WO2002062855A1 - CATALYST FOR α-OLEFIN POLYMERIZATION AND METHOD OF POLYMERIZATION WITH THIS CATALYST - Google Patents

CATALYST FOR α-OLEFIN POLYMERIZATION AND METHOD OF POLYMERIZATION WITH THIS CATALYST Download PDF

Info

Publication number
WO2002062855A1
WO2002062855A1 PCT/JP2002/001046 JP0201046W WO02062855A1 WO 2002062855 A1 WO2002062855 A1 WO 2002062855A1 JP 0201046 W JP0201046 W JP 0201046W WO 02062855 A1 WO02062855 A1 WO 02062855A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethoxy
polymerization
compound
polymerization catalyst
catalyst
Prior art date
Application number
PCT/JP2002/001046
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ikeuchi
Katsunori Masaki
Yoshiyuki Sakuda
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Publication of WO2002062855A1 publication Critical patent/WO2002062855A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a polymerization catalyst for one-year-old olefin using an ether compound having a specific structure and a method for polymerizing one-year-old fin using this catalyst.
  • the present invention further relates to a polymerization method for producing a flexible —olefin polymer having flexibility and low tackiness by using the polymerization catalyst. Background technology ''
  • soft polyvinyl chloride has been used as a soft polymer.
  • flexible polyvinyl chloride often contains fluoric acid diester as a plasticizer, which has been pointed out as an environmental hormone, and tends to release dioxin and other undesired substances due to combustion. It has been pointed out that. Therefore, a soft olefin polymer containing no halogen and phthalic acid diester is desired.
  • an olefin polymer can be obtained by polymerizing olefin in the presence of a polymerization catalyst containing a solid catalyst component, which essentially contains magnesium, titanium, and a halogen element, and an organic aluminum compound.
  • a polymerization catalyst containing a solid catalyst component which essentially contains magnesium, titanium, and a halogen element, and an organic aluminum compound.
  • the olefin polymer obtained by using a conventional polymerization catalyst of this type is a polymer having high crystallinity and inflexibility.
  • An object of the present invention is to provide a novel catalyst capable of producing a soft one-year-old olefin polymer having excellent polymerization activity and low tackiness without significantly impairing flexibility, and a polymerization method using the catalyst. .
  • the present invention resides in a polymerization catalyst for olefin which comprises the following components:
  • R 1 and R 2 independently represent a hydrocarbon group having 1 to 8 carbon atoms; and 3 and R 4 independently represent a carbon group having 1 to 24 carbon atoms. Represents a hydrocarbon group].
  • the present invention also resides in a method for producing an olefin polymer by polymerizing olefin using the polymerization catalyst of the present invention.
  • a solid catalyst component that essentially contains magnesium, titanium, and a halogen element can be used as the catalyst solid component [A].
  • Magnesium, titanium and a halogen element can be used as a magnesium compound and a titanium halide compound.
  • the method for producing the solid catalyst component is not particularly limited, but (1) a method of co-milling a magnesium compound and a titanium halide compound such as titanium tetrachloride, (2) a method of co-grinding a magnesium compound and tetrachloride After co-grinding with a titanium compound such as titanium, and then subjecting it to contact treatment with titanium tetrachloride in a solvent such as toluene, the magnesium compound is dissolved in the solvent (3), and the solution is halogenated.
  • a known method such as a method of adding a titanium compound to precipitate a catalyst solid can be used.
  • magnesium or a magnesium compound examples include ethyl magnesium chloride, propyl magnesium chloride, butyl magnesium chloride, hexyl magnesium chloride, octyl magnesium chloride, ethyl magnesium bromide, and propyl.
  • Grignard compounds such as magnesium bromide, butyl magnesium bromide, and ethyl magnesium iodide.
  • magnesium compounds can be used alone or in combination of two or more.
  • the solvent for magnesium or the magnesium compound for example, aliphatic ethers such as getyl ether, dibutyl ether, diisopropyl ether, diisoamyl ether, and aliphatic cyclic ethers such as tetrahydrofuran D can be used. Titanium and halogen elements can be used as titanium halide compounds.
  • titanium, a halogen element, and a titanium halide compound include titanium tetrachloride, tetrabromotitanium, trichloro monobutoxytitanium, tributamate monomonoethoxytitanium, trichloride monoisopropoxytitanium, dichlorodiethoxytitanium, and dichlorotitanium.
  • examples thereof include dibutoxy titanium, monochlorotriethoxy titanium, and monochlorotributoxy titanium.
  • titanium tetrachloride and monobutoxytitanium trichloride are preferable.
  • organoaluminum compound of "B” examples include alkyl aluminum and alkyl Although aluminum halide and the like can be used, alkyl aluminum is preferable, and trialkyl aluminum is particularly preferable.
  • organoaluminum compound examples include trimethylaluminum, triethylaluminum, trin-propylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum and the like.
  • the organoaluminum compounds can be used alone or in combination of two or more. Further, polyaluminoxane obtained by a reaction between alkyl aluminum and water can also be used.
  • the ether compound of [C] is an ether compound represented by the following formula (1).
  • R 1 and R 2 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and an unsaturated or saturated aliphatic hydrocarbon group having 1 to 8 carbon atoms. And so on.
  • R 1 and R 2 include methyl group, ethyl tomb, n-propyl group, is 0-propyl group, n-butyl group, iso-butyl group, ter-butyl group, sec-butyl group, n-pentyl group, iso-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group and the like. Particularly preferred is a methyl group.
  • R 3 and R 4 are each independently a hydrocarbon group having 1 to 24 carbon atoms, such as an unsaturated or saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms.
  • Specific examples of R 3 and R 4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, ter-butyl group, sec-butyl group , N-pentyl, iso-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl and the like. Particularly preferred are a methyl group and an ethyl group.
  • Specific compounds of the ether compounds include 2,2-dimethoxypropane, 2-ethoxy-2-methoxypropane, 2,2-diethoxypropane, 2-ethoxy-2-propoxydimethoxysilane, 2,2- Dipropoxypropane, 2-propoxyl 2-butoxypropane, 2,2-dibutoxypropane, 2,2-dimethoxybutane, 2-ethoxy-2-methoxybutane, 2,2-diethoxybutane, 2-ethoxy-1 2-propoxybutane, 2,2-dipropoxybutane, 2-propoxy-1-butoxybutane, 2,2-dibutoxybutane, 3,3-dimethoxypentane, 3-ethoxy-1-methoxypentane, 3, 3-Jetoxypentane, 3-ethoxy-1-propoxypentane, 3,3-dipropoxypentane, 3-propoxy-1-butoxypentane, 3,3-di Butoxypentane, 3,3-dimethoxyhe
  • ether compound component represented by the formula (1) for example, a compound obtained by an equivalent reaction between an alcohol and a ketone can be used.
  • the catalyst solid component, the organic aluminum compound component and the ether compound may be used in any mixing ratio, as long as the one-year-old fin can be polymerized. . ,
  • the amount of the catalyst solid component and the organoaluminum compound component to be used is, for example, preferably the molar ratio of titanium and the organoaluminum compound ([organoaluminum compound] / [titanium]) in the catalyst solid component is preferably 1 to 10%. It is preferably in the range of 0.000, more preferably in the range of 2-800, more preferably in the range of 5 to 500, particularly preferably in the range of 10 to 100.
  • the amount of the ether compound and the organic aluminum compound used is determined by the molar ratio between the amount of the ether compound and the amount of the organic aluminum compound ([ether compound] Z [organic aluminum compound] Compound)) is preferably in the range of 0.01 to 1, particularly preferably in the range of 0.01 to 0.3.
  • a chain transfer agent such as hydrogen
  • the amount of hydrogen used for producing a soft olefin polymer having a desired molecular weight can be appropriately determined depending on the polymerization method and polymerization conditions. Usually, the hydrogen / hydrogen partial pressure ratio is 0.000. A range from 1 to 0.5 is preferred.
  • the contact order of each component of the catalyst is not particularly limited. However, it is preferable that the catalyst solid component and the organoaluminum compound are brought into contact in advance, and then the ether compound is brought into contact. Alternatively, it is preferable that the organoaluminum compound is brought into contact with the ether compound in advance and then brought into contact with the catalyst solid component.
  • olefins examples include chain-like olefins such as ethylene, propylene, 1-butene, 11-pentene, 1-hexene, 1-heptene, 4-methylpentene-11, and 1-octene.
  • chain-like olefins such as ethylene, propylene, 1-butene, 11-pentene, 1-hexene, 1-heptene, 4-methylpentene-11, and 1-octene.
  • ethylene, propylene, 1-butene and the like are preferable.
  • the homorefin can be used alone or in combination of two or more types.
  • a homopolymer can be obtained by using monorefin alone, and a copolymer can be obtained by using two or more types of monorefin.
  • a low-crystalline polyolefin polymer and an amorphous polyolefin polymer can be produced.
  • the monoolefin polymer means a homopolymer of monoolefin and a copolymer such as a block copolymer or a random copolymer produced from two or more types of monoolefin. .
  • the polymerization catalyst for ⁇ -olefins of the present invention is preferably 30 to 100% by weight of one-component olefin selected from propylene and 1-butene and 70 to 0% of other mono-olefins excluding propylene and 1-butene.
  • % By weight, more preferably from 40 to 100% by weight of a one-year-old olefin selected from propylene and 1-butene and from 60 to 0% by weight of another one-year-old olefin excluding propylene and 1-butene.
  • Polymerization particularly preferably It can be preferably used for the polymerization of 51 to 100% by weight of a monoolefin selected from propylene and 1-butene and 49 to 0% by weight of a polyolefin other than propylene and 1-butene.
  • the polymerization catalyst for ⁇ -olefins of the present invention can be preferably used for (co) polymerization of olefins selected from propylene and 1-butene.
  • the polymerization catalyst for monoolefins of the present invention preferably comprises 50-100% by weight of propylene and 50-0% by weight of 1-butene, more preferably 55-100% by weight of propylene and 45-0% by weight of 1-butene. And particularly preferably in the polymerization of 60 to 100% by weight of propylene and 40 to 0% by weight of 1-butene.
  • the polymerization catalyst for monoolefins of the present invention can be preferably used for the polymerization of 70 to 90% by weight of propylene and 30 to 10% by weight of 1-butene.
  • the composite medium of the present invention is preferably a polymerization of 50 to 100% by weight of 1-butene and 50 to 0% by weight of propylene, more preferably 55 to 100% by weight of 1-butene and 45 to 100% by weight of propylene. It can be preferably used for the polymerization of 0 to 0% by weight, particularly preferably the polymerization of 60 to 100% by weight of 1-butene and 40 to 0% by weight of propylene.
  • the polymerization using the catalyst of the present invention can be carried out by using a known polymerization method such as ethylene and propylene.
  • a known polymerization method such as ethylene and propylene.
  • Specific examples of the polymerization method include a slurry polymerization method using a nonpolar solvent such as butane, pentane, hexane, heptane, and octane; a gas phase polymerization method in which a monomer is brought into contact with a catalyst in a gaseous state to carry out polymerization; Alternatively, a bulk polymerization method in which a monomer in a liquefied state is polymerized in a solvent as a solvent can be used, and bulk polymerization is particularly preferable.
  • any of multi-stage polymerization such as one-stage polymerization, two-stage polymerization, continuous polymerization, and batch polymerization may be performed.
  • the polymerization pressure may be any pressure as long as polymerization is possible, and is preferably in the range of 0.1 to 10 MPa, more preferably 1 to 6 MPa.
  • the polymerization temperature may be any temperature as long as it can be polymerized, preferably 10 to 150 ° (more preferably 30 to 100 ° C; particularly preferably 50 to 90 ° C).
  • the polymerization time may be any time as long as polymerization is possible, preferably 0.1 to 10 hours And more preferably in the range of 0.5 to 7 hours.
  • the polymerization activity of the polymerization catalyst of the present invention is preferably 5000 g / (ghr) or more, more preferably 7000 g / (ghr) or more, more preferably 12000 g / (g'hr) or more. Particularly preferred is 15,000 g / (g ⁇ hr) or more.
  • the olefin (co) polymer produced by using the -olefin polymerization catalyst of the present invention has a melt viscosity of preferably 50,000 cps or less, more preferably 25,000 cps or less, further preferably 20,000 cps or less, and still more preferably. Is less than 15,000 cps, more preferably less than 12000 cps, more preferably less than 10,000 cps, particularly preferably less than 9000 cps.
  • the one-year-old olefin (co) polymer produced using the olefin polymerization catalyst of the present invention has a melt viscosity, preferably in the range of 130 to 50,000 cps, more preferably in the range of 150 to 25,000 cps. More preferably in the range of 160 to 20,000 cps, more preferably in the range of 170 to: L 5000 cps, more preferably in the range of 200 to: L 2000 cps, more preferably in the range of 220 to 10 000 cps. Particularly preferred is in the range of 250 to 9000 cps.
  • the one-year-old olefin polymer produced using the polymerization catalyst for monoolefin of the present invention preferably has a tensile modulus of 200 MPa or less, more preferably 150 MPa or less, further preferably 12 OMPa or less, more preferably It is 10 OMPa or less, more preferably 8 OMPa or less, more preferably 6 OMPa or less, particularly preferably 5 OMPa or less.
  • the olefin polymer produced using the olefin polymerization catalyst of the present invention has a boiling n-heptane insoluble content of preferably 60% or less, more preferably 40% or less, further preferably 30% or less, and more preferably Is at most 20%, more preferably at most 15%, more preferably at most 10%, particularly preferably at most 8%.
  • the ⁇ -refined polymer produced using the polymerization catalyst of the present invention has a number average molecular weight ( ⁇ ) preferably in the range of 1,000 to 25,000, more preferably in the range of 1100 to 22000, More preferably in the range of 1200 to 20000, more preferably in the range of 1500 to 18000, more preferably in the range of 1600 It is preferably in the range of -15000, more preferably in the range of 1800 to 12000, particularly preferably in the range of 2000 to 10,000.
  • number average molecular weight
  • the one-year-old olefin polymer obtained by using the catalyst of the present invention can be used alone as a product, or can be used by blending with other olefin polymers, polyamides, polyesters, elastomers and the like.
  • Polymerization activity It is expressed as the yield (g / g.hr) of a one-year-old refin polymer when polymerization is performed for 1 hour per gram of solid catalyst.
  • Bleed-out is an evaluation of adhesiveness.
  • the method uses a photorefin polymer.
  • a sheet having a thickness of 1 mm was prepared by using the same method and left at 23 ° C. for one month, and the surface condition of the sheet was visually observed. Evaluation,
  • X A state in which bleed-out components are observed on the sheet surface.
  • M is the total weight of the n-heptane insoluble matter after drying under reduced pressure and the tubular filter paper (g)
  • N is the weight of the dried tubular filter paper (g)
  • S is the boiling a-before n-heptane extraction — The weight (g) of the olefin binding.
  • the obtained solid component contained 2.0 wt% of Ti.
  • the boiling n-heptane insoluble content of the obtained polymer was 0%.
  • Example 2 Same as in Example 1, except that the ether compound component [C] was not used, and the hydrogen pressure was 1.4 kg / cm 2 at the gage pressure, 300 ml of liquefied 1-butene, and 900 ml of liquefied propylene were used in the olefin polymerization.
  • the following table summarizes the polymerization activity and the properties of the obtained polymer.
  • the catalyst of the present invention has a high polymerization activity for ⁇ -olefin, and by using the catalyst, a flexible one-piece olefin polymer can be obtained. Then, by using the catalyst of the present invention, a one-year-old olefin polymer having no bleed-out of the adhesive component can be produced, and a low-crystalline or non-crystalline one-component polymer having no bleed-out of the adhesive component can be produced. Olefin polymers can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

A polymerization catalyst effective in producing a flexible polymer through α-olefin polymerization, which comprises the following ingredients: (A) a solid catalyst ingredient comprising magnesium, titanium, and a halogen as essential elements, (B) an organoaluminum compound, (C) and an ether compound having a specific structure.

Description

明 細 書 ひーォレフインの重合触媒およびこの触媒を用いる重合方法 技術分野  Description: Polymerization catalyst for hyolephine and polymerization method using this catalyst
本発明は、 特定の構造を有するエーテル化合物を用いる 一才レフインの重合 触媒およびこの触媒を用いる 一才レフィンの重合方法に関する。 本発明はさら に、 この重合触媒により、 柔軟性があり、 且つ、 粘着性の少ない軟質の —ォレ フィン重合体を製造する重合方法に関する。 背景技術 '  TECHNICAL FIELD The present invention relates to a polymerization catalyst for one-year-old olefin using an ether compound having a specific structure and a method for polymerizing one-year-old fin using this catalyst. The present invention further relates to a polymerization method for producing a flexible —olefin polymer having flexibility and low tackiness by using the polymerization catalyst. Background technology ''
従来、 軟質の重合体としては、 軟質ポリ塩化ビニルが利用されている。 しかし ながら、 軟質ポリ塩化ビニルは、 環境ホルモンとしての問題が指摘されているフ 夕ル酸ジエステルを可塑剤として含むことが多く、 また燃焼によりダイォキシン などの環境に対して好ましくない物質を放出しやすいことが指摘されている。 従 つて、 ハロゲンおよびフタル酸ジエステルを含有しない軟質のォレフィン重合体 が望まれている。 Conventionally, soft polyvinyl chloride has been used as a soft polymer. However, flexible polyvinyl chloride often contains fluoric acid diester as a plasticizer, which has been pointed out as an environmental hormone, and tends to release dioxin and other undesired substances due to combustion. It has been pointed out that. Therefore, a soft olefin polymer containing no halogen and phthalic acid diester is desired.
—ォレフィンをマグネシウム、 チタン、 ハロゲン元素を必須とする触媒固体 成分と有機アルミ二ゥム化合物とを含む重合触媒の存在下にて重合させることに よりォレフィン重合体が得られることは、 以前より知られている。 しかし、 この タイプの従来の重合触媒の使用により得られるォレフィン重合体は、 結晶性の高 い、 柔軟性のない重合体となる。  — It has long been known that an olefin polymer can be obtained by polymerizing olefin in the presence of a polymerization catalyst containing a solid catalyst component, which essentially contains magnesium, titanium, and a halogen element, and an organic aluminum compound. Have been. However, the olefin polymer obtained by using a conventional polymerization catalyst of this type is a polymer having high crystallinity and inflexibility.
一方、 軟質ポリプロピレンなどの軟質なォレフィン重合体を製造する技術につ いても検討が行なわれておる。 例えば、 特閧平 1 1— 2 2 8 6 1 5号公報には、 ジアルコキシマグネシウム、 チタン化合物に加えて、 芳香族カルボン酸ジエステ ルを含む重合触媒を使用することにより、 結晶性の低い軟質プロピレン系重合体 が得られることを教示している。 発明の開示 On the other hand, studies are being made on a technique for producing a soft olefin polymer such as soft polypropylene. For example, Japanese Patent Application Laid-Open No. 11-228686 discloses that a polymerization catalyst containing an aromatic carboxylic acid ester in addition to a dialkoxymagnesium and a titanium compound is used. It teaches that a propylene-based polymer can be obtained. Disclosure of the invention
本発明は、 重合活性に優れ、 柔軟性を大きく損なうことなく、 粘着性が少ない 軟質の 一才レフィン重合体を製造できる新規な触媒およびこの触媒を用いる重 合方法を提供することを目的とする。  An object of the present invention is to provide a novel catalyst capable of producing a soft one-year-old olefin polymer having excellent polymerization activity and low tackiness without significantly impairing flexibility, and a polymerization method using the catalyst. .
本発明は、 下記の成分を含む —ォレフィンの重合触媒にある。  The present invention resides in a polymerization catalyst for olefin which comprises the following components:
[Α] マグネシウム、 チタン、 ハロゲン元素を必須とする触媒固体成分、  [Α] Solid catalyst components that require magnesium, titanium, and halogen elements,
[Β ] 有機アルミニウム化合物、  [Β] Organoaluminum compounds,
[ C ] 下記式 (1 ) で表されるエーテル化合物:  [C] An ether compound represented by the following formula (1):
Figure imgf000003_0001
Figure imgf000003_0001
[但し、 式 ( 1 ) において、 R 1と R 2は互いに独立に炭素原子数 1〜8の炭化水 素基を表わし、 そして; 3と R 4とは互いに独立に炭素原子数 1〜 2 4の炭化水素 基を表わす] 。 [Wherein, in the formula (1), R 1 and R 2 independently represent a hydrocarbon group having 1 to 8 carbon atoms; and 3 and R 4 independently represent a carbon group having 1 to 24 carbon atoms. Represents a hydrocarbon group].
本発明はまた、 上記の本発明の重合触媒を用いて ーォレフインを重合させて ォレフィン重合体を製造する方法にもある。 図面の簡単な説明  The present invention also resides in a method for producing an olefin polymer by polymerizing olefin using the polymerization catalyst of the present invention. BRIEF DESCRIPTION OF THE FIGURES
本発明の触媒の各成分の調製過程および本発明の触媒を用いる重合方法を示す フロ一チヤ一トである。 発明を実施するための最良の形態  4 is a flowchart showing a process for preparing each component of the catalyst of the present invention and a polymerization method using the catalyst of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の重合触媒において、 [A]触媒固体成分として、 マグネシウム、 チタ ン、 ハロゲン元素を必須とする触媒固体成分を用いることができる。 マグネシゥ ム、 チタンおよびハロゲン元素は、 マグネシウム化合物とハロゲン化チタン化合 物として用いることができ、 [A]触媒固体成分としてマグネシウム化合物とハ ロゲン化チタン化合物とを必須とする触媒固体成分を用いることが好ましい。 In the polymerization catalyst of the present invention, a solid catalyst component that essentially contains magnesium, titanium, and a halogen element can be used as the catalyst solid component [A]. Magnesium, titanium and a halogen element can be used as a magnesium compound and a titanium halide compound. [A] It is preferable to use a catalytic solid component which essentially comprises a titanium compound.
[A] 触媒固体成分の製造方法は特に限定されないが、 ( 1 )マグネシウム化合 物と四塩ィ匕チタンなどのハロゲン化チタン化合物とを共粉砕する方法、 (2 )マグ ネシゥ厶化合物と四塩化チタンなどのハ口ゲン化チタン化合物とを共粉砕した後、 トルエンなどの溶媒中でさらに四塩化チタンと接触処理する方法、 '( 3 )溶媒にマ グネシゥム化合物を溶解し、 この溶液にハロゲン化チタン化合物を添加して、 触 媒固体を析出させる方法などの公知の方法を利用することができる。  [A] The method for producing the solid catalyst component is not particularly limited, but (1) a method of co-milling a magnesium compound and a titanium halide compound such as titanium tetrachloride, (2) a method of co-grinding a magnesium compound and tetrachloride After co-grinding with a titanium compound such as titanium, and then subjecting it to contact treatment with titanium tetrachloride in a solvent such as toluene, the magnesium compound is dissolved in the solvent (3), and the solution is halogenated. A known method such as a method of adding a titanium compound to precipitate a catalyst solid can be used.
マグネシウム、 またはマグネシウム化合物の具体例としては、 ェチルマグネシ ゥムクロライ ド、 プロビルマグネシウムクロライ ド、 ブチルマグネシウムクロラ ィ ド、 へキシルマグネシウムクロライ ド、 ォクチルマグネシウムクロライ ド、 ェ チルマグネシウムブロマイ ド、 プロピルマグネシウムブロマイ ド、 ブチルマグネ シゥムブロマイ ド、 ェチルマグネシウムアイオダィ ドなどのグリニャ一ル化合物 が挙げられる。 また、 塩化マグネシウム、 ジメ トキシマグネシウム、 ジエトキシ マグネシウム、 ジプロポキシマグネシウム、 ジブトキシマグネシウム、 エトキシ (メ トキシ) マグネシウム、 エトキシ (プロボキシ) マグネシウム、 ブトキシ (エトキシ) マグネシウムなどが挙げられ、 中でも塩化マグネシウム、 ジェトキ シマグネシウム、 ジプロポキシマグネシウムが好ましい。 これらのマグネシウム 化合物は単独でも、 また二種類以上併用して用いることもできる。 マグネシウム、 またはマグネシウム化合物の溶媒としては、 例えば、 ジェチルエーテル、 ジブチ ルエーテル、 ジイソプロピルエーテル、 ジイソアミルエーテル等の脂肪族ェ―テ ル、 テトラヒド Dフランなどの脂肪族環状エーテルを使用することができる。 チタンおよびハロゲン元素は、 ハロゲン化チタン化合物として用いることがで きる。 チタン、 ハロゲン元素、 及びハロゲン化チタン化合物の具体例としては、 テトラクロ口チタン、 テトラブロモチタン、 トリクロ口モノブトキシチタン、 ト リブ口モモノエトキシチタン、 トリクロ口モノイソプロポキシチタン、 ジクロロ ジエトキシチタン、 ジクロロジブトキシチタン、 モノクロロトリエトキシチタン、 モノクロロトリブトキシチタンなどを挙げることができる。 特に、 テトラクロ口 チタン、 トリクロ口モノブトキシチタンが好ましい。  Specific examples of magnesium or a magnesium compound include ethyl magnesium chloride, propyl magnesium chloride, butyl magnesium chloride, hexyl magnesium chloride, octyl magnesium chloride, ethyl magnesium bromide, and propyl. Grignard compounds such as magnesium bromide, butyl magnesium bromide, and ethyl magnesium iodide. Also, magnesium chloride, dimethoxymagnesium, diethoxymagnesium, dipropoxymagnesium, dibutoxymagnesium, ethoxy (methoxy) magnesium, ethoxy (propoxy) magnesium, butoxy (ethoxy) magnesium, etc., among which magnesium chloride, jetethoxymagnesium, etc. Preferred is dipropoxy magnesium. These magnesium compounds can be used alone or in combination of two or more. As the solvent for magnesium or the magnesium compound, for example, aliphatic ethers such as getyl ether, dibutyl ether, diisopropyl ether, diisoamyl ether, and aliphatic cyclic ethers such as tetrahydrofuran D can be used. Titanium and halogen elements can be used as titanium halide compounds. Specific examples of titanium, a halogen element, and a titanium halide compound include titanium tetrachloride, tetrabromotitanium, trichloro monobutoxytitanium, tributamate monomonoethoxytitanium, trichloride monoisopropoxytitanium, dichlorodiethoxytitanium, and dichlorotitanium. Examples thereof include dibutoxy titanium, monochlorotriethoxy titanium, and monochlorotributoxy titanium. Particularly, titanium tetrachloride and monobutoxytitanium trichloride are preferable.
「B ] の有機アルミニウム化合物としては、 アルキルアルミニウム、 アルキル アルミニウムハライ ドなどが使用できるが、 アルキルアルミニウムが好ましく、 特に好ましいのはトリアルキルアルミニウムである。 Examples of the organoaluminum compound of "B" include alkyl aluminum and alkyl Although aluminum halide and the like can be used, alkyl aluminum is preferable, and trialkyl aluminum is particularly preferable.
有機アルミニウム化合物の具体例としては、 トリメチルアルミニウム、 トリエ チルアルミニウム、 トリ n—プロピルアルミニウム、 トリイソブチルアルミニゥ ム、 トリへキシルアルミニウム、 トリオクチルアルミニウムなどが挙げられる。 前記有機アルミニウム化合物は、 単独で使用することもできるが、 二種類以上混 合させて使用することもできる。 また、 アルキルアルミニウムと水との反応によ つて得られるポリアルミソキサンも使用することができる。  Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, trin-propylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum and the like. The organoaluminum compounds can be used alone or in combination of two or more. Further, polyaluminoxane obtained by a reaction between alkyl aluminum and water can also be used.
[C] のェ一テル化合物は、 下記の式 ( 1) で表わされるエーテル化合物であ る。  The ether compound of [C] is an ether compound represented by the following formula (1).
Figure imgf000005_0001
Figure imgf000005_0001
上記の式 ( 1) において、 R1と R2とは互いに独立に、 炭素原子数 1〜8の炭 化水素基であり、 炭素原子数 1〜8の不飽和あるいは飽和の脂肪族炭化水素基な どが挙げられる。 R1と R2の具体例としては、 メチル基、 ェチル墓、 n—プロピ ル基、 i s 0—プロビル基、 n-ブチル基、 i s o—ブチル基、 t e r-ブチル 基、 s e c—プチル基、 n—ペンチル基、 i s o—ペンチル基、 シクロペンチル 基、 n—へキシル基、 シクロへキシル基、 n—へプチル基、 n—ォクチル基など が挙げられる。 特に好ましくはメチル基である。 In the above formula (1), R 1 and R 2 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and an unsaturated or saturated aliphatic hydrocarbon group having 1 to 8 carbon atoms. And so on. Specific examples of R 1 and R 2 include methyl group, ethyl tomb, n-propyl group, is 0-propyl group, n-butyl group, iso-butyl group, ter-butyl group, sec-butyl group, n-pentyl group, iso-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group and the like. Particularly preferred is a methyl group.
R3と R4とは互いに独立に、 炭素原子数 1〜24の炭化水素基であり、 炭素原 子数 1〜24の不飽和あるいは飽和の脂肪族炭化水素基などが挙げられる。 : R3 と R 4の具体例としては、 メチル基、 ェチル基、 n—プロビル基、 i s o—プロ ピル基、 n—ブチル基、 i s o-ブチル基、 t e r-ブチル基、 s e c—プチル 基、 n—ペンチル基、 i s o—ペンチル基、 シクロペンチル基、 n—へキシル基、 シクロへキシル基、 n—へプチル基、 n—才クチル基などが挙げられる。 特に好 ましくはメチル基、 ェチル基である。 ェ一テル化合物の具体的な化合物としては、 2 , 2—ジメトキシプロパン、 2 —エトキシー 2—メ トキシプロパン、 2 , 2—ジエトキシプロパン、 2—ェトキ シー 2—プロポキシジメ トキシシラン、 2 , 2—ジプロポキシプロパン、 2—プ 口ポキシ一 2—ブトキシプロパン、 2 , 2—ジブトキシプロパン、 2 , 2—ジメ トキシブタン、 2—エトキシー 2—メトキシブタン、 2 , 2—ジエトキシブタン、 2—エトキシ一 2—プロポキシブタン、 2 , 2—ジプロポキシブタン、 2—プロ ポキシ一2—ブトキシブタン、 2, 2—ジブトキシブタン、 3 , 3—ジメ トキシ ペンタン、 3—エトキシ一 3—メトキシペンタン、 3 , 3—ジェトキシペンタン、 3—エトキシ一 3—プロポキシペンタン、 3, 3—ジプロポキシペンタン、 3— プロポキシ一 3—ブトキシペンタン、 3 , 3—ジブトキシペンタン、 3 , 3—ジ メトキシへキサン、 3—エトキシー 3—メ トキシへキサン、 3 , 3—ジエトキシ へキサン、 3—エトキシ一 3—プロポキシへキサン、 3 , 3—ジプロポキシへキ サン、 3—プロポキシ一 3—ブトキシへキサン、 3 , 3—ジブトキシへキサン、 4 , 4ージメ トキシヘプタン、 4—エトキシ一 4—メ トキシヘプタン、 4 , 4— ジェトキシヘプタン、 4—エトキシ _ 4一プロポキシ ; 7 'タン、 4 , 4ージプロ ポキシヘプタン、 4一プロポキシ一 4一ブトキシヘプタン、 4, 4一ジブトキシ ヘプタンなどが挙げられ、 特に 2, 2—ジメ トキシプロパンが好ましい。 R 3 and R 4 are each independently a hydrocarbon group having 1 to 24 carbon atoms, such as an unsaturated or saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms. : Specific examples of R 3 and R 4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, ter-butyl group, sec-butyl group , N-pentyl, iso-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl and the like. Particularly preferred are a methyl group and an ethyl group. Specific compounds of the ether compounds include 2,2-dimethoxypropane, 2-ethoxy-2-methoxypropane, 2,2-diethoxypropane, 2-ethoxy-2-propoxydimethoxysilane, 2,2- Dipropoxypropane, 2-propoxyl 2-butoxypropane, 2,2-dibutoxypropane, 2,2-dimethoxybutane, 2-ethoxy-2-methoxybutane, 2,2-diethoxybutane, 2-ethoxy-1 2-propoxybutane, 2,2-dipropoxybutane, 2-propoxy-1-butoxybutane, 2,2-dibutoxybutane, 3,3-dimethoxypentane, 3-ethoxy-1-methoxypentane, 3, 3-Jetoxypentane, 3-ethoxy-1-propoxypentane, 3,3-dipropoxypentane, 3-propoxy-1-butoxypentane, 3,3-di Butoxypentane, 3,3-dimethoxyhexane, 3-ethoxy-3-methoxyhexane, 3,3-diethoxyhexane, 3-ethoxy-1-propoxyhexane, 3,3-dipropoxyhexane, 3 —Propoxy-1-butoxyhexane, 3,3-dibutoxyhexane, 4,4-dimethoxyheptane, 4-ethoxy-14-methoxyheptane, 4,4-Jethoxyheptane, 4-ethoxy_4-propoxy; 7 ' Tan, 4,4-dipropoxyheptane, 4-propoxy-14-butoxyheptane, 4,4-dibutoxyheptane and the like, with 2,2-dimethoxypropane being particularly preferred.
式 (1 ) で表されるエーテル化合物成分は、 たとえば、 アルコールとケトンの 当量反応により得られるものを用いることが出来る。  As the ether compound component represented by the formula (1), for example, a compound obtained by an equivalent reaction between an alcohol and a ketone can be used.
本発明のひ一才レフインの重合触媒において、 触媒固体成分、 有機アルミニゥ ム化合物成分およびエーテル化合物の各成分の使用量は、 ひ一才レフィンが重合 可能であれば、 どのような配合割合でもよい。 ,  In the polymerization catalyst of the present invention, the catalyst solid component, the organic aluminum compound component and the ether compound may be used in any mixing ratio, as long as the one-year-old fin can be polymerized. . ,
触媒固体成分と有機アルミニウム化合物成分との使用量は、 例えば、 触媒固体 成分中のチタンと有機アルミニウム化合物とのモル比 ( [有機アルミニウム化合 物] / [チタン] ) は、 好ましくは 1〜 1 0 0 0 0の範囲、 さらに好ましくは 2 - 8 0 0 0の範囲、 より好ましくは 5〜 5 0 0 0の範囲、 特に好ましくは 1 0〜 1 0 0 0の範囲である。  The amount of the catalyst solid component and the organoaluminum compound component to be used is, for example, preferably the molar ratio of titanium and the organoaluminum compound ([organoaluminum compound] / [titanium]) in the catalyst solid component is preferably 1 to 10%. It is preferably in the range of 0.000, more preferably in the range of 2-800, more preferably in the range of 5 to 500, particularly preferably in the range of 10 to 100.
エーテル化合物と有機アルミニゥム化合物との使用量は、 ェ一テル化合物量と 有機アルミニウム化合物量とのモル比 ([エーテル化合物] Z [有機アルミニウム 化合物] ) が、 0 . 0 0 1〜1の範囲が好ましく、 特に 0 . 0 1〜 0 . 3の範囲が 好ましい。 The amount of the ether compound and the organic aluminum compound used is determined by the molar ratio between the amount of the ether compound and the amount of the organic aluminum compound ([ether compound] Z [organic aluminum compound] Compound)) is preferably in the range of 0.01 to 1, particularly preferably in the range of 0.01 to 0.3.
本発明の重合触媒を用いて、 一才レフインを重合する場合、 水素などの連鎖 移動剤を併せて使用することができる。 所望の分子量を有する軟質ォレフィン重 合体を製造するための水素の使用量は、 重合方法及び重合条件によって、 適宜決 定することができるが、 通常、 水素 zひ一ォレフィン分圧比が 0 . 0 0 1〜0 . 5の範囲が好ましい。  When one-year-old olefins are polymerized using the polymerization catalyst of the present invention, a chain transfer agent such as hydrogen can be used together. The amount of hydrogen used for producing a soft olefin polymer having a desired molecular weight can be appropriately determined depending on the polymerization method and polymerization conditions. Usually, the hydrogen / hydrogen partial pressure ratio is 0.000. A range from 1 to 0.5 is preferred.
本発明の重合触媒の製造方法として、 触媒の各成分の接触順序について特に制 限はないが、 触媒固体成分と有機アルミニウム化合物とをあらかじめ接触させて から、 ェ一テル化合物を接触させることが好ましく、 または有機アルミニウム化 合物とェ一テル化合物をあらかじめ接触してから、 触媒固体成分を接触させるこ とが好ましい。  In the production method of the polymerization catalyst of the present invention, the contact order of each component of the catalyst is not particularly limited. However, it is preferable that the catalyst solid component and the organoaluminum compound are brought into contact in advance, and then the ether compound is brought into contact. Alternatively, it is preferable that the organoaluminum compound is brought into contact with the ether compound in advance and then brought into contact with the catalyst solid component.
ひーォレフインとしては エチレン、 プロピレン、 1ーブテン、 1一ペンテン、 1—へキセン、 1—ヘプテン、 4ーメチルペンテン一 1、 1ーォクテンなど鎖状 ーォレフイン、 シクロへキセン一 1などの環状ひーォレフィンなどを挙げるこ とができる。 特に、 エチレン、 プロピレン、 1ーブテンなどが好ましい。  Examples of the olefins include chain-like olefins such as ethylene, propylene, 1-butene, 11-pentene, 1-hexene, 1-heptene, 4-methylpentene-11, and 1-octene. Can be. Particularly, ethylene, propylene, 1-butene and the like are preferable.
ひ一ォレフィンは、 単独の使用、 二種類以上を用いることができ、 ひ一ォレフ イン単独では、 ホモ重合体が得られ、 二種類以上のひ一ォレフィンを用いる場合 は共重合体が得られる。  The homorefin can be used alone or in combination of two or more types. A homopolymer can be obtained by using monorefin alone, and a copolymer can be obtained by using two or more types of monorefin.
本発明の ーォレフインの重合触媒を用いることにより、 低結晶性ひ一ォレフ ィン重合体、 非晶性ひ一才レフイン重合体を製造することが出来る。  By using the polymerization catalyst for olefin of the present invention, a low-crystalline polyolefin polymer and an amorphous polyolefin polymer can be produced.
本明細書において、 ひ一ォレフィン重合体は、 ひ一ォレフィンのホモ重合体お よび 2種以上のひ一才レフィンより製造されるブロック共重合体、 ランダム共重 合体などの共重合体を意味する。  In the present specification, the monoolefin polymer means a homopolymer of monoolefin and a copolymer such as a block copolymer or a random copolymer produced from two or more types of monoolefin. .
本発明の α—ォレフィンの重合触媒は、 好ましくはプロピレン、 1ーブテンか ら選ばれるひ一才レフイン 3 0〜 1 0 0重量%とプロピレンおよび 1一ブテンを 除く他のひ一ォレフィン 7 0〜0重量%との重合、 さらに好ましくはプロピレン、 1—ブテンから選ばれるひ一才レフイン 4 0〜 1 0 0重量%とプロピレンおよび 1ーブテンを除く他のひ一才レフイン 6 0〜0重量%との重合、 特に好ましくは プロピレン、 1ーブテンから選ばれるひ一ォレフィン 51〜100重量%とプロ ピレンおよび 1ーブテンを除く他のひ一ォレフィン 49〜0重量%との重合に好 ましく用いることが出来る。 The polymerization catalyst for α-olefins of the present invention is preferably 30 to 100% by weight of one-component olefin selected from propylene and 1-butene and 70 to 0% of other mono-olefins excluding propylene and 1-butene. % By weight, more preferably from 40 to 100% by weight of a one-year-old olefin selected from propylene and 1-butene and from 60 to 0% by weight of another one-year-old olefin excluding propylene and 1-butene. Polymerization, particularly preferably It can be preferably used for the polymerization of 51 to 100% by weight of a monoolefin selected from propylene and 1-butene and 49 to 0% by weight of a polyolefin other than propylene and 1-butene.
本発明の α—才レフインの重合触媒は、 好ましくはプロピレン、 1ーブテンか ら選ばれる ーォレフインの (共) 重合に好ましく用いることが出来る。 本発明 のひ一ォレフィンの重合触媒は、 好ましくはプロピレン 50〜100重量%と 1 —プテン 50〜 0重量%との重合、 さらに好ましくはプロピレン 55〜 100重 量%と 1ーブテン 45〜0重量%との重合、 特に好ましくはプロピレン 60〜1 00重量%と 1—ブテン 40〜0重量%との重合に、 好ましく用いることが出来 る。 特に、 本発明のひ一ォレフィンの重合触媒は、 好ましくはプロピレン 70〜 90重量%と 1—ブテン 30〜10重量%との重合に好ましく用いることが出来 る ο  The polymerization catalyst for α-olefins of the present invention can be preferably used for (co) polymerization of olefins selected from propylene and 1-butene. The polymerization catalyst for monoolefins of the present invention preferably comprises 50-100% by weight of propylene and 50-0% by weight of 1-butene, more preferably 55-100% by weight of propylene and 45-0% by weight of 1-butene. And particularly preferably in the polymerization of 60 to 100% by weight of propylene and 40 to 0% by weight of 1-butene. In particular, the polymerization catalyst for monoolefins of the present invention can be preferably used for the polymerization of 70 to 90% by weight of propylene and 30 to 10% by weight of 1-butene.
本発明のひ一才レフインの霉合^ j媒は、 好ましくは 1ーブテン 50〜100重 量%とプロピレン 50〜 0重量%との重合、 さらに好ましくは 1—ブテン 55〜 100重量%とプロピレン 45〜0重量%との重合、 特に好ましくは 1—ブテン 60〜100重量%とプロピレン 40~0重量%との重合に好ましく用いること が出来る。  The composite medium of the present invention is preferably a polymerization of 50 to 100% by weight of 1-butene and 50 to 0% by weight of propylene, more preferably 55 to 100% by weight of 1-butene and 45 to 100% by weight of propylene. It can be preferably used for the polymerization of 0 to 0% by weight, particularly preferably the polymerization of 60 to 100% by weight of 1-butene and 40 to 0% by weight of propylene.
本発明の触媒を用いる重合は、 エチレン、 プロピレンなどの公知の重合方法を 利用して実施できる。 重合方法の具体例としては、 ブタン、ペンタン、へキサン、 ヘプタン、オクタンなどの無極性溶媒を使用するスラリー重合法、 モノマ—を気 体状態で触媒と接触して重合を行う気相重合法、 あるいは液化状態のモノマ—を 溶媒としてその中で重合させるバルク重合法などを挙げることが出来、 特にバル ク重合が好ましい。 上記重合方法で、 1段重合、 2段重合などの多段重合、 連続 重合、 バッチ重合のいずれを行ってもよい。  The polymerization using the catalyst of the present invention can be carried out by using a known polymerization method such as ethylene and propylene. Specific examples of the polymerization method include a slurry polymerization method using a nonpolar solvent such as butane, pentane, hexane, heptane, and octane; a gas phase polymerization method in which a monomer is brought into contact with a catalyst in a gaseous state to carry out polymerization; Alternatively, a bulk polymerization method in which a monomer in a liquefied state is polymerized in a solvent as a solvent can be used, and bulk polymerization is particularly preferable. In the above polymerization method, any of multi-stage polymerization such as one-stage polymerization, two-stage polymerization, continuous polymerization, and batch polymerization may be performed.
重合圧力は、 重合可能であればどのような圧力でもよく、 好ましくは 0.1〜 10MPa、 さらに好ましくは l〜6MPaの範囲が好ましい。 重合温度は、 重 合可能であればどのような温度でもよく、 好ましくは 10〜150° (、 さらに好 ましくは 30〜100°C;、 特に好ましくは 50〜90°Cの範囲が好ましい。 重合 時間は、 重合可能であればどのような時間でもよく、 好ましくは 0.1〜10時 間、 さらに好ましくは 0.5〜 7時間の範囲が好ましい。 The polymerization pressure may be any pressure as long as polymerization is possible, and is preferably in the range of 0.1 to 10 MPa, more preferably 1 to 6 MPa. The polymerization temperature may be any temperature as long as it can be polymerized, preferably 10 to 150 ° (more preferably 30 to 100 ° C; particularly preferably 50 to 90 ° C). The polymerization time may be any time as long as polymerization is possible, preferably 0.1 to 10 hours And more preferably in the range of 0.5 to 7 hours.
本発明の ーォレフインの重合触媒は、 その重合活性が、 好ましくは 5000 g/ (g · hr) 以上、 さらに好ましくは 7000 g/ (g · hr) 以上、 より 好ましくは 12000g/ (g ' hr) 以上、 特に好ましくは 15000 g/ (g■ hr) 以上が好ましい。 '  The polymerization activity of the polymerization catalyst of the present invention is preferably 5000 g / (ghr) or more, more preferably 7000 g / (ghr) or more, more preferably 12000 g / (g'hr) or more. Particularly preferred is 15,000 g / (g ■ hr) or more. '
本発明の —ォレフィンの重合触媒を用いて製造されるひーォレフイン (共) 重合体は、 溶融粘度が、 好ましくは 50000 cps以下、 さらに好ましくは 2 5000 c p s以下、 さらに好ましくは 20000 cps以下、 さらに好ましく は 15000 cps以下、 さらに好ましくは 12000 cps以下、 より好まし くは 10000 cps以下、 特に好ましくは 9000 cps以下にある。  The olefin (co) polymer produced by using the -olefin polymerization catalyst of the present invention has a melt viscosity of preferably 50,000 cps or less, more preferably 25,000 cps or less, further preferably 20,000 cps or less, and still more preferably. Is less than 15,000 cps, more preferably less than 12000 cps, more preferably less than 10,000 cps, particularly preferably less than 9000 cps.
また、 本発明のひーォレフインの重合触媒を用いて製造される 一才レフイン (共) 重合体は、 溶融粘度が、 好ましくは 130〜50000 cpsの範囲、 さ らに好ましくは 150〜25000 cpsの範囲、 さらに好ましくは 160 ~ 2 0000 c p sの範囲、 さらに好ましくは 170〜: L 5000 cpsの範囲、 さ らに好ましくは 200〜: L 2000 cp sの範囲、 より好ましくは 220〜 10 000 cp sの範囲、 特に好ましくは 250〜 9000 c p sの範囲にある。 本発明のひ一ォレフィンの重合触媒を用いて製造される 一才レフイン重合体 は、 引張弾性率が好ましくは 200 MP a以下、 さらに好ましくは 150MPa 以下、 さらに好ましくは 12 OMP a以下、 より好ましくは 10 OMPa以下、 より好ましくは 8 OMPa以下、 より好ましくは 6 OMPa以下、 特に好ましく は 5 OMP a以下にある。  Further, the one-year-old olefin (co) polymer produced using the olefin polymerization catalyst of the present invention has a melt viscosity, preferably in the range of 130 to 50,000 cps, more preferably in the range of 150 to 25,000 cps. More preferably in the range of 160 to 20,000 cps, more preferably in the range of 170 to: L 5000 cps, more preferably in the range of 200 to: L 2000 cps, more preferably in the range of 220 to 10 000 cps. Particularly preferred is in the range of 250 to 9000 cps. The one-year-old olefin polymer produced using the polymerization catalyst for monoolefin of the present invention preferably has a tensile modulus of 200 MPa or less, more preferably 150 MPa or less, further preferably 12 OMPa or less, more preferably It is 10 OMPa or less, more preferably 8 OMPa or less, more preferably 6 OMPa or less, particularly preferably 5 OMPa or less.
本発明のひーォレフインの重合触媒を用いて製造されるひ一ォレフィン重合体 は、 沸騰 n—ヘプタン不溶分が好ましくは 60%以下、 さらに好ましくは 40% 以下、 さらに好ましくは 30%以下、 より好ましくは 20%以下、 より好ましく は 15%以下、 より好ましくは 10%以下、 特に好ましくは 8%以下にある。 本発明のひ一才レフインの重合触媒を用いて製造される α—才レフイン重合体 は、 数平均分子量 (Μη) が好ましくは 1000〜 25000の範囲、 さらに好 ましくは 1100〜 22000の範囲、 さらに好ましくは 1200〜 20000 の範囲、 より好ましくは 1500〜 18000の範囲、 より好ましくは 1600 -15000の範囲、 より好ましくは 1800 12000の範囲、 特に好まし くは 2000〜 : 10000の範囲が好ましい。 The olefin polymer produced using the olefin polymerization catalyst of the present invention has a boiling n-heptane insoluble content of preferably 60% or less, more preferably 40% or less, further preferably 30% or less, and more preferably Is at most 20%, more preferably at most 15%, more preferably at most 10%, particularly preferably at most 8%. The α-refined polymer produced using the polymerization catalyst of the present invention has a number average molecular weight (Μη) preferably in the range of 1,000 to 25,000, more preferably in the range of 1100 to 22000, More preferably in the range of 1200 to 20000, more preferably in the range of 1500 to 18000, more preferably in the range of 1600 It is preferably in the range of -15000, more preferably in the range of 1800 to 12000, particularly preferably in the range of 2000 to 10,000.
本発明の触媒を用いて得られる 一才レフイン重合体は単独で製品として使用 することもできるし、 他のォレフィン重合体、 ポリアミド、 ポリエステル、 エラ ストマ一などとプレンドして使用することもできる。  The one-year-old olefin polymer obtained by using the catalyst of the present invention can be used alone as a product, or can be used by blending with other olefin polymers, polyamides, polyesters, elastomers and the like.
次に本発明を実施例と比較例により説明するが、 下記の実施例と比較例におい て測定した特性値は、 下記の記載により説明される。  Next, the present invention will be described with reference to examples and comparative examples. The characteristic values measured in the following examples and comparative examples will be described with the following description.
(1) 重合活性: 触媒固体 l g当たり、 1時間重合を行う時のひ一才レフィ ン重合体の収量 (g/g. hr) で表わす。  (1) Polymerization activity: It is expressed as the yield (g / g.hr) of a one-year-old refin polymer when polymerization is performed for 1 hour per gram of solid catalyst.
(2)溶融粘度: α—ォレフイン重合体 (8 g) を採取し、 ブルックフィー ルド RVT粘度計 Mode 1DV— IIを用い、 ASTM · D 3236に準拠して 190°Cにおける粘度を測定した。  (2) Melt viscosity: An α-olefin polymer (8 g) was sampled, and the viscosity at 190 ° C. was measured using a Brookfield RVT viscometer Mode 1DV-II according to ASTM D3236.
(3) ーォレフイン重合体のプテン含量 [wt%] : ホットプレスにて 1 00 ^m厚のポリマ一フィルムを作成し、 パーキンエルマ一社製: FT— I R 16 00シリーズを用いて 4500〜400 cm—1を走査し、 ブテンに帰属する 76 6 cm— 1のピーク面積とプロピレンに帰属する 4320 cm—1のビーク面積比か ら求めた。 (3) Putene content of polymer [wt%]: A polymer film having a thickness of 100 ^ m was prepared by hot pressing and manufactured by PerkinElmer: 4500-400 cm using FT-IR1600 series. -1 was scanned and determined from the peak area ratio of 766 cm- 1 assigned to butene and the beak area ratio of 4320 cm- 1 assigned to propylene.
(4)機械的特性の評価:ホヅトプレスにて 1mm厚のシートを作成し、 23 eCの恒温室に 48時間放置した後、 ダンペル状 1号形の打ち抜き型を用いて打ち 抜き、 試験片とした。 引張り試験は、 テンシロン万能試験機を用い、 23°Cで引 張り速度 5mm/minで測定した。 引張り弾性率は、 応力—ひずみ曲線の最初 の直線部分を用いて計算し求めた。 (4) Evaluation of mechanical properties: Create a 1mm thick sheet at Hodzutopuresu was allowed to stand for 48 hours in a thermostatic chamber of 23 e C, punching out using a cutting die of Danperu shaped No. 1 shape, and the test piece did. The tensile test was performed using a Tensilon universal testing machine at 23 ° C at a tensile speed of 5 mm / min. Tensile modulus was calculated using the first linear part of the stress-strain curve.
(5) プリ一ドアウト : ブリードアウトは粘着性の評価である。 その方法は、 a—ォレフ.ィン重合体をホヅトフ。レスにて 1mm厚のシートを作成し、 23°Cで 1ヶ月放置した後、 シートの表面状態を目視で観察した。 評価は、  (5) Pre-out: Bleed-out is an evaluation of adhesiveness. The method uses a photorefin polymer. A sheet having a thickness of 1 mm was prepared by using the same method and left at 23 ° C. for one month, and the surface condition of the sheet was visually observed. Evaluation,
〇:シート表面にブリードアゥト成分が見られない状態、  〇: No bleed art component is seen on the sheet surface,
X :シート表面にブリードアウト成分が見られる状態、 の 2段階で行った。 X: A state in which bleed-out components are observed on the sheet surface.
(6)沸騰 n—ヘプタン不溶分の測定: ひ一才レフイン重合体約 2 gを乾燥し た筒状ろ紙に入れて、 その重量を測定した後、 二重管式ソックスレー抽出器にセ ヅトした。 n—ヘプタン 150 gをこのソヅクスレ一容器に入れ、 加熱して、 1 0時間、 沸騰還流させ、 非晶性ポリオレフイン中の溶解成分を抽出した。 その後、 沸騰 n—ヘプタン不溶分の残った筒状ろ紙を取出し、 恒量になるまで減圧乾燥し、 その重量を測定した。 沸騰 n—ヘプ夕ン抽出前後の重量比から計算式により、 沸 騰 n—ヘプ夕ン不溶分を算出した。 沸騰 n—ヘプタン不溶分 (%) = [ (M-N) /S] X 100 (6) Measurement of boiling n-heptane insolubles: Place about 2 g of Hi-Iseki Refin polymer in dried tubular filter paper, weigh it, and place it in a double tube Soxhlet extractor. ヅ150 g of n-heptane was placed in the soak container, heated and brought to a boil for 10 hours to extract the dissolved components in the amorphous polyolefin. Thereafter, the tubular filter paper remaining with the boiling n-heptane insoluble matter was taken out, dried under reduced pressure until the weight became constant, and its weight was measured. The boiling n-heptane-insoluble content was calculated from the weight ratio before and after the boiling n-heptane extraction by a calculation formula. Boiling n-heptane insolubles (%) = [(MN) / S] x 100
[但し、 Mは減圧乾燥後の n—ヘプタン不溶分と筒状ろ紙との合計重量 (g)、 Nは乾燥した筒状ろ紙の重量 (g)、 そして Sは沸騰 n—ヘプタン抽出前の a— ォレフィン熏合体の重量 (g) である。 ] [However, M is the total weight of the n-heptane insoluble matter after drying under reduced pressure and the tubular filter paper (g), N is the weight of the dried tubular filter paper (g), and S is the boiling a-before n-heptane extraction — The weight (g) of the olefin binding. ]
[実施例 1 ] [Example 1]
(1)触媒固体成分 [A]の調製  (1) Preparation of catalyst solid component [A]
直径 16 mmのステンレスボール 60個の入った内容積 450 mlの粉碎用ポ ヅトに窒素雰囲気下で、 無水塩化マグネシウム 10 g及び四塩化チタン 2mlを 入れ、 振動ボールミルに装着して 30時間粉碑した。 粉砕終了後、 粉砕物 2 gを 窒素雰囲気下でスターラーピースと G4のガラスフィル夕一を備えた容量 200 — mlの二連球に入れ、 蒸留 '脱水トルエン 3 Oml、 四塩化チタン 2 Omlを順 次導入し、 90°Cで 2時間撹拌反応させた。 その後、 熱時ろ過し、 蒸留 '脱水へ ブタン 50mlで 5回、 固形成分を洗浄した。 次に、 蒸留 '脱水ヘプタン 50m 1でスラリ一化した。 得られた固形成分は T iを 2. 0 w t %含有していた。 Under a nitrogen atmosphere, put 10 g of anhydrous magnesium chloride and 2 ml of titanium tetrachloride in a milling port with a capacity of 450 ml containing 60 stainless steel balls with a diameter of 16 mm, and attach it to a vibrating ball mill for 30 hours. did. After grinding, 2 g of the ground material was placed in a 200-ml double-ball with a stirrer piece and a G4 glass fill under a nitrogen atmosphere. Distillation was performed with 3 mL of dehydrated toluene and 2 mL of titanium tetrachloride. Next, the reaction was stirred and reacted at 90 ° C. for 2 hours. Thereafter, the mixture was filtered while hot, and the solid component was washed five times with 50 ml of distilled and dehydrated butane. Next, the slurry was distilled with 50 ml of dehydrated heptane. The obtained solid component contained 2.0 wt% of Ti.
(2) α—ォレフィンの重合 (2) Polymerization of α-olefin
撹拌機付の内容積 2 Lのステンレス製オートクレープ内を窒素で充分置換した 後、 蒸留 '脱水ヘプタン 10mlを入れ、 触媒固体成分 [A] の n—ヘプタンス ラリーを触媒固体成分として 10mg (T i = 0. 004mmo l) 、 有機アル ミニゥム化合物成分 [B] としてトリェチルアルミニウム 2. 2mmo l、 ェ一 テル化合物成分 [C] として 2, 2—ジメ トキシプロパン 0. 04 mm o 1を仕 込んだ。 続いて、 ゲージ圧で水素 2. 7 kg/ cm2導入後、 液ィ匕 1—ブテン 2 0 Oml、 液化プロピレン 1000 mlを順次導入してオートクレープを振とう . した。 オートクレープを 68°Ct昇温し、 68 °Cで 1時間重合を行った。 After thoroughly replacing the inside of a 2 L stainless steel autoclave with a stirrer with nitrogen, 10 ml of distilled 'dehydrated heptane is added, and the n-heptance rally of the catalyst solid component [A] is 10 mg (T i = 0.004 mmo l), 2.2 mmol of triethylaluminum as the organic aluminum compound component [B], and 0.04 mm o 1 of 2,2-dimethoxypropane as the ether compound component [C]. . Subsequently, after introducing 2.7 kg / cm 2 of hydrogen at a gauge pressure, the liquid 1-butene 2 0 Oml and liquefied propylene 1000 ml were sequentially introduced, and the autoclave was shaken. The temperature of the autoclave was raised by 68 ° C and polymerization was carried out at 68 ° C for 1 hour.
重合終了後、 未反応モノマ一を放出し、 酸化防止剤 (ィルガノ、ソクス 1010) 0. 5 gおよびエタノール 2 mlを溶解した n—ヘプタン 500 mlをォ一トク レーブ内に注入し、 引き続き 68°Cで 30分撹拌を行った。 その後オートクレー ブを開放し、 アルミニウム製のバットに溶解した重合体を取り出し、 真空乾燥し た。 重合活性および得られた重合体の特性を表 1にまとめた。  After completion of the polymerization, unreacted monomer was released, and 0.5 g of antioxidant (Irgano, Sox 1010) and 500 ml of n-heptane dissolved with 2 ml of ethanol were injected into the autoclave. The mixture was stirred at C for 30 minutes. Thereafter, the autoclave was opened, and the polymer dissolved in the aluminum vat was taken out and vacuum-dried. Table 1 summarizes the polymerization activity and the properties of the obtained polymer.
得られた重合体の沸騰 n—ヘプタン不溶分は、 0%であった。  The boiling n-heptane insoluble content of the obtained polymer was 0%.
[比較例 1 ] [Comparative Example 1]
ォレフィン重合において、 エーテル化合物成分 [C] を用いず、 水素圧をゲ ージ圧で 1. 4kg/cm2、 '液化 1—ブテンを 300ml、 液化プロピレンを 900ml仕込んだ以外は実施例 1と同様に重合を行った。 重合活性および得ら れた重合体の特性を下記の表にまとめた。 Same as in Example 1, except that the ether compound component [C] was not used, and the hydrogen pressure was 1.4 kg / cm 2 at the gage pressure, 300 ml of liquefied 1-butene, and 900 ml of liquefied propylene were used in the olefin polymerization. Was polymerized. The following table summarizes the polymerization activity and the properties of the obtained polymer.
Figure imgf000012_0001
産業上の利用可能性
Figure imgf000012_0001
Industrial applicability
本発明の触媒は、 α—ォレフィンに対する重合活性が高く、 その使用により、 柔軟性を有するひ一才レフイン重合体を得ることが出来る。 そして、 本発明の触 媒の使用により、 粘着成分のブリードアウトのないひ一才レフィン重合体を製造 することができ、 また、 粘着成分のブリードアゥトのない低結晶性または非晶性 のひ一才レフイン重合体を製造することができる。  The catalyst of the present invention has a high polymerization activity for α-olefin, and by using the catalyst, a flexible one-piece olefin polymer can be obtained. Then, by using the catalyst of the present invention, a one-year-old olefin polymer having no bleed-out of the adhesive component can be produced, and a low-crystalline or non-crystalline one-component polymer having no bleed-out of the adhesive component can be produced. Olefin polymers can be produced.

Claims

請 求 の 範 囲 The scope of the claims
1. 下記の成分を含むひ一才レフインの重合触媒: 1. A polymerization catalyst for Hiichi Sai Refin, which contains the following components:
CA] マグネシウム、 チタン、 ハロゲン元素を必須とする触媒固体成分、  CA] Solid catalyst components that require magnesium, titanium, and halogen elements,
[B]有機アルミニウム化合物、  [B] an organoaluminum compound,
[C]下記式 (1) で表されるエーテル化合物:  [C] An ether compound represented by the following formula (1):
Figure imgf000013_0001
Figure imgf000013_0001
[但し、 式 (1) において、 : 1と R2は互いに独立に炭素原子数 1〜8の炭化水 素基を表わし、 そして; R3と R4とは互いに独立に炭素原子数 1〜 24の炭化水素 基を表わす] 。 [Wherein, in the formula (1): 1 and R 2 independently represent a hydrocarbon group having 1 to 8 carbon atoms; and R 3 and R 4 independently represent 1 to 24 carbon atoms. Represents a hydrocarbon group].
2. エーテル化合物の R1と R2とが互いに同一で、 かつ: 3と とが互いに同一 である請求の範囲 1に記載の重合触媒。 2. The polymerization catalyst according to claim 1 , wherein R 1 and R 2 of the ether compound are the same as each other, and: and 3 are the same as each other.
3. エーテル化合物の R 1と R 2とが共にメチル基である請求の範囲 1に記載の重 合触媒。 3. The polymerization catalyst according to claim 1, wherein both R 1 and R 2 of the ether compound are methyl groups.
4. エーテル化合物の R 3と H4とが共にメチル基もしくはェチル墓である請求の 範囲 1に記載の重合触媒。 4. The polymerization catalyst according to claim 1, wherein both R 3 and H 4 of the ether compound are a methyl group or an ethyl group.
5. ェ一テル化合物が、 2, 2—ジメ トキシプロパン、 2—エトキシ一 2—メ ト キシプロパン、 2, 2—ジエトキシプロパン、 2—エトキシー 2—プロポキシジ メトキシシラン、 2, 2—ジプロポキシプロパン、 2—プロポキシ一 2—ブトキ シプロパン、 2, 2—ジブトキシプロパン、 2, 2—ジメ トキシブタン、 2—ェ トキシ一 2—メ トキシブタン、 2, 2—ジエトキシブタン、 2—エトキシー 2— プロポキシブタン、 2, 2—ジプロポキシブタン、 2—プロポキシ一 2—ブトキ シブタン、 2, 2—ジブトキシブタン、 3, 3—ジメ トキシペンタン、 3—エト キシ一 3—メ トキシペンタン、 3, 3—ジエトキシペンタン、 3—エトキシー 3 —プロポキシペンタン、 3, 3—ジプロポキシペンタン、 3—プロポキシ一 3— ブトキシペンタン、 3, 3—ジブトキシペンタン、 3, 3—ジメ トキシへキサン、 3—エトキシ一 3—メ トキシへキサン、 3, 3—ジェトキシへキサン、 3—エト キシ— 3—プロポキシへキサン、 3, 3—ジプロポキシへキサン、 3—プロポキ シ— 3—ブトキシへキサン、 3, 3—ジブトキシへキサン、 4, 4ージメ トキシ ヘプタン、 4一エトキシー 4ーメ トキシヘプタン、 4, 4—ジェトキシヘプタン、 4一エトキシー 4一プロポキシヘプタン、 4, 4ージプロポキシヘプタン、 4— プロポキシ _ 4ーブトキシヘプ夕ン、 および 4 , 4—ジブトキシヘプ夕ンからな る群から選ばれる化合物である請求の範囲 1に記載の重合触媒。 5. The ester compound is 2,2-dimethoxypropane, 2-ethoxy-12-methoxypropane, 2,2-diethoxypropane, 2-ethoxy-2-propoxydimethoxysilane, 2,2-dipropoxypropane , 2-propoxy-1-butoxypropane, 2,2-dibutoxypropane, 2,2-dimethoxybutane, 2-ethoxy-12-methoxybutane, 2,2-diethoxybutane, 2-ethoxy-2-propoxybutane , 2,2-dipropoxybutane, 2-propoxy-1-butoxybutane, 2,2-dibutoxybutane, 3,3-dimethoxypentane, 3-ethoxy-1-3-methoxypentane, 3,3-di Ethoxypentane, 3-ethoxy-3-propoxypentane, 3,3-dipropoxypentane, 3-propoxy-1-butoxypentane, 3,3-dibutoxypentane, 3,3 —Dimethoxyhexane, 3-ethoxy-1-3-methoxyhexane, 3,3-ethoxyethoxy, 3-ethoxy-3-propoxyhexane, 3,3-dipropoxyhexane, 3-propoxy-3 —Butoxyhexane, 3,3-Dibutoxyhexane, 4,4 Dimethoxyheptane, 4-Ethoxy 4-Methoxyheptane, 4,4-Jetoxyheptane, 4-Ethoxy 41-Propoxyheptane, 4,4 Dipropoxy 2. The polymerization catalyst according to claim 1, which is a compound selected from the group consisting of heptane, 4-propoxy-4-butoxyheptone, and 4,4-dibutoxyheptone.
6. ェ一テル化合物が、 2 , 2—ジメトキシプロパンである請求の範囲 1に記載 の重合触媒。 6. The polymerization catalyst according to claim 1, wherein the ether compound is 2,2-dimethoxypropane.
7. 有機アルミニウム化合物に対するエーテル化合物のモル比が 0. 001〜1 の範囲にある請求の範囲 1に記載の重合触媒。 7. The polymerization catalyst according to claim 1, wherein the molar ratio of the ether compound to the organoaluminum compound is in the range of 0.001 to 1.
8. ひ一才レフィンを請求の範囲 1に記載の重合^ 5媒の存在下に重合させてひ一 ォレフィンの重合体を得る方法。 8. A method for obtaining a monorefin polymer by polymerizing a monorefin in the presence of the polymerization medium according to claim 1.
9 . ひーォレフインがエチレン、 プロピレン、 1—ブテン、 1—ペンテン、 1一 へキセン、 1—ヘプテン、 4ーメチルペンテン一 1 , 1ーォクテン、 およびシク 口へキセン一 1からなる群から選ばれる一もしくは二以上のひーォレフインであ る請求の範囲 8に記載の方法。 9. The olefin is one or two selected from the group consisting of ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 4-methylpentene 1-1, 1-octene, and cyclohexene 1 9. The method according to claim 8, which is the above-mentioned hrefin.
1 0 . ひーォレフインがエチレン、 プロピレン、 及び 1—ブテンからなる群から 選ばれる一もしくは二以上の 一才レフインである請求の範囲 8に記載の方法。 10. The method according to claim 8, wherein the hyolephine is one or more one-year-old olefins selected from the group consisting of ethylene, propylene, and 1-butene.
1 1 . ひーォレフインが、 7 0〜9 0重量%のプロピレンと 3 0〜1 0重量%の 1 ブテンとを含む混合物である請求の範囲 8に記載の方法。 11. The process according to claim 8, wherein the hyolefine is a mixture comprising 70 to 90% by weight of propylene and 30 to 10% by weight of 1-butene.
PCT/JP2002/001046 2001-02-08 2002-02-07 CATALYST FOR α-OLEFIN POLYMERIZATION AND METHOD OF POLYMERIZATION WITH THIS CATALYST WO2002062855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-32355 2001-02-08
JP2001032355A JP2002234908A (en) 2001-02-08 2001-02-08 Polymerization catalyst for alpha-olefin and polymerization method using the catalyst

Publications (1)

Publication Number Publication Date
WO2002062855A1 true WO2002062855A1 (en) 2002-08-15

Family

ID=18896303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001046 WO2002062855A1 (en) 2001-02-08 2002-02-07 CATALYST FOR α-OLEFIN POLYMERIZATION AND METHOD OF POLYMERIZATION WITH THIS CATALYST

Country Status (2)

Country Link
JP (1) JP2002234908A (en)
WO (1) WO2002062855A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165073B (en) * 2006-10-20 2010-05-12 中国石油化工股份有限公司 Catalyst component used for olefin polymerization reaction and catalyst thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265518A (en) * 2001-03-12 2002-09-18 Japan Polychem Corp Alpha-olefin polymerization catalyst and method of polymerizing alpha olefin by using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400303A (en) * 1981-03-09 1983-08-23 Phillips Petroleum Company Catalyst for olefin polymerization
JPS6254705A (en) * 1985-09-03 1987-03-10 Mitsubishi Petrochem Co Ltd Production of olefin polymer
US4701505A (en) * 1984-09-26 1987-10-20 Mitsubishi Petrochemical Company Limited Process for production of olefin polymers
US4762898A (en) * 1985-03-08 1988-08-09 Mitsubishi Petrochemical Company Limited Process for polymerizing ethylene
EP0362705A2 (en) * 1988-09-30 1990-04-11 Montell North America Inc. Catalysts for the polymerization of olefins
JPH044206A (en) * 1990-04-23 1992-01-08 Mitsubishi Petrochem Co Ltd Production of olefin polymer
JPH059209A (en) * 1991-06-28 1993-01-19 Showa Denko Kk Catalyst for olefin polymerization
JPH1045834A (en) * 1996-08-07 1998-02-17 Mitsubishi Chem Corp Polymerization of propylene
US6103654A (en) * 1997-02-25 2000-08-15 Institut Francais Du Petrole Catalytic composition and a process for converting ethylene to light alpha olefins

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759604B2 (en) * 1984-12-18 1995-06-28 三菱化学株式会社 Method for producing olefin polymer
JPH0618824B2 (en) * 1985-05-31 1994-03-16 三菱油化株式会社 Polymerization of ethylene
JPH07671B2 (en) * 1985-03-08 1995-01-11 三菱油化株式会社 Polymerization of ethylene
JPH0737489B2 (en) * 1985-10-08 1995-04-26 三菱油化株式会社 Polymerization of ethylene

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400303A (en) * 1981-03-09 1983-08-23 Phillips Petroleum Company Catalyst for olefin polymerization
US4701505A (en) * 1984-09-26 1987-10-20 Mitsubishi Petrochemical Company Limited Process for production of olefin polymers
US4762898A (en) * 1985-03-08 1988-08-09 Mitsubishi Petrochemical Company Limited Process for polymerizing ethylene
JPS6254705A (en) * 1985-09-03 1987-03-10 Mitsubishi Petrochem Co Ltd Production of olefin polymer
EP0362705A2 (en) * 1988-09-30 1990-04-11 Montell North America Inc. Catalysts for the polymerization of olefins
JPH044206A (en) * 1990-04-23 1992-01-08 Mitsubishi Petrochem Co Ltd Production of olefin polymer
JPH059209A (en) * 1991-06-28 1993-01-19 Showa Denko Kk Catalyst for olefin polymerization
JPH1045834A (en) * 1996-08-07 1998-02-17 Mitsubishi Chem Corp Polymerization of propylene
US6103654A (en) * 1997-02-25 2000-08-15 Institut Francais Du Petrole Catalytic composition and a process for converting ethylene to light alpha olefins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUPTA V.K. ET AL.: "Studies on magnesium dichloride-2,2-dimethoxypropane-titanium tetrachloride catalyst system for propylene polymerization", POLYMER, vol. 37, no. 8, 1996, pages 1399 - 1403, XP004069331 *
SPITZ R. ET AL.: "Control of the catalyst and polymer properties of linear polyethylenes", STUD. SURF. SCI. CATAL., vol. 56, 1990, pages 117 - 130, XP002965900 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165073B (en) * 2006-10-20 2010-05-12 中国石油化工股份有限公司 Catalyst component used for olefin polymerization reaction and catalyst thereof

Also Published As

Publication number Publication date
JP2002234908A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
CA1070900A (en) Random copolymer of propylene and 1-butene and process for its production
AU780051B2 (en) Adhesive alpha-olefin inter-polymers
EP3728347B1 (en) Process for preparation of semi-crystalline functionalized olefin copolymer
EP0135358B1 (en) Novel random 1-butene copolymer
NO153609B (en) Polymerization catalyst.
JPH0397747A (en) Thermoplastic olefin polymer and its preparation
WO1998058971A1 (en) Propylene terpolymers and a process for the production thereof
JPH03205439A (en) Elastically plastic polypropylene compound
CN1076937A (en) The composition that contains the random copolymer of propylene of alpha-olefin as comonomer
JPH03290410A (en) Catalytic composition for olefin polymerization activated by dimethyl aluminium chloride
TW200823238A (en) Butene-1 copolymers
EP0651012B1 (en) Propylene random copolymer composition
WO2002062855A1 (en) CATALYST FOR α-OLEFIN POLYMERIZATION AND METHOD OF POLYMERIZATION WITH THIS CATALYST
AU655584B2 (en) Copolymers of propylene and non-conjugated dienes
US5527751A (en) Polymerization catalyst and method for producing polyolefin or olefin block copolymer using the same
JPH0816133B2 (en) Butene-1 copolymer
JP5620183B2 (en) Metallocene composite catalyst, catalyst composition, and method for producing copolymer
CA1120646A (en) Catalyst and process for the polymerization of butene-1
JPS61108615A (en) Random 1-butene copolymer
JPH0816132B2 (en) Butene-1 copolymer
JPH0816131B2 (en) Butene-based copolymer
JP2923026B2 (en) Butene-1 copolymer and resin composition containing the same
WO1998013391A1 (en) Process for cationic polymerization
JPH0565321A (en) Propylene/ethylene block copolymer
NO762686L (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase