WO2002041476A1 - Brushless multiphase ac electric machine and its energization controller - Google Patents

Brushless multiphase ac electric machine and its energization controller Download PDF

Info

Publication number
WO2002041476A1
WO2002041476A1 PCT/JP2001/009718 JP0109718W WO0241476A1 WO 2002041476 A1 WO2002041476 A1 WO 2002041476A1 JP 0109718 W JP0109718 W JP 0109718W WO 0241476 A1 WO0241476 A1 WO 0241476A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
electric machine
brushless
rotor
magnetic pole
Prior art date
Application number
PCT/JP2001/009718
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuo Ota
Seiji Onozawa
Kuniaki Ikui
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to BR0115419-2A priority Critical patent/BR0115419A/en
Priority to KR10-2003-7006618A priority patent/KR100521861B1/en
Publication of WO2002041476A1 publication Critical patent/WO2002041476A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0859Circuits or control means specially adapted for starting of engines specially adapted to the type of the starter motor or integrated into it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention relates to a brushless multi-phase AC electric machine and an energization control device thereof, and more particularly to a brushless multi-phase AC electric machine suitable for advancing lead angle and an energization control device thereof.
  • an abduction type permanent magnet type rotary electric motor in which a cylindrical rotor rotates around the outer periphery of a stator is known.
  • an auxiliary pole portion is provided between adjacent permanent magnets in order to alleviate the distortion of the magnetic flux distribution between the rotor and the stator to prevent the occurrence of torque vibration.
  • the formed permanent magnet type rotating electric machine is disclosed, for example, in Japanese Patent Application Laid-Open No. Hei 8-2757547.
  • auxiliary pole portion In a conventional permanent magnet type rotating electric machine having an auxiliary pole portion, since the auxiliary pole portion also functions as a part of the permanent magnet, the energization timing of the rotating electric machine is limited to the width of the auxiliary pole portion in the rotation direction. It is desirable to advance the angle by a corresponding angle.
  • the standard energization timing (0 ° advance) is detected as a change in the detection signal of the magnetic pole sensor, and the advance position is obtained by calculation based on the standard energization timing. Insufficient number The advance position could not be accurately detected in the stable low rotation range.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a brushless multi-phase AC electric machine and an energization control device for the same, which can precisely advance a phase current supplied to each phase by a desired angle. Is to do. Disclosure of the invention
  • the present invention is characterized in that the following means are taken.
  • a brushless multi-phase AC electric machine comprising: a magnetic pole sensor for detecting a rotation position of a rotor, wherein a phase current supplied to each phase is advanced by a predetermined amount based on a detection signal of the magnetic pole sensor.
  • the sensor is arranged so that the current application timing of the advanced phase current is coincident with the change timing of the magnetic field detected by the magnetic pole sensor.
  • one rotation of the motor is divided into multiple stages, and the current control of the brushless multi-phase AC machine that controls each phase current on a stage-by-stage basis.
  • the device is characterized in that the phase of the phase current supplied to each phase is advanced by half the angle corresponding to one stage.
  • the detection signal of the magnetic pole sensor changes in response to this, so that the switching timing of the advance energization is determined by the magnetic pole sensor.
  • the detection can be accurately performed based on the detection signal of the detection.
  • FIG. 1 is an overall side view of a starter type motorcycle to which the present invention is applied.
  • FIG. 2 is a cross-sectional view of the swing cut of FIG. 1 along the crankshaft.
  • Fig. 3 is a partially broken plan view of the starter / generator (permanent magnet type rotary electric motor) in a plane perpendicular to the rotation axis (crankshaft).
  • FIG. 4 is a side sectional view of FIG.
  • FIG. 5 is a plan view of the rotor yoke.
  • FIG. 6 is a side view of the rotor yoke.
  • FIG. 7 is a partially enlarged view of the rotor yoke.
  • FIG. 8 is a diagram for explaining a function (at the time of electric power operation) of a gap provided in the rotor yoke.
  • FIG. 9 is a diagram for explaining the function (at the time of power generation) of a gap provided in the rotor yoke.
  • FIG. 10 is a partially enlarged view of FIG.
  • FIG. 11 is a partially enlarged view of FIG.
  • FIG. 12 is a block diagram of a control system of the starter / generator.
  • FIG. 13 is a diagram schematically illustrating the operation timing of energization control in the present embodiment.
  • FIG. 14 is a signal waveform diagram in a case where 120 ° forward rotation energization is performed at a 5 ° lead angle.
  • FIG. 15 is a signal waveform diagram in the case where 180 ° forward rotation energization is performed at a 10 ° advance angle.
  • FIG. 16 is a signal waveform diagram when the 120 ° reverse rotation energization is performed with a 5 ° advance angle.
  • FIG. 1 is an overall side view of a scooter type motorcycle to which a vehicle power generation control device of the present invention is applied.
  • the front part of the vehicle body and the rear part of the vehicle body are connected via a low floor part 4, and the body frame forming the skeleton of the vehicle body is generally composed of a down tube 6 and a main pipe 7.
  • a fuel tank and a storage box (both not shown) are supported by a main pipe 7, and a seat 8 is disposed above the main pipe 7.
  • a handle 11 is provided above and supported by a steering head 5, a front fork 12 extends below, and a front wheel FW is supported at its lower end.
  • the upper part of the handle 11 is covered with a handle bar 13 which also serves as an instrument panel.
  • a bracket 15 protrudes from the lower end of the rising portion of the main pipe 7, and the hanger bracket 18 of the swingout 2 is swingably connected to the bracket 15 via a link member 16. Supported.
  • the swing unit 2 is equipped with a single-cylinder two-stroke internal combustion engine E in front of the unit.
  • a belt-type continuously variable transmission 10 is formed from the internal combustion engine E to the rear, and a rear wheel RW is supported by a reduction mechanism 9 provided at a rear portion thereof via a centrifugal clutch.
  • the rear cushion 3 is interposed between the upper end of the speed reduction mechanism 9 and the upper bent portion of the main pipe 7.
  • a carburetor 17 connected to an intake pipe 19 extending from the internal combustion engine E and an air cleaner 14 connected to the carburetor 17 are provided in front of the swing unit 2.
  • FIG. 2 is a cross-sectional view of the swing unit 2 taken along the crankshaft 201, and the same reference numerals as those described above denote the same or equivalent parts.
  • the swing unit 2 is covered by a crankcase 202 formed by combining left and right crankcases 202L and 202R, and the crankshaft 201 is fixed to the crankcase 202R.
  • the bearings 208 and 209 are rotatably supported.
  • a crank (not shown) is connected to the crankshaft 201 via a crankpin 21.
  • the left crankcase 202 L also serves as a belt-type continuously variable transmission case, and a belt drive pulley 210 is rotatably mounted on the crankshaft 201 extending to the left crankcase 202 L.
  • the belt drive pulley 210 consists of a fixed pulley half 21 1 L and a movable pulley half 210 R, and the fixed pulley half 210 L is the left end of the crankshaft 201.
  • To the right side of the boss 211, and the movable bulge half 210R is spline-fitted to the crankshaft 201, and approaches and separates from the fixed pulley half 210L.
  • a V-belt 2 12 is wound between the two pulley halves 210 L and 210 R.
  • a cam plate 215 is fixed to the crankshaft 201, and a slide piece 215 a provided on the outer peripheral end thereof is connected to the movable pulley half 221. It is slidably engaged with a cam plate sliding boss portion 210a formed in the axial direction at the outer peripheral end of the 0R.
  • the cam plate 2 15 of the movable pulley half 2 1 OR has a tapered surface that is inclined toward the outer periphery toward the cam plate 2 15 side, and the tapered surface and the movable pulley half 2 10 R A dry weight pole 2 16 is housed in the space between them.
  • a driven pulley (not shown) corresponding to the belt drive pulley 210 is provided at the rear of the vehicle, and the V-belt 212 is wound around the driven pulley.
  • the power of the internal combustion engine E is automatically adjusted and transmitted to the centrifugal clutch, and drives the rear wheels RW via the speed reduction mechanism 9 and the like.
  • a starter / generator 1 combining a starter motor and an AC generator is provided in the right crankcase 202R.
  • an outer rotor 60 is fixed to a tapered portion at the tip of a crankshaft 201 by screws 25 3.
  • the inner stator 50 disposed inside the outer rotor 60 is screwed and supported on the crankcase 202 by bolts 279.
  • the configuration of the starter / generator 1 will be described later in detail with reference to FIGS.
  • the fan 280 has its central conical portion 280a affixed to the outer rotor 60 by bolts 246 at the skirt, and the fan 280 is connected to the fan power 8 Covered by 1
  • FIGS. 3 and 4 are a partially broken plan view and a side sectional view of the starter / generator 1 (permanent magnet type rotary motor) taken along a plane perpendicular to the rotation axis (crankshaft 201).
  • 6 is a plan view of the rotor yoke and an enlarged view of a portion thereof, and the same reference numerals as those described above denote the same or equivalent parts.
  • the starter / generator 1 of the present embodiment includes a stator 50 and an outer rotor 60 that rotates around the outer periphery of the stator 50.
  • the rotor yoke 61 is formed by laminating ring-shaped silicon steel sheets (thin plates) in a substantially cylindrical shape, and as shown in FIGS.
  • N-pole permanent magnets 6 2 N and S-pole permanent magnets 6 2 S alternately inserted through a plurality of openings 6 11 provided in the circumferential direction
  • the rotor yoke 61 is connected to the crankshaft 201 by a power-up rotor case 63.
  • the rotor case 63 has a claw portion 63 a at a circumferential end thereof, and the claw portion 63 a is bent inward to pinch the laminated structure rotor shaft 61 in the axial direction, and Each of the permanent magnets 62 (62N, 62S) penetrating into the opening 611 of the rotor yoke 61 is held at a predetermined position in the rotor yoke 61.
  • the stator 50 is configured by laminating key steel plates (thin plates), and includes a stator core 51 and a stator salient pole 52 as shown in FIG.
  • a stator winding 53 is wound on each stator salient pole 52 in a single-pole concentrated manner, and the main surface of the stator 50 is covered with a protective cover 71.
  • the rotor yoke 61 has one or two openings 611 at circumferentially spaced intervals of 30 degrees, into which the permanent magnets 62 are inserted. ing. Between the adjacent openings 6 1 1 is used as the auxiliary pole 6 1 3 Function.
  • a permanent magnet 62 having a substantially drum-shaped cross section is inserted into each of the openings 6 11.
  • the shape of the opening 611 is not the same as the cross-sectional shape of the permanent magnet 62, and when the permanent magnet 62 is inserted into the opening 611, each permanent magnet 62 First gaps 6 12 are formed on both sides along the circumferential direction of the magnet 62, and second gaps 6 14 are formed on both sides of each permanent magnet 62 on the stator side.
  • FIG. 8 is a diagram showing a magnetic flux density distribution when the starter / generator device 1 functions as a starter motor
  • FIG. 9 shows a magnetic flux density distribution when the device 1 functions as a generator.
  • FIG. When the starter / generator device 1 functions as a starter motor, an exciting current is supplied from the battery 42 to each stator winding 53 via the control unit 40, as shown in FIG. Lines of magnetic force generated in the radial direction from the stator salient poles 52 N excited in the stator exit from the stator-side surface of the S-pole permanent magnet 62 S to the back surface, and most of the core portions 615 and rotor cores of the rotor yoke 61. through the commutating pole portion 6 1 3 returns to the adjacent scan is magnetized to the S pole stator salient pole 5 2 S, via the stator core 5 1 the N pole excited stator salient poles 5 2 N.
  • air gaps 6 12 are formed on both sides along the circumferential direction of each permanent magnet 6 2, and the leakage magnetic flux from the side of each permanent magnet 6 2 to the auxiliary pole 6 1 Most of the lines of magnetic force escape from each permanent magnet 62 to the core section 615 of the rotor yoke 61 and then reach the stator 50 via the auxiliary pole section 613.
  • the outer rotor 60 and the stator Since the vertical component of the magnetic flux passing through the air gap between 50 and 50 increases, the driving torque can be increased as compared with the case where the air gap 6 12 is not provided.
  • the slits 614 for limiting the magnetic path in the circumferential direction are also formed on the stator side at both ends of the permanent magnet 62, the slits pass through the inside of the rotor yoke 61. Leakage magnetic flux is also reduced.
  • one of the slits 6 14 (6 14 A) passes through the auxiliary pole portion 6 13 of the rotor yoke 61 This prevents the magnetic flux B 1 from being guided to the inner circumferential portion 6 16 of the rotor yoke 61, and acts to efficiently guide most of the magnetic flux B 1 to the stator salient poles 52 S. Also, the other of the slits 6 14 (6 14 B) transfers the magnetic flux B 2 passing from the permanent magnet 62 N through the inner circumferential portion 616 of the rotor yoke 61 to the auxiliary pole portion 613.
  • the starter / generator apparatus 1 when the starter / generator apparatus 1 is to function as a generator, as shown in FIG. 9, the magnetic flux generated from each permanent magnet 62 forms a closed magnetic path together with the stator salient pole and the stator core. Therefore, a generated current corresponding to the number of revolutions of the rotor can be generated in the stator winding.
  • the regulation voltage by the regulator 100 described later is set to 14.5 V, and the output voltage when the starter / generator 1 functions as a generator is set to the regulation voltage. When this happens, the phase current is short-circuited.
  • the air gap 612 and the slit 614 are provided between the outer rotor 60 and the stator 50.
  • the magnetic flux perpendicularly crossing the air gap increases. Therefore, the drive torque when functioning as a starter motor can be increased without increasing the driven torque when the permanent magnet type rotary motor functions as a generator.
  • FIG. 12 is a block diagram of a control system of the starter / generator 1, and the same reference numerals as those described above denote the same or equivalent parts.
  • the ECU includes a three-phase full-wave rectifier 300 that performs full-wave rectification of the three-phase alternating current generated by the generator function of the starter / generator 1.
  • the output of the full-wave rectifier 300 is a regulated voltage (regulator operation).
  • a regulator 100 for limiting the voltage to, for example, 14.5 V) is provided.
  • the ECU has a magnetic pole sensor 29 (29U, 29V, 29W) that detects the rotor angle, an ignition coil 21, a slot sensor 23, a fuel sensor 24, a seat switch 25, and an eye. Dolswitch 26, cooling water temperature sensor 2 7 And the ignition pulser 30 are connected, and a detection signal is input to the ECU from each unit.
  • An ignition plug 22 is connected to the secondary side of the ignition coil 21.
  • the ECU has a starter relay 34, starter switch 35, stop switches 36, 37, standby indicator 38, fuel indicator 39, speed sensor 40, motorcycle starter 41, and headlight 42 connected. Is done.
  • the headlight 42 is provided with a dimmer switch 43.
  • a current is supplied from a battery 46 to each of the above-described parts via a main fuse 44 and a main switch 45. Note that the notch 46 is directly connected to the ECU by the starter relay 34, but not through the main switch 45.
  • one rotation of the rotor is divided into a plurality of stages (# 0, # 1, # 2,%) Based on the detection signals of the magnetic pole sensors 29U, 29V, and 29W, and each phase current is divided. Control is performed on a stage-by-stage basis.
  • 60 ° (mechanical angle) of the rotor is set to 360 ° of electrical angle, which is divided into six stages (# 0 to # 5). Therefore, one stage is equivalent to a mechanical angle of 10 °.
  • the motor rotates forward (reverse rotation) with an electrical angle of 120 ° in electrical angle of 5 ° (mechanical angle) when the rotor rotates in the reverse direction.
  • FIG. 14 is a signal waveform diagram at 120 ° forward rotation and 5 ° advance
  • Fig. 15 is a signal waveform diagram at 180 ° forward rotation and 10 ° advance
  • Fig. 16 is reverse rotation.
  • FIG. 12 is a signal waveform diagram at 120 ° conduction and 5 ° lead angle.
  • each of the magnetic pole sensors 29 U and 29 V 2 detects a change in the magnetic field, and switches the energization timing to each phase when the detection signal is displaced.
  • the timing at which the detection signal of the V-phase sensor (magnetic pole sensor 29 V) falls that is, stage # 0
  • the positive energization to the V phase is started and the positive energization to the U phase is stopped.
  • the timing when the detection signal of the U-phase sensor (magnetic pole sensor 29U) rises that is, at the timing of switching from stage # 1 to stage # 2
  • the reverse-direction energization to the U-phase starts and the W-phase Has been stopped in the reverse direction.
  • each of the magnetic pole sensors 29 U, 29 V, and 29 W detects a change in the magnetic field at the timing of switching the advance of each phase current, and displaces the output of the detection signal.
  • the switching timing of the energization for advancing the phase current coincides with the displacement timing of the detection signal of the magnetic pole sensor 29 in this embodiment.
  • the magnetic pole sensors are arranged at predetermined positions, it is possible to accurately control the energization when the phase current is advanced.
  • the advance angle is set to 5 °, which is half of 10 °, which is the angle corresponding to one stage, so that the advance angle of 5 ° in the reverse rotation of 120 ° shown in FIG.
  • the timing of switching the advance angle energization can be matched with the displacement timing of the detection signal of the magnetic pole sensor. Therefore, according to the present embodiment, the energization control for advancing the phase current can be accurately performed not only during normal rotation but also during reverse rotation.
  • the timing of switching the energization control during the advance angle control is detected by the magnetic pole sensor even when the advance angle is 5 ° when the reverse rotation is 120 °.
  • the timing can be matched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

A brushless multiphase AC electric machine suitable for advance energization and its energization controller. In a brushless multiphase AC electric machine comprising a magnetic pole sensor (29) which senses the rotational position of a rotor (60) and in which a phase current supplied to each phase is advanced by a predetermined amount on the basis of a signal from the magnetic pole sensor, the magnetic pole sensor (29) is disposed so that the switching timing of the phase current energized by advance may be coincident with the variation timing of a magnetic field sensed by the magnetic pole sensor.

Description

明 細 書 ブラシレス多相交流電機おょぴその通電制御装置 技術分野  Description Brushless multi-phase AC electric machine
本発明は、 ブラシレスの多相交流電機おょぴその通電制御装置に係り、 特に、 進角通電に適したブラシレス多相交流電機およびその通電制御装 置に関する。 背景技術  The present invention relates to a brushless multi-phase AC electric machine and an energization control device thereof, and more particularly to a brushless multi-phase AC electric machine suitable for advancing lead angle and an energization control device thereof. Background art
従来、 内燃機関用のスタータモータとジェネレータとは個別に装備さ れていたが、 それぞれの機能を一体化させたスタータ兼ジエネレータ装 置が、 例えば特開平 1 0— 1 4 8 1 4 2号公報に開示されている。  Conventionally, a starter motor and a generator for an internal combustion engine have been separately provided. However, a starter / generator device that integrates the respective functions is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-148814. Is disclosed.
—方、 内燃機関用のスタータモータとして、 ステータの外周を円筒状 のロータが回転する外転型の永久磁石式回転電動機が知られている。 ま た、 このような永久磁石式回転電機において、 ロータおよぴステータ間 での磁束分布の歪みを緩和させてトルク振動の発生を防止するために、 隣接する永久磁石の間に補極部を形成した永久磁石式回転電機が、 例え ば特開平 8— 2 7 5 4 7 6号公報に開示されている。  On the other hand, as a starter motor for an internal combustion engine, an abduction type permanent magnet type rotary electric motor in which a cylindrical rotor rotates around the outer periphery of a stator is known. In addition, in such a permanent magnet type rotating electric machine, an auxiliary pole portion is provided between adjacent permanent magnets in order to alleviate the distortion of the magnetic flux distribution between the rotor and the stator to prevent the occurrence of torque vibration. The formed permanent magnet type rotating electric machine is disclosed, for example, in Japanese Patent Application Laid-Open No. Hei 8-2757547.
補極部を備えた従来の永久磁石式回転電機では、 補極部が永久磁石の 一部としても機能することから、 当該回転電機への通電タイミングは、 前記補極部の回転方向に関する幅に相当する角度だけ進角させることが 望ましい。  In a conventional permanent magnet type rotating electric machine having an auxiliary pole portion, since the auxiliary pole portion also functions as a part of the permanent magnet, the energization timing of the rotating electric machine is limited to the width of the auxiliary pole portion in the rotation direction. It is desirable to advance the angle by a corresponding angle.
ここで、 上記した従来技術では、 標準通電タイミング (0 ° 進角) を 磁極センサの検知信号の変化として検知し、 当該標準通電タイミングに 基づいて進角位置を演算により求めていたため、 特にロータ回転数が不 安定となる低回転域では、 進角位置を正確に検知することができなかつ た。 Here, in the above-described conventional technology, the standard energization timing (0 ° advance) is detected as a change in the detection signal of the magnetic pole sensor, and the advance position is obtained by calculation based on the standard energization timing. Insufficient number The advance position could not be accurately detected in the stable low rotation range.
本発明の目的は、 上記した従来技術の課題を解決し、 各相に供給する 相電流を所望の角度だけ正確に進角できるようにしたブラシレス多相交 流電機おょぴその通電制御装置を提供することにある。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a brushless multi-phase AC electric machine and an energization control device for the same, which can precisely advance a phase current supplied to each phase by a desired angle. Is to do. Disclosure of the invention
上記した目的を達成するために、 本発明は、 以下のような手段を講じ た点に特徴がある。  In order to achieve the above object, the present invention is characterized in that the following means are taken.
(1)ロータの回転位置を検知する磁極センサを備え、 各相へ供給される 相電流が、 前記磁極センサの検知信号に基づいて所定量だけ進角される ブラシレス多相交流電機において、 前記磁極センサを、 前記進角通電さ れる相電流の通電タイミングが当該磁極センサにより検知される磁界の 変化タイミングと一致するように配置したことを特徴とする。  (1) A brushless multi-phase AC electric machine comprising: a magnetic pole sensor for detecting a rotation position of a rotor, wherein a phase current supplied to each phase is advanced by a predetermined amount based on a detection signal of the magnetic pole sensor. The sensor is arranged so that the current application timing of the advanced phase current is coincident with the change timing of the magnetic field detected by the magnetic pole sensor.
(2) ブラシレス多相交流電機の各磁極センサの検知信号に基づいて口 ータの 1回転を複数のステージに分割し、 各相電流をステージ単位で制 御するブラシレス多相交流電機の通電制御装置において、 各相へ供給す る相電流の位相を 1ステージ相当角の半分の角度だけ進角させたことを 特徴とする。  (2) Based on the detection signal of each magnetic pole sensor of the brushless multi-phase AC machine, one rotation of the motor is divided into multiple stages, and the current control of the brushless multi-phase AC machine that controls each phase current on a stage-by-stage basis. The device is characterized in that the phase of the phase current supplied to each phase is advanced by half the angle corresponding to one stage.
上記した特徴(1) によれば、 ロータの回転位置が進角通電の切り替え タイミングに達すると、 これに応答して磁極センサの検知信号が変化す るので、 進角通電の切り替えタイミングを磁極センサの検知信号に基づ いて正確に検知することができる。  According to the above feature (1), when the rotation position of the rotor reaches the switching timing of the advance energization, the detection signal of the magnetic pole sensor changes in response to this, so that the switching timing of the advance energization is determined by the magnetic pole sensor. The detection can be accurately performed based on the detection signal of the detection.
上記した特徴(2) によれば、 ロータの正転時のみならず逆転時にも、 回転位置が進角通電の切り替えタイミングに達すると、 これに応答して 磁極センサの検知信号が変位するので、 進角通電の切り替えタイミング を正確に検知することができる。 図面の簡単な説明 According to the above feature (2), when the rotation position reaches the switching timing of the advance angle energization not only at the time of normal rotation of the rotor but also at the time of reverse rotation, the detection signal of the magnetic pole sensor is displaced in response thereto, Switching timing of lead angle energization Can be accurately detected. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明を適用したスタータ型自動二輪車の全体側面図であ る。  FIG. 1 is an overall side view of a starter type motorcycle to which the present invention is applied.
第 2図は、 第 1図のスイングュ-ッ トのクランク軸に沿った断面図で ある。  FIG. 2 is a cross-sectional view of the swing cut of FIG. 1 along the crankshaft.
第 3図は、 スタータ兼ジェネレータ (永久磁石式回転電動機) の回転 軸 (クランク軸) に垂直な面での一部破断平面図である。  Fig. 3 is a partially broken plan view of the starter / generator (permanent magnet type rotary electric motor) in a plane perpendicular to the rotation axis (crankshaft).
第 4図は、 第 3図の側面断面図である。  FIG. 4 is a side sectional view of FIG.
第 5図は、 ロータヨ^ "クの平面図である。  FIG. 5 is a plan view of the rotor yoke.
第 6図は、 ロータヨークの側面図である。  FIG. 6 is a side view of the rotor yoke.
第 7図は、 ロータヨークの部分拡大図である。  FIG. 7 is a partially enlarged view of the rotor yoke.
第 8図は、 ロータヨークに設けた空隙部の機能 (電動時) を説明する ための図である。  FIG. 8 is a diagram for explaining a function (at the time of electric power operation) of a gap provided in the rotor yoke.
第 9図は、 ロータヨークに設けた空隙部の機能 (発電時) を説明する ための図である。  FIG. 9 is a diagram for explaining the function (at the time of power generation) of a gap provided in the rotor yoke.
第 1 0図は、 第 9図の部分拡大図である。  FIG. 10 is a partially enlarged view of FIG.
第 1 1図は、 第 1 0図の部分拡大図である。  FIG. 11 is a partially enlarged view of FIG.
第 1 2図は、 スタータ兼ジェネレータの制御系のブロック図である。 第 1 3図は、 本実施形態における通電制御の動作タイミングを模式的 に表現した図である。  FIG. 12 is a block diagram of a control system of the starter / generator. FIG. 13 is a diagram schematically illustrating the operation timing of energization control in the present embodiment.
第 1 4図は、 1 2 0 ° 正転通電を 5 ° 進角で実行した場合の信号波形 図である。  FIG. 14 is a signal waveform diagram in a case where 120 ° forward rotation energization is performed at a 5 ° lead angle.
第 1 5図は、 1 8 0 ° 正転通電を 1 0 ° 進角で実行した場合の信号波 形図である。 第 1 6図は、 1 2 0 ° 逆転通電を 5 ° 進角で実行した場合の信号波形 図である。 発明を実施するための最良の形態 FIG. 15 is a signal waveform diagram in the case where 180 ° forward rotation energization is performed at a 10 ° advance angle. FIG. 16 is a signal waveform diagram when the 120 ° reverse rotation energization is performed with a 5 ° advance angle. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明を詳細に説明する。 図 1は、 本発明の車 両用発電制御装置を適用したスクータ型自動二輪車の全体側面図である。 車体前部と車体後部とは低いフロア部 4を介して連結されており、 車 体の骨格をなす車体フレームは、 概ねダウンチューブ 6とメインパイプ 7とから構成される。 燃料タンクおよび収納ボックス (共に図示せず) はメインパイプ 7により支持され、 その上方にシート 8が配置されてい る。  Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall side view of a scooter type motorcycle to which a vehicle power generation control device of the present invention is applied. The front part of the vehicle body and the rear part of the vehicle body are connected via a low floor part 4, and the body frame forming the skeleton of the vehicle body is generally composed of a down tube 6 and a main pipe 7. A fuel tank and a storage box (both not shown) are supported by a main pipe 7, and a seat 8 is disposed above the main pipe 7.
車体前部では、 ステアリングへッド 5に軸支されて上方にハンドル 1 1が設けられ、 下方にフロントフォーク 1 2が延び、 その下端に前輪 F Wが軸支されている。 ハンドル 1 1の上部は計器板を兼ねたハンドル力 バー 1 3で覆われている。 メインパイプ 7の立ち上がり部下端にはブラ ケッ ト 1 5が突設され、 このブラケッ ト 1 5には、 スィングュ-ット 2 のハンガーブラケット 1 8がリンク部材 1 6を介して揺動自在に連結支 持されている。  At the front of the vehicle body, a handle 11 is provided above and supported by a steering head 5, a front fork 12 extends below, and a front wheel FW is supported at its lower end. The upper part of the handle 11 is covered with a handle bar 13 which also serves as an instrument panel. A bracket 15 protrudes from the lower end of the rising portion of the main pipe 7, and the hanger bracket 18 of the swingout 2 is swingably connected to the bracket 15 via a link member 16. Supported.
スィングュニット 2には、 その前部に単気筒の 2ストローク内燃機関 Eが搭載されている。 この内燃機関 Eから後方にかけてベルト式無段変 速機 1 0が構成され、 その後部に遠心クラッチを介して設けられた減速 機構 9に後輪 R Wが軸支されている。 この減速機構 9の上端とメィンパ ィプ 7の上部屈曲部との間にはリャクッション 3が介装されている。 ス イングユニッ ト 2の前部には内燃機関 Eから延出した吸気管 1 9に接続 された気化器 1 7および同気化器 1 7に連結されるエアクリーナ 1 4が 配設されている。 図 2は、 前記スィングユニット 2をクランク軸 2 0 1に沿って切断し た断面図であり、 前記と同一の符号は同一または同等部分を表している。 スイングユニット 2は、 左右のクランクケース 2 0 2 L、 2 0 2 Rを 合体して構成されるクランクケース 2 0 2に覆われ、 クランク軸 2 0 1 は、 クランクケース 2 0 2 Rに固定された軸受け 2 0 8、 2 0 9により 回転自在に支持されている。 クランク軸 2 0 1には、 クランクピン 2 1 3を介してコンロッ ド (図示せず) が連結されている。 The swing unit 2 is equipped with a single-cylinder two-stroke internal combustion engine E in front of the unit. A belt-type continuously variable transmission 10 is formed from the internal combustion engine E to the rear, and a rear wheel RW is supported by a reduction mechanism 9 provided at a rear portion thereof via a centrifugal clutch. The rear cushion 3 is interposed between the upper end of the speed reduction mechanism 9 and the upper bent portion of the main pipe 7. A carburetor 17 connected to an intake pipe 19 extending from the internal combustion engine E and an air cleaner 14 connected to the carburetor 17 are provided in front of the swing unit 2. FIG. 2 is a cross-sectional view of the swing unit 2 taken along the crankshaft 201, and the same reference numerals as those described above denote the same or equivalent parts. The swing unit 2 is covered by a crankcase 202 formed by combining left and right crankcases 202L and 202R, and the crankshaft 201 is fixed to the crankcase 202R. The bearings 208 and 209 are rotatably supported. A crank (not shown) is connected to the crankshaft 201 via a crankpin 21.
左クランクケース 2 0 2 Lは、 ベルト式無段変速室ケースを兼ねてお り、 左クランクケース 2 0 2 Lまで延びたクランク軸 2 0 1にはベルト 駆動プーリ 2 1 0が回転可能に設けられている。 ベルト駆動プーリ 2 1 0は、 固定側プーリ半体 2 1 ◦ Lと可動側プーリ半体 2 1 0 Rとからな り、 固定側プーリ半体 2 1 0 Lはクランク軸 2 0 1の左端部にボス 2 1 1を介して固着され、 その右側に可動側ブーリ半体 2 1 0 Rがクランク 軸 2 0 1にスプライン嵌合され、 固定側プーリ半体 2 1 0 Lに接近 ·離 反することができる。 両プーリ半体 2 1 0 L、 2 1 O R間には Vベルト 2 1 2が巻き掛けられている。  The left crankcase 202 L also serves as a belt-type continuously variable transmission case, and a belt drive pulley 210 is rotatably mounted on the crankshaft 201 extending to the left crankcase 202 L. Have been. The belt drive pulley 210 consists of a fixed pulley half 21 1 L and a movable pulley half 210 R, and the fixed pulley half 210 L is the left end of the crankshaft 201. To the right side of the boss 211, and the movable bulge half 210R is spline-fitted to the crankshaft 201, and approaches and separates from the fixed pulley half 210L. Can be. A V-belt 2 12 is wound between the two pulley halves 210 L and 210 R.
可動側プーリ半体 2 1 0 Rの右側ではカムプレート 2 1 5がクランク 軸 2 0 1に固着されており、 その外周端に設けたスライ ドピース 2 1 5 aが、 可動側プーリ半体 2 1 0 Rの外周端で軸方向に形成したカムプレ 一ト摺動ボス部 2 1 0 R aに摺動自在に係合している。 可動側プーリ半 体 2 1 O Rのカムプレート 2 1 5は、 外周寄りがカムプレート 2 1 5側 に傾斜したテーパ面を有しており、 該テーパ面と可動プーリ半体 2 1 0 Rとの間の空所にドライウェイ トポール 2 1 6が収容されている。  On the right side of the movable pulley half 210 R, a cam plate 215 is fixed to the crankshaft 201, and a slide piece 215 a provided on the outer peripheral end thereof is connected to the movable pulley half 221. It is slidably engaged with a cam plate sliding boss portion 210a formed in the axial direction at the outer peripheral end of the 0R. The cam plate 2 15 of the movable pulley half 2 1 OR has a tapered surface that is inclined toward the outer periphery toward the cam plate 2 15 side, and the tapered surface and the movable pulley half 2 10 R A dry weight pole 2 16 is housed in the space between them.
クランク軸 2 0 1の回転速度が増加すると、 可動側プーリ半体 2 1 0 Rとカムプレート 2 1 5との間にあって共に回転する前記ドライウェイ トポール 2 1 6が、 遠心力により遠心方向に移動し、 可動側プーリ半体 2 1 O Rはドライウェイ トポール 2 1 6に押圧されて左方に移動して固 定側プーリ半体 2 1 0 Lに接近する。 その結果、 両プーリ半体 2 1 0 L、 2 1 0 R間に挟まれた Vベルト 2 1 2は遠心方向に移動し、 その巻き掛 け径が大きくなる。 When the rotation speed of the crankshaft 210 increases, the dry weight pole 2 16 that is located between the movable pulley half 210 R and the cam plate 2 15 and rotates together moves in the centrifugal direction due to centrifugal force. And the movable pulley half The 2 1 OR is pressed by the dry weight pole 2 16 and moves leftward to approach the fixed pulley half 210 L. As a result, the V belt 212 sandwiched between the two pulley halves 210L and 210R moves in the centrifugal direction, and its winding diameter increases.
車両の後部には前記ベルト駆動プーリ. 2 1 0に対応する被動プーリ (図示せず) が設けられ、 Vベルト 2 1 2はこの被動プーリに卷き掛け られている。 このベルト伝達機構により、 内燃機関 Eの動力は自動調整 されて遠心クラツチに伝えられ、 前記減速機構 9等を介して後輪 R Wを 駆動する。  A driven pulley (not shown) corresponding to the belt drive pulley 210 is provided at the rear of the vehicle, and the V-belt 212 is wound around the driven pulley. With this belt transmission mechanism, the power of the internal combustion engine E is automatically adjusted and transmitted to the centrifugal clutch, and drives the rear wheels RW via the speed reduction mechanism 9 and the like.
右クランクケース 2 0 2 R内には、 スタータモータと A Cジエネレー タとを組み合わせたスタータ兼ジエネレータ 1が配設されている。 スタ ータ兼ジェネレータ 1では、 クランク軸 2 0 1の先端テーパ部にァウタ 一ロータ 6 0がネジ 2 5 3により固定されている。 前記アウターロータ 6 0の内側に配設されるィンナステータ 5 0は、 クランクケース 2 0 2 にボルト 2 7 9により螺着されて支持される。 なお、 前記スタータ兼ジ エネレータ 1の構成については、 後に図 3ないし図 7を参照して詳細に 説明する。  A starter / generator 1 combining a starter motor and an AC generator is provided in the right crankcase 202R. In the starter / generator 1, an outer rotor 60 is fixed to a tapered portion at the tip of a crankshaft 201 by screws 25 3. The inner stator 50 disposed inside the outer rotor 60 is screwed and supported on the crankcase 202 by bolts 279. The configuration of the starter / generator 1 will be described later in detail with reference to FIGS.
ファン 2 8 0は、 その中央円錐部 2 8 0 aの裾部分をボルト 2 4 6に よりアウターロータ 6 0に固着されており、 ファン 2 8 0はラジェタ 2 8 2を介してファン力パー 2 8 1により覆われている。  The fan 280 has its central conical portion 280a affixed to the outer rotor 60 by bolts 246 at the skirt, and the fan 280 is connected to the fan power 8 Covered by 1
クランク軸 2 0 1上には、 前記スタータ兼ジエネレータ 1と軸受け 2 0 9との間にスプロケット 2 3 1が固定されており、 このスプロケッ ト 2 3 1にはクランク軸 2 0 1からカムシャフ ト (図示せず) を駆動する ためのチェーンが巻き掛けられている。 なお、 前記スプロケット 2 3 1 は、 潤滑オイルを循環させるポンプに動力を伝達するためのギヤ 2 3 2 と一体的に形成されている。 図 3、 4は、 前記スタータ兼ジェネレータ 1 (永久磁石式回転電動 機) の回転軸 (クランク軸 2 0 1 ) に垂直な面での一部破断平面図およ びその側面断面図、 図 5、 6は、 ロータヨークの平面図およびその部分 拡大図であり、 いずれも前記と同一の符号は同一または同等部分を表し ている。 On the crankshaft 201, a sprocket 231 is fixed between the starter / generator 1 and the bearing 209, and this sprocket 231 is provided with a camshaft from the crankshaft 201. (Not shown) is wound around the chain. The sprocket 2 31 is formed integrally with a gear 2 32 for transmitting power to a pump for circulating lubricating oil. FIGS. 3 and 4 are a partially broken plan view and a side sectional view of the starter / generator 1 (permanent magnet type rotary motor) taken along a plane perpendicular to the rotation axis (crankshaft 201). 6 is a plan view of the rotor yoke and an enlarged view of a portion thereof, and the same reference numerals as those described above denote the same or equivalent parts.
本実施形態のスタータ兼ジェネレータ 1は、 図 3、 4に示したように、 ステータ 5 0と、 当該ステータ 5 0の外周を回転するアウターロータ 6 0とから構成され、 前記アウターロータ 6 0は、 図 4、 5に示したよう に、 リング状のケィ素鋼板 (薄板) を略円筒状に積層して構成された口 ータヨーク 6 1 と、 図 3、 7に示したように、 ロータヨーク 6 1の円周 方向に設けられた複数の開口部 6 1 1内に交互に挿貫された N極永久磁 石 6 2 Nおよび S極永久磁石 6 2 Sと、 図 3、 4に示したように、 前記 ロータヨーク 6 1を前記クランク軸 2 0 1に連結する力ップ状のロータ ケース 6 3とによって構成されている。  As shown in FIGS. 3 and 4, the starter / generator 1 of the present embodiment includes a stator 50 and an outer rotor 60 that rotates around the outer periphery of the stator 50. As shown in FIGS. 4 and 5, the rotor yoke 61 is formed by laminating ring-shaped silicon steel sheets (thin plates) in a substantially cylindrical shape, and as shown in FIGS. As shown in FIGS. 3 and 4, N-pole permanent magnets 6 2 N and S-pole permanent magnets 6 2 S alternately inserted through a plurality of openings 6 11 provided in the circumferential direction, The rotor yoke 61 is connected to the crankshaft 201 by a power-up rotor case 63.
前記ロータケース 6 3は、 その円周端部に爪部 6 3 aを具備し、 当該 爪部 6 3 aを内側へ折り曲げることによって前記積層構造のロータョー ク 6 1が軸方向に挟持され、 かつ前記ロータヨーク 6 1の開口部 6 1 1 内に揷貫された各永久磁石 6 2 ( 6 2 N , 6 2 S ) がロータヨーク 6 1 内の所定位置に保持される。  The rotor case 63 has a claw portion 63 a at a circumferential end thereof, and the claw portion 63 a is bent inward to pinch the laminated structure rotor shaft 61 in the axial direction, and Each of the permanent magnets 62 (62N, 62S) penetrating into the opening 611 of the rotor yoke 61 is held at a predetermined position in the rotor yoke 61.
前記ステータ 5 0は、 ケィ素鋼板 (薄板) を積層して構成され、 図 3 に示したように、 ステータコア 5 1およぴステ一タ突極 5 2を含む。 各 ステータ突極 5 2にはステータ巻線 5 3が単極集中方式で卷回され、 ス テータ 5 0の主面は保護カバー 7 1で覆われている。  The stator 50 is configured by laminating key steel plates (thin plates), and includes a stator core 51 and a stator salient pole 52 as shown in FIG. A stator winding 53 is wound on each stator salient pole 52 in a single-pole concentrated manner, and the main surface of the stator 50 is covered with a protective cover 71.
• 前記ロータヨーク 6 1には、 図 5、 6に示したように、 前記永久磁石 6 2が軸方向に挿入される開口部 6 1 1が円周方向に 3 0度間隔で 1 2 個形成されている。 隣接する各開口部 6 1 1の間は補極部 6 1 3 として 機能する。 As shown in FIGS. 5 and 6, the rotor yoke 61 has one or two openings 611 at circumferentially spaced intervals of 30 degrees, into which the permanent magnets 62 are inserted. ing. Between the adjacent openings 6 1 1 is used as the auxiliary pole 6 1 3 Function.
前記各開口部 6 1 1内には、 図 7に示したように、 断面が略太鼓状の 永久磁石 6 2が揷入されている。 ここで、 本実施形態では前記開口部 6 1 1の形状と永久磁石 6 2の断面形状とが同一ではなく、 前記開口部 6 1 1に前記永久磁石 6 2が挿入された状態では、 各永久磁石 6 2の円周 方向に沿った両側部に第 1空隙 6 1 2が形成され、 かつ各永久磁石 6 2 の両端部におけるステータ側には第 2空隙 6 1 4が形成される。  As shown in FIG. 7, a permanent magnet 62 having a substantially drum-shaped cross section is inserted into each of the openings 6 11. Here, in the present embodiment, the shape of the opening 611 is not the same as the cross-sectional shape of the permanent magnet 62, and when the permanent magnet 62 is inserted into the opening 611, each permanent magnet 62 First gaps 6 12 are formed on both sides along the circumferential direction of the magnet 62, and second gaps 6 14 are formed on both sides of each permanent magnet 62 on the stator side.
次いで、 前記ロータヨーク 6 1に設けたスリット 6 1 4およびロータ ヨーク 6 1 と永久磁石 6 2との間に形成される空隙部 6 1 2の作用につ いて、 図 8、 9を参照して説明する。  Next, the action of the slits 6 14 provided in the rotor yoke 6 1 and the gap 6 1 2 formed between the rotor yoke 6 1 and the permanent magnet 6 2 will be described with reference to FIGS. I do.
図 8は、 当該スタータ兼ジェネレータ装置 1をスタータモータとして 機能させた際の磁束密度分布を示した図であり、 図 9は、 当該装置 1を ジェネレータとして機能させた際の磁束密度分布を示した図である。 前記スタータ兼ジエネレータ装置 1をスタータモータとして機能させ る際、 前記制御ユニット 4 0を介してパッテリ 4 2から各ステータ卷線 5 3へ励磁電流を供給すると、 図 8に示したように、 N極に励磁された ステータ突極 5 2 Nから放射方向に発生した磁力線が S極永久磁石 6 2 Sのステータ側表面から裏面へ抜け、 その多くはロータヨーク 6 1のコ ァ部 6 1 5およぴ補極部 6 1 3を経由し、 隣接する S極に励磁されたス テータ突極 5 2 S、 ステータコア 5 1を経由して前記 N極に励磁された ステータ突極 5 2 Nへ戻る。 FIG. 8 is a diagram showing a magnetic flux density distribution when the starter / generator device 1 functions as a starter motor, and FIG. 9 shows a magnetic flux density distribution when the device 1 functions as a generator. FIG. When the starter / generator device 1 functions as a starter motor, an exciting current is supplied from the battery 42 to each stator winding 53 via the control unit 40, as shown in FIG. Lines of magnetic force generated in the radial direction from the stator salient poles 52 N excited in the stator exit from the stator-side surface of the S-pole permanent magnet 62 S to the back surface, and most of the core portions 615 and rotor cores of the rotor yoke 61. through the commutating pole portion 6 1 3 returns to the adjacent scan is magnetized to the S pole stator salient pole 5 2 S, via the stator core 5 1 the N pole excited stator salient poles 5 2 N.
このとき、 本実施形態では各永久磁石 6 2の円周方向に沿った両側部 に空隙 6 1 2が形成され、 各永久磁石 6 2の側部から補極部 6 1 3への 漏れ磁束が減ぜられるので、 磁力線の大部分は各永久磁石 6 2からロー タヨーク 6 1のコア部 6 1 5へ抜け、 さらに前記補極部 6 1 3を経由し てステータ 5 0側へ達する。 この結果、 アウターロータ 6 0とステータ 5 0との間のエアギヤップを通過する磁束の垂直成分が増えるので、 前 記空隙 6 1 2を設けない場合に比べて駆動トルクを増加させることが可 能になる。 At this time, in the present embodiment, air gaps 6 12 are formed on both sides along the circumferential direction of each permanent magnet 6 2, and the leakage magnetic flux from the side of each permanent magnet 6 2 to the auxiliary pole 6 1 Most of the lines of magnetic force escape from each permanent magnet 62 to the core section 615 of the rotor yoke 61 and then reach the stator 50 via the auxiliary pole section 613. As a result, the outer rotor 60 and the stator Since the vertical component of the magnetic flux passing through the air gap between 50 and 50 increases, the driving torque can be increased as compared with the case where the air gap 6 12 is not provided.
さらに、 本実施形態では永久磁石 6 2の両端部におけるステータ側に も、 円周方向の磁路を制限するためのスリ ッ ト 6 1 4が形成されている ので、 ロータヨーク 6 1の内側を通過する漏れ磁束も減少する。  Further, in the present embodiment, since the slits 614 for limiting the magnetic path in the circumferential direction are also formed on the stator side at both ends of the permanent magnet 62, the slits pass through the inside of the rotor yoke 61. Leakage magnetic flux is also reduced.
すなわち、 図 1 0に図 8の破線円内を拡大して示したように、 スリッ ト 6 1 4の一方 (6 1 4 A ) は、 ロータヨーク 6 1の補極部 6 1 3を通 過する磁束 B 1がロータヨーク 6 1の内側円周部 6 1 6へ導かれるのを 妨げ、 磁束 B 1の多くをステータ突極 5 2 Sへ効率良く導くように作用 する。 また、 スリ ッ ト 6 1 4の他方 ( 6 1 4 B ) は、 永久磁石 6 2 Nか らロータヨーク 6 1の内側円周部 6 1 6を通過する磁束 B 2が補極部 6 1 3へ導かれるのを妨げ、 磁束 B 2の多くをステータ突極 5 2 Sへ効率 良く導くように作用する。 この結果、 アウターロータ 6 0とステータ 5 0との間のエアギャップを通過する磁束の垂直成分が更に増え、 スター タモータとしての駆動トルクを更に増加させることが可能になる。  That is, as shown in FIG. 10 in which the inside of the dashed circle in FIG. 8 is enlarged, one of the slits 6 14 (6 14 A) passes through the auxiliary pole portion 6 13 of the rotor yoke 61 This prevents the magnetic flux B 1 from being guided to the inner circumferential portion 6 16 of the rotor yoke 61, and acts to efficiently guide most of the magnetic flux B 1 to the stator salient poles 52 S. Also, the other of the slits 6 14 (6 14 B) transfers the magnetic flux B 2 passing from the permanent magnet 62 N through the inner circumferential portion 616 of the rotor yoke 61 to the auxiliary pole portion 613. It acts to efficiently guide most of the magnetic flux B2 to the stator salient pole 52S. As a result, the vertical component of the magnetic flux passing through the air gap between the outer rotor 60 and the stator 50 further increases, and the driving torque as a starter motor can be further increased.
—方、 当該スタ一タ兼ジエネレータ装置 1をジエネレータとして機能 させる際は、 図 9に示したように、 各永久磁石 6 2から発生する磁束が ステータ突極おょぴステータコアと共に閉磁路を形成するので、 ロータ の回転数に応じた発電電流をステータ卷線に発生させることができる。 なお、 本実施形態では後述するレギユレータ 1 0 0によるレギユレ一 ト電圧を 1 4 . 5 Vに設定し、 当該スタータ兼ジェネレータ装置 1をジ エネレータとして機能させた際の出力電圧が前記レギュレート電圧に達 すると、 相電流を短絡させるようにしている。 これにより、 各ステータ 卷線 5 3にショート電流が遅れ位相で流れ、 ステータ 5 0内を通過する 磁力線が減少し、 隣接する永久磁石 6 2間を結ぶ漏れ磁束が増加するの で、 当該スタータ兼ジェネレータ装置 1 の被動トルクが減少して内燃機 関 Eの負荷が減少する。 On the other hand, when the starter / generator apparatus 1 is to function as a generator, as shown in FIG. 9, the magnetic flux generated from each permanent magnet 62 forms a closed magnetic path together with the stator salient pole and the stator core. Therefore, a generated current corresponding to the number of revolutions of the rotor can be generated in the stator winding. In the present embodiment, the regulation voltage by the regulator 100 described later is set to 14.5 V, and the output voltage when the starter / generator 1 functions as a generator is set to the regulation voltage. When this happens, the phase current is short-circuited. As a result, a short-circuit current flows through each stator winding 53 in a delayed phase, the lines of magnetic force passing through the stator 50 decrease, and the leakage flux connecting the adjacent permanent magnets 62 increases. As a result, the driven torque of the starter / generator device 1 decreases, and the load on the internal combustion engine E decreases.
すなわち、 図 1 1に図 9の破線円内を拡大して示したように、 隣接す る永久磁石 6 2 S, 6 2 N間には、 ロータヨーク 6 1の外側円周部 6 1 7を経由する磁束 B 3と、 ロータヨーク 6 1の補極部 6 1 3を経由する 磁束 B 4と、 ロータヨーク 6 1の内側円周部 6 1 6を通過する磁束 B 5 と、 ロータヨーク 6 1の内側円周部 6 1 6、 エアギヤップぉよぴステ一 タ突極 5 2 Nを経由する磁束 B 6とが発生する。  That is, as shown in FIG. 11 by enlarging the inside of the broken line circle in FIG. 9, the space between the adjacent permanent magnets 6 2 S and 62 N passes through the outer circumferential portion 6 17 of the rotor yoke 61. Magnetic flux B 3, a magnetic flux B 4 passing through the auxiliary pole portion 6 13 of the rotor yoke 61, a magnetic flux B 5 passing through an inner circumferential portion 6 16 of the rotor yoke 61, and an inner circumference of the rotor yoke 61 The magnetic flux B 6 passing through the air gap gap 6 and the stator salient pole 52 N is generated in the section 6 16.
上記したように、 本実施形態によれば、 アウターロータ 6 0のロータ ヨーク 6 1が各永久磁石 6 2間に補極部 6 1 3を有する永久磁石式回転 電動機において、 各永久磁石 6 2とロータヨーク 6 1 との間に空隙 6 1 2およぴスリ ット 6 1 4を設けたので、 隣接する永久磁石間での漏れ磁 束が減少し、 アウターロータ 6 0とステータ 5 0との間のエアギャップ 部を垂直に交差する磁束が増える。 したがって、 当該永久磁石式回転電 動機をジェネレータとして機能させる際の被動トルクを増加させること なく、 スタータモータとして機能させる際の駆動トルクを増大させるこ とができる。  As described above, according to the present embodiment, in the permanent magnet type rotary motor in which the rotor yoke 61 of the outer rotor 60 has the supplementary pole portions 6 13 between the permanent magnets 6, Since the air gap 612 and the slit 614 are provided between the outer rotor 60 and the stator 50, the air gap 612 and the slit 614 are provided between the outer yoke 61 and the stator 50. The magnetic flux perpendicularly crossing the air gap increases. Therefore, the drive torque when functioning as a starter motor can be increased without increasing the driven torque when the permanent magnet type rotary motor functions as a generator.
図 1 2は、 前記スタータ兼ジエネレータ 1の制御系のプロック図であ り、 前記と同一の符号は同一または同等部分を表している。  FIG. 12 is a block diagram of a control system of the starter / generator 1, and the same reference numerals as those described above denote the same or equivalent parts.
E C Uには、 スタータ兼ジェネレータ 1のジェネレータ機能が発生す る三相交流を全波整流する 3相全波整流器 3 0 0と、 全波整流器 3 0 0 の出力を予定のレギュレート電圧 (レギユレータ作動電圧:例えば、 1 4 . 5 V ) に制限するレギユレータ 1 0 0とが設けられる。  The ECU includes a three-phase full-wave rectifier 300 that performs full-wave rectification of the three-phase alternating current generated by the generator function of the starter / generator 1. The output of the full-wave rectifier 300 is a regulated voltage (regulator operation). A regulator 100 for limiting the voltage to, for example, 14.5 V) is provided.
E C Uには、 ロータ角度を検知する磁極センサ 2 9 ( 2 9 U、 2 9 V、 2 9 W)、 点火コイル 2 1、 スロッ トノレセンサ 2 3、 フューェノレセンサ 2 4、 シートスィッチ 2 5、 アイ ドルスィツチ 2 6、 冷却水温センサ 2 7 および点火パルサ 30が接続され、 各部から検出信号が E CUに入力さ れる。 点火コイル 2 1の二次側には点火プラグ 22が接続されている。 The ECU has a magnetic pole sensor 29 (29U, 29V, 29W) that detects the rotor angle, an ignition coil 21, a slot sensor 23, a fuel sensor 24, a seat switch 25, and an eye. Dolswitch 26, cooling water temperature sensor 2 7 And the ignition pulser 30 are connected, and a detection signal is input to the ECU from each unit. An ignition plug 22 is connected to the secondary side of the ignition coil 21.
さらに、 ECUには、 スタータリ レー 34、 スタータスイッチ 3 5、 ストップスィッチ 3 6, 37、 スタンバイインジケータ 38、 フューェ ノレインジケータ 3 9、 スピードセンサ 40、 オートバイスタ 4 1、 およ びへッドライ ト 42が接続される。 へッドライ ト 42には、 ディマース イッチ 43が設けられる。  In addition, the ECU has a starter relay 34, starter switch 35, stop switches 36, 37, standby indicator 38, fuel indicator 39, speed sensor 40, motorcycle starter 41, and headlight 42 connected. Is done. The headlight 42 is provided with a dimmer switch 43.
上記の各部には、 メインヒューズ 44およびメインスィッチ 45を介 してバッテリ 46から電流が供給される。 なお、 ノ ッテリ 46は、 スタ 一タリレー 34によって E CUに直接接続される一方、 メインスィッチ 45を介さず、 メインヒュ  A current is supplied from a battery 46 to each of the above-described parts via a main fuse 44 and a main switch 45. Note that the notch 46 is directly connected to the ECU by the starter relay 34, but not through the main switch 45.
ーズ 44だけを介して E CU 3に接続される回路を有する。 It has a circuit that is connected to ECU 3 only through the circuit 44.
次いで、 本実施形態における進角通電の制御方法を、 図 1 3〜図 1 6 の波形図を参照して説明する。  Next, a method of controlling the advance angle energization in the present embodiment will be described with reference to the waveform diagrams of FIGS. 13 to 16.
本実施形態では、 前記各磁極センサ 29 U、 29V、 29Wの検知信号に 基づいてロータの 1回転を複数のステージ (# 0, # 1 , # 2 ■ · · ) に分割し、 各相電流を前記ステージ単位で制御する。  In the present embodiment, one rotation of the rotor is divided into a plurality of stages (# 0, # 1, # 2,...) Based on the detection signals of the magnetic pole sensors 29U, 29V, and 29W, and each phase current is divided. Control is performed on a stage-by-stage basis.
図 1 3に示したように、 本実施形態ではロータの 60° (機械角) を 電気角の 3 6 0° とし、 これを 6つのステージ (# 0〜# 5) に分割し ている。 したがって、 1ステージは機械角の 1 0° に相当する。 そして, ロータの低回転域おょぴ逆転時には電気角で 1 20° の正転 (逆転) 通 電を 5° (機械角) 進角で実行し、 ロータの高回転域では電気角で 1 8 As shown in FIG. 13, in the present embodiment, 60 ° (mechanical angle) of the rotor is set to 360 ° of electrical angle, which is divided into six stages (# 0 to # 5). Therefore, one stage is equivalent to a mechanical angle of 10 °. When the rotor rotates in the low rotation range, the motor rotates forward (reverse rotation) with an electrical angle of 120 ° in electrical angle of 5 ° (mechanical angle) when the rotor rotates in the reverse direction.
0° の正転通電を 1 0° (機械角) 進角で実行する。 Executes 0 ° forward rotation energization with 10 ° (mechanical angle) advance angle.
図 1 4は、 前記 1 20° 正転通電、 5° 進角における信号波形図、 図 1 5は、 1 80° 正転通電、 1 0° 進角における信号波形図、 図 1 6は. 逆転 1 20° 通電、 5° 進角における信号波形図である。 本実施形態では、 各磁極センサ 2 9 U、 2 9 V 2 が磁界の変化を検 知し、 その検知信号が変位するタイミングで各相への通電タイミングを 切り替えるようにしている。 Fig. 14 is a signal waveform diagram at 120 ° forward rotation and 5 ° advance, Fig. 15 is a signal waveform diagram at 180 ° forward rotation and 10 ° advance, and Fig. 16 is reverse rotation. FIG. 12 is a signal waveform diagram at 120 ° conduction and 5 ° lead angle. In the present embodiment, each of the magnetic pole sensors 29 U and 29 V 2 detects a change in the magnetic field, and switches the energization timing to each phase when the detection signal is displaced.
さらに具体的に言えば、 図 1 4に示した正転 1 2 0 ° 通電における 5 ° 進角では、 V相センサ (磁極センサ 2 9 V) の検知信号が立ち下がるタ イミング、 すなわちステージ # 0からステージ # 1への切り替わりタイ ミングにおいて V相への正方向通電を開始し、 かつ U相への正方向通電 を停止している。 同様に、 U相センサ (磁極センサ 2 9 U) の検知信号が 立ち上がるタイミング、 すなわちステージ # 1からステージ # 2への切 り替わりタイミングにおいて U相への逆方向通電を開始し、 かつ W相へ の逆方向通電を停止している。 同様に、 W相センサ (磁極センサ 2 9 W) の検知信号が立ち下がるタイミング、 すなわちステージ # 2からステー ジ # 3への切り替わりタイミングにおいて W相への正方向通電を開始し、 かつ V相への正方向通電を停止している。  More specifically, at the 5 ° advance angle in the forward rotation of 120 ° energization shown in Fig. 14, the timing at which the detection signal of the V-phase sensor (magnetic pole sensor 29 V) falls, that is, stage # 0 When switching from stage to stage # 1, the positive energization to the V phase is started and the positive energization to the U phase is stopped. Similarly, at the timing when the detection signal of the U-phase sensor (magnetic pole sensor 29U) rises, that is, at the timing of switching from stage # 1 to stage # 2, the reverse-direction energization to the U-phase starts and the W-phase Has been stopped in the reverse direction. Similarly, at the timing when the detection signal of the W-phase sensor (magnetic pole sensor 29 W) falls, that is, at the timing of switching from stage # 2 to stage # 3, the positive-direction energization to the W-phase starts and the V-phase Of the positive direction is stopped.
同様に、 図 1 5に示した正転 1 8 0 ° 通電における 1 0 ° 進角でも、 ステージ # 0からステージ # 1への切り替わりタイミングにおいて、 U相 への正方向通電を逆方向通電へ切り替えている。 同様に、 ステージ # 1 からステージ # 2への切り替わりタイミングにおいて、 W相への逆方向通 電を正方向通電へ切り替えている。 同様にステージ # 2からステージ # 3への切り替わりタイミングにおいて、 V相への正方向通電を逆方向通電 へ切り替えている。  Similarly, at the 10 ° advance in 180 ° energization with forward rotation shown in Fig. 15, at the timing of switching from stage # 0 to stage # 1, the forward energization to the U phase is switched to the reverse energization. ing. Similarly, at the timing of switching from stage # 1 to stage # 2, reverse conduction to the W phase is switched to forward conduction. Similarly, at the timing of switching from stage # 2 to stage # 3, forward energization to the V phase is switched to reverse energization.
換言すれば、 本実施形態では各磁極センサ 2 9 U、 2 9 V、 2 9 Wが、 各 相電流の進角通電を切り替えるタイミングで磁界の変化を検知し、 その 検知信号の出力を変位させられるように、 所定の位置に配置されている < このように、 本実施形態では相電流を進角させる通電の切り替えタイ ミングが、 磁極センサ 2 9の検知信号の変位タイミングと一致するよう に、 前記各磁極センサを所定の位置に配置したので、 相電流を進角させ る際の通電制御を正確に行えるようになる。 In other words, in this embodiment, each of the magnetic pole sensors 29 U, 29 V, and 29 W detects a change in the magnetic field at the timing of switching the advance of each phase current, and displaces the output of the detection signal. Thus, in the present embodiment, the switching timing of the energization for advancing the phase current coincides with the displacement timing of the detection signal of the magnetic pole sensor 29 in this embodiment. In addition, since the magnetic pole sensors are arranged at predetermined positions, it is possible to accurately control the energization when the phase current is advanced.
さらに、 本実施形態では、 進角度を 1ステージ相当角である 1 0 ° の 半分である 5 ° に設定したので、 図 1 6に示した逆転 1 2 0 ° 通電にお ける 5 ° 進角でも、 正転時と同一の磁極センサ 2 9を用いて、 進角通電 の切り替えタイミングを磁極センサの検知信号の変位タイミングと一致 させることができる。 したがって、 本実施形態によれば、 正転時のみな らず逆転時にも、 相電流を進角させる際の通電制御を正確に行えるよう になる。  Further, in the present embodiment, the advance angle is set to 5 °, which is half of 10 °, which is the angle corresponding to one stage, so that the advance angle of 5 ° in the reverse rotation of 120 ° shown in FIG. Using the same magnetic pole sensor 29 as in the forward rotation, the timing of switching the advance angle energization can be matched with the displacement timing of the detection signal of the magnetic pole sensor. Therefore, according to the present embodiment, the energization control for advancing the phase current can be accurately performed not only during normal rotation but also during reverse rotation.
産業上の利用可能性 Industrial applicability
本発明によれば、 以下のような効果が達成される。  According to the present invention, the following effects are achieved.
(1)進角制御時における通電の切り替えタイミングが、 磁極センサによる 磁界変化の検知タイミングと一致するので、 進角制御時における通電制 御を正確に行えるようになる。  (1) Since the switching timing of the energization during the advance control coincides with the detection timing of the magnetic field change by the magnetic pole sensor, the energization control during the advance control can be performed accurately.
(2)進角度を 1ステージ相当角の半分に設定したので、 逆転 1 2 0 ° 通電 における 5 ° 進角でも、 進角制御時における通電制御の切り替えタイミ ングを、 磁極センサによる磁界変化の検知タイミングと一致させること ができる。  (2) Since the advance angle is set to half of the angle equivalent to one stage, the timing of switching the energization control during the advance angle control is detected by the magnetic pole sensor even when the advance angle is 5 ° when the reverse rotation is 120 °. The timing can be matched.

Claims

請 求 の 範 囲 The scope of the claims
1 . ロータ (6 0 ) の回転位置を検知する磁極センサ (2 9 ) を備え、 各相へ供給される相電流が、 前記磁極センサの検知信号に基づいて所定 量だけ進角されるブラシレス多相交流電機において、 1. A brushless motor provided with a magnetic pole sensor (29) for detecting a rotational position of a rotor (60), wherein a phase current supplied to each phase is advanced by a predetermined amount based on a detection signal of the magnetic pole sensor. In phase-change electric machines,
前記磁極センサを、 前記進角通電される相電流の通電タイミングが当 該磁極センサにより検知される磁界の変化タイミングと一致するように 配置したことを特徴とするブラシレス多相交流電機。  A brushless multi-phase AC electric machine, wherein the magnetic pole sensor is arranged so that the timing of the phase current to be advanced and the timing of the change of the magnetic field detected by the magnetic pole sensor coincide.
2 . 前記ブラシレス多相交流電機は、 内燃機関のクランク軸 (2 0 1 ) に連結されて当該内燃機関をクランキングするスタータモータであるこ とを特徴とする請求項 1に記載のブラシレス多相交流電機。 2. The brushless multi-phase AC motor according to claim 1, wherein the brushless multi-phase AC electric machine is a starter motor connected to a crankshaft (201) of an internal combustion engine to crank the internal combustion engine. Electric machine.
3 . 前記多相交流発電機は、 ステータ (5 0 ) およびその卷線 (5 3 ) と、 複数の永久磁石 (6 2 ) を円周方向に沿って配置して前記ステータ に対して回転する略円筒形状のロータ (6 0 ) とを含み、 前記ロータが、 互いに隣接する各永久磁石間に補極部 (6 1 3 ) を有することを特徴と する請求項 1に記載のブラシレス多相交流電機。  3. The polyphase alternator is arranged with a stator (50) and its winding (53) and a plurality of permanent magnets (62) along a circumferential direction, and rotates with respect to the stator. The brushless multi-phase AC according to claim 1, further comprising a substantially cylindrical rotor (60), wherein the rotor has an auxiliary pole (61) between the adjacent permanent magnets. Electric machine.
4 . 請求項 1または 2に記載のブラシレス多相交流電機の各磁極センサ の出力信号に基づいてロータの 1回転を複数のステージに分割し、 各相 電流を前記ステージ単位で制御するブラシレス多相交流電機の通電制御 装置において、  4. A brushless multiphase that divides one rotation of the rotor into a plurality of stages based on an output signal of each magnetic pole sensor of the brushless multiphase AC electric machine according to claim 1 or 2, and controls a current of each phase in each of the stages. In the energization control device of AC motors,
各相へ供給する相電流の位相を前記 1ステージ相当角の半分の角度だ け進角させたことを特徴とするブラシレス多相交流電機の通電制御装置 c A current controller c for the brushless multi-phase AC electric machine, wherein the phase of the phase current supplied to each phase is advanced by half the angle corresponding to the one stage.
5 . 正転時と逆転時とで進角量が同一であることを特徴とする請求項 4 に記載のブラシレス多相交流電機の通電制御装置。 5. The energization control device for a brushless multi-phase AC electric machine according to claim 4, wherein the amount of advance is the same during forward rotation and reverse rotation.
6 . ロータの回転速度が所定の基準速度を越えると、 前記進角量を前記 6. When the rotation speed of the rotor exceeds a predetermined reference speed, the advance angle
1ステージ相当角に切り替えることを特徴とする請求項 4または 5に記 載のブラシレス多相交流電機の通電制御装置。 Switching to an angle equivalent to one stage, described in claim 4 or 5, Power control device for the brushless multi-phase AC electric machine described above.
7. ロータの回転速度が前記基準速度以下の場合には、 各相を 1 2 0° (電気角) 通電することを特徴とする請求項 4ないし 6のいずれかに記 載のブラシレス多相交流電機の通電制御装置。  7. The brushless multi-phase AC according to any one of claims 4 to 6, wherein when the rotation speed of the rotor is lower than the reference speed, each phase is energized by 120 ° (electrical angle). Electricity control device for electric machines.
8. ロータの回転速度が前記基準速度を越えると、 各相を 1 8 0° (電 気角) 通電することを特徴とする請求項 4ないし 7のいずれかに記載の ブラシレス多相交流電機の通電制御装置。 8. The brushless multi-phase AC electric machine according to claim 4, wherein when the rotation speed of the rotor exceeds the reference speed, each phase is energized by 180 ° (electric angle). Energization control device.
補正書の請求の範囲 Claims of amendment
[2002年 3月 18日 (18. 03. 02) 国際事務局受理:出願当初の請求の範囲 1は  [March 18, 2002 (18.03.02) Accepted by the International Bureau: Claims 1
補正された;出願当初の請求の範囲 3は取り下げられた;  Amended; Claim 3 at the time of filing was withdrawn;
他の請求の範囲は変更なし。 (2頁) ]  Other claims remain unchanged. (2 pages)]
1 . (捕正後) ステータ (5 0 ) およびその巻線 (5 3 ) と、 複数の永久 磁石 (6 2 ) を円周方向に沿って配置して前記ステータに対して回転す る略円筒形状のロータ (6 0 ) とから構成され、 前記ロータの回転位置 を検知する磁極センサ (2 9 ) を備え、 各相へ供給される相電流が、 前 記磁極センサの検知信号に基づいて所定量だけ進角されるブラシレス多 相交流電機において、 1. (After capture) Stator (50), its winding (53), and a plurality of permanent magnets (62) are arranged along the circumferential direction, and rotate substantially with respect to the stator. And a magnetic pole sensor (29) for detecting the rotational position of the rotor. The phase current supplied to each phase is determined based on the detection signal of the magnetic pole sensor. In a brushless multi-phase AC motor that is advanced by a fixed amount,
前記ロータが、 互いに隣接する各永久磁石間に補極部 (6 1 3 ) を有 し、 前記磁極センサを、 前記進角通電される相電流の通電タイミングが 当該磁極センサにより検知される磁界の変化タイミングと一致するよう に配置したことを特徴とするブラシレス多相交流電機。  The rotor has an auxiliary pole portion (6 13) between the adjacent permanent magnets, and the magnetic pole sensor is configured to detect the energization timing of the phase current to be energized by the magnetic pole sensor. A brushless multi-phase AC electric machine characterized by being arranged so as to coincide with a change timing.
2 . 前記ブラシレス多相交流電機は、 内燃機関のクランク軸 (2 0 1 ) に連結されて当該内燃機関をクランキングするスタータモータであるこ 2. The brushless multi-phase AC electric machine is a starter motor connected to a crankshaft (201) of an internal combustion engine to crank the internal combustion engine.
L5 とを特徴とする請求項 1に記載のブラシレス多相交流電機。 The brushless polyphase AC electric machine according to claim 1, wherein L5 is L5.
3 . (削除)  3. (Delete)
4 . 請求項 1または 2に記載のブラシレス多相交流電機の各磁極センサ の出力信号に基づいてロータの 1回転を複数のステージに分割し、 各相 電流を前記ステージ単位で制御するブラシレス多相交流電機の通電制御 4. A brushless multiphase that divides one rotation of the rotor into a plurality of stages based on an output signal of each magnetic pole sensor of the brushless multiphase AC electric machine according to claim 1 or 2, and controls a current of each phase in each of the stages. AC motor energization control
20 装 こおレ、て、 20 Dress
各相へ供給する相電流の位相を前記 1ステージ相当角の半分の角度だ け進角させたことを特徴とするブラシレス多相交流電機の通電制御装置 c 5 . 正転時と逆転時とで進角量が同一であることを特徴とする請求項 4 に記載のブラシレス多相交流電機の通電制御装置。 Energization control unit c 5 brushless polyphase AC electric machine, characterized in that the phase of the supplied phase current to each phase were angles but only the advance of half of the first stage corresponding angle. In the reverse rotation and forward rotation The energization control device for a brushless multi-phase AC electric machine according to claim 4, wherein the amount of advance is the same.
25 6 . ロータの回転速度が所定の基準速度を越えると、 前記進角量を前記 1ステージ相当角に切り替えることを特徴とする請求項 4または 5に記 補正された ϋ紙 条 J勺第19条) 載のブラシレス多相交流電機の通電制御装置。 25 6. When the rotational speed of the rotor exceeds a predetermined reference speed, the advance ϋ paper was claims 4 or 5 in serial correction and switches in the first stage corresponding angle amount Article J ladle 19 Article) Power control device for the brushless multi-phase AC electric machine described above.
7. ロータの回転速度が前記基準速度以下の場合には、 各相を 1 20° (電気角) 通電することを特徴とする請求項 4ないし 6のいずれかに記 載のブラシレス多相交流電機の通電制御装置。  7. The brushless multi-phase AC electric machine according to any one of claims 4 to 6, wherein when the rotation speed of the rotor is lower than the reference speed, each phase is energized by 120 ° (electrical angle). Energization control device.
8. ロータの回転速度が前記基準速度を越えると、 各相を 1 8 0° (電 気角) 通電することを特徴とする請求項 4ないし 7のいずれかに記載の ブラシレス多相交流電機の通電制御装置。  8. The brushless multi-phase AC electric machine according to claim 4, wherein when the rotation speed of the rotor exceeds the reference speed, each phase is energized by 180 ° (electric angle). Energization control device.
捕 IEされた J¾紙 (条約第 19条) 条約第 1 9条 ( 1 ) に基づく説明書 請求の範囲第 1項の一構成用件である 「前記ロータが、 互いに隣接する各 永久磁石間に補極部 (6 1 3 ) を有し」 は、 サーチレポートで引用され た各引用例に何ら開示されていない。 Captured IE Paper (Article 19 of the Convention) Instructions based on Article 19 (1) of the Convention One of the constituent requirements of Claim 1 "The rotor has an auxiliary pole portion (6 13) between adjacent permanent magnets." Is not disclosed in each citation cited in the search report.
PCT/JP2001/009718 2000-11-17 2001-11-07 Brushless multiphase ac electric machine and its energization controller WO2002041476A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR0115419-2A BR0115419A (en) 2000-11-17 2001-11-07 AC generator brushless multiphase, and excitation control apparatus for the same
KR10-2003-7006618A KR100521861B1 (en) 2000-11-17 2001-11-07 Brushless multiphase ac electric machine and its energization controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000350823A JP3930246B2 (en) 2000-11-17 2000-11-17 Brushless polyphase AC electric machine and its energization control device
JP2000-350823 2000-11-17

Publications (1)

Publication Number Publication Date
WO2002041476A1 true WO2002041476A1 (en) 2002-05-23

Family

ID=18823984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009718 WO2002041476A1 (en) 2000-11-17 2001-11-07 Brushless multiphase ac electric machine and its energization controller

Country Status (10)

Country Link
JP (1) JP3930246B2 (en)
KR (1) KR100521861B1 (en)
CN (1) CN100474745C (en)
AR (1) AR031406A1 (en)
BR (1) BR0115419A (en)
ES (1) ES2234436B2 (en)
MY (1) MY134522A (en)
TW (1) TWI249281B (en)
WO (1) WO2002041476A1 (en)
ZA (1) ZA200302559B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578142B2 (en) * 2004-04-22 2010-11-10 日本電産シバウラ株式会社 Brushless DC motor drive device
JP2005354810A (en) * 2004-06-10 2005-12-22 Nidec Shibaura Corp Driving device for brushless dc motor
JP4592435B2 (en) * 2005-02-01 2010-12-01 日本電産サンキョー株式会社 Small motor with encoder
US10036359B2 (en) * 2016-05-19 2018-07-31 GM Global Technology Operations LLC Hybrid vehicle engine starter control systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183253A (en) * 1990-11-14 1992-06-30 Sony Corp Driving circuit of iron core type brushless motor
JPH08275476A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Outer-pole type permanent-magnet rotary electric equipment and motor vehicle using outer-pole type permanent-magnet rotary electric equipment
JPH11346497A (en) * 1998-06-02 1999-12-14 Fujii Seimitsu Kaitenki Seisakusho:Kk Dc brushless motor and control method therefor
JP2000104650A (en) * 1998-09-28 2000-04-11 Kokusan Denki Co Ltd Starting device for internal combustion engine
JP2000278989A (en) * 1999-03-25 2000-10-06 Toyota Autom Loom Works Ltd Synchronous motor driving device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783359A (en) * 1971-12-23 1974-01-01 Bendix Corp Brushless d. c. motor using hall generators for commutation
US3908130A (en) * 1974-08-30 1975-09-23 Gen Electric Starter-generator utilizing phase controlled rectifiers to drive a dynamoelectric machine as a brushless motor in the starting mode to increase the torque output of the machine through phase angle control by reducing the machine counter EMF
US4720638A (en) * 1986-07-31 1988-01-19 Briggs & Stratton Corporation Electronically commutated coaxial starter motor/alternator for an internal combustion engine
IT1232538B (en) * 1989-06-30 1992-02-19 Magneti Marelli Spa ELECTRIC GENERATOR-ENGINE SYSTEM, IN PARTICULAR FOR USE AS A GENERATOR AND STARTING ENGINE ON BOARD A VEHICLE EQUIPPED WITH AN INTERNAL COMBUSTION ENGINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183253A (en) * 1990-11-14 1992-06-30 Sony Corp Driving circuit of iron core type brushless motor
JPH08275476A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Outer-pole type permanent-magnet rotary electric equipment and motor vehicle using outer-pole type permanent-magnet rotary electric equipment
JPH11346497A (en) * 1998-06-02 1999-12-14 Fujii Seimitsu Kaitenki Seisakusho:Kk Dc brushless motor and control method therefor
JP2000104650A (en) * 1998-09-28 2000-04-11 Kokusan Denki Co Ltd Starting device for internal combustion engine
JP2000278989A (en) * 1999-03-25 2000-10-06 Toyota Autom Loom Works Ltd Synchronous motor driving device

Also Published As

Publication number Publication date
KR20030051829A (en) 2003-06-25
AR031406A1 (en) 2003-09-24
JP3930246B2 (en) 2007-06-13
MY134522A (en) 2007-12-31
JP2002159164A (en) 2002-05-31
ZA200302559B (en) 2004-03-08
KR100521861B1 (en) 2005-10-14
BR0115419A (en) 2003-09-09
TWI249281B (en) 2006-02-11
CN1354550A (en) 2002-06-19
ES2234436A1 (en) 2005-06-16
CN100474745C (en) 2009-04-01
ES2234436B2 (en) 2007-06-01

Similar Documents

Publication Publication Date Title
JP4851184B2 (en) Rotating electrical machine system
US8587229B2 (en) Method and electrical machine for braking a thermal engine of vehicle during the stop phase thereof
JPH1014295A (en) Generating set for internal combustion engine
TWI782005B (en) Electric machine, control system, and method for a vehicle
KR100537806B1 (en) Rotary motor of permanent magnet type
WO2002041476A1 (en) Brushless multiphase ac electric machine and its energization controller
JP3888663B2 (en) Permanent magnet type rotating electrical machine and driving device thereof
JP3882982B2 (en) Permanent magnet rotary motor
JP3758077B2 (en) Vehicle power generation control device
JP2017036666A (en) Engine unit
JP5373449B2 (en) Three-phase motor controller
JP2017129065A (en) Vehicle
KR100455229B1 (en) Power generation controller for vehicle
JP4315267B2 (en) Vehicle power generation control device
JP6434707B2 (en) Three-phase AC power generation starter device
KR100409257B1 (en) Permanent magnet type rotary motor and its actuating system
JP2007221935A (en) Rotary electric machine and engine activator
JP3945677B2 (en) Permanent magnet rotary motor
JP4446563B2 (en) Starting method of brushless DC motor
ITTO20011074A1 (en) POLY-PHASE AC BRUSHLESS GENERATOR AND RELATED EXCITATION CONTROL EQUIPMENT.
TW201841794A (en) Control system for a vehicle
JP2019161743A (en) Saddle type vehicle engine unit and saddle type vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200300537

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CO ES ID IN KR PH VN ZA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 314/MUMNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003/02559

Country of ref document: ZA

Ref document number: 200302559

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 1-2003-500278

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 200350030

Country of ref document: ES

Ref document number: P200350030

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 1020037006618

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 03040933

Country of ref document: CO

WWP Wipo information: published in national office

Ref document number: 1020037006618

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 200350030

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1020037006618

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 200350030

Country of ref document: ES

Kind code of ref document: A