WO2002049957A1 - Systeme generateur d'hydrogene et procede d'hydrodeshalogenation - Google Patents

Systeme generateur d'hydrogene et procede d'hydrodeshalogenation Download PDF

Info

Publication number
WO2002049957A1
WO2002049957A1 PCT/FR2001/004171 FR0104171W WO0249957A1 WO 2002049957 A1 WO2002049957 A1 WO 2002049957A1 FR 0104171 W FR0104171 W FR 0104171W WO 0249957 A1 WO0249957 A1 WO 0249957A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
inorganic material
hydrogen
iron
hydrodehalogenation
Prior art date
Application number
PCT/FR2001/004171
Other languages
English (en)
Inventor
Philippe Marion
Cécile Rosier
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to JP2002551466A priority Critical patent/JP4313038B2/ja
Priority to KR1020037008365A priority patent/KR100704861B1/ko
Priority to EP01995771.1A priority patent/EP1343716B1/fr
Priority to CA2432402A priority patent/CA2432402C/fr
Priority to CN018218962A priority patent/CN1486278B/zh
Priority to BRPI0116318-3A priority patent/BR0116318B1/pt
Priority to US10/451,427 priority patent/US7632483B2/en
Priority to AU2002226490A priority patent/AU2002226490A1/en
Publication of WO2002049957A1 publication Critical patent/WO2002049957A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/37Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the main object of the present invention is a hydrogen generator system. It also relates to a process for generating hydrogen and its applications, in particular in a process for hydrodeshalogenation of halogenated organic compounds present in aqueous media to be purified.
  • the present invention relates more particularly to the catalytic degradation of pollutants, more particularly volatile halogenated organic compounds called COHV such as perchlorethylene (PCE), vinyl chloride (CV), dichloroethane (DCE), dichloroethylene, chloroform, carbon tetrachloride, and trichlorethylene (TCE) ...
  • COHV volatile halogenated organic compounds
  • this type of degradation is carried out according to a process which generally involves a reduction of these pollutants using hydrogen, and this in the presence of a so-called hydrodehalogenation catalyst, generally based on palladium fixed on one. inorganic support. More specifically, a reductive dehalogenation of the halogen components is carried out during which the halogen is extracted from the molecule in the form of a free halogen ion in aqueous solution and replaced on the molecule by a hydrogen ion. This type of reaction therefore requires a source of electrons.
  • a metal of zero valence preferably iron
  • This approach has the advantage of being relatively inexpensive but on the other hand has the drawbacks of being not very rapid and of not being suitable for all COHVs and in particular vinyl chloride.
  • the second alternative involves the use of a more elaborate and therefore more expensive catalytic system, which also requires the use in parallel of a continuous source of hydrogen.
  • this hydrogen is introduced 'in the form of hydrogen gas. or generated in situ using a complex such as Phydrazine or borohydrides.
  • the present invention more specifically aims to provide a third alternative to the two alternatives mentioned above and which is based more particularly on the use of an original hydrogen generator system.
  • the present invention firstly relates to a hydrogen generating system, characterized in that it combines with a metal, corrodable by water, an inorganic material, said material having a specific surface suitable for fixing the or oxide and / or hydroxide forms of said metal generated during its corrosion.
  • the association of an inorganic material with the metal, considered as a source of electrons makes it possible, in fact, to significantly increase the quantity of hydrogen generated compared to a conventional process, that is to say not using work as zero valence metal.
  • the zero valence metal it has a Redox potential sufficiently negative to be able to reduce the water.
  • it is zero valence iron which is particularly interesting given its low cost.
  • the inorganic material it is preferably chosen from oxides, metallic, mixed or not, insofar as they are of course inert under the reaction conditions.
  • Inorganic materials can be used in different forms: powder, shaped products such as granules (for example cylinders or balls), pellets, monoliths (blocks in the form of honeycombs) which are obtained by extrusion, molding, compacting or any other type of known process. In practice, on the industrial level, it is the forms of granules, beads or monoliths which have the most advantages both in terms of efficiency and in terms of ease of use.
  • the inorganic material preferably has a specific surface greater than that of the zero valence metal.
  • Inorganic materials generally have a specific surface greater by at least a factor of 100, and preferably by 10 4 , than that of metal, this factor being able to rise up to a value of 10 6 . According to a preferred embodiment of the invention, it is a synthetic or natural zeolite.
  • zeolite By zeolite is meant a crystallized tectosilicate of natural or synthetic origin, the crystals of which result from the three-dimensional assembly of tetrahedral units of Si0 4 and T0 4 , T representing a trivalent element such as aluminum, gallium, boron and iron, of preferably aluminum.
  • T representing a trivalent element such as aluminum, gallium, boron and iron, of preferably aluminum.
  • the aluminosilicate type zeolites are the most common.
  • zeolites it is possible to use natural zeolites such as, for example, offering, clinoptilotite, erionite, chabazite, philipsite. Synthetic zeolites are also suitable. Examples of synthetic zeolites with one-dimensional network, it "can be cited include zeolite ZSM-4, zeolite ZSM-12, zeolite ZSM-22, zeolite ZS -23, zeolite ZSM-48.
  • zediths with a two-dimensional network may include the beta zeolite, mordenite, ferrierite.
  • - Y zeolites in particular zeolites obtained after dealumination treatment (for example hydrotreatment, washing with hydrochloric acid or treatment with SiCl 4 ), more particularly US-Y zeolites with a Si / Ai molar ratio greater than 3 , preferably between 6 and 60,
  • the inorganic material is a zeolite having a specific surface greater than 10 m 2 / g.
  • the inorganic material acts as a specific support with respect to the metal oxides and / or hydroxides generated during the oxidation of the zero valence metal.
  • these hydroxides are generated automatically during the reaction of water on the metal according to the following scheme:
  • the generation of hydrogen is carried out by combining 3 g of iron for 15 g of water, and in the presence of a support such as a zeolite, the production of hydrogen generated over a period 24 hours is 250 times greater than that generated under the same operating conditions but in the absence of said support.
  • the zero valence metal and the inorganic material are combined in an amount of 0.5 to 40%, and preferably from 1 to 20% by weight of said material relative to the weight of the metal.
  • the zero valence metal is not supported by the inorganic material associated with it. It is also conceivable that the inorganic material also serve as a support for another metal capable of acting as a catalyst for a reaction consecutive or concomitant with the generation of hydrogen.
  • the hydrogen generator system claimed is particularly advantageous in the field of effluent treatments for example for the reduction of COHV and / or nitrates, in the field of the reduction of nitro compounds, aromatic compounds in particular. In general, it can in fact be considered for use for any application requiring a continuous supply of hydrogen.
  • the present invention also relates to a process for the generation of hydrogen by reduction of water using a suitable metal, characterized in that said reduction is carried out in an aqueous medium in the presence of a sufficient amount of a material inorganic, the specific surface of which is conducive to the deposition of the oxide and / or hydroxide form (s) of the metal generated during said reduction.
  • the inorganic material and the metal can be directly introduced into the aqueous medium to be treated and the whole is then stirred so as to optimize the conditions for generating hydrogen.
  • Another variant of the process can consist in circulating the aqueous medium to be treated through a fixed bed comprising at least said metal and the inorganic material.
  • the present invention also relates to the use in a process for generating hydrogen by reduction of water using a suitable metal, an inorganic material for the purpose of fixing the oxide form or forms and / or hydroxides of said metal generated during reduction.
  • the present invention also relates to the application of a system. generation of hydrogen as defined above for the hydrodehalogenation of volatile halogenated organic compounds within a. aqueous medium.
  • the inorganic material present in the system is used in an amount such that its developed surface (that is to say total) is greater, preferably by at least a factor of 5, than the developed surface of the material. inorganic constituting the support of the hydrodehalogenation catalyst.
  • a developed surface advantageously makes it possible to preserve over time the catalytic performances of the metal composing the hydrodehalogenation catalyst.
  • the hydrodehalogenation catalyst generally comprises, as metal, a metal chosen from palladium, nickel, ruthenium, platinum and / or rhodium. Preferably, it is palladium. This metal is also supported on an inorganic material. This inorganic material can be chosen from those defined above. Preferably, it is an alumina or a zeolite.
  • hydrodehalogenation catalyst more particularly preferred in the context of the invention, mention may be made of palladium attached to alumina.
  • the support to the surface of which the hydrodehalogenation catalyst is fixed simultaneously ensures the function of the inorganic material involved in the hydrogen generation reaction. According to this variant, it turns out to be possible to significantly reduce the quantity of metal constituting the supported catalyst.
  • the metal constituting the supported catalyst can then be advantageously used at a rate of 10 to 150 mmol / kmol of the zero valence metal.
  • hydrodehalogenation process can be advantageously carried out with a weight ratio palladium / iron below. 100 mg of palladium / kg of iron against 500 at 5000 mg Pd / kg Iron for conventional methods.
  • the claimed process can be applied to the reduction of all organic compounds represented by the families of chlorinated solvents such as trichlorethylene, chlorinated aromatics such as chlorobenzene, chlorophenols or even plant protection products such as
  • the claimed hydrodehalogenation process can be applied to the purification of groundwater in a range of temperatures which can vary from 4 to 35 ° C. It can in particular be carried out within a reactor. - '''
  • the generating system "hydrogen and hydrodehalogenation catalyst are separated in the reactor.
  • the zero-valent metal and the inorganic material are placed at the lower part of the reactor, the level which is carried out 'introducing the liquid medium to be treated.
  • the hydrogen generated in the lower part then moves to the top of the reactor where the catalyst is placed hydrodehalogenation.
  • the metal oxides and / or hydroxides formed during the generation of hydrogen are preferably deposited on the inorganic material present in the lower level of the reactor and not on the supported hydrodehalogenation catalyst. In this way, the activity of the hydrodehalogenation catalyst is optimized and its performance is maintained.
  • trichlorethylene 1.5 mg is introduced in the form of a solution at approximately 100 ppm in 15 g of water. Are also introduced into this solution, 3 g of iron and 30 mg of a Pd / AI 2 O 3 catalyst. After 18 h 30 of stirring, a conversion rate of 30% of the trichlorethylene is reached against only one . transformation rate of less than 5% for this same system in the absence of said catalyst.
  • reaction is carried out in the presence of 300 mg of alumina (CBL alumina sold by Procatalyse).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

La présente invention a pour objet un système générateur d'hydrogène, caractérisé en ce qu'il associe à un métal, corrodable par l'eau, un matériau inorganique, ledit matériau possédant une surface spécifique propice à la fixation de la ou des formes oxydes et/ou hydroxydes dudit métal générées lors de sa corrosion. Elle vise également un procédé de génération d'hydrogène et ses applications, notamment dans un procédé d'hydrodéshalogénation de composés organiques halogénés présent dans des milieux aqueux à purifier.

Description

Système générateur d'hydrogène et procédé d'hydrodéshalogénation
La présente invention a pour objet principal un système générateur d'hydrogène. Elle vise également un procédé de génération d'hydrogène et ses applications, notamment dans un procédé d'hydrodéshalogénation de composés organiques halogènes présents dans des milieux aqueux à purifier.
La présente invention se rapporte plus particulièrement à la dégradation catalytique de polluants, plus particulièrement des composés organiques halogènes volatils dits COHV comme le perchloroéthylène (PCE), le chlorure de vinyle (CV), le dichloroéthane (DCE), le dichloroéthylène, le chloroforme, le tétrachlorure de carbone, et le trichloroéthylène (TCE)...
Classiquement, ce type de dégradation est réalisé selon un procédé qui implique généralement une réduction de ces polluants à l'aide d'hydrogène, et ceci en présence d'un catalyseur dit d'hydrodéshalogénation, à base généralement de palladium fixé sur un . support inorganique. Plus précisément, il est procédé à une déshalogénation réductrice des composants halogènes au cours de laquelle l'halogène est extrait de la molécule sous forme d'un ion halogène libre en solution aqueuse et remplacé sur la molécule par un ion hydrogène. Ce type de réaction requiert donc une source d'électrons.
Deux alternatives sont aujourd'hui disponibles pour réaliser ce type de réaction.
Selon une première variante, on utilise un métal de valence zéro, de préférence le fer, à titre de source, d'électrons et source de métal pour la déshalogénation. Cette approche a pour avantage d'être relativement peu onéreuse mais en revanche présente les inconvénients d'être peu rapide et de ne pas convenir à tous les COHV et notamment au chlorure de vinyle.
La seconde alternative implique pour sa part l'utilisation d'un système catalytique plus élaboré et donc plus coûteux, qui requiert par ailleurs l'usage en parallèle d'une source continue en hydrogène. Généralement, cet hydrogène est introduit'sous la forme d'hydrogène gazeux. ou généré in situ à l'aide d'un complexe tel que Phydrazine ou les borohydrures.
La présente invention a plus précisément pour objet de proposer une troisième alternative aux deux alternatives évoquées précédemment et qui repose plus particulièrement sur l'utilisation d'un système générateur d'hydrogène original.
De manière inattendue, les inventeurs ont mis en évidence qu'il était possible de. donner satisfaction simultanément en termes de coût et de cinétique, à l'aide d'un système générateur d'hydrogène qui implique notamment l'usage d'un métal de valence zéro comme le fer, à titre de source en électrons.
Plus précisément, la présente invention a pour premier objet un système générateur d'hydrogène, caractérisé en ce qu'il associe à un métal, corrodable par l'eau, un matériau inorganique, ledit matériau possédant une surface spécifique propice à la fixation de la ou des formes oxydes et/ou hydroxydes dudit métal générées lors de sa corrosion.
Avantageusement, l'association d'un matériau inorganique au métal , considéré à titre de source en électrons permet, en effet, d'accroître significativement la quantité en hydrogène généré comparativement à un procédé classique, c'est-à-dire ne mettant en œuvre que le métal de valence zéro.
En ce qui concerne le métal de valence zéro, il possède un potentiel Redox suffisamment négatif pour pouvoir réduire l'eau.
A titre représentatif de métaux convenant à l'invention, on peut plus particulièrement citer l'acier, le fer, le zinc, l'aluminium, l'étain, le bismuth, le cobalt et le nickel.
De préférence; il s'agit du fer de valence zéro qui est particulièrement intéressant compte tenu de son faible coût.
En ce qui concerne le matériau inorganique, il est de préférence choisi parmi les oxydes, métalliques-, mixtes ou non, dans la mesure où ils sont bien entendu inertes dans les conditions de réaction.
A titre représentatif de ces oxydes, on peut plus particulièrement citer les alumines, les silices, les oxydes de zirconium, de cérium, de titane, de fer et les zeolithes.
Les matériaux inorganiques peuvent être utilisés sous différentes formes : poudre, produits mis en forme tels que granulés (par exemples cylindres ou billes), pastilles, monolithes (blocs en forme de nids d'abeilles) qui sont obtenus par extrusion, moulage, compactage ou tout autre type de procédé connu. En pratique, sur le plan industriel, ce sont les formes de granulés, de billes ou de monolithes qui présentent le plus d'avantages tant sur le plan de l'efficacité que sur le plan de la commodité de mise en oeuvre. Le matériau inorganique possède de préférence une surface spécifique supérieure à celle du métal de valence zéro.
Les matériaux inorganiques possèdent généralement une surface spécifique supérieure d'au moins un facteur de 100, et de préférence de 104, à celle du métal, ce facteur pouvant s'élever jusqu'à une valeur de 106. Selon un mode préféré de l'invention, il s'agit d'une zéolithe synthétique ou naturelle.
Par zéolithe, on entend un tectosilicate cristallisé d'origine naturelle ou synthétique dont les cristaux résultent de l'assemblage tridimensionnel d'unités tétraédriques de Si04 et T04, T représentant un élément trivalent tel que aluminium, gallium, bore et fer, de préférence l'aluminium. Les zeolithes de type aluminosilicate sont les plus communes.
Parmi les zeolithes, on peut utiliser des zeolithes naturelles comme par exemple l'offrétite, la clinoptilotite, l'érionite, la chabazite, la philipsite. Conviennent aussi les zeolithes synthétiques. Comme exemples de zeolithes synthétiques à réseau monodimensionnel, on" peut citer entre autres la zéolithe ZSM-4, la zéolithe ZSM-12, la zéolithe ZSM-22, la zéolithe ZS -23, la zéolithe ZSM-48.
A titre d'exemples de zédîithes à réseau bidimensionnel que l'on utilise préférentie.llement, . on . peut citer la zéolithe béta, la mordénite, la ferrierite.
On fait "appel . . de . préférence , aux zeolithes synthétiques et plus particulièrement à ceux qui sont sous les formes suivantes :
- la mazzite de rapport molaire Si/Ai de 3,4,
- la zéolithe L de rapport molaire Si/Ai de 1 ,5 à 3,5,
- la mordénite de rapport molaire Si/Ai de 5 à 15, - la ferrierite de rapport molaire Si/Ai de 3 à 10,
- l'offrétite de rapport molaire Si/Ai de 4 à 8,5,
- les zeolithes béta de rapport molaire Si/Ai de 15 à 25,
- les zeolithes Y en particulier les zeolithes obtenues après traitement de désalumination (par exemple hydrotraitement, lavage à l'aide d'acide chlorhydrique ou traitement par SiCl4), plus particulièrement les zeolithes US-Y de rapport molaire Si/Ai supérieur à 3, de préférence compris entre 6 et 60,
- la zéolithe X de type faujasite de rapport molaire Si/Ai de 0,7 à 1 ,5,
- les zeolithes ZSM-5 ou silicalite d'aluminium de rapport molaire Si/Ai de 10 à 2000, et
- la zéolithe ZSM-11 de rapport molaire de 5 à 30.
De préférence, le matériau inorganique est une zéolithe possédant une surface spécifique supérieure à 10 m2/g.
Les deux zeolithes décrites dans les exemples ci-après s'avèrent à ce titre particulièrement intéressantes dans le cadre de présente invention.
En fait, sans vouloir se lier à une explication mécanistique spécifique, il semble que le matériau inorganique agit comme un support spécifique vis- à-vis des oxydes et/ou hydroxydes métalliques générés lors de l'oxydation du métal de valence zéro. En effet, ces hydroxydes sont générés automatiquement lors de la réaction de l'eau sur le métal selon le schéma suivant :
M0 - Mn+ + ne'
2H20 + 2e--> H2 + 20H-
M + n(H20) → M(OH)n + f En se fixant préférentiellement sur le matériau inorganique et non à la surface du métal à l'état de valence zéro, les hydroxydes métalliques générés iimitent ainsi significativement la désactivation de ce dernier.
C'est ainsi que dans le cas particulier où la génération d'hydrogène est réalisée en associant 3 g de fer pour 15 g d'eau, et en présence d'un support comme une zéolithe, la production d'hydrogène générée sur une période de 24 heures s'avère 250 fois plus importante que celle générée dans les mêmes conditions opératoires mais en l'absence dudit support.
Selon une variante privilégiée de l'invention, le métal de valence zéro et le matériau inorganique sont associés à raison de 0,5 à 40 %, et de préférence de 1 à 20 % en poids dudit matériau par rapport au poids du métal.
Cet ajustement entre les deux composés est bien entendu également fonction de la surface spécifique du matériau inorganique. Il est entendu que la quantité nécessaire en matériau inorganique est inversement proportionnelle à sa surface spécifique.
Selon une variante préférée, le métal de valence zéro n'est pas supporté par le matériau inorganique qui lui est associé. On peut également envisager que le matériau inorganique serve par ailleurs comme support pour un autre métal susceptible d'intervenir à titre de catalyseur pour une réaction consécutive ou concomitante à la génération d'hydrogène.
Le système générateur d'hydrogène revendiqué est particulièrement intéressant dans le domaine des traitements des effluents par exemple pour la réduction des COHV et/ou des nitrates, dans le domaine de la réduction des composés nitrés, aromatiques notamment. De manière générale, on peut en fait envisager son exploitation pour toute application nécessitant un apport continu en hydrogène.
La présente invention a également pour objet un procédé de génération d'hydrogène par réduction- de l'eau à l'aide d'un métal convenable, caractérisé en ce que ladite réduction est réalisée au sein d'un milieu aqueux en présence d'une quantité suffisante d'un matériau inorganique dont la surface spécifique est propice au dépôt de la ou des formes oxydes et/ou hydroxydes du métal générées au cours de ladite réduction.
Bien entendu, le matériau inorganique et le métal répondent aux définitions présentées ci-dessus dans le cadre du système revendiqué.
Dans le procédé revendiqué, le matériau inorganique et le métal peuvent être directement introduits dans le milieu aqueux à traiter et l'ensemble est alors agité de manière à optimiser les conditions de génération de l'hydrogène. Une autre variante du procédé peut consister à faire circuler le milieu aqueux à traiter à travers un lit fixe comprenant au moins ledit métal et le matériau inorganique.
La présente invention vise également l'utilisation dans un procédé de génération d'hydrogène par réduction de l'eau à l'aide d'un métal convenable, d'un matériau inorganique à des fins de fixation de la ou des formes oxydes et/ou hydroxydes dudit métal générées lors de la réduction.
La présente invention a également pour objet l'application d'un système de . génération d'hydrogène tel que défini ci-dessus pour .'hydrodéshalogenation de composés organiques halogènes volatils au sein d'un . milieu aqueux.
Plus précisément, elle propose un procédé pour l'hydrodéshalogénation de composés organiques halogènes volatils présents dans un milieu aqueux, caractérisé en ce qu'il met en œuvre, une génération d'hydrogène par un système générateur d'hydrogène conforme à l'invention et une hydrodéshalogenation catalytique des composés organiques halogènes volatils à l'aide de l'hydrogène ainsi formé et d'un catalyseur convenable supporté.
De manière inattendue, les inventeurs ont' en effet noté que l'effet bénéfique de la présence d'un matériau- inorganique pour la génération d'hydrogène pouvait par ailleurs être exploité efficacement pour l'hydrodéshalogénation. . Le . fait . - de . placer le catalyseur d'hydrodéshalogénation dans un environnement fortement enrichi en hydrogène permet d'accroître considérablement la cinétique d'hydrodéshalogénation. Cet aspect avantageux du procédé revendiqué ressort en particulier des exemples présentés ci-après. Avantageusement, le matériau inorganique présent dans le système est utilisé en -quantité telle que sa surface développée (c'est-à-dire totale) soit supérieure, de préférence d'au moins .un facteur de 5, à la surface développée du matériau inorganique constituant le support du catalyseur d'hydrodéshalogénation. Une telle surface développée permet avantageusement de préserver dans le temps les performances catalytiques du métal composant le catalyseur d'hydrodéshalogénation.
En ce qui concerne le catalyseur d'hydrodéshalogénation, il comprend généralement à titre de métal, un métal choisi parmi le palladium, le nickel, le ruthénium, le platine et/ou le rhodium. De préférence, il s'agit du palladium. Ce métal est également supporté sur un matériau inorganique. Ce matériau inorganique peut être choisi parmi ceux définis précédemment. De préférence, il s'agit d'une alumine ou d'une zéolithe.
A titre de catalyseur d'hydrodéshalogénation plus particulièrement préféré dans le cadre de l'invention, on peut citer le palladium fixé sur l'alumine.
On peut envisager que le support à la surface duquel est fixé le catalyseur d'hydrodéshalogénation assure simultanément la fonction du matériau inorganique impliqué dans la réaction de génération d'hydrogène. Selon cette variante, il s'avère possible de diminuer significativement la quantité en métal constituant le catalyseur supporté. Le métal constituant le catalyseur supporté peut aiors être avantageusement utilisé à raison de 10 à 150 mmole/kmole du métal de valence zéro.
C'est ainsi que dans Te cas particulier où le métal de valence zéro est du fer et le catalyseur , supporté est ' du palladium/alumine, le procédé d'hydrodéshalogénation peut être avantageusement réalisé avec un rapport massique palladium/fer inférieur à. 100 mg de palladium/kg de fer contre 500 à 5000 mg Pd/kgFer pour des procédés conventionnels.
Le procédé revendiqué peut s'appliquer à la réduction de tous les composés organiques représentés par les familles de solvants chlorés tel le trichloroéthylène, les aromatiques chlorés comme le chlorobenzène, les chlorophénols ou encore des produits de protection des plantes comme le
Lindane™, le Dinoterbone™-et les nitro-composés.
Ainsi, le procédé d'hydrodéshalogénation revendiqué peut s'appliquer à la purification des nappes phréatiques dans une gamme de températures pouvant varier de 4 à 35°C. Il peut notamment être réalisé au sein, d'un réacteur. - ' ' '
Selon une variante préférée de l'invention, le système de génération " d'hydrogène et le catalyseur d'hydrodéshalogénation sont séparés au sein du réacteur. Le métal de valence zéro et le matériau inorganique sont placés à la partie inférieure , du réacteur, au niveau de laquelle on procède à ' l'introduction du milieu liquide à traiter. L'hydrogène généré dans cette partie inférieure se déplace alors vers la partie supérieure du réacteur où est placé le catalyseur d'hydrodéshalogénation.
Selon cet agencement, les oxydes et/ou hydroxydes métalliques formés lors de la génération de l'hydrogène se déposent préférentiellement sur le matériau inorganique présent dans le niveau inférieur du réacteur et non sur le catalyseur supporté d'hydrodéshalogénation. De cette manière, l'activité du catalyseur d'hydrodéshalogénation est optimisée et ses performances se maintiennent.
Les exemples figurant ci-après sont présentés à titre illustratif et non limitatif du domaine de l'invention.
Les supports testés dans les exemples ci-après sont deux zeolithes
US-Y(4% de Na203 avec Si/Ai de-2,5)'-(commerciaiisée par Engelhard) dite zéolithe A et une zéolithe HY-CBV 400 (2,5 % Na203 et Si/Ai de 1 ,5 et une surface spécifique de 50 m2/g)- (commercialisée par Zéolyst International) dite zéolithe B.
EXEMPLE 1
On mélange 15 g d'eau, 3 g de fer et 300 mg d'une zéolithe A ou B. Après agitation sur une période de 24 heures, on note que, dans chacun des essais, la quantité d'hydrogène généré est 250 fois plus importante que la quantité d'hydrogène généré dans un essai témoin, c'est-à-dire en absence de zéolithe.
Elle est en effet de 16,5 ml/kg eau/heure contre 0,067 ml/kg eau/heure pour l'essai témoin.
EXEMPLE 2
1 ,5 mg de trichloroéthylene est introduit sous forme d'une solution à environ 100 ppm dans 15 g d'eau. Sont également introduits dans cette solution, 3 g de fer et 30 mg d'un catalyseur Pd/AI2O3. Après 18 H 30 d'agitation, on atteint un taux de transformation de 30% du trichloroéthylene contre seulement un . taux de transformation inférieur à 5% pour ce même système en absence dudit catalyseur.
Dans une variante de cet essai, la réaction est réalisée en présence de 300 mg d'alumine (alumine CBL commercialisée par Procatalyse).
Dans ces conditions, on atteint en 18 heures 30 un taux de transformation de 100%. Le seul produit de réaction observé est l'éthane.

Claims

REVENDICATIONS
1. Système générateur d'hydrogène, caractérisé en ce qu'il associe à un métal, corrodable par l'eau, un matériau inorganique, ledit matériau possédant une surface spécifique propice à la fixation de la ou des formes oxydes et/ou hydroxydes dudit métal générées lors de sa corrosion.
2. Système selon la revendication 1 , caractérisé en ce que le métal possède un potentiel redox négatif.
3. Système selon la revendication 1 ou 2, caractérisé en ce que le métal est choisi parmi l'acier, le fer, le zinc, l'aluminium, l'étain, le bismuth, le cobalt et le nickel.
4. Système selon l'une des revendications précédentes, caractérisé en ce que ledit métal est le fer.
5. Système selon l'une des revendications précédentes, caractérisé en ce que le matériau inorganique possède une surface spécifique supérieure d'au moins un facteur de 100, et de préférence de 104, à celle du métal.
6. Système selon l'une des revendications précédentes, caractérisé en ce que le matériau inorganique est choisi parmi les oxydes métalliques mixtes ou non.
7. Système selon l'une des revendications" précédentes, caractérisé en ce que le matériau inorganique est choisi parmi les alumines, les silices, les oxydes de zirconium, de cérium, de titane, de fer, et les -zeolithes.
8. Système selon l'une des revendications précédentes, caractérisé en ce que le matériau inorganique est une zéolithe'synthétique ou naturelle.
9. Système selon l'une des revendications précédentes, caractérisé en ce que le matériau inorganique est une zéolithe possédant une surface spécifique supérieure à 10 m2/g.
10. Système selon l'une des revendications précédentes, caractérisé en ce que le métal et le matériau inorganique sont associés à raison de 0,5 à 40 % en poids dudit matériau par rapport au poids du métal.
11. Procédé de génération d'hydrogène par réduction de l'eau à l'aide d'un métal convenable, caractérisé en ce que ladite réduction est réalisée au sein d'un milieu aqueux en présence d'une quantité suffisante d'un matériau inorganique dont la surface spécifique est propice au dépôt de la ou des formes oxydes et/ou hydroxydes du métal générées au cours de ladite réduction.
12. Procédé selon la revendication 11 , caractérisé en ce que le matériau inorganique est tel que défini dans l'une des revendications 6 à 10.
13. Procédé selon la revendication 11 ou 12, caractérisé en ce que le métal est tel que défini en revendications 2 à 4 et 10.
14. Procédé selon l'une des revendications 12 et 13, caractérisé en ce que le matériau inorganique et le métal sont directement introduits, dans le milieu aqueux.
15. Procédé selon l'une des revendications 12 et 13, caractérisé en ce que l'on fait circuler le milieu aqueux à traiter à travers un lit fixe comprenant au moins le métal et le matériau inorganique.-.
16. Utilisation dans un procédé de génération d'hydrogène par réduction de l'eau à l'aide d'un métal convenable, d'un matériau inorganique à des fins de fixation de la ou des formes oxydes et/ou hydroxydes dudit métal générées lors de la réduction.
17. Application d'un système générateur d'hydrogène tel que défini dans l'une des revendications 1 à 10, pour une réaction nécessitant un apport continu en hydrogène.
18. Application d'un système générateur d'hydrogène tel que défini en revendications 1 à 10, pour l'hydrodéshalogénation des composés organiques halogènes volatils présents dans un milieu aqueux.
19. Procédé d'hydrodéshalogénation des composés organiques halogènes volatils présents dans un milieu aqueux, caractérisé en ce qu'il met en œuvre une génération d'hydrogène par un système générateur d'hydrogène selon l'une des revendications 1 à 10 et une hydrodéshalogenation catalytique des composés organiques halogènes volatils à l'aide de l'hydrogène ainsi formé et d'un catalyseur convenable supporté.
20. Procédé selon la revendication 19, caractérisé en ce que le catalyseur d'hydrodéshalogénation comprend un métal choisi parmi le palladium, le nickel, le ruthénium, le platine et/ou le rhodium.
21. Procédé selon la revendication 20, caractérisé en ce que le métal est fixé sur un matériau inorganique tel que défini en revendications 6 à 8.
22. Procédé selon l'une des revendications 19 à 21 , caractérisé en ce que le matériau inorganique présent dans le système générateur d'hydrogène est utilisé en quantité telle que sa surface développée est supérieure à la surface développée du matériau inorganique constituant le support du catalyseur d'hydrodéshalogénation.
23. Procédé selon l'une des revendications 19 à 22, caractérisé en ce que le catalyseur d'hydrodéshalogénation est du palladium supporté sur alumine et le métal de valence zéro du système générateur d'hydrogène est le fer.
24. Procédé selon la revendication 23, caractérisé en ce que le rapport massique palladium/fer est inférieur à 100 mg de palladium/kg de fer.
25. Procédé selon l'une des revendications 19 à 24, caractérisé en ce que le milieu aqueux est traité au sein d'un réacteur dans lequel le système générateur d'hydrogène est séparé du catalyseur d'hydrodéshalogénation.
PCT/FR2001/004171 2000-12-21 2001-12-21 Systeme generateur d'hydrogene et procede d'hydrodeshalogenation WO2002049957A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002551466A JP4313038B2 (ja) 2000-12-21 2001-12-21 水素発生システム及び水素化脱ハロゲン方法
KR1020037008365A KR100704861B1 (ko) 2000-12-21 2001-12-21 수소 발생 시스템 및 수소첨가탈할로겐화 방법
EP01995771.1A EP1343716B1 (fr) 2000-12-21 2001-12-21 Systeme generateur d'hydrogene et procede d'hydrodeshalogenation
CA2432402A CA2432402C (fr) 2000-12-21 2001-12-21 Systeme generateur d'hydrogene et procede d'hydrodeshalogenation
CN018218962A CN1486278B (zh) 2000-12-21 2001-12-21 氢气发生体系和加氢脱卤方法
BRPI0116318-3A BR0116318B1 (pt) 2000-12-21 2001-12-21 sistema gerador de hidrogênio, aplicação do mesmo, processo de geração de hidrogênio por redução da água com o auxìlio de ferro, uso de zeólita, e processo de hidrodesalogenação de compostos orgánicos halogenados voláteis presentes em meios aquosos.
US10/451,427 US7632483B2 (en) 2000-12-21 2001-12-21 Hydrogen generating system and hydrodehalogenation method
AU2002226490A AU2002226490A1 (en) 2000-12-21 2001-12-21 Hydrogen generating system and hydrodehalogenation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/16799 2000-12-21
FR0016799A FR2818628B1 (fr) 2000-12-21 2000-12-21 Systeme generateur d'hydrogene et procede d'hydrodeshalogenation

Publications (1)

Publication Number Publication Date
WO2002049957A1 true WO2002049957A1 (fr) 2002-06-27

Family

ID=8858022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/004171 WO2002049957A1 (fr) 2000-12-21 2001-12-21 Systeme generateur d'hydrogene et procede d'hydrodeshalogenation

Country Status (10)

Country Link
US (1) US7632483B2 (fr)
EP (1) EP1343716B1 (fr)
JP (1) JP4313038B2 (fr)
KR (1) KR100704861B1 (fr)
CN (1) CN1486278B (fr)
AU (1) AU2002226490A1 (fr)
BR (1) BR0116318B1 (fr)
CA (1) CA2432402C (fr)
FR (1) FR2818628B1 (fr)
WO (1) WO2002049957A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053854A1 (fr) * 2003-12-04 2005-06-16 Isao Takaishi Procede et dispositif de production d'hydrogene

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097670A1 (fr) * 2004-04-09 2005-10-20 The University Of British Columbia Compositions et procedes destines a generer de l'hydrogene avec de l'eau
US9144784B2 (en) 2005-09-30 2015-09-29 Abs Materials Sorbent material and method for using the same
US8367793B2 (en) * 2005-09-30 2013-02-05 Abs Materials, Inc. Swellable materials and methods of use
JP4949795B2 (ja) * 2006-10-10 2012-06-13 ウチヤ・サーモスタット株式会社 水素発生媒体の製造方法
JP2010110754A (ja) * 2008-10-07 2010-05-20 Akira Haneda 水質浄化材の製造方法及び水質浄化方法並びに水質浄化用溶液
JP5201488B2 (ja) * 2010-07-02 2013-06-05 独立行政法人産業技術総合研究所 水素発生方法
MX2014000915A (es) 2011-07-25 2014-11-21 H2 Catalyst Llc Metodos y sistemas para producir hidrogeno.
US20140356278A1 (en) * 2013-05-30 2014-12-04 National Cheng Kung University Manufacturing Method of Hydrothermal Generation of Hydrogen and Apparatus Thereof
US10106488B2 (en) 2014-01-28 2018-10-23 Nippon Shokubai Co., Ltd. Hydrogenation reaction method
CN105503706A (zh) * 2015-12-28 2016-04-20 衢州学院 卤代吡啶类化合物的脱卤降解方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123802A (en) * 1981-01-20 1982-08-02 Masahiro Suzuki Production of hydrogen
JPS5855304A (ja) * 1981-09-24 1983-04-01 Buren Master Kk 水分解物質及び水分解法
EP0417279A1 (fr) * 1989-02-22 1991-03-20 KIMOTO, Kenji Procede de production d'hydrogene a l'etat gazeux
RU2023652C1 (ru) * 1990-08-29 1994-11-30 Институт проблем машиностроения АН Украины Способ получения водорода
US5830426A (en) * 1993-04-23 1998-11-03 H Power Corporation Aqueous hydrogen generation process
JPH11157802A (ja) * 1997-11-28 1999-06-15 Sugino Mach Ltd 水素の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788972A (en) * 1971-11-22 1974-01-29 Exxon Research Engineering Co Process for the manufacture of lubricating oils by hydrocracking
DE2244944B2 (de) * 1972-09-13 1976-06-10 Siemens AG, 1000 Berlin und 8000 München Verfahren zur erzeugung von wasserstoff
JPS5275688A (en) * 1975-12-19 1977-06-24 Toyo Bearing Mfg Co Hydrogen generating bodies
US4547356A (en) * 1980-08-05 1985-10-15 Unique Energy Systems, Inc. Method of generating hydrogen and using the generated hydrogen
JP2566248B2 (ja) 1987-08-18 1996-12-25 健治 木本 水素ガスの製造方法
US5112473A (en) * 1990-06-04 1992-05-12 Texaco Inc. Hydrotreating or cracking process employing an acidified dealuminated Y-zeolite
US5958829A (en) * 1992-02-14 1999-09-28 Degussa-Huls Aktiengesellschaft Coating dispersion for exhaust gas catalysts
JPH05269476A (ja) * 1992-03-25 1993-10-19 Kurita Water Ind Ltd 揮発性有機ハロゲン化合物含有水の処理方法
DE69328732T2 (de) * 1992-03-25 2000-10-05 Kurita Water Ind Ltd Verfahren zum Zersetzen von organischen halogenierten flüchtigen Verbindungen in Wasser
US5490941A (en) * 1992-03-25 1996-02-13 Kurita Water Industries, Ltd. Method of treatment of a fluid containing volatile organic halogenated compounds
US5840270A (en) * 1993-04-23 1998-11-24 H Power Corporation Catalytic method of generating hydrogen
DE4410915A1 (de) * 1994-03-29 1995-10-12 Erno Raumfahrttechnik Gmbh Verfahren zur Erzeugung von Wasserstoff
CN1242717A (zh) * 1997-10-07 2000-01-26 日本钢管株式会社 制造氢或合成气体用的催化剂及制造氢或合成气体的方法
WO2001037990A1 (fr) * 1999-11-03 2001-05-31 Plug Power Inc Composition de catalyseur de regulation thermique
US6582676B2 (en) * 2000-08-14 2003-06-24 The University Of British Columbia Hydrogen generation from water split reaction
US7316718B2 (en) * 2001-07-11 2008-01-08 Millennium Cell, Inc. Differential pressure-driven borohydride based generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123802A (en) * 1981-01-20 1982-08-02 Masahiro Suzuki Production of hydrogen
JPS5855304A (ja) * 1981-09-24 1983-04-01 Buren Master Kk 水分解物質及び水分解法
EP0417279A1 (fr) * 1989-02-22 1991-03-20 KIMOTO, Kenji Procede de production d'hydrogene a l'etat gazeux
RU2023652C1 (ru) * 1990-08-29 1994-11-30 Институт проблем машиностроения АН Украины Способ получения водорода
US5830426A (en) * 1993-04-23 1998-11-03 H Power Corporation Aqueous hydrogen generation process
JPH11157802A (ja) * 1997-11-28 1999-06-15 Sugino Mach Ltd 水素の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199528, Derwent World Patents Index; Class E36, AN 1995-213937, XP002170596 *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 219 (C - 132) 2 November 1982 (1982-11-02) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 143 (C - 172) 22 June 1983 (1983-06-22) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11 30 September 1999 (1999-09-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053854A1 (fr) * 2003-12-04 2005-06-16 Isao Takaishi Procede et dispositif de production d'hydrogene
JPWO2005053854A1 (ja) * 2003-12-04 2007-12-06 勇夫 高石 水素の製造方法と装置

Also Published As

Publication number Publication date
FR2818628A1 (fr) 2002-06-28
KR100704861B1 (ko) 2007-04-10
JP4313038B2 (ja) 2009-08-12
FR2818628B1 (fr) 2003-03-07
EP1343716A1 (fr) 2003-09-17
US20040068149A1 (en) 2004-04-08
BR0116318A (pt) 2003-12-23
EP1343716B1 (fr) 2013-07-31
BR0116318B1 (pt) 2012-01-10
CN1486278A (zh) 2004-03-31
CA2432402A1 (fr) 2002-06-27
CN1486278B (zh) 2011-12-21
JP2004525053A (ja) 2004-08-19
US7632483B2 (en) 2009-12-15
KR20040004468A (ko) 2004-01-13
AU2002226490A1 (en) 2002-07-01
CA2432402C (fr) 2011-06-28

Similar Documents

Publication Publication Date Title
CA2432402C (fr) Systeme generateur d'hydrogene et procede d'hydrodeshalogenation
FR2484401A1 (fr) Procede de deshydrocyclisation des paraffines a tres basse pression
EP0084748A1 (fr) Production d'hydrocarbures à partir de méthanol en présence de catalyseurs du type zéolithe
JPH06507429A (ja) コークス不活性化改質触媒の低温再生
NO20053025L (no) Fremgangsmate for fremstilling av katalysatorer.
WO1999054285A1 (fr) Procede de purification d'aminonitriles aliphatiques
CA2268803A1 (fr) Zeolithe im-5, son procede de preparation et ses applications catalytiques
FR2749590A1 (fr) Procede pour produire de l'essence reformulee en reduisant la teneur en soufre, en azote et en olefine
BE1001153A3 (fr) Procede de disproportionnement du toluene.
FR2611739A1 (fr) Procede d'activation d'un catalyseur d'isomerisation de paraffines normales
WO2018178374A1 (fr) Procede de preparation de materiau d'origine vegetale riche en acides phenoliques, comprenant au moins un metal, pour la mise en oeuvre de reactions de synthese organique
EP0256945B1 (fr) Catalyseur à base de mordénite pour l'isomérisation de paraffines normales
EP0363253B1 (fr) Catalyseur à base de mordénite renfermant au moins un métal du groupe VIII et son utilisation en isomérisation d'une coupe C8 aromatique
EP0001371B1 (fr) Procédé de déshalogénation de composés aromatiques halogènes
HUP0003210A2 (hu) Eljárás zeolitos katalizátor újbóli aktiválására
EP1968925B1 (fr) Procede de preparation de difluoroethanol
EP0001372A2 (fr) Procédé de déshalogénation des composés aromatiques halogènes
EP0911380A1 (fr) Procédé pour l'amélioration du point d'écoulement de charges paraffiniques avec un catalyseur à base de zéolithe IM-5
JP2006518802A (ja) Atsゼオライトを使用して高ronガソリンを製造する方法
WO2003014265A1 (fr) Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele
BE623975A (fr)
EP0037137B1 (fr) Procédé de réactivation d'un catalyseur, à base de métaux du groupe du platine, pour l'hydrogénation des sucres
CA2306330A1 (fr) Procede de preparation d'un melange de mannitol et de sorbitol par hydrogenation continue de la glucosone
FR2765207A1 (fr) Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
WO1997026217A1 (fr) Desaromatisation de composes aromatiques organo-halogenes et/ou organo-oxygenes en presence d'un catalyseur a base de ruthenium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01821896.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2432402

Country of ref document: CA

Ref document number: 2001995771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002551466

Country of ref document: JP

Ref document number: 1020037008365

Country of ref document: KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 2001995771

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10451427

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020037008365

Country of ref document: KR