gas supply ports 60 are formed at two positions, that is, at the reticle side end which forms one end of the lens barrel body 41 and at the wafer side end which forms the other end, and through these purge gas supply ports 60.
  • the purge gas is supplied directly into the lens barrel body 41.
  • the gas outlet 61 is formed substantially at the center of the force par 42. More specifically, the purge gas supply port 60 is provided on the side wall of the first partial barrel 41a and the side wall of the ninth partial barrel 41i. The other end of the cover 42 is attached to the side wall of the first partial lens barrel 41a below the purge gas supply port 60.
  • the gas outlet ⁇ 6 1 is not located at the center of the cover 4 2, but at other parts, for example, near the flange FLG (cover
  • the purge gas supplied from the purge gas supply port 60 of the first partial barrel 41 a to the barrel body 41 ⁇ is mainly supplied from the space 55 to the space 56 and the space 57.
  • the purge gas supplied to 56 and 57 is between the first to fifth partial lens barrels 4 la to 41 e.
  • the gas is discharged into the space 58 through a gap or a notch formed in the side wall of each of the partial lens barrels 41a to 41i.
  • a mixed gas of the purge gas and the air remaining in the space 58 is exhausted into the space 58, and the space 5 is discharged.
  • the purge gas containing the organic substance is discharged.
  • the purge gas supplied from the purge gas supply port 60 of the ninth partial lens barrel 41 i into the lens barrel body 41 passes through a passage formed in a holding member that holds the stationary lens element 45, and Supplied to 5 7.
  • the purge gas supplied to the space 57 from the purge gas supply port 60 reaches the space 57 in the fifth-partial barrel 41 e via the passage, and thereafter, the fourth partial barrel 41 d Is discharged into the space 58 through the gap between the first and the fifth partial barrels 41 e and the notch holes formed in the fourth and fourth partial barrels 41 d and 41 e. .
  • a part of the purge gas supplied from the purge gas supply port 60 of the ninth partial barrel 41 i leaks from the gap between the sixth to ninth partial barrels 41 f to 41 i.
  • the leakage amount is smaller than the purge gas leakage amount leaking from the gap between the first to fifth partial lens barrels 41a to 41e, and is set to be negligible in the present embodiment. '' If the amount of gas leaking from the gap between the 6th to 9th partial barrels 41 f to 41 i cannot be ignored, the outside of the 6th to 9th partial barrels 41 f to 41 i Then, a cover may be provided at a predetermined interval.
  • one end of the cover should be attached to the flange FLG, and the other end should be attached to the side wall of the ninth partial lens barrel 41i.
  • the cover may also be provided with a purge gas discharge port.
  • test exposure for transferring the image of the pattern on the test wafer Rt onto the test wafer Wt is performed prior to actual exposure for transferring the image of the pattern on the reticle R onto the wafer W.
  • An image of a test-exposed pattern is developed on the test wafer Wt.
  • aberration information of the projection optical system PL is obtained.
  • the obtained aberration information is input to the main control system 53 in advance and stored. Then, the main control system 53 instructs the imaging characteristic control unit 52 to drive each of the piezo elements 49 based on the aberration information. Thereby, each movable lens element The relative position of G is changed, and the imaging characteristics of the projection optical system PL are corrected. Then, after this correction, actual exposure for transferring the image of the pattern of the reticle R onto the wafer is performed.
  • the purge gas supply port 60 is connected to the first partial barrel 41 a and the ninth partial barrel 41 i of the barrel body 41, and the gas outlet 61 was provided on a cover 42 almost at the center of the lens barrel 40. Therefore, when the purge gas is introduced into the lens barrel body 41 through the purge gas supply port 60, the air in the lens barrel body 41 is discharged out of the lens barrel 40 through the gas discharge port 61. . At this time, the purge gas flows from the purge gas supply ports 60 of the two partial lens barrels 4 la and 41 i of the lens barrel body 41 to a gas discharge port 61 located substantially at the center of the lens barrel 40.
  • the purge gas is efficiently circulated throughout the lens barrel body 41, and the absorbent gas in the lens barrel 40 is efficiently exhausted as a whole. Therefore, it is possible to suppress the occurrence of stagnation of the absorbent gas in a part of the lens barrel main body 41, and to suppress the purge gas containing the absorbent gas from remaining outside the lens barrel 40 without being exhausted. .
  • the lens barrel 40 of the projection optical system PL is provided with a piezo element 49 for driving the movable lens element 43.
  • the purge gas supplied into the lens barrel main body 41 is discharged to the outside of the lens barrel 40 via a piezo accommodating space and a notch hole formed on the side wall of the partial lens barrel. Accordingly, a very small amount of organic substances and exposure light that are disposed between the lens barrel body 41 and the cover 42 and are volatilized from the covering material of the wiring 51 connected to each piezo element 49 are exposed. It is possible to suppress the gas to be absorbed from being mixed into the lens barrel body 41, and it is possible to efficiently discharge the harmful substances and the gas that absorbs the exposure light to the outside of the lens barrel 40. .
  • a partition wall 54 is formed in the lens barrel body 41 to limit direct exposure of each piezo element 49.
  • the projection optical system PL is housed in the lens barrel 40. Therefore, the absorbing gas can be efficiently discharged from the lens barrel 40, and a reduction in the efficiency of the exposure light EL and the occurrence of fogging in each of the lens elements 43, 45 can be suppressed. Therefore, the exposure accuracy of the exposure apparatus can be improved.
  • the embodiment of the present invention may be modified as follows.
  • the purge gas supply port 60 is provided in the first partial barrel 41 a and the ninth partial barrel 41 i of the barrel body 41, respectively, and the gas exhaust port 61 is provided in the barrel 40.
  • the structure is provided almost at the center.
  • a gas exhaust port 61 is provided in each of the first partial barrel 41 a and the ninth partial barrel 41 i of the barrel body 41, and a purge gas supply port 60 is provided in the barrel body 41.
  • a configuration may be provided between the two partial lens barrels 4 la and 41 i in the above.
  • the opening cross-sectional area of the purge gas supply port 60 is formed to be larger than the opening cross-sectional area of the gas discharge port 61, or the number of the purge gas supply ports 60 is increased. It is necessary to make the introduction pressure of the purge gas higher than in the above embodiment.
  • the purge gas supply port 60 and the gas discharge port 61 are connected to the projection optical system P
  • the lens barrel 40 for accommodating L was provided.
  • the purge gas supply port 60 and the gas discharge port 61 can be similarly provided in the lens barrel 19 that houses the illumination optical system 17.
  • the purge gas supply port 60 is provided near the entrance end and the exit end of the exposure light EL in the barrel 19, and the gas exhaust port 61 is provided between the entrance end and the exit end of the barrel 19. May be provided.
  • the gas outlet 61 may be provided near the entrance end and the exit end of the lens barrel 19, and the purge gas supply port 60 may be provided between the entrance end and the emission end of the lens barrel 19.
  • the lens barrel 40 is provided with the cover 42.
  • the cover 42 may be omitted.
  • the gas outlet 61 is provided directly on the lens barrel body 41.
  • the lens barrel 40 is provided with the piezo element 49 as a driving mechanism for driving the movable lens element 43.
  • the drive mechanism is not limited to piezo elements.
  • the driving mechanism for example, a configuration using a motor may be used.
  • the partition wall 54 is provided in a portion corresponding to each piezo element 49 in the lens barrel main body 41.
  • the partition wall 54 may be omitted.
  • the exposure apparatus of the present invention is not limited to a reduction exposure type exposure apparatus, and may be, for example, a 1: 1 exposure type or an enlargement type exposure apparatus.
  • glass reticles are used to manufacture reticles or masks used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, and electron beam exposure equipment.
  • the present invention is also applicable to an exposure apparatus that transfers a circuit pattern from a substrate to a silicon wafer.
  • a transmissive reticle is generally used in an exposure apparatus that uses DUV (deep ultraviolet) or VUV (vacuum ultraviolet) light, and the reticle substrate is made of quartz glass, fluorine-doped quartz glass, fluorite, or fluorine. Magnesium oxide or quartz is used.
  • transmission-type masks stencil masks, mem- rene masks
  • silicon wafers are used as mask substrates.
  • an exposure device used to manufacture device displays such as (LCD) and transfer device patterns onto glass plates
  • the present invention can be applied to an exposure apparatus used for manufacturing an imaging device such as a CCD, a CCD, and the like.
  • the present invention can be applied to a step-and-repeat type batch exposure type exposure apparatus in which a pattern of a mask is transferred to a substrate while the mask and the substrate are stationary, and the substrate is sequentially stepped. it can.
  • single-wavelength laser light in the infrared or visible range oscillated from a DFB semiconductor laser or fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and nonlinearly amplified. Higher harmonics whose wavelength has been converted to ultraviolet light using a crystal may be used.
  • the exposure apparatus of the embodiment is manufactured, for example, as follows.
  • a plurality of lens elements 43 and 45 and a cover glass 46 and the like constituting the projection optical system PL are accommodated in the partial lens barrels 40a to 41i of the present embodiment.
  • the partial lens barrels 40a to 41i are stacked and fixed to form a lens barrel 40.
  • An illumination optical system 17 including optical members such as a plurality of lenses 12, 13 a, 13 b, and 16 and a mirror 15 is housed in a lens barrel 19. Then, the illumination optical system 17 and the projection optical system PL are incorporated in the main body of the exposure apparatus to perform optical adjustment.
  • a wafer stage WST (including a reticle stage RST in the case of a scan type exposure apparatus) including a large number of mechanical parts is attached to the exposure apparatus main body, and wiring is connected. Then, after connecting the purge gas supply system piping that supplies the purge gas into the optical path of the exposure light EL, further general adjustments (electrical adjustment, operation confirmation, etc.) are performed.
  • Each component constituting the lens barrel 40 is assembled after removing impurities such as processing oil and metal substances by ultrasonic cleaning or the like. It is desirable that the manufacture of the exposure apparatus be performed in a clean room in which the temperature, humidity and pressure are controlled and the degree of cleanness is adjusted.
  • Figure 4 shows a flowchart of an example of manufacturing devices (semiconductor devices such as IC and LSI, liquid crystal display devices, imaging devices (such as CCDs), thin-film magnetic heads, micromachines, etc.).
  • step S101 design step
  • step S102 mask manufacturing step
  • step S103 substrate manufacturing step
  • a substrate wafer W when a silicon material is used
  • step S104 substrate processing step
  • step S105 device assembling step
  • step S105 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (such as chip encapsulation).
  • step S106 (inspection step), an operation check test, a durability test, and the like of the device manufactured in step S105 are performed. After these steps, the device is completed and shipped.
  • FIG. 5 is a diagram showing an example of a detailed flow of step S104 in FIG. 4 in the case of a semiconductor device.
  • step S111 oxidation step
  • step S112 CVD step
  • step S113 electrode formation step
  • step S114 ion implantation step
  • ions are implanted into the wafer W.
  • step S115 resist forming step
  • step S116 exposure step
  • step S116 exposure step
  • step S117 development step
  • step S118 etching step
  • step S119 resist removing step
  • the exposure apparatus having the effect (E) is used, and the resolution can be improved by the exposure light EL in the vacuum ultraviolet region.
  • the exposure amount can be controlled with high accuracy. Therefore, the exposure accuracy can be improved, and a highly integrated device having a minimum line width of about 0.1 m can be manufactured at a high yield.
  • the absorbent gas in the lens barrel ⁇ can be exhausted efficiently as a whole, and the absorbent gas remains in a part of the housing in the lens barrel. Can be suppressed.
  • the optical mechanism caused by the absorbing gas generated by driving the drive mechanism and volatilizing from the members constituting the drive mechanism and the like generation of fogging of the member can be effectively suppressed. Therefore, high optical performance in the lens barrel can be maintained.
  • the pressure of the purge gas in the housing body is set to be higher than that in the cover.
  • exposure accuracy can be improved, and a highly integrated device can be manufactured with high yield.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A lens-barrel and an exposure device allowing the inside of the lens-barrel to be efficiently purged with specified gas and capable of emitting passing beam while maintaining the high energy thereof, and a method of manufacturing a device by using the exposure device; the exposure device used for the manufacture of the device, comprising an exposure light source (11), an illuminating optical system (17), and a lens-barrel (40) storing a projection optical system PL, the lens-barrel (40) further comprising a lens-barrel body (41), a cover (42) for covering a part thereof, and lens elements (43, 45), wherein purge gas inlets (60) for feeding purge gas are provided in the partial lens-barrels (41a, 41i) of the lens-barrel body (41), and a gas outlet (61) for discharging the gas in the lens-barrel (40) is provided at approximately the center of the cover (42), and partition walls (54) for limiting the exposure of piezo elements (49) to the inside of the lens-barrel body (41) are provided on the inner peripheral side of the lens-barrel body (41) at the portions corresponding to the piezo elements (49).

Description

鏡筒及び露光装置並びにデバィスの製造方法 [技術分野] TECHNICAL FIELD The present invention relates to a lens barrel, an exposure apparatus and a device manufacturing method.
本発明は、 例えば、 半導体素子、 液晶表示素子、 撮像素子、 薄膜磁気ヘッド等 のデパイスの製造プロセスにおけるフォトリソグラフィー工程で使用される鏡筒 及び露光装置並びに、 前記デバイスの製造方法に関するものである。  The present invention relates to, for example, a lens barrel and an exposure apparatus used in a photolithography step in a process for manufacturing a device such as a semiconductor device, a liquid crystal display device, an imaging device, and a thin film magnetic head, and a method for manufacturing the device.
[背景技術] [Background technology]
従来の露光装置は、 所定のパターンが形成されたレチクル、 フォトマスク等の マスクを所定の露光光で照明し、 前記所定のパターンの像を、 投影光学系を介し てフォトレジスト等の感光性材料の塗布されたウェハ、 ガラスプレート等の基板 上に転写する。  A conventional exposure apparatus illuminates a mask such as a reticle or a photomask on which a predetermined pattern is formed with predetermined exposure light, and irradiates an image of the predetermined pattern with a photosensitive material such as a photoresist through a projection optical system. Transfer onto a substrate such as a wafer or a glass plate coated with.
前記投影光学系は多数の光学部材、 例えば複数のレンズェレメント等からなつ ており、 これらレンズエレメントは鏡筒に保持されている。 一部のレンズエレメ ントには、 例えばピエゾ素子等の駆動機構が接続されている。 駆動機構により同 レンズエレメントを駆動させることにより、 前記投影光学系の結像特性を調整す る。 .  The projection optical system includes a number of optical members, for example, a plurality of lens elements, and these lens elements are held in a lens barrel. A drive mechanism such as a piezo element is connected to some of the lens elements. By driving the lens element by a driving mechanism, the imaging characteristics of the projection optical system are adjusted. .
特に半導体素子にあっては、 近年ますます高集積化が進行しており、 その回路 パターンにおける一層の微細化の要求が高まっている。 この微細化要求に対応す るため、 より波長の短い遠紫外光、 例えば K r Fエキシマレーザ光 (λ == 2 4 8 n m) 、 A r Fエキシマレーザ光 (λ = 1 9 3 η πι) が主流となっているが、 さ らに波長の短い 2 0 0 n m程度以下の真空紫外域の F 2 レーザ光 (λ = 1 5 7 n m) 等を露光光とした露光装置も開発されている。 Particularly in semiconductor devices, in particular, the degree of integration has been further increasing in recent years, and the demand for further miniaturization of circuit patterns has been increasing. In order to meet this demand for miniaturization, far-ultraviolet light with a shorter wavelength, for example, KrF excimer laser light (λ == 248 nm), ArF excimer laser light (λ = 193 ηπι) While the mainstream, have been developed an exposure apparatus in which the short wavelength 2 0 0 nm approximately below the vacuum ultraviolet region of the F 2 laser beam (λ = 1 5 7 nm) such as an exposure light is al .
ところで、 波長の短い露光光を用いる場合、 鏡筒内の酸素、 水蒸気、 炭化水素 ガスなどの気体や、 この露光光と反応してレンズエレメントの表面に曇り物質を 生ずる気化した有機物質などによって、 短波長の露光光が吸収されることが明ら かになつてきた。 特に露光光として A r Fエキシマレーザ光、 F 2 レーザ光を採 用した場合には、 露光光が上述した気体や有機物質によって吸収されることによ り、 光源から出射された露光光が前記基板に到達十るまでにそのエネルギーが大 きく低下することがある。 By the way, when exposure light having a short wavelength is used, oxygen, water vapor, hydrocarbon gas, or the like in the lens barrel, or a vaporized organic substance that reacts with the exposure light to produce a cloudy substance on the surface of the lens element, etc. It has become clear that short wavelength exposure light is absorbed. Particularly A r F excimer laser light as exposure light, when adopted the F 2 laser light, in the exposure light is absorbed by the gas and organic substances mentioned above In some cases, the energy of the exposure light emitted from the light source may be significantly reduced before reaching the substrate.
従来構成では、 レンズエレメントを駆動するための駆動機構が装備されている In the conventional configuration, a drive mechanism for driving the lens element is provided.
。 この駆動機構のうちでピエゾ素子は、 外部への有機物の放出が少なく、 前記レ ンズエレメントの駆動機^ fとして好適である。 しかしながら、 ピエゾ素子には、 給電線や信号供給線が必要であり、 それらの電線の被覆物質から極微量の可塑剤 等の有機物質が発生する可能性は否定できない。 . Among these driving mechanisms, a piezo element emits a small amount of organic substances to the outside, and is suitable as a driving device for the lens element. However, the piezo element requires a power supply line and a signal supply line, and the possibility that a trace amount of an organic substance such as a plasticizer is generated from the covering material of the electric wire cannot be denied.
このように、 露光光自体のエネルギーが低下したり、 レンズエレメント等の曇 りによつて露光光の透過率が低下したりすると、 露光装置の露光性能が低下し、 製品の歩留まりが低下することになる。  As described above, when the energy of the exposure light itself is reduced, or when the transmittance of the exposure light is reduced due to clouding of the lens element, etc., the exposure performance of the exposure apparatus is reduced, and the product yield is reduced. become.
このような問題を解決するために、 前記鏡筒内を所定のガスでパージする露光 装置も開発されつつある。 すなわち、 所定のパージガスを、 前記鏡筒の一端側か ら供給するとともにその他端側から排出するものである。 しかしながら、 この鏡 筒では、 レンズェレメントを保持する保持部材の形状、, レンズエレメントの配置 等の要因により、 その鏡筒内部にパージガスがスムースに流通せず、 有機物質や 酸素、 水蒸気、 炭化水素ガスなどの気体が残存する淀みが生じる場合がある。 こ のような淀みが存在すると、 前記露光装置における露光性能の低下を十分に抑制 できないという問題があった。  In order to solve such a problem, an exposure apparatus for purging the inside of the lens barrel with a predetermined gas has been developed. That is, a predetermined purge gas is supplied from one end of the lens barrel and discharged from the other end. However, in this lens barrel, due to factors such as the shape of the holding member for holding the lens element, the arrangement of the lens element, and the like, the purge gas does not flow smoothly inside the lens barrel, and organic substances, oxygen, water vapor, hydrocarbons, etc. Stagnation in which gas such as gas remains may occur. When such a stagnation exists, there is a problem that a decrease in exposure performance of the exposure apparatus cannot be sufficiently suppressed.
[発明の開示] ^ [Disclosure of the Invention] ^
本発明は、 このような従来の技術に存在する問題点に着目してなされたもので ある。 本発明の目的は、 鏡筒内を効率よく所定のガスでパージすることができて 、 露光光のエネルギーを高く保ったままで通過することのできる鏡筒及ぴ露光装 置を提供することにある。 また、 本発明の目的は、 このような露光装置を用いて 、 デバイスを製造する方法を提供することにある。  The present invention has been made by paying attention to such problems existing in the conventional technology. An object of the present invention is to provide a lens barrel and an exposure apparatus that can efficiently purge the inside of the lens barrel with a predetermined gas and pass through while keeping the energy of exposure light high. . Another object of the present invention is to provide a method for manufacturing a device using such an exposure apparatus.
前記目的を達成するために、 請求の範囲 1に記載の発明は、 複数の光学部材を 保持する筐体を有し、 その筐体の内部に所定のパージガスを供給するようにした 鏡筒において、 前記筐体の内部に前記パージガスを供給するパージガス供給口ま たは前記筐体から該筐体内のガスを排出するガス排出口の一方を前記筐体の一端 部及び他端部に設けるとともに、 前記パージガス供給口またはガス排出口の他方 を前記筐体の一端部と他端部の間に設けたことを特徴とするものである。 In order to achieve the above object, the invention according to claim 1 has a lens barrel having a housing for holding a plurality of optical members, and supplying a predetermined purge gas into the housing. One of a purge gas supply port for supplying the purge gas into the casing or a gas discharge port for discharging gas from the casing from the casing is connected to one end of the casing. And the other end of the purge gas supply port or the gas discharge port is provided between the one end and the other end of the housing.
請求の範囲 1の発明によれば、 所定のパージガスをパージガス供給口を介して 筐体内に導入すると、 同筐体内に存在する酸素、 水蒸気、 炭化水素ガスなどの露 光光を吸収する気体や、 露光光と反応してレンズエレメントの表面に曇り物質を 生ずる気化した有機物等 (これらを総称して 「吸収性ガス」 とする) は、 ガス排 出口を介して筐体外に排出される。 その際、 パージガスは、 筐体の両端部のパー ジガス供給口から両端部の間に設けられたガス排出口へ、 あるいは両端部の間に 設けられたパージガス供給口から両端部のガス排出口へと流通する。 このため、 パージガスが筐体の全体にわたって効率よく流通され、 筐体内の吸収性ガスを含 む気体が全体的に効率よく排出される。 このため、 筐体の一部にパージガスの淀. みが生じ、 吸収性ガスが筐体外に排出されずに残るのが抑制される。 なお、 ここ でいう 「吸収性ガスを含む気体」 とは、 例えば、 露光装置本体を組み立てて調整 後にガスパージが行われた直後であれば空気であり、 ガスパージが完了した後は 、 吸収性ガスを含む所定のパージガスである。  According to the first aspect of the present invention, when a predetermined purge gas is introduced into the housing through the purge gas supply port, a gas that absorbs exposure light such as oxygen, water vapor, and hydrocarbon gas existing in the housing, Evaporated organic substances (which are collectively referred to as “absorptive gas”) that react with the exposure light to produce a cloudy substance on the surface of the lens element are discharged out of the housing through a gas discharge outlet. At this time, the purge gas is supplied from the purge gas supply port at both ends of the housing to the gas discharge port provided between both ends, or from the purge gas supply port provided between both ends to the gas discharge ports provided at both ends. Distribute with. For this reason, the purge gas is efficiently circulated throughout the casing, and the gas containing the absorptive gas in the casing is efficiently exhausted as a whole. For this reason, the purge gas stagnates in a part of the housing, and the absorption gas is prevented from remaining outside the housing without being discharged. Here, the term “gas containing an absorbing gas” refers to, for example, air immediately after gas purging is performed after assembling and adjusting the exposure apparatus main body, and is performed after the gas purging is completed. A predetermined purge gas.
請求の範囲 2の発明は、 請求の範囲 1の発明において、 前記パージガス供給口 を前記筐体の一端部及び他端部に設けるとともに、 前記ガス排出口を前記筐体の 一端部と他端部の間に設けたことを特徴とするものである。  The invention of claim 2 is the invention according to claim 1, wherein the purge gas supply port is provided at one end and the other end of the housing, and the gas discharge port is provided at one end and the other end of the housing. It is characterized by being provided between.
請求の範囲 2の発明によれば、 請求の範囲 1の発明の作用に加えて、 露光光の エネルギーをより高く保つことが望ましい筐体の両端部に吸収性ガスの淀みが生 じるのがより確実に抑制される。  According to the second aspect of the present invention, in addition to the effect of the first aspect of the present invention, it is preferable that stagnation of the absorbing gas occurs at both ends of the housing in which it is desirable to keep the energy of the exposure light higher. It is suppressed more reliably.
請求の範囲 3の発明は、 請求の範囲 1または 2の発明において、 前記複数の光 学部材のうち少なくとも一部の光学部材には、 その光学部材を駆動する駆動機構 が接続されていることを特徴とするものである。  The invention according to claim 3 is the invention according to claim 1 or 2, wherein a drive mechanism for driving the optical member is connected to at least a part of the plurality of optical members. It is a feature.
請求の範囲 3の発明によれば、 請求の範囲 1または 2の発明の作用に加えて、 駆動機構を構成する部材等から生じうる吸収性ガスがパージガスの流れに乘つて 迅速に筐体外へと排出される。 このため、 光学部材に曇りが生じるのが効果的に 抑制され、 鏡筒の高い光学性能が維持される。  According to the invention of claim 3, in addition to the function of the invention of claim 1 or 2, the absorbing gas that can be generated from the members constituting the drive mechanism, etc., rides on the flow of the purge gas and quickly goes out of the housing. Is discharged. For this reason, fogging of the optical member is effectively suppressed, and high optical performance of the lens barrel is maintained.
請求の範囲 4の発明は、 請求の範囲 1〜請求の範囲 3のうちいずれか一項の発 明において、 前記筐体は、 前記複数の光学部材を保持する筐体本体と、 前記筐体 本体の少なくとも一部の外周面を覆うカバーとを有し、 前記ガス排出口は、 前記 カバーに設けられることを特徴とするものである。 The invention of claim 4 is the invention according to any one of claims 1 to 3. In the above, the housing has a housing main body that holds the plurality of optical members, and a cover that covers at least a part of an outer peripheral surface of the housing main body, and the gas outlet is provided in the cover. It is characterized by being able to.
請求の範囲 4の発明によれば、 請求の範囲 1〜 3のうちいずれか一項の発明の 作用に加えて、 ガス排出口をカバーに設けることによって、 筐体本体内のパージ ガスの圧力を、 筐体本体とカバーとの間の圧力より高く設定することができ、 露 光光の通過する筐体本体内から吸収性ガスが効率よく排出される。  According to the invention of claim 4, in addition to the function of the invention of any one of claims 1 to 3, by providing the gas outlet in the cover, the pressure of the purge gas in the housing body can be reduced. The pressure can be set higher than the pressure between the housing body and the cover, so that the absorbing gas is efficiently discharged from the housing body through which the exposure light passes.
請求の範囲 5の発明は、 請求の範囲 4の発明において、 前記複数の光学部材の うち少なくとも一部の光学部材に接続され、 その光学部材を駆動する駆動機構の 少なくとも一つが前記筐体本体内の空間に露出するのを制限する露出制限部材を 設けたことを特徴とするものである。  The invention according to claim 5 is the invention according to claim 4, wherein at least one of the driving mechanisms connected to at least some of the plurality of optical members and driving the optical members is provided in the housing body. An exposure limiting member for limiting exposure to the space is provided.
請求の範囲 5の発明によれば、 請求の範囲 4の発明の作用に加えて、 駆動機構 を構成する部材から発生した吸収性ガスが筐体本体内に流入するのが抑制され、 筐体本体内のクリーン度がより高く維持される。  According to the invention of claim 5, in addition to the effect of the invention of claim 4, the absorption gas generated from the member constituting the drive mechanism is prevented from flowing into the housing body, The cleanliness inside is kept higher.
請求の範囲 6の発明は、 請求の範囲 4または 5の発明において、 前記カバーは 、 前記筐体本体のうち、 前記駆動機構が接続された光学部材を保持する部分の外 周面を覆うことを特徴とするものである。  The invention according to claim 6 is the invention according to claim 4 or 5, wherein the cover covers an outer peripheral surface of a portion of the housing main body that holds the optical member to which the driving mechanism is connected. It is a feature.
請求の範囲 7の発明は、 請求の範囲 6の発明において、 前記ガス排出口は、 前 記筐体本体内のガスを前記駆動機構を介して排出することを特徴とするものであ る。  The invention of claim 7 is the invention of claim 6, wherein the gas discharge port discharges the gas in the housing body through the driving mechanism.
請求の範囲 6及び 7によれば、 駆動機構を構成する部材から生じうる吸収性ガ スが筐体本体内に侵入することを低減することができる。  According to Claims 6 and 7, it is possible to reduce the possibility that absorptive gas generated from members constituting the drive mechanism enters the housing body.
請求の範囲 8の発明は、 マスク上に形成されたパターンの像を基板上に転写す る露光装置において、 前記請求の範囲 1〜請求の範囲 7のうちいずれか一項の鏡 筒を備えたことを特徴とするものである。  An invention according to claim 8 is an exposure apparatus for transferring an image of a pattern formed on a mask onto a substrate, comprising the lens barrel according to any one of claims 1 to 7. It is characterized by the following.
請求の範固 9の発明は、 前記請求の範囲 8の発明において、 前記マスク上のパ ターンの像を前記基板上に投影する投影光学系を備え、 その投影光学系が前記請 求の範囲 1〜請求の範囲 5のうちいずれか一項の鏡筒からなることを特徴とする ものである。 請求の範囲 8及び 9の発明によれば、 吸収性ガスが鏡筒から効率よく排出され 、 露光光の効率低下及び光学部材における曇りの発生が抑制され、 露光精度の向 上を図ることができる。 The invention according to claim 9 is the invention according to claim 8, further comprising a projection optical system that projects an image of a pattern on the mask onto the substrate, wherein the projection optical system is configured as the scope of claim 1 To the lens barrel according to any one of claims 5 to 5. According to the invention of claims 8 and 9, the absorbing gas is efficiently exhausted from the lens barrel, the reduction in the efficiency of the exposure light and the occurrence of fogging in the optical member are suppressed, and the exposure accuracy can be improved. .
請求の範囲 1 0の発明は、 前記請求の範囲 8及び 9の露光装置を用いてデバイ スを製造することを特徴とするものである。  A tenth aspect of the present invention is characterized in that a device is manufactured using the exposure apparatus according to the eighth and ninth aspects.
請求の範囲 1 0の発明によれば、 露光精度が向上され、 高集積度のデバイスを 歩留まりよく製造することができる。  According to the tenth aspect of the present invention, exposure accuracy is improved, and a highly integrated device can be manufactured with high yield.
[図面の簡単な説明] [Brief description of drawings]
図 1は本発明の一実施形態に従う露光装置の全体構成を示す概略図。  FIG. 1 is a schematic diagram showing an overall configuration of an exposure apparatus according to one embodiment of the present invention.
図 2は図 1の露光装置の鏡筒の拡大図。  FIG. 2 is an enlarged view of the lens barrel of the exposure apparatus of FIG.
図 3は図 2の鏡筒の部分拡大断面図。  FIG. 3 is a partially enlarged sectional view of the lens barrel of FIG.
図 4はデバイスの製造方法を示すフローチヤ一ト。  Figure 4 is a flowchart showing the device manufacturing method.
図 5は半導体素子の製造方法を示すフローチヤ一ト。  FIG. 5 is a flowchart showing a method of manufacturing a semiconductor device.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下に、 本発明を半導体素子製造用の走査露光型の露光装置及びその投影光学 系を収容する鏡筒、 そして半導体素子の製造方法に具体化した一実施形態につい て図 1〜図 5に基づいて説明する。  Hereinafter, an embodiment in which the present invention is embodied in a scanning exposure type exposure apparatus for manufacturing a semiconductor element, a lens barrel accommodating a projection optical system thereof, and a method for manufacturing a semiconductor element will be described with reference to FIGS. 1 to 5. Will be explained.
まず、 露光装置の概略構成について説明する。  First, a schematic configuration of the exposure apparatus will be described.
図 1に示すように、 露光光源 1 1は、 露光光 E Lとして、 例えば K r Fエキシ マレーザ光、 A r Fエキシマレーザ光、 F 2 レーザ光等のパノレス光を出射する。 露光光 E Lは、 オプティカルインテグレータとして、 例えば多数のレンズ 'エレメ ントからなるフライアイレンズ 1 2に入射し、 そのフライアイレンズ 1 2の出射 面上には、 それぞれのレンズエレメントに対応した多数の 2次光源像が形成され る。 なお、 オプティカルインテグレータはロッドレンズであってもよレ、。 前記フ ライアイレンズ 1 2から出射された露光光 E Lは、 リ レーレンズ 1 3 a, 1 3 b 、 レチクルブラインド 1 4、 ミラー 1 5、 コンデンサレンズ 1 6を介して半導体 素子等の回路パターン等が描かれ、 かつ、 レチクルステージ R S T上に载置され たマスクとしてのレチクル Rに入射する。 As shown in FIG. 1, the exposure light source 1 1, as the exposure light EL, emitted for example K r F excimer Mareza light, A r F excimer laser light, the Panoresu light of F 2 laser beam or the like. The exposure light EL, as an optical integrator, is incident on, for example, a fly-eye lens 12 composed of a large number of lenses, and on the exit surface of the fly-eye lens 12, a large number of lenses corresponding to each lens element are provided. A secondary light source image is formed. The optical integrator may be a rod lens. Exposure light EL emitted from the fly-eye lens 12 passes through a relay lens 13a, 13b, a reticle blind 14, a mirror 15 and a condenser lens 16 to form a circuit pattern of a semiconductor element or the like. Drawn and placed on reticle stage RST Incident on a reticle R as a mask.
フライアイレンズ 1 2、 リ レーレンズ 1 3 a, 1 3 b、 ミラー 1 5、 コンデン サレンズ 1 6の合成系は、 前記 2次光源像をレチクル R上で重畳させ、 レチクル Rを均一な照度で照明する照明光学系 1 7を構成している。 レチクルプラインド 1 4は、 その遮光面がレチクル Rのパターン領域と共役な関係をなすように配置 されている。 レチクルブラインド 1 4は、 レチクルブラインド駆動部 1' 8により 開閉可能な複数枚の可動遮光部 (例えば 2枚の L字型の可動遮光部) からなつて いる。 それらの可動遮光部により形成される開口部の大きさ (スリッ ト幅等) を 調整することにより、 レチクル Rを照明する照明領域を任意に設定する。  The combined system of the fly-eye lens 12, the relay lenses 13a and 13b, the mirror 15 and the capacitor lens 16 superimposes the secondary light source image on the reticle R and illuminates the reticle R with uniform illuminance. The illumination optical system 17 is constructed. Reticle blind 14 is arranged such that its light-shielding surface is conjugate with the pattern area of reticle R. The reticle blind 14 is composed of a plurality of movable light shields (for example, two L-shaped movable light shields) that can be opened and closed by a reticle blind drive unit 1'8. By adjusting the size (slit width, etc.) of the opening formed by these movable light-shielding portions, the illumination area for illuminating the reticle R is set arbitrarily.
レチクルステージ R S Tは、 露光光 E Lの光軸 A Xに垂直な平面内においてレ チクル Rを 2次元方向に微動可能に保持している。 レチクルステージ R S Tは、 リニアモータ等で構成されたレチクルステージ駆動部 2 0により所定の方向 (走 查方向 (Y方向) ) に移動可能となっている。 レチクルステージ R S Tは、 レチ クル Rの全面が少なくとも前記露光光 E Lの光軸 A Xを横切ることができるだけ の移動ス トロークを有している。 なお、 図 1においては、 投影光学系 P Lの光軸 に沿う方向を Z方向、 投影光学系 P Lの光軸及び紙面と直交する方向を X方向、 投影光学系 P Lの光軸に直交し紙面に沿う方向を Y方向とする。  The reticle stage R ST holds the reticle R in a plane perpendicular to the optical axis AX of the exposure light EL so as to be finely movable in a two-dimensional direction. The reticle stage R ST can be moved in a predetermined direction (traveling direction (Y direction)) by a reticle stage driving section 20 composed of a linear motor or the like. The reticle stage R ST has a moving stroke that allows the entire surface of the reticle R to cross at least the optical axis AX of the exposure light EL. In Fig. 1, the direction along the optical axis of the projection optical system PL is the Z direction, the direction orthogonal to the optical axis of the projection optical system PL and the paper is the X direction, and the direction orthogonal to the optical axis of the projection optical system PL is the paper. The direction along this is the Y direction.
レチクルステージ R S Tの端部には、 干渉計 2 1からのレーザビームを反射す る移動鏡 2 2が固定されている。 この干渉計 2 1によって、 レチクルステージ R S Tの走査方向の位置が常時検出され、 その位置情報はレチクルステージ制御部 2 3に送られる。 レチクルステージ制御部 2 3は、 レチクルステージ R S Tの位 置情報に基づいてレチクルステージ駆動部 2 0を制御し、 レチクルステージ R S Tを移動させる。  A movable mirror 22 that reflects the laser beam from the interferometer 21 is fixed to an end of the reticle stage RST. The position of the reticle stage R ST in the scanning direction is constantly detected by the interferometer 21, and the position information is sent to the reticle stage controller 23. Reticle stage control section 23 controls reticle stage drive section 20 based on the position information of reticle stage RST, and moves reticle stage RST.
レチクル Rを通過した露光光 E Lは、 例えば両側テレセン卜リックな投影光学 系 P Lに入射する。 投影光学系 P Lは、 レチクル R上の回路パターンを例えば 1 / 5あるいは 1 Z 4に縮小した投影像を、 表面に前記露光光 E Lに対して感光性 を有するフォ トレジストが塗布された基板としてのウェハ W上に形成する。 ウェハ Wは、 ウェハホルダ 3 0を介してウェハステージ W S T上に保持されて いる。 ウェハホルダ 3 0は図示しない駆動部により、 投影光学系 P Lの最適結像 面に対し、 任意方向に傾斜可能で、 かつ投影光学系 P Lの前記光軸 A X方向 (Z 方向) に微動可能になっている。 また、 ウェハステージ W S Tは、 モータ等のゥ ェハステージ駆動部 3 1により、 前記走査方向 (Y方向) の移動のみならず、 走 査方向に垂直な方向 (X方向) にも移動可能に構成されている。 これにより、 ゥ ェハ W上の各ショッ ト領域毎に走査露光を繰り返すステップ ·アンド 'スキャン 動作が可能になっている。 The exposure light EL that has passed through the reticle R enters, for example, a double-sided telecentric projection optical system PL. The projection optical system PL serves as a substrate having a circuit pattern on the reticle R reduced to, for example, 1/5 or 1Z4, the surface of which is coated with a photoresist having photosensitivity to the exposure light EL. Formed on wafer W. Wafer W is held on wafer stage WST via wafer holder 30. The wafer holder 30 is driven by a drive unit (not shown) to achieve optimal imaging of the projection optical system PL It can be tilted in any direction with respect to the plane, and can be finely moved in the optical axis AX direction (Z direction) of the projection optical system PL. The wafer stage WST is configured to be movable not only in the scanning direction (Y direction) but also in a direction (X direction) perpendicular to the scanning direction by a wafer stage driving unit 31 such as a motor. I have. This makes it possible to perform a step-and-scan operation in which scanning exposure is repeated for each shot area on the wafer W.
ウェハステージ W S Tの端部には、 干渉計 3 2からのレーザビームを反射する 移動鏡 3 3が固定されており、 ウェハステージ W S Tの X方向及び Y方向の位置 は干渉計 3 2によって常時検出される。 ウェハステージ W S Tの位置情報 (また は速度情報) はウェハステージ制御部 3 4に送られ、 ウェハステージ制御部 3 4 はこの位置情報 (または速度情報) に基づいて前記ウェハステージ駆動部 3 1を 制御する。 '  A movable mirror 33 that reflects the laser beam from the interferometer 32 is fixed to the end of the wafer stage WST, and the position of the wafer stage WST in the X and Y directions is constantly detected by the interferometer 32. You. The position information (or speed information) of the wafer stage WST is sent to the wafer stage control unit 34, and the wafer stage control unit 34 controls the wafer stage drive unit 31 based on the position information (or speed information). I do. '
ステップ 'アンド 'スキャン方式により、 レチクル R上の回路パターンをゥェ ハ W上のショット領域に走査露光する場合、 レチクル R上の照明領域が、 前記レ チクルブラインド 1 4で長方形 (スリ ッ ト) 状に整形される。 この照明領域は、 レチクル R側の走査方向 (+ Y方向) に対して垂直方向に長手方向を有するもの となっている。 そして、 レチクル Rを露光時に所定の速度 V 1-で走査することに より、 前記レチクル R上の回路パターンを前記スリット状の照明領域で一端側か ら他端側に向かって順次照明する。 これにより、 前記照明領域内におけるレチク ル R上の回路パターンが、 前記投影光学系 P Lを介してウェハ W上に投影され、 投影領域が形成される。  When the circuit pattern on reticle R is scanned and exposed on the shot area on wafer W by the step-and-scan method, the illumination area on reticle R is rectangular (slit) with reticle blind 14. It is shaped into a shape. This illumination area has a longitudinal direction perpendicular to the scanning direction (+ Y direction) on the reticle R side. The circuit pattern on the reticle R is sequentially illuminated from one end to the other end in the slit-shaped illumination area by scanning the reticle R at a predetermined speed V 1- during exposure. Thereby, the circuit pattern on the reticle R in the illumination area is projected onto the wafer W via the projection optical system PL, and a projection area is formed.
ウェハ Wはレチクル Rとは倒立結像関係にあるため、 前記レチクル Rの走査方 向とは反対方向 (一 Y方向) に前記レチクル Rの走査に同期して所定の速度 V w で走査される。 これ,により、 ウェハ Wのショット領域の全面が露光可能となる。 走査速度の比 V wZ V rは投影光学系 P Lの縮小倍率に応じたものになっており 、 レチクル R上の回路パターンがウェハ W上の各ショット領域上に正確に縮小転 写される。  Since the wafer W is in an inverted imaging relationship with the reticle R, the wafer W is scanned at a predetermined speed V w in a direction opposite to the scanning direction of the reticle R (one Y direction) in synchronization with the scanning of the reticle R. . As a result, the entire shot area of the wafer W can be exposed. The scanning speed ratio VwZVr is in accordance with the reduction magnification of the projection optical system PL, and the circuit pattern on the reticle R is accurately reduced and transferred onto each shot area on the wafer W.
次に、 前記投影光学系 P L及びその投影光学系 P Lを収容する鏡筒 4 0の構成 について、 図 1〜図 3を参照して説明する。 図 1に示すように、 前記投影光学系 P Lは、 前記レチクル Rとウェハ Wとの間 に配置され、 レンズエレメント 4 3 , 4 5からなる複数の光学部材を備えた光学 系である。 この投影光学系 P Lを収容する鏡筒 4 0は、 前記各レンズエレメント 4 3 , 4 5を保持する筐体本体としての鏡筒本体 4 1 と、 同鏡筒本体 4 1の外周 面から所定だけ離間して、 その一端がフランジ F L Gに固定され、 他端が鏡筒本 体 4 1の上端部に固定されるカバー 4 2とを備えている。 カバー 4 2を構成する 材料は特に限定されず、 例えば、 真鍮、 ステンレス、 アルミニウム、 チタン等の 金属、 あるいは後述する薄膜部材又は弾性部材を採用することができる。 なお、 カバー 4 2を介して鏡筒本体 4 1に振動が伝達されるのを抑制するように、 カバ 一 4 2の一端とフランジ F L Gとの間、 及びカバー 4 2の他端と鏡筒本体 4 1の 上端部との間の少なく とも一方を、 薄膜部材又は弾性部材で接続してもよい。 好 ましい薄膜部材は、 エチレンビニルアルコール樹脂 (E V O H樹脂) よりなるフ イルム素材と、 そのフィルム素材の外面に接着剤を介して被着されたポリェチレ ンょりなる伸縮性の良好な保護膜と、 そのフィルム素材の内面に蒸着されたアル ミニゥム層とからなる積層フィルムである。 なお、 脱ガスの発生が抑制された薄 膜部材であれば、 積層フィルムに限定されない。 好ましい弾性部材の素材は、 脱 ガスの発生が抑制されるようにケミカルクリーン処理 (例えば、 表面にアルミ- ゥムなどの金属を蒸着する蒸着処理や、 表面をテフロン (商標) で被覆するテフ ロンコート処理) されたフッ素ゴム及び金属材料である。 薄膜部材及ぴ弾性部材 は蛇腹状に形成されてもよい。 . Next, the configuration of the projection optical system PL and the lens barrel 40 that houses the projection optical system PL will be described with reference to FIGS. As shown in FIG. 1, the projection optical system PL is an optical system that is disposed between the reticle R and the wafer W and includes a plurality of optical members including lens elements 43 and 45. The lens barrel 40 accommodating the projection optical system PL includes a lens barrel body 41 as a housing body that holds the lens elements 43 and 45, and a predetermined amount from the outer peripheral surface of the lens barrel body 41. A cover 42 having one end fixed to the flange FLG and the other end fixed to the upper end of the lens barrel body 41 is provided. The material forming the cover 42 is not particularly limited, and for example, a metal such as brass, stainless steel, aluminum, or titanium, or a thin film member or an elastic member described later can be employed. In order to suppress transmission of vibration to the lens barrel main body 41 via the cover 42, between the one end of the cover 42 and the flange FLG, and between the other end of the cover 42 and the lens barrel main body. At least one of the upper and lower ends may be connected by a thin film member or an elastic member. A preferred thin film member is a film material made of ethylene vinyl alcohol resin (EVOH resin), and a protective film with good elasticity made of polyethylene, which is adhered to the outer surface of the film material with an adhesive. A laminated film comprising an aluminum layer deposited on the inner surface of the film material. Note that the thin film member is not limited to a laminated film as long as the generation of degassing is suppressed. A preferable material for the elastic member is a chemical clean treatment (for example, a vapor deposition treatment for evaporating a metal such as aluminum on the surface, or a Teflon coat for covering the surface with Teflon (trademark)) so as to suppress generation of degassing. Treated) fluororubber and metal material. The thin film member and the elastic member may be formed in a bellows shape. .
鏡筒本体 4 1は、 図 2に示すように、 複数の部分鏡筒が互いに固定されて構成 されている。 すなわち、 レチクル R側から順に、 第 1部分鏡筒 4 1 a、,第 2部分 鏡筒 4 1 b、 第 3部分鏡筒 4 1 c、 第 4、 第 5、 第 6、 第 7、 第 8、 第 9部分鏡 筒 4 1 d、 4 1 e、 4 1 f 4 1 g、 4 1 h、 4 1 iに分割されている。 第 5部 分鏡筒 4 1 eと第 6部分鏡筒 4 1 f との間にフランジ F L Gが設けられている。 なお、 本実施形態では、 鏡筒 4 0を 9つの部分鏡筒 4 1 a〜4 1 iに分割してい るが、 分割数はこれに限られるものではない。 As shown in FIG. 2, the lens barrel main body 41 is configured by fixing a plurality of partial lens barrels to each other. That is, in order from the reticle R side, the first partial barrel 41a, the second partial barrel 41b, the third partial barrel 41c , the fourth, fifth, sixth, seventh, eighth The ninth partial tube 41d, 41e, 41f41g, 41h, and 41i are divided. A flange FLG is provided between the fifth partial barrel 41e and the sixth partial barrel 41f. In the present embodiment, the lens barrel 40 is divided into nine partial lens barrels 41a to 41i, but the number of divisions is not limited to this.
図 1に示すように、 これらの部分鏡筒及ぴフランジ F L Gが設けられている部 分鏡筒には、 少なく とも一つのレンズエレメン小 4 3, 4 5 'が不図示のレンズ保 持部材によって各部分鏡筒にそれぞれ保持されている。 また、 第 1部分鏡筒 4 1 aのレチクル R側の端部、 及び第 9部分鏡筒 4 1 iのウェハ W側の端部にはカバ 一ガラス 4 6が設けられている。 As shown in FIG. 1, at least one lens element element 43, 45 'is provided in the lens barrel provided with the partial lens barrel and the flange FLG. Each of the partial barrels is held by a holding member. Cover glass 46 is provided at the end of the first partial barrel 41 a on the reticle R side and at the end of the ninth partial barrel 41 i on the wafer W side.
図 1及び図 2に示すように、 フランジ F L Gが設けられている部分鏡筒及びそ れより下側、 すなわちウェハ W側に配置される第 6〜第 9部分鏡筒 4 1 f 〜4 1 iには、 静止レンズエレメン ト 4 5が不図示の保持部材によって保持されている 。 また、 フランジ F L Gより上側、 すなわちレチクル R側に配置される第 1〜第 5部分鏡筒 4 1 a〜4 1 eのそれぞれには、 少なくとも一つの可動レンズエレメ ント 4 3 (図 2においては 1個のみ図示) を備える。 また、 第 1〜第 5部分鏡筒 4 1 a〜4 1 eには、 図 1に示すように、 可動レンズェレメント 4 3を支持する 支持部材 4 7と、 駆動機構に含まれるピエゾ素子 4 9とを備える。 なお、 レンズ エレメント 4 3 , 4 5は、 その外周において、 例えば 3ケ所で前記保持部材に保 持されるために、 部分鏡筒 4 1 a〜4 1 iの内壁に対して、 レンズエレメント 4 3 , 4 5及び前記保持部材の間には隙間が生じる。 これにより、 カバーガラス 4 6とレンズエレメント 4 3 , 4 5と鏡筒本体 4 1とにより区画形成される各空間 5 5〜5 7は、 支持部材 4 7に形成された通路 4 7 a (図 3参照) 、 及び前記隙 間等を介してそれぞれ連通されている。 また、 各空間 5 5〜5 7は、 各部分鏡筒 間の隙間によって、 鏡筒本体 4 1の外面と力パー 4 2の内面との間の空間 5 8と 連通している。 詳しくは、 複数の部分鏡筒のうち、 可動レンズエレメント 4 3を 備える部分鏡筒の側壁には、 ピエゾ素子 4 9の伸縮方向が鏡筒の接線方向と一致 するように、 該ピエゾ素子 4 9を収容する収容空間が形成されるとともに、 ピエ ゾ素子 4 9の駆動力を可動レンズエレメント 4 3に伝達するリ ンク機構が形成さ れる。 収容空間及びリ ンク機構は、 部分鏡筒の側壁に放電加工によって形成され るために、 部分鏡筒の側壁は複数の切欠孔を有する。 従って、 各空間 5 5〜5 7 は、 複数の切欠孔を介して、 鏡筒本体 4 1の外面とカバー 4 2の内面との間の空 間 5 8に連通されている。  As shown in FIGS. 1 and 2, the partial barrel provided with the flange FLG and the sixth to ninth partial barrels 41 f to 41 i arranged below the flange FLG, that is, on the wafer W side. The stationary lens element 45 is held by a holding member (not shown). Each of the first to fifth partial lens barrels 41 a to 41 e disposed above the flange FLG, that is, on the reticle R side, has at least one movable lens element 43 (in FIG. 2, one movable lens element 43). (Only shown). As shown in FIG. 1, the first to fifth partial lens barrels 41 a to 41 e include a support member 47 for supporting the movable lens element 43 and a piezo element 4 included in the drive mechanism. 9 is provided. Since the lens elements 43 and 45 are held by the holding member at three places on the outer periphery thereof, for example, at three places, the lens elements 43 and 45 are disposed on the inner walls of the partial lens barrels 41a to 41i. , 45 and the holding member have a gap. As a result, the spaces 55 to 57 defined by the cover glass 46, the lens elements 43, 45, and the lens barrel main body 41 are connected to the passages 47a formed in the support member 47 (see FIG. 3), and are communicated with each other through the gap and the like. Each of the spaces 55 to 57 communicates with a space 58 between the outer surface of the lens barrel body 41 and the inner surface of the force bar 42 by a gap between the respective partial lens barrels. Specifically, of the plurality of partial lens barrels, the side walls of the partial lens barrel having the movable lens element 43 are provided with piezo elements 49 such that the expansion and contraction direction of the piezoelectric element 49 matches the tangential direction of the lens barrel. Is formed, and a link mechanism for transmitting the driving force of the piezo element 49 to the movable lens element 43 is formed. Since the housing space and the link mechanism are formed on the side wall of the partial barrel by electric discharge machining, the side wall of the partial barrel has a plurality of notches. Therefore, each of the spaces 55 to 57 communicates with the space 58 between the outer surface of the lens barrel main body 41 and the inner surface of the cover 42 through a plurality of notches.
各支持部材 4 7は、 ピエゾ素子 4 9を介して鏡筒本体 4 1に連結されている。 各ピエゾ素子 4 9は、 各部分鏡筒 4 1 a〜4 1 eにおける円周方向の等角度間隔 おきに複数、 例えば 3個設けられている。—各ピエゾ素子 4 9が伸縮することによ り、 部分鏡筒の側壁に形成されたリンク機構を介して、 各支持部材 4 7が鏡筒本 体— 4 1に対して光軸 A X方向に微動される。 Each support member 47 is connected to the lens barrel main body 41 via a piezo element 49. A plurality of, for example, three piezo elements 49 are provided at equal angular intervals in the circumferential direction in each of the partial barrels 41 a to 41 e. —Each piezo element 4 9 expands and contracts Thus, each support member 47 is slightly moved in the optical axis AX direction with respect to the lens barrel main body 41 via a link mechanism formed on the side wall of the partial lens barrel.
さらに、 図 3に示すように、 ピエゾ素子 4 9が設けられた部分鏡筒 4 1 a〜 4 1 eの内壁面には、 ピエゾ素子 4 9が各部分鏡筒 4 1 a〜4 1 e内の空間に直接 露出するのを制限する露出制限部材としての隔壁 (内部カバー) 5 4が設けられ ている。 隔壁 5 4は部分鏡筒と一体的に形成されたものであっても、 別の部材で あってもよい。 各ピエゾ素子 4 9は、 鏡筒本体 4 1とカバー 4 2との間の空間 5 8内に収容された配線 5 1を介して結像特性制御部 5 2に接続されている。 結像特性制御部 5 2をはじめとして、 露光光源 1 1、 レチクルプラインド駆動 部 1 8、 レチクルステージ制御部 2 3及びウェハステージ制御部 3 4は、 主制御 系 5 3に接続されている。 これらの各構成要素は主制御系 5 3の制御の下で動作 され、 主制御系 5 3は前記レチクル R上に形成されたパターンの像をウェハ W上 に転写する一連の露光工程全体を制御している。  Further, as shown in FIG. 3, on the inner wall surface of the partial barrels 41 a to 41 e provided with the piezo elements 49, the piezo elements 49 are provided inside the respective partial barrels 41 a to 41 e. A partition (inner cover) 54 is provided as an exposure restricting member for restricting direct exposure to the space. The partition wall 54 may be formed integrally with the partial lens barrel, or may be another member. Each piezo element 49 is connected to an imaging characteristic control unit 52 via a wiring 51 housed in a space 58 between the lens barrel body 41 and the cover 42. The exposure light source 11, the reticle blind drive unit 18, the reticle stage control unit 23, and the wafer stage control unit 34, including the imaging characteristic control unit 52, are connected to the main control system 53. These components are operated under the control of the main control system 53, and the main control system 53 controls the whole series of exposure steps for transferring the image of the pattern formed on the reticle R onto the wafer W. are doing.
図 1に示すように、 鏡筒 4 0には、 その内部にパージガスを供給するパージガ ス供給口 6 0と、 鏡筒 4 0內のガスを排出するガス排出口 6 1とが設けられ.てい る。 なお、 パージガスとしては、 窒素、 ヘリウム、 アルゴン、 ネオン及びクリブ トン等の不活性ガスが用いられる。  As shown in FIG. 1, the lens barrel 40 is provided with a purge gas supply port 60 for supplying a purge gas therein and a gas discharge port 61 for discharging gas from the lens barrel 40 °. You. In addition, as the purge gas, an inert gas such as nitrogen, helium, argon, neon, and krybton is used.
パージガス供給口 6 0は、 鏡筒本体 4 1の一端部をなすレチクル側端部と他端 部をなすウェハ側端部の 2ケ所に形成されており、 これらのパージガス供給口 6 0を介してパージガスが直接鏡筒本体 4 1内に供給される。 一方、 ガス排出口 6 1は、 力パー 4 2のほぼ中央部に形成されている。 詳述すれば、 パージガス供給 口 6 0は、 第 1部分鏡筒 4 1 aの側壁と、 第 9部分鏡筒 4 1 i の側壁とに設けら れている。 なお、 カバー 4 2の他端は、 パージガス供給口 6 0の下側において、 第 1部分鏡筒 4 1 aの側壁に取付けられる。'また、 ガス排出口 · 6 1は、 カバー 4 2の中央部ではなく、 そのほかの部分、 例えば、 フランジ F L Gの近傍 (カバー The purge gas supply ports 60 are formed at two positions, that is, at the reticle side end which forms one end of the lens barrel body 41 and at the wafer side end which forms the other end, and through these purge gas supply ports 60. The purge gas is supplied directly into the lens barrel body 41. On the other hand, the gas outlet 61 is formed substantially at the center of the force par 42. More specifically, the purge gas supply port 60 is provided on the side wall of the first partial barrel 41a and the side wall of the ninth partial barrel 41i. The other end of the cover 42 is attached to the side wall of the first partial lens barrel 41a below the purge gas supply port 60. In addition, the gas outlet · 6 1 is not located at the center of the cover 4 2, but at other parts, for example, near the flange FLG (cover
4 2の端部近傍) に形成されてもよい。 (Near the end of 42).
第 1部分鏡筒 4 1 aのパージガス供給口 6 0から鏡筒本体 4 1內に供給された パージガスは、 主に空間 5 5から空間 5 6、 空間 5 7に供給される。 空間 5 5 , The purge gas supplied from the purge gas supply port 60 of the first partial barrel 41 a to the barrel body 41 內 is mainly supplied from the space 55 to the space 56 and the space 57. Space 5 5,
5 6 , 5 7に供給されたパージガスは、 第 1〜第 5部分鏡筒 4 l a〜 4 1 e間の 隙間や、 各部分鏡筒 4 1 a〜4 1 iの側壁に形成された切欠孔等を介して空間 5 8内に排出される。 各部分鏡筒 4 1 a〜4 1 iを組立調整した後であれば、 空間 5 8内には、 パージガスと空間 5 8内に残留していた空気との混合ガスが排出さ れ、 空間 5 5 , 5 6 , 5 7内がパージガスで置換された後であれば、 有機物質を 含むパージガスが排出される。 また、 第 9部分鏡筒 4 1 iのパージガス供給口 6 0から鏡筒本体 4 1内に供給されたパージガスは、 静止レンズエレメント 4 5を 保持する保持部材に形成された通路を介して、 空間 5 7に供給される。 パージガ ス供給口 6 0から空間 5 7に供給されたパージガスは、 前記通路を介して第 5部 分鏡筒 4 1 e内の空間 5 7に到達し、 その後、 第 4部分鏡筒 4 1 dと第 5部分鏡 筒 4 1 eとの間の隙間や、 第 4部分鏡筒 4 1 d又は第 5部分鏡筒 4 1 eに形成さ れた前記切欠孔から空間 5 8内に排出される。 なお、 第 9部分鏡筒 4 1 i のパー ジガス供給口 6 0から供給されたパージガスは、 その一部が第 6〜第 9部分鏡筒 4 1 f 〜4 1 i間の隙間から漏れるが、 その漏れ量は、 第 1〜第 5部分鏡筒 4 1 a〜4 1 e間の隙間から漏れるパージガス漏れ量よりも少なく、 本実施形態では 無視できる漏れ量とする。' もし、 第 6〜第 9部分鏡筒 4 1 f 〜4 1 i間の隙間か ら漏れるガス量が無視できない場合は、 第 6〜第 9部分鏡筒 4 1 f 〜4 1 iの外 側に、 所定間隔を離してカバ一を設ければよい。 同カバーを設ける場合は、 カバ 一の一端をフランジ F L Gに取付け、 他端を第 9部分鏡筒 4 1 iの側壁に取り付 ければよレ、。 ただし、 第 6〜第 9部分鏡筒 4 1 f 〜4 1 iの外側に同カバーを設 ける場合には、 このカバーにもパージガス排出口を設けても良い。 The purge gas supplied to 56 and 57 is between the first to fifth partial lens barrels 4 la to 41 e. The gas is discharged into the space 58 through a gap or a notch formed in the side wall of each of the partial lens barrels 41a to 41i. After the assembly and adjustment of each of the partial lens barrels 41a to 41i, a mixed gas of the purge gas and the air remaining in the space 58 is exhausted into the space 58, and the space 5 is discharged. After the inside of 5, 56, 57 is replaced with the purge gas, the purge gas containing the organic substance is discharged. Further, the purge gas supplied from the purge gas supply port 60 of the ninth partial lens barrel 41 i into the lens barrel body 41 passes through a passage formed in a holding member that holds the stationary lens element 45, and Supplied to 5 7. The purge gas supplied to the space 57 from the purge gas supply port 60 reaches the space 57 in the fifth-partial barrel 41 e via the passage, and thereafter, the fourth partial barrel 41 d Is discharged into the space 58 through the gap between the first and the fifth partial barrels 41 e and the notch holes formed in the fourth and fourth partial barrels 41 d and 41 e. . A part of the purge gas supplied from the purge gas supply port 60 of the ninth partial barrel 41 i leaks from the gap between the sixth to ninth partial barrels 41 f to 41 i. The leakage amount is smaller than the purge gas leakage amount leaking from the gap between the first to fifth partial lens barrels 41a to 41e, and is set to be negligible in the present embodiment. '' If the amount of gas leaking from the gap between the 6th to 9th partial barrels 41 f to 41 i cannot be ignored, the outside of the 6th to 9th partial barrels 41 f to 41 i Then, a cover may be provided at a predetermined interval. To provide the cover, one end of the cover should be attached to the flange FLG, and the other end should be attached to the side wall of the ninth partial lens barrel 41i. However, when the same cover is provided outside the sixth to ninth partial lens barrels 41 f to 41 i, the cover may also be provided with a purge gas discharge port.
次に、 前記投影光学系 P Lの結像特性調整方法について説明する。  Next, a method for adjusting the imaging characteristics of the projection optical system PL will be described.
まず、 前記レチクル R上のパターンの像をウェハ W上に転写する実露光に先立 つて、 テス トレチクノレ R tのパターンの像をテス トウェハ W t上に転写するテス ト露光を行う。 このテストウェハ W t上にテスト露光されたパターンの像を現像 する。 そして、 この現像されたパターンを顕微鏡で観察することにより、 投影光 学系 P Lの収差情報を求める。  First, prior to actual exposure for transferring the image of the pattern on the reticle R onto the wafer W, test exposure for transferring the image of the pattern on the test wafer Rt onto the test wafer Wt is performed. An image of a test-exposed pattern is developed on the test wafer Wt. Then, by observing the developed pattern with a microscope, aberration information of the projection optical system PL is obtained.
得られた収差情報を、 予め主制御系 5 3に入力するとともに記憶させる。 そし て、 主制御系 5 3は、 この収差情報に基づいて前記結像特性制御部 5 2に対し前 記各ピエゾ素子 4 9の駆動を指令する。 これにより、 前記各可動レンズエレメン ト 4 3の相対位置が変更され、 投影光学系 P Lの結像特性が補正される。 そして 、 この補正の後、 レチクル Rのパターンの像をウェハ上に転写する実露光が行わ れる。 The obtained aberration information is input to the main control system 53 in advance and stored. Then, the main control system 53 instructs the imaging characteristic control unit 52 to drive each of the piezo elements 49 based on the aberration information. Thereby, each movable lens element The relative position of G is changed, and the imaging characteristics of the projection optical system PL are corrected. Then, after this correction, actual exposure for transferring the image of the pattern of the reticle R onto the wafer is performed.
従って、 本実施形態によれば、 以下の効果を得ることができる。  Therefore, according to the present embodiment, the following effects can be obtained.
(A) 投影光学系 P Lの鏡筒 4 0では、 パージガス供給口 6 0を鏡筒本体 4 1の第 1部分鏡筒 4 1 a及び第 9部分鏡筒 4 1 iに、 ガス排出口 6 1を鏡筒 4 0 のほぼ中央のカバー 4 2に設けた。 このため、 パージガスをパージガス供給口 6 0を介して鏡筒本体 4 1内に導入すると、 同鏡筒本体 4 1内の空気はガス排出口 6 1を介して鏡筒 4 0外に排出される。 その際、 パージガスは、 鏡筒本体 4 1の 両部分鏡筒 4 l a , 4 1 iのパージガス供給口 6 0から鏡筒 4 0のほぼ中央のガ ス排出口 6 1へ流通する。 このため、 パージガスが鏡筒本体 4 1の全体にわたつ て効率よく流通され、 鏡筒 4 0内の吸収性ガスが全体的に効率よく排出される。 従って、 鏡筒本体 4 1の一部に吸収性ガスの淀みが生じるのを抑制できて、 吸収 性ガスを含むパージガスが鏡筒 4 0外に排出されずに残るのを抑制することがで きる。  (A) In the barrel 40 of the projection optical system PL, the purge gas supply port 60 is connected to the first partial barrel 41 a and the ninth partial barrel 41 i of the barrel body 41, and the gas outlet 61 Was provided on a cover 42 almost at the center of the lens barrel 40. Therefore, when the purge gas is introduced into the lens barrel body 41 through the purge gas supply port 60, the air in the lens barrel body 41 is discharged out of the lens barrel 40 through the gas discharge port 61. . At this time, the purge gas flows from the purge gas supply ports 60 of the two partial lens barrels 4 la and 41 i of the lens barrel body 41 to a gas discharge port 61 located substantially at the center of the lens barrel 40. For this reason, the purge gas is efficiently circulated throughout the lens barrel body 41, and the absorbent gas in the lens barrel 40 is efficiently exhausted as a whole. Therefore, it is possible to suppress the occurrence of stagnation of the absorbent gas in a part of the lens barrel main body 41, and to suppress the purge gas containing the absorbent gas from remaining outside the lens barrel 40 without being exhausted. .
しかも、 露光光 E Lのエネルギーをより高く保つことが望ましい鏡筒本体 4 1 の両端部、 すなわち第 1部分鏡筒 4 1 a及び第 9部分鏡筒 4 1 iに新鮮なパージ ガスを供給することができる。 このため、 第 1部分鏡筒 4 1 a及び第 9部分鏡筒 4 1 iに吸収性ガスを含むパージガスの淀みが生じるのがより確実に抑制され、 第 1部分鏡筒 4 1 a及び第 9部分鏡筒 4 1 iにおける吸収性ガスを効率よく排出 することができる。  In addition, it is desirable to supply fresh purge gas to both ends of the lens barrel body 41 where it is desirable to keep the energy of the exposure light EL higher, that is, to the first partial barrel 41a and the ninth partial barrel 41i. Can be. For this reason, stagnation of the purge gas containing the absorptive gas in the first partial barrel 41 a and the ninth partial barrel 41 i is more reliably suppressed, and the first partial barrel 41 a and the ninth partial barrel 41 i Absorbable gas in the partial lens barrel 41i can be efficiently exhausted.
( B ) 投影光学系 P Lの鏡筒 4 0では、 可動レンズエレメント 4 3を駆動す るためのピエゾ素子 4 9が装備されている。 鏡筒本体 4 1内に供給されたパージ ガスは部分鏡筒の側壁に形成されたピエゾ収容空間及び切欠孔を介して、 鏡筒 4 0の外部に排出される。 従って、 鏡筒本体 4 1とカバー 4 2との間に配置され、 かつ、 各ピエゾ素子 4 9に接続される配線 5 1の被覆材等から揮散される極微量 の有機物質や、 露光光を吸収する気体が鏡筒本体 4 1内に混入することが抑制さ れ、 また、 有害物質や露光光を吸収する気体などの吸収性ガスを鏡筒 4 0の外部 に効率よく排出することができる。 このため、 前記有機物質に起因する各レンズエレメント 4 3 , 4 5の曇りの発 生や吸収性ガスに起因する露光光の透過率低下を効果的に抑制することができる 。 従って、 投影光学系 P Lにおける高い光学性能を維持することができる。 (B) The lens barrel 40 of the projection optical system PL is provided with a piezo element 49 for driving the movable lens element 43. The purge gas supplied into the lens barrel main body 41 is discharged to the outside of the lens barrel 40 via a piezo accommodating space and a notch hole formed on the side wall of the partial lens barrel. Accordingly, a very small amount of organic substances and exposure light that are disposed between the lens barrel body 41 and the cover 42 and are volatilized from the covering material of the wiring 51 connected to each piezo element 49 are exposed. It is possible to suppress the gas to be absorbed from being mixed into the lens barrel body 41, and it is possible to efficiently discharge the harmful substances and the gas that absorbs the exposure light to the outside of the lens barrel 40. . For this reason, it is possible to effectively suppress the occurrence of fogging of each of the lens elements 43 and 45 due to the organic substance and the decrease in the transmittance of exposure light due to the absorbing gas. Therefore, high optical performance in the projection optical system PL can be maintained.
( C ) 投影光学系 P Lにおける鏡筒 4 0では、 鏡筒本体 4 1の中央部近傍を カバー 4 2で覆うともに、 ガス排出口 6 1をカバー 4 2に設けた。 このため、 鏡 筒本体 4 1内のパージガスの圧力をカバー 4 2内より高くすることができ、 露光 光 E Lの通過する鏡筒本体 4 1内から吸収性ガスを効率よく排出することができ 、 また、 鏡筒本体 4 1内への吸収性ガスの侵入を抑制できる。  (C) In the lens barrel 40 of the projection optical system PL, the vicinity of the center of the lens barrel body 41 is covered with the cover 42, and the gas outlet 61 is provided in the cover 42. For this reason, the pressure of the purge gas in the lens barrel body 41 can be made higher than that in the cover 42, and the absorbent gas can be efficiently discharged from the lens barrel body 41 through which the exposure light EL passes. In addition, the invasion of the absorbent gas into the lens barrel body 41 can be suppressed.
(D ) 投影光学系 P Lの鏡筒 4 0では、 鏡筒本体 4 1に各ピエゾ素子 4 9が 直接露出するのを制限する隔壁 5 4が形成されている。  (D) In the lens barrel 40 of the projection optical system PL, a partition wall 54 is formed in the lens barrel body 41 to limit direct exposure of each piezo element 49.
このため、 各ピエゾ素子 4 9や各ピエゾ素子 4 9に接続される配線 5 1の被覆 材等からの揮散から発生した有機物質が鏡筒 4 0内に流入するのを抑制すること ができる。 従って、 鏡筒 4 0内のクリーン度をより高く維持することができる。  For this reason, it is possible to suppress the flow of the organic substance generated from volatilization from the covering material or the like of each piezo element 49 and the wiring 51 connected to each piezo element 49 into the lens barrel 40. Therefore, the degree of cleanness in the lens barrel 40 can be maintained higher.
( E ) 鏡筒 4 0内に投影光学系 P Lが収容されている。 このため、 吸収性ガ スを鏡筒 4 0から効率よく排出し、 露光光 E Lの効率低下及び各レンズエレメン ト 4 3 , 4 5における曇りの発生を抑制することができる。 従って、 露光装置の 露光精度の向上を図ることができる。  (E) The projection optical system PL is housed in the lens barrel 40. Therefore, the absorbing gas can be efficiently discharged from the lens barrel 40, and a reduction in the efficiency of the exposure light EL and the occurrence of fogging in each of the lens elements 43, 45 can be suppressed. Therefore, the exposure accuracy of the exposure apparatus can be improved.
(変形例)  (Modified example)
なお、 本発明の実施形態は、 以下のように変形してもよい。 ' 前記実施形態では、 パージガス供給口 6 0を鏡筒本体 4 1の第 1部分鏡筒 4 1 a及び第 9部分鏡筒 4 1 iにそれぞれ設け、 ガス排出口 6 1を鏡筒 4 0のほぼ中 央部に設ける構成とした。 これに対して、 例えばガス排出口 6 1を鏡筒本体 4 1 の第 1部分鏡筒 4 1 a及び第 9部分鏡筒 4 1 iにそれぞれ設け、 パージガス供給 口 6 0を鏡筒本体 4 1における前記両部分鏡筒 4 l a , 4 1 iの間に設ける構成 としてもよい。 なお、 この場合には、 パージガス供給口 6 0の開口断面積をガス 排出口 6 1の開口断面積よりも大きくなるように形成したり、 同パージガス供給 口 6 0の数を増やしたり して、 前記実施形態に比べ、 パージガスの導入圧力が高 くなるようにする必要がある。  Note that the embodiment of the present invention may be modified as follows. In the above-described embodiment, the purge gas supply port 60 is provided in the first partial barrel 41 a and the ninth partial barrel 41 i of the barrel body 41, respectively, and the gas exhaust port 61 is provided in the barrel 40. The structure is provided almost at the center. On the other hand, for example, a gas exhaust port 61 is provided in each of the first partial barrel 41 a and the ninth partial barrel 41 i of the barrel body 41, and a purge gas supply port 60 is provided in the barrel body 41. A configuration may be provided between the two partial lens barrels 4 la and 41 i in the above. In this case, the opening cross-sectional area of the purge gas supply port 60 is formed to be larger than the opening cross-sectional area of the gas discharge port 61, or the number of the purge gas supply ports 60 is increased. It is necessary to make the introduction pressure of the purge gas higher than in the above embodiment.
前記実施形態では、 パージガス供給口 6 0及ぴガス排出口 6 1を投影光学系 P Lを収容する鏡筒 4 0に設ける構成とした。 しかし、 これらパージガス供給口 6 0及びガス排出口 6 1を照明光学系 1 7を収容する鏡筒 1 9にも同様に設けるこ とができる。 このようにしだ場合、 パージガス供給口 6 0を鏡筒 1 9における露 光光 E Lの入射端及び出射端近傍に設け、 ガス排出口 6 1を鏡筒 1 9の入射端及 び出射端の間に設けてもよい。 また、 ガス排出口 6 1を鏡筒 1 9の入射端及び出 射端近傍に設け、 パージガス供給口 6 0を鏡筒 1 9の入射端及び出射端の間に設 けてもよレヽ。 In the above embodiment, the purge gas supply port 60 and the gas discharge port 61 are connected to the projection optical system P The lens barrel 40 for accommodating L was provided. However, the purge gas supply port 60 and the gas discharge port 61 can be similarly provided in the lens barrel 19 that houses the illumination optical system 17. In such a case, the purge gas supply port 60 is provided near the entrance end and the exit end of the exposure light EL in the barrel 19, and the gas exhaust port 61 is provided between the entrance end and the exit end of the barrel 19. May be provided. Further, the gas outlet 61 may be provided near the entrance end and the exit end of the lens barrel 19, and the purge gas supply port 60 may be provided between the entrance end and the emission end of the lens barrel 19.
前記実施形態では、 鏡筒 4 0はカバー 4 2を備える構成としたが、 このカバー 4 2を省略してもよレ、。 なお、 この場合、 ガス排出口 6 1は鏡筒本体 4 1に直接 設けら る。  In the above embodiment, the lens barrel 40 is provided with the cover 42. However, the cover 42 may be omitted. In this case, the gas outlet 61 is provided directly on the lens barrel body 41.
前記実施形態では、 鏡筒 4 0は、 可動レンズェレメント 4 3を駆動する駆動機 構として、 ピエゾ素子 4 9を備える構成とした。 しカゝし、 駆動機構は、 ピエゾ素 子には限定されない。 駆動機構として、 例えば、 モータを用いる構成としてもよ レ、。  In the above embodiment, the lens barrel 40 is provided with the piezo element 49 as a driving mechanism for driving the movable lens element 43. However, the drive mechanism is not limited to piezo elements. As the driving mechanism, for example, a configuration using a motor may be used.
前記実施形態では、 鏡筒本体 4 1における各ピエゾ素子 4 9に対応する部分に 隔壁 5 4を設ける構成としたが、 この隔壁 5 4を省略してもよい。  In the above-described embodiment, the partition wall 54 is provided in a portion corresponding to each piezo element 49 in the lens barrel main body 41. However, the partition wall 54 may be omitted.
本発明の露光装置は、 縮小露光型の露光装置に限定されるものではなく、 例え ば等倍露光型、 拡大露光型の露光装置であってもよい。  The exposure apparatus of the present invention is not limited to a reduction exposure type exposure apparatus, and may be, for example, a 1: 1 exposure type or an enlargement type exposure apparatus.
また、 半導体素子などのマイクロデバイスだけでなく、 光露光装置、 E U V露 光装置、 X線露光装置、 及び電子線露光装置などで使用されるレチクルまたはマ スクを製造するために、 マザーレチクルからガラス基板ゃシリコンウェハなどへ 回路パターンを転写する露光装置にも本発明を適用できる。 ここで、 D U V (深 紫外) や V U V (真空紫外) 光などを用いる露光装置では一般に透過型レチクル が用いられ、 レチクル基板としては、 石英ガラス、 フッ素がドープされた石英ガ ラス、 蛍石、 フッ化マグネシウム、 または水晶などが用いられる。 また、 プロキ シミティ方式の X線露光装置や電子線露光装置などでは、 透過型マスク (ステン シルマスク、 メンバレンマスク) が用いられ、 マスク基板としてはシリコンゥェ ハなどが用いられる。  In addition to micro devices such as semiconductor devices, glass reticles are used to manufacture reticles or masks used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, and electron beam exposure equipment. The present invention is also applicable to an exposure apparatus that transfers a circuit pattern from a substrate to a silicon wafer. Here, a transmissive reticle is generally used in an exposure apparatus that uses DUV (deep ultraviolet) or VUV (vacuum ultraviolet) light, and the reticle substrate is made of quartz glass, fluorine-doped quartz glass, fluorite, or fluorine. Magnesium oxide or quartz is used. In addition, transmission-type masks (stencil masks, mem- rene masks) are used in proxy-type X-ray exposure apparatuses and electron beam exposure apparatuses, and silicon wafers are used as mask substrates.
もちろん、 半導体素子の製造に用いられる露光装置だけでなく、 液晶表示素子 ( L C D ) などを含むディスプレイの製造に用いられてデバイスパターンをガラ スプレート上へ転写する露光装置、 薄膜磁気ヘッ ド等の製造に用いられて、 デバ イスパターンをセラミックウェハ等へ転写する露光装置、 及び C C D等の撮像素 子の製造に用いられる露光装置などにも本発明を適用することができる。 Of course, not only the exposure equipment used to manufacture semiconductor devices, but also liquid crystal display devices An exposure device used to manufacture device displays such as (LCD) and transfer device patterns onto glass plates, and an exposure device used to manufacture thin-film magnetic heads and other devices to transfer device patterns to ceramic wafers etc. The present invention can be applied to an exposure apparatus used for manufacturing an imaging device such as a CCD, a CCD, and the like.
さらに、 本発明は、 マスクと基板とが静止した状態でマスクのパターンを基板 へ転写し、 基板を順次ステップ移動させるステップ 'アンド ' リピート方式の一 括露光型の露光装置にも適用することができる。  Further, the present invention can be applied to a step-and-repeat type batch exposure type exposure apparatus in which a pattern of a mask is transferred to a substrate while the mask and the substrate are stationary, and the substrate is sequentially stepped. it can.
露光装置の光源としては、 例えば g線 (え = 4 3 6 n m) 、 i線 (え = 3 6 5 n m) 、 K r 2レーザ (え = 1 4 6 n m) 、 A r 2レーザ ( = 1 2 6 n m) 等を 用いてもよい。 また、 D F B半導体レーザまたはファイバレーザから発振される 赤外域、 または可視域の単一波長レーザ光を、 例えばエルビウム (またはェルビ ゥムとイッテルビウムの双方) がドープされたファイバアンプで増幅し、 非線形 光学結晶を用いて紫外光に波長変換した高調波を用いてもよい。 As a light source of the exposure apparatus, for example, g-line (e = 4 3 6 nm), i-line (e = 3 6 5 nm), K r 2 laser (e = 1 4 6 nm), A r 2 laser (= 1 26 nm) may be used. In addition, single-wavelength laser light in the infrared or visible range oscillated from a DFB semiconductor laser or fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and nonlinearly amplified. Higher harmonics whose wavelength has been converted to ultraviolet light using a crystal may be used.
前記実施形態の露光装置は、 例えば次のように製造される。  The exposure apparatus of the embodiment is manufactured, for example, as follows.
まず、 投影光学系 P Lを構成する複数のレンズエレメント 4 3 , 4 5及びカバ 一ガラス 4 6等を本実施形態の部分鏡筒 4 0 a〜4 1 iに収容する。 部分鏡筒 4 0 a〜 4 1 iを積み重ねて固定して鏡筒 4 0を形成する。 複数のレンズ 1 2, 1 3 a , 1 3 b , 1 6、 ミラー 1 5等の光学部材からなる照明光学系 1 7を鏡筒 1 9内に収容する。 そして、 これらの照明光学系 1 7及び投影光学系 P Lを露光装 置本体に組み込み、 光学調整を行う。 次いで、 多数の機械部品からなるウェハス テージ W S T (スキャンタイプの露光装置の場合は、 レチクルステージ R S Tも 含む) を露光装置本体に取り付けて配線を接続する。 そして、 露光光 E Lの光路 内にパージガスを供給するパージガス供給系の配管を接続した上で、 さらに総合 調整 (電気調整、 動作確認など) を行う。  First, a plurality of lens elements 43 and 45 and a cover glass 46 and the like constituting the projection optical system PL are accommodated in the partial lens barrels 40a to 41i of the present embodiment. The partial lens barrels 40a to 41i are stacked and fixed to form a lens barrel 40. An illumination optical system 17 including optical members such as a plurality of lenses 12, 13 a, 13 b, and 16 and a mirror 15 is housed in a lens barrel 19. Then, the illumination optical system 17 and the projection optical system PL are incorporated in the main body of the exposure apparatus to perform optical adjustment. Next, a wafer stage WST (including a reticle stage RST in the case of a scan type exposure apparatus) including a large number of mechanical parts is attached to the exposure apparatus main body, and wiring is connected. Then, after connecting the purge gas supply system piping that supplies the purge gas into the optical path of the exposure light EL, further general adjustments (electrical adjustment, operation confirmation, etc.) are performed.
鏡筒 4 0を構成する各部品は、 超音波洗浄などにより、 加工油や、 金属物質な どの不純物を落としたうえで、 組み上げられる。 なお、 露光装置の製造は、 温度 、 湿度や気圧が制御され、 かつクリーン度が調整されたクリーンルーム内で行う ことが望ましい。  Each component constituting the lens barrel 40 is assembled after removing impurities such as processing oil and metal substances by ultrasonic cleaning or the like. It is desirable that the manufacture of the exposure apparatus be performed in a clean room in which the temperature, humidity and pressure are controlled and the degree of cleanness is adjusted.
次に、 上述した露光装置をリソグラフイエ程で使用してデパイスを製造する方 法の実施形態について説明する。 Next, a method for manufacturing a depiice using the above-described exposure apparatus in a lithographic process is described. An embodiment of the method will be described.
図 4は、 デバイス ( I Cや LS I等の半導体素子、 液晶表示素子、 撮像素子 ( CCD等) 、 薄膜磁気ヘッド、 マイクロマシン等) の製造例のフローチャートで める。  Figure 4 shows a flowchart of an example of manufacturing devices (semiconductor devices such as IC and LSI, liquid crystal display devices, imaging devices (such as CCDs), thin-film magnetic heads, micromachines, etc.).
図 4に示すように、 まず、 ステップ S 101 (設計ステップ) において、 デバ イス (マイクロデバイス) の機能 ·性能設計 (例えば、 半導体デバイスの回路設 計等) を行い、 その機能を実現するためのパターン設計を行う。 引き続き、 ステ ップ S 102 (マスク製作ステップ) において、 設計した'回路パターンを形成し たマスク (レクチル R等) を製作する。 一方、 ステップ S 1 03 (基板製造ステ ップ) において、 シリコン、 ガラスプレート等の材料を用いて基板 (シリコン材 料を用いた場合にはウェハ Wとなる。 ) を製造する。  As shown in Fig. 4, first, in step S101 (design step), the function and performance design of the device (micro device) (for example, the circuit design of a semiconductor device, etc.) is performed, and the functions for realizing the function are performed. Perform pattern design. Subsequently, in step S102 (mask manufacturing step), a mask (such as a reticle R) on which the designed 'circuit pattern is formed is manufactured. On the other hand, in step S103 (substrate manufacturing step), a substrate (wafer W when a silicon material is used) is manufactured using materials such as silicon and a glass plate.
次に、 ステップ S 104 (基板処理ステップ) において、 ステップ S 1 01〜 S 1 03で用意したマスクと基板を使用して、 後述するように、 リソグラフィ技 術等によって基板上に実際の回路等を形成する。 次いで、 ステップ S 1 05 (デ バイス組立ステップ) において、 ステップ S 1 04で処理された基板を用いてデ バイス組立を行う。 このステップ S 1 05には、 ダイシング工程、 ボンディング 工程、 及びパッケージング工程 (チップ封入等) 等の工程が必要に応じて含まれ る。  Next, in step S104 (substrate processing step), using the mask and the substrate prepared in steps S101 to S103, an actual circuit or the like is formed on the substrate by lithography technology or the like, as described later. Form. Next, in step S105 (device assembling step), device assembly is performed using the substrate processed in step S104. Step S105 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (such as chip encapsulation).
最後に、 ステップ S 1 06 (検査ステップ) において、 ステップ S 1 05で作 製されたデバイスの動作確認テス ト、 耐久性テス ト等の検査を行う。 こうしたェ 程を経た後にデバイスが完成し、 これが出荷される。  Lastly, in step S106 (inspection step), an operation check test, a durability test, and the like of the device manufactured in step S105 are performed. After these steps, the device is completed and shipped.
図 5は、 半導体デバイスの場合における、 図 4のステップ S 1 04の詳細なフ ローの一例を示す図である。 図 5において、 ステップ S 1 1 1 (酸化ステップ) では、 ウェハ Wの表面を酸化させる。 ステップ S 1 1 2 (CVDステップ) では 、 ウェハ W表面に絶縁膜を形成する。 ステップ S 1 1 3 (電極形成ステップ) で は、 ウェハ W上に電極を蒸着によって形成する。 ステップ S 1 14 (イオン打込 みステップ) では、 ウェハ Wにイオンを打ち込む。 以上のステップ S 1 1 1〜S. 11 4のそれぞれは、 ウェハ処理の各段階の前処理工程を構成レており、 各段階 において必要な処理に応じて選択されて実行される。 ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下のよ うにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ S 1 1 5 (レジスト形成ステップ) において'、 ウェハ Wに感光剤を塗布する。 引き続き 、 ステップ S 1 1 6 (露光ステップ) において、 先に説明したリソグラフィシス テム (露光装置) によってマスク (レチクル R ) の回路パターンをウェハ W上に 転写する。 次に、 ステップ S 1 1 7 (現像ステップ) では露光されたウェハ Wを 現像し、 ステップ S 1 1 8 (エッチングステップ) において、 レジス 卜が残存し ている部分以外の部分の露出部材をエッチングにより取り去る。 そして、 ステツ プ S 1 1 9 (レジスト除去ステップ) において、 エッチングが済んで不要となつ たレジス トを取り除く。 FIG. 5 is a diagram showing an example of a detailed flow of step S104 in FIG. 4 in the case of a semiconductor device. In FIG. 5, in step S111 (oxidation step), the surface of the wafer W is oxidized. In step S112 (CVD step), an insulating film is formed on the surface of the wafer W. In step S113 (electrode formation step), electrodes are formed on the wafer W by vapor deposition. In step S114 (ion implantation step), ions are implanted into the wafer W. Each of the above steps S 11 1 to S. 114 constitutes a pre-processing step in each stage of wafer processing, and is selected and executed according to a necessary process in each stage. In each stage of the wafer process, when the above-mentioned pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step S115 (resist forming step), a photosensitive agent is applied to the wafer W. Subsequently, in step S116 (exposure step), the circuit pattern of the mask (reticle R) is transferred onto the wafer W by the lithography system (exposure apparatus) described above. Next, in step S117 (development step), the exposed wafer W is developed, and in step S118 (etching step), the exposed members of the portions other than the portion where the resist remains are etched. Remove it. Then, in step S119 (resist removing step), the unnecessary resist after etching is removed.
前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ W上に多重に 回路パターンが形成される。  By repeatedly performing the pre-processing step and the post-processing step, multiple circuit patterns are formed on the wafer W.
本実施形態のデバイス製造方法によれば、 露光工程 (ステップ S I 1 6 ) にお いて、 前記 (E ) の効果を有する露光装置が用いられ、 真空紫外域の露光光 E L により解像力の向上が可能となり、 露光量制御を高精度に行うことができる。 従 つて、 露光精度を向上することができて、 最小線幅が 0 . 1 m程度の高集積度 のデバイスを歩留まりょく製造することができる。  According to the device manufacturing method of the present embodiment, in the exposure step (step SI16), the exposure apparatus having the effect (E) is used, and the resolution can be improved by the exposure light EL in the vacuum ultraviolet region. Thus, the exposure amount can be controlled with high accuracy. Therefore, the exposure accuracy can be improved, and a highly integrated device having a minimum line width of about 0.1 m can be manufactured at a high yield.
以上詳述したように、 請求の範囲 1の発明によれば、 鏡筒內の吸収性ガスを全 体的に効率よく排出できて、 筐体の一部に吸収性ガスが鏡筒内に残るめを抑制す ることができる。  As described above in detail, according to the first aspect of the present invention, the absorbent gas in the lens barrel 排出 can be exhausted efficiently as a whole, and the absorbent gas remains in a part of the housing in the lens barrel. Can be suppressed.
請求の範囲 2の発明によれば、 請求の範囲 1の発明の効果に加えて、 露光光の エネルギーをより高く保つことが望ましい筐体の両端部において、 吸収性ガスを 効率よく排出することができる。  According to the invention of claim 2, in addition to the effect of the invention of claim 1, it is possible to efficiently discharge the absorptive gas at both ends of the housing where it is desirable to keep the energy of the exposure light higher. it can.
請求の範囲 3の発明によれば、 請求の範囲 1または 2の発明の効果に加えて、 駆動機構の駆動及び駆動機構を構成する部材等からの揮散等により発生する吸収 性ガスに起因する光学部材の曇りの発生を効果的に抑制することができる。 従つ て、 鏡筒における高い光学性能を維持することができる。  According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, the optical mechanism caused by the absorbing gas generated by driving the drive mechanism and volatilizing from the members constituting the drive mechanism and the like. Generation of fogging of the member can be effectively suppressed. Therefore, high optical performance in the lens barrel can be maintained.
請求の範囲 4の発明によれば、 請求の範囲 1〜 3のうちいずれか一項の発明の 効果に加えて、 筐体本体内のパージガスの圧力をカバー内より高くなるように設 定することで、 露光光の通過する筐体本体内から吸収性ガスを効率よく排出する ことができる。 According to the invention of claim 4, in addition to the effect of the invention of any one of claims 1 to 3, the pressure of the purge gas in the housing body is set to be higher than that in the cover. By doing so, the absorptive gas can be efficiently exhausted from inside the housing body through which the exposure light passes.
請求の範囲 5の発明によれば、 前記請求の範囲 4の発明の効果に加えて、 駆動 機構を構成する部材から発生した吸収性ガスが筐体本体内に流入するのを抑制す ることができて、 鏡筒内のクリーン度を高く維持することができる。  According to the invention of claim 5, in addition to the effect of the invention of claim 4, it is possible to prevent the absorbent gas generated from the members constituting the drive mechanism from flowing into the housing body. It is possible to maintain a high degree of cleanliness in the lens barrel.
請求の範囲 6及び 7の発明によれば、 駆動機構を構成する部材から生じうる吸 収性ガスが筐体本体内に侵入することを低減することができる。  According to the inventions set forth in claims 6 and 7, it is possible to reduce the possibility that absorptive gas generated from members constituting the drive mechanism enters the housing main body.
請求の範囲 8及び請求の範囲 9の発明によれば、 露光光の効率低下及び光学部 材における曇りの発生を抑制することができて、 露光精度の向上を図ることがで きる。  According to the inventions of claims 8 and 9, it is possible to suppress a decrease in the efficiency of exposure light and the occurrence of fogging in the optical member, and to improve the exposure accuracy.
請求の範囲 1 0の発明によれば、 露光精度を向上することができ、 高集積度の デバイスを歩留まりよく製造することができる。  According to the tenth aspect of the present invention, exposure accuracy can be improved, and a highly integrated device can be manufactured with high yield.

Claims

請求の範囲 The scope of the claims
1 . 複数の光学部材を保持する筐体を有し、 その筐体の内部に所定のパージガス を供給する鏡筒において、 1. A lens barrel having a housing for holding a plurality of optical members and supplying a predetermined purge gas into the housing,
前記筐体の内部に前記パージガスを供給するパージガス供給口または前記筐体 から該筐体内のガスを排出するガス排出口の一方を前記筐体の一端部及び他端部 に設けるとともに、 前記パージガス供給口またはガス排出口の他方を前記筐体の 一端部と他端部の間に設けたことを特徴とする鏡筒。  One of a purge gas supply port for supplying the purge gas into the housing or a gas discharge port for discharging gas in the housing from the housing is provided at one end and the other end of the housing. A lens barrel characterized in that the other of the port and the gas discharge port is provided between one end and the other end of the housing.
2 . 前記パージガス供給口を前記筐体の一端部及び他端部に設けるとともに、 前 記ガス排出口を前記筐体の一端部と他端部の間に設けたことを特徴とする請求の 範囲 1に記載の鏡筒。 2. The purge gas supply port is provided at one end and the other end of the housing, and the gas exhaust port is provided between one end and the other end of the housing. The lens barrel according to 1.
3 . 前記複数の光学部材のうち少なくとも一部の光学部材には、 その光学部材を 駆動する駆動機構が接続されていることを特徴とする請求の範囲 1または 2に記 載の鏡筒。 3. The lens barrel according to claim 1, wherein a driving mechanism for driving the optical members is connected to at least a part of the plurality of optical members.
4 . 前記筐体は、 前記複数の光学部材を保持する筐体本体と、 前記筐体本体の少 なくとも一部の外周面を覆うカバーとを有し、 4. The housing has a housing main body that holds the plurality of optical members, and a cover that covers at least a part of an outer peripheral surface of the housing main body,
前記ガス排出口は、 前記カバーに設けられることを特徴とする請求の範囲 1〜 3のうちいずれか一項に記載の鏡筒。  The lens barrel according to any one of claims 1 to 3, wherein the gas outlet is provided in the cover.
5 . 前記複数の光学部材のうち少なくとも一部の光学部材に接続され、 その光学 部材を駆動する駆動機構の少なくとも一つが前記筐体本体内の空間に露出するの を制限する露出制限部材を設けたことを特徴とする請求の範囲 4に記載の鏡筒。 5. An exposure limiting member is provided that is connected to at least a part of the plurality of optical members and that limits at least one of the driving mechanisms that drives the optical members to the space in the housing body. 5. The lens barrel according to claim 4, wherein:
6 . 前記カバーは、 前記筐体本体のうち、 前記駆動機構が接続された光学部材を 保持する部分の外周面を覆うことを特徴とする請求の範囲 4または 5に記載の鏡 筒。 6. The lens barrel according to claim 4, wherein the cover covers an outer peripheral surface of a portion of the housing body holding the optical member to which the driving mechanism is connected.
7 . 前記ガス排出口は、 前記筐体本体内のガスを前記駆動機構を介して排出する ことを特徴とする請求の範囲 6に記載の鏡筒。 7. The lens barrel according to claim 6, wherein the gas discharge port discharges gas in the housing body via the drive mechanism.
8 . マスク上に形成されたパターンの像を基板上に転写する露光装置において、 前記請求の範囲 1〜 7のうちいずれか一項に記載の鏡筒を備えた露光装置。 8. An exposure apparatus for transferring an image of a pattern formed on a mask onto a substrate, comprising the lens barrel according to any one of claims 1 to 7.
9 . 前記マスク上のパターンの像を前記基板上に投影する投影光学系を備え、 そ の投影光学系が前記請求の範囲 1〜 5のうちいずれか一項に記載の鏡筒からなる ことを特徴とする請求の範囲 8に記載の露光装置。 9. A projection optical system for projecting an image of the pattern on the mask onto the substrate, wherein the projection optical system comprises the lens barrel according to any one of claims 1 to 5. 9. The exposure apparatus according to claim 8, wherein the exposure apparatus includes:
1 0 . 前記請求の範囲 8または 9に記載の露光装置を用いてデバイスを製造する ことを特徴とするデバイスの製造方法。 10. A device manufacturing method, comprising manufacturing a device using the exposure apparatus according to claim 8 or 9.
PCT/JP2002/001231 2001-02-14 2002-02-14 Lens-barrel, exposure device, and method of manufacturing device WO2002065183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002564642A JPWO2002065183A1 (en) 2001-02-14 2002-02-14 Lens barrel, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001036907 2001-02-14
JP2001-36907 2001-02-14

Publications (1)

Publication Number Publication Date
WO2002065183A1 true WO2002065183A1 (en) 2002-08-22

Family

ID=18900111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001231 WO2002065183A1 (en) 2001-02-14 2002-02-14 Lens-barrel, exposure device, and method of manufacturing device

Country Status (2)

Country Link
JP (1) JPWO2002065183A1 (en)
WO (1) WO2002065183A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101121A2 (en) * 2004-04-13 2005-10-27 Carl Zeiss Smt Ag Optical element unit for exposure processes
US7369332B2 (en) 2004-04-13 2008-05-06 Carl Zeiss Smt Gmbh Closing module for an optical arrangement
JP2012004598A (en) * 2004-07-22 2012-01-05 Asml Netherlands Bv Method for operating detector within gas conditioned environment
DE102016100402A1 (en) * 2016-01-12 2017-07-13 Jenoptik Optical Systems Gmbh Lens with rinse

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076297U (en) * 1983-10-29 1985-05-28 川崎製鉄株式会社 Dustproof hood for optical equipment
JPH06294919A (en) * 1993-04-09 1994-10-21 Tanaka Seisakusho Kk Lens holder
JPH0772541A (en) * 1993-09-07 1995-03-17 Toshiba Corp Air purge hood
JPH11224839A (en) * 1998-02-04 1999-08-17 Canon Inc Exposure system, manufacture of device, and cleaning method of optical device of exposure system
JP2000315645A (en) * 1999-04-30 2000-11-14 Nikon Corp Optical member, its manufacture, and aligner using optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076297U (en) * 1983-10-29 1985-05-28 川崎製鉄株式会社 Dustproof hood for optical equipment
JPH06294919A (en) * 1993-04-09 1994-10-21 Tanaka Seisakusho Kk Lens holder
JPH0772541A (en) * 1993-09-07 1995-03-17 Toshiba Corp Air purge hood
JPH11224839A (en) * 1998-02-04 1999-08-17 Canon Inc Exposure system, manufacture of device, and cleaning method of optical device of exposure system
JP2000315645A (en) * 1999-04-30 2000-11-14 Nikon Corp Optical member, its manufacture, and aligner using optical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101121A2 (en) * 2004-04-13 2005-10-27 Carl Zeiss Smt Ag Optical element unit for exposure processes
WO2005101121A3 (en) * 2004-04-13 2006-07-06 Zeiss Carl Smt Ag Optical element unit for exposure processes
US7369332B2 (en) 2004-04-13 2008-05-06 Carl Zeiss Smt Gmbh Closing module for an optical arrangement
US7545483B2 (en) 2004-04-13 2009-06-09 Carl Zeiss Smt Ag Optical element unit for exposure processes
JP2012004598A (en) * 2004-07-22 2012-01-05 Asml Netherlands Bv Method for operating detector within gas conditioned environment
DE102016100402A1 (en) * 2016-01-12 2017-07-13 Jenoptik Optical Systems Gmbh Lens with rinse
DE102016100402B4 (en) * 2016-01-12 2017-08-31 Jenoptik Optical Systems Gmbh Lens with rinse

Also Published As

Publication number Publication date
JPWO2002065183A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4487108B2 (en) Lithographic projection apparatus, gas purge method, device manufacturing method, and purge gas supply system
WO2004086470A1 (en) Exposure system and device production method
JP4026943B2 (en) Exposure apparatus and device manufacturing method
JP2006269942A (en) Aligner and device manufacturing method
JPH1114876A (en) Optical structural body, projection exposing optical system incorporating the same and projection aligner
JP2006186352A (en) Radiation exposure apparatus comprising gas flashing system
EP1670040B1 (en) Projection exposure apparatus, projection exposure method, and device manufacturing method
JP2004247733A (en) Lithography apparatus including gas washing system
JP2006093724A (en) Lithography apparatus, gas supply system, method for purging, and device-manufacturing method and device manufactured thereby
JP3977377B2 (en) Exposure apparatus and device manufacturing method
US6847430B2 (en) Lithographic apparatus and device manufacturing method
WO2002065183A1 (en) Lens-barrel, exposure device, and method of manufacturing device
WO2007083686A1 (en) Exposure apparatus
CN115362607A (en) Catheter system, radiation source, lithographic apparatus and method
JP4510433B2 (en) Exposure apparatus and cleaning method
JP2010267926A (en) Substrate processing apparatus, and method of manufacturing device
US6590631B2 (en) Exposure apparatus and device manufacturing method using the same
US7110088B2 (en) Exposure apparatus and device manufacturing method
US7692762B2 (en) Exposure apparatus
JP4174239B2 (en) Gas supply apparatus, exposure system, and device manufacturing method
JP4345481B2 (en) Lens barrel, exposure apparatus, and device manufacturing method
JPWO2003036695A1 (en) Method for supplying purge gas to exposure apparatus, exposure apparatus, and device manufacturing method
JPH11111585A (en) Projection aligner for manufacturing semiconductor, and semiconductor device manufacturing process using it
JP2005072076A (en) Aligner, chemical filter, and manufacturing method of device
WO2000042639A1 (en) Method and apparatus for projection exposure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002564642

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase