WO2002057800A1 - Veleta y anemómetro de flexión - Google Patents

Veleta y anemómetro de flexión Download PDF

Info

Publication number
WO2002057800A1
WO2002057800A1 PCT/ES2001/000344 ES0100344W WO02057800A1 WO 2002057800 A1 WO2002057800 A1 WO 2002057800A1 ES 0100344 W ES0100344 W ES 0100344W WO 02057800 A1 WO02057800 A1 WO 02057800A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
vane
sensor
anemometer
bending
Prior art date
Application number
PCT/ES2001/000344
Other languages
English (en)
French (fr)
Inventor
José PINILLA RODRIGUEZ
Carlos Romero Perez
Original Assignee
Sociedad Anónima De Instalaciones De Control
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sociedad Anónima De Instalaciones De Control filed Critical Sociedad Anónima De Instalaciones De Control
Priority to EP01967362A priority Critical patent/EP1361445A1/en
Publication of WO2002057800A1 publication Critical patent/WO2002057800A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • F05B2270/8041Cameras

Definitions

  • the object of the present invention refers to an advanced sensor for the determination of wind direction and magnitude in wind turbine towers.
  • This type of sensor for measuring wind direction and speed is designed to be used in medium and large power wind turbines. Its operation is based on the analysis of the structural deformation of the support tower.
  • the innovative method designed allows the use of said sensor for diagnostic purposes with a view to a more efficient operation of the machine.
  • the orientation of medium and large power wind turbines that is, (> 100kVA) is a common process, which the machine control system carries out today with the information supplied by wind vanes and anemometers.
  • the purpose of this innovation is to place the rotor shaft parallel to the direction of the incident wind, optimizing the use of energy while reducing the mechanical stresses that the structure supports.
  • This process is based on the effect that the supporting tower undergoes a deformation when the wings strike wind.
  • This deformation is mainly a function of the direction and speed of the wind, the state of connection or disconnection of the machine, the functional modes of vibration of the structure, and in general of the fixed or mobile mechanical components that form the wind turbine.
  • the sensors used are devices that are located outside the gondola, behind the generator blades.
  • the information provided consisting of wind direction and speed, is used by the wind turbine control system to decide when and how to act on the servomechanisms of
  • I gondola orientation as well as when connecting or disconnecting the machine.
  • the information supplied by the sensors is sufficiently accurate, since the air flow reaches these devices without distortion.
  • the rotation of the blades causes a turbulent air flow that affects the sensors, distorting the measures supplied to the control system, in particular those concerning the direction of the incident wind.
  • the misalignment of the generator causes, in addition to a loss of performance, the appearance of additional efforts in the structure and moving parts of the wind turbine, which result in an early aging, due to fatigue, of the machine. This fatigue is the main limit for the manufacture of wind turbines with more power and greater performance.
  • the advanced sensor that is to be described is aimed at determining the direction and magnitude of wind in wind turbine towers, known as a wind vane and bending anemometer. Being the orientation of medium and large power wind turbines (> 100kVA) it is a common process that the machine control system carries out today with the information supplied by wind vanes and anemometers.
  • the innovation introduced in this operation is to place the rotor shaft parallel to the direction of the incident wind, optimizing the use of energy, while reducing the mechanical stresses that the structure supports.
  • the method is based on the fact that the support tower undergoes a deformation when wind hits the blades.
  • This deformation is mainly a function of the direction and speed of the wind, the state of connection or disconnection of the machine, of the fundamental modes of vibration of the structure, and in general of the fixed or mobile mechanical components that form the wind turbine.
  • the analysis of said deformation allows to extract the necessary information for the process of orientation, connection and disconnection of the machine, as well as vibration of the structure, which can be used for diagnostic purposes, as a tool for determining the optimal control algorithms that minimize fatigue or for predictive maintenance tasks.
  • Figure 1 shows the functional diagram of the data acquisition and processing system.
  • Figure 2 shows the structure of the tower, in an upright position, where the positioning of the laser emitting device located at the top and the data acquisition system placed at the bottom of the tower is represented.
  • Figure 3 shows an example of projection target data capture.
  • Figure 1 shows the functional diagram of the data acquisition and processing system, where (A) is the laser beam, (B) is the beam focusing optics, (C) is the projection target, (D) is the image capture, (E) is the digital signal processing device (DSP), (F) is the spectral analysis, (G) the wind speed and (H) the wind direction, completing the functional acquisition system and data processing.
  • FIG. 2 where the structure of the towers (1) is shown, configured by a laser emitting device (2) and (3), which is located jointly in the upper part of the interior of the support towers (1), and the data acquisition and processing system (4) (SAPD), located at the base of the interior of the support towers (1).
  • SAPD data acquisition and processing system
  • this sensor studies the motion of the beam projection to measure the bending of the support tower, as well as the vibrations The result is a sensor of reduced complexity, and therefore more economical.
  • the laser emitter is oriented so that the beam hits the center of the projection target of the (SAPD), figure 3, when the wind turbine is in a disconnected situation due to the absence of wind.
  • SAPD center of the projection target of the
  • the image capture device is responsible for sampling the projection target and digitizing said images, sending them to the digital signal processor (DSP), as shown in Figure 1, of the flow chart, in position (E).
  • DSP digital signal processor
  • CCD Type digital cameras
  • the digital signal processor analyzes each of the images it receives, extracting the information related to wind direction and speed, and performs a spectral analysis, transmitting this data to the wind turbine control system.
  • the operation of the sensor In a state of rest, due to lack of wind, the laser beam strikes the center of the target. However, when the generator comes into operation, the resistance of the blades to the incident wind causes the support structure to flex in the opposite direction to the wind direction.
  • the deformation of the towers is a function of the direction, wind speed, and the stress at tip 5 caused by the energy transformed by the blades. The effect is a displacement of the laser beam projection on the target.
  • the image capture and digitization device is our projection target, and with it the position of the beam projection, according to figure 3.
  • the digital signal processor locates the coordinates of the light spot in each of the images, analyzing the movement of that point in time, as well as the frequency domain.
  • the digital signal processor extracts the information related to wind direction and speed, as well as the vibration modes of the machine. This information is sent to the wind turbine control system, or to an expert system for diagnosis and preventive maintenance of the machine.
  • This new method is immune to the turbulence caused by the rotation of the blades when the generator is running. It also does not contain any moving element, so it does not suffer from wear problems that reduce the life of the sensor, and it is very economical, not assuming a significant impact on the overall cost of the wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Veleta y anemómetro de flexión, caracterizado por ser un sensor avanzado para la determinación de la dirección y magnitud del viento, en torres autogeneradores, de mediana y gran potencia (>100KVA). Su funcionamiento está basado en el análisis de la deformación estructural de la torre sustentadora. El método permite también utilizar dicho sensor para fines diagnósticos, con vistas a una explotación más eficaz de la máquina.

Description

VELETA Y ANEMÓMETRO DE FLEXIÓN
Objeto de la invención
El objeto de la presente invención, según se expresa en el enunciado de esta memoria descriptiva, se refiere a un sensor avanzado para la determinación de la dirección y magnitud del viento en torres de aerogeneradores. Este tipo de sensor para la medida de la dirección y velocidad del viento, está diseñado para ser utilizado en aerogeneradores de mediana y gran potencia. Su funcionamiento está basado en el análisis de la deformación estructural de la torre sustentadora. El método innovador diseñado permite utilizar dicho sensor para fines diagnósticos con vistas a una explotación más eficaz de la máquina.
La orientación de aerogeneradores de mediana y gran potencia, es decir, (>100kVA) , es un proceso habitual, que el sistema de control de la máquina efectúa hoy en dia con la información suministrada por veletas y anemómetros. El objeto de esta innovación es situar el eje del rotor en paralelo a la dirección del viento incidente, optimizando el aprovechamiento de la energía a la vez que se disminuyen los esfuerzos mecánicos que soporta la estructura.
Este proceso se basa en el efecto de que la torres sustentadora sufre una deformación al incidir viento en las alas. Esta deformación es función principalmente de la dirección y velocidad del viento, del estado de conexión o desconexión de la máquina, de los modos funcionales de vibración de la estructura, y en general de los componentes mecánicos fijos o móviles que forman el aerogenerador.
Antecedentes de la invención.
Actualmente, los sensores utilizados son dispositivos que se sitúan en el exterior de la góndola, tras las palas del generador. La información suministrada, consistente en la dirección y velocidad del viento, es utilizada por el sistema de control del aerogenerador para decidir cuándo y cómo actuar sobre los servomecanismos de
I orientación de la góndola, asi como en la conexión o desconexión de la máquina.
En el proceso de conexión del aerogenerador, la información suministrada por los sensores es suficientemente precisa, ya que el flujo de aire llega a estos dispositivos sin distorsión. Sin embargo, una vez la máquina está en generación, la rotación de las palas provoca un flujo de aire turbulento que incide sobre los sensores, distorsionando las medidas suministradas al sistema de control, en particular las referentes a la dirección del viento incidente.
Además, los sensores convencionales necesitan tareas de mantenimiento como son la limpieza y engrase, y sufren desgastes mecánicos, ya que son dispositivos mecánicos con piezas móviles.
Los errores de medida de los sensores tradicionales, causados por los desgastes, falta de limpieza o engrase, y sobretodo por el flujo de aire turbulento, provocan actuaciones incorrectas del sistema de control de la máquina en el proceso de orientación de la góndola, causando el desalineamiento del aerogenerador.
El desalineamiento del generador ocasiona, además de una pérdida de rendimiento, la aparición de esfuerzos adicionales en la estructura y partes móviles del aerogenerador, que se traducen en un envejecimiento precoz, por fatigas, de la máquina. Esta fatiga es el principal limite para la fabricación de aerogeneradores de más potencia y mayor rendimiento.
Descripción de la invención
El sensor avanzado que se trata de describir, tiene por objeto la determinación de la dirección y magnitud del viento en torres de aerogeneradores, conocido como veleta y anemómetro de flexión. Siendo la orientación de aerogeneradores de mediana y gran potencia (>100kVA) es un proceso habitual que el sistema de control de la máquina efectúa hoy en dia con la información suministrada por veletas y anemómetros.
La innovación introducida en esta operación es situar el eje del rotor en paralelo a la dirección del viento incidente, optimizando el aprovechamiento de la energía, a la vez que se disminuyen los esfuerzos mecánicos que soporta la estructura.
El método se basa en el hecho de que la torre sustentadora sufre una deformación al incidir viento en las palas. Esta deformación es función principalmente de la dirección y velocidad del viento, del estado de conexión o desconexión de la máquina, de los modos fundamentales de vibración de la estructura, y en general de los componentes mecánicos fijos o móviles que forman el aerogenerador.
El análisis de dicha deformación permite extraer la información necesaria para el proceso de orientación, conexión y desconexión de la máquina, asi como vibración de la estructura, que puede ser utilizada con fines diagnósticos, como herramienta para determinación de los algoritmos óptimos de control que minimicen las fatigas o para tareas de mantenimiento predictivo.
Para completar la descripción que seguidamente se va a realizar y con objeto de ayudar a una mejor comprensión de las características del método innovador inventivo, se acompaña a la presente memoria descriptiva de unos planos en base a cuyas figuras se comprenderán más fácilmente las innovaciones y ventajas de la protección objeto de la invención.
Breve descripción de los dibujos
La figura 1 muestra el diagrama funcional del sistema de adquisición y procesamiento de datos.
La figura 2 muestra la estructura de la torre, en posición vertical, donde se representa el posicionamiento del dispositivo emisor láser ubicado en la parte superior y el sistema de adquisición de datos colocado en la parte inferior de la torre.
La figura 3 nuestra un ejemplo de captura de datos de diana de proyección. Realización preferente de la invención
En la figura 1 se muestra el diagrama funcional del sistema de adquisición y procesamiento de datos, donde (A) es el haz láser, (B) es la óptica de focalización del haz, (C) es la diana de proyección, (D) es la captura de imágenes, (E) es el dispositivo procesador digital de señales (DSP) , (F) es el análisis espectral, (G) la velocidad del viento y (H) la dirección del viento, completándose el sistema funcional de adquisición y procesamiento de datos.
Tal y como se representa en la figura 2, donde se muestra la estructura de la torres (1) , configurada por un dispositivo emisor láser (2) y (3) , que se sitúa solidariamente en la parte superior del interior de la torres sustentadora (1) , y el sistema de adquisición y procesamiento de datos (4) (SAPD), situado en la base del interior de la torres de sustentación (1) .
A diferencia de los anemómetros de efecto Doppler, que utilizan las variaciones en la longitud de onda del haz láser como medida de la intensidad del viento, este sensor estudia el movimiento de la proyección del haz para medir la flexión de la torre sustentadora, asi como las vibraciones. El resultado es un sensor de reducida complejidad, y por tanto más económico.
El emisor láser se orienta de forma que el haz incida en el centro de la diana de proyección del (SAPD) , figura 3, cuando el aerogenerador se encuentre en situación de desconexión por ausencia de viento. Con idea de focalizar el haz en la diana de proyección, el sensor utiliza un dispositivo óptico de lentes.
El dispositivo de captura de imágenes se encarga de muestrear la diana de proyección y digitalizar dichas imágenes, enviándolas al procesador digital de señales (DSP) , según se muestra en la figura 1, del diagrama de flujo, en posición (E) . Cámaras digitales tipo (CCD) han sido evaluadas con éxito, permitiendo soluciones de muy bajo costo.
El procesador digital de señales (DSP) analiza cada una de las imágenes que recibe, extrayendo la información referente a la dirección y velocidad del viento, y efectúa un análisis espectral, transmitiendo estos datos al sistema de control del aerogenerador.
El funcionamiento del sensor; en estado de reposo, por falta de viento, el haz láser incide en el centro de la diana. Sin embargo, cuando el generador entra en funcionamiento, la resistencia de las palas al viento incidente hace que la estructura sustentadora se flexione en sentido contrario a la dirección del viento. La deformación de la torres es función de la dirección, velocidad del viento, y del esfuerzo en punta5 provocado por la energía transformada por las palas. El efecto es un desplazamiento de la proyección del haz láser en la diana.
Pero además de esta flexión, la estructura vibra en torno al punto de equilibrio de acuerdo con los modos de vibración del aerogenerador, asi como del grado de orientación de la góndola respecto al flujo de viento. El dispositivo de captura y digitalización de imágenes nuestra la diana de proyección, y con ello la posición de la proyección del haz, según figura 3. El procesador digital de señales localiza las coordenadas del punto luminoso en cada una de las imágenes, analizando el movimiento de dicho punto en el tiempo , asi como el dominio de la frecuencia.
Como resultado de esta análisis, el procesador digital de señales (DSP) extrae la información relativa a la dirección y velocidad del viento, asi como los modos de vibración de la máquina. Esta información es enviada al sistema de control del aerogenerador, o a un sistema experto para diagnosis y mantenimiento preventivo de la máquina.
Este nuevo método es inmune a las turbulencias producidas por el giro de las palas cuando el generador está en funcionamiento. Además no contiene ningún elemento móvil, por lo que no sufre problemas de desgaste que reduzcan la vida útil del sensor, y es muy económico, no suponiendo un impacto significativo en el costo global del aerogenerador .
Una vez descrita suficientemente la naturaleza de la presente invención, asi como una forma de llevarla a la práctica, sólo nos queda por añadir que en su conjunto y partes que lo componen es posible introducir cambios de forma, materiales y de disposición, siempre y cuando dichas alteraciones no varien sustancialmente las características de la invención que se reivindica a continuación.

Claims

REIVINDICACIONES
1.- Veleta y anemómetro de flexión, es un sensor para la medida de la dirección y velocidad del viento, diseñado para ser utilizado en aerogeneradores de mediana y gran potencia, caracterizado porque su funcionamiento se basa en la deformación estructural de la torre de sustentación y la medición de ésta mediante un emisor láser y un dispositivo de captura de imágenes, inmune al flujo turbulento de aire producido por el giro de las palas.
2.- Veleta y anemómetro de flexión, según la primera reivindicación, caracterizada porque el sensor da información de los esfuerzos mecánicos soportador por el aerogenerador, y en general de torres metálicas sometidas a esfuerzos en punta.
3.- Veleta y anemómetro de flexión, según la primera reivindicación, caracterizada porque el sensor optimiza los algoritmos de control correspondientes a la orientación, paso de pala y regulación de carga.
4.- Veleta y anemómetro de flexión, según la primera reivindicación, caracterizada porque el sensor no contiene partes móviles, y se instala en el interior del aerogenerador, no estando en contacto con los agentes atmosféricos, sufriendo menor envejecimiento, y necesitando menor mantenimiento y limpieza.
5.- Veleta y anemómetro de flexión, según la primera reivindicación, caracterizada porque este sensor es una herramienta básica para la realización de un mantenimiento predictivo, basado en la monitorización y análisis en tiempo real de los esfuerzos estructurales.
PCT/ES2001/000344 2001-01-22 2001-09-11 Veleta y anemómetro de flexión WO2002057800A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01967362A EP1361445A1 (en) 2001-01-22 2001-09-11 Flexure air speed indicator and vane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200100142 2001-01-22
ES200100142 2001-01-22

Publications (1)

Publication Number Publication Date
WO2002057800A1 true WO2002057800A1 (es) 2002-07-25

Family

ID=8496470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000344 WO2002057800A1 (es) 2001-01-22 2001-09-11 Veleta y anemómetro de flexión

Country Status (2)

Country Link
EP (1) EP1361445A1 (es)
WO (1) WO2002057800A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046378A1 (de) * 2001-11-27 2003-06-05 Aloys Wobben Verfahren zur überwachung eines sensors
EP2363416A2 (en) 2005-04-28 2011-09-07 Mochida Pharmaceutical Co., Ltd. Anti-platelet membrane glycoprotein VI monoclonal antibody
CN101995488B (zh) * 2009-08-21 2012-01-11 长江三峡能事达电气股份有限公司 风力发电机可避开紊流的测风向方法
CN103711642A (zh) * 2012-09-28 2014-04-09 通用电气公司 用于确定风力涡轮机运行参数的***和方法
KR101433767B1 (ko) * 2009-10-28 2014-08-25 에스에스비 윈드 시스템즈 게엠베하 운트 코 카게 블레이드 신호를 이용한 바람 감지기 시스템

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2560600C (en) * 2004-03-26 2010-10-26 Forskningscenter Risoe Method and apparatus to determine the wind speed and direction experienced by a wind turbine
US7822560B2 (en) 2004-12-23 2010-10-26 General Electric Company Methods and apparatuses for wind turbine fatigue load measurement and assessment
CN101684774B (zh) 2008-09-28 2012-12-26 通用电气公司 一种风力发电***及风力发电机的测风方法
DE102009007938A1 (de) 2009-02-06 2010-08-19 Baumer Innotec Ag Messvorrichtung zum Messen von Verformungen elastisch verformbarer Objekte
DE102011016868B4 (de) 2010-04-13 2013-05-16 Baumer Innotec Ag Messvorrichtung zum Messen von Verformungen elastisch verformbarer Objekte
CN102539052A (zh) * 2012-02-21 2012-07-04 中铁第一勘察设计院集团有限公司 基于偏转角度监测的单方向风压监测仪
DE102016109122A1 (de) * 2016-05-18 2017-11-23 Wobben Properties Gmbh Verfahren zum Bestimmen einer Schwingung eines Windenergieanlagenturms
CN108226570B (zh) * 2016-12-09 2022-01-21 北京金风科创风电设备有限公司 风向测量装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862421A (en) * 1972-06-23 1975-01-21 Telecommunications Sa Method for producing at a distance a representation of the path of a point of a structure and device for carrying out said method
WO1981003698A1 (en) * 1980-06-12 1981-12-24 W Bryan Method and apparatus for monitoring movement
US4334775A (en) * 1980-04-03 1982-06-15 Western Electric Co., Inc. Method for dynamically determining the horizontal motion and twist of a microwave tower
US5421198A (en) * 1993-12-10 1995-06-06 Windrop Weather Devices Weather monitoring apparatus and method
WO1998042980A1 (en) * 1997-03-26 1998-10-01 Forskningscenter Risø A wind turbine with a wind velocity measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862421A (en) * 1972-06-23 1975-01-21 Telecommunications Sa Method for producing at a distance a representation of the path of a point of a structure and device for carrying out said method
US4334775A (en) * 1980-04-03 1982-06-15 Western Electric Co., Inc. Method for dynamically determining the horizontal motion and twist of a microwave tower
WO1981003698A1 (en) * 1980-06-12 1981-12-24 W Bryan Method and apparatus for monitoring movement
US5421198A (en) * 1993-12-10 1995-06-06 Windrop Weather Devices Weather monitoring apparatus and method
WO1998042980A1 (en) * 1997-03-26 1998-10-01 Forskningscenter Risø A wind turbine with a wind velocity measurement system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046378A1 (de) * 2001-11-27 2003-06-05 Aloys Wobben Verfahren zur überwachung eines sensors
US7552614B2 (en) 2001-11-27 2009-06-30 Aloys Wobben System and method for determining functionality or accuracy of a sensor
EP2363416A2 (en) 2005-04-28 2011-09-07 Mochida Pharmaceutical Co., Ltd. Anti-platelet membrane glycoprotein VI monoclonal antibody
CN101995488B (zh) * 2009-08-21 2012-01-11 长江三峡能事达电气股份有限公司 风力发电机可避开紊流的测风向方法
KR101433767B1 (ko) * 2009-10-28 2014-08-25 에스에스비 윈드 시스템즈 게엠베하 운트 코 카게 블레이드 신호를 이용한 바람 감지기 시스템
CN103711642A (zh) * 2012-09-28 2014-04-09 通用电气公司 用于确定风力涡轮机运行参数的***和方法
CN103711642B (zh) * 2012-09-28 2016-08-24 通用电气公司 用于确定风力涡轮机运行参数的***和方法

Also Published As

Publication number Publication date
EP1361445A1 (en) 2003-11-12

Similar Documents

Publication Publication Date Title
WO2002057800A1 (es) Veleta y anemómetro de flexión
ES2461856T3 (es) Procedimientos y aparatos para la medición y la evaluación de las cargas de fatiga de una turbina eólica
ES2662008T3 (es) Sensor de turbulencia y sistema sensor del estado de la pala
CN105452899B (zh) 涡轮机流体速度场测量
US7281891B2 (en) Wind turbine control having a lidar wind speed measurement apparatus
EP2300710B2 (en) A wind turbine rotor, a wind turbine and use thereof
JP4471999B2 (ja) 取付姿勢測定装置
ES2668451T3 (es) Ensayo no destructivo de palas de turbinas eólicas desde el suelo durante la operación
JP2013533939A (ja) 風力タービンの回転羽根の屈曲を光学的に計測するデバイス
US20130078095A1 (en) Wind energy power plant equipped with an optical vibration sensor
US8690535B2 (en) Measuring loads on wind turbine blades
US20160377056A1 (en) Method and system for improving energy capture efficiency from an energy capture device
US10240971B2 (en) Vibration visualizer, vibration measurement system, and vibration measurement method
US20170322072A1 (en) Vibration visualization element including optical member
WO2009143848A2 (en) A wind turbine rotor, a wind turbine and use thereof
CN101718799A (zh) 确定风速的方法和装置
GB2532585A (en) Turbine fluid velocity field measurement
CN101526549B (zh) 一种风速仪
ES2837129T3 (es) Control para una turbina eólica
JP2013257070A (ja) ヘリオスタット及びその制御方法
JP2018123762A (ja) 風力発電装置及び風力発電施設の運転制御方法
CN214845774U (zh) 一种风电机组尾流全方位测量***
CN111120223B (zh) 一种基于双阵列的叶片故障监测方法与设备
KR20110014395A (ko) 운전 중인 터빈 블레이드에서 발생되는 진동을 측정하기 위한 방법 및 시스템
CN219417508U (zh) 一种风向跟踪装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001967362

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001967362

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001967362

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP