WO2002043982A1 - Anordnung und verfahren zur überwachung des umfelds eines fahrzeugs - Google Patents

Anordnung und verfahren zur überwachung des umfelds eines fahrzeugs Download PDF

Info

Publication number
WO2002043982A1
WO2002043982A1 PCT/DE2001/003931 DE0103931W WO0243982A1 WO 2002043982 A1 WO2002043982 A1 WO 2002043982A1 DE 0103931 W DE0103931 W DE 0103931W WO 0243982 A1 WO0243982 A1 WO 0243982A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
information
vehicle
processing
arrangement according
Prior art date
Application number
PCT/DE2001/003931
Other languages
English (en)
French (fr)
Inventor
Holger Janssen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP01998458A priority Critical patent/EP1339561B1/de
Priority to US10/432,883 priority patent/US7362215B2/en
Priority to JP2002545938A priority patent/JP3844737B2/ja
Priority to DE50112771T priority patent/DE50112771D1/de
Publication of WO2002043982A1 publication Critical patent/WO2002043982A1/de

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the invention relates to an arrangement for monitoring the surroundings of a vehicle with sensors for detecting properties of the surroundings and means for processing the recorded information.
  • the invention further relates to a method for monitoring the environment of a vehicle comprising the steps of: acquiring own sheep * cen of environment and processing the acquired information.
  • Numerous systems are known for monitoring the surroundings of a vehicle. Such systems are used, for example, to implement accident prevention ("pre-crash”), automatic cruise control ("Automatic Cruise Control” (ACC)) or to observe the blind spot with respect to the driver's field of vision.
  • Systems which use different sensors. For example, radar sensors, lidar sensors, ultrasonic sensors and video sensors are known.
  • radar sensors are used to determine the exact position of an object that is in the vicinity of the vehicle.
  • a well-known process d_e triangulation is for this orientation.
  • a radar sensor is generally unable to distinguish between a living object, such as a pedestrian, and an object.
  • radar sensors and also ultrasonic sensors in the immediate vicinity of the vehicle have the disadvantage that, because of their small opening angle, they can only detect a small area of the surroundings. So if you want to record the entire vehicle environment with such sensors, a large number of sensors is required.
  • the invention is based on the generic arrangement in that the sensors are optical sensors, that at least two sensors are provided, that the sensors work in the wide-angle range and that the means for processing the detected information output spatial information.
  • Optical sensors have the advantage over the other sensors mentioned that the possibilities it is possible to classify objects in the vehicle environment. For example, it is possible to distinguish between an object and a living object. Due to the fact that at least two sensors are provided, spatial detection of the vehicle surroundings is made possible. The two optical sensors act as a stereo camera pair. Due to the detection of a wide range of the sensors, whereby the sensors can have fundamentally different properties, a large part of the vehicle surroundings can be detected.
  • the means for processing the acquired information output spatial information Due to the fact that the means for processing the acquired information output spatial information, a person, for example the driver of the vehicle, can be informed in detail about the properties of the vehicle environment.
  • the processing in the processing means is carried out using algorithms for digital image processing and other algorithms for evaluating the sensors.
  • cost savings are achieved on the basis of the invention, since there is no need for a large number of individual sensors for satisfactory detection of the surroundings.
  • the system complexity can also be reduced. The reason for this is that it is not necessary to network a large number of sensors.
  • At least one of the sensors preferably has an F sh-eye optic.
  • F sheye optics are suitable for detecting a large solid angle, which is approximately in the range of 220 °. A large part of the surroundings of the motor vehicle can thus be captured.
  • At least one of the sensors can also be advantageous for at least one of the sensors to have an optical system for detecting a 360 ° angle, in particular a parabolic or paraboloid mirror system.
  • sensors are provided for detecting further properties of the environment, the information corresponding to the properties being able to be fed to the means for processing the recorded information.
  • the arrangement according to the invention can therefore process the information from additional information sources.
  • sensors can be considered, including radar or ultrasonic sensors. It is also conceivable that information is provided that does not affect the vehicle environment. For example, steering angle sensors, yaw angle sensors, monitoring of the vehicle locksmith and vibration sensors can be considered as further sources of information for the arrangement according to the invention.
  • optical sensors are provided.
  • the detection of the vehicle surroundings can be improved. For example, blind spots can be avoided.
  • the means for processing the acquired information have a controller.
  • the controller is able to display all information to collect, process and output the relevant spatial information.
  • the controller uses digital image processing algorithms and other algorithms to evaluate the sensors.
  • the means for processing the acquired information preferably output it to a driver information system.
  • the driver information system can present the information to the driver in a suitable manner.
  • the information can be presented optically, acoustically or haptically.
  • the means for processing the acquired information output it to an actuator system. It is therefore possible to actively intervene in the vehicle condition. Interventions in the engine control, the brakes, the clutch or the alarm system are conceivable, for example.
  • Means for generating light in the infrared spectral range are preferably provided, and the light can be emitted into the surroundings of the vehicle via the sensor optics. It is therefore possible to carry out a detection of the vehicle surroundings even when the ambient light is insufficient.
  • the optical sensors must also be designed so that they are able to detect in the infrared spectral range. Irrespective of the separate generation of light in the infrared spectral range, this also has the advantage that infrared radiation in the environment can be evaluated. Since the sensor optics can be used both for the detection of the light emitted by the surroundings and for the emission of the infrared license generated in the vehicle, a particularly rational arrangement is given. LEDs can be used as inexpensive sources of light in the infrared spectral range.
  • an imager chip which is sensitive in the near infrared spectral range. In this way, it is possible to record in the infrared spectral range. If such an imager chip is used, for example, in conjunction with paraboloid optics, an approximately circular image is generated on the imager chip. Then only this illuminated area of the imager chip made of light-sensitive material is advantageously designed, the remaining area of the imager chip being used, for example, for the evaluation logic.
  • the sensors are preferably arranged on the roof of a vehicle. This makes it possible to monitor the entire vehicle environment with only one camera and / or one pair of cameras. However, it is also possible to mount the sensors in the front of the vehicle with the optional addition of another camera on the rear of the vehicle. This can have advantages with regard to the ACC Stop & Go function, for example. It is also conceivable to attach a pair of stereo cameras to the rear of the vehicle, although it is particularly useful here to attach a further camera in the front of the vehicle. This arrangement is particularly suitable for rear-oriented applications, such as for use as a rear view camera.
  • the sensors in the side area have a clear field of vision. If you place the sensors next to each other on the vehicle roof, for example, one sensor covers the field of view of the other sensor in the lateral direction. This creates blind spots in the side area of the vehicle, which are particularly problematic. This can be countered by arranging the sensors so that there are clear fields of vision in the side area of the vehicle. This is particularly useful with regard to the detection of the driver's blind spot.
  • the invention builds on the generic method in that the properties are optically recorded, that at least two sensors are provided for recording the properties, that the sensors work in the wide range and that the means for processing the recorded information output spatial information.
  • the detected angle can assume a wide range up to an all-round view.
  • Optical sensors have the advantage over the other sensors mentioned that there is the possibility of classifying objects in the vehicle environment. For example, it is possible to distinguish between an object and an animated object. Due to the fact that at least two sensors are provided, spatial detection of the vehicle environment is made possible. The two optical sensors act as a stereo camera pair. Due to the detection of a wide range of the sensors, the sensors can have sentence-wise different properties, a large part of the vehicle environment can be recorded.
  • the means for processing the recorded information can output spatial information
  • a person for example the driver of the vehicle, can be informed in detail about the properties of the vehicle field.
  • Processing in the means for processing is carried out by means of algorithms of digital image processing and m- ⁇ -t other algorithms for evaluating the sensors.
  • cost savings are achieved on the basis of the invention, since one can dispense with a large number of individual sensors for satisfactory detection of the surroundings.
  • the system complexity can also be reduced. This is because a large number of sensors need to be networked.
  • At least one of the sensors preferably has fish-eye optics.
  • Fisheye optics are suitable for detecting a large solid angle, which is approximately in the range of 220 °. A large part of the surroundings of the motor vehicle can thus be captured. When using multiple sensors, it is possible to output spatial information about the entire vehicle environment.
  • At least one of the sensors has an optical system for detecting a viewing angle of 360 °, in particular a parabolic or paraboloid mirror function. It is preferred that further sensors are provided for detecting further properties of the environment, the information corresponding to the properties being fed to the means for processing the recorded information.
  • the method according to the invention can then process the information from additional information sources.
  • sensors come into consideration, for example also radar or ultrasonic sensors. It is also conceivable that information is provided that does not relate to the vehicle environment. For example, steering angle sensors, yaw angle sensors, monitoring of the vehicle locksmith and vibration sensors can be considered as further sources of information for the arrangement according to the invention.
  • the method can be carried out particularly advantageously if further optical sensors are provided. As a result, the detection of the vehicle surroundings can be improved. For example, blind spots can be avoided.
  • the processed information is processed in a controller.
  • the controller is able to collect and process all information from the information sources involved and to output corresponding spatial information.
  • the controller uses digital image processing algorithms and other algorithms to evaluate the sensors.
  • the method according to the invention is advantageously further developed in that the processed information is output to a fan information system.
  • the fan information system can present the information to the driver in a suitable manner.
  • the information presentation can take place optically, acoustically or haptically.
  • the processed, recorded information is output to an actuator. It is therefore possible to actively intervene in the vehicle condition. Interventions such as the engine control, the brakes, the clutch or the alarm system are conceivable.
  • the method is also advantageous in that light is generated in the infrared spectral range and that the light is emitted via the sensor optics in the surroundings of the vehicle. It is therefore possible to carry out a detection of the vehicle surroundings even if the surrounding area is insufficient.
  • the optical sensors must also be designed so that they are able to detect in the infrared spectral range. Irrespective of the separate generation of light in the infrared spectral range, this also has the advantage that infrared radiation in the environment can be evaluated. The light can be emitted in the infrared spectral range. The environment can also be emitted via other light sources or optics.
  • the invention is based on the surprising knowledge that the entire bandwidth of the algorithms available for digital image processing can be used in the field of stereo environment measurement.
  • the possibility of the entire detectable vehicle Measuring the field three-dimensionally offers numerous advantages.
  • objects can be recognized, traffic signs classified, lane boundaries found and people in the vehicle surroundings can be detected.
  • a multitude of assistants, services and applications can also be made available to the driver with such a system.
  • Applications from the area of active vehicle safety are conceivable. For example, a pre-crash senso ⁇ k, the calculation and execution of braking and evasive maneuvers, support for stop & go, lane detection, ACC support and an automatic emergency brake can be implemented. Assistance systems such as traffic sign recognition and parking aid can also be implemented.
  • a security system can also be supported, which works as an anti-theft alarm device.
  • the controller detects moving objects in the vehicle environment and raises the alarm if an unidentifiable object appears that tries to open the vehicle.
  • objects in the vehicle environment can be classified with the optical information.
  • video images can be displayed to the driver not only in a direct form but also in a modified form. With the modified display, for example, the images can be rectified or recognized objects can be highlighted according to their meaning.
  • Figure 1 is a plan view of a motor vehicle with a sensor
  • Figure 2 is a plan view of a motor vehicle with two
  • FIG. 3 shows a further top view of a vehicle with two sensors
  • FIG. 4 shows a plan view of a vehicle with exemplary arrangements of sensors
  • FIG. 5 shows a block diagram to explain an arrangement according to the invention
  • FIG. 6 shows a schematic illustration of special optics for an arrangement according to the invention.
  • FIG. 7 shows a further schematic illustration of special optics for an arrangement according to the invention. Description of the exemplary embodiments
  • FIG. 1 shows a top view of a motor vehicle 10.
  • An optical sensor 12 is arranged on the roof 8 of the motor vehicle 10.
  • the sensor 12 has a field of view 50 of 360 °.
  • the representation of the field of view 50 is not to scale.
  • a single optical sensor 12 can be used to generate a two-dimensional image, so that a spatial resolution of the fan vehicle environment is not possible with an arrangement according to FIG. 1
  • FIG. 2 shows a motor vehicle 10 with two sensors 14, 16 which are arranged on the roof 48 of the vehicle 10.
  • FIG. 3 likewise shows a vehicle 10 with two sensors 18, 20 on the vehicle roof 48, it being additionally represented here by circles 52, 54 that both sensors 18, 20 have an opening angle of 360 °. Since the two sensors 18, 20 are at a distance from one another, the fields of view of the two sensors 18, 20, which are symbolized by the circles 52, 54, are also offset from one another. A stereo measurement of the surroundings is possible in the intersection of the two circles 52, 54. Consequently, the arrangement according to FIG. 3 permits numerous applications in which spatial resolution is important. On the axis of the connecting line between the sensors 18, 20, blind spots 56, 58 occur in the lateral region of the vehicle due to the mutual shading. In these blind spots there is no stereo * 1 ⁇
  • FIG. 4 shows, among other things, a possibility of avoiding this lateral shading.
  • the arrangements of a plurality of sensors 22, 24, 26, 28, 30, 32, 34 on a motor vehicle 10 are shown in a plan view. Lateral shading can be avoided by arranging the two sensors 22, 24, which can be provided in addition to the other sensors 26, 28, 30, 32, 34 or without them.
  • an etero measurement can also take place in the side region of the motor vehicle 10. This is particularly useful with regard to the detection of the blind spot with respect to the driver's field of vision.
  • Two further cameras 26, 28 are shown as examples in the front area of the motor vehicle, which are advantageously combined with a sensor 34 at the rear of the motor vehicle.
  • FIG. 5 shows a block diagram to explain the present invention.
  • three cameras 26, 28, 34 are provided, which are arranged, for example, in the front area and in the rear area of a vehicle. Each of these cameras is equipped with an optic 38.
  • the information captured by the cameras 26, 28, 34 is transmitted to a controller 36.
  • Information from further information sources 60 can also be transmitted to controller 36, for example from a steering angle sensor.
  • the controller 36 processes this information using algorithms of digital image processing and other algorithms for evaluating the information from the sensor 60.
  • the results of these evaluations are output to a vehicle information system 40. This can present the information to a driver in a suitable manner.
  • the information can be presented optically, acoustically or haptically.
  • the controller 36 can also actively intervene in the vehicle state by actuating one or more actuators 42. Interventions in the engine control, the brake, the clutch or an alarm system are conceivable, to name just a few examples.
  • FIG. 4 schematically shows the optics of a sensor for an arrangement according to the invention.
  • a paraboloid mirror function 38 is provided as an example, which generates an essentially ring-shaped image. This image is projected onto the imager chip 46.
  • the imager chip 46 is shown with the annular area 62.
  • the regions which lie within the annular region 62 and which lie outside the annular region are preferred 62 are used for other tasks, for example for evaluation logic.
  • FIG. 7 also shows an optical system which can be used in the context of the present invention. Again, it is a paraboloid mirror lens 38.
  • the paraboloid mirror lens 38 is used to emit light, which is generated by an LED 64, around the surroundings. Thus, the surrounding area is illuminated.
  • the same exemplary paraboloid mirror optics 38 is then used to record the images of the surroundings. It is particularly advantageous if the LED 64 is able to emit light which is in the infrared spectral range. It is thus possible to illuminate a surrounding scene at night, and incident infrared light can also be detected independently of the light source 64.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

Die Erfindung betrifft eine Anordnung zur Überwachung des Umfelds eines Fahrzeugs (10) mit Sensoren (12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34) zum Erfassen von Eigenschaften des Umfelds und Mitteln (36) zum Verarbeiten der erfassten Information, wobei die Sensoren (12, 14, 16), (18, 20, 22, 24, 26, 28, 30, 32, 34) optische Sensoren sind, die Sensoren (12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34) im Weitwinkelbereich arbeiten und die Mittel 36 zum Verarbeiten der erfassten Informationen räumliche Informationen ausgeben. Die Erfindung betrifft ferner ein Verfahren zur Überwachung des Ümfelds eines Fahrzeugs.

Description

Anordnung und Verfahren zur Überwachung des Umfelds eines Fahrzeugs
Die Erfindung betrifft eine Anordnung zur Überwachung des Umfelds eines Fahrzeugs mit Sensoren zum Erfassen von Eigenschaften des Umfelds und Mitteln zum Verarbeiten der erfassten Information. Die Erfindung betrifft ferner ein Verfahren zur Überwachung des Umfelds eines Fahrzeugs mit den Schritten: Erfassen von Eigenschaf*cen des Umfelds und Verarbeiten der erfassten Information.
Stand der Technik
Zur Überwachung des Umfelds eines Fahrzeugs sind zahlreiche Systeme bekannt. Derartige Systeme dienen beispielsweise der Realisierung einer Unfallverhütung ("Pre- crash"), einer automatischen Fahrsteuerung ("Automatic Cruise Control" (ACC) ) oder auch der Beobachtung des toten Winkels bezüglich des Gesichtsfeld des Fahrers. Es kommen Systeme zum Einsatz, welche sich unterschiedlichen Sensoren bedienen. Bekannt sind zum Beispiel Radarsensoren, Lidarsensoren, Ultraschallsensoren und Videosenso- ren . Beispielsweise werden Radarsensoren verwendet, um die genaue Lage eines Objektes zu bestimmen, welches sich im Umfeld des Fahrzeugs befindet. Ein bekanntes Verfahren für diese Lagebestimmung ist d_e Triangulation. Bei αem Einsatz αεr verschiedenen Sensoren ist allerdings zu beachten, dass sie wegen αer zugrundeliegenden pnysikali- schen Vorgange unterschiedliche Erfassungsbereiche naDen. Daner ist es naufig sinnvoll, die unterschiedlichen Sensoren zu kombinieren. Insgesamt entstehen Komplexe Systeme, da die unterschiedlichen Sensormessdaten komhiniert werden müssen.
Ferner ist zu bemerken, dass die meisten Systeme nicht in der Lage sind, Objekte, welche sich im Fahrzeugumfeld befinden, zu klassifizieren. Ein Radarsensor ist im allgemeinen nicht in der Lage, zwischen einem lebenden Objekt, beispielsweise einem Fußganger, αnd einem Gegenstand zu unterscheiden. Ferner haben Radarsensoren und auch Ultraschallsensoren im unmittelbaren Fahrzeugumfeld den Nachteil, dass sie aufgrund ihres geringen Offnungswmkels nur einen kleinen Bereich des Umfelds erfassen können. Will man also das gesamte Fahrzeugumfeld mit derartigen Sensoren erfassen, so ist eine große Anzahl von Sensoren erforderlich.
Vorteile der Erfindung
Die Erfindung baut auf der gattungsgemaßen Anordnung dadurch auf, dass die Sensoren optische Sensoren sind, dass mindestens zwei Sensoren vorgesehen sind, dass die Sensoren im Weitwinkelbereich arbeiten und dass die Mittel zum Verarbeiten der erfassten Information räumliche Information ausgeben. Optische Sensoren naben gegenüber den anderen genannten Sensoren den Vorteil, dass die Möglich- keit besteht, Objekte im Fahrzeugumfeld zu klassifizieren. Beispielsweise ist es möglich, zwischen einem Gegenstand und einem oelebten Objekt zu unterscheiden. Aufgrund der Tatsache, dass mindestens zwei Sensoren vorge- sehen sind, wird eine räumliche Erfassung des Fahrzeugumfelds ermöglicht. Die beiden optischen Sensoren wirken als Stereokamerapaar. Aufgrund der Erfassung eines eit- wmkelbereichs der Sensoren, wobei die Sensoren grundsätzlich unterschiedliche Eigenschaften haben können, lasst sicn ein großer Teil des Fahrzeugumfelds erfassen. Aufgrund der Tatsache, dass die Mittel zum Verarbeiten der erfassten Information räumliche Information ausgeben, kann eine Person, beispielsweise der Fahrer des Fahrzeugs, detailliert über die Eigenschaften des Fahrzeugum- felds informiert werden. Die Verarbeitung in den Mitteln zum Verarbeiten erfolgt mittels Algorithmen der digitalen Bildverarbeitung und mit sonstigen Algorithmen zur Auswertung der Sensoren. Insgesamt erzielt man auf der Grundlage der Erfindung eine Einsparung von Kosten, da man auf eine Vielzahl von Einzelsensoren zur zufriedenstellenden Erfassung des Umfeldes verzichten kann. Neben der Einsparung einer Vielzahl von Einzelsensoren kann auch die Systemko plexitat reduziert werden. Dies hat den Grund, dass keine Vernetzung einer großen Anzahl von Sen- soren erforderlich ist.
Bevorzugt weist mindestens einer der Sensoren eine F sh- eye-Optik auf. F sheye-Optiken s nd geeignet, einen großen Raumwinkel zu erfassen, wobei dieser etwa im Bereich von 220° liegt. Somit kann ein großer Teil des Umfelds des Kraftfahrzeugs erfasst werden. Bei der Verwendung mehrerer Sensoren ist es möglich, räumliche Information uoer das gesamte Fahrzeugumfeld auszugeben.
Ebenfalls kann es vorteilhaft sein, dass mindestens einer der Sensoren eine Optik zur Erfassung eines Sicnt mkels von 360° aufweist, insbesondere eine Parabol- oder Para- boloidspiegeloptik.
Besonders vorteilhaft ist es, dass weitere Sensoren zum Erfassen weiterer Eigenschaften des Umfelds vorgesehen sind, wobei die den Eigenschaften entsprechende Information den Mitteln zum Verarbeiten der erfassten Information zufuhrbar ist. Die erfmdungsgemaße Anordnung kann demnach d e Information aus zusätzlichen Informations- quellen verarbeiten. Dabei kommen unterschiedlichste Sensoren in Betracht, etwa auch Radar- oder Ultraschallsensoren. Ebenfalls ist es denkbar, dass Informationen zur Verfugung gestellt werden, welche nicht das Fahrzeugumfeld betreffen. Beispielsweise Können Lenkwinkelsensoren, Gierwinkelsensoren, eine Überwachung der Fahrzeugschlosser und Erschutterungssensoren als weitere Informationsquellen für die erfmdungsgemaße Anordnung n Betracht gezogen werden.
Besonders vorteilhaft ist es, wenn weitere optische Sensoren vorgesehen sind. Hierdurch kann die Erfassung des Fahrzeugumfelds verbessert werden. Beispielsweise können tote Winkel vermieden werden.
Es ist ebenfalls vorteilhaft, wenn die Mittel zum Verarbeiten der erfassten Informationen einen Controller aufweisen. Der Controller ist ιr der Lage, sämtliche Infor- mationen der beteiligten Informationsquellen zu Erfassen, zu Verarbeiten und entsprechende raumliche Informationen auszugeben. Dabei bedient sich der Controller Algorithmen der digitalen 3ildverarbeitυng und sonstigen Algorithmen zur Auswertung der Sensoren.
Vorzugsweise geben die Mittel zum Verarbeiten der erfassten Informationen diese an ein Fahrerinformationssystem aus. Das Fahrerinformationssystem kann die Informationen dem Fahrer in geeigneter Weise präsentieren. Die Informationspräsentation kann optisch, akustisch oder haptisch erfolgen .
Ebenfalls kann es nützlich sein, wenn die Mittel zum Ver- arbeiten der erfassten Information diese an eine Aktorik ausgeben. Es ist somit möglich, aktiv in den Fahrzeugzustand einzugreifen. Beispielsweise sind Eingriffe in die Motorsteuerung, die Bremsen, die Kupplung oder die Alarmanlage denkbar.
Vorzugsweise sind Mittel zum Erzeugen von Licht im infraroten Spektralbereich vorgesehen, und das Licht kann über die Sensoroptik in das Umfeld des Fahrzeugs ausgesendet werden. Somit ist es möglich, auch bei nicht ausreichen- dem Umgebungslicht eine Erfassung des Fahrzeugumfeldes durchzuführen. Zu diesem Zwecke müssen auch die optischen Sensoren so ausgelegt sein, dass sie in der Lage sind, eine Erfassung im infraroten Spektralbereich zu realisieren. Dies hat auch unabhängig von der separaten Erzeugung von Licht im infraroten Spektralbereich den Vorteil, dass infrarote Strahlung in der Umgebung ausgewertet werden kann . Da die SensoroptiK sowohl für das Erfasser des vom Umfeld abgegebenen Lichtes als auch für das Aussenden des im Fahrzeug erzeugten infraroten Licntes verwendet werden kann, ist eine besonders rationelle Anordnung gegeben. LEDs können als kostengünstige Quellen für Licht im infraroten Spektralbereicn herangezogen werden.
Besonders vorteilhaft ist es, wenn e n Imager-Chip vorge- sehen ist, welcher im nahen infraroten Spektralbereich empfindlich ist. Auf diese Weise ist die Möglichkeit einer Erfassung im infraroten Spektralbereich gegeben. Verwendet man einen solchen Imager-Chip beispielsweise in Verbindung mit einer Paraboloidoptik, so wird auf dem Imager-Chip eine annähernd kreisnngformige Abbildung erzeugt. Dann wird vorteilhafter Weise nur dieser beleuchtete Bereich des Imager-Chips aus lichtempfindlichem Material ausgelegt, wobei der übrige Bereich des Imager- Chips zum Beispiel für die Auswertelogix verwendet werden kann.
Vorzugsweise sind die Sensoren auf dem Dacn eines Fahrzeugs angeordnet. Hierdurch ist die Überwachung des gesamten Fahrzeugumfeldes mit nur einer Kamera und/oder ei- nem Kamerapaar möglich. Es ist aber auch möglich, die Sensoren im vorderen Fahrzeugbereich mit optionaler Ergänzung durch eine weitere Kamera am Fahrzeugheck anzubringen. Dies kanr beispielsweise Vorteile im Hinblick auf die Funktion ACC Stop & Go haben. Auch die Anbringung eines Stereokamerapaares am Fahrzeugheck ist denkbar, wobei es hier besonders sinnvoll ist, eine weitere Kamera im vorderen Fahrzeugbereich anzubringen. Diese Anordnung eignet sich besonderes fαr heckorientierte Anwendungen, wie zum Beispiel für die Anwendung als Ruckfahrkamera.
Besonders nützlich ist es, dass die Sensoren im Seitenbe- reicn ein freies Sichtfeld naben. Bringt man die Sensoren beispielsweise auf dem Fahrzeugdach nebeneinander an, so deckt der eine Sensor das Gesichtsfeld des anderen Sensors in seitlicher Richtung ab. Hierdurch entstehen tote Winkel im Seitenbereich des Fahrzeugs, welche besonders problematisch sind. Diesem Umstand kann man begegnen, indem man die Sensoren versetzt anordnet, so dass im Seitenbereich des Fahrzeugs freie Sichtfelder vorliegen. Dies ist besonders im Hinblick auf die Erfassung des toten Winkels des Gesichtsfelds des Fahrers sinnvoll.
Die Erfindung baut auf dem gattungsgemaßen Verfahren dadurch auf, dass die Eigenschaften optisch erfasst werden, dass mindestens zwei Sensoren zum Erfassen der Eigenschaften vorgesehen sind, dass die Sensoren im Weitwm- kelbereich arbeiten und dass die Mittel zum Verarbeiten der erfassten Information räumliche Information ausgeben. Der erfasste Winkel kann dabei eine Große bis zur Rundumsicht annehmen. Optische Sensoren haben gegenüber den anderen genannten Sensoren den Vorteil, dass die Moglicn- keit besteht, Objekte im Fahrzeugumfeld zu klassifizieren. Beispielsweise st es möglich, zwischen einem Gegenstand und einem belebten Objekt zu unterscheiden. Aufgrund der Tatsache, dass mindestens zwei Sensorer vorgesehen sind, wird eine raumliche Erfassung des Fahrzeugum- felds ermöglicht. Die beiden optischen Sensoren wirken als Stereokamerapaar. Aufgrund der Erfassung eines Weit- mkelberεichs der Sensoren, wobei die Sensoren grund- satzlich unterschiedliche Eigenschaften haben können, lasst sich ein großer Teil des Fahrzeugαmfelds erfassen. Aufgrund der Tatsache, dass die Mittel zum Verarbeiten der erfassten Information räumliche Information ausgeben kann eine Person, beιsp_els eιse der Fahrer des Fahrzeugs, detailliert über die Eigenscha fen des Fahrzeugα - felds informiert werden. Die Verarbeitung m den Mitteln zum Verarbeiten erfolgt mittels Algorithmen der digitalen Bildverarbeitung und m-ι-t sonstigen Algorithmen zur Aus- wertung der Sensoren. Insgesamt erzielt man auf der Grundlage der Erfindung eine Einsparung von Kosten, da man auf e ne Vielzahl von Einzelsensoren zur zufriedenstellenden Erfassung des Umfeldes verzichten kann. Neben der Einsparung einer Vielzahl von Einzelsensoren kann auch die Systemkomplexitat reduziert werden. Dies hat den Grund, dass kerne Vernetzung einer großen Anzahl von Sensoren erforderlich ist.
Bevorzugt weist mindestens einer der Sensoren eine Fish- eye-Optik auf. Fisheye-Optiken sind geeignet, einen großen Raumwinkel zu erfassen, wobei dieser etwa im Bereich von 220° liegt. Somit kann ein großer Teil des Umfelds des Kraftfahrzeugs erfasst werden. Bei der Verwendung mehrerer Sensoren ist es möglich, raumliche Information über das gesamte Fahrzeugαmfeld auszugeben.
Besonders vorteilhaft ist es, wenn mindestens einer der Sensoren eine Optik zur Erfassung eines Sichtwinkels von 360° aufweist, insbesondere eine Parabol- oder Parabo- loidspiegelopitk. Es ist bevorzugt, dass weitere Sensoren zum Erfassen weiterer Eigenschaften des Umfelds vorgesehen sind, wobei die den Eigenschaf en entsprechende Information den Mitteln zum Verarbeiten der erfassten Information zugeführt werden. Das erfmdungsgemaße Verfahren Kann demnacn die Information aus zusätzlichen Informationsquellen verarbeiten. Dabei kommen unterschiedlichste Sensoren m Betracht, etwa auch Radar- oαer Ultraschallsensoren . Ebenfalls ist es denkbar, dass Informationen zur Verfugung gestellt werden, welche nicht das Fahrzeugumfeld betreffen. Beispielsweise können Lenkwinkelsensoren, Gier in- kelsensoren, eine Überwachung der Fahrzeugschlosser und Erschutterungssensoren als weitere Informationsquellen für die erf dungsgemaße Anordnung in Betracht gezogen werden.
Das Verfahren ist besonders vorteilhaft durchfunrbar, wenn weitere optische Sensoren vorgesehen sind. Hierdurch kann die Erfassung des Fahrzeugumfelds verbessert werden. Beispielsweise können tote Winkel vermieden werden.
Ebenfalls ist es nützlich, dass das Verarbeiten der erfassten Information m einem Controller erfolgt. Der Controller ist in der Lage, sämtliche Informationen der beteiligten Informationsquellen zu Erfassen, zu Verarbeiten und entsprechende raumliche Informationen auszugeben. Dabei bedient sich der Controller Algorithmen der digitalen Bildverarbeitung und sonstiger Algorithmen zur Auswertung der Sensoren.
Das erf dungsgemaße Verfahren ist m vorteilhafter Weise dadurch weitergebildet, dass die verarbeitete Information an ein Fanrerinformationssystem ausgegeben wird. Das Fan- reπnformationssystem kann die Informationen oem Fahrer in geeigneter Weise präsentieren. Die Informationsprasen- tation kann optisch, akustisch oder haptisch erfolgen.
Weiterhin sind Vorteile dadurch gegeben, dass d e verarbeitete erfasste Information an eine Aktoπk ausgegeben wird. Es ist somit möglich, aktiv den Fahrzeugzustand einzugreifen. Beispielsweise sind Eingriffe die Mo- torsteuerαng, die Bremsen, die Kupplung oder die Alarmanlage denkbar.
Das Verfahren ist ferner dadurch vorteilhaft, dass Licht im infraroten Spektralbereich erzeugt wird und dass das Licht über die SensoroptiK m das Umfeld des Fahrzeugs ausgesendet wird. Somit ist es möglich, auch bei nicht ausreichendem Umgebungslicnt eine Erfassung des Fahrzeugumfeldes durchzufuhren. Zu diesem Zwecke müssen auch die optischen Sensoren so ausgelegt sein, dass sie in der La- ge sind, eine Erfassung im infraroten Spektralbereich zu realisieren. Dies hat auch unabhängig von der separaten Erzeugung von Licht im infraroten Spektralbereich den Vorteil, dass infrarote Strahlung m der Umgebung ausgewertet werden kann. Die Aussendung des Lichtes im mfra- roten Spektralbereich Kann auch über andere Lichtquellen beziehungsweise Optiken das Umfeld erfolgen.
Der Erfindung liegt die überraschende Kenntnis zugrunde, dass die gesamte Bandbreite der zur Verfugung stehenden Algorithmen der digitalen Bildverarbeitung im Bereich der Stereo-Umfeldvermessung angewendet werden kann. Insbesondere die Möglichkeit, das gesamte erfassbare Fahrzeugu - feld dreidimensional zu vermessen, bietet zahlreiche Vorteile. Basierend auf der Vermessung des Umfeldes können beispielsweise Objekte erKannt, Verkehrszeichen klassifiziert, Fahrbahnbegrenzungen gefunden und Menschen im Fahrzeugumfeld deteκtιert werden. Ebenfalls können mit e em solchen System eine Vielzahl von Assistenten, Diensten αnd Applikationen fαr den Fahrer zur Verfugung gestellt werden. Denkbar sind Anwendungen aus dem Bereich aktiven Fahrzeugsicherheit. Beispielsweise kann hier eine Precrash-Sensoπk, die Berechnung und Ausfuhrung von Brems- und Ausweichmanövern, Unterstützung von Stop & Go, Fahrspurerkennung, ACC-Unterstutzung und eine automatische Notbremse realisiert werden. Auch Assistenzsysteme w e VerKehrszeichenerkennung und Emparkhilfe lassen sich realisieren. Auf der Grundlage der vorliegenden Erfindung lasst sich auch ein Sicherheitssystem unterstutzen, welches als Diebstahlwarngerat arbeitet. Hierzu erkennt der Controller sich bewegende Objekte im Fahrzeugumfeld und schlagt Alarm, falls ein nichtidentifizierbares Objekt erscheint, welches versucht, das Fahrzeug zu offnen. Ebenfalls ist vorteilhaft zu nennen, dass sich mit der optischen Information Objekte im Fahrzeugumfeld klassifizieren lassen. Auf dieser Grundlage können dem Fahrer beispielsweise Videobilder nicht nur m direkter Form sondern auch in modifizierter Form angezeigt werden. Bei der modifizierten Anzeige können die Bilder beispielsweise entzerrt werden, oder erkannte Objekte können e nach ihrer Bedeutung hervorgehoben werden. Zeichnungen
Die Erfindung wird nun mit Bezug auf die begleitenden Zeichnungen anhand bevorzugter Ausführungsformen beispielhaft erläutert.
Dabei zeigt:
Figur 1 eine Draufsicht auf ein Kraftfahrzeug mit einem Sensor;
Figur 2 eine Draufsicht auf ein Kraftfahrzeug mit zwei
Sensoren;
Figur 3 eine weitere Draufsicht auf ein Fahrzeug mit zwei Sensoren;
Figur 4 eine Draufsicht auf ein Fahrzeug mit beispiel- haften Anordnungen von Sensoren;
Figur 5 ein Blockschaltbild zur Erläuterung einer erfindungsgemäßen Anordnung;
Figur 6 eine schematische Darstellung einer speziellen Optik für eine erfindungsgemäße Anordnung; und
Figur 7 eine weitere schematische Darstellung einer speziellen Optik für eine erfindungsgemäße An- Ordnung. Beschreibung der Ausfuhrungsbeispiele
In Figur 1 ist eine Draufsicht auf em Kraftfahrzeug 10 dargestellt. Auf dem Dach ^8 des Kraftfahrzeugs 10 ist e optischer Sensor 12 angeordnet. Der Sensor 12 hat em Gesichtsfeld 50 von 360°. Die Darstellung des Gesichtsfelds 50 ist nicht maßstabsgetreu. Mit einem einzelnen optischen Sensor 12 lasst sich em zweidimensionales Bild erzeugen, so dass eine räumliche Auflosung des Fanrzeug- umfelds mit einer Anordnung gemäß Figur 1 nicht möglich
In Figur 2 ist ein Kraftf hrzeug 10 mit zwei Sensoren 14, 16 dargestellt, welche auf dem Dach 48 des Fahrzeugs 10 angeordnet sind.
Figur 3 zeigt ebenfalls em Fahrzeug 10 mit zwei Sensoren 18, 20 auf dem Fahrzeugdach 48, wobei hier zusätzlich durch Kreise 52, 54 dargestellt ist, dass beide Sensoren 18, 20 einen Offnungswmkel von 360° haben. Da die beiden Sensoren 18, 20 einen Abstand zueinander aufweisen, sind auch die Gesichtsfelder der beiden Sensoren 18, 20, welche durch die Kreise 52, 54 symbolisiert sind, gegeneinander versetzt. Im Schnittbereich der beiden Kreise 52, 54 ist eine Stereovermessung des Umfeldes möglich. Folglich erlaubt die Anordnung gemäß Figur 3 zahlreiche Anwendungen, bei denen es auf eine räumliche Auflosung ankommt. Auf der Achse der Verbindungslinie zwischen den Sensoren 18, 20 kommt es aufgrund der gegenseitigen Ab- schattung zu toten Winkeln 56, 58 im seitlichen Bereich des Fahrzeugs. In diesen toten Winkeln ist keine Stereo- *1 Δ
Vermessung möglich, oa jeweils eine der Kameras 18, 20 abgeschattet ist.
Figur 4 zeigt unter anderem eine Möglichkeit, diese seit- liehe Abschattung zu vermeiden. In einer Draufsicht sind die Anordnungen mehrerer Sensoren 22, 24, 26, 28, 30, 32, 34 auf einem Kraftfahrzeug 10 dargestellt. Durch die Anordnung der beiden Sensoren 22, 24, welche zusätzlich zu den anderen dargestellten Sensoren 26, 28, 30, 32, 34 o- der ohne diese vorgesehen sein können, lasst sich eine seitliche Abschattung vermeiden . Somit kann durch das versetzte Anordnen der Sensoren 22, 24 auch im Seitenbereich des Kraftfahrzeugs 10 eine Ξtereovermessung stattfinden. Dies ist insbesondere in Hinblick auf die Erfas- sung des toten Winkels bezüglich des Gesichtsfeldes des Fahrers nützlich. Beispielhaft sind zwei weitere Kameras 26, 28 im vorderen Bereich des Kraftfahrzeugs gezeigt, welche n vorteilhafter Weise mit einem Sensor 34 am Heck des Kraftfahrzeugs kombiniert werden. Mit einer solchen Anordnung lasst sich besonders gut eine Steuerung für ACC Stop & Go realisieren. Zusatzlich ist zu erwähnen, dass durch die Verwendung von drei Kameras, das heißt einer zusatzlichen Kamera im Vergleich zu den Ausfuhrungsformen gemäß Figur 2 und Figur 3, die dreidimensionale Modellie- rung des Fahrzeugumfelds noch verbessert werden kann. In ähnlicher Weise besteht die Möglichkeit, weitere Kameras 30, 32 am Heck des Kraftfahrzeugs 10 anzuordnen, wobei dies f r Anwendungen besonders geeignet st, die das Heckfeld erfassen sollen. Auch diese Kameras 30, 32 kon- nen mit weiteren Kameras beispielsweise im vorderen Bereich des Kraftfahrzeugs 10 Kombiniert werden. Figur 5 zeigt em Blockschaltbild zur Erläuterung αer vorliegenden Erfindung. Es sind beispielhaft drei Kameras 26, 28, 34 vorgesehen, welche beispielsweise im vorderen Bereich und im Heckbereich eines Kra tfahrzeugs angeord- net sind. Jede dieser Kameras ist mit einer Optik 38 ausgestattet. Die von den Kameras 26, 28, 34 erfassten Informationen werden einem Controller 36 bermittelt. Dem Controller 36 können ferner Informationen von weiteren Informationsquellen 60 übertragen werden, beispielsweise von einem Lenkwinkelsensor. Der Controller 36 verarbeitet diese Informationen unter Verwendung von Algorithmen der digitalen Bildverarbeitung und sonstiger Algorithmen zur Auswertung der Information des Sensors 60. Die Ergebnisse dieser Auswertungen werden an em Fahrzeugmfor ations- System 40 ausgegeben. Dieses Kann die Informationen einem Fahrer m geeigneter Weise präsentieren. Die Informati- onsprasentation kann optisch, akustisch oder haptisch erfolgen. Der Controller 36 kann auch aktiv in den Fahrzeugzustand eingreifen, indem er eine oder mehrere Akto- riken 42 ansteuert. Dabei sind Eingriffe m die Motorsteuerung, die Bremse, die Kupplung oder eine Alarmanlage denkbar, um nur einige Beispiele zu nennen.
In Figur 4 ist die Optik eines Sensors f r eine erfin- dungsgemaße Anordnung schematisch dargestellt. Es ist beispielhaft eine Paraboloidspiegelopitk 38 vorgesehen, welche e im wesentlichen ringförmiges Bild erzeugt. Dieses Bild wird auf em Imager-Chip 46 projiziert. Im unteren Teil der Figur ist der Imager-Chip 46 mit dem ringförmigen Bereich 62 dargestellt. Vorzugsweise werden die Bereiche, welche innerhalb des ringförmigen Bereiches 62 liegen und welche außerhalb des ringförmigen Bereiches 62 liegen für andere Aufgaben verwendet, beispielsweise f r eine Auswertelogik.
In Figur 7 ist ebenfalls eine Optik dargestellt, welche im Rahmen der vorliegenden Erfindung Verwendung finden kann. Wiederum handelt es sich um eine Paraboloidspiegeloptik 38. In diesem Beispiel gemäß Figur 7 wird die Paraboloidspiegeloptik 38 dazu benutzt, Licht, welches von einer LED 64 erzeugt wird, das Umfeld abzustrahlen. Somit findet eine Beleuchtung es Umfelds statt. Dieselbe beispielhafte Paraboloidspiegeloptik 38 wird dann zur Aufnahme der Bilder des Umfeldes verwendet. Es ist besonders vorteilhaft, wenn die LED 64 der Lage ist, Licht abzustrahlen, welches im infraroten Spektralbereich liegt. Damit ist eine Ausleuchtung einer Umgebungsszene bei Nacht möglich, wobei die Detektion von einfallendem infraroten Licht auch unabhängig von der Lichtquelle 64 erfolgen kann.
Die vorhergehende Beschreibung der Ausfuhrungsbeispiele gemäß der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschrankung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie die Äquivalente zu verlassen.

Claims

Ansprüche
1. Anordnung zur Überwachung des Umfelds eines Fahrzeugs (10) mit
- Sensoren (14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34) zum Erfassen von Eigenschaften des Umfelds und
Mitteln (36) zum Verarbeiten der erfassten Information,
dadurch gekennzeichnet,
dass die Sensoren (14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34) optische Sensoren sind,
dass mindestens zwei Sensoren (14, 16 18, 20 22, 24) vorgesehen sind,
dass die Sensoren (14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34) im Weitwinkelbereich arbeiten und
dass die Mittel (36) zum Verarbeiten der erfassten Information räumliche Information ausgeben.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass mindestens einer der Sensoren eine Fisheye-Optik aufweist .
3. Anordnung nacn Anspruch 1 oαer 2, dadurch gekennzeichnet, dass mindestens einer der Sensoren (18, 20) eine Optik zur Erfassung eines Sichtwinkels von 360°, sbeson- dere eine Parabol- oder Paraboloidspiegeloptik (38) aufweist .
4. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass weitere Sensoren (26, 28, 30, 32, 34) zum Erfassen weiterer Eigenschaften des Umfelds vorgesehen sind, wobei die den Eigenschaften entsprechende Information den Mitteln (36) zum Verarbeiten der erfassten Information zufuhrbar ist.
5. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass weitere optischen Sensoren (26, 28, 30, 32, 34) vorgesehen sind.
6. Anordnung nach einem der vorangehenden Ansprüche, da- durch gekennzeichnet, dass die Mittel (36) zum Verarbeiten der erfassten Information einen Controller aufweisen.
7. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (36) zum Verarbei- ten der erfassten Information diese an em Fahrerinformationssystem (40) ausgeben.
8. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (36) zum Verarbei- ten der erfassten Information diese an eine Aktorik (42) ausgeben .
9. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
dass Mittel (64) zum Erzeugen von Licht im infraroten Spektralbereich vorgesehen sind und
dass das Licht über die Sensoroptik (38) in das Umfeld des Fahrzeugs (10) ausgesendet wird.
10. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Imager-Chip (46) vorgesehen ist, welcher im nahen Infrarotspektralbereich empfindlich ist.
11. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoren (14, 16, 18, 20, 22, 24) auf dem Dach (48) eines Fahrzeugs (10) angeordnet sind.
12. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoren (22, 24) im Seitenbereich des Fahrzeugs (10) ein freies Sichtfeld haben.
13. Verfahren zur Überwachung des Umfelds eines Fahrzeugs (10) mit den Schritten:
Erfassen von Eigenschaften des Umfelds und
Verarbeiten der erfassten Information,
dadurch gekennzeichnet, dass die Eigenschaften optisch erfasst werden,
dass mindestens zwei Sensoren (14, 16, 18, 20, 22, 24) zum Erfassen oer Eigenschaften vorgesehen sind,
dass die Sensoren (14, 16, 18, 20, 22, 24) im Weit- wmkelbereich arbeiten und
dass die Mittel zum Verarbeiten der erfassten Infor- mation räumliche Information ausgeben.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass mindestens einer der Sensoren eine Fisheye-Optik aufweist .
15. Verfanren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass mindestens einer der Sensoren (18, 20) eine Optik zur Erfassung eines Sichtwinkels von 360°, insbesondere eine Parabol- oder Paraboloidspiegeloptik auf- weist.
16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass weitere Sensoren (26, 28, 30, 32, 34) zum Erfassen weiterer Eigenschaften des Umfelds vor- gesehen sind, wobei die den Eigenschaften entsprechende Information den Mitteln (36) zu verarbeiten der erfassten Information zugeführt werden.
17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass weitere optische Sensoren (26, 28,
30, 32, 34) vorgesehen sind.
18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass das Verarbeiten der erfassten Information in einem Controller (36) erfolgt.
19. Verfahren nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass die verarbeitete erfasste Information an ein Fahrerinformationssystem (40) ausgegeben wird.
20 Verfahren nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass die verarbeitete erfasste Information an ein Aktorik (42) ausgegeben wird.
21. Verfahren nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet,
dass Licht im infraroten Spektralbereich erzeugt wird und
dass das Licht über die Sensoroptik (38) in das Um- feld des Fahrzeugs (10) ausgesendet wird.
PCT/DE2001/003931 2000-11-29 2001-10-13 Anordnung und verfahren zur überwachung des umfelds eines fahrzeugs WO2002043982A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01998458A EP1339561B1 (de) 2000-11-29 2001-10-13 Anordnung zur überwachung des umfelds eines fahrzeugs
US10/432,883 US7362215B2 (en) 2000-11-29 2001-10-13 System and method for monitoring the surroundings of a vehicle
JP2002545938A JP3844737B2 (ja) 2000-11-29 2001-10-13 車両の周囲を監視するための方法及び装置
DE50112771T DE50112771D1 (de) 2000-11-29 2001-10-13 Anordnung zur überwachung des umfelds eines fahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10059313.5 2000-11-29
DE10059313A DE10059313A1 (de) 2000-11-29 2000-11-29 Anordnung und Verfahren zur Überwachung des Umfelds eines Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2002043982A1 true WO2002043982A1 (de) 2002-06-06

Family

ID=7665142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/003931 WO2002043982A1 (de) 2000-11-29 2001-10-13 Anordnung und verfahren zur überwachung des umfelds eines fahrzeugs

Country Status (5)

Country Link
US (1) US7362215B2 (de)
EP (1) EP1339561B1 (de)
JP (1) JP3844737B2 (de)
DE (2) DE10059313A1 (de)
WO (1) WO2002043982A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375253A2 (de) * 2002-06-18 2004-01-02 DaimlerChrysler AG Verfahren zur Überwachung des Innen-bzw.Aussenraums eines Fahrzeugs sowie ein Fahrzeug mit wenigstens einer Rundsichtkamera
US6913089B2 (en) 2002-06-12 2005-07-05 Black & Decker Inc. Hammer
EP1767415A1 (de) * 2005-09-26 2007-03-28 Hella KGaA Hueck & Co. Überwachungseinrichtung für den Innenraum eines Kraftfahrzeugs
EP2070774A1 (de) * 2007-12-14 2009-06-17 Visiocorp Patents S.à.r.l. Sicherheitssystem und Verfahren zur Ableitung eines Sicherheitssignals
EP2555178A1 (de) * 2011-08-04 2013-02-06 MAN Truck & Bus AG Verfahren zum Erfassen von Objekten seitlich eines Nutzfahrzeugs und Nutzfahrzeug mit einem Erfassungssystem zum Ausführen des Verfahrens

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002545A1 (en) * 2001-10-10 2005-01-06 Nobuhiko Yasui Image processor
DE50302813D1 (de) * 2002-04-19 2006-05-18 Iee Sarl Sicherheitsvorrichtung für ein fahrzeug
DE10251949A1 (de) * 2002-11-08 2004-05-19 Robert Bosch Gmbh Fahrdynamikregelung mit Bildsensorsystem
DE10300612A1 (de) * 2003-01-10 2004-07-22 Hella Kg Hueck & Co. Nachtsichtsystem für Kraftfahrzeuge
DE10326001B4 (de) * 2003-02-26 2014-02-13 Volkswagen Ag Verfahren und Einrichtung zur Ansteuerung einer Sicherheitseinrichtung bei einem Kraftfahrzeug
DE10310698A1 (de) * 2003-03-12 2004-09-23 Valeo Schalter Und Sensoren Gmbh Optisches Erfassungssystem für Kraftfahrzeuge
DE102004027693A1 (de) * 2004-04-08 2005-10-27 Daimlerchrysler Ag Verfahren zum Steuern von Insassenrückhaltemitteln und Steuereinheit für Insassenrückhaltemittel in einem Fahrzeug
JP4453514B2 (ja) * 2004-06-09 2010-04-21 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
DE102004045813B4 (de) * 2004-09-22 2017-09-28 Robert Bosch Gmbh System und Verfahren für ein vorrausschauendes Detektieren einer Unfallgefahrensituation
DE102004046101B4 (de) * 2004-09-23 2007-01-18 Daimlerchrysler Ag Verfahren, Sicherheitsvorrichtung und Verwendung der Sicherheitsvorrichtung zur Früherkennung von Kraftfahrzeugkollisionen
DE102005006287A1 (de) * 2005-02-11 2006-08-17 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zum Überwachen des Umfelds eines Fahrzeugs
US7348538B2 (en) * 2006-02-03 2008-03-25 Ge Infrastructure Sensing, Inc. Methods and systems for detecting proximity of an object
US7407323B2 (en) * 2006-02-03 2008-08-05 Ge Infrastructure Sensing Inc. Methods and systems for determining temperature of an object
AU2007313487B2 (en) * 2006-04-04 2011-11-03 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for protecting troops
DE102006047634A1 (de) * 2006-10-09 2008-04-10 Robert Bosch Gmbh Verfahren zum Erfassen eines Umfelds eines Fahrzeugs
DE102006052083B4 (de) * 2006-11-04 2009-06-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Vorrichtung zur Umfeldüberwachung eines Fahrzeuges
US20090115847A1 (en) * 2007-11-07 2009-05-07 Anderson Leroy E Electronic automobile proximity viewer
AU2009245508B2 (en) * 2008-04-18 2013-05-16 Bae Systems Plc Improvements in LIDARs
DE102009057336A1 (de) 2008-12-12 2010-07-22 Technische Universität München Vorrichtung zur Überwachung eines Raumbereichs außerhalb eines Fahrzeugs
US20120069153A1 (en) * 2009-05-25 2012-03-22 Panasonic Corporation Device for monitoring area around vehicle
JP5503259B2 (ja) * 2009-11-16 2014-05-28 富士通テン株式会社 車載照明装置、画像処理装置及び画像表示システム
US8384534B2 (en) * 2010-01-14 2013-02-26 Toyota Motor Engineering & Manufacturing North America, Inc. Combining driver and environment sensing for vehicular safety systems
US10643467B2 (en) 2010-03-28 2020-05-05 Roadmetric Ltd. System and method for detecting and recording traffic law violation events
JP5269026B2 (ja) * 2010-09-29 2013-08-21 日立建機株式会社 作業機械の周囲監視装置
US8836784B2 (en) 2010-10-27 2014-09-16 Intellectual Ventures Fund 83 Llc Automotive imaging system for recording exception events
DE102010064080A1 (de) 2010-12-23 2012-06-28 Robert Bosch Gmbh Kameraabasiertes Fahrerassistenzsystem für ein Fahrzeug
KR101315218B1 (ko) * 2011-08-02 2013-10-08 엘지전자 주식회사 단말기 및 그 단말기에서 신호등의 신호 정보를 출력하기 위한 방법
GB2494414A (en) * 2011-09-06 2013-03-13 Land Rover Uk Ltd Terrain visualisation for vehicle using combined colour camera and time of flight (ToF) camera images for augmented display
DE102012000630B4 (de) * 2012-01-14 2020-08-13 Volkswagen Aktiengesellschaft System zur Erfassung eines Hindernisses für ein Fahrzeug sowie Fahrzeug mit einem System zur Erfassung eines Hindernisses
SE536586C2 (sv) * 2012-07-02 2014-03-11 Scania Cv Ab Anordning och förfarande för att bedöma olycksrisk vid framförande av ett fordon
EP2789741B2 (de) * 2013-04-12 2018-12-26 Joseph Vögele AG Straßenfertiger mit einer Thermographievorrichtung
DE102013210591A1 (de) * 2013-06-07 2014-12-11 Continental Automotive Gmbh Bewegungserkennung eines fahrzeugs mittels mehrerer kameras
DE102014211543A1 (de) 2013-06-21 2014-12-24 Ifm Electronic Gmbh Verfahren und Anordnung zur Erkennung von Gesten in einer Fahrzeugumgebung
FR3019279B1 (fr) 2014-03-28 2018-06-22 Safran Electronics & Defense Tourelleau optronique arme
DE102014013431A1 (de) 2014-09-10 2016-03-24 Audi Ag Verfahren zum Betreiben eines Kraftwagens und Kraftwagen
JP6623729B2 (ja) * 2015-12-04 2019-12-25 株式会社ソシオネクスト 測距システム、移動体及び部品
DE102018002177A1 (de) * 2018-03-14 2019-09-19 3Dvisionlabs Gmbh System zur visuellen dreidimensionalen Überwachung von Räumen
CN111315938A (zh) * 2018-03-20 2020-06-19 住友建机株式会社 挖土机
US10656647B2 (en) * 2018-06-27 2020-05-19 Aptiv Technologies Limited Verification of vehicle operator awareness before transition from autonomous-mode to manual-mode
KR20210030523A (ko) * 2019-09-09 2021-03-18 현대자동차주식회사 차량 및 그 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949331A (en) * 1993-02-26 1999-09-07 Donnelly Corporation Display enhancements for vehicle vision system
JP2000016181A (ja) * 1998-07-01 2000-01-18 Tokai Rika Co Ltd カメラ付ドアミラー及び車両周辺認識システム
JP2000128031A (ja) * 1998-08-21 2000-05-09 Sumitomo Electric Ind Ltd ドライブレコ―ダ、安全運転支援システムおよび盗難防止システム
US6150930A (en) * 1992-08-14 2000-11-21 Texas Instruments Incorporated Video equipment and method to assist motor vehicle operators
EP1158473A2 (de) * 2000-05-23 2001-11-28 Sharp Kabushiki Kaisha Umgebendes Überwachungssystem für bewegliche Körper, wie Kraftfahrzeug oder Zug

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675326A (en) * 1990-04-11 1997-10-07 Auto-Sense, Ltd. Method of determining optimal detection beam locations using reflective feature mapping
FR2674198B1 (fr) 1991-03-22 1993-05-28 Renault Procede et dispositif d'amelioration de la vision automobile de nuit.
US5381072A (en) 1992-02-25 1995-01-10 Varian Associates, Inc. Linear accelerator with improved input cavity structure and including tapered drift tubes
JPH0668989U (ja) * 1993-03-12 1994-09-27 クラリオン株式会社 後方監視カメラシステム
JPH07159190A (ja) * 1993-12-09 1995-06-23 Zanabui Informatics:Kk 車載用音響装置統合システム
JP3431678B2 (ja) 1994-02-14 2003-07-28 三菱自動車工業株式会社 車両用周囲状況表示装置
US5473364A (en) 1994-06-03 1995-12-05 David Sarnoff Research Center, Inc. Video technique for indicating moving objects from a movable platform
FR2730035B1 (fr) 1995-01-30 1997-04-18 Valeo Vision Projecteur infrarouge pour systeme d'aide a la vision pour vehicule automobile et systeme d'aide a la vision le comportant
JP3630833B2 (ja) 1996-03-28 2005-03-23 富士重工業株式会社 車輛の外界監視装置用カメラ
JPH11205817A (ja) 1998-01-13 1999-07-30 Nippon Hoso Kyokai <Nhk> 広視野画像作成・表示システム
DE19801884A1 (de) 1998-01-20 1999-07-22 Mannesmann Vdo Ag Überwachungssystem für Fahrzeuge
JP3600422B2 (ja) 1998-01-30 2004-12-15 株式会社リコー ステレオ画像表示方法及び装置
JP2000225970A (ja) * 1998-11-30 2000-08-15 Tuner Kk 車載用画像記録システム
DE19932779A1 (de) 1999-07-14 2001-01-25 Daimler Chrysler Ag Rückfahrhilfe
WO2001085491A1 (en) * 2000-05-08 2001-11-15 Automotive Technologies International, Inc. Vehicular blind spot identification and monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150930A (en) * 1992-08-14 2000-11-21 Texas Instruments Incorporated Video equipment and method to assist motor vehicle operators
US5949331A (en) * 1993-02-26 1999-09-07 Donnelly Corporation Display enhancements for vehicle vision system
JP2000016181A (ja) * 1998-07-01 2000-01-18 Tokai Rika Co Ltd カメラ付ドアミラー及び車両周辺認識システム
JP2000128031A (ja) * 1998-08-21 2000-05-09 Sumitomo Electric Ind Ltd ドライブレコ―ダ、安全運転支援システムおよび盗難防止システム
EP1158473A2 (de) * 2000-05-23 2001-11-28 Sharp Kabushiki Kaisha Umgebendes Überwachungssystem für bewegliche Körper, wie Kraftfahrzeug oder Zug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 04 31 August 2000 (2000-08-31) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913089B2 (en) 2002-06-12 2005-07-05 Black & Decker Inc. Hammer
EP1375253A2 (de) * 2002-06-18 2004-01-02 DaimlerChrysler AG Verfahren zur Überwachung des Innen-bzw.Aussenraums eines Fahrzeugs sowie ein Fahrzeug mit wenigstens einer Rundsichtkamera
EP1375253A3 (de) * 2002-06-18 2005-04-13 DaimlerChrysler AG Verfahren zur Überwachung des Innen-bzw.Aussenraums eines Fahrzeugs sowie ein Fahrzeug mit wenigstens einer Rundsichtkamera
EP1767415A1 (de) * 2005-09-26 2007-03-28 Hella KGaA Hueck & Co. Überwachungseinrichtung für den Innenraum eines Kraftfahrzeugs
EP2070774A1 (de) * 2007-12-14 2009-06-17 Visiocorp Patents S.à.r.l. Sicherheitssystem und Verfahren zur Ableitung eines Sicherheitssignals
US8140226B2 (en) 2007-12-14 2012-03-20 Smr Patents S.A.R.L. Security system and a method to derive a security signal
EP2555178A1 (de) * 2011-08-04 2013-02-06 MAN Truck & Bus AG Verfahren zum Erfassen von Objekten seitlich eines Nutzfahrzeugs und Nutzfahrzeug mit einem Erfassungssystem zum Ausführen des Verfahrens

Also Published As

Publication number Publication date
US20040075544A1 (en) 2004-04-22
EP1339561B1 (de) 2007-07-25
DE50112771D1 (de) 2007-09-06
EP1339561A1 (de) 2003-09-03
JP2004514384A (ja) 2004-05-13
DE10059313A1 (de) 2002-06-13
US7362215B2 (en) 2008-04-22
JP3844737B2 (ja) 2006-11-15

Similar Documents

Publication Publication Date Title
EP1339561B1 (de) Anordnung zur überwachung des umfelds eines fahrzeugs
DE102004035842B4 (de) Duales ungleichartiges erfassendes Objektdetektions- und Zielerfassungssystem
EP2426543B1 (de) Fahrerassistenzvorrichtung für ein Fahrzeug und Verfahren zur Sichtbarmachung der Umgebung eines Fahrzeuges
DE102018111265A1 (de) Fahrzeugumgebungs-abbildungssysteme und -verfahren
DE102017115318A1 (de) Heads-Up-Anzeige zum Beobachten von Fahrzeugwahrnehmungsaktivität
EP1567888B1 (de) Verfahren zur erfassung der vorausliegenden umgebung eines strassenfahrzeugs mittels eines umgebungserfassungssystems
DE102008001991A1 (de) System zur Vermeidung von Seitenkollisionen
EP2710573B1 (de) Verfahren und vorrichtung zum erkennen eines möglichen kollisionsobjektes
DE112014004963B4 (de) An einem Fahrzeug installierte Anzeigevorrichtung
DE102012223481A1 (de) Vorrichtung und Verfahren zum Verfolgen der Position eines peripheren Fahrzeugs
DE10257484B4 (de) Vorrichtung und Verfahren zum Darstellen der Umgebung eines Fahrzeugs
DE102018212655A1 (de) Erkennung der Bewegungsabsicht eines Fußgängers aus Kamerabildern
DE102020002994A1 (de) Verfahren zur Messung eines Abstandes zwischen einem Objekt und einem optischen Sensor, Steuereinrichtung zur Durchführung eines solchen Verfahrens, Abstandsmessvorrichtung mit einer solchen Steuereinrichtung und Kraftfahrzeug mit einer solchen Abstandsmessvorrichtung
EP3044727B1 (de) Verfahren und vorrichtung zur objekterkennung aus tiefenaufgelösten bilddaten
DE102009014437B4 (de) Objekterkennungssystem und -verfahren
DE102019108610A1 (de) Verbesserung des fahrzeugverhaltens unter verwendung von informationen aus anderen fahrzeugleuchten
DE102021212088B4 (de) Rückfahrkamerasystem für ein anhängerkupplungssystem und verfahren zum erzeugen einer darstellung in heckrichtung eines fahrzeuges
WO2014032903A1 (de) Verfahren und informationssystem zum filtern von objektinformationen
DE112020006319T5 (de) Fahrassistenzvorrichtung, fahrassistenzverfahren und programm
DE102013007961A1 (de) Optisches Messsystem für ein Fahrzeug
DE102019200099A1 (de) Sensorvorrichtung für ein Ego-Fahrzeug, Fahrerassistenzvorrichtung und Fahrzeug mit einer solchen Sensorvorrichtung
DE102020210055A1 (de) Verfahren und Vorrichtung zur Innenraumüberwachung eines Fahrzeugs
EP3934929A1 (de) Verfahren zur klassifizierung von objekten innerhalb eines kraftfahrzeugs
DE102020215652A1 (de) Fahrzeug-bildverarbeitungssystem
DE102020204957A1 (de) Fahrzeugumgebungsüberwachungsvorrichtung und Fahrzeugumgebungsüberwachungsverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001998458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002545938

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001998458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10432883

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001998458

Country of ref document: EP