WO2002053890A1 - Internal combustion engine with exhaust emission control device - Google Patents

Internal combustion engine with exhaust emission control device Download PDF

Info

Publication number
WO2002053890A1
WO2002053890A1 PCT/JP2001/010269 JP0110269W WO02053890A1 WO 2002053890 A1 WO2002053890 A1 WO 2002053890A1 JP 0110269 W JP0110269 W JP 0110269W WO 02053890 A1 WO02053890 A1 WO 02053890A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
internal combustion
combustor
air
combustion engine
Prior art date
Application number
PCT/JP2001/010269
Other languages
French (fr)
Japanese (ja)
Inventor
Taisuke Ono
Yasuyuki Hamachi
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Publication of WO2002053890A1 publication Critical patent/WO2002053890A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • F02B37/166Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine the auxiliary apparatus being a combustion chamber, e.g. upstream of turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/083Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine having an exhaust gas purifying device capable of removing harmful components of the NO x and HC and the like contained in the exhaust gas of an internal combustion engine.
  • a combustor is provided in the exhaust passage to improve the startability of the internal combustion engine, and the exhaust gas discharged at low load or low speed operation is provided.
  • the exhaust gas discharged at low load or low speed operation.
  • Unburned HC was able to purify (oxidize) NO x could not be purified (reduced). Disclosure of the invention
  • An object of the present invention is to provide an internal combustion engine equipped with an exhaust gas purification device capable of purifying harmful components contained in exhaust gas in a full load range and a full operation range (low speed, medium speed, high speed).
  • a combustor is provided in an exhaust passage of an internal combustion engine. Air-fuel ratio control means and combustion temperature control means for controlling an air-fuel ratio and a combustion temperature in the combustor, and purifying harmful components contained in exhaust gas by combustion in the combustor. did.
  • the air-fuel ratio ⁇ in the combustor is set to the air-fuel ratio control means by 1. 0 ⁇ 1. 2 of the range, vo in the exhaust gas ⁇ To purify.
  • a hydrocarbon-based fuel is supplied to the combustor.
  • the oxygen concentration in the combustor is set to less than 10% by the combustion temperature control means, and the air-fuel ratio ⁇ is set to 1.0 ⁇ ⁇ ⁇ 1.2 was set within the range.
  • the combustion temperature in the combustor is set within the range of 800 ° C ⁇ T ⁇ 1500 ° C by the combustion temperature control means.
  • an air-fuel ratio in the combustor I is set to 1.0 and ⁇ by the air-fuel ratio control means, and HC, CO, soot and the like in the exhaust gas are set. Purified fine particles.
  • hydrocarbon fuel is supplied to the combustor.
  • the air-fuel ratio in the combustor; L is set to 1.4; I by the air-fuel ratio control means.
  • the combustion temperature T in the combustor is set within a range of 1300 ° C ⁇ T ⁇ 1500 ° C by the combustion temperature control means.
  • a fuel supply amount adjusting unit is provided as the air-fuel ratio control unit, and the fuel supply amount adjusting unit
  • the air-fuel ratio in the combustor can be controlled by controlling the amount of fuel supplied to the combustor.
  • a fuel supply amount adjusting unit and an air supply amount adjusting unit are provided as the air-fuel ratio control unit.
  • a means for supplying compressed air from a compressor is provided as the air supply amount adjusting means.
  • the entire amount of the exhaust gas of the internal combustion engine is supplied to the combustion area in the combustor.
  • the amount of exhaust gas supplied to a combustion area for purifying exhaust gas in a combustor is provided for adjusting the amount of exhaust gas to be supplied to the dilution region that lowers the temperature of the purified exhaust gas downstream of the combustion region.
  • an engine speed detecting means for detecting an engine speed of the internal combustion engine, an exhaust gas temperature detecting means, a supply pressure detecting means, and a detection signal obtained by these detecting means are provided.
  • An air-fuel ratio calculating means for calculating an air-fuel ratio of exhaust gas generated in a combustion chamber of the internal combustion engine; and an engine output calculating means for calculating an engine output, wherein an exhaust gas detecting an amount of exhaust gas discharged from a combustion chamber of the internal combustion engine is provided.
  • the invention of claims 1 to 6 provided upstream combustion region to purify New Omicron chi of Ramuda ⁇ 1.
  • Exhaust gas is set to 2 range air-fuel ratio ⁇ in the combustor
  • the air-fuel ratio is set at 1.0 downstream of the upstream combustion region, and a downstream combustion region is provided in the range of L for purifying fine particles such as HC, C ⁇ and soot in the exhaust gas.
  • the upstream combustion region and New Omicron chi downstream combustion region in the exhaust gas and so as to purify Eta C, C o, and fine particles such as soot.
  • the air-fuel ratio ⁇ is set to a range of 1.0 on the upstream side of the combustor, and fine particles such as HC, CO, and soot in the exhaust gas are set.
  • the upstream combustion region to purify provided 1 air-fuel ratio ⁇ on the downstream side of the upstream combustion region. 0 ⁇ 1.
  • underlying set to 2 in the range purifying New Omicron chi in the exhaust gas An upstream combustion region is provided, and the upstream combustion region and the downstream combustion region are included in exhaust gas.
  • the upstream combustion region to purify air-fuel ratio ⁇ rather 1.
  • An air-fuel ratio ⁇ is set at 1.4 downstream of the upstream combustion region, and a downstream combustion region for purifying particulates such as HC, CO, and soot in the air gas is set in the range of I. and NO x contained in exhaust gas in the upstream combustion region and a downstream combustion region, HC, and fine particles such as CO and soot as Kiyoshii spoon.
  • the entire amount of exhaust gas supplied to the upstream combustion region in the combustor is supplied to the downstream combustion region.
  • a branch passage for supplying exhaust gas generated in the internal combustion engine to an upstream combustion region and a downstream combustion region of the combustor is provided.
  • the exhaust gas supplied to the upstream combustion area can be supplied to the downstream combustion area.
  • a dilution region for lowering the temperature of the purified air gas is provided further downstream than the downstream combustion region, and the dilution region is generated in the internal combustion engine.
  • a branch passage for supplying the exhaust gas to the upstream combustion area, the downstream combustion area, and the dilution area of the combustor, and the exhaust gas purified in the upstream combustion area can be supplied to the downstream combustion area. did.
  • adjusting means for adjusting the supply amount of exhaust gas directly supplied to the upstream combustion region and the downstream combustion region in any one of the inventions of claims 19 to 21, there is provided adjusting means for adjusting the supply amount of exhaust gas directly supplied to the upstream combustion region and the downstream combustion region.
  • part of the exhaust gas generated in the internal combustion engine is provided downstream of the combustion region in the combustor. It was made possible to supply directly to the dilution zone, and the temperature of the exhaust gas purified in the combustion zone was reduced.
  • the compressed air generated by the compressor is diluted with the diluted air downstream of the combustion region in the combustor.
  • the temperature of the exhaust gas purified in the combustion region is reduced by supplying the exhaust gas to the combustion region.
  • a heat exchanger for generating steam by exhaust gas of the internal combustion engine is provided, and the heat exchanger The steam generated in the above can be supplied to the dilution zone in the combustor.
  • a combustor is provided in an exhaust passage of the internal combustion engine, and air-fuel ratio control means and combustion temperature control means for controlling an air-fuel ratio and a combustion temperature in the combustor are provided.
  • the harmful components contained in the exhaust gas can be purified by the combustion in the combustion zone inside the turbine, a turbine is provided in the exhaust passage downstream of the combustor, and a generator is installed in the turbine.
  • a compressor driven by the turbine and supplying compressed air to the internal combustion engine is provided, and an air-fuel ratio in the combustor, a combustion temperature, and a temperature after combustion are provided.
  • An amount of compressed air capable of changing at least one of the exhaust gas temperatures within a desired range can be supplied from the compressor to the combustor.
  • a heat exchanger is provided in an exhaust passage downstream of the turbine, and heat is generated from the high-temperature exhaust gas by the heat exchanger.
  • An exhaust gas purification apparatus according to claim 1, wherein steam is supplied to a dilution region downstream of a combustion region in said combustor.
  • a heat exchanger is provided in an air passage for supplying compressed air to a combustion region of the combustor, and a heat exchanger downstream of a turbine is provided for the heat exchange.
  • An exhaust passage was connected, and heat was transferred from high-temperature exhaust gas to low-temperature compressed air by the heat exchanger to raise the temperature of the compressed air.
  • the first compressor and the second compressor driven by the turbine are provided, and the first compressed air compressed by the first compressor is provided.
  • a heat exchanger is provided for cooling the first compressed air, and the first compressed air cooled by the heat exchanger is further compressed by a second compressor to generate second compressed air.
  • the upstream turbine and the downstream turbine are provided in the exhaust passage on the downstream side of the combustor, and the compressor driven by the upstream turbine is provided.
  • a generator driven by the side turbine was provided.
  • an upstream turbine and a downstream turbine are provided in an exhaust passage downstream of the combustor, and the downstream turbine is A third compressor driven by the upstream turbine and a generator are provided.
  • a fourth compressor driven by the upstream turbine is provided. The third compressed air compressed by the third compressor is further compressed by a fourth compressor. To generate the fourth compressed air.
  • a combustor in an exhaust passage of the internal combustion engine, and air-fuel ratio control means for controlling an air-fuel ratio and a combustion temperature in the combustor, and combustion temperature control Means for purifying harmful components contained in exhaust gas by combustion in the combustor, and a turbine provided in an exhaust passage downstream of the combustor, and a generator driven by the turbine.
  • the exhaust gas is purified by providing the combustor 2 in the exhaust passage 24, the exhaust gas can be purified without using a catalyst / filter as in the related art. . Therefore, it is possible to avoid the problem that the purification rate is reduced due to the deterioration of the catalyst as compared with the purification method using the catalyst.
  • the air-fuel ratio ⁇ in the combustor 2 1. 0 ⁇ Ramuda ⁇ 1. Since set to 2 can be satisfactorily purify New Omicron chi in the exhaust gas.
  • the fuel supplied to the combustor 2 can be shared with the fuel supplied to the internal combustion engine body 1, so that the fuel tank 29 and the fuel supply pipe 9 can be shared partway. And space saving can be achieved.
  • the oxygen concentration in the combustor 2 is set to less than 10%, and the air-fuel ratio ⁇ is set to 1.0; L ⁇ 1.2. ⁇ can be satisfactorily purified.
  • the combustion temperature ⁇ ⁇ of the exhaust gas in the combustor 2 is set in the range of 800 ° C ⁇ T ⁇ 150 ° C, the unburned HC, while suppressing the emission of fine particles such as CO and soot NO x it is possible to satisfactorily clean.
  • the air-fuel ratio in the combustor 2 is set to 1.0, so that fine particles such as HC, CO, and soot in the exhaust gas can be satisfactorily purified.
  • the fuel to be supplied to the combustor 2 can be shared with the fuel to be supplied to the internal combustion engine body 1, so that the space of the device can be saved. .
  • the air-fuel ratio e in the combustor 2 1.4 rather; since to set the I, HC, CO and the emissions of the NO x while purifying fine particles such as soot low Ku Can be suppressed.
  • the example air 1.4 rather; over to set, by setting the combustion temperature T in the range of 1300 ° C ⁇ T ⁇ 1500 ° C, low emissions of the NO x
  • the fine particles such as HC, CO, and soot can be purified more effectively than the invention of claim 8 while suppressing them.
  • the air-fuel ratio control means includes a fuel supply amount adjusting means (including the ECU 8, the metering valve 11, the oxygen sensor 22, etc. in FIG. 1, and the combustion state in the internal combustion engine body 1 is grasped by each sensor.
  • the ECU 8 calculates the amount of fuel that can change the current air-fuel ratio in the combustor 2 within a desired range, and adjusts the opening of the metering valve 11 to the combustor 2.
  • the air-fuel ratio ⁇ in the combustor 2 can be appropriately controlled, and the exhaust gas in the combustor 2 can be satisfactorily purified.
  • an air supply amount adjusting means (ECU 8, metering valve 12, compressor 4, oxygen sensor
  • the ECU 8 calculates the amount of air that can change the current air-fuel ratio X in the combustor 2 to a desired range.
  • a compressor is provided as the air supply amount adjusting means in the eleventh aspect of the present invention.
  • This compressor may be shared by the compressor 4 as shown in the embodiment of claim 11, but if a separate dedicated compressor is provided, the compressed air supplied from the compressor 4 Can be supplied to the internal combustion engine body 1 Therefore, it is possible to avoid a decrease in supercharging efficiency of the internal combustion engine body 1.
  • a part of the gas gas discharged from the internal combustion engine body 1 can be directly supplied to the dilution region downstream of the combustion region in the combustor 2 and the exhaust gas can be supplied to the combustion region.
  • Adjustment means a mechanism composed of the ECU 8 in FIG. 1 and the opening / closing mechanism 52 in FIG. 2 for adjusting the supply amount of the fuel and the direct supply amount to the dilution area is provided. If the amount of harmful components contained in the exhaust gas is small, the amount of exhaust gas to be purified in the combustion area can be reduced, and the amount of fuel supplied to the combustor 2 can be reduced accordingly. .
  • the air-fuel ratio in the combustor 2 can be detected and the detected air-fuel ratio ⁇ can be set within a desired range, for example, harmful components contained in the exhaust gas are mainly ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ I I I I I ⁇ I ⁇ ⁇ ⁇ ⁇ HC ⁇ ⁇ HC ⁇ ⁇ ⁇ HC. Therefore, a good purification ratio can be obtained.
  • an upstream combustion region 41 and a downstream combustion region 42 are provided in the combustor 2, the air-fuel ratio I in the upstream combustion region 41 is set to ⁇ 1.2, 1 the air-fuel ratio in the side combustion region 4 2. than was to set to 0 Que, the upstream combustion region 4 1 mainly New Omicron chi can Kiyoshii spoon, the downstream combustion zone 4 2 It can mainly purify fine particles such as HC, carbon dioxide and soot, and can purify well even if the exhaust gas discharged from the internal combustion engine body 1 contains any harmful components.
  • the upstream combustion region 41 and the downstream combustion region 42 are provided in the combustor 2, and the air-fuel ratio ⁇ in the upstream combustion region 41 is set to 1.0; I. Since the air-fuel ratio in the downstream combustion region 42 is set to 1. ⁇ ⁇ ⁇ ⁇ ⁇ .2, the upstream combustion region 41 mainly purifies fine particles such as HC, C ⁇ and soot. can be, in the downstream combustion zone 4 2 can be purified mainly New Omicron chi, exhaust gas discharged from the internal combustion engine body 1 also include any harmful components, good Can be changed to
  • the air-fuel ratio of the upstream combustion region 41 in the invention of claim 16 is set to 1.0, so that the purification of NO x is more improved than the invention of claim 16. Since the unburned HC and the like generated at that time are purified in the downstream combustion area 42, the exhaust gas purification performance is further improved as a whole as compared with the invention of claim 16. be able to.
  • the adjusting means for adjusting the supply amount of the exhaust gas directly supplied to the upstream combustion region 41 and the downstream combustion region 42 respectively first (Equipped with the ECU 8 shown in the figure and the opening / closing mechanism 52 shown in FIG. 5), it is necessary to take into account the amount of harmful components contained in the exhaust gas discharged from the internal combustion engine body 1.
  • the amount of fuel to be supplied to the combustor 2 can be set while avoiding a decrease in the rate.
  • part of the exhaust gas discharged from the internal combustion engine body 1 is directly supplied to the dilution region 43, so that the upstream combustion region 41 and the downstream combustion region 42
  • the temperature of the purified exhaust gas whose temperature has been raised can be reduced.
  • the compressed air generated by the compressor is supplied to the dilution region 43 and the temperature of the exhaust gas in the dilution region 43 is reduced, so that a good purification rate cannot be maintained.
  • the temperature of the exhaust gas that has been purified can be lowered and discharged.
  • the compressor of the invention of claim 24, which supplies compressed air to the dilution region 43, is also used by the compressor 4 for supercharging, so that the apparatus can be simplified.
  • high-temperature exhaust gas discharged from the turbine 3 that drives the supercharging compressor 4 generates steam in the heat exchanger ⁇ and supplies this steam to the dilution region 43 of the combustor 2.
  • the steam is supplied to the turbine 3 together with the exhaust gas, and the thermal efficiency can be improved while maintaining the exhaust gas exhaustion rate high.
  • the flow rate of the gas passing through the vial 3 is increased, and the overall power is improved.
  • a turbine 3 is provided downstream of the combustor 2,
  • At least one of the air-fuel ratio; I, the combustion temperature, and the exhaust gas temperature after combustion (after purification) is desired from the compressor 4 to the combustor 2. Since the amount of compressed air that can be changed within the range that can be supplied can be supplied, the entire amount of exhaust gas discharged from the internal combustion engine body 1 can be satisfactorily purified.
  • the turbine 3 in addition to the effects of claims 26 and 27, by supplying steam to the turbine 3 together with the purified exhaust gas, the turbine 3 is maintained at a high purification rate.
  • the thermal efficiency can be improved by increasing the flow rate of the supplied gas.
  • the temperature of the compressed air before the compressed air is supplied to the combustor 2 by the heat exchanger 70 (FIG. 11), the temperature of the compressed air can be raised in advance by utilizing the heat of the high-temperature exhaust gas.
  • the amount of fuel supply required to raise the temperature of the exhaust gas can be reduced as compared with the case where low-temperature compressed air is supplied as it is.
  • a heat exchanger 64 for cooling the compressed air compressed by the compressor 62 (first compressor) is provided, and the first compressed air cooled by the heat exchanger 64 is further provided. Since the compression is performed by the compressor 4 (second compressor), the power for compressing the air can be reduced as compared with the case where one compressor 4 is provided as in the invention of claims 26 and 27. Can be done.
  • the turbines 3, 61 are directly installed downstream of the combustor 2. Since the compressor 4 is driven by the turbine 3 on the upstream side, the responsiveness of the entire system to fluctuations in exhaust gas emissions when the combustion state of the internal combustion engine body 1 suddenly changes is improved. I do.
  • the downstream turbine 61 does not work, and only the upstream turbine 3 operates to operate the compressor 4. And a sufficient amount of compressed air can be supplied to the internal combustion engine main body 1, and good responsiveness to fluctuations in the operating state of the internal combustion engine main body 1 can be achieved. Similarly, even when the internal combustion engine 300 is started or when the load is low, the turbine 3 operates preferentially, so that the internal combustion engine 300 can be started up quickly.
  • the downstream turbine 61 operates only when the upstream turbine 3 is fully opened and the operation of the internal combustion engine body 1 has a margin, and the provision of the turbine 61 can contribute to the improvement of the thermal efficiency. it can. In addition, even during a rapid acceleration, it is possible to start up quickly, so that the amount of harmful components contained in the exhaust gas supplied to the combustor 2 can be reduced, and the purification of the combustor 2 can be improved. The burden can be reduced.
  • the compressor 62 (third compressor) driven by the downstream turbine 61 and the generator 7 are provided, and the compressor 4 (second compressor) driven by the turbine 3 on the upstream side is provided. By providing (4 compressors), the optimum rotation speed of each of the compressors 4 and 62 can be utilized, and the compression efficiency of each compressor can be increased.
  • the combustor 2 is provided in the exhaust pipe 24 (exhaust passage) of the non-supercharged (naturally-charged) internal combustion engine 700 (FIG. 12), the exhaust gas The harmful components contained in the water can be satisfactorily purified. Further, by driving the generator 7 with the turbine 3 using the purified exhaust gas, the thermal efficiency of the internal combustion engine 700 can be improved.
  • any of the first to third aspects of the present invention in addition to the normal operation of the internal combustion engine body 1, it is possible to satisfactorily purify harmful components in the exhaust gas even at the time of starting or at a low load. it can. Therefore, irrespective of the operation of the internal combustion engine body 1 (that is, in the entire load range and the entire operation range), the harmful components contained in the exhaust gas discharged can be satisfactorily purified.
  • FIG. 1 shows a fuel supply path, an air supply path, and an exhaust gas of an internal combustion engine provided with an exhaust gas purifying apparatus according to the first, tenth, eleventh, twelve, fifteenth and twenty-sixth aspects of the present invention. It is a system schematic diagram showing a gas discharge path and a signal transmission path.
  • FIG. 2 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 13.
  • FIG. 3 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 14.
  • FIG. 4 is a schematic cross-sectional view of the combustor of FIG. 1 according to the invention of claims 16, 18, and 19.
  • FIG. 5 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 20.
  • FIG. 6 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 21.
  • FIG. 7 is a system schematic diagram of an internal combustion engine provided with an exhaust gas purification device according to the invention of claims 25 and 28.
  • FIG. 8 is a schematic system diagram of an internal combustion engine provided with the exhaust emission control device according to the invention of claim 31.
  • FIG. 9 is a system schematic diagram of an internal combustion engine provided with the exhaust emission control device according to claim 30 of the present invention.
  • FIG. 10 is a system schematic diagram of an internal combustion engine provided with the exhaust gas purifying apparatus according to the invention of claim 32.
  • FIG. 11 is a system schematic diagram of an internal combustion engine provided with an exhaust gas purifying apparatus according to the invention of claim 29.
  • FIG. 12 is a system schematic diagram of an internal combustion engine provided with the exhaust gas purification device according to the invention of claim 33.
  • the first 3 is a graph showing the emission of harmful components NO x, CO, and PM and the like contained in the exhaust gas when the present invention is applied to a diesel engine.
  • Fig. 14 shows that the air-fuel ratio was changed by setting the oxygen concentration in the combustor to less than 10%.
  • 6 is a graph showing the NO x purification rate at that time.
  • FIG. 15 is a graph showing the thermal efficiency of the internal combustion engine when the air-fuel ratio is changed and steam is supplied to the combustor and when it is not supplied.
  • the first 6 is a graph showing the relationship between the tendency of purifying CO and NO x in combustion temperature and exhaust gas within the combustor.
  • FIG. 1 shows a fuel supply path, an air supply path, and the like of an internal combustion engine 100 having an exhaust gas purifying apparatus according to the inventions of claims 1, 10, 11, 12, 15, 26, and 27. It is a system schematic diagram showing an exhaust gas discharge route and a signal transmission route.
  • Fuel for example, a hydrocarbon-based fuel such as gasoline, heavy oil, or light oil
  • a fuel supply pipe 9 is supplied to the internal combustion engine body 1 via a fuel supply pipe 9, and air (compressed air) is supplied via an air supply pipe 16.
  • Combustion is performed in a combustion chamber (not shown) of the internal combustion engine body 1, and power is transmitted (output) to the generator 6 via the drive shaft 17.
  • Exhaust gas containing harmful components is discharged through the exhaust pipe 24 (exhaust passage).
  • the exhaust pipe 24 is connected to the combustor 2, and the exhaust gas flows into the combustor 2.
  • fuel can be supplied to the combustor 2 via a fuel supply pipe 10 branched from a fuel supply pipe 9 and provided with a metering valve 11 on the way.
  • compressed air can be supplied to the combustor 2 via a compressed air supply pipe 15 branched from a compressed air supply pipe 14 described later and provided with a metering valve 12 on the way.
  • an exhaust pipe 25 is connected to the downstream side of the combustor 2, and the exhaust gas in the combustor 2 is supplied by the fuel and compressed air supplied to the combustor 2. After being burned, it can be discharged through the exhaust pipe 25.
  • the turbine 3 is provided downstream of the exhaust pipe 25. Exhaust gas discharged from the combustor 2 through the exhaust pipe 25 rotates the turbine 3, drives the compressor 4 through the drive shaft 27, and drives the generator 7 through the drive shaft 18. Let it. The exhaust gas rotating the turbine 3 is discharged to the outside (atmosphere) via the exhaust pipe 26.
  • the compressor 4 driven by the drive shaft 27 sucks air from the air intake pipe 13 to compress air. Generate qi.
  • the generated compressed air is supplied to the intercooler 5 via the compressed air supply pipe 14.
  • the compressed air is cooled by cooling water supplied through a cooling water supply pipe 60 in the intercooler 5 and can be supplied to a combustion chamber (not shown) of the internal combustion engine body 1 through an air supply pipe 16. I have.
  • a supply pressure (boost pressure) detection sensor 19 is provided near the connection of the intake pipe 16 to the internal combustion engine body 1.
  • the combustor 2 is provided with a temperature sensor 28, and the temperature sensor 28 detects the temperature inside the combustor 2.
  • the exhaust pipe 24 is provided with an exhaust gas flow meter 21, an oxygen sensor 22, and an exhaust temperature sensor 23. The detection signals detected by these sensors are transmitted to ECU 8 (computer unit with memory) via signal lines.
  • the ECU 8 adjusts the opening of the metering valves 11 and 12 so as to satisfy various conditions described below, and transfers necessary amounts of fuel and air into the combustor 2. And the air-fuel ratio ⁇ in the combustor 2 and the combustion temperature can be adjusted. That is, these constitute the air-fuel ratio control means and the fuel supply amount adjustment means.
  • the internal volume of the combustor 2 is known, and the amount of exhaust gas and the oxygen concentration in the combustor 2 are determined by the detection signals detected by the oxygen sensor 22 and the exhaust gas flow meter 21 (exhaust gas emission detecting means).
  • the ECU 8 calculates and calculates.
  • the engine output can be obtained from detection signals detected by the engine speed detection sensor 20, the supply pressure detection sensor 19, and the exhaust temperature sensor 23, and the engine output and the supply pressure detected by the supply pressure detection sensor 19 are obtained.
  • the ECU 8 calculates the air-fuel ratio ⁇ of the exhaust gas in the exhaust pipe 24 and the combustor 2 from the atmospheric pressure.
  • Harmful components is New Omicron chi or unburned HC to be purified contained in the exhaust gas in the combustor 2, by either a fine particles such as CO ⁇ Pisu be, the air-fuel ratio; below the value of I To be set as described in each embodiment.
  • the temperature inside the combustor 2 is detected by a temperature sensor 28, but the ECU 8 calculates the amount of fuel and compressed air necessary to raise the temperature inside the combustor 2 to a desired temperature.
  • the fuel and air are supplied to the combustor 2 by adjusting the opening of the metering valves 11 and 12 so that the calculated amounts of fuel and air (compressed air) can be supplied to the combustor 2.
  • the compressed air generated by the compressor 4 is supplied to the combustor 2, but the air supplied to the combustor 2 is supplied by this compressor provided with a compressor different from the compressor 4. You may do so. (Examples of Claims 2 to 5)
  • the ECU 8 adjusts the opening of the metering valves 11 and 12 so that the air-fuel ratio in the combustor 2; I falls within the range of 1.0 ⁇ ⁇ 1.2, and the fuel and compression The air is supplied to the combustor 2.
  • the oxygen concentration in the combustor 2 should be less than 10%, and the combustion temperature should be
  • the ECU 8 calculates the required amount of fuel and air (compressed air) so that the temperature becomes 800 ° C to 1500 ° C.
  • the ECU 8 adjusts the opening degree of the metering valves 11 and 12 so that the calculated amounts of fuel and air are supplied to the combustor 2 and adjusts the temperature inside the combustor 2.
  • FIG. 14 is a graph showing the NO x purification rate when the air-fuel ratio is changed by setting the oxygen concentration in the combustor 2 to less than 10%. Exhaust gas flow rate is 5 L / min (liter Z minute) under standard conditions. From Fig. 14, it can be seen that when the air-fuel ratio is in the range of 0.2 to 1.0, the purification rate is very good and is about 90%.
  • the exhaust gas passing through the exhaust pipe 24 contains a large amount of unburned HC, CO, and ⁇ (fine particles such as soot). It is.
  • the ECU 8 adjusts the opening of the metering valves 11 and 12 so that the air-fuel ratio in the combustor 2 falls within a range of 1.0; (preferably 1.4 and ⁇ ). And compressed air are supplied to the combustor 2.
  • the ECU 8 calculates the required amount of fuel and air.
  • the ECU 8 supplies the fuel and air to the combustor 2 by adjusting the opening of the metering valves 11 and 12 so that the calculated amounts of fuel and air can be supplied to the combustor 2. Then, the temperature in the combustor 2 is adjusted.
  • the first 6 figures slope of purifying CO and NO x in the exhaust gas and the combustion temperature in the combustor 2 It is a graph which shows a direction relationship. Becomes large emissions of the combustion temperature is low CO, becomes large emissions of the NO x opposite the combustion temperature becomes higher. According to FIG. 16, when the range of the combustion temperature T is limited to 130 ° C. ⁇ T ⁇ 150 ° C., it is understood that both CO and NO x change relatively favorably.
  • FIG. 2 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 13.
  • the entire amount of the exhaust gas discharged from the internal combustion engine main body 1 can flow into the combustor 2 from the exhaust gas inlet 74 of the combustor inner cylinder 51.
  • the amount of inflow of exhaust gas per unit time can be adjusted by sliding the movable portion 53 of the opening / closing mechanism 52 provided at the exhaust gas inlet 74 in the direction indicated by the arrow A.
  • the exhaust gas flowing from the exhaust gas inlet 7 4 passes through the swirl blade 35 and enters the inner cylinder 51.
  • Pipe (15a) (branch not shown) branched from compressed air supply pipe (15) so that air (compressed air) (38a) can flow in from exhaust gas inlet (74) Is also connected to the outer cylinder 50 on the upstream side.
  • the fuel supply pipe 10 is housed in the protection pipe 75 and is protected from high-temperature exhaust gas. As shown in FIG. 2, a fuel injection valve 76 is provided at the tip of the fuel supply pipe 10. Fuel 37 is injected from the fuel injection valve 76 into the inner cylinder 51 of the combustor 2. An ignition plug 30 is provided in the inner cylinder 51. The fuel 37, the exhaust gas 77 and the air 38 a ignited by the spark plug 30 burn in the combustion region 31 in the inner cylinder 51.
  • the ratio (air-fuel ratio) between the injected fuel 37 and the air 38a containing the exhaust gas 77 is determined by the force for adjusting the injection amount of the fuel 37 from the fuel injection valve 76 or the movable part of the opening / closing mechanism 52. It can be changed by sliding 53 in the direction of arrow A to adjust the amount of air flowing into the combustion area 31.
  • a dilution region 32 is provided downstream of the combustion region 31.
  • a hole 33 is provided in the inner cylinder 51 of the dilution region 32.
  • the compressed air 38 supplied from the compressed air supply pipe 15 flows through an annular passage 39 formed between the inner cylinder 51 and the outer cylinder 50 of the combustor 2.
  • the dilution gas 40 flows from the dilution hole 33 into the dilution area 32 in the inner cylinder 51.
  • the exhaust gas burned in the combustion zone 31 is mixed with the dilution gas 40 flowing from the dilution hole 33, and the hot exhaust gas after combustion is diluted into the dilution gas 40. Thereby, it is cooled to, for example, about 900 ° C. or less.
  • FIG. 3 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 14.
  • FIG. 3 is different from the combustor 2 in FIG. 2 in that the exhaust gas 77 is mixed into the dilution gas 34 flowing into the inner cylinder 51 from the dilution hole 33.
  • the configurations in FIG. 3 denoted by the same reference numerals as those in FIG. 2 are basically the same as the configurations in FIG.
  • a part of the compressed air 38 supplied from the compressed air supply pipe 15 flows into the combustion area 31 from the exhaust gas inlet 74, and a part of the remaining part is diluted through the bypass passage 36. It flows into the dilution area 32 in the inner cylinder 51 from the hole 33.
  • part of the exhaust gas 77 flows into the combustion area 31 from the exhaust gas inlet 74, and part of the remaining part passes through the bypass passage 36 and the dilution hole 33 from the inner cylinder 51. Flow into dilution zone 32.
  • the bypass passage 36 downstream of the dilution hole 33 is closed so that the dilution gas 34 (exhaust gas or a mixture of air and exhaust gas) passing through the bypass passage 36 flows into the dilution region 32. You may do so.
  • FIG. 4 is a schematic cross-sectional view of the combustor 2 of FIG. 1 according to the invention of claims 16, 18 and 19.
  • the configuration of the combustor 2 shown in FIG. 4 is different from the configuration of FIG. 2 in that the combustion area 31 and the dilution area 32 are provided in the inner cylinder 51 in FIG. Is that a first combustion zone 41, a second combustion zone 42, and a dilution zone 43 are provided in the inner cylinder 51. These areas are defined by broken lines in FIG. In FIG. 4, the first combustion region 41 is supplied with the entire amount of the exhaust gas 77 and the compressed air 38a.
  • the opening / closing mechanism 52 adjusts the inflow of the exhaust gas 77 and the compressed air 38a, and adjusts the power and the injection amount of the fuel 37 by the ECU 8 in FIG. Air-fuel ratio at 1; adjust ⁇ within ⁇ ⁇ 1.2 Can be.
  • the second combustion zone 42 you as it flows exhaust gas combusted in the first combustion region 4 1.
  • An annular first passage 45 is formed on the outer periphery of the inner cylinder 50.
  • the first passage 45 communicates with the compressed air supply pipe 15.
  • a second passage 46 communicating with the inside of the inner cylinder 50 is provided on the inner peripheral side of the first passage 45.
  • the compressed air 38 can flow in from the second passage 46.
  • a secondary fuel supply pipe 44 is connected to the second passage 46 so that the fuel 37 a can be supplied to the second passage 46.
  • the second passage 46 compressed air 38 and fuel 37 a and the air-fuel ratio lambda 2 of the mixture exhaust gas flowing from the first combustion zone are mixed to be supplied from, ECU so that 1. 0 ⁇ lambda 2 8 (Fig. 1) is adjusted.
  • first combustion region 41 the second combustion region 42
  • NO x by • comprise purged with first combustion zone 41, HC and CO ⁇ Pi PM (fine particles such as soot) is In the second combustion region 42, it can be satisfactorily purified.
  • Air-fuel ratio in the first combustion region 41 set to ⁇ a ⁇ Ku 0, unburned HC, although CO and PM occurs in a large amount, NO x are well cleaned. Unburned HC, CO and PM generated in large quantities in the first combustion zone 41 are purified in the second combustion zone 42
  • FIG. 13 is a graph showing emission amounts of harmful components such as NO x , CO, and PM contained in exhaust gas when the present invention is applied to a diesel engine.
  • the bar graph at the left end shows the respective contents of NO x , CO and PM in the exhaust gas discharged from the internal combustion engine body 1, and the central pair of bar graphs corresponds to the first combustion area 41.
  • NO x contained in the exhaust gas is Oite purified, and indicates the amount of CO and PM, also, the bar graph at the right end of Isshi ⁇ contained in exhaust gases that are Kiyoshii spoon in the second combustion region 42 Shows the amount of NO x , CO and PM.
  • the emission amount of each harmful component shown in the leftmost graph is set to 1 (the emission amount of each harmful component is set to 1 for each of the harmful components emitted from the internal combustion engine body 1).
  • the emission amount of each harmful component is shown in proportion to the graph.
  • the middle graph among the harmful components contained in exhaust gas just leaving the internal combustion engine body 1, NO x is purified by the first combustion zone 41, the content is 10% (0. 1). Since the fuel and the compressed air in the first combustion region 41 of combustion are subjected feeding is performed, NO x generated during the 5% (0.05) is increasing extent. In addition, CO and PM have increased rather than before being purified in the first combustion zone 41.
  • the ECU 8 (FIG. 1) adjusts the air-fuel ratio ⁇ 3 of the first combustion region (third combustion region) 41 so that 1.0 ⁇ 3 . Also, the air-fuel ratio ⁇ 4 of the second combustion region (fourth combustion region) 42 is adjusted to be within a range of 1.0 ⁇ ⁇ 4 ⁇ 1.2. By doing so, HC, CO, and PM can be mainly purified in the first combustion region 41, and 1 ⁇ 0 ⁇ can be reduced in the second combustion region 42.
  • FIG. 5 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 20.
  • the entire amount of the exhaust gas 77 is configured to be supplied to the first combustion region 41.
  • some of the exhaust gas 77 is supplied through a bypass passage 78 (branch passage). Flows directly into the second combustion region 42 without passing through the first combustion region 41.
  • the configuration shown in FIG. 5 can be applied to exhaust gas having a low content of harmful components (eg, NO x ) in the exhaust gas.
  • FIG. 6 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 21.
  • the dilution gas 34 (the exhaust gas 77, or a part of the exhaust gas ⁇ 7 and the compressed air 38) is supplied to the first combustion zone by providing the first bypass passage 47. 4 1
  • a secondary fuel supply pipe 44 is provided in the second bypass passage 48, and the fuel 37 a is supplied to the second combustion area 42 by the secondary fuel supply pipe 44.
  • the harmful components of the exhaust gas 77 flowing into the first combustion chamber 41 from the exhaust gas inlet 7 4 are the exhaust gas 7 7, or the compressed air 3 8 flowing together with the exhaust gas 7 7 and the fuel injection valve 7 6
  • the fuel 37 injected from the combustion is purified by burning.
  • the harmful components of the purified exhaust gas 77 are mixed with the exhaust gas 77 or the exhaust gas 77 and the compressed air 38 that have flowed into the second bypass passage 48 in the downstream second combustion zone 42. .
  • This air-fuel mixture is purified in the second combustion zone 42.
  • the exhaust gas that has been purified and heated to a higher temperature is diluted by the dilution gas 34, and the temperature is reduced to, for example, about 900 ° C.
  • the air-fuel ratio in the first combustion region 41 is set to A i ⁇ l.0 and the air-fuel ratio in the second combustion region 42 is set to L 2 to 1.0 and ⁇ 2 , the first combustion chamber 41 in NO chi it is satisfactorily cleaned and also can be satisfactorily purify second combustion chamber 4, 2 first combustion chamber 4 1 HC and C Omicron like never to have been purified by.
  • the opening / closing mechanism 52 is provided at the exhaust gas inlet 74 as shown in FIGS.
  • the degree of opening of the exhaust gas inlet 74 can be changed by sliding the movable portion 53 in the direction indicated by the arrow A.
  • the opening degree decreases, the amount of exhaust gas 77 flowing into the first combustion region 41 decreases, and the amount of exhaust gas 77 flowing directly into the second combustion region 42 increases.
  • the opening is increased, the amount of exhaust gas 77 flowing into the first combustion region 41 increases, and the amount of exhaust gas flowing into the second combustion region 42 decreases.
  • the opening degree of the opening / closing mechanism 52 is determined in advance so that the larger the amount of the harmful component contained in the exhaust gas 77, the larger the amount of the exhaust gas 77 flowing from the exhaust gas inlet 74 to the first combustion area 41. Investigate the relationship between the inflows of the exhaust gas 77 and input the data to the memory of the ECU 8.
  • the combustion state of the internal combustion engine body 1 (Fig. 1) is determined from the detection signals detected by the sensors (engine speed detection sensor 20, oxygen sensor 22, etc.) and is included in the gas 777.
  • ECU 8 calculates the type and amount of harmful components.
  • the opening of the opening / closing mechanism 52 is adjusted so that the content of the harmful component in the exhaust gas after purification becomes equal to or less than a predetermined amount set in advance.
  • the ECU 8 in FIG. 1 calculates the combustion state (exhaust gas component) of the internal combustion engine body 1 from the detection signals detected by the respective sensors (engine speed detection sensor 20, oxygen sensor 22, etc.). It is adjusted by changing the opening of the opening / closing mechanism 52. (Example of Claim 24)
  • the compressed air to be supplied to the dilution region 32 (43) may be supplied by providing a dedicated compressor (compressor) independently of the compressor 4.
  • FIG. 7 shows an internal combustion engine 20 equipped with an exhaust gas purification device according to the invention of claims 25 and 28.
  • FIG. 7 It is a system schematic diagram of 0. As shown in FIG. 7, a heat exchanger 54 is provided in an exhaust pipe 55 through which exhaust gas discharged from the turbine 3 passes. Water is supplied to the heat exchanger 54 via a water supply pipe 57.
  • the other configuration is the same as the configuration shown in FIG.
  • FIG. 15 is a graph showing the thermal efficiency of the internal combustion engine 200 when the air-fuel ratio is changed and steam is supplied to the combustor 2 and when steam is not supplied. As shown in Fig. 15, it can be seen that the supply of steam improves the overall thermal efficiency regardless of the air-fuel ratio.
  • FIG. 11 is a system schematic diagram of an internal combustion engine 600 equipped with the exhaust emission control device according to the invention of claim 29. As shown in Fig. 7, in the middle of the compressed air supply pipe 15
  • the heat exchanger 70 has an exhaust pipe connected to the turbine 3.
  • FIG. 9 is a system schematic diagram of an internal combustion engine 400 equipped with the exhaust emission control device according to claim 30 of the present invention.
  • a compressor 62 first compressor
  • the compressor 62 power is transmitted from the turbine 3 by a drive shaft 63 which is coaxial with the drive shaft 27 and is connected to the power compressor 4 (second compressor).
  • the compressor 62 takes in the air through the air intake pipe 13 and sends the taken-in air to the cooler 64 through the pipe 65. Cooling water is supplied to the cooler 64 (heat exchanger) from a cooling water supply pipe 67. The air is cooled by cooling water in the cooler 64, and the cooled air is sent to the compressor 4 via the pipe 66. Cooling water is air After being cooled, it is discharged to the outside via a cooling water discharge pipe 68.
  • the other configuration of the internal combustion engine 400 is the same as the configuration of the internal combustion engine 100 in FIG.
  • the thermal efficiency is reduced by about 2 points (for example, from 40% to 42%) compared to the internal combustion engine 100 in FIG. 1 while maintaining the exhaust gas purification rate. Can be improved.
  • FIG. 8 is a system schematic diagram of an internal combustion engine 300 provided with the exhaust gas purification device according to the invention of claim 31.
  • a turbine 61 is disposed downstream of the turbine 3, and exhaust gas flows into the turbine 61 via an exhaust pipe 26.
  • a generator 7 driven by a drive shaft 18 is connected to the turbine 61.
  • the generator 7 is driven by the turbine 61, and exhaust gas is discharged from the turbine 61 to the outside via the exhaust pipe 59.
  • Other configurations are the same as those of the internal combustion engine 100 in FIG.
  • the turbine 3 can be driven with a higher priority than the turbine 61 when the internal combustion engine 300 is under low load or low speed operation.
  • the turbine 61 operates only when the turbine 3 is fully opened. For example, if the internal combustion engine 300 is driven at 50% of the rating, only the compressor 4 can be driven by the turbine 3 while the turbine 61 is stopped.
  • FIG. 10 is a system schematic diagram of an internal combustion engine 500 equipped with the exhaust emission control device according to claim 32 of the present invention.
  • the internal combustion engine 500 of FIG. 10 some additional components are added to the internal combustion engine 300 of FIG.
  • a drive shaft 69 is connected to the turbine 61 coaxially with the drive shaft 18.
  • a compressor 62 driven by the turbine 61 via the drive shaft 69 is provided.
  • the compressor 62 takes in air from the air intake pipe 13 and sends the compressed air to the cooler 64 via the pipe 65. Cooling water is supplied to the cooler 64 via a cooling water supply pipe 67. After cooling the compressed air in the cooler 64, the cooling water is discharged to the outside from the combined water discharge pipe 68. The compressed air cooled in the cooler 64 is supplied to the compressor 4 via the pipe 66. Subsequent operations are the same as those of the internal combustion engine 100 in FIG. Here, the compressor 4 and the compressor 62 select and install a combination that can be driven at the optimum rotation speed. By selecting such two compressors 4, 62, optimum compression efficiency can be achieved.
  • the operation of the internal combustion engine 500 can be stabilized, the reliability of the calculation result of the ECU 8 necessary for the purifying action in the combustor 2 can be improved, and the purification rate can be prevented from lowering. Can be prevented.
  • FIG. 12 is a system schematic diagram of an internal combustion engine 700 equipped with the exhaust emission control device according to the invention of claim 33.
  • the internal combustion engine 700 is not provided with a supercharger (compressor), and is a natural air supply system. Even in a non-supercharged engine such as the internal combustion engine 700 in FIG. 12, exhaust gas can be reduced by the combustor 2 similarly to the supercharged engine.
  • the generator 7 connected by the drive shaft 18 can be operated, and the thermal efficiency can be improved while maintaining the purification rate.
  • the present invention can be applied for land provided with an exhaust purification apparatus for removing harmful components of the NO x and HC and the like contained in the exhaust gas, the internal combustion engine and marine, such as a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An internal combustion engine with an exhaust emission control device, comprising a combustor (2) installed in an exhaust emission passage (24) and an air/fuel ratio control means and a combustion temperature control means for controlling an air/fuel ratio and a combustion temperature in the combustor (2), whereby the harmful components contained in exhaust emission can be purified by the combustion in the combustor (2).

Description

明 細 書 排気浄化装置を備えた内燃機関 技術分野  Description Internal combustion engine equipped with exhaust gas purification device Technical field
本発明は、 内燃機関の排気ガス中に含まれる N Oxや H C等の有害成分を除去 することができる排気浄化装置を備えた内燃機関に関するものである。 背景技術 The present invention relates to an internal combustion engine having an exhaust gas purifying device capable of removing harmful components of the NO x and HC and the like contained in the exhaust gas of an internal combustion engine. Background art
内燃機関から排出される排気ガス中に含まれる N O x等の有害成分は、 排気通 路に触媒や排気微粒子を除去するフィルタを設けることにより除去し、 清浄な排 気ガスを排出するようにするのが一般的である。 ところが、 触媒の経時劣化とフ ィルタの目詰まりにより期待される浄化性能を常に発揮することが困難である。 また、 燃焼により排気ガスを浄化するものとして本願出願人の出願である特開 昭 5 9— 5 3 4号の 「排気タービン過給機付内燃機関の排気ガス処理装置」 があ る。 しかし、 この特開昭 5 9— 5 3 4号では、 内燃機関の始動性を向上させるた めに排気通路に燃焼器が設けられており、 低負荷時又は低速運転時において排出 される排気ガスの浄ィ匕は可能であるが、 高負荷時及び高速運転時に排出される排 気ガスは浄化することができない。 未燃 H Cは浄化 (酸化) することができる力 NOxは浄化 (還元) できなかった。 発明の開示 Harmful components such as NO x contained in the exhaust gas discharged from an internal combustion engine, removed by providing a filter to remove the catalyst and the exhaust particulates in the exhaust communication passages, so as to discharge the clean exhaust gas It is common. However, it is difficult to always achieve the expected purification performance due to the aging of the catalyst and clogging of the filter. Further, as an apparatus for purifying exhaust gas by combustion, there is an "Exhaust gas treatment apparatus for an internal combustion engine with an exhaust turbine supercharger" in Japanese Patent Application Laid-Open No. 59-534, filed by the present applicant. However, in Japanese Patent Application Laid-Open No. 59-534, a combustor is provided in the exhaust passage to improve the startability of the internal combustion engine, and the exhaust gas discharged at low load or low speed operation is provided. Although it is possible to purify the exhaust gas, it is not possible to purify the exhaust gas discharged under high load and high speed operation. Unburned HC was able to purify (oxidize) NO x could not be purified (reduced). Disclosure of the invention
(発明が解決しようとする技術的課題)  (Technical problems to be solved by the invention)
本発明は、 全負荷領域及び全運転範囲 (低速, 中速, 高速) において、 排気ガ ス中に含まれる有害成分を浄化することができる排気浄化装置を備えた内燃機関 を提供することを課題としている。  An object of the present invention is to provide an internal combustion engine equipped with an exhaust gas purification device capable of purifying harmful components contained in exhaust gas in a full load range and a full operation range (low speed, medium speed, high speed). And
(その解決方法) (How to solve it)
上記課題を解決するため請求項 1の発明では、 内燃機関の排気通路に燃焼器 を設け、 前記燃焼器内の空燃比と燃焼温度とを制御する空燃比制御手段と燃焼温 度制御手段とを設け、 前記燃焼器内における燃焼により排気ガスに含まれる有害 成分を浄化するようにした。 In order to solve the above-mentioned problem, in the invention of claim 1, a combustor is provided in an exhaust passage of an internal combustion engine. Air-fuel ratio control means and combustion temperature control means for controlling an air-fuel ratio and a combustion temperature in the combustor, and purifying harmful components contained in exhaust gas by combustion in the combustor. did.
請求項 2の発明では請求項 1の発明において、 前記燃焼器内の空燃比 λを前記 空燃比制御手段により 1. 0≤λ≤1. 2 の範囲内に設定し、 排気ガス中の ΝΟχを浄化するようにした。 In the invention of claim 1 is the invention of claim 2, the air-fuel ratio λ in the combustor is set to the air-fuel ratio control means by 1. 0≤λ≤1. 2 of the range, vo in the exhaust gas χ To purify.
請求項 3の発明では請求項 1の発明において、 前記燃焼器に炭化水素系の燃料 を供給するようにした。  According to a third aspect of the present invention, in the first aspect of the invention, a hydrocarbon-based fuel is supplied to the combustor.
請求項 4の発明では請求項 1の発明において、 前記燃焼温度制御手段により燃 焼器内の酸素濃度を 10 %未満に設定し、 力ゝっ空燃比制御手段により空燃比 λを 1. 0<λ< 1. 2 の範囲内に設定するようにした。  According to the invention of claim 4, in the invention of claim 1, the oxygen concentration in the combustor is set to less than 10% by the combustion temperature control means, and the air-fuel ratio λ is set to 1.0 < λ <1.2 was set within the range.
請求項 5の発明では請求項 4の発明において、 前記燃焼温度制御手段により燃 焼器内の燃焼温度 Τを、 800°C<T<1500°C の範囲内に設定するように した。  In the invention of claim 5, in the invention of claim 4, the combustion temperature in the combustor is set within the range of 800 ° C <T <1500 ° C by the combustion temperature control means.
請求項 6の発明では請求項 1の発明において、 前記燃焼器内の空燃比; Iを前記 空燃比制御手段により 1. 0く λ に設定し、 排気ガス中の HC, CO及びす す等の微粒子を浄化するようにした。  In the invention of claim 6, according to the invention of claim 1, an air-fuel ratio in the combustor; I is set to 1.0 and λ by the air-fuel ratio control means, and HC, CO, soot and the like in the exhaust gas are set. Purified fine particles.
請求項 7の発明では請求項 6の発明において、 前記燃焼器に炭化水素系の燃料 を供給するようにした。  In the invention of claim 7, in the invention of claim 6, hydrocarbon fuel is supplied to the combustor.
請求項 8の発明では請求項 1の発明において、 前記空燃比制御手段により燃焼 器内の空燃比; Lを 1. 4く; I に設定するようにした。  In the invention of claim 8, in the invention of claim 1, the air-fuel ratio in the combustor; L is set to 1.4; I by the air-fuel ratio control means.
請求項 9の発明では請求項 8の発明において、 前記燃焼温度制御手段により燃 焼器内の燃焼温度 Tを 1300°C<T<1500°C の範囲内に設定するよう にした。  In a ninth aspect of the present invention, in the eighth aspect of the present invention, the combustion temperature T in the combustor is set within a range of 1300 ° C <T <1500 ° C by the combustion temperature control means.
請求項 10の発明では請求項 1', 2, 4, 6及び 8のうちのいずれかの発明に おいて、 前記空燃比制御手段として燃料供給量調整手段を備え、 前記燃料供給量 調整手段により燃焼器への燃料の供給量を制御して燃焼器内の空燃比を制御可能 にした。 . 請求項 11の発明では請求項 1, 2, 4, 6及び 8のうちのいずれかの発明に おいて、 前記空燃比制御手段として燃料供給量調整手段と空気供給量調整手段と を備えた。 According to a tenth aspect of the present invention, in any one of the first, second, fourth, sixth and eighth aspects, a fuel supply amount adjusting unit is provided as the air-fuel ratio control unit, and the fuel supply amount adjusting unit The air-fuel ratio in the combustor can be controlled by controlling the amount of fuel supplied to the combustor. In the invention of claim 11, any one of claims 1, 2, 4, 6, and 8 In addition, a fuel supply amount adjusting unit and an air supply amount adjusting unit are provided as the air-fuel ratio control unit.
請求項 1 2の発明では請求項 1 1の発明において、 前記空気供給量調整手段と して圧縮機からの圧縮空気の供給手段を備えた。  According to a twenty-second aspect of the present invention, in the eleventh aspect, a means for supplying compressed air from a compressor is provided as the air supply amount adjusting means.
請求項 1 3の発明では請求項 1、 2, 4 , 6及び 8のうちのいずれかの発明に おいて、 内燃機関の排気ガスの全量を燃焼器内の燃焼領域に供給するようにした。 請求項 1 4の発明では請求項 1 , 2 , 4, 6及ぴ 8のうちのいずれかの発明に おいて、 燃焼器内の排気ガスを浄化する燃焼領域へ供給する排気ガス量と、 前記 燃焼領域より下流側の浄化後の排気ガスの温度を低下させる希釈領域へ供給する 排気ガス量とを調整可能な調整手段を備えた。  According to the invention of claim 13, in any one of the inventions of claims 1, 2, 4, 6, and 8, the entire amount of the exhaust gas of the internal combustion engine is supplied to the combustion area in the combustor. According to a fourteenth aspect of the present invention, in any one of the first, second, fourth, sixth and eighth aspects of the present invention, the amount of exhaust gas supplied to a combustion area for purifying exhaust gas in a combustor; Adjustment means is provided for adjusting the amount of exhaust gas to be supplied to the dilution region that lowers the temperature of the purified exhaust gas downstream of the combustion region.
請求項 1 5の発明では請求項 1の発明において、 内燃機関の機関回転数を検出 する機関回転数検出手段, 排気温度検出手段, 給気圧検出手段及びこれらの検出 手段により得られた検出信号から前記内燃機関の燃焼室で発生した排気ガスの空 燃比を算出する空燃比算出手段と機関出力を算出する機関出力算出手段を設け、 内燃機関の燃焼室から排出される排気ガス量を検出する排気ガス排出量検出手段 を設け、 前記空燃比算出手段により算出された空燃比と排気ガス排出量検出手段 により得られた排気ガス排出量により燃焼器内の空燃比 を検出可能でかつ検出 した空燃比 を所望する範囲内に変更可能な空燃比制御手段を設けた。  According to a fifteenth aspect of the present invention, in accordance with the first aspect of the present invention, an engine speed detecting means for detecting an engine speed of the internal combustion engine, an exhaust gas temperature detecting means, a supply pressure detecting means, and a detection signal obtained by these detecting means are provided. An air-fuel ratio calculating means for calculating an air-fuel ratio of exhaust gas generated in a combustion chamber of the internal combustion engine; and an engine output calculating means for calculating an engine output, wherein an exhaust gas detecting an amount of exhaust gas discharged from a combustion chamber of the internal combustion engine is provided. A gas discharge amount detecting means provided, and the air-fuel ratio in the combustor can be detected and detected based on the air-fuel ratio calculated by the air-fuel ratio calculating means and the exhaust gas discharge amount obtained by the exhaust gas discharge amount detecting means. Is provided within the desired range.
請求項 1 6の発明では請求項 1の発明において、 前記燃焼器内に空燃比 λを λ≤1 . 2 の範囲に設定して排気ガス中の Ν Οχを浄化する上流側燃焼領域を 設け、 前記上流側燃焼領域よりも下流側に空燃比えを 1 . 0く; L の範囲に設 定して排気ガス中の H C, C Ο及びすす等の微粒子を浄化する下流側燃焼領域を 設け、 前記上流側燃焼領域及び下流側燃焼領域で排気ガスに含まれる Ν Οχ, Η C, C ο及びすす等の微粒子を浄化するようにした。 In the invention of claim 1 is the invention of claims 1 to 6, provided upstream combustion region to purify New Omicron chi of Ramuda≤1. Exhaust gas is set to 2 range air-fuel ratio λ in the combustor The air-fuel ratio is set at 1.0 downstream of the upstream combustion region, and a downstream combustion region is provided in the range of L for purifying fine particles such as HC, CΟ and soot in the exhaust gas. , the upstream combustion region and New Omicron chi downstream combustion region in the exhaust gas, and so as to purify Eta C, C o, and fine particles such as soot.
請求項 1 7の発明では請求項 1の発明において、 前記燃焼器の上流側に空燃比 λを 1 . 0く; の範囲に設定して排気ガス中の H C, C O及ぴすす等の微粒 子を浄化する上流側燃焼領域を設け、 前記上流側燃焼領域よりも下流側に空燃比 λを 1 . 0≤λ≤1 . 2 の範囲に設定して排気ガス中の Ν Οχを浄化する下 流側燃焼領域を設け、 前記上流側燃焼領域及び下流側燃焼領域で排気ガスに含ま れる N Ox, H C , C O及びすす等の微粒子を浄化するようにした。 According to a seventeenth aspect of the present invention, in the first aspect of the invention, the air-fuel ratio λ is set to a range of 1.0 on the upstream side of the combustor, and fine particles such as HC, CO, and soot in the exhaust gas are set. the upstream combustion region to purify provided 1 air-fuel ratio λ on the downstream side of the upstream combustion region. 0≤λ≤1. underlying set to 2 in the range purifying New Omicron chi in the exhaust gas An upstream combustion region is provided, and the upstream combustion region and the downstream combustion region are included in exhaust gas. The NO x, and so purify HC, and fine particles such as CO and soot.
請求項 1 8の発明では請求項.1の発明において、 前記燃焼器の上流側に空燃比 λを く 1 . 0 の範囲に設定して排気ガス中の N O χを浄化する上流側燃焼 領域を設け、 前記上流側燃焼領域よりも下流側に空燃比 λを 1 . 4く; I の範 囲に設定してお気ガス中の H C , C O及びすす等の微粒子を浄化する下流側燃焼 領域を設け、 前記上流側燃焼領域及び下流側燃焼領域で排気ガスに含まれる NO x, H C , C O及びすす等の微粒子を浄ィ匕するようにした。 In the invention of claim .1 in the invention of claim 1 8, the upstream combustion region to purify air-fuel ratio λ rather 1. NO range set to in the exhaust gas of 0 chi upstream of the combustor An air-fuel ratio λ is set at 1.4 downstream of the upstream combustion region, and a downstream combustion region for purifying particulates such as HC, CO, and soot in the air gas is set in the range of I. and NO x contained in exhaust gas in the upstream combustion region and a downstream combustion region, HC, and fine particles such as CO and soot as Kiyoshii spoon.
請求項 1 9の発明では請求項 1 6又は 1 7の発明において、 燃焼器内の上流側 燃焼領域に供給した排気ガスの全量を下流側燃焼領域に供給するようにした。 請求項 2 0の発明では請求項 1 6又は 1 7の発明において、 内燃機関で発生し た排気ガスを前記燃焼器の上流側燃焼領域と下流側燃焼領域へ供給する分岐通路 を設け、 カゝっ上流側燃焼領域に供給された排気ガスを下流側燃焼領域へ供給可能 にし /ヒ。  In the invention of claim 19, in the invention of claim 16 or 17, the entire amount of exhaust gas supplied to the upstream combustion region in the combustor is supplied to the downstream combustion region. In the invention of claim 20, in the invention of claim 16 or 17, a branch passage for supplying exhaust gas generated in the internal combustion engine to an upstream combustion region and a downstream combustion region of the combustor is provided. The exhaust gas supplied to the upstream combustion area can be supplied to the downstream combustion area.
請求項 2 1の発明では請求項 1 6又は 1 7の発明において、 浄化後のお気ガス の温度を低下させるための希釈領域を前記下流側燃焼領域よりもさらに下流側に 設け、 内燃機関で発生した排気ガスを前記燃焼器の上流側燃焼領域と下流側燃焼 領域及び前記希釈領域へ供給する分岐通路を設け、 かつ上流側燃焼領域で浄化さ れた排気ガスを下流側燃焼領域へ供給可能にした。  In the invention of claim 21, in the invention of claim 16 or 17, a dilution region for lowering the temperature of the purified air gas is provided further downstream than the downstream combustion region, and the dilution region is generated in the internal combustion engine. A branch passage for supplying the exhaust gas to the upstream combustion area, the downstream combustion area, and the dilution area of the combustor, and the exhaust gas purified in the upstream combustion area can be supplied to the downstream combustion area. did.
請求項 2 2の発明では請求項 1 9 ~ 2 1のうちのいずれかの発明において、 上 流側燃焼領域及び下流側燃焼領域へ直接供給する排気ガスの供給量を調整する調 整手段を備えた。  In the invention of claim 22, in any one of the inventions of claims 19 to 21, there is provided adjusting means for adjusting the supply amount of exhaust gas directly supplied to the upstream combustion region and the downstream combustion region. Was.
請求項 2 3の発明では請求項 1 ~ 9, 1 6及び 1 7のうちのいずれかの発明に おいて、 内燃機関で発生した排気ガスの一部を燃焼器内の燃焼領域より下流側の 希釈領域に直接供給可能にし、 燃焼領域で浄化された排気ガスの温度を低下させ るようにした。  According to the invention of claim 23, in any one of the inventions of claims 1 to 9, 16 and 17, part of the exhaust gas generated in the internal combustion engine is provided downstream of the combustion region in the combustor. It was made possible to supply directly to the dilution zone, and the temperature of the exhaust gas purified in the combustion zone was reduced.
請求項 2 4の発明では請求項 1〜 9, 1 6及ぴ 1 7のうちのいずれかの発明に おいて、 圧縮機により生成される圧縮空気を燃焼器内の燃焼領域より下流側の希 釈領域に供給可能にし、 前記燃焼領域で浄化された排気ガスの温度を低下させる ようにした。 請求項 2 5の発明では請求項 1〜 9 , 1 6及び 1 7のうちのいずれかの発明に おいて、 前記内燃機関の排気ガスにより蒸気を生成する熱交換器を設け、 前記熱 交換器で生成した蒸気を燃焼器内の希釈領域に供給可能にした。 According to the invention of claim 24, in any one of the inventions of claims 1 to 9, 16, and 17, the compressed air generated by the compressor is diluted with the diluted air downstream of the combustion region in the combustor. The temperature of the exhaust gas purified in the combustion region is reduced by supplying the exhaust gas to the combustion region. In the invention of claim 25, in any one of the inventions of claims 1 to 9, 16 and 17, a heat exchanger for generating steam by exhaust gas of the internal combustion engine is provided, and the heat exchanger The steam generated in the above can be supplied to the dilution zone in the combustor.
請求項 2 6の発明では、 内燃機関の排気通路に燃焼器を設け、 前記燃焼器内の 空燃比と燃焼温度とを制御する空燃比制御手段と燃焼温度制御手段とを設け、 前 記燃焼器内の燃焼領域における燃焼により排気ガスに含まれる有害成分が浄化可 能であり、 燃焼器より下流側の排気通路にタービンを設け、 前記タービンに発電 機を設置した。  In the invention according to claim 26, a combustor is provided in an exhaust passage of the internal combustion engine, and air-fuel ratio control means and combustion temperature control means for controlling an air-fuel ratio and a combustion temperature in the combustor are provided. The harmful components contained in the exhaust gas can be purified by the combustion in the combustion zone inside the turbine, a turbine is provided in the exhaust passage downstream of the combustor, and a generator is installed in the turbine.
請求項 2 7の発明では請求項 2 6の発明において、 前記タービンにより駆動さ れかつ内燃機関へ圧縮空気を供給する圧縮機を設け、 前記燃焼器内の空燃比, 燃 焼温度, 燃焼後の排気ガス温度のうち少なくとも一つを所望する範囲内に変更可 能にする量の圧縮空気を前記圧縮機から前記燃焼器へ供給可能にした。  In the invention of claim 27, in the invention of claim 26, a compressor driven by the turbine and supplying compressed air to the internal combustion engine is provided, and an air-fuel ratio in the combustor, a combustion temperature, and a temperature after combustion are provided. An amount of compressed air capable of changing at least one of the exhaust gas temperatures within a desired range can be supplied from the compressor to the combustor.
請求項 2 8の発明では請求項 2 6又は 2 7の発明において、 前記タービンより も下流側の排気通路に熱交換器を設け、 前記熱交換器により高温の排気ガスから 熱伝達されて生成した蒸気を前記燃焼器内の燃焼領域よりも下流側の希釈領域へ 供給可能にした請求項に記載の排気浄化装置を備えた。  According to the invention of claim 28, in the invention of claim 26 or 27, a heat exchanger is provided in an exhaust passage downstream of the turbine, and heat is generated from the high-temperature exhaust gas by the heat exchanger. An exhaust gas purification apparatus according to claim 1, wherein steam is supplied to a dilution region downstream of a combustion region in said combustor.
請求項 2 9の発明では請求項 2 6又は 2 7の発明において、 前記燃焼器の燃焼 領域へ圧縮空気を供給する空気通路に熱交換器を設け、 前記熱交^^にタービン より下流側の排気通路を接続し、 前記熱交換器により高温の排気ガスから低温の 圧縮空気へ熱伝達させて圧縮空気を昇温させるようにした。  In the invention of claim 29, in the invention of claim 26 or 27, a heat exchanger is provided in an air passage for supplying compressed air to a combustion region of the combustor, and a heat exchanger downstream of a turbine is provided for the heat exchange. An exhaust passage was connected, and heat was transferred from high-temperature exhaust gas to low-temperature compressed air by the heat exchanger to raise the temperature of the compressed air.
請求項 3 0の発明では請求項 2 6又は 2 7の発明において、 前記タービンによ り駆動される第 1圧縮機と第 2圧縮機を設け、 第 1圧縮機により圧縮された第 1 圧縮空気を冷却する熱交換器を設け、 前記熱交換器により冷却された第 1圧縮空 気をさらに第 2圧縮機により圧縮して第 2圧縮空気を生成するようにした。 請求項 3 1の発明では請求項 2 6又は 2 7の発明において、 燃焼器の下流側の 排気通路に上流側タービンと下流側タービンを設け、 上流側タービンにより駆動 される圧縮機を設け、 下流側タービンにより駆動される発電機を設けた。  In the invention of claim 30, in the invention of claim 26 or 27, the first compressor and the second compressor driven by the turbine are provided, and the first compressed air compressed by the first compressor is provided. A heat exchanger is provided for cooling the first compressed air, and the first compressed air cooled by the heat exchanger is further compressed by a second compressor to generate second compressed air. In the invention of claim 31, in the invention of claim 26 or 27, the upstream turbine and the downstream turbine are provided in the exhaust passage on the downstream side of the combustor, and the compressor driven by the upstream turbine is provided. A generator driven by the side turbine was provided.
請求項 3 2の発明では請求項 2 6又は 2 7の発明において、 燃焼器の下流側の 排気通路に上流側タービンと下流側タービンを設け、 前記下流側タービンにより 駆動される第 3圧縮機と発電機を設け、 前記上流側タービンにより駆動される第 4圧縮機を設け、 前記第 3圧縮機で圧縮された第 3圧縮空気をさらに第 4圧縮機 で圧縮して第 4圧縮空気を生成可能にした。 In the invention of claim 32, in the invention of claim 26 or 27, an upstream turbine and a downstream turbine are provided in an exhaust passage downstream of the combustor, and the downstream turbine is A third compressor driven by the upstream turbine and a generator are provided.A fourth compressor driven by the upstream turbine is provided.The third compressed air compressed by the third compressor is further compressed by a fourth compressor. To generate the fourth compressed air.
請求項 3 3の発明では、 自然吸気式の内燃機関において、 前記内燃機関の排気 通路に燃焼器を設け、 前記燃焼器内の空燃比と燃焼温度とを制御する空燃比制御 手段と燃焼温度制御手段とを設けて前記燃焼器内における燃焼により排気ガスに 含まれる有害成分を浄化可能とし、 また、 前記燃焼器の下流側の排気通路にター ビンを設け、 前記タービンで駆動される発電機を設けた。 (従来技術より有効な効果)  According to the invention of claim 33, in the naturally aspirated internal combustion engine, a combustor is provided in an exhaust passage of the internal combustion engine, and air-fuel ratio control means for controlling an air-fuel ratio and a combustion temperature in the combustor, and combustion temperature control Means for purifying harmful components contained in exhaust gas by combustion in the combustor, and a turbine provided in an exhaust passage downstream of the combustor, and a generator driven by the turbine. Provided. (Effective effect than conventional technology)
請求項 1の発明では、 排気通路 2 4に燃焼器 2を設けて排気ガスを浄化するよ うにしたので、 従来のように触媒ゃフィルタを使用することなく排気ガスを浄ィ匕 することができる。 したがって、 触媒を利用した浄化方法と比較して触媒の劣化 による浄化率の低下を招くという問題を回避することができる。  According to the first aspect of the present invention, since the exhaust gas is purified by providing the combustor 2 in the exhaust passage 24, the exhaust gas can be purified without using a catalyst / filter as in the related art. . Therefore, it is possible to avoid the problem that the purification rate is reduced due to the deterioration of the catalyst as compared with the purification method using the catalyst.
請求項 2の発明では、 燃焼器 2内の空燃比 λを 1 . 0≤λ≤1 . 2 に設定 するので排気ガス中の Ν Οχを良好に浄化することができる。 In the invention of claim 2, the air-fuel ratio λ in the combustor 2 1. 0≤Ramuda≤1. Since set to 2 can be satisfactorily purify New Omicron chi in the exhaust gas.
請求項 3の発明では、 燃焼器 2に供給する燃料を内燃機関本体 1へ供給する燃 料と共通にすることができるので、 燃料タンク 2 9と燃料供給管 9を途中まで共 用することができ、 省スペース化を図ることができる。  According to the third aspect of the invention, the fuel supplied to the combustor 2 can be shared with the fuel supplied to the internal combustion engine body 1, so that the fuel tank 29 and the fuel supply pipe 9 can be shared partway. And space saving can be achieved.
請求項 4の発明では、 燃焼器 2内の酸素濃度を 1 0 %未満に設定し、 かつ空燃 比 λを 1 . 0く; L < 1 . 2 に設定したので、 排気ガス中の Ν Οχを良好に浄 ィ匕することができる。 According to the fourth aspect of the present invention, the oxygen concentration in the combustor 2 is set to less than 10%, and the air-fuel ratio λ is set to 1.0; L <1.2. χ can be satisfactorily purified.
請求項 5の発明では請求項 4の発明において、 さらに燃焼器 2内の排気ガスの 燃焼温度 Τを 8 0 0 °C< T < 1 5 0 0 °C の範囲内に設定したので、 未燃 H C, C O及びすす等の微粒子の排出量を低く抑えながら NOxを良好に浄化すること が出来る。 According to the invention of claim 5, in the invention of claim 4, since the combustion temperature 排 気 of the exhaust gas in the combustor 2 is set in the range of 800 ° C <T <150 ° C, the unburned HC, while suppressing the emission of fine particles such as CO and soot NO x it is possible to satisfactorily clean.
請求項 6の発明では、 燃焼器 2内の空燃比; を 1 . 0くえ に設定するよう にしたので、 排気ガス中の H C, C O及ぴすす等の微粒子を良好に浄化すること ができる。 請求項 7の発明では、 請求項 6の効果に加え、 燃焼器 2へ供給する燃料を内燃 機関本体 1に供給する燃料と共通にすることができるので、 装置の省スペース化 を図ることができる。 In the invention of claim 6, the air-fuel ratio in the combustor 2 is set to 1.0, so that fine particles such as HC, CO, and soot in the exhaust gas can be satisfactorily purified. According to the invention of claim 7, in addition to the effect of claim 6, the fuel to be supplied to the combustor 2 can be shared with the fuel to be supplied to the internal combustion engine body 1, so that the space of the device can be saved. .
請求項 8の発明では、 燃焼器 2内の空燃比えを 1. 4く; I に設定するよう にしたので、 HC, CO及びすす等の微粒子を浄化しながら NOxの排出量を低 く抑えることができる。 In the invention of claim 8, the air-fuel ratio e in the combustor 2 1.4 rather; since to set the I, HC, CO and the emissions of the NO x while purifying fine particles such as soot low Ku Can be suppressed.
請求項 9の発明では、 空燃比えを 1. 4く; に設定する上に、 燃焼温度 T を 1300°C<T< 1500°C の範囲に設定することにより、 NOxの排出 量を低く抑えながら請求項 8の発明よりもさらに良好に HC, CO及びすす等の 微粒子を浄化することができる。 In the invention of claim 9, the example air 1.4 rather; over to set, by setting the combustion temperature T in the range of 1300 ° C <T <1500 ° C, low emissions of the NO x The fine particles such as HC, CO, and soot can be purified more effectively than the invention of claim 8 while suppressing them.
請求項 10の発明では、 空燃比制御手段として燃料供給量調整手段 (第 1図の ECU 8, 調量弁 11, 酸素センサ 22等で構成され、 内燃機関本体 1における 燃焼状況を各センサにより把握し、 現在の燃焼器 2内の空燃比えを所望する範囲 内に変更することができる量の燃料を ECU 8が算出し、 かつ調量弁 1 1の開度 を調整して燃焼器 2への燃料の供給量を制御する機構) を設けたことにより、 燃 焼器 2内の空燃比 λを適切に制御することができ、 燃焼器 2内の排気ガスを良好 に浄化することができる。  According to the tenth aspect of the present invention, the air-fuel ratio control means includes a fuel supply amount adjusting means (including the ECU 8, the metering valve 11, the oxygen sensor 22, etc. in FIG. 1, and the combustion state in the internal combustion engine body 1 is grasped by each sensor. The ECU 8 calculates the amount of fuel that can change the current air-fuel ratio in the combustor 2 within a desired range, and adjusts the opening of the metering valve 11 to the combustor 2. By providing a mechanism for controlling the amount of supplied fuel, the air-fuel ratio λ in the combustor 2 can be appropriately controlled, and the exhaust gas in the combustor 2 can be satisfactorily purified.
請求項 11の発明では、 空燃比制御手段として請求項 10と同様の燃料供給量 調整手段に加え、 空気供給量調整手段 (第 1図の ECU 8, 調量弁 12, 圧縮機 4, 酸素センサ 22等で構成され、 内燃機関本体 1における燃焼状況を各センサ により把握し、 現在の燃焼器 2内の空燃比 Xを所望する範囲内に変更することが できる量の空気を ECU 8が算出し、 かつ調量弁 12の開度を調整して燃焼器 2 への空気の供給量を制御する機構) を設けたので、 請求項 10よりも燃焼器 2内 の空燃比 λを所望する範囲に設定し易く、 良好に排気ガスを净化することができ る。  According to the eleventh aspect of the present invention, in addition to the fuel supply amount adjusting means similar to the tenth aspect, an air supply amount adjusting means (ECU 8, metering valve 12, compressor 4, oxygen sensor The ECU 8 calculates the amount of air that can change the current air-fuel ratio X in the combustor 2 to a desired range. And a mechanism for controlling the amount of air supplied to the combustor 2 by adjusting the opening of the metering valve 12), so that the air-fuel ratio λ in the combustor 2 is set to a desired range as compared with claim 10. It is easy to set, and the exhaust gas can be satisfactorily reduced.
請求項 12の発明では、 請求項 11の発明において空気供給量調整手段として 圧縮機を設けるようにした。 この圧縮機は、 請求項 11の実施例で示すように圧 縮機 4により兼用させるようにしてもよいが、 また、 別に専用の圧縮機を設ける と、 圧縮機 4から供給される圧縮空気は、 全て内燃機関本体 1へ供給することが できるので、 内燃機関本体 1への過給効率の低下を回避することができる。 In a twelfth aspect of the present invention, a compressor is provided as the air supply amount adjusting means in the eleventh aspect of the present invention. This compressor may be shared by the compressor 4 as shown in the embodiment of claim 11, but if a separate dedicated compressor is provided, the compressed air supplied from the compressor 4 Can be supplied to the internal combustion engine body 1 Therefore, it is possible to avoid a decrease in supercharging efficiency of the internal combustion engine body 1.
請求項 1 3の発明では、 内燃機関本体 1から排出された排気ガスの全量を燃焼 器 2の燃焼領域へ供給するようにしたので、 排気ガスの浄化率を高く維持するこ とができる。  According to the invention of claim 13, since the entire amount of the exhaust gas discharged from the internal combustion engine body 1 is supplied to the combustion region of the combustor 2, the purification rate of the exhaust gas can be maintained high.
請求項 1 4の発明では、 内燃機関本体 1から排出された 気ガスのうちの一部 を燃焼器 2内の燃焼領域よりも下流側の希釈領域へ直接供給可能にし、 排気ガス の燃焼領域への供給量と希釈領域への直接の供給量とを調整する調整手段 (第 1 図の E C U 8 , 第 2図の開閉機構 5 2等で構成された機構) を設けたので、 内燃 機関から排出された排気ガスの有害成分の含有量が少ない場合には、 燃焼領域で 浄化する排気ガスの量を減少させることができ、 それに応じて燃焼器 2への燃料 の供給量も少なくすることができる。  According to the invention of claim 14, a part of the gas gas discharged from the internal combustion engine body 1 can be directly supplied to the dilution region downstream of the combustion region in the combustor 2 and the exhaust gas can be supplied to the combustion region. Adjustment means (a mechanism composed of the ECU 8 in FIG. 1 and the opening / closing mechanism 52 in FIG. 2) for adjusting the supply amount of the fuel and the direct supply amount to the dilution area is provided. If the amount of harmful components contained in the exhaust gas is small, the amount of exhaust gas to be purified in the combustion area can be reduced, and the amount of fuel supplied to the combustor 2 can be reduced accordingly. .
請求項 1 5の発明では、 燃焼器 2内の空燃比 を検出し、 かつ検出した空燃比 λを所望する範囲内に設定することができるので、 例えば排気ガスに含まれる有 害成分が主に Ν Οχであれば空燃比; Iをリッチ側へ設定し、 逆に H C, C O及び PM (すす等の微粒子) が多く含まれていれば空燃比 λをリーン側へ設定するこ とが容易に行えるので、 良好な浄ィ匕率が得られる。 According to the invention of claim 15, since the air-fuel ratio in the combustor 2 can be detected and the detected air-fuel ratio λ can be set within a desired range, for example, harmful components contained in the exhaust gas are mainly Χ Ο χ空 空 空 空 空 空 空 空 空 空 空 空 空 空 空 空 空 空 空 I I I I I 容易 I れ ば れ ば HC れ ば HC れ ば HC. Therefore, a good purification ratio can be obtained.
請求項 1 6の発明では、 燃焼器 2内に上流側燃焼領域 4 1と下流側燃焼領域 4 2とを設け、 上流側燃焼領域 4 1における空燃比 Iを λ 1 . 2 に設定し、 下流側燃焼領域 4 2における空燃比 を 1 . 0くえ に設定するようにしたの で、 上流側燃焼領域 4 1では主に Ν Οχを浄ィ匕することができ、 下流側燃焼領域 4 2では主に H C, C Ο及びすす等の微粒子を浄化することができ、 内燃機関本 体 1から排出された排気ガスがいかなる有害成分を含んでいても、 良好に浄化す ることができる。 According to the invention of claim 16, an upstream combustion region 41 and a downstream combustion region 42 are provided in the combustor 2, the air-fuel ratio I in the upstream combustion region 41 is set to λ 1.2, 1 the air-fuel ratio in the side combustion region 4 2. than was to set to 0 Que, the upstream combustion region 4 1 mainly New Omicron chi can Kiyoshii spoon, the downstream combustion zone 4 2 It can mainly purify fine particles such as HC, carbon dioxide and soot, and can purify well even if the exhaust gas discharged from the internal combustion engine body 1 contains any harmful components.
請求項 1 7の発明では、 燃焼器 2内に上流側燃焼領域 4 1と下流側燃焼領域 4 2とを設け、 上流側燃焼領域 4 1における空燃比 λを 1 . 0く; I に設定し、 下流側燃焼領域 4 2における空燃比 を 1 . Ο ^ λ ^ Ι . 2 に設定するよう にしたので、 上流側燃焼領域 4 1では主に H C , C Ο及びすす等の微粒子を浄化 することができ、 下流側燃焼領域 4 2では主に Ν Οχを浄化することができ、 内 燃機関本体 1から排出された排気ガスがいかなる有害成分を含んでいても、 良好 に净化することができる。 According to the invention of claim 17, the upstream combustion region 41 and the downstream combustion region 42 are provided in the combustor 2, and the air-fuel ratio λ in the upstream combustion region 41 is set to 1.0; I. Since the air-fuel ratio in the downstream combustion region 42 is set to 1.Ο ^ λ ^ Ι.2, the upstream combustion region 41 mainly purifies fine particles such as HC, CΟ and soot. can be, in the downstream combustion zone 4 2 can be purified mainly New Omicron chi, exhaust gas discharged from the internal combustion engine body 1 also include any harmful components, good Can be changed to
請求項 1 8の発明では、 請求項 1 6の発明における上流側燃焼領域 4 1の空燃 比えを えく 1 . 0 に設定することにより、 請求項 1 6の発明よりも N O xの 浄化率を向上させ、 その際に多量に発生した未燃 H C等は下流側燃焼領域 4 2で 浄化するようにしたので、 請求項 1 6の発明よりもさらに全体として排気ガスの 浄化性能を向上させることができる。 In the invention of claim 18, the air-fuel ratio of the upstream combustion region 41 in the invention of claim 16 is set to 1.0, so that the purification of NO x is more improved than the invention of claim 16. Since the unburned HC and the like generated at that time are purified in the downstream combustion area 42, the exhaust gas purification performance is further improved as a whole as compared with the invention of claim 16. be able to.
請求項 1 9の発明では、 請求項 1 6又は 1 7の発明において、 上流側燃焼領域 4 1に供給した排気ガスの全量を下流側燃焼領域 4 2に供給するようにしたので、 N Ox, H C , C O及ぴすす等の微粒子のいずれも良好に浄化することができる。 請求項 2 0の発明では、 内燃機関本体 1で発生した排気ガスを上流側燃焼領域In the invention of claim 19, in the invention of claim 16 or 17, since the entire amount of exhaust gas supplied to the upstream combustion region 41 is supplied to the downstream combustion region 42, NO x , All of fine particles such as HC, CO and soot can be satisfactorily purified. In the invention according to claim 20, the exhaust gas generated in the internal combustion engine main body 1 is supplied to the upstream combustion region.
4 1と下流側燃焼領域 4 2へ直接供給し、 また、 上流側燃焼領域 4 1で浄化した 排気ガスを下流側燃焼領域 4 2へ供給するようにしたので、 圧縮機 4から供給す る空気量を少なくすることができ、 また、 必要な燃料の供給量を節約することが できる。 4 1 and the downstream combustion zone 4 2 are supplied directly, and the exhaust gas purified in the upstream combustion zone 4 1 is supplied to the downstream combustion zone 4 2, so the air supplied from the compressor 4 The amount can be reduced, and the required fuel supply can be saved.
請求項 2 1の発明では、 請求項 1 6又は 1 7の発明において、 内燃機関本体 1 から排出される排気ガスの一部を下流側燃焼領域 4 2よりも下流側に設けた希釈 領域 4 3に直接供給するようにしたので、 圧縮機 4から供給する空気量を少なく することができ、 また、 必要な燃料の供給量を少なくすることができる。  According to the invention of claim 21, in the invention of claim 16 or 17, a dilution region 4 3 in which a part of the exhaust gas discharged from the internal combustion engine main body 1 is provided downstream of the downstream combustion region 42. Since the air is supplied directly to the compressor 4, the amount of air supplied from the compressor 4 can be reduced, and the required fuel supply amount can be reduced.
請求項 2 2の発明では、 請求項 1 9〜2 1の発明において、 上流側燃焼領域 4 1及び下流側燃焼領域 4 2にそれぞれ直接供給する排気ガスの供給量を調整する 調整手段 (第 1図の E C U 8 , 第 5図の開閉機構 5 2等で構成される機構) を設 けたので、 内燃機関本体 1から排出される排気ガスに含まれる有害成分の量を勘 案して浄ィ匕率の低下を回避しながら燃焼器 2へ供給する燃料の供給量を設定する ことができる。  In the invention of claim 22, in the invention of claims 19 to 21, the adjusting means for adjusting the supply amount of the exhaust gas directly supplied to the upstream combustion region 41 and the downstream combustion region 42 respectively (first (Equipped with the ECU 8 shown in the figure and the opening / closing mechanism 52 shown in FIG. 5), it is necessary to take into account the amount of harmful components contained in the exhaust gas discharged from the internal combustion engine body 1. The amount of fuel to be supplied to the combustor 2 can be set while avoiding a decrease in the rate.
請求項 2 3の発明では、 内燃機関本体 1から排出される排気ガスの一部を希釈 領域 4 3に直接供給するようにしたので、 上流側燃焼領域 4 1及び下流側燃焼領 域 4 2で昇温された浄化済みの排気ガスの温度を低下させることができる。  In the invention of claim 23, part of the exhaust gas discharged from the internal combustion engine body 1 is directly supplied to the dilution region 43, so that the upstream combustion region 41 and the downstream combustion region 42 The temperature of the purified exhaust gas whose temperature has been raised can be reduced.
請求項 2 4の発明では、 圧縮機で生成した圧縮空気を希釈領域 4 3へ供給し希 釈領域 4 3における排気ガスの温度を低下させるので、 良好な浄化率を維持しな がら浄ィ匕済みの排気ガスの温度を低下させて排出させることができる。 According to the invention of claim 24, the compressed air generated by the compressor is supplied to the dilution region 43 and the temperature of the exhaust gas in the dilution region 43 is reduced, so that a good purification rate cannot be maintained. The temperature of the exhaust gas that has been purified can be lowered and discharged.
請求項 2 5の発明では、 請求項 2 4の発明において希釈領域 4 3へ圧縮空気を 供給する圧縮機を過給用の圧縮機 4で兼用させることにより装置の簡略化を図る ことができる。 また、 過給用の圧縮機 4を駆動させるタービン 3から排出される 高温の排気ガスにより熱交^^内で蒸気を発生させ、 この蒸気を燃焼器 2の希釈 領域 4 3へ供給するようにしたので、 蒸気は排気ガスと共にタービン 3へ供給さ れ、 排気ガスの净ィ匕率を高く維持したまま熱効率を向上させることができる。 タ 一ビン 3を通過させる気体の流量が増加し、 全体の仕事率を向上させることがで さる。  According to the invention of claim 25, the compressor of the invention of claim 24, which supplies compressed air to the dilution region 43, is also used by the compressor 4 for supercharging, so that the apparatus can be simplified. Also, high-temperature exhaust gas discharged from the turbine 3 that drives the supercharging compressor 4 generates steam in the heat exchanger ^ and supplies this steam to the dilution region 43 of the combustor 2. As a result, the steam is supplied to the turbine 3 together with the exhaust gas, and the thermal efficiency can be improved while maintaining the exhaust gas exhaustion rate high. The flow rate of the gas passing through the vial 3 is increased, and the overall power is improved.
請求項 2 6の発明では、 燃焼器 2の下流側にタ一ビン 3を設け、 このタービン According to the invention of claim 26, a turbine 3 is provided downstream of the combustor 2,
3で駆動される発電機 7を設けたので、 請求項 1の効果に加え、 熱効率を向上さ せることができる。 Since the generator 7 driven by 3 is provided, the thermal efficiency can be improved in addition to the effect of claim 1.
請求項 2 7の発明では、 請求項 2 6の発明において、 圧縮機 4から燃焼器 2へ 空燃比; I , 燃焼温度, 燃焼後 (浄化後) の排気ガス温度のうちの少なくとも一つ を所望する範囲内に変更可能にする量の圧縮空気を供給可能にしたので、 内燃機 関本体 1から排出される排気ガスの全量を良好に浄化することができる。  In the invention of claim 27, in the invention of claim 26, at least one of the air-fuel ratio; I, the combustion temperature, and the exhaust gas temperature after combustion (after purification) is desired from the compressor 4 to the combustor 2. Since the amount of compressed air that can be changed within the range that can be supplied can be supplied, the entire amount of exhaust gas discharged from the internal combustion engine body 1 can be satisfactorily purified.
請求項 2 8の発明では、 請求項 2 6及ぴ 2 7の効果に加え、 浄化後の排気ガス と共に蒸気をタ一ビン 3に供給することにより、 浄化率を高く維持したままター ビン 3に供給する気体の流量を増大させて熱効率を向上させることができる。 請求項 2 9の発明では、 熱交換器 7 0 (第 1 1図) により燃焼器 2へ供給する 前に予め圧縮空気を高温の排気ガスの熱を利用して昇温させることができるので、 低温の圧縮空気をそのまま供給する場合と比較して排気ガスを昇温させるのに必 要な燃料の供給量を少なくすることができる。  According to the invention of claim 28, in addition to the effects of claims 26 and 27, by supplying steam to the turbine 3 together with the purified exhaust gas, the turbine 3 is maintained at a high purification rate. The thermal efficiency can be improved by increasing the flow rate of the supplied gas. According to the invention of claim 29, before the compressed air is supplied to the combustor 2 by the heat exchanger 70 (FIG. 11), the temperature of the compressed air can be raised in advance by utilizing the heat of the high-temperature exhaust gas. The amount of fuel supply required to raise the temperature of the exhaust gas can be reduced as compared with the case where low-temperature compressed air is supplied as it is.
請求項 3 0の発明では、 圧縮機 6 2 (第 1圧縮機) で圧縮した圧縮空気を冷却 する熱交 « 6 4を設け、 この熱交換器 6 4で冷却された第 1圧縮空気をさらに 圧縮機 4 (第 2圧縮機) で圧縮するようにしたので、 請求項 2 6, 2 7の発明の ように圧縮機 4を一つ設けた場合と比較して空気の圧縮動力を減少させることが できる。  In the invention of claim 30, a heat exchanger 64 for cooling the compressed air compressed by the compressor 62 (first compressor) is provided, and the first compressed air cooled by the heat exchanger 64 is further provided. Since the compression is performed by the compressor 4 (second compressor), the power for compressing the air can be reduced as compared with the case where one compressor 4 is provided as in the invention of claims 26 and 27. Can be done.
請求項 3 1の発明では、 燃焼器 2の下流側にタービン 3, 6 1 (第 8図) を直 列に配置し、 上流側のタービン 3で圧縮機 4を駆動するようにしたので、 内燃機 関本体 1の燃焼状態が急変した際の排気ガスの排出量の変動に対するシステム全 体の応答性が向上する。 According to the invention of claim 31, the turbines 3, 61 (FIG. 8) are directly installed downstream of the combustor 2. Since the compressor 4 is driven by the turbine 3 on the upstream side, the responsiveness of the entire system to fluctuations in exhaust gas emissions when the combustion state of the internal combustion engine body 1 suddenly changes is improved. I do.
つまり、 内燃機関 3 0 0 (第 8図) が定格の 5 0 %で運転されているときには、 下流側のタービン 6 1は仕事をせず、 上流側のタービン 3だけが動作して圧縮機 4を駆動し、 内燃機関本体 1へ十分な量の圧縮空気を供給することができ、 内燃 機関本体 1の運転状態の変動に対して良好な応答性を奏することができる。 内燃 機関 3 0 0の始動時や低負荷時においても同様にタービン 3が優先して動作する ので、 速やかに内燃機関 3 0 0を立ち上げることができる。  That is, when the internal combustion engine 300 (FIG. 8) is operating at 50% of the rated value, the downstream turbine 61 does not work, and only the upstream turbine 3 operates to operate the compressor 4. And a sufficient amount of compressed air can be supplied to the internal combustion engine main body 1, and good responsiveness to fluctuations in the operating state of the internal combustion engine main body 1 can be achieved. Similarly, even when the internal combustion engine 300 is started or when the load is low, the turbine 3 operates preferentially, so that the internal combustion engine 300 can be started up quickly.
下流側のタービン 6 1は、 上流側のタービン 3が全開となり内燃機関本体 1の 運転に余裕ができたときに初めて動作し、 タービン 6 1を設けることにより熱効 率の向上に寄与することができる。 また、 急加速時においても、 速やかに立ち上 げることができるので、 燃焼器 2に供給される排気ガスに含まれる有害成分の含 有量を減少させることができ、 燃焼器 2の浄化の負担を軽減することができる。 請求項 3 2の発明では、 下流側のタービン 6 1で駆動される圧縮機 6 2 (第 3 圧縮機) と発電機 7とを設け、 上流側のタービン 3で駆動される圧縮機 4 (第 4 圧縮機) を設けることにより、 圧縮機 4と 6 2のそれぞれの最適回転数が活用で き、 各圧縮機の圧縮効率を高めることができる。  The downstream turbine 61 operates only when the upstream turbine 3 is fully opened and the operation of the internal combustion engine body 1 has a margin, and the provision of the turbine 61 can contribute to the improvement of the thermal efficiency. it can. In addition, even during a rapid acceleration, it is possible to start up quickly, so that the amount of harmful components contained in the exhaust gas supplied to the combustor 2 can be reduced, and the purification of the combustor 2 can be improved. The burden can be reduced. In the invention of claim 32, the compressor 62 (third compressor) driven by the downstream turbine 61 and the generator 7 are provided, and the compressor 4 (second compressor) driven by the turbine 3 on the upstream side is provided. By providing (4 compressors), the optimum rotation speed of each of the compressors 4 and 62 can be utilized, and the compression efficiency of each compressor can be increased.
請求項 3 3の発明では、 無過給式 (自然給気式) の内燃機関 7 0 0 (第 1 2 図) の排気管 2 4 (排気通路) に燃焼器 2を設けたので、 排気ガスに含まれる有 害成分を良好に浄ィ匕することができる。 さらに浄ィ匕された排気ガスを利用してタ 一ビン 3で発電機 7を駆動することにより内燃機関 7 0 0の熱効率を向上させる ことができる。  In the invention of claim 33, since the combustor 2 is provided in the exhaust pipe 24 (exhaust passage) of the non-supercharged (naturally-charged) internal combustion engine 700 (FIG. 12), the exhaust gas The harmful components contained in the water can be satisfactorily purified. Further, by driving the generator 7 with the turbine 3 using the purified exhaust gas, the thermal efficiency of the internal combustion engine 700 can be improved.
請求項 2 6〜3 2の発明の内燃機関では、 始動時にまず発電機 7のみを駆動さ せて圧縮機 4を駆動させ、 燃焼器 2へ空気 (圧縮空気) を供給するとともにその 空気量に見合う量の燃料も供給して燃焼させ、 発生した燃焼ガス ( 気ガス) を タービン 3に供給し、 圧縮機の回転応答性を良好にすることができる。  In the internal combustion engine according to the invention of claims 26 to 32, at the time of starting, first, only the generator 7 is driven to drive the compressor 4, and air (compressed air) is supplied to the combustor 2 and the amount of air is reduced. A commensurate amount of fuel is also supplied and burned, and the generated combustion gas (gas gas) is supplied to the turbine 3 to improve the rotational response of the compressor.
請求項 1〜3 3のいずれの発明においても、 内燃機関本体 1の通常運転時に加 え、 始動時や低負荷時においても良好に排気ガス中の有害成分を浄化することが できる。 したがって、 内燃機関本体 1がどのような運転を行っても (つまり、 全 負荷領域, 全運転範囲において) 、 排出される排気ガスに含まれる有害成分を良 好に浄化することができる。 図面の簡単な説明 In any of the first to third aspects of the present invention, in addition to the normal operation of the internal combustion engine body 1, it is possible to satisfactorily purify harmful components in the exhaust gas even at the time of starting or at a low load. it can. Therefore, irrespective of the operation of the internal combustion engine body 1 (that is, in the entire load range and the entire operation range), the harmful components contained in the exhaust gas discharged can be satisfactorily purified. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 請求項 1 , 1 0, 1 1, 1 2 , 1 5 , 2 6及び請求項 2 7の発明に よる排気浄化装置を備えた内燃機関の燃料供給経路, 空気供給経路, 排気ガス排 出経路及び信号伝達経路を示す系統略図である。  FIG. 1 shows a fuel supply path, an air supply path, and an exhaust gas of an internal combustion engine provided with an exhaust gas purifying apparatus according to the first, tenth, eleventh, twelve, fifteenth and twenty-sixth aspects of the present invention. It is a system schematic diagram showing a gas discharge path and a signal transmission path.
第 2図は、 請求項 1 3の発明による第 1図の燃焼器の断面略図である。  FIG. 2 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 13.
第 3図は、 請求項 1 4の発明による第 1図の燃燒器の断面略図である。  FIG. 3 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 14.
第 4図は、 請求項 1 6, 1 8, 1 9の発明による第 1図の燃焼器の断面略図で める。  FIG. 4 is a schematic cross-sectional view of the combustor of FIG. 1 according to the invention of claims 16, 18, and 19.
第 5図は、 請求項 2 0の発明による第 1図の燃焼器の断面略図である。  FIG. 5 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 20.
第 6図は、 請求項 2 1の発明による第 1図の燃焼器の断面略図である。  FIG. 6 is a schematic sectional view of the combustor of FIG. 1 according to the invention of claim 21.
第 7図は、 請求項 2 5, 2 8の発明による排気浄化装置を備えた内燃機関の系 統略図である。  FIG. 7 is a system schematic diagram of an internal combustion engine provided with an exhaust gas purification device according to the invention of claims 25 and 28.
第 8図は、 請求項 3 1の発明による排気浄化装置を備えた内燃機関の系統略図 である。  FIG. 8 is a schematic system diagram of an internal combustion engine provided with the exhaust emission control device according to the invention of claim 31.
第 9図は、 請求項 3 0の発明による排気浄化装置を備えた内燃機関の系統略図 である。  FIG. 9 is a system schematic diagram of an internal combustion engine provided with the exhaust emission control device according to claim 30 of the present invention.
第 1 0図は、 請求項 3 2の発明による排気浄化装置を備えた内燃機関の系統略 図である。  FIG. 10 is a system schematic diagram of an internal combustion engine provided with the exhaust gas purifying apparatus according to the invention of claim 32.
第 1 1図は、 請求項 2 9の発明による排気浄化装置を備えた内燃機関の系統略 図である。  FIG. 11 is a system schematic diagram of an internal combustion engine provided with an exhaust gas purifying apparatus according to the invention of claim 29.
第 1 2図は、 請求項 3 3の発明による排気浄化装置を備えた内燃機関の系統略 図である。  FIG. 12 is a system schematic diagram of an internal combustion engine provided with the exhaust gas purification device according to the invention of claim 33.
第 1 3図は、 ディーゼル機関に本発明を適用した際の排気ガス中に含まれる N Ox, C O及び PM等の有害成分の排出量を示すグラフである。 The first 3 is a graph showing the emission of harmful components NO x, CO, and PM and the like contained in the exhaust gas when the present invention is applied to a diesel engine.
第 1 4図は、 燃焼器内の酸素濃度を 1 0 %未満に設定して空燃比を変化させた 際の N Oxの浄化率を示すグラフである。 Fig. 14 shows that the air-fuel ratio was changed by setting the oxygen concentration in the combustor to less than 10%. 6 is a graph showing the NO x purification rate at that time.
第 1 5図は、 空燃比を変化させ、 蒸気を燃焼器に供給した場合と供給しない場 合の内燃機関の熱効率を示すグラフである。  FIG. 15 is a graph showing the thermal efficiency of the internal combustion engine when the air-fuel ratio is changed and steam is supplied to the combustor and when it is not supplied.
第 1 6図は、 燃焼器内の燃焼温度と排気ガス中の C O及び N O xの浄化の傾向 の関係を示すグラフである。 発明を実施するための最良の形態 The first 6 is a graph showing the relationship between the tendency of purifying CO and NO x in combustion temperature and exhaust gas within the combustor. BEST MODE FOR CARRYING OUT THE INVENTION
(請求項 1 , 1 0, 1 1, 1 2 , 1 5, 2 6, 2 7の発明の実施例)  (Embodiments of the Inventions of Claims 1, 10, 11, 11, 12, 15, 26, 27)
第 1図は、 請求項 1, 1 0 , 1 1 , 1 2, 1 5, 2 6及び 2 7の発明による排 気浄化装置を備えた内燃機関 1 0 0の燃料供給経路, 空気供給経路, 排気ガス排 出経路及び信号伝達経路を示す系統略図である。 内燃機関本体 1には燃料供給管 9を介して燃料 (例えばガソリン, 重油, 軽油等の炭化水素系燃料) が供給され、 給気管 1 6を介して空気 (圧縮空気) が供給される。  FIG. 1 shows a fuel supply path, an air supply path, and the like of an internal combustion engine 100 having an exhaust gas purifying apparatus according to the inventions of claims 1, 10, 11, 12, 15, 26, and 27. It is a system schematic diagram showing an exhaust gas discharge route and a signal transmission route. Fuel (for example, a hydrocarbon-based fuel such as gasoline, heavy oil, or light oil) is supplied to the internal combustion engine body 1 via a fuel supply pipe 9, and air (compressed air) is supplied via an air supply pipe 16.
内燃機関本体 1の図示しない燃焼室において燃焼が行われ、 駆動軸 1 7を介し て発電機 6へ動力が伝達 (出力) される。 また、 排気管 2 4 (排気通路) を介し て有害成分を含む排気ガスが排出される。  Combustion is performed in a combustion chamber (not shown) of the internal combustion engine body 1, and power is transmitted (output) to the generator 6 via the drive shaft 17. Exhaust gas containing harmful components is discharged through the exhaust pipe 24 (exhaust passage).
排気管 2 4は、 燃焼器 2と接続されており、 排気ガスは燃焼器 2内に流入する ようになつている。 また、 燃焼器 2には燃料供給管 9から分岐しかつ途中に調量 弁 1 1を備えた燃料供給管 1 0を介して燃料が供給可能になっている。 さらに燃 焼器 2には後述する圧縮空気供給管 1 4から分岐しかつ途中に調量弁 1 2を備え た圧縮空気供給管 1 5を介して圧縮空気が供給可能になっている。  The exhaust pipe 24 is connected to the combustor 2, and the exhaust gas flows into the combustor 2. Further, fuel can be supplied to the combustor 2 via a fuel supply pipe 10 branched from a fuel supply pipe 9 and provided with a metering valve 11 on the way. Further, compressed air can be supplied to the combustor 2 via a compressed air supply pipe 15 branched from a compressed air supply pipe 14 described later and provided with a metering valve 12 on the way.
また、 第 1図に示すように、 燃焼器 2の下流側には排気管 2 5が接続されてお り、 燃焼器 2内の排気ガスは、 燃焼器 2に供給された燃料と圧縮空気により燃焼 された後に排気管 2 5を介して排出可能となっている。  As shown in FIG. 1, an exhaust pipe 25 is connected to the downstream side of the combustor 2, and the exhaust gas in the combustor 2 is supplied by the fuel and compressed air supplied to the combustor 2. After being burned, it can be discharged through the exhaust pipe 25.
排気管 2 5の下流側にはタービン 3が設けてある。 燃焼器 2から排気管 2 5を 介して排出された排気ガスはタービン 3を回転させ、 駆動軸 2 7を介して圧縮機 4を駆動し、 また駆動軸 1 8を介して発電機 7を駆動させる。 タービン 3を回転 させた排気ガスは、 排気管 2 6を介して外部 (大気中) へ排出される。  The turbine 3 is provided downstream of the exhaust pipe 25. Exhaust gas discharged from the combustor 2 through the exhaust pipe 25 rotates the turbine 3, drives the compressor 4 through the drive shaft 27, and drives the generator 7 through the drive shaft 18. Let it. The exhaust gas rotating the turbine 3 is discharged to the outside (atmosphere) via the exhaust pipe 26.
駆動軸 2 7で駆動された圧縮機 4は空気取入管 1 3から空気を吸引して圧縮空 気を生成する。 生成された圧縮空気は、 圧縮空気供給管 1 4を介してインターク ーラ 5へ供給される。 圧縮空気はィンタークーラ 5内で冷却水供給管 6 0を介し て供給される冷却水で冷却されて給気管 1 6を介して内燃機関本体 1の燃焼室 (図示せず) へ供給可能となっている。 The compressor 4 driven by the drive shaft 27 sucks air from the air intake pipe 13 to compress air. Generate qi. The generated compressed air is supplied to the intercooler 5 via the compressed air supply pipe 14. The compressed air is cooled by cooling water supplied through a cooling water supply pipe 60 in the intercooler 5 and can be supplied to a combustion chamber (not shown) of the internal combustion engine body 1 through an air supply pipe 16. I have.
給気管 1 6の内燃機関本体 1との接続部付近には給気圧 (ブースト圧) 検出セ ンサ 1 9が設けてある。 燃焼器 2には温度センサ 2 8が設けてあり、 温度センサ 2 8は燃焼器 2内の温度を検出する。 さらに排気管 2 4には排気ガス流量計 2 1, 酸素センサ 2 2及ぴ排気温度センサ 2 3が設けてある。 これらの各センサにより 検出された検出信号は、 それぞれ信号線を介して E C U 8 (メモリを備えたコン ピュータユニット) へ伝達される。  A supply pressure (boost pressure) detection sensor 19 is provided near the connection of the intake pipe 16 to the internal combustion engine body 1. The combustor 2 is provided with a temperature sensor 28, and the temperature sensor 28 detects the temperature inside the combustor 2. Further, the exhaust pipe 24 is provided with an exhaust gas flow meter 21, an oxygen sensor 22, and an exhaust temperature sensor 23. The detection signals detected by these sensors are transmitted to ECU 8 (computer unit with memory) via signal lines.
E C U 8は、 これらの検出信号が入力されると、 後述する諸条件を満たすよう に調量弁 1 1及び 1 2の開度を調整して必要な量の燃料と空気とを燃焼器 2内に 供給し、 燃焼器 2内の空燃比 λ及び燃焼温度を調整することができるようになつ ている。 つまりこれらにより空燃比制御手段と燃料供給量調整手段とが構成され ている。  When these detection signals are input, the ECU 8 adjusts the opening of the metering valves 11 and 12 so as to satisfy various conditions described below, and transfers necessary amounts of fuel and air into the combustor 2. And the air-fuel ratio λ in the combustor 2 and the combustion temperature can be adjusted. That is, these constitute the air-fuel ratio control means and the fuel supply amount adjustment means.
燃焼器 2の内容積は既知であり、 燃焼器 2内の排気ガス量と酸素濃度は、 酸素 センサ 2 2と排気ガス流量計 2 1 (排気ガス排出量検出手段) で検出した検出信 号により E C U 8が演算して算出する。  The internal volume of the combustor 2 is known, and the amount of exhaust gas and the oxygen concentration in the combustor 2 are determined by the detection signals detected by the oxygen sensor 22 and the exhaust gas flow meter 21 (exhaust gas emission detecting means). The ECU 8 calculates and calculates.
また、 機関出力は機関回転数検出センサ 2 0, 給気圧検出センサ 1 9及び排気 温度センサ 2 3により検出した検出信号により求めることができ、 この機関出力 と給気圧検出センサ 1 9で検出した給気圧から排気管 2 4内及び燃焼器 2内の排 気ガスの空燃比 λを E C U 8で算出する。  Further, the engine output can be obtained from detection signals detected by the engine speed detection sensor 20, the supply pressure detection sensor 19, and the exhaust temperature sensor 23, and the engine output and the supply pressure detected by the supply pressure detection sensor 19 are obtained. The ECU 8 calculates the air-fuel ratio λ of the exhaust gas in the exhaust pipe 24 and the combustor 2 from the atmospheric pressure.
燃焼器 2内の排気ガス中に含まれる浄化対象とする有害成分が Ν Ο χであるか または未燃 H C, C O及ぴすす等の微粒子であるかにより、 この空燃比; Iの値を 後述する各実施例に記載の通りに設定する。 また、 燃焼器 2内の温度は温度セン サ 2 8で検出するが、 燃焼器 2内の温度を所望する温度まで上昇させるために必 要な量の燃料と圧縮空気とを E C U 8が算出しかつ算出した量の燃料と空気 (圧 縮空気) とを燃焼器 2へ供給可能に調量弁 1 1, 1 2の開度を調整して燃料と空 気とを燃焼器 2へ供給する。 ここでは圧縮機 4で生成された圧縮空気を燃焼器 2へ供給するようにしたが、 燃焼器 2へ供給する空気は、 圧縮機 4とは別の圧縮機を設けてこの圧縮機により 供給するようにしてもよい。 (請求項 2〜 5の発明の実施例) Harmful components is New Omicron chi or unburned HC to be purified contained in the exhaust gas in the combustor 2, by either a fine particles such as CO及Pisu be, the air-fuel ratio; below the value of I To be set as described in each embodiment. The temperature inside the combustor 2 is detected by a temperature sensor 28, but the ECU 8 calculates the amount of fuel and compressed air necessary to raise the temperature inside the combustor 2 to a desired temperature. The fuel and air are supplied to the combustor 2 by adjusting the opening of the metering valves 11 and 12 so that the calculated amounts of fuel and air (compressed air) can be supplied to the combustor 2. Here, the compressed air generated by the compressor 4 is supplied to the combustor 2, but the air supplied to the combustor 2 is supplied by this compressor provided with a compressor different from the compressor 4. You may do so. (Examples of Claims 2 to 5)
内燃機関本体 1の燃焼室 (図示せず) で燃焼が行われた場合、 排気管 24を通 過する排気ガス中には NOxが多量に含まれている。 この場合、 燃焼器 2内の空 燃比; Iが 1. 0≤λ^ 1. 2の範囲内に入るように ECU 8は調量弁 1 1, 1 2 の開度を調整し、 燃料と圧縮空気とを燃焼器 2へ供給する。 If the combustion is performed in the combustion chamber of the internal combustion engine body 1 (not shown), NO x is contained in large amounts in the exhaust gas going out through the exhaust pipe 24. In this case, the ECU 8 adjusts the opening of the metering valves 11 and 12 so that the air-fuel ratio in the combustor 2; I falls within the range of 1.0≤λ ^ 1.2, and the fuel and compression The air is supplied to the combustor 2.
さらに燃焼器 2内の酸素濃度が 10%未満となるように、 また、燃焼温度丁が Further, the oxygen concentration in the combustor 2 should be less than 10%, and the combustion temperature should be
800°Cく Tく 1 500°Cとなるように、 ECU 8は燃料と空気 (圧縮空気) の 必要量を算出する。 ECU8は、 算出した量の燃料と空気とが燃焼器 2へ供給さ れるように調量弁 1 1, 1 2の開度を調整して燃焼器 2内の温度を調整する。 第 14図は、 燃焼器 2内の酸素濃度を 1 0%未満に設定して空燃比を変化させ た際の NOxの浄化率を示すグラフである。 排気ガスの流量は、 標準状態で 5 L /m i n (リットル Z分) である。 第 14図から、 空燃比が 0. 2〜1. 0の範 囲內であれば、 浄化率は非常に良好で 90%程度になることがわかる。 The ECU 8 calculates the required amount of fuel and air (compressed air) so that the temperature becomes 800 ° C to 1500 ° C. The ECU 8 adjusts the opening degree of the metering valves 11 and 12 so that the calculated amounts of fuel and air are supplied to the combustor 2 and adjusts the temperature inside the combustor 2. FIG. 14 is a graph showing the NO x purification rate when the air-fuel ratio is changed by setting the oxygen concentration in the combustor 2 to less than 10%. Exhaust gas flow rate is 5 L / min (liter Z minute) under standard conditions. From Fig. 14, it can be seen that when the air-fuel ratio is in the range of 0.2 to 1.0, the purification rate is very good and is about 90%.
(請求項 6〜 9の発明の実施例) (Examples of Claims 6 to 9)
内燃機関本体 1の燃焼室の空燃比 λが; く 1で燃焼が行われると、 排気管 24 を通過する排気ガス中には未燃 HC, CO及び ΡΜ (すす等の微粒子) が多量に 含まれる。 この場合、 燃焼器 2内の空燃比 を 1. 0く; (好ましくは 1. 4く λ) の範囲内に入るように ECU8は調量弁 1 1, 1 2の開度を調整し、 燃料と 圧縮空気とを燃焼器 2へ供給する。  When the combustion is performed at the air-fuel ratio λ of the combustion chamber of the internal combustion engine body 1, the exhaust gas passing through the exhaust pipe 24 contains a large amount of unburned HC, CO, and ΡΜ (fine particles such as soot). It is. In this case, the ECU 8 adjusts the opening of the metering valves 11 and 12 so that the air-fuel ratio in the combustor 2 falls within a range of 1.0; (preferably 1.4 and λ). And compressed air are supplied to the combustor 2.
さらに燃焼器 2内の燃焼温度 Τが 1 300°C<T< 1 500°Cとなるように、 Furthermore, so that the combustion temperature 燃 焼 in the combustor 2 becomes 1300 ° C <T <1500 ° C,
ECU 8は燃料と空気の必要量を算出する。 ECU 8は、 算出した量の燃料と空 気とを燃焼器 2へ供給することができるように調量弁 1 1, 1 2の開度を調整し て燃料と空気とを燃焼器 2へ供給し、 燃焼器 2内の温度を調整する。 The ECU 8 calculates the required amount of fuel and air. The ECU 8 supplies the fuel and air to the combustor 2 by adjusting the opening of the metering valves 11 and 12 so that the calculated amounts of fuel and air can be supplied to the combustor 2. Then, the temperature in the combustor 2 is adjusted.
第 1 6図は、 燃焼器 2内の燃焼温度と排気ガス中の CO及び NOxの浄化の傾 向の関係を示すグラフである。 燃焼温度が低いと C Oの排出量が多くなり、 逆に 燃焼温度が高くなると N Oxの排出量が多くなる。 第 1 6図によると、 燃焼温度 Tの範囲を 1 3 0 0 °C< T < 1 5 0 0 °Cに限定すると、 C O , N Oxのいずれも 比較的良好に净化されることがわかる。 The first 6 figures slope of purifying CO and NO x in the exhaust gas and the combustion temperature in the combustor 2 It is a graph which shows a direction relationship. Becomes large emissions of the combustion temperature is low CO, becomes large emissions of the NO x opposite the combustion temperature becomes higher. According to FIG. 16, when the range of the combustion temperature T is limited to 130 ° C. <T <150 ° C., it is understood that both CO and NO x change relatively favorably.
(請求項 1 3の発明の実施例) (Example of Claim 13)
第 2図は、 請求項 1 3の発明による第 1図の燃焼器 2の断面略図である。 第 2 図の燃焼器 2では、 内燃機関本体 1から排出された排気ガスの全量が燃焼器内筒 5 1の排気ガス取入口 7 4から燃焼器 2内へ流入可能となっている。 単位時間当 りの排気ガスの流入量は排気ガス取入口 7 4に設けた開閉機構 5 2の可動部 5 3 を矢印 Aで示す方向に摺動させることにより調整することができる。  FIG. 2 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 13. In the combustor 2 shown in FIG. 2, the entire amount of the exhaust gas discharged from the internal combustion engine main body 1 can flow into the combustor 2 from the exhaust gas inlet 74 of the combustor inner cylinder 51. The amount of inflow of exhaust gas per unit time can be adjusted by sliding the movable portion 53 of the opening / closing mechanism 52 provided at the exhaust gas inlet 74 in the direction indicated by the arrow A.
排気ガス取入口 7 4から流入した排気ガスは旋回羽根 3 5を通過して内筒 5 1 内に入る。  The exhaust gas flowing from the exhaust gas inlet 7 4 passes through the swirl blade 35 and enters the inner cylinder 51.
排気ガス取入口 7 4から空気 (圧縮空気) 3 8 aが流入することができるよう に圧縮空気供給管 1 5から枝分かれした配管 1 5 a (枝分かれ部分は図示せず) が内筒 5 1よりも上流側の外筒 5 0に接続されている。  Pipe (15a) (branch not shown) branched from compressed air supply pipe (15) so that air (compressed air) (38a) can flow in from exhaust gas inlet (74) Is also connected to the outer cylinder 50 on the upstream side.
燃料供給管 1 0は保護管 7 5内に収容されており、 高温の排気ガスから保護さ れている。 第 2図に示すように燃料供給管 1 0の先端には燃料噴射弁 7 6が設け てある。 この燃料噴射弁 7 6から燃焼器 2の内筒 5 1内へ燃料 3 7が噴射される。 内筒 5 1内には点火プラグ 3 0が設けてある。 点火プラグ 3 0により点火された 燃料 3 7と排気ガス 7 7及び空気 3 8 aは、 内筒 5 1内の燃焼領域 3 1において 燃焼する。  The fuel supply pipe 10 is housed in the protection pipe 75 and is protected from high-temperature exhaust gas. As shown in FIG. 2, a fuel injection valve 76 is provided at the tip of the fuel supply pipe 10. Fuel 37 is injected from the fuel injection valve 76 into the inner cylinder 51 of the combustor 2. An ignition plug 30 is provided in the inner cylinder 51. The fuel 37, the exhaust gas 77 and the air 38 a ignited by the spark plug 30 burn in the combustion region 31 in the inner cylinder 51.
噴射される燃料 3 7と排気ガス 7 7を含む空気 3 8 aの比 (空燃比) は、 燃料 噴射弁 7 6からの燃料 3 7の噴射量を調整する力 又は開閉機構 5 2の可動部 5 3を矢印 Aの方向に摺動させて燃焼領域 3 1へ流入する空気量を調整することに より変更可能となっている。  The ratio (air-fuel ratio) between the injected fuel 37 and the air 38a containing the exhaust gas 77 (air-fuel ratio) is determined by the force for adjusting the injection amount of the fuel 37 from the fuel injection valve 76 or the movable part of the opening / closing mechanism 52. It can be changed by sliding 53 in the direction of arrow A to adjust the amount of air flowing into the combustion area 31.
燃焼領域 3 1の下流側には希釈領域 3 2が設けてある。 この希釈領域 3 2の内 筒 5 1には 孔 3 3が設けてある。 圧縮空気供給管 1 5から供給される圧縮空 気 3 8は、燃焼器 2の内筒 5 1と外筒 5 0の間に形成した環状通路 3 9内を流れ、 希釈孔 3 3から内筒 5 1内の希釈領域 3 2へ希釈ガス 4 0として流入する。 希釈 領域 3 2では、 燃焼領域 3 1で燃焼した後の排気ガスと希釈孔 3 3から流入した 希釈ガス 4 0とが混合し、 燃焼後の高温の排気ガスは希釈ガス 4 0に希釈される ことにより、 例えば 9 0 0 °C程度以下まで冷却される。 A dilution region 32 is provided downstream of the combustion region 31. A hole 33 is provided in the inner cylinder 51 of the dilution region 32. The compressed air 38 supplied from the compressed air supply pipe 15 flows through an annular passage 39 formed between the inner cylinder 51 and the outer cylinder 50 of the combustor 2. The dilution gas 40 flows from the dilution hole 33 into the dilution area 32 in the inner cylinder 51. In the dilution zone 32, the exhaust gas burned in the combustion zone 31 is mixed with the dilution gas 40 flowing from the dilution hole 33, and the hot exhaust gas after combustion is diluted into the dilution gas 40. Thereby, it is cooled to, for example, about 900 ° C. or less.
(請求項 1 4の発明の実施例) (Example of Claim 14)
第 3図は、 請求項 1 4の発明による第 1図の燃焼器 2の断面略図である。 第 3 図では、 希釈孔 3 3から内筒 5 1内へ流入する希釈ガス 3 4に排気ガス 7 7が混 入する点が第 2図の燃焼器 2と異なっている。 第 3図において第 2図の符号と同 じ符号を付した構成は、 第 2図の構成と基本的に同じである。  FIG. 3 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 14. FIG. 3 is different from the combustor 2 in FIG. 2 in that the exhaust gas 77 is mixed into the dilution gas 34 flowing into the inner cylinder 51 from the dilution hole 33. The configurations in FIG. 3 denoted by the same reference numerals as those in FIG. 2 are basically the same as the configurations in FIG.
圧縮空気供給管 1 5から供給された圧縮空気 3 8の一部は排気ガス取入口 7 4 から燃焼領域 3 1内へ流入し、 残りのうちのさらに一部はバイパス通路 3 6を通 つて希釈孔 3 3から内筒 5 1内の希釈領域 3 2へ流入する。  A part of the compressed air 38 supplied from the compressed air supply pipe 15 flows into the combustion area 31 from the exhaust gas inlet 74, and a part of the remaining part is diluted through the bypass passage 36. It flows into the dilution area 32 in the inner cylinder 51 from the hole 33.
また、 排気ガス 7 7も一部は排気ガス取入口 7 4から燃焼領域 3 1へ流入し、 残りのうちのさらに一部はバイパス通路 3 6を通って希釈孔 3 3から内筒 5 1の 希釈領域 3 2へ流入する。 ここで、 バイパス通路 3 6を通る希釈ガス 3 4 (排気 ガス、 又は空気と排気ガスの混合気) が希釈領域 3 2へ流入するように希釈孔 3 3より下流側のバイパス通路 3 6を閉じるようにしてもよい。 (請求項 1 6, 1 8, 1 9の発明の実施例)  Also, part of the exhaust gas 77 flows into the combustion area 31 from the exhaust gas inlet 74, and part of the remaining part passes through the bypass passage 36 and the dilution hole 33 from the inner cylinder 51. Flow into dilution zone 32. Here, the bypass passage 36 downstream of the dilution hole 33 is closed so that the dilution gas 34 (exhaust gas or a mixture of air and exhaust gas) passing through the bypass passage 36 flows into the dilution region 32. You may do so. (Embodiments of the Inventions of Claims 16, 18, and 19)
第 4図は請求項 1 6, 1 8 , 1 9の発明による第 1図の燃焼器 2の断面略図で ある。 第 4図に示す燃焼器 2の構成において第 2図の構成と異なる点は、 第 2図 では内筒 5 1内に燃焼領域 3 1と希釈領域 3 2が設けられていたが、 第 4図では 内筒 5 1内に第 1燃焼領域 4 1, 第 2燃焼領域 4 2及び希釈領域 4 3が設けられ ている点である。 これらの領域は、 第 4図において破線で区画されている。 第 4図において、 第 1燃焼領域 4 1には排気ガス 7 7の全量と圧縮空気 3 8 a が供給される。 開閉機構 5 2により排気ガス 7 7及び圧縮空気 3 8 aの流入量を 調整し、 力、つ燃料 3 7の噴射量を第 1図の E CU 8により調整することにより、 第 1燃焼領域 4 1における空燃比; ^を ^ ^ 1 . 2 の範囲内に調整するこ とができる。 FIG. 4 is a schematic cross-sectional view of the combustor 2 of FIG. 1 according to the invention of claims 16, 18 and 19. The configuration of the combustor 2 shown in FIG. 4 is different from the configuration of FIG. 2 in that the combustion area 31 and the dilution area 32 are provided in the inner cylinder 51 in FIG. Is that a first combustion zone 41, a second combustion zone 42, and a dilution zone 43 are provided in the inner cylinder 51. These areas are defined by broken lines in FIG. In FIG. 4, the first combustion region 41 is supplied with the entire amount of the exhaust gas 77 and the compressed air 38a. The opening / closing mechanism 52 adjusts the inflow of the exhaust gas 77 and the compressed air 38a, and adjusts the power and the injection amount of the fuel 37 by the ECU 8 in FIG. Air-fuel ratio at 1; adjust ^ within ^ ^ 1.2 Can be.
2燃焼領域 42には第 1燃焼領域41で燃焼した排気ガスがそのまま流入す る。 内筒 50の外周には環状の第 1通路 45が形成されている。 第 1通路 45は 圧縮空気供給管 15と連通している。 さらに第 1通路 45の内周側には内筒 50 内に連通する第 2通路 46が設けてある。 この第 2通路 46から圧縮空気 38が 流入可能となっている。 The second combustion zone 42 you as it flows exhaust gas combusted in the first combustion region 4 1. An annular first passage 45 is formed on the outer periphery of the inner cylinder 50. The first passage 45 communicates with the compressed air supply pipe 15. Further, a second passage 46 communicating with the inside of the inner cylinder 50 is provided on the inner peripheral side of the first passage 45. The compressed air 38 can flow in from the second passage 46.
第 2通路 46には二次燃料供給管 44が接続されており、 第 2通路 46に燃料 37 aが供給可能になっている。 この第 2通路 46から供給される圧縮空気 38 と燃料 37 a及び第 1燃焼領域から流入した排気ガスが混合した混合気の空燃比 λ2は、 1. 0<λ2 となるように ECU 8 (第 1図) が調整する。 A secondary fuel supply pipe 44 is connected to the second passage 46 so that the fuel 37 a can be supplied to the second passage 46. The second passage 46 compressed air 38 and fuel 37 a and the air-fuel ratio lambda 2 of the mixture exhaust gas flowing from the first combustion zone are mixed to be supplied from, ECU so that 1. 0 <lambda 2 8 (Fig. 1) is adjusted.
このように 2つの燃焼領域 (第 1燃焼領域 41, 第 2燃焼領域 42) を備える •ことにより NOxは第 1燃焼領域 41で浄化し、 HCと CO及ぴ PM (すす等の 微粒子) は第 2燃焼領域 42で良好に浄化することができる。 Thus two combustion regions (first combustion region 41, the second combustion region 42) NO x by • comprise purged with first combustion zone 41, HC and CO及Pi PM (fine particles such as soot) is In the second combustion region 42, it can be satisfactorily purified.
第 1燃焼領域 41における空燃比; ^を ^く 0に設定すると、 未燃 H C, CO及び PMが多量に生じるが、 NOxは良好に浄化される。 また、 第 1燃 焼領域 41で多量に発生した未燃 HC, CO及ぴ PMは、 第 2燃焼領域 42で浄 化される Air-fuel ratio in the first combustion region 41; set to ^ a ^ Ku 0, unburned HC, although CO and PM occurs in a large amount, NO x are well cleaned. Unburned HC, CO and PM generated in large quantities in the first combustion zone 41 are purified in the second combustion zone 42
第 13図は、 ディーゼル機関に本発明を適用した際の排気ガス中に含まれる N Ox, CO及び PM等の有害成分の排出量を示すグラフである。 左端の一糸且の棒 グラフでは、 内燃機関本体 1から排出された排気ガス中の NOx, CO及び PM のそれぞれの含有量を示しており、 中央の一組の棒グラフは第 1燃焼領域 41に おいて浄化された排気ガス中に含まれる NOx, CO及び PMの量を示しており、 また、 右端の一糸且の棒グラフは第 2燃焼領域 42において浄ィ匕された排気ガス中 に含まれる NOx, CO及び PMの量を示している。 FIG. 13 is a graph showing emission amounts of harmful components such as NO x , CO, and PM contained in exhaust gas when the present invention is applied to a diesel engine. The bar graph at the left end shows the respective contents of NO x , CO and PM in the exhaust gas discharged from the internal combustion engine body 1, and the central pair of bar graphs corresponds to the first combustion area 41. NO x contained in the exhaust gas is Oite purified, and indicates the amount of CO and PM, also, the bar graph at the right end of Isshi且contained in exhaust gases that are Kiyoshii spoon in the second combustion region 42 Shows the amount of NO x , CO and PM.
左端のグラフで示す各有害成分の排出量を 1とし (各有害成分の排出量は異な る力 内燃機関本体 1から出た有害成分をそれぞれ 1としている) 、 中央及び右 端のグラフでは左端のグラフに対する割合で各有害成分の排出量が示されている。 中央のグラフでは、 内燃機関本体 1を出たばかりの排気ガスに含まれていた各 有害成分のうち、 NOxは第 1燃焼領域 41で浄化され、 含有量は 10% (0. 1) になっているのがわかる。 第 1燃焼領域 41において燃料と圧縮空気とが供 給されて燃焼が行われるので、 その際に発生した NOxが 5% (0. 05) 程度 増加している。 また、 COと PMに関してはむしろ第 1燃焼領域 41で浄化され る前よりも増加している。 The emission amount of each harmful component shown in the leftmost graph is set to 1 (the emission amount of each harmful component is set to 1 for each of the harmful components emitted from the internal combustion engine body 1). The emission amount of each harmful component is shown in proportion to the graph. The middle graph, among the harmful components contained in exhaust gas just leaving the internal combustion engine body 1, NO x is purified by the first combustion zone 41, the content is 10% (0. 1). Since the fuel and the compressed air in the first combustion region 41 of combustion are subjected feeding is performed, NO x generated during the 5% (0.05) is increasing extent. In addition, CO and PM have increased rather than before being purified in the first combustion zone 41.
次に、 右端のグラフでは、 第 2燃焼領域 42において行われた浄化作用により、 Next, in the graph on the right end, according to the purification action performed in the second combustion area 42,
C Oと P Mの量が左端のグラフと比較して 10 % ( 0. 1 ) 程度にまで減少して いるのがわかる。 また、 第 2燃焼領域 42においても燃料と圧縮空気とが供給さ れて燃焼が行われるので、 NOxは 5% (0. 05) 程度増加している。 最終的 に各有害成分は、 ΝΟχが当初の 20%程度となり、 COと ΡΜは当初の 10% 程度となっていることがわかる。 It can be seen that the amounts of CO and PM are reduced to about 10% (0.1) compared to the graph on the left. Further, since the fuel and the compressed air is combusted is fed takes place in the second combustion zone 42, NO x is increased by the order of five (5)% (0.05). Finally each harmful component, vo chi becomes initially about 20%, CO and ΡΜ it can be seen that a initial approximately 10%.
(請求項 17の発明の実施例) (Embodiment of Claim 17)
第 4図において、 ECU8 (第 1図) は第 1燃焼領域 (第 3燃焼領域) 41の 空燃比 λ3を 1. 0<λ3 となるように調整する。 また、 第 2燃焼領域 (第 4燃焼領域) 42の空燃比 λ4を 1. 0^λ4≤1. 2 の範囲内に調整する。 このようにすると、 第 1燃焼領域 41において主に HC, CO及び PMを浄化す ることができ、 第 2燃焼領域 42において 1^0乂を净化することができる。 In FIG. 4, the ECU 8 (FIG. 1) adjusts the air-fuel ratio λ 3 of the first combustion region (third combustion region) 41 so that 1.0 <λ 3 . Also, the air-fuel ratio λ 4 of the second combustion region (fourth combustion region) 42 is adjusted to be within a range of 1.0 ^ λ 4 ≤1.2. By doing so, HC, CO, and PM can be mainly purified in the first combustion region 41, and 1 乂 0 乂 can be reduced in the second combustion region 42.
第 1燃焼室 41において空燃比え 3をリーン (1. 0くえ 3) に設定すると H C, C O及び PMは良好に浄化することができるものの NO xの浄化率が低下す る。 しかし、 第 2燃焼室 42の空燃比 λ4を 1. 0≤λ4≤1. 2 の範囲に 設定することにより、 第 1燃焼室 41で浄化されなかった ΝΟχを良好に浄化す ることができる。 When the air-fuel ratio 3 in the first combustion chamber 41 is set to be lean (1.0 ke 3 ), HC, CO and PM can be satisfactorily purified, but the NO x purification rate decreases. However, by setting the air-fuel ratio lambda 4 in the second combustion chamber 42 to 1. 0≤λ 4 ≤1. 2 range, Rukoto to satisfactorily purify vo chi that has not been purified in the first combustion chamber 41 Can be.
(請求項 20の発明の実施例) (Example of the invention of claim 20)
第 5図は、 請求項 20の発明による第 1図の燃焼器 2の断面略図である。 第 4 図では、 排気ガス 77の全量が第 1燃焼領域 41に供給されるように構成されて いたが、 第 5図においては、 バイパス通路 78 (分岐通路) を介して一部の 気 ガス 77が第 1燃焼領域 41を経ずに第 2燃焼領域 42に直接流入するようにな つている。 第 5図に示すような構成は、 排気ガス中の有害成分 (例えば N Ox) の含有量 が少ない排気ガスに関して適用することができる。 FIG. 5 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 20. In FIG. 4, the entire amount of the exhaust gas 77 is configured to be supplied to the first combustion region 41. However, in FIG. 5, some of the exhaust gas 77 is supplied through a bypass passage 78 (branch passage). Flows directly into the second combustion region 42 without passing through the first combustion region 41. The configuration shown in FIG. 5 can be applied to exhaust gas having a low content of harmful components (eg, NO x ) in the exhaust gas.
(請求項 2 1の発明の実施例) (Example of Claim 21)
第 6図は、 請求項 2 1の発明による第 1図の燃焼器 2の断面略図である。 第 6 図では、 第 1バイパス通路 4 7が設けられたことにより希釈ガス 3 4 (—部の排 気ガス 7 7、 又は一部の排気ガス Ί 7及び圧縮空気 3 8 ) が第 1燃焼領域 4 1 FIG. 6 is a schematic sectional view of the combustor 2 of FIG. 1 according to the invention of claim 21. In FIG. 6, the dilution gas 34 (the exhaust gas 77, or a part of the exhaust gas Ί7 and the compressed air 38) is supplied to the first combustion zone by providing the first bypass passage 47. 4 1
(上流側燃焼領域) 及び第 2燃焼領域 4 2 (下流側燃焼領域) を経ずに直接希釈 領域 4 3へ流入することができるようになつている。 (The upstream combustion region) and the second combustion region 42 (the downstream combustion region) without flowing directly into the dilution region 43.
また、 第 2バイパス通路 4 8が設けられたことにより一部のお気ガス 7 7, 又 は一部の排気ガス 7 7と圧縮空気 3 8が第 1燃焼領域 4 1を経ずに直接第 2燃焼 領域 4 2へ流入することができるようになつている。  In addition, since the second bypass passage 48 is provided, some of the air gas 77 or some of the exhaust gas 77 and the compressed air 38 directly pass through the second combustion passage 41 without passing through the first combustion area 41. It is possible to flow into the combustion zone 42.
第 2バイパス通路 4 8には二次燃料供給管 4 4が設けてあり、 この二次燃料供 給管 4 4により第 2燃焼領域 4 2に燃料 3 7 aが供給される。  A secondary fuel supply pipe 44 is provided in the second bypass passage 48, and the fuel 37 a is supplied to the second combustion area 42 by the secondary fuel supply pipe 44.
排気ガス取入口 7 4から第 1.燃焼室 4 1内に流入した排気ガス 7 7の有害成分 は、 排気ガス 7 7 , 又は排気ガス 7 7と共に流入した圧縮空気 3 8と燃料噴射弁 7 6から噴射される燃料 3 7が燃焼することにより浄化される。 浄化後の排気ガ ス 7 7の有害成分は、 下流側の第 2燃焼領域 4 2において第 2バイパス通路 4 8 力 流入した排気ガス 7 7 , 又は排気ガス 7 7と圧縮空気 3 8と混合する。 第 2燃焼領域 4 2でこの混合気を浄化する。 さらに希釈領域 4 3では浄化され 力つ昇温した排気ガスが希釈ガス 3 4により希釈され、 例えば 9 0 0 °C程度まで 温度が下げられる。  The harmful components of the exhaust gas 77 flowing into the first combustion chamber 41 from the exhaust gas inlet 7 4 are the exhaust gas 7 7, or the compressed air 3 8 flowing together with the exhaust gas 7 7 and the fuel injection valve 7 6 The fuel 37 injected from the combustion is purified by burning. The harmful components of the purified exhaust gas 77 are mixed with the exhaust gas 77 or the exhaust gas 77 and the compressed air 38 that have flowed into the second bypass passage 48 in the downstream second combustion zone 42. . This air-fuel mixture is purified in the second combustion zone 42. Further, in the dilution region 43, the exhaust gas that has been purified and heated to a higher temperature is diluted by the dilution gas 34, and the temperature is reduced to, for example, about 900 ° C.
第 1燃焼領域 4 1における空燃比 を A i ^ l . 0 に設定し、 かつ第 2 燃焼領域 4 2における空燃比; L 2を 1 . 0く λ 2 に設定すると、 第 1燃焼室 4 1では N O χが良好に浄化され、 また、 第 2燃焼室 4 2では第 1燃焼室 4 1で 浄化されなかつた H C及び C Ο等を良好に浄化することができる。 When the air-fuel ratio in the first combustion region 41 is set to A i ^ l.0 and the air-fuel ratio in the second combustion region 42 is set to L 2 to 1.0 and λ 2 , the first combustion chamber 41 in NO chi it is satisfactorily cleaned and also can be satisfactorily purify second combustion chamber 4, 2 first combustion chamber 4 1 HC and C Omicron like never to have been purified by.
逆に第 1燃焼領域 4 1における空燃比 λ を 1 . 0く i に設定し、 力つ 第 2燃焼領域 4 2における空燃比 L 2を 1 . 0≤ぇ2≤ 1 . 2 に設定すると、 第 1燃焼室 4 1では H C, C O及び P Mが良好に浄化され、 また、 第 2燃焼室 4 2では第 1燃焼室 4 1で浄ィヒされなかつた N O xを良好に浄化することができる。 (請求項 2 2の発明の実施例) Conversely, when the air-fuel ratio λ in the first combustion region 41 is set to 1.0 and i, and the air-fuel ratio L 2 in the second combustion region 42 is set to 1.0≤ ぇ2 ≤1.2, HC, CO and PM are satisfactorily purified in the first combustion chamber 41, and the second combustion chamber 4 In 2 the NO x that has failed is Kiyoshi I inhibit in the first combustion chamber 4 1 can be satisfactorily purified. (Example of Claim 22)
請求項 2 0 , 2 1の発明において、 第 1燃焼領域 4 1へ供給する排気ガス 7 7 の量と第 2燃焼領域 4 2へ直接供給する排気ガス 7 7の量を調整するため、.すで に上述の実施例において述べたように第 3図〜第 6図に示すように排気ガス取入 口 7 4に開閉機構 5 2を設ける。  In the invention of claims 20 and 21, in order to adjust the amount of the exhaust gas 77 supplied to the first combustion region 41 and the amount of the exhaust gas 77 supplied directly to the second combustion region 42. As described in the above embodiment, the opening / closing mechanism 52 is provided at the exhaust gas inlet 74 as shown in FIGS.
可動部 5 3を矢印 Aに示す方向に摺動移動させることにより排気ガス取入口 7 4の開度を変更することができる。 この開度が小さくなると第 1燃焼領域 4 1へ 流入する排気ガス 7 7の量は少なくなり、 第 2燃焼領域 4 2へ直接流入する排気 ガス 7 7の量が多くなる。 逆に、 開度を大きくすると排気ガス 7 7の第 1燃焼領 域 4 1への流入量が増加し、 かつ第 2燃焼領域 4 2への流入量は減少する。  The degree of opening of the exhaust gas inlet 74 can be changed by sliding the movable portion 53 in the direction indicated by the arrow A. When the opening degree decreases, the amount of exhaust gas 77 flowing into the first combustion region 41 decreases, and the amount of exhaust gas 77 flowing directly into the second combustion region 42 increases. Conversely, when the opening is increased, the amount of exhaust gas 77 flowing into the first combustion region 41 increases, and the amount of exhaust gas flowing into the second combustion region 42 decreases.
排気ガス 7 7に含まれる有害成分の量が多くなるほど排気ガス取入口 7 4から 第 1燃焼領域 4 1へ流入させる排気ガス 7 7の量が多くなるように予め開閉機構 5 2の開度と排気ガス 7 7の流入量の関係を調査しておき、 E C U 8のメモリに データをインプットしておく。  The opening degree of the opening / closing mechanism 52 is determined in advance so that the larger the amount of the harmful component contained in the exhaust gas 77, the larger the amount of the exhaust gas 77 flowing from the exhaust gas inlet 74 to the first combustion area 41. Investigate the relationship between the inflows of the exhaust gas 77 and input the data to the memory of the ECU 8.
例えば、 内燃機関本体 1 (第 1図) の燃焼状態を各センサ (機関回転数検出セ ンサ 2 0, 酸素センサ 2 2等) により検出された検出信号から判定して 気ガス 7 7に含まれる有害成分の種類と量を E C U 8により算出する。 浄化後の排気ガ ス中の有害成分の含有量が予め設定した所定量以下となるように開閉機構 5 2の 開度を調整する。  For example, the combustion state of the internal combustion engine body 1 (Fig. 1) is determined from the detection signals detected by the sensors (engine speed detection sensor 20, oxygen sensor 22, etc.) and is included in the gas 777. ECU 8 calculates the type and amount of harmful components. The opening of the opening / closing mechanism 52 is adjusted so that the content of the harmful component in the exhaust gas after purification becomes equal to or less than a predetermined amount set in advance.
(請求項 2 3の発明の実施例) (Example of Claim 23)
第 3図, 第 6図に示す燃焼器 2の構成では、 排気ガス 7 7の一部カ排気ガス取 入口 7 4から燃焼領域 3 1又は第 1燃焼領域 4 1に流入し、 残りがバイパス通路 In the configuration of the combustor 2 shown in FIGS. 3 and 6, a part of the exhaust gas 77 flows from the exhaust gas inlet 74 into the combustion area 31 or the first combustion area 41, and the rest flows into the bypass passage.
3 6 (第 3図) 又は第 1パイパス通路 4 7 (第 6図) を介して希釈領域 3 2又は3 6 (FIG. 3) or first bypass passage 4 7 (FIG. 6) via dilution area 32 or
4 3に流入するようになっている。 4 to 3
排気ガス 7 7中の有害成分の含有量が少ないときには、 第 3図又は第 6図に示 すように排気ガス 7 7の全てを浄化せず、 排気ガス 7 7の一部を希釈ガス 3 4と して希釈領域 3 2 (第 3図) 又は 4 3 (第 6図) に流入させる。 排気ガス 7 7は、 燃焼領域 3 1 (第 3図) 又は第 1燃焼領域 4 1 , 第 2燃焼領域 4 2 (第 6図) で 浄化され、 かつ希釈領域 3 2 (第 3図) 又は 4 3 (第 6図) で温度を下げられる。 ここで、 希釈領域 3 2 (第 3図) , 4 3 (第 6図) に流入させる排気ガス 7 7 の量は、 予め設定した以上に浄化率を悪化させない程度の量となるように、 例え ば第 1図の E C U 8が各センサ (機関回転数検出センサ 2 0, 酸素センサ 2 2 等) により検出された検出信号から内燃機関本体 1の燃焼状態 (排気ガス成分) を算出し、 力つ開閉機構 5 2の開度を変更することにより調整する。 (請求項 2 4の発明の実施例) When the content of harmful components in the exhaust gas 77 is small, all of the exhaust gas 77 is not purified and a part of the exhaust gas 77 is diluted as shown in Fig. 3 or Fig. 6. When Into the dilution zone 32 (Fig. 3) or 43 (Fig. 6). The exhaust gas 77 is purified in the combustion zone 31 (FIG. 3) or the first combustion zone 41, the second combustion zone 42 (FIG. 6), and the dilution zone 32 (FIG. 3) or 4 3 (Fig. 6) reduces the temperature. Here, the amount of the exhaust gas 77 flowing into the dilution regions 32 (FIG. 3) and 43 (FIG. 6) is set, for example, so as not to deteriorate the purification rate more than a preset value. For example, the ECU 8 in FIG. 1 calculates the combustion state (exhaust gas component) of the internal combustion engine body 1 from the detection signals detected by the respective sensors (engine speed detection sensor 20, oxygen sensor 22, etc.). It is adjusted by changing the opening of the opening / closing mechanism 52. (Example of Claim 24)
第 2図, 第 4図, 第 5図の構成では、 圧縮空気 3 8のみを希釈領域 3 2へ供給 している。 この圧縮空気 3 8は、 浄化された排気ガスにより駆動されるタービン 3 (第 1図) と駆動軸 2 7で連結された圧縮機 4で生成されたものである。  In the configurations shown in FIGS. 2, 4, and 5, only the compressed air 38 is supplied to the dilution area 32. The compressed air 38 is generated by the compressor 4 connected by a drive shaft 27 to a turbine 3 (FIG. 1) driven by purified exhaust gas.
このようにすると、 従来から設けられている過給機に対して配管 1 5と調量弁 1 2とを追加するだけで簡単に装置を構成することができる。 また、 希釈領域 3 2 ( 4 3 ) へ供給する圧縮空気は、 圧縮機 4によらず、 別に専用の圧縮機 (コン プレッサ) を設けて供給するようにしても差し支えない。  By doing so, the device can be easily configured simply by adding the pipe 15 and the metering valve 12 to the conventional supercharger. The compressed air to be supplied to the dilution region 32 (43) may be supplied by providing a dedicated compressor (compressor) independently of the compressor 4.
(請求項 2 5 , 2 8の発明の実施例) (Examples of the Inventions of Claims 25 and 28)
第 7図は、 請求項 2 5, 2 8の発明による排気浄化装置を備えた内燃機関 2 0 FIG. 7 shows an internal combustion engine 20 equipped with an exhaust gas purification device according to the invention of claims 25 and 28.
0の系統略図である。 第 7図に示すように、 タービン 3から排出される排気ガス を通す排気管 5 5に熱交換器 5 4が設けてある。 また、 この熱交換器 5 4には給 水管 5 7を介して水が供給されている。 その他の構成は第 1図に示す構成と同じ である。 It is a system schematic diagram of 0. As shown in FIG. 7, a heat exchanger 54 is provided in an exhaust pipe 55 through which exhaust gas discharged from the turbine 3 passes. Water is supplied to the heat exchanger 54 via a water supply pipe 57. The other configuration is the same as the configuration shown in FIG.
熱交換器 5 4内では、 高温の排気ガスと低温の水の間で熱交換が行われ、 その 後排気ガスは排気管 5 6を介して外部へ排出される。 また、 水は蒸気となって蒸 気供給管 5 8から燃焼器 2内の希釈領域 (3 2, 4 3 ) へ供給される。 燃焼器 2 内に供給された蒸気は、 浄化された排気ガスの温度を低下させ、 また、 排気管 2 5を介してタービン 3へ流入しタ ビン 3を駆動させる。 第 1 5図は、 空燃比を変化させ、 蒸気を燃焼器 2に供給した場合と供給しない 場合の内燃機関 2 0 0の熱効率を示すグラフである。 第 1 5図に示すように蒸気 を供給すると空燃比によらず、 全体的に熱効率が向上することがわかる。 In the heat exchanger 54, heat is exchanged between the high-temperature exhaust gas and the low-temperature water, and then the exhaust gas is discharged to the outside via the exhaust pipe 56. The water is supplied as steam to the dilution area (32, 43) in the combustor 2 from the steam supply pipe 58. The steam supplied into the combustor 2 lowers the temperature of the purified exhaust gas, and flows into the turbine 3 via the exhaust pipe 25 to drive the turbine 3. FIG. 15 is a graph showing the thermal efficiency of the internal combustion engine 200 when the air-fuel ratio is changed and steam is supplied to the combustor 2 and when steam is not supplied. As shown in Fig. 15, it can be seen that the supply of steam improves the overall thermal efficiency regardless of the air-fuel ratio.
このように蒸気を燃焼器 2内の希釈領域 (3 2, 4 3 ) へ供給することにより、 浄化済みの排気ガスの を低下させると共に気体体積を増加させ、 タービン 3 の駆動力を増加させることができる。  By supplying the steam to the dilution zone (32, 43) in the combustor 2 in this manner, it is possible to reduce the amount of purified exhaust gas, increase the gas volume, and increase the driving force of the turbine 3. Can be.
(請求項 2 9の発明の実施例) (Example of Claim 29)
第 1 1図は、 請求項 2 9の発明による排気浄化装置を備えた内燃機関 6 0 0の 系統略図である。 第 7図に示すように、 圧縮空気供給管 1 5の途中には熱交換器 FIG. 11 is a system schematic diagram of an internal combustion engine 600 equipped with the exhaust emission control device according to the invention of claim 29. As shown in Fig. 7, in the middle of the compressed air supply pipe 15
7 0が設けてあり、 さらにこの熱交換器 7 0にはタービン 3に接続された排気管The heat exchanger 70 has an exhaust pipe connected to the turbine 3.
2 6が貫通させてある。 26 are penetrated.
この熱交換器 7 0内で低温の圧縮空気と高温の排気ガスとの間で熱交換が行わ れるようにした点が第 1図の構成と異なっている。 その他の構成はすべて第 1図 の構成と同じである。 圧縮空気を燃焼器 2へ供給する前に予め昇温させておくと、 燃焼器 2内における燃焼温度を上昇させるために費やされる燃料の量を節約する ことができる。 よって、 浄化性能を良好に維持しながら、 燃焼器 2における燃料 の消費量を低減することができる。 (請求項 3 0の発明の実施例)  The difference from the configuration in FIG. 1 is that heat is exchanged between low-temperature compressed air and high-temperature exhaust gas in the heat exchanger 70. All other configurations are the same as those in Fig. 1. If the temperature is raised in advance before the compressed air is supplied to the combustor 2, the amount of fuel consumed for raising the combustion temperature in the combustor 2 can be saved. Therefore, it is possible to reduce the fuel consumption in the combustor 2 while maintaining good purification performance. (Example of Claim 30)
第 9図は、 請求項 3 0の発明による排気浄化装置を備えた内燃機関 4 0 0の系 統略図である。 第 9図に示す内燃機関 4 0 0では、 第 1図の内燃機関 1 0 0につ いて圧縮機 4と直列に圧縮機 6 2 (第 1圧縮機) が配置されている。 この圧縮機 6 2は駆動軸 2 7と同軸で力つ圧縮機 4 (第 2圧縮機) と接続されている駆動軸 6 3によりタービン 3から動力が伝達されている。  FIG. 9 is a system schematic diagram of an internal combustion engine 400 equipped with the exhaust emission control device according to claim 30 of the present invention. In the internal combustion engine 400 shown in FIG. 9, a compressor 62 (first compressor) is arranged in series with the compressor 4 in the internal combustion engine 100 shown in FIG. In the compressor 62, power is transmitted from the turbine 3 by a drive shaft 63 which is coaxial with the drive shaft 27 and is connected to the power compressor 4 (second compressor).
圧縮機 6 2は、 空気取入管 1 3を介して空気を取り入れ、 さらに取入れた空気 を配管 6 5を介して冷却器 6 4へ送る。 冷却器 6 4 (熱交換器) には、 冷却水供 給管 6 7から冷却水が供給されている。 空気は冷却器 6 4内で冷却水により冷却 され、 冷却された空気は配管 6 6を介して圧縮機 4へ送られる。 冷却水は、 空気 を冷却した後は冷却水排出管 6 8を介して外部へ排出される。 その他の内燃機関 4 0 0の構成は、 第 1図の内燃機関 1 0 0の構成と同じである。 The compressor 62 takes in the air through the air intake pipe 13 and sends the taken-in air to the cooler 64 through the pipe 65. Cooling water is supplied to the cooler 64 (heat exchanger) from a cooling water supply pipe 67. The air is cooled by cooling water in the cooler 64, and the cooled air is sent to the compressor 4 via the pipe 66. Cooling water is air After being cooled, it is discharged to the outside via a cooling water discharge pipe 68. The other configuration of the internal combustion engine 400 is the same as the configuration of the internal combustion engine 100 in FIG.
このように内燃機関 4 0 0を構成すると、 排気ガスの浄化率を維持しながら第 1図の内燃機関 1 0 0よりも 2ポイント程度 (例えば 4 0 %から 4 2 %に) 熱効 率を向上させることができる。  When the internal combustion engine 400 is configured in this manner, the thermal efficiency is reduced by about 2 points (for example, from 40% to 42%) compared to the internal combustion engine 100 in FIG. 1 while maintaining the exhaust gas purification rate. Can be improved.
(請求項 3 1の発明の実施例) (Example of Claim 31)
第 8図は、 請求項 3 1の発明による排気浄ィ匕装置を備えた内燃機関 3 0 0の系 統略図である。 第 8図に示す内燃機関 3 0 0では、 タービン 3の下流側にタービ ン 6 1を配置し、 タービン 6 1には排気管 2 6を介して排気ガスが流入する。 タ 一ビン 6 1には駆動軸 1 8で駆動される発電機 7が接続されている。 発電機 7は タービン 6 1によって駆動され、 排気ガスはタービン 6 1から排気管 5 9を介し て外部へ排出される。 その他の構成は第 1図の内燃機関 1 0 0と同じである。 このように内燃機関 3 0 0を構成すると、 内燃機関 3 0 0が低負荷である力又 は低速運転時においてタービン 3をタービン 6 1よりも優先して駆動させること ができろ。 したがって、 浄化率を維持しながらタービン 3に発電機 7を接続した 第 1図の内燃機関 1 0 0よりも迅速に立ち上げる (起動する) ことができる。 タ 一ビン 6 1は、 タービン 3が全開になつて初めて動作する。 例えば、 定格の 5 0 %で内燃機関 3 0 0が駆動されていたら、 タービン 6 1は停止したままでター ビン 3により圧縮機 4のみを駆動させることができる。  FIG. 8 is a system schematic diagram of an internal combustion engine 300 provided with the exhaust gas purification device according to the invention of claim 31. In the internal combustion engine 300 shown in FIG. 8, a turbine 61 is disposed downstream of the turbine 3, and exhaust gas flows into the turbine 61 via an exhaust pipe 26. A generator 7 driven by a drive shaft 18 is connected to the turbine 61. The generator 7 is driven by the turbine 61, and exhaust gas is discharged from the turbine 61 to the outside via the exhaust pipe 59. Other configurations are the same as those of the internal combustion engine 100 in FIG. When the internal combustion engine 300 is configured in this manner, the turbine 3 can be driven with a higher priority than the turbine 61 when the internal combustion engine 300 is under low load or low speed operation. Therefore, it is possible to start up (start up) more quickly than the internal combustion engine 100 shown in FIG. 1 in which the generator 7 is connected to the turbine 3 while maintaining the purification rate. The turbine 61 operates only when the turbine 3 is fully opened. For example, if the internal combustion engine 300 is driven at 50% of the rating, only the compressor 4 can be driven by the turbine 3 while the turbine 61 is stopped.
(請求項 3 2の発明の実施例) (Example of Claim 32)
第 1 0図は、 請求項 3 2の発明による排気浄化装置を備えた内燃機関 5 0 0の 系統略図である。 第 1 0図の内燃機関 5 0 0では、 第 8図の内燃機関 3 0 0にお いてさらにいくつかの構成が追加されている。 まず、 タービン 6 1に駆動軸 1 8 と同軸に駆動軸 6 9が接続されている。 この駆動軸 6 9を介してタービン 6 1に 駆動される圧縮機 6 2が設けてある。  FIG. 10 is a system schematic diagram of an internal combustion engine 500 equipped with the exhaust emission control device according to claim 32 of the present invention. In the internal combustion engine 500 of FIG. 10, some additional components are added to the internal combustion engine 300 of FIG. First, a drive shaft 69 is connected to the turbine 61 coaxially with the drive shaft 18. A compressor 62 driven by the turbine 61 via the drive shaft 69 is provided.
圧縮機 6 2は、 空気取入管 1 3から空気を取り込んで配管 6 5を介して冷却器 6 4へ圧縮空気を送る。 冷却器 6 4には冷却水供給管 6 7を介して冷却水が供給 されており、 冷却水は冷却器 6 4内で圧縮空気を冷却した後、 合却水排出管 6 8 から外部へ排出される。 冷却器 6 4内で冷却された圧縮空気は、 配管 6 6を介し て圧縮機 4へ供給される。 その後の動作は第 1図の内燃機関 1 0 0と同じである。 ここで、 圧縮機 4と圧縮機 6 2は、 それぞれ最適回転数で駆動させることがで きる組み合わせを選定して設置する。 そのように 2つの圧縮機 4, 6 2を選定す ることにより、 最適な圧縮効率を奏することができる。 The compressor 62 takes in air from the air intake pipe 13 and sends the compressed air to the cooler 64 via the pipe 65. Cooling water is supplied to the cooler 64 via a cooling water supply pipe 67. After cooling the compressed air in the cooler 64, the cooling water is discharged to the outside from the combined water discharge pipe 68. The compressed air cooled in the cooler 64 is supplied to the compressor 4 via the pipe 66. Subsequent operations are the same as those of the internal combustion engine 100 in FIG. Here, the compressor 4 and the compressor 62 select and install a combination that can be driven at the optimum rotation speed. By selecting such two compressors 4, 62, optimum compression efficiency can be achieved.
内燃機関 5 0 0の運転を安定させることができ、 燃焼器 2内での浄ィ匕作用に必 要な E C U 8の算出結果の信頼性を向上させることができ、 浄化率の低下を未然 に防止することができる。  The operation of the internal combustion engine 500 can be stabilized, the reliability of the calculation result of the ECU 8 necessary for the purifying action in the combustor 2 can be improved, and the purification rate can be prevented from lowering. Can be prevented.
(請求項 3 3の発明の実施例) (Example of Claim 33)
第 1 2図は、 請求項 3 3の発明による排気浄化装置を備えた内燃機関 7 0 0の 系統略図である。 内燃機関 7 0 0には過給機 (圧縮機) が設けられておらず、 自 然給気方式である。 第 1 2図の内燃機関 7 0 0のような無過給機関においても過 給機関と同様に燃焼器 2により排気ガスを净化することができる。  FIG. 12 is a system schematic diagram of an internal combustion engine 700 equipped with the exhaust emission control device according to the invention of claim 33. The internal combustion engine 700 is not provided with a supercharger (compressor), and is a natural air supply system. Even in a non-supercharged engine such as the internal combustion engine 700 in FIG. 12, exhaust gas can be reduced by the combustor 2 similarly to the supercharged engine.
さらに燃焼器 2の下流にタービン 3を配置すると、 駆動軸 1 8で接続した発電 機 7を運転させることができ、 浄化率を維持しながら熱効率の向上を図ることが できる。 産業上の利用の可能性  Further, by disposing the turbine 3 downstream of the combustor 2, the generator 7 connected by the drive shaft 18 can be operated, and the thermal efficiency can be improved while maintaining the purification rate. Industrial applicability
本発明は、 排気ガス中に含まれる N Oxや H C等の有害成分を除去する排気浄 化装置を備えた陸用, 車両用及び舶用等の内燃機関に適用することができる。 The present invention can be applied for land provided with an exhaust purification apparatus for removing harmful components of the NO x and HC and the like contained in the exhaust gas, the internal combustion engine and marine, such as a vehicle.

Claims

請 求 の 範 囲 The scope of the claims
1. 内燃機関の排気通路 (24) に燃焼器 (2) を設け、 前記燃焼器 (2) 内 の空燃比と燃焼温度とを制御する空燃比制御手段と燃焼温度制御手段とを設け、 前記燃焼器 (2) 内における燃焼により排気ガスに含まれる有害成分を浄化する ことを特徴とする排気浄化装置を備えた内燃機関 (100) 。 1. A combustor (2) is provided in an exhaust passage (24) of an internal combustion engine, and air-fuel ratio control means and combustion temperature control means for controlling an air-fuel ratio and a combustion temperature in the combustor (2) are provided. An internal combustion engine (100) provided with an exhaust gas purification device, characterized in that harmful components contained in exhaust gas are purified by combustion in a combustor (2).
2. 前記燃焼器 ( 2 ) 内の空燃比 を前記空燃比制御手段により  2. The air-fuel ratio in the combustor (2) is controlled by the air-fuel ratio control means.
1. 0≤λ≤1. 2  1. 0≤λ≤1.2
の範囲内に設定し、 排気ガス中の NO χを净ィ匕する請求項 1に記載の排気浄化装 置を備えた内燃機関 (100) 。 The set within the range, an internal combustion engine having an exhaust gas purification equipment according to NO chi in the exhaust gases to claim 1净I spoon (100).
3. 前記燃焼器 ( 2 ) に炭化水素系の燃料を供給する請求項 1に記載の排気浄 化装置を備えた内燃機関 (100) 。  3. An internal combustion engine (100) equipped with an exhaust gas purification apparatus according to claim 1, wherein a hydrocarbon-based fuel is supplied to said combustor (2).
4. 前記燃焼温度制御手段により燃焼器 (2) 内の酸素濃度を 10%未満に設 定し、 力ゝっ空燃比制御手段により空燃比 λを  4. Set the oxygen concentration in the combustor (2) to less than 10% by the combustion temperature control means, and set the air-fuel ratio λ by the air-fuel ratio control means.
1. 0<1< 1. 2  1. 0 <1 <1.2
の範囲内に設定した請求項 1に記載の排気浄ィヒ装置を備えた内燃機関 (100) 。 An internal combustion engine (100) provided with the exhaust gas purification apparatus according to claim 1, wherein the internal combustion engine (100) is set in the range of:
5. 前記燃焼温度制御手段により燃焼器 ( 2 ) 内の燃焼温度 Τを、 5. The combustion temperature 燃 焼 in the combustor (2) is determined by the combustion temperature control means,
800°C<T< 1500 °C  800 ° C <T <1500 ° C
の範囲内に設定する請求項 4に記載の排気浄ィ匕装置を備えた内燃機闋 (100) 。 An internal combustion engine (100) provided with the exhaust gas purification apparatus according to claim 4, wherein the internal combustion engine is set within the range of (1).
6. 前記燃焼器 (2) 内の空燃比 λを前記空燃比制御手段により 6. The air-fuel ratio λ in the combustor (2) is adjusted by the air-fuel ratio control means.
1. 0<λ  1. 0 <λ
に設定し、 排気ガス中の H C, C Ο及びすす等の微粒子を浄化する請求項 1に記 載の排気浄化装置を備えた内燃機関 (100) 。 An internal combustion engine (100) equipped with the exhaust gas purification device according to claim 1, wherein the internal combustion engine is configured to purify particulates such as HC, CII, and soot in exhaust gas.
7. 前記燃焼器 (2) に炭化水素系の燃料を供給する請求項 6に記載の排気浄 化装置を備えた内燃機関 (100) 。  7. An internal combustion engine (100) equipped with an exhaust gas purification apparatus according to claim 6, wherein hydrocarbon fuel is supplied to the combustor (2).
8. 前記空燃比制御手段により燃焼器 ( 2 ) 内の空燃比 λを  8. The air-fuel ratio λ in the combustor (2) is
1. 4<λ '  1.4 <λ '
に設定した請求項 1に記載の排気浄化装置を備えた内燃機関 (100) 。  An internal combustion engine (100) provided with the exhaust gas purification device according to claim 1, wherein the internal combustion engine is set to:
9. 前記燃焼温度制御手段により燃焼器 ( 2 ) 内の燃焼温度 Τを 1300°C<T< 1500°C 9. The combustion temperature 燃 焼 in the combustor (2) is reduced by the combustion temperature control means. 1300 ° C <T <1500 ° C
の範囲内に設定する請求項 8に記載の排気浄化装置を備えた内燃機関 (100) 。 An internal combustion engine (100) provided with the exhaust gas purification device according to claim 8, wherein the internal combustion engine is set within the range of:
10. 前記空燃比制御手段として燃料供給量調整手段を備え、 前記燃料供給量 調整手段により燃焼器 (2) への燃料の供給量を制御して燃焼器 (2) 内の空燃 比を制御可能にした請求項 1, 2, 4, 6及ぴ 8のうちのいずれかに記載の排気 浄化装置を備えた内燃機関 (100) 。 10. A fuel supply amount adjusting unit is provided as the air-fuel ratio control unit, and the fuel supply amount adjusting unit controls a fuel supply amount to the combustor (2) to control an air-fuel ratio in the combustor (2). An internal combustion engine (100) equipped with an exhaust gas purification device according to any one of claims 1, 2, 4, 6, and 8, which is enabled.
11. 前記空燃比制御手段として燃料供給量調整手段と空気供給量調整手段と を備えた請求項 1, 2, 4, 6及び 8のうちのいずれかに記載の排気浄化装置を 備えた内燃機関 (100) 。  11. An internal combustion engine equipped with the exhaust gas purifying device according to any one of claims 1, 2, 4, 6, and 8, further comprising a fuel supply amount adjusting unit and an air supply amount adjusting unit as the air-fuel ratio control unit. (100).
12. 前記空気供給量調整手段として圧縮機 (4) による圧縮空気の供給手段 を備えた請求項 11に記載の排気浄化装置を備えた内燃機関 (100) 。  12. An internal combustion engine (100) equipped with an exhaust gas purification apparatus according to claim 11, further comprising means for supplying compressed air by a compressor (4) as said air supply amount adjusting means.
13. 内燃機関 (100) の排気ガスの全量を燃焼器 (2) 内の燃焼領域 (3 1) に供給するようにした請求項 1、 2, 4, 6及び 8のうちのいずれかに記載 の排気浄化装置を備えた内燃機関 (100) 。  13. A method as claimed in any one of claims 1, 2, 4, 6, and 8, wherein the entire amount of exhaust gas of the internal combustion engine (100) is supplied to the combustion zone (3 1) in the combustor (2). An internal combustion engine equipped with the exhaust purification device of (100).
14. 燃焼器 (2) 内の排気ガスを浄化する燃焼領域 (31) へ供給する排気 ガス量と、 前記燃焼領域 (31) より下流側の浄化後の排気ガスの ¾を低下さ せる希釈領域 (32) へ供給する排気ガス量とを調整可能な調整手段を備えた請 求項 1, 2, 4, 6及ぴ 8のうちのいずれかに記載の排気浄ィヒ装置を備えた内燃 機関 (100) 。  14. The amount of exhaust gas supplied to the combustion area (31) for purifying exhaust gas in the combustor (2), and the dilution area for reducing the amount of purified exhaust gas downstream of the combustion area (31). (32) An internal combustion engine equipped with an exhaust gas purifying apparatus according to any one of claims 1, 2, 4, 6, and 8 including an adjusting means capable of adjusting an amount of exhaust gas supplied to the internal combustion engine. (100).
15. 内燃機関 (100) の機関回転数を検出する機関回転数検出手段 (2 15. Engine speed detection means (2) for detecting the engine speed of the internal combustion engine (100)
0) , 排気温度検出手段 (23) , 給気圧検出手段 (19) 及びこれらの検出手 段 (20, 23, 19) により得られた検出信号から前記内燃機関 (100) の 燃焼室 (2) で発生した排気ガスの空燃比を算出する空燃比算出手段 (8) と機 関出力を算出する機関出力算出手段 (8) を設け、 内燃機関 (100) の燃焼室 (2) から排出される排気ガス量を検出する排気ガス排出量検出手段 (21) を 設け、 0), the exhaust temperature detecting means (23), the supply pressure detecting means (19), and the combustion chamber (2) of the internal combustion engine (100) based on the detection signals obtained by these detecting means (20, 23, 19). Air-fuel ratio calculation means (8) for calculating the air-fuel ratio of the exhaust gas generated by the engine and engine output calculation means (8) for calculating the engine output, which are discharged from the combustion chamber (2) of the internal combustion engine (100) Exhaust gas emission detecting means (21) for detecting the amount of exhaust gas is provided,
前記空燃比算出手段 (8) により算出された空燃比と排気ガス排出量検出手段 (8) により得られた排気ガス排出量により燃焼器 (2) 内の空燃比えを検出可 能でかつ検出した空燃比えを所望する範囲内に変更可能な空燃比制御手段を設け た請求項 1に記載の排気浄化装置を備えた内燃機関 (100) 。 The air-fuel ratio in the combustor (2) can be detected and detected based on the air-fuel ratio calculated by the air-fuel ratio calculating means (8) and the exhaust gas emission obtained by the exhaust gas emission detecting means (8). Air-fuel ratio control means capable of changing the adjusted air-fuel ratio within a desired range. An internal combustion engine (100) provided with the exhaust gas purification device according to claim 1.
16. 前記燃焼器 ( 2 ) 内に空燃比 λを 16. The air-fuel ratio λ is set in the combustor (2).
λ≤ 1. 2  λ≤1.2
の範囲に設定して排気ガス中の ΝΟχを浄化する上流側燃焼領域 (41) を設け、 前記上流側燃焼領域 (41) よりも下流側に空燃比 を Range set by providing upstream combustion region to purify vo chi in the exhaust gas (41), the air-fuel ratio on the downstream side of the upstream combustion region (41)
1. 0<λ  1. 0 <λ
の範囲に設定して排気ガス中の H C, C Ο及びすす等の微粒子を浄化する下流側 燃焼領域 (42) を設け、 And a downstream combustion zone (42) for purifying particulates such as H C, C Ο and soot in the exhaust gas is provided.
前記上流側燃焼領域 (41) 及び下流側燃焼領域 (42) で排気ガスに含まれ る NOx, HC, CO及びすす等の微粒子を浄化する請求項 1に記載の排気浄ィ匕 装置を備えた内燃機関 (100) 。 An exhaust Kiyoshii匕device according to claim 1 for purifying the upstream combustion region (41) and a downstream combustion region (42) Ru contained in the exhaust gas NO x, HC, CO and particulates such as soot The internal combustion engine (100).
17. 前記燃焼器 (2) 內の上流側に空燃比; Lを  17. Air-fuel ratio upstream of the combustor (2) ;; L
1. 0<λ  1. 0 <λ
の範囲に設定して排気ガス中の H C, C Ο及ぴすす等の微粒子を浄化する上流側 燃焼領域 (41) を設け、 And an upstream combustion zone (41) for purifying particulates such as H C, C and soot in exhaust gas.
前記上流側燃焼領域 (41) よりも下流側に空燃比 λを  The air-fuel ratio λ is located downstream of the upstream combustion zone (41).
1. 0≤λ≤1. 2  1. 0≤λ≤1.2
の範囲に設定して排気ガス中の ΝΟχを浄化する下流側燃焼領域 (42) を設け、 前記上流側燃焼領域 (41) 及び下流側燃焼領域 (42) で排気ガスに含まれ る NOx, HC, CO及びすす等の微粒子を浄化する請求項 1に記載の排気浄化 装置を備えた内燃機関 (100) 。 Set in a range of providing a downstream combustion zone to purify vo chi in the exhaust gas (42), wherein the upstream combustion region (41) and a downstream combustion region (42) Ru contained in the exhaust gas NO x An internal combustion engine (100) provided with the exhaust gas purification apparatus according to claim 1, which purifies fine particles such as, HC, CO, and soot.
18. 前記燃焼器 ( 2 ) 内の上流側に空燃比 λを  18. The air-fuel ratio λ is set upstream in the combustor (2).
λ< 1. 0  λ <1.0
の範囲に設定して排気ガス中の ΝΟχを浄化する上流側燃焼領域 (41) を設け、 前記上流側燃焼領域 (41) よりも下流側に空燃比 λを Range set by providing upstream combustion region to purify vo chi in the exhaust gas (41), the air-fuel ratio λ on the downstream side of the upstream combustion region (41)
1. 4ぐえ  1.4
の範囲に設定して排気ガス中の HC, C O及びすす等の微粒子を浄化する下流側 燃焼領域 (42) を設け、 And a downstream combustion zone (42) for purifying fine particles such as HC, CO and soot in the exhaust gas is set.
前記上流側燃焼領域 (41) 及び下流側燃焼領域 (42) で排気ガスに含まれ る N Ox, H C, C O及びすす等の微粒子を浄ィヒする請求項 1に記載の排気浄ィ匕 装置を備えた内燃機関 (100) 。 In the upstream combustion area (41) and the downstream combustion area (42), That NO x, HC, CO and an internal combustion engine provided with an exhaust Kiyoshii匕device according to claim 1, Kiyoshi inhibit the particles of soot, etc. (100).
1 9. 燃焼器 (2) の上流側燃焼領域 (4 1) に供給した排気ガスの全量を下 流側燃焼領域 (42) に供給する請求項 1 6又は請求項 1 7に記載の排気浄化装 置を備えた内燃機関 (100) 。  1 9. The exhaust gas purification according to claim 16 or claim 17, wherein the entire amount of exhaust gas supplied to the upstream combustion area (41) of the combustor (2) is supplied to the downstream combustion area (42). Internal combustion engine with equipment (100).
20. 内燃機関 (100) で発生した排気ガスを前記燃焼器 (2) の上流側燃 焼領域 (41) と下流側燃焼領域 (42) へ供給する分岐通路 (78) を設け、 力つ上流側燃焼領域 (41) に供給された排気ガスを下流側燃焼領域 (42) へ 供給可能にした請求項 1 6又は請求項 1 7に記載の排気浄化装置を備えた内燃機 関 (100) 。  20. A branch passage (78) for supplying exhaust gas generated by the internal combustion engine (100) to the upstream combustion area (41) and the downstream combustion area (42) of the combustor (2) is provided. An internal combustion engine (100) provided with the exhaust gas purification device according to claim 16 or 17, wherein exhaust gas supplied to the side combustion region (41) can be supplied to the downstream combustion region (42).
21. 浄化後の排気ガスの温度を低下させるための希釈領域 (43) を前記下 流側燃焼領域 (42) よりもさらに下流側に設け、 内燃機関 (100) で発生し た排気ガスを前記燃焼器 (2) の上流側燃焼領域 (41) と下流側燃焼領域 (4 2) 及び前記希釈領域 (43) へ供給する分岐通路 (47) を設け、 かつ上流側 燃焼領域 (41) で浄化された排気ガスを下流側燃焼領域 (42) へ供給可能に した請求項 1 6又は請求項 1 7に記載の排気浄化装置を備えた内燃機関 (10 0) 。  21. A dilution region (43) for lowering the temperature of the exhaust gas after purification is provided further downstream than the downstream combustion region (42), and the exhaust gas generated in the internal combustion engine (100) is removed. A branch passage (47) for supplying the upstream combustion area (41), the downstream combustion area (42) and the dilution area (43) of the combustor (2) is provided, and the upstream combustion area (41) is used for purification. An internal combustion engine (100) provided with the exhaust gas purification device according to claim 16 or 17, wherein the exhaust gas thus supplied can be supplied to a downstream combustion region (42).
22. 上流側燃焼領域 (41) 及び下流側燃焼領域 (42) へ直接供給する排 気ガスの供給量を調整する調整手段 (52) を備えた請求項 1 9〜2 1のうちの いずれ力に記載の排気浄化装置を備えた内燃機関 (100) 。  22. Any one of claims 19 to 21 comprising an adjusting means (52) for adjusting a supply amount of exhaust gas supplied directly to the upstream combustion area (41) and the downstream combustion area (42). An internal combustion engine (100) provided with the exhaust purification device according to (1).
23. 内燃機関 (100) で発生した排気ガスの一部を燃焼器 (2) 内の燃焼 領域より下流側の希釈領域 (32, 4 3) に直接供給可能にし、 燃焼領域 (3 1, 41) で浄化された排気ガスの温度を低下させる請求項 1〜 9, 16及び 17の うちのいずれかに記載の排気浄化装置を備えた内燃機関 (1 00) 。  23. A part of the exhaust gas generated by the internal combustion engine (100) can be directly supplied to the dilution zone (32, 43) downstream of the combustion zone in the combustor (2), and the combustion zone (31, 41) can be supplied. An internal combustion engine (100) provided with the exhaust gas purification device according to any one of claims 1 to 9, 16 and 17, which reduces the temperature of the exhaust gas purified in (1).
24. 圧縮機 (4) により生成される圧縮空気 (38) を燃焼器 (2) 内の燃 焼領域 (3 1, 41, 42) より下流側の希釈領域 (32, 43) に供給可能に し、 前記燃焼領域 (3 1, 41, 42) で浄化された排気ガスの温度を低下させ る請求項 1〜9, 1 6及び 1 7のうちのいずれかに記載の排気浄化装置を備えた 内燃機関 (100) 。 24. The compressed air (38) generated by the compressor (4) can be supplied to the dilution area (32, 43) downstream of the combustion area (31, 41, 42) in the combustor (2). The exhaust gas purification apparatus according to any one of claims 1 to 9, 16, and 17, wherein the temperature of the exhaust gas purified in the combustion area (31, 41, 42) is reduced. Internal combustion engines (100).
25 · 前記内燃機関 (100) の排気ガスにより蒸気を生成する熱交換器 ( 5 4) を設け、 前記熱交換器 (54) で生成した蒸気を燃焼器 (2) 内の希釈領域 (32, 43) に供給可能にした請求項 1〜9, 16及ぴ 17のうちのいずれか に記載の排気浄化装置を備えた内燃機関 (200) 。 25 · A heat exchanger (54) for generating steam by the exhaust gas of the internal combustion engine (100) is provided, and the steam generated by the heat exchanger (54) is diluted in the dilution region (32, 32) in the combustor (2). An internal combustion engine (200) provided with the exhaust gas purification device according to any one of claims 1 to 9, 16 and 17, wherein the internal combustion engine can be supplied to the exhaust gas purifier.
26. 内燃機関 (100) の排気通路に燃焼器 (2) を設け、 前記燃焼器26. A combustor (2) is provided in an exhaust passage of the internal combustion engine (100);
( 2 ) 内の空燃比と燃焼温度とを制御する空燃比制御手段と燃焼温度制御手段と を設け、 前記燃焼器 (2) 内の燃焼領域 (31, 41) における燃焼により排気 ガスに含まれる有害成分が浄化可能であり、 燃焼器 (2) より下流側の排気通路(2) An air-fuel ratio control means and a combustion temperature control means for controlling an air-fuel ratio and a combustion temperature in the combustion chamber are provided. Exhaust passage downstream of combustor (2), which can purify harmful components
(25) にタービン (3) を設け、 前記タービン (3) に発電機 (7) を設置し た排気浄ィ匕装置を備えた内燃機関 (100) 。 An internal combustion engine (100) provided with an exhaust gas purification device in which a turbine (3) is provided in (25) and a generator (7) is provided in the turbine (3).
27. 前記タービン (3) により駆動されかつ内燃機関本体 (1) へ圧縮空気 を供給する圧精機 (4) を設け、 前記燃焼器 (2) 内の空燃比, 燃焼温度, 燃焼 後の排気ガス温度のうち少なくとも一つを所望する範囲内に変更可能にする量の 圧縮空気を前記圧縮機 (4) カゝら前記燃焼器 (2) へ供給可能にした請求項 26 に記載の排気浄化装置を備えた内燃機関 (100) 。  27. There is a pressure refiner (4) that is driven by the turbine (3) and supplies compressed air to the internal combustion engine body (1). The air-fuel ratio, combustion temperature, and exhaust gas after combustion in the combustor (2) are provided. The exhaust gas purifying apparatus according to claim 26, wherein an amount of compressed air capable of changing at least one of the temperatures within a desired range can be supplied to the compressor (4) and the combustor (2). Internal combustion engine with (100).
28. 前記タ一ビン ( 3 ) よりも下流側の排気通路 (55) に熱交換器 ( 5 4) を設け、 前記熱交 (54) により高温の排気ガスから熱伝達されて生成 した蒸気を前記燃焼器 (2) 内の燃焼領域 (31, 41) よりも下流側の希釈領 域 ( 32, 43) へ供給可能にした請求項 26又は 27に記載の排気浄ィ匕装置を 備えた内燃機関 (200) 。  28. A heat exchanger (54) is provided in an exhaust passage (55) downstream of the turbine (3), and steam generated by heat transfer from high-temperature exhaust gas by the heat exchange (54) is provided. 28. An internal combustion device provided with the exhaust gas purifying device according to claim 26 or 27, wherein the exhaust gas purifying device can be supplied to a dilution region (32, 43) downstream of a combustion region (31, 41) in the combustor (2). Institutions (200).
29. 前記燃焼器 (2) の燃焼領域 (31, 41) へ圧縮空気を供給する空気 通路 (15) に熱交 « (70) を設け、 前記熱交換器 (70) にタービン 29. A heat exchanger (70) is provided in an air passage (15) for supplying compressed air to a combustion area (31, 41) of the combustor (2), and a turbine is provided in the heat exchanger (70).
(3) より下流側の排気通路 (26) を接続し、 前記熱交換器 (70) により高 温の排気ガスから低温の圧縮空気へ熱伝達させて圧縮空気を昇温させる請求項 2 6又は 27に記載の排気浄化装置を備えた内燃機関 (600) 。 (3) The exhaust passage (26) further downstream is connected, and heat is transferred from high-temperature exhaust gas to low-temperature compressed air by the heat exchanger (70) to raise the temperature of the compressed air. 28. An internal combustion engine (600) comprising the exhaust purification device according to item 27.
30. 前記タービン (3) により駆動される第 1圧縮機 (62) と第 2圧縮機 30. The first compressor (62) and the second compressor driven by the turbine (3)
(4) を設け、 第 1圧縮機 (62) により圧縮された第 1圧縮空気を冷却する熱 交換器 (64) を設け、 前記熱交換器 (64) で冷却された第 1圧縮空気をさら に第 2圧縮機 (4) により圧縮して第 2圧縮空気を生成する請求項 26又は 27 に記載の排気浄ィ匕装置を備えた内燃機関 (400) 。 (4), a heat exchanger (64) for cooling the first compressed air compressed by the first compressor (62) is provided, and the first compressed air cooled by the heat exchanger (64) is further exposed. The second compressed air is compressed by a second compressor (4) to generate second compressed air. An internal combustion engine (400) provided with the exhaust gas purification apparatus according to (1).
31. 燃焼器 (2) の下流側の排気通路 (25, 26) に上流側タービン (3) と下流側タービン (61) を設け、 上流側タービン (3) により駆動され る圧縮機 (4) を設け、 下流側タービン (61) により駆動される発電機 (7) を設けた請求項 26又は 27に記載の排気浄ィヒ装置を備えた内燃機関 (300) 。  31. An upstream turbine (3) and a downstream turbine (61) are provided in the exhaust passage (25, 26) downstream of the combustor (2), and the compressor (4) driven by the upstream turbine (3) An internal combustion engine (300) equipped with an exhaust gas purification apparatus according to claim 26 or 27, further comprising a generator (7) driven by a downstream turbine (61).
32. 燃焼器 (2) の下流側のお気通路 (25, 26) に上流側タービン (3) と下流側タービン (61) を設け、 前記下流側タービン (61) により駆 動される第 3圧縮機 (62) と発電機 (7) を設け、 前記上流側タービン (3) により駆動される第 4圧縮機 (4) を設け、 前記第 3圧縮機 (62) で圧縮され た第 3圧縮空気を冷却する熱交換器 (64) を設け、 前記熱交換器 (64) で冷 却された第 3圧縮空気をさらに第 4圧縮機 ( 4 ) で圧縮して第 4圧縮空気を生成 可能にした請求項 26又は 27に記載の排気浄化装置を備えた内燃機関 ( 50 0) 。 32. The upstream turbine (3) and the downstream turbine (61) are provided in the air passage (25, 26) downstream of the combustor (2), and the third compression driven by the downstream turbine (61) is provided. And a generator (7), a fourth compressor (4) driven by the upstream turbine (3), and third compressed air compressed by the third compressor (62). A heat exchanger (64) for cooling the air is provided, and the third compressed air cooled by the heat exchanger (64) is further compressed by a fourth compressor (4) to generate fourth compressed air. An internal combustion engine (500) provided with the exhaust gas purification device according to claim 26 or 27.
33. 自然吸気式の内燃機関 (700) において、 前記内燃機関 (700) の 排気通路 (24) に燃焼器 (2) を設け、 前記燃焼器 (2) 内の空燃比と燃焼温 度とを制御する空燃比制御手段と燃焼温度制御手段とを設けて前記燃焼器 ( 2 ) 内における燃焼により排気ガスに含まれる有害成分を浄化可能とし、 また、 前記 燃焼器 (2) の下流側の排気通路 (25) にタービン (3) を設け、 前記タービ ン (3) で駆動される発電機 (7) を設けたことを特徴とする排気浄化装置を備 えた内燃機関 (700) 。  33. In a naturally aspirated internal combustion engine (700), a combustor (2) is provided in an exhaust passage (24) of the internal combustion engine (700), and an air-fuel ratio and a combustion temperature in the combustor (2) are determined. An air-fuel ratio control means and a combustion temperature control means are provided for controlling the harmful components contained in the exhaust gas by combustion in the combustor (2), and exhaust gas on the downstream side of the combustor (2) is provided. An internal combustion engine (700) provided with an exhaust gas purification device, wherein a turbine (3) is provided in a passage (25), and a generator (7) driven by the turbine (3) is provided.
PCT/JP2001/010269 2000-12-27 2001-11-26 Internal combustion engine with exhaust emission control device WO2002053890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000397519 2000-12-27
JP2000-397519 2000-12-27

Publications (1)

Publication Number Publication Date
WO2002053890A1 true WO2002053890A1 (en) 2002-07-11

Family

ID=18862635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010269 WO2002053890A1 (en) 2000-12-27 2001-11-26 Internal combustion engine with exhaust emission control device

Country Status (1)

Country Link
WO (1) WO2002053890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106930850A (en) * 2015-12-29 2017-07-07 长城汽车股份有限公司 Dual fuel engine system and its control method, vehicle
IT201700030578A1 (en) * 2017-03-20 2018-09-20 Fpt Motorenforschung Ag MOTOR SYSTEM FOR VEHICLES AND FIXED INSTALLATIONS BASED ON DIESEL CYCLE
IT201700030576A1 (en) * 2017-03-20 2018-09-20 Fpt Motorenforschung Ag MOTOR SYSTEM FOR VEHICLES AND FIXED INSTALLATIONS BASED ON DIESEL CYCLE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4636842B1 (en) * 1967-08-25 1971-10-29
JPS61162544U (en) * 1985-03-29 1986-10-08
JPS6277520A (en) * 1985-09-30 1987-04-09 Hitachi Ltd Low nox gas turbine combustor
JPH07100335A (en) * 1993-10-01 1995-04-18 Nippon Oil Co Ltd Nitrogen oxide removing method
JPH07247862A (en) * 1994-03-11 1995-09-26 Toshiba Corp Gas turbine plant
JPH0828358A (en) * 1994-07-19 1996-01-30 Yamaha Motor Co Ltd Air-fuel ratio estimating device and air-fuel ratio control device of carburetor for internal combustion engine
JP2000329346A (en) * 1999-05-20 2000-11-30 Tokyo Gas Co Ltd Premixture combustor and co-generation system having the combustor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4636842B1 (en) * 1967-08-25 1971-10-29
JPS61162544U (en) * 1985-03-29 1986-10-08
JPS6277520A (en) * 1985-09-30 1987-04-09 Hitachi Ltd Low nox gas turbine combustor
JPH07100335A (en) * 1993-10-01 1995-04-18 Nippon Oil Co Ltd Nitrogen oxide removing method
JPH07247862A (en) * 1994-03-11 1995-09-26 Toshiba Corp Gas turbine plant
JPH0828358A (en) * 1994-07-19 1996-01-30 Yamaha Motor Co Ltd Air-fuel ratio estimating device and air-fuel ratio control device of carburetor for internal combustion engine
JP2000329346A (en) * 1999-05-20 2000-11-30 Tokyo Gas Co Ltd Premixture combustor and co-generation system having the combustor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106930850A (en) * 2015-12-29 2017-07-07 长城汽车股份有限公司 Dual fuel engine system and its control method, vehicle
CN106930850B (en) * 2015-12-29 2020-07-03 长城汽车股份有限公司 Dual-fuel engine system, control method thereof and vehicle
IT201700030578A1 (en) * 2017-03-20 2018-09-20 Fpt Motorenforschung Ag MOTOR SYSTEM FOR VEHICLES AND FIXED INSTALLATIONS BASED ON DIESEL CYCLE
IT201700030576A1 (en) * 2017-03-20 2018-09-20 Fpt Motorenforschung Ag MOTOR SYSTEM FOR VEHICLES AND FIXED INSTALLATIONS BASED ON DIESEL CYCLE
EP3379067A1 (en) * 2017-03-20 2018-09-26 FPT Motorenforschung AG Engine system
EP3379048A1 (en) * 2017-03-20 2018-09-26 FPT Motorenforschung AG Engine system

Similar Documents

Publication Publication Date Title
JP4196413B2 (en) Internal combustion engine system
US6289884B1 (en) Intake air separation system for an internal combustion engine
JP2009500565A (en) Engine and method for maintaining engine exhaust temperature
WO2008066594A1 (en) Low pressure egr system having full range capability
CN109404120B (en) Compression ignition type zero-nitrogen-emission pure oxygen rotor engine and control method thereof
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP2006194253A (en) Internal combustion engine with exhaust emission control device
US6453893B1 (en) Intake air separation system for an internal combustion engine
EP2927462A1 (en) Natural gas engine and operation method for natural gas engine
WO1995027128A1 (en) Three-way catalytic oxidizer for diesel engines
JP4223696B2 (en) Dual fuel diesel engine
JP3818916B2 (en) Internal combustion engine with exhaust purification device
EP1570163B1 (en) Catalyst heat retention system for multi-fuel engine
WO2002053890A1 (en) Internal combustion engine with exhaust emission control device
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
WO2011101898A1 (en) Exhaust purification device for an internal combustion engine
CN110735728A (en) Lean burn NO suitable for engineXIntake oxygen content control system for trapping technology
KR20110019120A (en) Engine system using vortex tube
JP2004537003A (en) Method for regulating an internal combustion engine with exhaust gas recirculation and apparatus for implementing the method
JPS63212758A (en) Method for driving diesel engine
CN113374572A (en) Pure hydrogen fuel rotor machine control method combined with EGR
JPH07166973A (en) Exhaust gas recycling device for engine
JP2006194254A (en) Internal combustion engine with exhaust emission control device
JP5689316B2 (en) Gasoline engine with low-pressure exhaust gas recirculation circuit
JP2006249981A (en) Reformed gas-utilizing internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FI GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase