WO2002035517A1 - Apparatus and method for interpolating signal - Google Patents

Apparatus and method for interpolating signal Download PDF

Info

Publication number
WO2002035517A1
WO2002035517A1 PCT/JP2001/005523 JP0105523W WO0235517A1 WO 2002035517 A1 WO2002035517 A1 WO 2002035517A1 JP 0105523 W JP0105523 W JP 0105523W WO 0235517 A1 WO0235517 A1 WO 0235517A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
band
frequency
component
interpolation
Prior art date
Application number
PCT/JP2001/005523
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Sato
Original Assignee
Kabushiki Kaisha Kenwood
Kenwood Geobit Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000324641A external-priority patent/JP3881836B2/en
Priority claimed from JP2000366021A external-priority patent/JP3713200B2/en
Application filed by Kabushiki Kaisha Kenwood, Kenwood Geobit Corporation filed Critical Kabushiki Kaisha Kenwood
Priority to AU2001266341A priority Critical patent/AU2001266341A1/en
Publication of WO2002035517A1 publication Critical patent/WO2002035517A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility

Definitions

  • the present invention relates to a signal interpolation device and a signal interpolation method for improving a spectrum distribution of a band-limited signal.
  • the method disclosed in Japanese Patent Application Laid-Open No. Hei 7-93900 discloses a method in which an output audio signal obtained by passing a PCM digital audio signal through a low-pass filter is converted into a signal including an absolute value component of the output signal. This is a method of causing distortion by multiplication.
  • the audio signal reproducing apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 7-93090 merely generates harmonics by distorting the waveform of the output audio signal using an absolute value circuit or the like. It is not known whether these harmonics can be approximated to those contained in the original audio signal.
  • Japanese Patent Application Laid-Open No. 6-85607 discloses that a tone component in which a fundamental tone and an overtone exist as a pair is extracted from an original audio signal, and the extracted tone component is used. A method is disclosed in which harmonic components on the higher frequency side than the band of the original audio signal are predicted and extrapolated to the original audio signal.
  • Japanese Patent Application No. 2000-179856 filed by the applicant of the present invention, discloses that the spectrum of the PCM signal is decomposed into a plurality of bands, and one of a pair of bands having a strong correlation.
  • a technique has been disclosed in which the spectrum component is added to the spectrum of the original PCM signal to generate a PCM signal having the spectrum after the spectrum component has been added. I have.
  • the added spectral component can be regarded as a part of the higher harmonic component of the original signal. Therefore, if the original signal is a band-limited signal, the spectral component is added. The signal having the later spectrum is closer to the original signal before the band is limited.
  • the spectrum of the signal represented by the decomposed spectrum is decomposed into bands by decomposing the spectrum of the original signal into bands.
  • a part called a pre-echo is added to the part just before the rise or just before the fall.
  • the bandwidth occupied by the pre-echo generally corresponds to the portion of the bandwidth occupied by the original speech that is close to the upper limit (for example, 10 km or more). For this reason, the sound represented by the signal having the spectrum after the spectral component has been added is a distortion of the high-frequency portion of the sound represented by the original signal.
  • the present invention has been made in view of the above situation, and has a signal interpolation device for restoring a signal close to the original signal with less distortion from a signal obtained by limiting the band of the original signal. And a signal interpolation method. Another object of the present invention is to provide a signal interpolation device and a signal interpolation method for restoring an audio signal with high sound quality.
  • a signal interpolating device has a frequency component in a specific frequency band of an original signal removed.
  • a signal interpolating device of the first invention has a frequency component in a specific frequency band of an original signal removed.
  • two bands in which the frequency components of the signal remain in the band-limited signal are selected, and the band components are extracted from each of the selected bands.
  • an input signal composed of the frequency component of the specific band from which the frequency component has been removed is synthesized, and the synthesized input signal is added to the band-limited signal. Operate.
  • the signal interpolation device of the first invention comprises a first filter for extracting a component in a first band of an input signal to be stored and a second filter for extracting a component in a second band of the input signal.
  • a second filter that extracts components
  • a mixing unit that mixes the components extracted by the first and second filters to generate a mixed signal
  • a third unit that generates a mixed signal by the mixing unit.
  • a third filter for extracting a component in the band of the third band, an addition unit for generating an output signal representing a sum of the component in the third band extracted by the third filter and the input signal, Consists of
  • a component constituting the input signal whose band has been limited in advance or a component corresponding to the sum or difference between its harmonic components is added to the input signal, and the bandwidth is reduced. Be extended. Since the added component can be regarded as a harmonic component of a part of the input signal, if the input signal is a band-limited signal, the input signal after the band is expanded is band-limited. It becomes close to the previous original signal. Therefore, if the input signal represents an audio signal, the audio signal is restored with high sound quality by restoring the audio signal using the input interpolated signal after the band is extended.
  • the bandwidth occupied by the first band is substantially equal to the bandwidth occupied by the second band; the upper limit of the first band is substantially equal to the lower limit of the second band; The upper limit of the band is substantially equal to the upper limit of the spectrum distribution of the input signal, the lower limit of the third band is substantially equal to the upper limit of the second band,
  • the first filter includes means for changing an upper limit and a lower limit of the first band in response to an instruction provided to the first filter, and the second filter responds to an instruction provided to the first filter. And means for changing the upper and lower limits of the second band, wherein the third filter changes the upper and lower limits of the third band in response to an instruction provided to the third filter. Means may be provided.
  • the signal interpolation device acquires the input signal, identifies an upper limit of the spectrum distribution of the acquired input signal, and, based on the identified result, the first to third bands. Determining an upper limit and a lower limit of the first band, providing an instruction to set the upper limit and the lower limit of the first band to a value determined by the user, and providing the second filter with Providing an instruction to set the upper and lower limits of the second band to a value determined by the user; and providing the third filter with an instruction to set the upper and lower limits of the third band to a value determined by the user.
  • the pass bands of the first to third filters are optimized by themselves.
  • Such a signal interpolating device extracts the envelope information representing the envelope of the spectrum of the input signal, acquires the component extracted by the third filter, and obtains the component of the acquired component.
  • the strength of the vector is indicated by the envelope information.
  • Equalizing means for filtering the component so as to be substantially equal to the intensity represented by the envelope and supplying the filtered component to the adding section, wherein the adding section includes a filter in the third band filtered by the equalizing means. And an output signal representing the sum of the input signal and the input signal.
  • the signal interpolation apparatus of the present invention converts the component to be added to the input signal whose band has been limited in advance into the input signal so as to follow the envelope of the spectrum of the input signal. to add. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
  • the adder includes a delay unit that delays the input signal so that the components in the third band are substantially in phase with the components in the third band, and the component in the third band and the delay unit delay the input signal. As long as it generates the output signal representing the sum of the input signal and the input signal, even if any of the first to third filters and the mixing unit generates a signal delay, the addition is performed.
  • the unit accurately extends the bandwidth of the input signal.
  • a signal interpolator according to a second aspect of the present invention is a band-limited device that removes frequency components in a specific frequency band of an original signal.
  • one band in which the frequency component of the signal remains is selected from the band-limited signal, and the frequency component is extracted from the selected band.
  • Frequency component into a frequency component of another band thereby synthesizing an input signal composed of the frequency component of the specific band from which the frequency component has been removed, and converting the synthesized input signal to the band-limited signal. It works by adding to
  • the signal interpolation device of the second invention is a filter for extracting a component in a first band of an input signal to be interpolated, and a component in the first band extracted by the filter. To a second band on the higher frequency side than the band occupied by the input signal to generate an interpolation component. And an adder that generates an output signal representing the sum of the input signal and the interpolation component generated by the frequency converter.
  • a component obtained by frequency-converting a component constituting the input signal which has been subjected to band limitation is added to the input signal, and the band is extended. Since the added component can be regarded as a harmonic component of a part of the input signal, if the input signal is a band-limited signal, the input signal after the band has been expanded is before the band is limited. This is close to the original signal. Further, such a signal interpolation device does not perform a process of decomposing a spectrum into bands.
  • the audio signal is restored using the input signal whose band has been expanded, so that the audio signal is restored with low distortion and high sound quality.
  • the component added to the input signal is particularly good as a harmonic component of a part of the input signal. Because of the high likelihood of approximation, the input signal after the band extension is closer to the original signal before the band was limited.
  • the spectrum of the component added to the input signal is equal to the spectrum of the input signal.
  • the filter includes means for changing a range of the first band in response to an instruction supplied to the filter.
  • the frequency conversion unit may include means for changing a range of the second band in response to an instruction supplied to the frequency conversion unit.
  • the signal interpolation device obtains the input signal, specifies an upper limit of the spectrum distribution of the obtained input signal, and, based on the specified result, the first and second signals.
  • Determine the range of the band of said filter A step of providing an instruction to set the range of the first band to a range determined by the user, and a step of providing the frequency conversion unit with an instruction to set the range of the second band to a range determined by the user.
  • the interpolating device of the second invention extracts envelope information representing an envelope of the spectrum of the input signal, acquires the interpolation component generated by the frequency conversion unit, and obtains a spectrum of the acquired interpolation component.
  • an equalizing means for filtering the interpolation component and supplying the filtered component to the adder so that the intensity of the vector becomes substantially equal to the intensity represented by the envelope indicating the envelope information.
  • the adding unit may generate an output signal representing a sum of the input signal and the interpolation component filtered by the equalizing unit.
  • the signal interpolating device of the II invention adds the component to be added to the input signal to the input signal along the envelope of the spectrum of the input signal. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
  • the adder includes a delay unit that delays the input signal so that the input signal is substantially in phase with the interpolation component, and the output representing a sum of the interpolation component and the input signal delayed by the delay unit. As long as it generates a signal, the adder accurately extends the bandwidth of the input signal even if one of the filter and the frequency converter generates a signal delay.
  • FIG. 1 is a diagram showing a configuration of a signal interpolator according to an embodiment of the present invention I.
  • FIG. 2 is a graph showing a band occupied by an input signal and a component added to the input signal in the first invention, and a pass band of BPF.
  • FIG. 3 is a diagram showing a configuration of a high-frequency signal interpolator according to the embodiment of the second invention.
  • FIG. 4 is a graph showing a band occupied by an input signal and a component added to the input signal in the second invention, and a pass band of a variable BPF.
  • a signal interpolator according to a first aspect of the present invention (the signal interpolator of the I-th invention) will be described by taking a frequency interpolator as an example.
  • FIG. 1 is a diagram showing a configuration of a frequency interpolator as an embodiment of the invention I. .
  • the frequency interpolator includes BPFs (bandpass filters) 1A, IB, and 4, a delay unit 2, a mixing unit 3, and an adding unit 5.
  • BPFs bandpass filters
  • the signals to be subjected to frequency interpolation by this frequency interpolator are simultaneously supplied to 8 to 18 and 18. Then, each of the signals supplied to itself passes a component within a pass band unique to itself, and supplies the signal to the mixing unit 3, while substantially blocking other components.
  • the input signal is a signal representing a voice or the like. It is assumed that the spectrum distribution of the sound or the like represented by the input signal corresponds to, for example, an original sound or the like from which a frequency component of a certain value or more (for example, 14 kHz or more) has been removed.
  • the range of the passband of BPF 1A and 1B is as shown in FIG.
  • the upper limit frequency of the pass band of BPF 1A (the band indicated as "BA” in Fig. 2) is the lower limit frequency of the pass band of BPF 1B (the band indicated as "BB” in Fig. 2).
  • the width of the pass band of the BPF 1A is the bandwidth of the band occupied by the component added to the input signal by performing frequency interpolation (the band shown as "B add" in Fig. 2). Almost equal to half,
  • the upper limit frequency of the BPF 1B passband is Frequency, which is almost equal to the upper limit frequency of the
  • the lower limit frequency of the pass band of BPF 1 A is f A or the upper limit frequency of the pass band of BPF 1 A is f AH
  • the lower limit frequency of the pass band of BPF 1 B is f B or BPF 1 B
  • the upper limit frequency of the band is f BH
  • the upper limit of the band occupied by the input signal is f IN
  • the bandwidth occupied by the component added to the input signal by frequency interpolation is w
  • f A or f AH , f B The values of f BH , f IN , and w have the relationships shown in equations (1) to (3).
  • the delay unit 2 is supplied with the same input signal as that supplied to BPF 1A and 1B simultaneously with BPF 1A and 1B. Then, the signal supplied to itself is delayed and supplied to the adder 5.
  • the length of time that the delay unit 2 delays the signal is the time that elapses before the components of the signal supplied to the BPFs 1A and 1B are supplied to the addition unit 5 via the mixing unit 3 and the BPF 4. Shall be substantially equal to the length.
  • phase of the delayed input signal supplied from the delay unit 2 to the addition unit 5 and the phase of the signal supplied from the BPF 4 to the addition unit 5 are the same as those of the signals supplied to the addition unit 5 at the same time. It is assumed that the phases are substantially the same.
  • the mixing unit 3 mixes the components supplied from the BPFs 1A and 1B with each other, thereby forming a product of the component passing through the BPF 1A or its harmonic and the component passing through the BPF 1B or its harmonic. Then, a signal is generated, and the generated signal is supplied to the BPF 4.
  • the BPF 4 passes components occupying a band whose lower limit of the frequency is f IN and whose upper limit of the frequency is (f IN + w) among the components supplied from the mixing unit 3. It is supplied to the adder 5 to substantially block other components.
  • the adder 5 generates a signal representing the sum of the delayed input signal supplied to itself from the delay unit 2 and the component supplied from the BPF 4, and outputs the signal as an output signal of the frequency interpolator.
  • the input signal (ie, output signal) is the product of the input signal component that passed BPF 1A or its harmonics and the input signal component that passed BPF 1B or its harmonics.
  • a component occupying a band whose lower limit of frequency is f IN and whose upper limit of frequency is (f IN + w) is composed of a signal obtained by adding to the input signal.
  • the component added to the input signal is composed of some harmonic components of the input signal, if the input signal is a band-limited signal, the output signal is the input signal before the band is limited. It becomes something close to.
  • This frequency interpolator is not limited to the above.
  • BPF 1 A, BPF 1 B, delay unit 2, mixing unit 3, BPF 4, and adder unit 5 may be implemented by DSP (Digital Signala 1 Processor) or CPU (Central Processing Un it) may be done.
  • DSP Digital Signala 1 Processor
  • CPU Central Processing Un it
  • each value of I Alpha have ⁇ ⁇ , f BL, f BH , ⁇ IN, and w do not necessarily need to have a relationship shown in Equation 1 Equation 3.
  • Equations 1 to 3 it is highly likely that the components of the input signal passing through the BPFs 1A and 1B can be regarded as harmonic components of a part of the input signal itself. . Further, the spectrum of the component passing through BPF4 is adjacent to the spectrum of the input signal without any gap on the high frequency side. Thus, if the input signal represents a band-limited audio signal, the output signal will be closer to the input signal before the band was limited.
  • the BPFs 1A, IB, and 4 may change their passbands by a known method according to instructions supplied to them.
  • This frequency interpolator has two passbands for BPF 1A, IB and 4. May be provided.
  • the control unit includes, for example, a Fourier transform unit and an analysis unit, and each of the control units includes, for example, a DSP or a CPU.
  • the Fourier transform unit obtains the input signal, performs Fourier transform, and generates a signal representing a spectrum obtained as a result of the Fourier transform.
  • the analysis unit specifies a component having the highest frequency among the components of the spectrum indicated by the signal generated by the Fourier transform unit, and determines the specified spectrum frequency as the above-described value of f IN .
  • the analysis unit compares the value of the determined ⁇ ⁇ , based on the predetermined value indicating the upper limit of the frequency components to be added to the input signal, determines the value of the above w, determined f Iotanyu and values of w Further, the values of f A or f AH , f BL, and ⁇ ⁇ are determined. Then, an instruction to change the pass band so that the determined values of f AL and: f AH become the lower and upper limits of the pass band of BPF 1A is supplied to BP FI A. BPF 1 to of B, and supplies the instruction value of the determined f BL and f B H changes the pass ⁇ as the lower limit and upper limit of the pass band of the BPF 1 B. The BPF 4 is supplied with an instruction to change the pass band so that the determined values of f IN and (f IN + w) are the lower and upper limits of the pass band of the BPF 4.
  • the frequency interpolator may determine the intensity of the spectrum of the component to be added to the input signal by extrapolating to the envelope of the spectrum of the input signal.
  • this frequency interpolator includes an equalizer, and this equalizer filters the components to be supplied to the adding unit 5 by the BPF 4 so as to match the frequency characteristics indicated by the signal supplied to itself. After that, it is supplied to the addition unit 5.
  • the above-described analysis unit performs a regression calculation process based on the signal generated by the above-described Fourier transform unit, thereby specifying a function that forms an envelope of a spectrum of the input signal, and based on the specified function, Determine the frequency characteristics of the output signal in the band where the lower limit frequency is f IN and the upper limit frequency is (f IN + w). Then, a signal indicating the determination result is supplied to the above-described equalizer.
  • the frequency interpolating apparatus according to the present invention can be realized using an ordinary computer system without using a dedicated system.
  • a program for executing the operations of the BPFs 1A, IB and 4, the delay unit 2, the mixing unit 3, the adding unit 5, the control unit, and the equalizer described above in a personal computer or a microcomputer By installing the program from a stored medium (CD-ROM, MO, floppy disk, etc.), a frequency interpolator that executes the above-described processing can be configured.
  • a stored medium CD-ROM, MO, floppy disk, etc.
  • the program may be posted on a bulletin board (BBS) of a communication line and distributed via the communication line.
  • BSS bulletin board
  • a carrier wave is modulated by a signal representing the program, and the obtained modulated wave May be transmitted, and the device receiving the modulated wave may demodulate the modulated wave and restore the program.
  • a program excluding the part is stored in the recording medium. May be. Also in this case, in the present invention, it is assumed that the recording medium stores a program for executing each function or step executed by the computer.
  • a signal interpolation device (the signal interpolation device of the II invention) will be described by taking a high-frequency signal interpolator as an example.
  • FIG. 3 is a diagram showing a configuration of a high-frequency signal interpolator as an embodiment of the II invention.
  • the high-frequency signal interpolator includes a variable BPF (bandpass filter) 31, a delay unit 32, a spectrum analysis unit 33, and a variable frequency generator. It comprises a vibration section 34, a mixing section 35, a variable HPF (high pass filter) 36, and an addition section 37.
  • BPF bandpass filter
  • HPF high pass filter
  • the variable BPF 31 is supplied with a signal (input signal) to be subjected to spectrum interpolation by the high-frequency signal interpolator, and the input signal supplied to the variable BPF 31 is supplied from the spectrum analyzer 33.
  • the input signal is a signal representing a voice or the like.
  • Spectral distribution of voice or the like which the input signal is represented, for example, above a certain value of such original audio (e.g., 14 or more kHz) c delay unit 32 to correspond to that frequency component of has been removed, the variable
  • the same input signal as that supplied to the BPF 31 is supplied simultaneously with the variable BPF 31. Then, the input signal supplied to itself is delayed and supplied to the adder 37.
  • the spectrum analysis unit 33 is composed of, for example, DSP (DigitalSigna1Procssor), CPU, CentrallProcessIngUnit), and the like.
  • the spectrum analysis unit 33 is supplied with the same input signal as that supplied to the variable BPF 31 at the same time as the variable BPF 31. Then, the supplied input signal is analyzed, and based on the analysis result, the first control signal specifying the pass band of the variable BPF 31 and the frequency of a local oscillation signal generated by the variable frequency A second control signal that specifies the passband of the variable HPF 36 is generated. And the first generated The control signal is supplied to the variable BPF 31, the second control signal is supplied to the variable frequency oscillator 34, and the third control signal is supplied to the variable HPF 36.
  • the spectrum analyzer 33 performs the processing described as (1) to (4) below.
  • the spectrum analyzer 33 Fourier-transforms the input signal supplied to itself. Then, the component having the highest frequency among the components of the spectrum obtained as a result of the Fourier transform is extracted, and the frequency of the extracted component is specified as the upper limit value of the band occupied by the input signal.
  • the spectrum analysis unit 33 performs spectrum interpolation based on the upper limit value of the band occupied by the input signal and a predetermined value indicating the upper limit frequency of the component to be added to the input signal. Determines the bandwidth occupied by the component added to the input signal.
  • the spectrum analyzer 32 calculates the passbands of the variable BPF 31 and the variable HPF 36 and the local oscillation signal so as to satisfy the following conditions (a) to (d). Determine the frequency. That is, as shown in FIG.
  • the upper limit frequency of the passband of the variable BPF 31 (the band shown as “BA” in Fig. 4) is the upper limit frequency of the band occupied by the input signal (the band shown as “Bin” in Fig. 4). Substantially equal to the frequency,
  • the width of the pass band of the variable BPF 31 is determined by the band occupied by the component added to the input signal by performing spectrum interpolation (see FIG. 4).
  • the frequency of the local oscillation signal (the frequency indicated as “ f.sc ” in FIG. 4 and the present specification) is substantially equal to the difference between the upper and lower limits of the passband of the variable BPF 31;
  • the lower limit of the passband of the variable HP F36 (the band shown as “BB” in Fig. 4) is the frequency f of the local oscillation signal. greater than the maximum absolute value of the difference between sc and the frequency belonging to band B add,
  • variable BPF 31 and the variable HP F 36 Determine the passband and the frequency of the local oscillation signal.
  • the lower limit frequency of the pass band of the variable BPF 31 is f H
  • the upper limit frequency of the pass band of the variable BPF 31 is f HH
  • the upper limit of the band occupied by the input signal is f.
  • the lower limit of the band occupied by the component added to the input signal by spectrum interpolation is f IL
  • the lower limit of the band occupied by the component added to the input signal by spectrum interpolation is f IH
  • the input is made by spectrum interpolation BW bandwidth occupied by the component that is added to the signal, when the frequency of the lower limit of the passband of the variable HP F 6 and i HPF, f H have f HH, fo, fi L> f IH, BW, f HPF and
  • the values of f osc have substantially the relationships shown in Equations (4) to (6).
  • the spectrum analyzer 33 satisfies the above conditions (a) to (d). Using the values of HH and f HIj , the center frequency (ie, the value of ⁇ (f HH — f HL ) / 2 ⁇ ) and the bandwidth (ie, (f H H— f HL ) is determined. Then, a first control signal that specifies these determined values as the center frequency and the bandwidth value of the pass band of the variable BPF 31 is generated and supplied to the variable BPF 31.
  • a second control signal that specifies the value of f osc that satisfies the above conditions (a) to (d) as the frequency of the local oscillation signal is generated and supplied to the variable frequency oscillator 34.
  • a third control signal that specifies the value of f HPF that satisfies the above conditions (a) to (d) as the lower limit frequency of the pass band of the variable HP F 36 is generated, and Supply.
  • the high-frequency signal interpolator calculates the value of ⁇ ⁇ ⁇ ⁇ , for example, f. A sufficiently higher predetermined value may be used.
  • variable frequency oscillator 34 When supplied with the second control signal from the spectrum analyzer 33, the variable frequency oscillator 34 generates a local oscillation signal composed of a signal of the frequency indicated by the second control signal, and generates the generated local oscillation signal.
  • the signal is supplied to the mixing section 35.
  • the mixing unit 35 is composed of, for example, a multiplication circuit and the like.
  • the mixing unit 35 mixes the component supplied from the variable BPF 1 and the local oscillation signal generated by the variable frequency oscillating unit 34 with each other, so that the product of the component passing through the variable BPF 31 and the local oscillation signal is mixed. Is generated, and the generated signal is supplied to the variable HP F36.
  • the signal supplied from the mixing unit 35 to the variable HPF 36 includes a component having a frequency corresponding to the sum of the frequency of the component passing through the variable BPF 31 and the frequency of the local oscillation signal (sum component) and the variable BPF 31 And a component having a frequency corresponding to the difference between the frequency of the component that has passed through and the frequency of the local oscillation signal (difference component).
  • variable HPF 6 passes the component indicated by the third control signal supplied from the spectrum analysis unit 33 out of the components supplied from the mixing unit 35 through a component within a pass band having a lower limit of the frequency and adds the values. Feed part 37 to substantially block other components.
  • the sum vector of the difference component supplied to the variable HP F 36 by the mixing unit 35 is the lower one of the lower values of the frequencies I f HL — f osc I and I f HH _ f osc I. Occupies the band whose value is the upper limit.
  • the lower limit frequency f HPF of the pass band of the variable HP F 36 satisfies the above condition (d) (the condition shown in Expression (6)).
  • variable HPF 36 passes the sum component of the signal supplied by the mixing unit 35 and supplies it to the adding unit 37, thereby substantially blocking the difference component.
  • the adder 37 generates a signal representing the sum of the delayed input signal supplied to itself from the delay unit 32 and the component supplied from the variable HPF 6, and outputs the signal as an output signal of the high-frequency signal interpolator. I do.
  • the output signal should be such that the input signal contains components within a continuous band including the spectrum with the highest frequency of the input signal, in a band adjacent to the upper limit of the band occupied by the input signal on the high frequency side.
  • the configuration of this high-frequency signal interpolator is not limited to the above.
  • variable BPF 31 the delay unit 32, the variable frequency oscillation unit 34, the mixing unit 35, the variable HP F 36, and the addition unit 37 may be implemented by a DSP (Digita 1 Signal 1 P rocessor) or CPU (Centra 1 P rocessing Un it).
  • the passbands of the variable BPF 31 and the variable HPF 36 and the frequency of the local oscillation signal are determined by the above-mentioned conditions (a) to (d) (the conditions shown by the equations (4) to (6)). May be fixed in advance to a value that matches. In this case, the high-frequency signal interpolator does not need to include the spectrum analyzer 33.
  • the signal added to the input signal via frequency conversion need not include the highest frequency spectrum of the input signal.
  • the signal added to the input signal through frequency conversion contains the highest frequency spectrum of the input signal, this signal is added to the input signal. Is likely to be considered as a harmonic component of a part of the input signal itself. Thus, if the input signal represents a band-limited audio signal, the output signal will be closer to the input signal before the band was limited.
  • f H have f HH f. , F IL , f IH , BW, f HPF and f osc have the relationships shown in Equations (4) to (6), the spectrum of the component passing through the variable HP F 36 is It is adjacent to the spectrum without any gaps on the high frequency side. Therefore, the input signal is band limited If the audio signal represents an audio signal, the output signal is closer to the input signal before the band is limited.
  • the high-frequency signal interpolator may determine the intensity of the spectrum of the component to be added to the input signal by extrapolating to the spectrum envelope of the input signal.
  • this high-frequency signal interpolator further includes an envelope analysis unit and an equalizer.
  • the equalizer filters the components to be supplied to the adding unit 37 by the variable HPF 36 so as to match the frequency characteristics indicated by the signal supplied to itself, and then supplies the components to the adding unit 37.
  • the envelope analysis unit performs a regression calculation process based on the spectrum obtained as a result of the Fourier transform of the input signal by the spectrum analysis unit 33, thereby obtaining a function that forms an envelope of the spectrum of the input signal. Identify. Then, a function identified, the scan Bae spectrum analyzer 3 3 f IL and was determined: Based on the values of f the IH, the output signal of the band lower limit of the frequency is the frequency of the upper limit in f IL is f the IH Is determined, and a signal indicating the determination result is supplied to the above-described equalizer.
  • the spectrum analyzer 33 may supply the data representing the spectrum obtained as a result of the Fourier transform of the input signal to the envelope analyzer, and the envelope analyzer may, for example, The value of f I] L may be obtained by obtaining the third control signal described above.
  • the signal interpolation device according to the present invention can be realized using an ordinary computer system without using a dedicated system.
  • variable BPF 1 For example, the above-mentioned variable BPF 1, delay section 32, spectrum analysis section 33, variable frequency oscillation section 34, mixing section 35, variable HPF 36, , An adder 7, an envelope analyzer, and a medium (CD-ROM, MO, floppy disk, etc.) storing a program for executing the operation of the equalizer.
  • the high-frequency signal interpolator By installing the high-frequency signal interpolator, the high-frequency signal interpolator that executes the above-described processing can be configured.
  • the program may be posted on a bulletin board (BBS) of a communication line and distributed via the communication line.
  • BSS bulletin board
  • a carrier wave is modulated by a signal representing the program, and the obtained modulated wave May be transmitted, and the device receiving the modulated wave may demodulate the modulated wave and restore the program.
  • a program excluding the part is stored in the recording medium. It may be stored. Also in this case, in the present invention, it is assumed that the recording medium stores a program for executing each function or step executed by the computer.
  • a signal interpolation device and a signal interpolation method for effectively restoring a signal close to the original signal from a signal in which a specific band of the original signal is restricted are realized. Is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

A interpolating signal is added to a band limit signal generated by removing the frequency components in a specified frequency band of an original signal and the resultant signal is outputted. The interpolation signal is synthesized by selecting two bands where the frequency components of the band limit signal remains and then mixing two band components extracted from the selected bands respectively, or by selecting one band where the frequency components of the band limit signal remains and then converting a frequency component extracted from a selected band to the component of other band. A signal approximate to the original signal can thereby be restored from a band limit signal generated using a signal produced by limiting the band of the original signal or an audio signal can be restored with high sound quality.

Description

明 細 書 信号を補間する装置および方法 技術分野  Description Device and method for interpolating signals
この発明は、 帯域制限された信号のスぺクトル分布を改善する信号補 間装置及び信号補間方法に関する。  The present invention relates to a signal interpolation device and a signal interpolation method for improving a spectrum distribution of a band-limited signal.
背景技術  Background art
MP 3 (MPEG 1 a u d i o l ay e r 3) 形式のデータの配信、 及 び、 FM (F r e q u e n c y Mo d u l a t i o n) 放送ゃテレビ ジョン音声多重放送等の手法による音楽などの供給が近年盛んになつ ている。 これらの手法では、 帯域が過度に広くなることによるデータ量 の増大や占有帯域幅の広がりを避けるため、 一般に、 供給する対象の音 楽等のうち約 1 5 kH z以上の周波数成分が除去されている。  In recent years, the distribution of data in the form of MP3 (MPEG 1 audio lay ay e r 3) and the supply of music and the like by means of FM (Freq en cy Mod d u a la tio n) broadcasting / television audio multiplex broadcasting have become active in recent years. In these methods, in order to avoid an increase in the amount of data and an increase in the occupied bandwidth due to an excessively wide band, generally, a frequency component of about 15 kHz or more in the music to be supplied is removed. ing.
このように、 一定値以上の周波数成分が除去された音楽等は通常、 音 質が悪い。 そこで、 除去された周波数成分に代わる信号を加算すること が考えられる。 このための手法としては、 特開平 7— 9 3 9 00号公報 に開示されている手法がある。  Thus, music or the like from which a frequency component equal to or higher than a certain value has been removed usually has poor sound quality. Therefore, it is conceivable to add a signal in place of the removed frequency component. As a technique for this, there is a technique disclosed in Japanese Patent Application Laid-Open No. Hei 7-93900.
特開平 7— 93 9 0 0号公報に開示されている手法は、 P CMディジ タルオーディォ信号をローパスフィル夕に通して得られる出力オーデ ィォ信号を、 当該出力信号の絶対値成分を含む信号を乗算することによ り歪みを生じさせる、 という手法である。  The method disclosed in Japanese Patent Application Laid-Open No. Hei 7-93900 discloses a method in which an output audio signal obtained by passing a PCM digital audio signal through a low-pass filter is converted into a signal including an absolute value component of the output signal. This is a method of causing distortion by multiplication.
しかし、 特開平 7 - 9 3 9 0 0号公報のオーディオ信号再生装置は、 出カオ一ディォ信号の波形を絶対値回路等を用いて歪ませることによ り高調波を発生させるに過ぎないものであって、 この高調波は元のォー ディォ信号に含まれているものに近似し得るものであるかは分からな い。  However, the audio signal reproducing apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 7-93090 merely generates harmonics by distorting the waveform of the output audio signal using an absolute value circuit or the like. It is not known whether these harmonics can be approximated to those contained in the original audio signal.
一方、 特開平 6— 8 5 60 7号公報には、 原ォ一ディォ信号から基音 と倍音が組で存在する音色成分を抽出して、 抽出した音色成分を用い、 原オーディォ信号の帯域より高域側の倍音成分を予測して原オーディ ォ信号に外挿する、 という手法が開示されている。 On the other hand, Japanese Patent Application Laid-Open No. 6-85607 discloses that a tone component in which a fundamental tone and an overtone exist as a pair is extracted from an original audio signal, and the extracted tone component is used. A method is disclosed in which harmonic components on the higher frequency side than the band of the original audio signal are predicted and extrapolated to the original audio signal.
しかし、 元の音声等の帯域を制限して得られる原オーディォ信号にこ の手法を適用した場合、 純音の音色成分について倍音成分を予測して外 揷することができず、 同様に、 帯域が制限された結果倍音成分を除去さ れた音色成分についても、 除去された倍音成分を推測して外揷すること ができない。  However, when this method is applied to the original audio signal obtained by limiting the band of the original sound, etc., it is not possible to predict and remove the overtone component of the timbre component of the pure tone. Even with respect to the tone color components from which the harmonic components have been removed as a result of the restriction, it is not possible to extrapolate by removing the overtone components.
さらに、 先に本願出願人が出願した特願 2 0 0 0 - 1 7 8 56 9には、 P CM信号のスぺクトルを複数のバンドに分解し、 相関関係が強い 1対 のバンドの一方のスぺクトル成分を元の P CM信号のスぺクトルに追 加して、 スぺクトル成分を追加された後のスぺクトルを有する P CM信 号を生成する、 という手法が開示されている。  Further, Japanese Patent Application No. 2000-179856, filed by the applicant of the present invention, discloses that the spectrum of the PCM signal is decomposed into a plurality of bands, and one of a pair of bands having a strong correlation. A technique has been disclosed in which the spectrum component is added to the spectrum of the original PCM signal to generate a PCM signal having the spectrum after the spectrum component has been added. I have.
この周波数補間器では、 追加されたスペクトル成分は、 元の信号の一 部の高調波成分とみなし得るので、 元の信号が帯域を制限された信号で ある場合、 スぺクトル成分を追加された後のスぺクトルを有する信号は、 帯域が制限される前の原信号に近いものとなる。  In this frequency interpolator, the added spectral component can be regarded as a part of the higher harmonic component of the original signal. Therefore, if the original signal is a band-limited signal, the spectral component is added. The signal having the later spectrum is closer to the original signal before the band is limited.
しかし、 特願 2 0 0 0 - 1 7 8 5 6 9の手法では、 元の信号のスぺク トルをバンドに分解することにより、 分解されたスぺクトルが表す信号 の波形のうち、 波形が立ち上がる直前や立ち下がる直前にあたる部分等 には、 プリエコーと呼ばれる歪みが加わる。  However, in the method of Japanese Patent Application No. 2000-178056, the spectrum of the signal represented by the decomposed spectrum is decomposed into bands by decomposing the spectrum of the original signal into bands. A part called a pre-echo is added to the part just before the rise or just before the fall.
元の信号が音声を表す場合、 一般に、 プリエコーが占める帯域は、 元 の音声が占める帯域のうち上限に近い部分 (例えば、 1 0キロへルツ以 上) にあたる。 このため、 スペクトル成分を追加された後のスペクトル を有する信号が表す音声は、 元の信号が表す音声の高域の部分を歪ませ たものとなる。  When the original signal represents speech, the bandwidth occupied by the pre-echo generally corresponds to the portion of the bandwidth occupied by the original speech that is close to the upper limit (for example, 10 km or more). For this reason, the sound represented by the signal having the spectrum after the spectral component has been added is a distortion of the high-frequency portion of the sound represented by the original signal.
本発明は、 上記実状に鑑みてなされたものであり、 原信号の帯域を制 限することにより得られた信号から、 歪みが少なく原信号に近い信号を 復元できるようにするための信号補間装置及び信号補間方法を提供す ることを目的とする。 また、 この発明は、 オーディオ信号を高音質で復元するための信号補 間装置及び信号補間方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and has a signal interpolation device for restoring a signal close to the original signal with less distortion from a signal obtained by limiting the band of the original signal. And a signal interpolation method. Another object of the present invention is to provide a signal interpolation device and a signal interpolation method for restoring an audio signal with high sound quality.
発明の開示  Disclosure of the invention
上記目的を達成するべく、 この発明の第 1の観点に係る信号補間装置 (以下、 便宜上、 第 I発明の信号補間装置と称する) は、 原信号の特定 の周波数帯域における周波数成分が除去された帯域制限信号から、原信 号を近似的に復元するために、 該帯域制限信号において、信号の周波数 成分が残存する 2つの帯域を選択し、 選択されたそれぞれの帯域から帯 域成分を抽出し、 該抽出された 2つの帯域成分を混合することにより、 周波数成分が除去されている該特定帯域の周波数成分から成る入力信 号を合成し、 該合成された入力信号を該帯域制限信号に加えるよう動作 する。  In order to achieve the above object, a signal interpolating device according to a first aspect of the present invention (hereinafter, for convenience, referred to as a signal interpolating device of the first invention) has a frequency component in a specific frequency band of an original signal removed. In order to approximately restore the original signal from the band-limited signal, two bands in which the frequency components of the signal remain in the band-limited signal are selected, and the band components are extracted from each of the selected bands. By mixing the extracted two band components, an input signal composed of the frequency component of the specific band from which the frequency component has been removed is synthesized, and the synthesized input signal is added to the band-limited signal. Operate.
より具体的には、 第 I発明の信号補間装置は、 保管の対象としての入 力信号の第 1の帯域内の成分を抽出する第 1のフィルタと前記入力信 号の第 2の帯域内の成分を抽出する第 2のフィルタと、 前記第 1及び第 2のフィルタにより抽出された各前記成分を混合して混合信号を生成 する混合部と、 前記混合部により生成された混合信号から第 3の帯域内 の成分を抽出する第 3のフィルタと、 前記第 3のフィルタにより抽出さ れた前記第 3の帯域内の成分と、 前記入力信号との和を表す出力信号を 生成する加算部とから構成される。  More specifically, the signal interpolation device of the first invention comprises a first filter for extracting a component in a first band of an input signal to be stored and a second filter for extracting a component in a second band of the input signal. A second filter that extracts components, a mixing unit that mixes the components extracted by the first and second filters to generate a mixed signal, and a third unit that generates a mixed signal by the mixing unit. A third filter for extracting a component in the band of the third band, an addition unit for generating an output signal representing a sum of the component in the third band extracted by the third filter and the input signal, Consists of
このような第 I発明の信号補間装置によれば、 予め帯域制限されてい る入力信号を構成する成分又はその高調波成分同士の和又は差にあた る成分が入力信号に追加され、 帯域が拡張される。 追加された成分は、 入力信号の一部分の高調波成分とみなし得るので、 入力信号が帯域を制 限された信号である場合、 帯域が拡張された後の入力信号は、 帯域が制 限される前の原信号に近いものとなる。 従って、 入力信号がオーディオ 信号を表すものであれば、 帯域が拡張された後の入力被補間信号を用い てオーディォ信号を復元することにより、 オーディォ信号が高音質で復 元される。 前記第 1の帯域が占める帯域幅は、 前記第 2の帯域が占める帯域幅に 実質的に等しく、 前記第 1の帯域の上限は前記第 2の帯域の下限に実質 的に等しく、 前記第 2の帯域の上限は入力信号のスぺクトルの分布の上 限に実質的に等しく、 前記第 3の帯域の下限は前記第 2の帯域の上限に 実質的に等しく、 ' According to such a signal interpolation device of the first invention, a component constituting the input signal whose band has been limited in advance or a component corresponding to the sum or difference between its harmonic components is added to the input signal, and the bandwidth is reduced. Be extended. Since the added component can be regarded as a harmonic component of a part of the input signal, if the input signal is a band-limited signal, the input signal after the band is expanded is band-limited. It becomes close to the previous original signal. Therefore, if the input signal represents an audio signal, the audio signal is restored with high sound quality by restoring the audio signal using the input interpolated signal after the band is extended. The bandwidth occupied by the first band is substantially equal to the bandwidth occupied by the second band; the upper limit of the first band is substantially equal to the lower limit of the second band; The upper limit of the band is substantially equal to the upper limit of the spectrum distribution of the input signal, the lower limit of the third band is substantially equal to the upper limit of the second band,
前記第 3の帯域が占める帯域幅は、 前記第 1の帯域が占める帯域幅の 2倍に実質的に等しいものであれば、 入力信号に追加される成分は、 入 力信号の一部分の高調波成分に特によく近似し得る可能性が高い。 また, 入力信号に追加される成分のスぺクトルは、 入力信号のスぺクトルと、 高周波側で隙間なく隣接するのものとなる。 従って、 帯域が拡張された 後の入力信号は、 帯域が制限される前の原信号により近いものとなる。 前記第 1のフィルタは、 自己に提供される指示に応答して、 前記第 1 の帯域の上限及び下限を変化させる手段を備え、 前記第 2のフィル夕は、 自己に提供される指示に応答して、 前記第 2の帯域の上限及び下限を変 化させる手段を備え、 前記第 3のフィルタは、 自己に提供される指示に 応答して、 前記第 3の帯域の上限及び下限を変化させる手段を備えてい てもよい。  If the bandwidth occupied by the third band is substantially equal to twice the bandwidth occupied by the first band, the component added to the input signal will be a harmonic of a part of the input signal. It is highly likely that the components can be particularly well approximated. The spectrum of the component added to the input signal is adjacent to the spectrum of the input signal without any gap on the high frequency side. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited. The first filter includes means for changing an upper limit and a lower limit of the first band in response to an instruction provided to the first filter, and the second filter responds to an instruction provided to the first filter. And means for changing the upper and lower limits of the second band, wherein the third filter changes the upper and lower limits of the third band in response to an instruction provided to the third filter. Means may be provided.
この場合、 前記信号補間装置は、 前記入力信号を取得して、 取得した 当該入力信号のスぺクトルの分布の上限を特定し、 特定した結果に基づ いて、 前記第 1乃至第 3の帯域の上限及び下限を決定し、 前記第 1のフ ィル夕に、 前記第 1の帯域の上限及び下限を自己が決定した値とする指 示を提供し、 前記第 2のフィル夕に、 前記第 2の帯域の上限及び下限を 自己が決定した値とする指示を提供し、 前記第 3のフィルタに、 前記第 3の帯域の上限及び下限を自己が決定した値とする指示を提供する分 析手段を備えることにより、 第 1乃至第 3のフィル夕の通過帯域を自ら 最適化する。  In this case, the signal interpolation device acquires the input signal, identifies an upper limit of the spectrum distribution of the acquired input signal, and, based on the identified result, the first to third bands. Determining an upper limit and a lower limit of the first band, providing an instruction to set the upper limit and the lower limit of the first band to a value determined by the user, and providing the second filter with Providing an instruction to set the upper and lower limits of the second band to a value determined by the user; and providing the third filter with an instruction to set the upper and lower limits of the third band to a value determined by the user. By providing analysis means, the pass bands of the first to third filters are optimized by themselves.
このような第 I発明の信号補間装置は、 前記入力信号のスぺクトルの 包絡線を表す包絡線情報を抽出し、 前記第 3のフィルタが抽出した成分 を取得し、 取得した当該成分のスぺクトルの強度が前記包絡線情報が示 す包絡線により表される強度に実質的に等しくなるように当該成分を フィルタリングして前記加算部に供給するィコライズ手段を備え、 前記加算部は、 前記ィコライズ手段がフィルタリングした前記第 3の 帯域内の成分及び前記入力信号の和を表す出力信号を生成するものと してもよい。 Such a signal interpolating device according to the first aspect of the present invention extracts the envelope information representing the envelope of the spectrum of the input signal, acquires the component extracted by the third filter, and obtains the component of the acquired component. The strength of the vector is indicated by the envelope information. Equalizing means for filtering the component so as to be substantially equal to the intensity represented by the envelope and supplying the filtered component to the adding section, wherein the adding section includes a filter in the third band filtered by the equalizing means. And an output signal representing the sum of the input signal and the input signal.
このような構成を有することにより、 本発明の信号補間装置は、 予め 帯域制限されている入力信号に追加されるべき成分を、 入力信号のスぺ クトルの包絡線に沿うようにして入力信号に追加する。 従って、 帯域が 拡張された後の入力信号は、 帯域が制限される前の原信号により近いも のとなる。  By having such a configuration, the signal interpolation apparatus of the present invention converts the component to be added to the input signal whose band has been limited in advance into the input signal so as to follow the envelope of the spectrum of the input signal. to add. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
前記加算部は、 前記第 3 .の帯域内の成分と実質的に同相になるように 前記入力信号を遅延させる遅延部を備え、 前記第 3の帯域内の成分と、 前記遅延部が遅延させた前記入力信号との和を表す前記出力信号を生 成するものであれば、 第 1乃至第 3のフィル夕及び混合部のうちいずれ かが信号の遅延を発生させるものであっても、 加算部が正確に入力信号 の帯域の拡張を行う。  The adder includes a delay unit that delays the input signal so that the components in the third band are substantially in phase with the components in the third band, and the component in the third band and the delay unit delay the input signal. As long as it generates the output signal representing the sum of the input signal and the input signal, even if any of the first to third filters and the mixing unit generates a signal delay, the addition is performed. The unit accurately extends the bandwidth of the input signal.
次に、 この発明の第 2の観点に係る信号補間装置 (以下、 便宜上、 第 I I発明の信号補間装置と称する) は、 原信号の特定の周波数帯域にお ける周波数成分が除去された帯域制限信号から、 原信号を近似的に復元 するために、 該帯域制限信号において、 信号の周波数成分が残存する 1 つの帯域を選択し、 この選択された帯域から周波数成分を抽出し、該抽 出された周波数成分を別の帯域の周波数成分へと周波数変換すること により、 周波数成分が除去されている該特定帯域の周波数成分から成る 入力信号を合成し、 該合成された入力信号を該帯域制限信号に加えるよ うにして動作する。  Next, a signal interpolator according to a second aspect of the present invention (hereinafter, for convenience, referred to as a signal interpolator of the second invention) is a band-limited device that removes frequency components in a specific frequency band of an original signal. In order to approximately restore the original signal from the signal, one band in which the frequency component of the signal remains is selected from the band-limited signal, and the frequency component is extracted from the selected band. Frequency component into a frequency component of another band, thereby synthesizing an input signal composed of the frequency component of the specific band from which the frequency component has been removed, and converting the synthesized input signal to the band-limited signal. It works by adding to
より具体的には、 第 I I発明の信号補間装置は、 補間の対象としての 入力信号の第 1の帯域内の成分を抽出するフィルタと、 前記フィル夕が 抽出した前記第 1の帯域内の成分を、 前記入力信号が占める帯域より高 周波側の第 2の帯域へと周波数変換することにより補間用成分を生成 する周波数変換部と、 前記入力信号と前記周波数変換部が生成した前記 補間用成分との和を表す出力信号を生成する加算部とから構成される。 More specifically, the signal interpolation device of the second invention is a filter for extracting a component in a first band of an input signal to be interpolated, and a component in the first band extracted by the filter. To a second band on the higher frequency side than the band occupied by the input signal to generate an interpolation component. And an adder that generates an output signal representing the sum of the input signal and the interpolation component generated by the frequency converter.
このような第 I I発明の信号補間装置によれば、 予め帯域制限がなさ れている入力信号を構成する成分が周波数変換されたものが入力信号 に追加され、 帯域が拡張される。 追加された成分は、 入力信号の一部分 の高調波成分とみなし得るので、 入力信号が帯域を制限された信号であ る場合、 帯域が拡張された後の入力信号は、 帯域が制限される前の原信 号に近いものとなる。 また、 このような信号補間装置は、 スペクトルを バンドに分解する処理を行うものではない。  According to such a signal interpolation device of the II invention, a component obtained by frequency-converting a component constituting the input signal which has been subjected to band limitation is added to the input signal, and the band is extended. Since the added component can be regarded as a harmonic component of a part of the input signal, if the input signal is a band-limited signal, the input signal after the band has been expanded is before the band is limited. This is close to the original signal. Further, such a signal interpolation device does not perform a process of decomposing a spectrum into bands.
従って、 入力信号がオーディオ信号を表すものであれば、 帯域が拡張 された後の入力信号を用いてオーディォ信号を復元することにより、 ォ 一ディォ信号が低歪み、 高音質で復元される。  Therefore, if the input signal represents an audio signal, the audio signal is restored using the input signal whose band has been expanded, so that the audio signal is restored with low distortion and high sound quality.
前記第 1の帯域の上限は、 前記入力信号のスぺクトルの分布の上限に 実質的に等しいものであれば、 入力信号に追加される成分は、 入力信号 の一部分の高調波成分に特によく近似し得る可能性が高いため、 帯域が 拡張された後の入力信号は、 帯域が制限される前の原信号により近いも のとなる。  If the upper limit of the first band is substantially equal to the upper limit of the spectrum distribution of the input signal, the component added to the input signal is particularly good as a harmonic component of a part of the input signal. Because of the high likelihood of approximation, the input signal after the band extension is closer to the original signal before the band was limited.
前記第 2の帯域の下限は、 前記入力信号のスぺクトルの分布の上限に 実質的に等しいものであれば、 入力信号に追加される成分のスぺクトル は、入力信号のスぺクトルと、高周波側で隙間なく隣接するものとなる。 従って、 帯域が拡張された後の入力信号は、 帯域が制限される前の原信 号により近いものとなる。  If the lower limit of the second band is substantially equal to the upper limit of the spectrum distribution of the input signal, the spectrum of the component added to the input signal is equal to the spectrum of the input signal. , Adjacent to each other on the high frequency side without any gap. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
前記フィルタは、 自己に供給される指示に応答して、 前記第 1の帯域 の範囲を変化させる手段を備え、  The filter includes means for changing a range of the first band in response to an instruction supplied to the filter.
前記周波数変換部は、 自己に供給される指示に応答して、 前記第 2の 帯域の範囲を変化させる手段を備えていてもよい。  The frequency conversion unit may include means for changing a range of the second band in response to an instruction supplied to the frequency conversion unit.
この場合、 前記信号補間装置は、 例えば、 前記入力信号を取得して、 取得した当該入力信号のスぺクトルの分布の上限を特定し、 特定した結 果に基づいて、 前記第 1及び第 2の帯域の範囲を決定し、 前記フィルタ に、 前記第 1の帯域の範囲を自己が決定した範囲とする指示を提供し、 前記周波数変換部に、 前記第 2の帯域の範囲を自己が決定した範囲とす る指示を提供するスぺクトル解析手段を備えることにより、 第 1及び第 2の帯域の範囲を自ら最適化する。 In this case, for example, the signal interpolation device obtains the input signal, specifies an upper limit of the spectrum distribution of the obtained input signal, and, based on the specified result, the first and second signals. Determine the range of the band of said filter A step of providing an instruction to set the range of the first band to a range determined by the user, and a step of providing the frequency conversion unit with an instruction to set the range of the second band to a range determined by the user. By providing vector analysis means, the range of the first and second bands is optimized by itself.
前記第 I I発明の補間装置は、 前記入力信号のスペクトルの包絡線を 表す包絡線情報を抽出し、 前記周波数変換部が生成した前記補間用成分 を取得し、 取得した当該補間用成分のスぺクトルの強度が前記包絡線情 報を示す包絡線により表される強度に実質的に等しくなるように当該 補間用成分をフィルタリングして前記加算部に供給するィコライズ手 段を備えてもよい。  The interpolating device of the second invention extracts envelope information representing an envelope of the spectrum of the input signal, acquires the interpolation component generated by the frequency conversion unit, and obtains a spectrum of the acquired interpolation component. There may be provided an equalizing means for filtering the interpolation component and supplying the filtered component to the adder so that the intensity of the vector becomes substantially equal to the intensity represented by the envelope indicating the envelope information.
この場合、 前記加算部は、 前記入力信号と前記ィコライズ手段がフィ ル夕リングした前記補間用成分との和を表す出力信号を生成するもの であってもよい。  In this case, the adding unit may generate an output signal representing a sum of the input signal and the interpolation component filtered by the equalizing unit.
このような構成を有することにより、 前記第 I I発明の信号補間装置 は、 入力信号に追加されるべき成分を、 入力信号のスペクトルの包絡線 に沿うようにして入力信号に追加する。 従って、 帯域が拡張された後の 入力信号は、 帯域が制限される前の原信号により近いものとなる。  With such a configuration, the signal interpolating device of the II invention adds the component to be added to the input signal to the input signal along the envelope of the spectrum of the input signal. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
前記加算部は、 前記補間用成分と実質的に同相になるように前記入力 信号を遅延させる遅延部を備え、 前記補間成分及び前記遅延部が遅延さ せた前記入力信号の和を表す前記出力信号を生成するものであれば、 フ ィルタ及び周波数変換部のうちいずれかが信号の遅延を発生させるも のであっても、 加算部が正確に入力信号の帯域の拡張を行う。  The adder includes a delay unit that delays the input signal so that the input signal is substantially in phase with the interpolation component, and the output representing a sum of the interpolation component and the input signal delayed by the delay unit. As long as it generates a signal, the adder accurately extends the bandwidth of the input signal even if one of the filter and the frequency converter generates a signal delay.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 第 I発明の実施の形態に係る信号補間器の構成を示す図で める。  FIG. 1 is a diagram showing a configuration of a signal interpolator according to an embodiment of the present invention I.
第 2図は、 第 I発明における入力信号及び入力信号に追加される成分 が占める帯域と、 B P Fの通過帯域とを示すグラフである。  FIG. 2 is a graph showing a band occupied by an input signal and a component added to the input signal in the first invention, and a pass band of BPF.
第 3図は、 第 I I発明の実施の形態に係る高域信号補間器の構成を示 す図である。 第 4図は、 第 I I発明における入力信号及び入力信号に追加される成 分が占める帯域と、 可変 B P Fの通過帯域とを示すグラフである。 FIG. 3 is a diagram showing a configuration of a high-frequency signal interpolator according to the embodiment of the second invention. FIG. 4 is a graph showing a band occupied by an input signal and a component added to the input signal in the second invention, and a pass band of a variable BPF.
発明の実施の形態 Embodiment of the Invention
以下、 図面を参照しつつ、 2つの観点における本発明 (第 I発明、 第 I I発明) のそれぞれの実施の形態に係る信号補間装置の構成及び動作 について詳細に説明する。  Hereinafter, the configuration and operation of the signal interpolation device according to each embodiment of the present invention (the I-th invention and the II-th invention) from two viewpoints will be described in detail with reference to the drawings.
〔第 I発明〕  (Invention I)
本発明の第 1の観点による信号補間装置 (第 I発明の信号補間装置) を、 周波数補間器を例として説明する。  A signal interpolator according to a first aspect of the present invention (the signal interpolator of the I-th invention) will be described by taking a frequency interpolator as an example.
第 1図は、 第 I発明の実施例としての周波数補間器の構成を示す図で める。 .  FIG. 1 is a diagram showing a configuration of a frequency interpolator as an embodiment of the invention I. .
図示するように、 この周波数補間器は、 B P F (バンドパスフィルタ) 1 A、 I B及び 4と、 遅延部 2と、 混合部 3と、 加算部 5とより構成さ れている。  As shown in the figure, the frequency interpolator includes BPFs (bandpass filters) 1A, IB, and 4, a delay unit 2, a mixing unit 3, and an adding unit 5.
8 ? 1八及び1 8は、 いずれも、 この周波数補間器により周波数の 補間を受ける対象の信号(入力信号)を同時に供給される。そして、各々、 自己に供給された信号のうち、 各自に固有の通過帯域内の成分を通過さ せ混合部 3へと供給し、 他の成分を実質的に遮断する。  The signals to be subjected to frequency interpolation by this frequency interpolator (input signals) are simultaneously supplied to 8 to 18 and 18. Then, each of the signals supplied to itself passes a component within a pass band unique to itself, and supplies the signal to the mixing unit 3, while substantially blocking other components.
なお、 入力信号は音声等を表す信号からなる。 入力信号が表す音声等 のスぺクトル分布は、 例えば、 元の音声等のうち一定値以上 (例えば、 1 4 k H z以上) の周波数成分が除去されたものに相当するものとする。  Note that the input signal is a signal representing a voice or the like. It is assumed that the spectrum distribution of the sound or the like represented by the input signal corresponds to, for example, an original sound or the like from which a frequency component of a certain value or more (for example, 14 kHz or more) has been removed.
B P F 1 A及び 1 Bの通過帯域の範囲は、 第 2図に示すように、  The range of the passband of BPF 1A and 1B is as shown in FIG.
( 1 ) B P F 1 Aの通過帯域 (第 2図において 「B A」 として示す帯 域) の上限の周波数が、 B P F 1 Bの通過帯域 (第 2図において 「B B」 として示す帯域) の下限の周波数にほぼ等しく、  (1) The upper limit frequency of the pass band of BPF 1A (the band indicated as "BA" in Fig. 2) is the lower limit frequency of the pass band of BPF 1B (the band indicated as "BB" in Fig. 2). Approximately equal to
( 2 ) B P F 1 Aの通過帯域の幅が、 周波数の補間を施すことによつ て入力信号に追加される成分が占める帯域(第 2図において「B a d d」 として示す帯域) の帯域幅の 2分の 1にほぼ等しく、  (2) The width of the pass band of the BPF 1A is the bandwidth of the band occupied by the component added to the input signal by performing frequency interpolation (the band shown as "B add" in Fig. 2). Almost equal to half,
( 3 ) B P F 1 Bの通過帯域の上限の周波数が、 入力信号が占める帯 域 (第 2図において 「B i n」 として示す帯域) の上限の周波数にほぼ 等しく、 (3) The upper limit frequency of the BPF 1B passband is Frequency, which is almost equal to the upper limit frequency of the
(4) B P F 1 Bの通過帯域の幅が、 B P F 1 Aの通過帯域の幅にほ ぼ等しい、  (4) The width of the pass band of BP F 1 B is almost equal to the width of the pass band of BP F 1 A,
という関係にある。 There is a relationship.
すなわち、 B P F 1 Aの通過帯域の下限の周波数を f Aい B P F 1 A の通過帯域の上限の周波数を f AH、 B P F 1 Bの通過帯域の下限の周波 数を f Bい B P F 1 Bの通過帯域の上限の周波数を f BH、 入力信号が占 める帯域の上限を f IN、 周波数の補間により入力信号に追加される成分 が占める帯域幅を wとすると、 f Aい f AH、 f Bい f BH、 f IN、 及び wの各値の間には数式 ( 1) ないし数式 (3) に示す関係がある。 In other words, the lower limit frequency of the pass band of BPF 1 A is f A or the upper limit frequency of the pass band of BPF 1 A is f AH , and the lower limit frequency of the pass band of BPF 1 B is f B or BPF 1 B If the upper limit frequency of the band is f BH , the upper limit of the band occupied by the input signal is f IN , and the bandwidth occupied by the component added to the input signal by frequency interpolation is w, then f A or f AH , f B The values of f BH , f IN , and w have the relationships shown in equations (1) to (3).
f AH— 1 BL 、 1 ) f AH— 1 BL, 1)
f BH― ^ IN ( 2 /  f BH― ^ IN (2 /
( f AH" f AL) = ( f BH" f BL) = (W/2) (3) (f AH "f A L ) = (f BH" f B L ) = (W / 2) (3)
遅延部 2は、 B P F 1 A及び 1 Bに供給されたものと同一の入力信号 を、 B P F 1 A及び 1 Bと同時に供給される。 そして、 自己に供給され た信号を遅延させて加算部 5に供給する。  The delay unit 2 is supplied with the same input signal as that supplied to BPF 1A and 1B simultaneously with BPF 1A and 1B. Then, the signal supplied to itself is delayed and supplied to the adder 5.
遅延部 2が信号を遅延させる時間の長さは、 B P F 1 A及び 1 Bに供 給された信号の成分が混合部 3及び B P F 4を経て加算部 5に供給さ れるまでに経過する時間の長さに実質的に等しいものとする。  The length of time that the delay unit 2 delays the signal is the time that elapses before the components of the signal supplied to the BPFs 1A and 1B are supplied to the addition unit 5 via the mixing unit 3 and the BPF 4. Shall be substantially equal to the length.
また、 遅延部 2から加算部 5に供給される遅延された入力信号の位相 と、 B P F 4から加算部 5に供給される信号の位相とは、 加算部 5に同 時に供給されるもの同士の間では、 実質的に同相であるものとする。 混合部 3は、 B P F 1 A及び 1 Bより供給された成分を互いに混合す ることにより、 B P F 1 Aを通過した成分又はその高調波と B P F 1 B を通過した成分又はその高調波との積を表す信号を生成し、 生成した信 号を B P F 4に供給する。  Further, the phase of the delayed input signal supplied from the delay unit 2 to the addition unit 5 and the phase of the signal supplied from the BPF 4 to the addition unit 5 are the same as those of the signals supplied to the addition unit 5 at the same time. It is assumed that the phases are substantially the same. The mixing unit 3 mixes the components supplied from the BPFs 1A and 1B with each other, thereby forming a product of the component passing through the BPF 1A or its harmonic and the component passing through the BPF 1B or its harmonic. Then, a signal is generated, and the generated signal is supplied to the BPF 4.
B P F 4は、 混合部 3より供給された成分のうち、 周波数の下限が f IN で周波数の上限が ( f IN + w) である帯域を占める成分を通過させ 加算部 5に供給し、 他の成分を実質的に遮断する。 The BPF 4 passes components occupying a band whose lower limit of the frequency is f IN and whose upper limit of the frequency is (f IN + w) among the components supplied from the mixing unit 3. It is supplied to the adder 5 to substantially block other components.
加算部 5は、 遅延部 2から自己に供給される遅延された入力信号と B P F 4から供給される成分との和を表す信号を生成し、 この周波数補間器 の出力信号として出力する。 The adder 5 generates a signal representing the sum of the delayed input signal supplied to itself from the delay unit 2 and the component supplied from the BPF 4, and outputs the signal as an output signal of the frequency interpolator.
周波数の補間を施された後の入力信号 (すなわち出力信号) は、 B P F 1 Aを通過した入力信号の成分又はその高調波と B P F 1 Bを通過 した入力信号の成分又はその高調波との積のうち、 周波数の下限が f IN で周波数の上限が ( f IN+w) である帯域を占める成分を、 入力信号に 追加して得られる信号より構成される。 After frequency interpolation, the input signal (ie, output signal) is the product of the input signal component that passed BPF 1A or its harmonics and the input signal component that passed BPF 1B or its harmonics. Of these, a component occupying a band whose lower limit of frequency is f IN and whose upper limit of frequency is (f IN + w) is composed of a signal obtained by adding to the input signal.
入力信号に追加された成分は、 入力信号の一部の高調波成分より構成 されるので、入力信号が帯域を制限された信号である場合、 出力信号は、 帯域が制限される前の入力信号に近いものとなる。  Since the component added to the input signal is composed of some harmonic components of the input signal, if the input signal is a band-limited signal, the output signal is the input signal before the band is limited. It becomes something close to.
なお、 この周波数補間器の構成は上述のものに限られない。  The configuration of this frequency interpolator is not limited to the above.
例えば、 B P F 1 A、 B P F 1 B、 遅延部 2、 混合部 3、 B P F 4及 び加算部 5の機能の一部又は全部を、 D S P (D i g i t a l S i g n a 1 P r o c e s s o r) や C PU (C e n t r a l P r o c e s s i n g Un i t ) が行つてもよい。  For example, some or all of the functions of the BPF 1 A, BPF 1 B, delay unit 2, mixing unit 3, BPF 4, and adder unit 5 may be implemented by DSP (Digital Signala 1 Processor) or CPU (Central Processing Un it) may be done.
また、 ίΑい ίΑΗ、 f BL, f BH、 ί IN、 及び wの各値は、 必ずしも 数式 1〜数式 3に示す関係を有する必要はない。 Further, each value of I Alpha have ί ΑΗ, f BL, f BH , ί IN, and w do not necessarily need to have a relationship shown in Equation 1 Equation 3.
しかし、 これらの各値が数式 1〜数式 3に示す関係を有する場合、 B P F 1 A及び 1 Bを通過する入力信号の成分は、 入力信号自体の一部分 の高調波成分とみなしうる可能性が高い。 また、 B P F 4を通過する成 分のスペクトルは、 入力信号のスペクトルに、 高周波側で隙間なく隣接 するものとなる。 従って、 入力信号が、 帯域を制限されたオーディオ信 号を表すものである場合、 出力信号は、 帯域が制限される前の入力信号 により近いものとなる。  However, when these values have the relationships shown in Equations 1 to 3, it is highly likely that the components of the input signal passing through the BPFs 1A and 1B can be regarded as harmonic components of a part of the input signal itself. . Further, the spectrum of the component passing through BPF4 is adjacent to the spectrum of the input signal without any gap on the high frequency side. Thus, if the input signal represents a band-limited audio signal, the output signal will be closer to the input signal before the band was limited.
また、 B P F 1 A、 I B及び 4は、 各自に供給される指示に従って各 自の通過帯域を公知の手法により変化させるものであってもよい。 そし て、 この周波数補間器は、 B P F 1 A、 I B及び 4に、 各々の通過帯域 を変化させる指示を供給する制御部を備えていてもよい。 The BPFs 1A, IB, and 4 may change their passbands by a known method according to instructions supplied to them. This frequency interpolator has two passbands for BPF 1A, IB and 4. May be provided.
この制御部は、例えば、 フーリェ変換部及び解析部からなるものとし、 いずれも、 例えば D S Pあるいは CPU等より構成されるものとする。 フーリエ変換部は、 入力信号を取得してフーリエ変換し、 フーリエ変 換の結果得られるスぺクトルを表す信号を生成するものとする。 解析部 は、 フーリエ変換部が生成した信号が示すスぺクトルの成分のうち最も 周波数が高い成分を特定し、 特定したスぺクトルの周波数を上述の f IN の値として決定する。 次に、 解析部は、 決定した ί ΙΝの値と、 入力信号 に追加する成分の周波数の上限を示す所定値とに基づき、 上述の wの値 を決定し、 決定した f ΙΝ及び wの値に基づき、 更に f Aい f AH、 f BL 及び ί ΒΗの値を決定する。 そして、 決定した f AL及び : f AHの値が B P F 1 Aの通過帯域の下限及び上限となるよう通過帯域を変化させる指 示を、 BP F l Aに供給する。 B P F 1 Bには、 決定した f BL及び f B Hの値が B P F 1 Bの通過帯域の下限及び上限となるように通過带域を 変化させる指示を供給する。 B P F 4には、 決定した f IN 及び ( f IN + w) の値が B P F 4の通過帯域の下限及び上限となるように通過帯域 を変化させる指示を供給する。 The control unit includes, for example, a Fourier transform unit and an analysis unit, and each of the control units includes, for example, a DSP or a CPU. The Fourier transform unit obtains the input signal, performs Fourier transform, and generates a signal representing a spectrum obtained as a result of the Fourier transform. The analysis unit specifies a component having the highest frequency among the components of the spectrum indicated by the signal generated by the Fourier transform unit, and determines the specified spectrum frequency as the above-described value of f IN . Next, the analysis unit compares the value of the determined ί ΙΝ, based on the predetermined value indicating the upper limit of the frequency components to be added to the input signal, determines the value of the above w, determined f Iotanyu and values of w Further, the values of f A or f AH , f BL, and ί ΒΗ are determined. Then, an instruction to change the pass band so that the determined values of f AL and: f AH become the lower and upper limits of the pass band of BPF 1A is supplied to BP FI A. BPF 1 to of B, and supplies the instruction value of the determined f BL and f B H changes the pass带域as the lower limit and upper limit of the pass band of the BPF 1 B. The BPF 4 is supplied with an instruction to change the pass band so that the determined values of f IN and (f IN + w) are the lower and upper limits of the pass band of the BPF 4.
また、 この周波数補間器は、 入力信号に追加する成分のスペクトルの 強度を、 入力信号のスぺクトルの包絡線に外揷することにより決定する ようにしてもよい。  Further, the frequency interpolator may determine the intensity of the spectrum of the component to be added to the input signal by extrapolating to the envelope of the spectrum of the input signal.
具体的には、 例えば、 この周波数補間器はイコライザを備え、 このィ コライザは、 B P F 4が加算部 5に供給すべき成分を、 自己に供給され る信号が示す周波数特性に合致するようにフィルタリングしてから加 算部 5に供給するものとする。 一方、 上述の解析部は、 上述のフーリエ 変換部が生成した信号に基づき回帰計算の処理を行うことにより、 入力 信号のスぺクトルの包絡線をなす関数を特定し、 特定した関数に基づき、 下限の周波数が f IN で上限の周波数が ( f IN+w) である帯域内の出 力信号の周波数特性を決定する。 そして、 決定結果を示す信号を上述の イコライザに供給するものとする。 以上、 この発明の実施の形態を説明したが、 この発明にかかる周波数 補間装置は、 専用のシステムによらず、 通常のコンピュータシステムを 用いて実現可能である。 Specifically, for example, this frequency interpolator includes an equalizer, and this equalizer filters the components to be supplied to the adding unit 5 by the BPF 4 so as to match the frequency characteristics indicated by the signal supplied to itself. After that, it is supplied to the addition unit 5. On the other hand, the above-described analysis unit performs a regression calculation process based on the signal generated by the above-described Fourier transform unit, thereby specifying a function that forms an envelope of a spectrum of the input signal, and based on the specified function, Determine the frequency characteristics of the output signal in the band where the lower limit frequency is f IN and the upper limit frequency is (f IN + w). Then, a signal indicating the determination result is supplied to the above-described equalizer. The embodiments of the present invention have been described above. However, the frequency interpolating apparatus according to the present invention can be realized using an ordinary computer system without using a dedicated system.
例えば、 パーソナルコンピュ一夕やマイクロコンピュータに上述の B P F 1 A、 I B及び 4や、 遅延部 2や、 混合部 3や、 加算部 5や、 制御 部や、 ィコライザの動作を実行するためのプログラムを格納した媒体 (CD-ROM, MO、 フロッピーディスク等) から該プログラムをィ ンストールすることにより、 上述の処理を実行する周波数補間器を構成 することができる。  For example, a program for executing the operations of the BPFs 1A, IB and 4, the delay unit 2, the mixing unit 3, the adding unit 5, the control unit, and the equalizer described above in a personal computer or a microcomputer. By installing the program from a stored medium (CD-ROM, MO, floppy disk, etc.), a frequency interpolator that executes the above-described processing can be configured.
また、例えば、通信回線の掲示板(B B S) に該プログラムを掲示し、 これを通信回線を介して配信してもよく、 また、 該プログラムを表す信 号により搬送波を変調し、 得られた変調波を伝送し、 この変調波を受信 した装置が変調波を復調して該プログラムを復元するようにしてもよ い。  Further, for example, the program may be posted on a bulletin board (BBS) of a communication line and distributed via the communication line. Further, a carrier wave is modulated by a signal representing the program, and the obtained modulated wave May be transmitted, and the device receiving the modulated wave may demodulate the modulated wave and restore the program.
そして、 このプログラムを起動し、 OSの制御下に、 他のアプリケ一 ションプログラムと同様に実行することにより、 上述の処理を実行する ことができる。  Then, by starting this program and executing it in the same manner as other application programs under the control of the OS, the above-described processing can be executed.
なお、 O Sが処理の一部を分担する場合、 あるいは、 O Sが本願発明 の 1つの構成要素の一部を構成するような場合には、 記録媒体には、 そ の部分をのぞいたプログラムを格納してもよい。 この場合も、 この発明 では、 その記録媒体には、 コンピュータが実行する各機能又はステップ を実行するためのプログラムが格納されているものとする。  When the OS shares part of the processing, or when the OS constitutes a part of one component of the present invention, a program excluding the part is stored in the recording medium. May be. Also in this case, in the present invention, it is assumed that the recording medium stores a program for executing each function or step executed by the computer.
〔第 I I発明〕  (No. II invention)
本発明の第 2の観点による信号補間装置 (第 I I発明の信号補間装 置) を、 高域信号補間器を例として説明する。  A signal interpolation device according to a second aspect of the present invention (the signal interpolation device of the II invention) will be described by taking a high-frequency signal interpolator as an example.
第 3図は、 第 I I発明の実施例としての高域信号補間器の構成を示す 図である。  FIG. 3 is a diagram showing a configuration of a high-frequency signal interpolator as an embodiment of the II invention.
図示するように、 この高域信号補間器は、 可変 B P F (バンドパスフィ ルタ) 3 1と、 遅延部 3 2と、 スぺクトル解析部 33と、 可変周波数発 振部 34と、 混合部 3 5と、 可変 HP F (ハイパスフィルタ) 3 6と、 加算部 37とより構成されている。 As shown, the high-frequency signal interpolator includes a variable BPF (bandpass filter) 31, a delay unit 32, a spectrum analysis unit 33, and a variable frequency generator. It comprises a vibration section 34, a mixing section 35, a variable HPF (high pass filter) 36, and an addition section 37.
可変 B P F 3 1は、 この高域信号補間器によりスぺクトルの補間を受 ける対象の信号 (入力信号) を供給され、 自己に供給された入力信号の うち、 スぺクトル解析部 3 3より供給される後述の第 1の制御信号が指 定する中心周波数及び帯域幅を有する通過帯域内の成分を通過させて 混合部 35へと供給し、 他の成分を実質的に遮断する。  The variable BPF 31 is supplied with a signal (input signal) to be subjected to spectrum interpolation by the high-frequency signal interpolator, and the input signal supplied to the variable BPF 31 is supplied from the spectrum analyzer 33. A component in a pass band having a center frequency and a bandwidth specified by a supplied first control signal, which will be described later, is passed and supplied to the mixing unit 35, and other components are substantially blocked.
なお、 入力信号は音声等を表す信号からなる。 入力信号が表す音声等 のスペクトル分布は、 例えば、 元の音声等のうち一定値以上 (例えば、 14 kHz以上) の周波数成分が除去されたものに相当するものとする c 遅延部 32は、 可変 B P F 3 1に供給されたものと同一の入力信号を、 可変 B P F 3 1と同時に供給される。 そして、 自己に供給された入力信 号を遅延させて加算部 3 7に供給する。 Note that the input signal is a signal representing a voice or the like. Spectral distribution of voice or the like which the input signal is represented, for example, above a certain value of such original audio (e.g., 14 or more kHz) c delay unit 32 to correspond to that frequency component of has been removed, the variable The same input signal as that supplied to the BPF 31 is supplied simultaneously with the variable BPF 31. Then, the input signal supplied to itself is delayed and supplied to the adder 37.
遅延部 3 2が信号を遅延させる時間の長さは、 可変 B P F 3 1に供給 された信号の成分が混合部 3 5及び可変 HP F 3 6を経て加算部 3 7 に供給されるまでに経過する時間の長さに実質的に等しいものとする。 また、 遅延部 3 2から加算部 3 7に供給される遅延された入力信号の位 相と、 可変 HP F 3 6から加算部 3 7に供給される信号の位相とは、 加 算部 3 7に同時に供給されるもの同士の間では、 実質的に同相であるも のとする。  The length of time that the delay unit 32 delays the signal elapses until the signal component supplied to the variable BPF 31 is supplied to the addition unit 37 via the mixing unit 35 and variable HPF 36. To be substantially equal to the length of time that The phase of the delayed input signal supplied from the delay unit 32 to the addition unit 37 and the phase of the signal supplied from the variable HPF 36 to the addition unit 37 are calculated by the addition unit 37 It is assumed that those supplied at the same time are substantially in phase.
スぺクトル解析部 3 3は、 例えば、 D S P (D i g i t a l S i g n a 1 P r o c e s s o r) や C PU 、 C e n t r a l P r o c e s s i n g Un i t ) 等より構成されている。  The spectrum analysis unit 33 is composed of, for example, DSP (DigitalSigna1Procssor), CPU, CentrallProcessIngUnit), and the like.
スぺクトル解析部 3 3は、 可変 B P F 3 1に供給されたものと同一の 入力信号を、 可変 B P F 3 1と同時に供給される。 そして、 供給された 入力信号を解析し、 解析結果に基づき、 可変 B P F 3 1の通過帯域を指 定する第 1の制御信号と、 可変周波数発振部 34が発生する後述の局部 発振信号の周波数を指定する第 2の制御信号と、 可変 HP F 36の通過 帯域を指定する第 3の制御信号とを生成する。 そして、 生成した第 1の 制御信号を可変 B P F 3 1に供給し、 第 2の制御信号を可変周波数発振 器 34に供給し、 第 3の制御信号を可変 HP F 3 6に供給する。 The spectrum analysis unit 33 is supplied with the same input signal as that supplied to the variable BPF 31 at the same time as the variable BPF 31. Then, the supplied input signal is analyzed, and based on the analysis result, the first control signal specifying the pass band of the variable BPF 31 and the frequency of a local oscillation signal generated by the variable frequency A second control signal that specifies the passband of the variable HPF 36 is generated. And the first generated The control signal is supplied to the variable BPF 31, the second control signal is supplied to the variable frequency oscillator 34, and the third control signal is supplied to the variable HPF 36.
スペクトル解析部 3 3は、 具体的には、 以下 ( 1) 〜 (4) として述 ベる処理を行う。  Specifically, the spectrum analyzer 33 performs the processing described as (1) to (4) below.
(1) まず、 スペクトル解析部 3 3は、 自己に供給された入力信号を フーリエ変換する。 そして、 フーリエ変換の結果得られるスペクトルの 成分のうら最も周波数が高い成分を抽出し、 抽出した成分の周波数を、 入力信号が占める帯域の上限の値として特定する。  (1) First, the spectrum analyzer 33 Fourier-transforms the input signal supplied to itself. Then, the component having the highest frequency among the components of the spectrum obtained as a result of the Fourier transform is extracted, and the frequency of the extracted component is specified as the upper limit value of the band occupied by the input signal.
(2) 次に、 スペクトル解析部 3 3は、 入力信号が占める帯域の上限 の値と、 入力信号に追加する成分の周波数の上限を示す所定値とに基づ き、 スぺクトルの補間により入力信号に追加される成分が占める帯域幅 を決定する。  (2) Next, the spectrum analysis unit 33 performs spectrum interpolation based on the upper limit value of the band occupied by the input signal and a predetermined value indicating the upper limit frequency of the component to be added to the input signal. Determines the bandwidth occupied by the component added to the input signal.
(3) 次にスぺクトル解析部 3 2は、 以下 (a) 〜 (d) として示す 条件に合致するように、 可変 B P F 3 1及び可変 HP F 3 6の通過帯域 と、 局部発振信号の周波数とを決定する。 すなわち、 第 4図に示すよう に、  (3) Next, the spectrum analyzer 32 calculates the passbands of the variable BPF 31 and the variable HPF 36 and the local oscillation signal so as to satisfy the following conditions (a) to (d). Determine the frequency. That is, as shown in FIG.
(a) 可変 B P F 3 1の通過帯域 (第 4図において 「BA」 として示 す帯域)の上限の周波数が、入力信号が占める帯域(第 4図において「B i n」 として示す帯域) の上限の周波数に実質的に等しく、  (a) The upper limit frequency of the passband of the variable BPF 31 (the band shown as “BA” in Fig. 4) is the upper limit frequency of the band occupied by the input signal (the band shown as “Bin” in Fig. 4). Substantially equal to the frequency,
(b) 可変 B P F 3 1の通過帯域の幅が、 スペクトルの補間を施すこ とによって入力信号に追加される成分が占める帯域 (第 4図において (b) The width of the pass band of the variable BPF 31 is determined by the band occupied by the component added to the input signal by performing spectrum interpolation (see FIG. 4).
「B a d d」 として示す帯域) の帯域幅に実質的に等しく、 Bandwidth, denoted as "B a d d").
(c) 局部発振信号の周波数(第 4図及び本明細書において「 f 。sc 」 として示す周波数) が、 可変 B P F 3 1の通過帯域の上限と下限との差 に実質的に等しく、 (c) the frequency of the local oscillation signal (the frequency indicated as “ f.sc ” in FIG. 4 and the present specification) is substantially equal to the difference between the upper and lower limits of the passband of the variable BPF 31;
(d) 可変 HP F 3 6の通過帯域 (第 4,図において 「B B」 として示 す帯域) の下限の周波数が、 局部発振信号の周波数 f 。sc と帯域 B a d dに属する周波数との差の絶対値の最大値より大きい、 (d) The lower limit of the passband of the variable HP F36 (the band shown as “BB” in Fig. 4) is the frequency f of the local oscillation signal. greater than the maximum absolute value of the difference between sc and the frequency belonging to band B add,
という関係が成り立つように、 可変 B P F 3 1及び可変 HP F 3 6の 通過帯域と、 局部発振信号の周波数とを決定する。 The variable BPF 31 and the variable HP F 36 Determine the passband and the frequency of the local oscillation signal.
すなわち、 可変 B P F 3 1の通過帯域の下限の周波数を f Hい 可変 B P F 3 1の通過帯域の上限の周波数を f HH、 入力信号が占める帯域の上 限を f 。 、 スペクトルの補間により入力信号に追加される成分が占める 帯域の下限を f IL, スぺクトルの補間により入力信号に追加される成分 が占める帯域の下限を f IH、 スぺクトルの補間により入力信号に追加さ れる成分が占める帯域幅を BW、 可変 HP F 6の通過帯域の下限の周波 数を iHPF とすると、 fHい fHH、 f o 、 f iL> f IH、 BW、 f HPF 及び f osc の各値の間には、 実質的に数式 (4) 〜数式 (6) に示す関 係がある。 That is, the lower limit frequency of the pass band of the variable BPF 31 is f H , the upper limit frequency of the pass band of the variable BPF 31 is f HH , and the upper limit of the band occupied by the input signal is f. The lower limit of the band occupied by the component added to the input signal by spectrum interpolation is f IL , the lower limit of the band occupied by the component added to the input signal by spectrum interpolation is f IH , and the input is made by spectrum interpolation BW bandwidth occupied by the component that is added to the signal, when the frequency of the lower limit of the passband of the variable HP F 6 and i HPF, f H have f HH, fo, fi L> f IH, BW, f HPF and The values of f osc have substantially the relationships shown in Equations (4) to (6).
f HH= f IL= f o (4) f osc = ( f HH- f HL) = ( f in- f IL) =BW (5) f'HPF >m a X [ I f HL " f OSC I >■ I f HH— f OSC I ^ ( 6 ) f HH = f IL = fo (4) f osc = (f HH- f HL) = (f in- f IL) = BW (5) f'HPF> ma X [I f HL "f OSC I> ■ I f HH— f OSC I ^ (6)
(ただし、 m a x l a, β ) は、 2つの値 α及び /3のうち大きい方の値) (4) そして、 スペクトル解析部 3 3は、 上述の (a) 〜 (d) の条 件を満たす f HH及び f HIjの値を用いて、 可変 B P F 1の通過帯域の中 心周波数 (すなわち、 {( fHH— fHL) /2 } の値) 及び帯域幅 (すなわ ち、 ( fHH— f HL) の値) を決定する。 そして、 決定したこれらの値を 可変 B P F 3 1の通過帯域の中心周波数及び帯域幅の値として指定す る第 1の制御信号を生成し、 可変 B P F 3 1に供給する。 また、 上述の ( a) 〜 (d) の条件を満たす f osc の値を局部発振信号の周波数とし て指定する第 2の制御信号を生成し、 可変周波数発振部 34に供給する。 また、 上述の ( a) 〜 (d) の条件を満たす f HPF の値を可変 HP F 3 6の通過帯域の下限の周波数として指定する第 3の制御信号を生成し、 可変 HP F 3 6に供給する。 なお、 この高域信号補間器は、 ί ΙΗの値と して、 例えば、 f 。より十分高い所定の値を用いるようにすればよい。 可変周波数発振部 34は、 スぺクトル解析部 3 3より第 2の制御信号 を供給されると、 この第 2の制御信号が示す周波数の信号からなる局部 発振信号を発生し、 発生した局部発振信号を混合部 3 5へと供給する。 混合部 3 5は、 例えば、 乗算回路等より構成されている。 混合部 3 5 は、 可変 B P F 1より供給された成分と可変周波数発振部 34が発生す る局部発振信号とを互いに混合することにより、 可変 B P F 3 1を通過 した成分と局部発振信号との積を表す信号を生成し、 生成した信号を可 変 HP F 3 6に供給する。 (However, maxla, β) is the larger value of the two values α and / 3.) (4) Then, the spectrum analyzer 33 satisfies the above conditions (a) to (d). Using the values of HH and f HIj , the center frequency (ie, the value of {(f HH — f HL ) / 2}) and the bandwidth (ie, (f H H— f HL ) is determined. Then, a first control signal that specifies these determined values as the center frequency and the bandwidth value of the pass band of the variable BPF 31 is generated and supplied to the variable BPF 31. In addition, a second control signal that specifies the value of f osc that satisfies the above conditions (a) to (d) as the frequency of the local oscillation signal is generated and supplied to the variable frequency oscillator 34. In addition, a third control signal that specifies the value of f HPF that satisfies the above conditions (a) to (d) as the lower limit frequency of the pass band of the variable HP F 36 is generated, and Supply. The high-frequency signal interpolator calculates the value of ί , for example, f. A sufficiently higher predetermined value may be used. When supplied with the second control signal from the spectrum analyzer 33, the variable frequency oscillator 34 generates a local oscillation signal composed of a signal of the frequency indicated by the second control signal, and generates the generated local oscillation signal. The signal is supplied to the mixing section 35. The mixing unit 35 is composed of, for example, a multiplication circuit and the like. The mixing unit 35 mixes the component supplied from the variable BPF 1 and the local oscillation signal generated by the variable frequency oscillating unit 34 with each other, so that the product of the component passing through the variable BPF 31 and the local oscillation signal is mixed. Is generated, and the generated signal is supplied to the variable HP F36.
混合部 3 5が可変 HP F 3 6に供給する信号は、 可変 B P F 3 1を通 過した成分の周波数と局部発振信号の周波数の和にあたる周波数を有 する成分 (和成分) と可変 B P F 3 1を通過した成分の周波数と局部発 振信号の周波数の差にあたる周波数を有する成分 (差成分) とを含んで いる。  The signal supplied from the mixing unit 35 to the variable HPF 36 includes a component having a frequency corresponding to the sum of the frequency of the component passing through the variable BPF 31 and the frequency of the local oscillation signal (sum component) and the variable BPF 31 And a component having a frequency corresponding to the difference between the frequency of the component that has passed through and the frequency of the local oscillation signal (difference component).
可変 HP F 6は、 混合部 3 5より供給された成分のうち、 スペクトル 解析部 3 3より供給される第 3の制御信号が示す値を周波数の下限と する通過帯域内の成分を通過させ加算部 3 7に供給し、 他の成分を実質 的に遮断する。  The variable HPF 6 passes the component indicated by the third control signal supplied from the spectrum analysis unit 33 out of the components supplied from the mixing unit 35 through a component within a pass band having a lower limit of the frequency and adds the values. Feed part 37 to substantially block other components.
混合部 5が可変 HP F 36に供給する和成分のスぺクトルは、 周波数 The spectrum of the sum component supplied to the variable HP F 36 by the mixing unit 5 is
( f HL+ f osc ) を下限とし周波数 ( f HH+ f osc ) を上限とする帯 域を占める。 また、 混合部 3 5が可変 HP F 3 6に供給する差成分のス ベクトルは、 周波数 I fHL— f osc I 及び I f HH_ f osc I のうち小 さい方の値を下限とし大きい方の値を上限とする帯域を占める。 一方、 可変 HP F 3 6の通過帯域の下限の周波数 f HPF は、 上述の (d) の条 件 (数式 ( 6) に示す条件) を満たす。 It occupies a band whose lower limit is ( fHL + fosc) and whose upper limit is frequency ( fHH + fosc). In addition, the sum vector of the difference component supplied to the variable HP F 36 by the mixing unit 35 is the lower one of the lower values of the frequencies I f HL — f osc I and I f HH _ f osc I. Occupies the band whose value is the upper limit. On the other hand, the lower limit frequency f HPF of the pass band of the variable HP F 36 satisfies the above condition (d) (the condition shown in Expression (6)).
従って、 可変 HP F 3 6は、 混合部 3 5が供給する信号のうち和成分 を通過させて加算部 3 7に供給し、 差成分を実質的に遮断する。  Therefore, the variable HPF 36 passes the sum component of the signal supplied by the mixing unit 35 and supplies it to the adding unit 37, thereby substantially blocking the difference component.
加算部 37は、 遅延部 32から自己に供給される遅延された入力信号と 可変 HP F 6から供給される成分との和を表す信号を生成し、 この高域 信号補間器の出力信号として出力する。 The adder 37 generates a signal representing the sum of the delayed input signal supplied to itself from the delay unit 32 and the component supplied from the variable HPF 6, and outputs the signal as an output signal of the high-frequency signal interpolator. I do.
出力信号は、 入力信号に、 入力信号のうち周波数が最高であるスぺク トルを含む連続した帯域内の成分を、 入力信号が占める帯域の上限に高 周波数側で隣接する帯域に含まれるよう周波数変換して追加すること により得られる信号より構成される。 The output signal should be such that the input signal contains components within a continuous band including the spectrum with the highest frequency of the input signal, in a band adjacent to the upper limit of the band occupied by the input signal on the high frequency side. Frequency conversion and addition From the signal obtained by
入力信号が帯域を制限された信号である場合、 入力信号に追加された 成分は、 帯域を制限される前の入力信号の一部の高調波成分より構成さ れている可能性が高い。 従って、 入力信号が帯域を制限された信号であ る場合、 出力信号は、帯域が制限される前の入力信号に近いものとなる。 なお、 この高域信号補間器の構成は上述のものに限られない。  If the input signal is a band-limited signal, the component added to the input signal is likely to be composed of some harmonic components of the input signal before the band is limited. Therefore, when the input signal is a signal whose band is limited, the output signal is close to the input signal before the band is limited. Note that the configuration of this high-frequency signal interpolator is not limited to the above.
例えば、 可変 B P F 3 1、 遅延部 3 2、 可変周波数発振部 34、 混合 部 3 5、 可変 HP F 36及び加算部 3 7の機能の一部又は全部を、 D S P (D i g i t a 1 S i g n a 1 P r o c e s s o r) や C PU (C e n t r a 1 P r o c e s s i n g Un i t ) が行つてもよい。 また、 可変 B P F 3 1及び可変 HP F 3 6の通過帯域や、 局部発振信 号の周波数は、 上述した (a) 〜 (d) の条件 (数式 (4) 〜数式 (6) に示す条件) に合致する値に予め固定されていてもよい。 この場合、 こ の高域信号補間器は、 スペクトル解析部 3 3を備える必要がない。  For example, some or all of the functions of the variable BPF 31, the delay unit 32, the variable frequency oscillation unit 34, the mixing unit 35, the variable HP F 36, and the addition unit 37 may be implemented by a DSP (Digita 1 Signal 1 P rocessor) or CPU (Centra 1 P rocessing Un it). In addition, the passbands of the variable BPF 31 and the variable HPF 36 and the frequency of the local oscillation signal are determined by the above-mentioned conditions (a) to (d) (the conditions shown by the equations (4) to (6)). May be fixed in advance to a value that matches. In this case, the high-frequency signal interpolator does not need to include the spectrum analyzer 33.
また、 fHい f HH^ f o い f 、 BW、 f HPF 及び ioscの 各値は、 必ずしも数式 (4) 〜数式 (6) に示す関係を有する必要はな い。 従って、 例えば、 周波数変換を経て入力信号に追加される信号は、 入力信号のうち周波数が最高であるスぺクトルを含むものである必要 はない。 Further, f H have f HH ^ fo have f, BW, the values of f HPF and i osc is necessary have greens necessarily have the relationship shown in Equation (4) to Equation (6). Thus, for example, the signal added to the input signal via frequency conversion need not include the highest frequency spectrum of the input signal.
しかし、 周波数変換を経て入力信号に追加される信号 (可変 HP F 3 6を通過すの成分) が、 入力信号のうち周波数が最高であるスペクトル を含むものである場合、 入力信号に追加されるこの信号は、 入力信号自 体の一部分の高調波成分とみなし得る可能性が高い。 従って、 入力信号 が、帯域を制限されたオーディォ信号を表すものであれば、 出力信号は、 帯域が制限される前の入力信号により近いものとなる。  However, if the signal added to the input signal through frequency conversion (the component that passes through the variable HP F36) contains the highest frequency spectrum of the input signal, this signal is added to the input signal. Is likely to be considered as a harmonic component of a part of the input signal itself. Thus, if the input signal represents a band-limited audio signal, the output signal will be closer to the input signal before the band was limited.
また、 f Hい f HH f 。 、 f IL, f IH、 BW、 f HPF 及び f oscの 各値が数式 (4) 〜数式 (6) に示す関係を有する場合、 可変 HP F 3 6を通過する成分のスペクトルは、 入力信号のスペクトルに、 高周波側 で隙間なく隣接するものとなる。 従って、 入力信号が、 帯域を制限され たオーディオ信号を表すものであれば、 出力信号は、 帯域が制限される 前の入力信号により近いものとなる。 In addition, f H have f HH f. , F IL , f IH , BW, f HPF and f osc have the relationships shown in Equations (4) to (6), the spectrum of the component passing through the variable HP F 36 is It is adjacent to the spectrum without any gaps on the high frequency side. Therefore, the input signal is band limited If the audio signal represents an audio signal, the output signal is closer to the input signal before the band is limited.
また、 この高域信号補間器は、 入力信号に追加する成分のスペクトル の強度を、 入力信号のスぺクトルの包絡線に外揷することにより決定す るようにしてもよい。  Further, the high-frequency signal interpolator may determine the intensity of the spectrum of the component to be added to the input signal by extrapolating to the spectrum envelope of the input signal.
具体的には、 例えば、 この高域信号補間器は更に包絡線解析部とィコ ライザを備えるものとする。 このうちイコライザは、 可変 H P F 3 6が 加算部 3 7に供給すべき成分を、 自己に供給される信号が示す周波数特 性に合致するようにフィルタリングしてから加算部 3 7に供給するも のとする。  Specifically, for example, it is assumed that this high-frequency signal interpolator further includes an envelope analysis unit and an equalizer. Among them, the equalizer filters the components to be supplied to the adding unit 37 by the variable HPF 36 so as to match the frequency characteristics indicated by the signal supplied to itself, and then supplies the components to the adding unit 37. And
一方、 包絡線解析部は、 スペクトル解析部 3 3が入力信号をフーリエ 変換した結果得られるスぺクトルに基づき回帰計算の処理を行うこと により、入力信号のスぺクトルの包絡線をなす関数を特定する。そして、 特定した関数と、 スぺクトル解析部 3 3が決定した f I L及び: f I Hの各 値とに基づき、 下限の周波数が f I Lで上限の周波数が f I Hである帯域 内の出力信号の周波数特性を決定し、 決定結果を示す信号を上述のィコ ライザに供給するものとする。 On the other hand, the envelope analysis unit performs a regression calculation process based on the spectrum obtained as a result of the Fourier transform of the input signal by the spectrum analysis unit 33, thereby obtaining a function that forms an envelope of the spectrum of the input signal. Identify. Then, a function identified, the scan Bae spectrum analyzer 3 3 f IL and was determined: Based on the values of f the IH, the output signal of the band lower limit of the frequency is the frequency of the upper limit in f IL is f the IH Is determined, and a signal indicating the determination result is supplied to the above-described equalizer.
なお、 この場合、 スペクトル解析部 3 3は、 入力信号をフーリエ変換 した結果得られるスぺクトルを表すデータを包絡線解析部に供給する ものとすればよく、 また、 包絡線解析部は、 例えば上述の第 3の制御信 号を取得することにより f I ]Lの値を取得すればよい。 In this case, the spectrum analyzer 33 may supply the data representing the spectrum obtained as a result of the Fourier transform of the input signal to the envelope analyzer, and the envelope analyzer may, for example, The value of f I] L may be obtained by obtaining the third control signal described above.
以上、 この発明の実施の形態を説明したが、 この発明にかかる信号補間 装置は、 専用のシステムによらず、 通常のコンピュータシステムを用い て実現可能である。 As described above, the embodiments of the present invention have been described. However, the signal interpolation device according to the present invention can be realized using an ordinary computer system without using a dedicated system.
例えば、 パーソナルコンピュータやマイク口コンピュータに上述の可 変 B P F 1や、 遅延部 3 2や、 スペクトル解析部 3 3や、 可変周波数発 振部 3 4や、 混合部 3 5や、 可変 H P F 3 6や、 加算部 7や、 包絡線解 析部や、 ィコライザの動作を実行するためのプログラムを格納した媒体 ( C D - R O M , M O、 フロッピ一ディスク等) から該プログラムをィ ンストールすることにより、 上述の処理を実行する高域信号補間器を構 成することができる。 For example, the above-mentioned variable BPF 1, delay section 32, spectrum analysis section 33, variable frequency oscillation section 34, mixing section 35, variable HPF 36, , An adder 7, an envelope analyzer, and a medium (CD-ROM, MO, floppy disk, etc.) storing a program for executing the operation of the equalizer. By installing the high-frequency signal interpolator, the high-frequency signal interpolator that executes the above-described processing can be configured.
また、例えば、通信回線の掲示板(B B S ) に該プログラムを掲示し、 これを通信回線を介して配信してもよく、 また、 該プログラムを表す信 号により搬送波を変調し、 得られた変調波を伝送し、 この変調波を受信 した装置が変調波を復調して該プログラムを復元するようにしてもよ い。  Further, for example, the program may be posted on a bulletin board (BBS) of a communication line and distributed via the communication line. Further, a carrier wave is modulated by a signal representing the program, and the obtained modulated wave May be transmitted, and the device receiving the modulated wave may demodulate the modulated wave and restore the program.
そして、 このプログラムを起動し、 O Sの制御下に、 他のアプリケー シヨンプログラムと同様に実行することにより、 上述の処理を実行する ことができる。  Then, by starting this program and executing it under the control of OS in the same manner as other application programs, the above-described processing can be executed.
なお、 O Sが処理の一部を分担する場合、 あるいは、 〇 sが本願発明 の 1つの構成要素の一部を構成するような場合には、 記録媒体には、 そ の部分をのぞいたプログラムを格納してもよい。 この場合も、 この発明 では、 その記録媒体には、 コンピュータが実行する各機能又はステップ を実行するためのプログラムが格納されているものとする。  If the OS shares a part of the processing, or if 〇s forms a part of one component of the present invention, a program excluding the part is stored in the recording medium. It may be stored. Also in this case, in the present invention, it is assumed that the recording medium stores a program for executing each function or step executed by the computer.
産業上の利用可能性  Industrial applicability
以上の説明のように、 本発明によれば、 原信号の特定の帯域が制限さ れた信号から原信号に近い信号を有効に復元できるようにするための 信号補間装置及び信号補間方法が実現される。  As described above, according to the present invention, a signal interpolation device and a signal interpolation method for effectively restoring a signal close to the original signal from a signal in which a specific band of the original signal is restricted are realized. Is done.
また、 この発明によれば、 オーディオ信号を高音質で復元することが 可能となる。  Further, according to the present invention, it is possible to restore an audio signal with high sound quality.

Claims

請求の範囲 The scope of the claims
1 . 原信号の特定の周波数帯域における周波数成分が除去された帯域制 限信号から、 原信号を近似的に復元するための信号補間装置において、 該帯域制限信号において、 信号の周波数成分が残存する 2つの帯域を 選択し、 選択されたそれぞれの帯域から帯域成分を抽出し、 該抽出され た 2つの帯域成分を混合することにより、 周波数成分が除去されている 該特定帯域の周波数成分から成る補間用信号を合成し、 該合成された補 間用信号を該帯域制限信号に加えるようにしたことを特徴とする信号 補間装置。  1. In a signal interpolation device for approximately restoring an original signal from a band-limited signal from which a frequency component in a specific frequency band of the original signal has been removed, the frequency component of the signal remains in the band-limited signal By selecting two bands, extracting band components from each of the selected bands, and mixing the extracted two band components, the frequency components have been removed. Interpolation consisting of the frequency components of the specific band A signal interpolating apparatus for synthesizing the interpolating signal and adding the synthesized interpolating signal to the band-limited signal.
2 . 補間の対象としての入力信号の第 1の帯域内の成分を抽出する第 1 のフィル夕と、  2. A first filter for extracting a component within a first band of the input signal to be interpolated;
前記入力信号の第 2の帯域内の成分を抽出する第 2のフィル夕と、 前記第 1及び第 2のフィルタにより抽出された各前記成分を混合し て混合信号を生成する混合部と、  A second filter that extracts a component within a second band of the input signal; a mixing unit that generates a mixed signal by mixing the components extracted by the first and second filters;
前記混合信号から第 3の帯域内の成分を抽出する第 3のフィル夕と、 前記第 3のフィルタにより抽出された前記第 3の帯域内の成分から なる補間用信号を、 前記入力信号に加えることにより出力信号を生成す る加算部とを含むことを特徴とする信号補間装置。  A third filter for extracting a component in a third band from the mixed signal, and an interpolation signal including the component in the third band extracted by the third filter are added to the input signal. And an adder for generating an output signal.
3 . 請求項 2に記載の信号補間装置において、  3. The signal interpolation device according to claim 2,
前記第 1の帯域が占める帯域幅は、 前記第 2の帯域が占める帯域幅に 実質的に等しく、  The bandwidth occupied by the first band is substantially equal to the bandwidth occupied by the second band;
前記第 1の帯域の上限は前記第 2の帯域の下限に実質的に等しく、 前記第 2の帯域の上限は前記入力信号のスぺクトルの分布の上限に 実質的に等しく、  An upper limit of the first band is substantially equal to a lower limit of the second band; an upper limit of the second band is substantially equal to an upper limit of a spectrum distribution of the input signal;
前記第 3の帯域の下限は前記第 2の帯域の上限に実質的に等しく、 そ して  The lower limit of the third band is substantially equal to the upper limit of the second band; and
前記第 3の帯域が占める帯域幅は、 前記第 1の帯域が占める帯域幅の 2倍に実質的に等しい信号補間装置。  A signal interpolation device, wherein the bandwidth occupied by the third band is substantially equal to twice the bandwidth occupied by the first band.
4 . 請求項 3に記載の信号補間装置において、 前記第 1のフィルタは、 自己に提供される指示に応答して、 前記第 1 の帯域の上限及び下限を変化させる手段を備え、 4. The signal interpolation device according to claim 3, The first filter includes means for changing an upper limit and a lower limit of the first band in response to an instruction provided to the first filter.
前記第 2のフィル夕は、 自己に提供される指示に応答して、 前記第 2 の帯域の上限及び下限を変化させる手段を備え、  The second filter includes means for changing an upper limit and a lower limit of the second band in response to an instruction provided to the second filter;
前記第 3のフィルタは、 自己に提供される指示に応答して、 前記第 3 の帯域の上限及び下限を変化させる手段を備え、 そして  The third filter includes means for changing an upper limit and a lower limit of the third band in response to an instruction provided to the third filter; and
前記入力信号を取得して、 取得された当該入力信号のスぺクトルの分 布の上限を特定し、 特定された結果に基づいて、 前記第 1乃至第 3の帯 域の上限及び下限を決定し、 前記第 1のフィルタに対して、 前記第 1の 帯域の上限及び下限を自己が決定した値とする指示を提供し、 前記第 2 のフィル夕に対して、 前記第 2の帯域の上限及び下限を自己が決定した 値とする指示を提供し、 並びに前記第 3のフィルタに対して、 前記第 3 の帯域の上限及び下限を自己が決定した値とする指示を提供する分析 手段を備える信号補間装置。  Acquiring the input signal, identifying an upper limit of the spectrum distribution of the acquired input signal, and determining upper and lower limits of the first to third bands based on the identified result. And providing an instruction for the first filter to set upper and lower limits of the first band to values determined by the user, and for the second filter, an upper limit of the second band. And an analysis means for providing an instruction to set the lower limit and the lower limit of the third band to the third filter, and providing an instruction to the third filter to set the upper and lower limits of the third band to the self-determined value. Signal interpolator.
5 . 請求項 2、 3または 4に記載の信号補間装置において、  5. The signal interpolation device according to claim 2, 3 or 4,
前記入力信号のスぺクトルの包絡線を表す包絡線情報を抽出し、 前記 第 3のフィルタが抽出した成分を取得し、 取得された当該成分のスぺク トルの強度が前記包絡線情報が示す包絡線により表される強度に実質 的に等しくなるように当該成分をフィルタリングして前記加算部に供 給するィコライズ手段を備える信号補間装置。  The envelope information representing the envelope of the spectrum of the input signal is extracted, the component extracted by the third filter is acquired, and the intensity of the acquired spectrum of the component is determined by the envelope information. A signal interpolation device comprising equalizing means for filtering the component so as to be substantially equal to the intensity represented by the envelope shown and supplying the filtered component to the adder.
6 . 請求項 2乃至 5のいずれかに記載の信号補間装置において、 6. The signal interpolation device according to any one of claims 2 to 5,
前記加算部は、 前記第 3の帯域内の成分からなる補間用信号と実質的 に同相になるように前記入力信号を遅延させる遅延'部を備え、 前記補間 用信号と、 前記遅延部が遅延させた前記入力信号との和を表す前記出力 信号を生成する信号補間装置。  The addition unit includes a delay unit that delays the input signal so that the input signal has substantially the same phase as the interpolation signal including the component in the third band, wherein the interpolation signal and the delay unit are delayed. A signal interpolation device for generating the output signal representing the sum of the input signal and the input signal.
7 . 原信号の特定の周波数帯域における周波数成分が除去された帯域制 限信号から、 原信号を近似的に復元するための信号補間方法において、 該帯域制限信号において、 信号の周波数成分が残存する 2つの帯域を 選択し、 選択されたそれぞれの帯域から帯域成分を抽出し、 該抽出され た 2つの帯域成分を混合することにより、 周波数成分が除去されている 該特定帯域の周波数成分から成る補間用信号を合成し、 該合成された補 間用信号を該帯域制限信号に加えるようにしたことを特徴とする信号 補間方法。 7. In a signal interpolation method for approximately restoring an original signal from a band-limited signal from which a frequency component in a specific frequency band of the original signal has been removed, a frequency component of the signal remains in the band-limited signal Select two bands, extract band components from each selected band, and By mixing the two band components, an interpolation signal composed of the frequency component of the specific band from which the frequency component has been removed is synthesized, and the synthesized interpolation signal is added to the band limited signal. A signal interpolation method characterized in that:
8 . 補間の対象としての入力信号の第 1の帯域内の成分を抽出するステ ップと、  8. a step of extracting components in the first band of the input signal to be interpolated;
前記入力信号の第 2の帯域内の成分を抽出するステップと、  Extracting a component within a second band of the input signal;
抽出された前記第 1及び第 2の帯域内の各成分を混合して混合信号 を生成するステップと、  Mixing each component in the extracted first and second bands to generate a mixed signal;
生成された混合信号から第 3の帯域内の成分を抽出するステツプと、 抽出された前記第 3の帯域内の成分から成る補間用信号を、 前記入力 信号に加えることにより出力信号を生成するステップとを含む信号補 間方法。  Extracting a component in a third band from the generated mixed signal; and generating an output signal by adding an interpolation signal including the extracted component in the third band to the input signal. And a signal interpolation method.
9 . コンピュータを、  9. Connect the computer
補間の対象としての入力信号の第 1の帯域内の成分を抽出する第 1 のフィルタと、  A first filter for extracting a component within a first band of the input signal to be interpolated;
前記入力信号の第 2の帯域内の成分を抽出する第 2のフィルタと 前記第 1及び第 2のフィルタにより抽出された各前記成分を混合し て混合信号を生成する混合部と、  A second filter that extracts a component within a second band of the input signal, and a mixing unit that generates a mixed signal by mixing the components extracted by the first and second filters.
前記混合信号から第 3の帯域内の成分を抽出する第 3のフィル夕と、 前記第 3のフィル夕により抽出された前記第 3の帯域内の成分から なる補間用信号を、 前記入力信号に加えることにより出力信号を生成す る加算部と、  A third filter for extracting a component in a third band from the mixed signal, and an interpolation signal composed of the components in the third band extracted by the third filter, as the input signal. An adder for generating an output signal by adding
して機能させるためのプログラムを記録したコンピュータ読取り可 能な記録媒体。  A computer-readable recording medium on which a program for causing a computer to function is recorded.
1 0 . 原信号の特定の周波数帯域における周波数成分が除去された帯域 制限信号から、 原信号を近似的に復元するための信号補間装置において、 該帯域制限信号において、 信号の周波数成分が残存する 1つの帯域を 選択し、 この選択された帯域から周波数成分を抽出し、 該抽出された周 波数成分を別の帯域の成分へと周波数変換することにより、 周波数成分 が除去されている該特定帯域の周波数成分から成る補間用信号を合成 し、 該合成された補間用信号を該帯域制限信号に加えるようにしたこと を特徴とする信号補間装置。 10. In a signal interpolation device for approximately restoring an original signal from a band-limited signal from which a frequency component in a specific frequency band of the original signal has been removed, the frequency component of the signal remains in the band-limited signal One band is selected, frequency components are extracted from the selected band, and the extracted By frequency-converting the wave number component into a component of another band, an interpolation signal composed of the frequency component of the specific band from which the frequency component has been removed is synthesized, and the synthesized interpolation signal is converted to the band-limited signal. A signal interpolation device characterized in that it is added to the above.
1 1 . 補間の対象としての入力信号の第 1の帯域内の成分を抽出するフ ィル夕と、  1 1. A filter for extracting a component in the first band of the input signal to be interpolated;
前記フィルタにより抽出された前記第 1の帯域内の成分を、 前記入力 信号において占められる帯域より高周波側の第 2の帯域へと周波数変 換することにより補間用信号を生成する周波数変換部と、  A frequency conversion unit that generates an interpolation signal by frequency-converting a component in the first band extracted by the filter to a second band higher in frequency than a band occupied by the input signal;
前記入力信号と、 前記周波数変換部により生成された前記補間用信号 とを、 加え合せて出力信号を生成する加算部とを含むことを特徴とする 信号補間装置。  A signal interpolation device comprising: an addition unit that adds the input signal and the interpolation signal generated by the frequency conversion unit to generate an output signal.
1 2 . 請求項 1 1に記載の信号補間装置において、  12. The signal interpolation device according to claim 11,
前記第 1の帯域の上限は、 前記入力信号のスぺクトル分布の上限に実 質的に等しい信号補間装置。  A signal interpolation device wherein an upper limit of the first band is substantially equal to an upper limit of a spectrum distribution of the input signal.
1 3 . 請求項 1 1又は 1 2に記載の信号補間装置において、  13. The signal interpolating device according to claim 11 or 12,
前記第 2の帯域の下限は、 前記入力信号のスぺクトルの分布の上限に 実質的に等しい信号補間装置。  A signal interpolation device, wherein a lower limit of the second band is substantially equal to an upper limit of a spectrum distribution of the input signal.
1 4 . 請求項 1 1、 1 2又は 1 3に記載の信号補間装置において、 前記フィルタは、 自己に提供される指示に応答して、 前記第 1の帯域 の範囲を変化させる手段を備え、  14. The signal interpolation apparatus according to claim 11, 12, or 13, wherein the filter includes a unit that changes a range of the first band in response to an instruction provided to the filter.
前記周波数変換部は、 自己に提供される指示に応答して、 前記第 2の 帯域の範囲を変化させる手段を備え、 そして  The frequency conversion unit includes means for changing a range of the second band in response to an instruction provided to the frequency conversion unit, and
前記入力信号を取得して、 取得された当該入力信号のスぺクトルの分 布の上限を特定し、 特定された結果に基づいて、 前記第 1及び第 2の帯 域の範囲を決定し、 前記フィルタに対して、 前記第 1の帯域の範囲を自 己が決定した範囲とする指示を提供し、 前記周波数変換部に対して、 前 記第 2の帯域の範囲を自己が決定した範囲とする指示を提供するスぺ クトル分析手段を備える信号補間装置。 Acquiring the input signal, identifying an upper limit of the spectrum distribution of the acquired input signal, determining a range of the first and second bands based on the identified result, An instruction is provided to the filter to set the range of the first band to a range determined by the user, and to the frequency converter, the range of the second band is determined to be a range determined by the user. A signal interpolating device comprising a spectrum analyzing means for providing an instruction to perform.
1 5 . 請求項 1 1乃至 1 4のいずれかに記載の信号補間装置において、 前記入力信号のスぺクトルの包絡線を表す包絡線情報を抽出し、 前記 周波数変換部により生成された前記補間用信号を取得し、 取得された当 該補間用信号のスぺク トルの強度が前記包絡線情報が示す包絡線によ り表される強度に実質的に等しくなるように当該補間用信号をフィル タリングして前記加算部に供給する等化手段を備る信号補間装置。 15. The signal interpolation device according to any one of claims 11 to 14, wherein envelope information representing an envelope of a spectrum of the input signal is extracted, and the interpolation generated by the frequency conversion unit is performed. And obtaining the interpolation signal such that the intensity of the spectrum of the obtained interpolation signal is substantially equal to the intensity represented by the envelope indicated by the envelope information. A signal interpolating device including an equalizing unit for filtering and supplying the filtered signal to the adding unit.
1 6 . 請求項 1 1乃至 1 5のいずれかに記載の信号補間装置において、 前記加算部は、 前記補間用信号と実質的に同相になるように前記入力 信号を遅延させる遅延部を備え、 前記補間用信号と、 前記遅延部が遅延 させた前記入力信号との和を表す前記出力信号を生成する信号補間装  16. The signal interpolation device according to any one of claims 11 to 15, wherein the addition unit includes a delay unit that delays the input signal so that the input signal is substantially in phase with the interpolation signal. A signal interpolation device for generating the output signal representing the sum of the interpolation signal and the input signal delayed by the delay unit;
1 7 . 原信号の特定の周波数帯域における周波数成分が除去された帯域 制限信号から、 原信号を近似的に復元するための信号補間方法において、 該帯域制限信号において、 信号の周波数成分が残存する 1つの帯域を 選択し、 選択された帯域から周波数成分を抽出し、 該抽出された周波数 成分を別の周波数成分へと、 周端数変換することにより、 周波数成分が 除去されている該特定帯域の周波数成分から成る補間用信号を合成し、 該合成された補間用信号を該帯域制限信号に加えるようにしたことを 特徴とする信号補間方法。 17. A signal interpolation method for approximately restoring an original signal from a band-limited signal from which a frequency component in a specific frequency band of the original signal has been removed, wherein a frequency component of the signal remains in the band-limited signal One band is selected, a frequency component is extracted from the selected band, and the extracted frequency component is converted into another frequency component by rounding, so that the frequency component is removed from the specific band. A signal interpolation method comprising: synthesizing an interpolation signal composed of frequency components; and adding the synthesized interpolation signal to the band-limited signal.
1 8 . 補間の対象としての入力信号の第 1の帯域内の成分を抽出するス テツフと、  18. A step for extracting a component in the first band of the input signal to be interpolated,
抽出された前記第 1の帯域内の成分を、 前記入力信号が占められる帯 域より高周波側の第 2の帯域へと周波数変換することにより補間用信 号を生成するステップと、  Generating an interpolation signal by frequency-converting the extracted components in the first band to a second band on the higher frequency side than the band occupied by the input signal;
前記入力信号と、 前記補間用信号とを加え合せて出力信号を生成する ステツプとを含むことを特徴とする信号補間方法。  A signal interpolating step for generating an output signal by adding the input signal and the interpolation signal.
1 9 . コンピュータを、  1 9.
補間の対象としての入力信号の第 1の帯域内の成分を抽出するフィ ル夕と、 前記フィルタにより抽出された前記第 1の帯域内の成分を、 前記入力 信号において占められる帯域より高周波側の第 2の帯域へと周波数変 換することにより補間用信号を生成する周波数変換部と、 A filter for extracting components in the first band of the input signal to be interpolated; A frequency conversion unit that generates an interpolation signal by frequency-converting a component in the first band extracted by the filter to a second band higher in frequency than a band occupied by the input signal;
前記入力信号と、 前記周波数変換部により生成された前記補間用信号 と加え合せて出力信号を生成する加算部と、  An addition unit that generates an output signal by adding the input signal and the interpolation signal generated by the frequency conversion unit;
して機能させるためのプログラムを記録したコンピュータ読取り可 能な記録媒体。  A computer-readable recording medium on which a program for causing a computer to function is recorded.
PCT/JP2001/005523 2000-10-24 2001-06-27 Apparatus and method for interpolating signal WO2002035517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001266341A AU2001266341A1 (en) 2000-10-24 2001-06-27 Apparatus and method for interpolating signal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000324641A JP3881836B2 (en) 2000-10-24 2000-10-24 Frequency interpolation device, frequency interpolation method, and recording medium
JP2000-324641 2000-10-24
JP2000366021A JP3713200B2 (en) 2000-11-30 2000-11-30 Signal interpolation device, signal interpolation method and recording medium
JP2000-366021 2000-11-30

Publications (1)

Publication Number Publication Date
WO2002035517A1 true WO2002035517A1 (en) 2002-05-02

Family

ID=26602693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005523 WO2002035517A1 (en) 2000-10-24 2001-06-27 Apparatus and method for interpolating signal

Country Status (3)

Country Link
AU (1) AU2001266341A1 (en)
TW (1) TW512307B (en)
WO (1) WO2002035517A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318034B2 (en) 2002-06-07 2008-01-08 Kabushiki Kaisha Kenwood Speech signal interpolation device, speech signal interpolation method, and program
US7577259B2 (en) 2003-05-20 2009-08-18 Panasonic Corporation Method and apparatus for extending band of audio signal using higher harmonic wave generator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235424A (en) * 1989-03-09 1990-09-18 Fujitsu Ltd Voice coding system for timewise switching type band split
JPH03254223A (en) * 1990-03-02 1991-11-13 Eastman Kodak Japan Kk Analog data transmission system
JPH0685607A (en) * 1992-08-31 1994-03-25 Alpine Electron Inc High band component restoring device
JPH06222799A (en) * 1992-10-09 1994-08-12 American Teleph & Telegr Co <Att> Coding method of sound signal as well as method and system for decoding of coded sound signal
JPH06294830A (en) * 1993-01-22 1994-10-21 Hewlett Packard Co <Hp> Method and apparatus for reinforcement of analysis of frequency region
JPH0990992A (en) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> Broad-band speech signal restoration method
JPH09258787A (en) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd Frequency band expanding circuit for narrow band voice signal
JPH1097287A (en) * 1996-07-30 1998-04-14 Atr Ningen Joho Tsushin Kenkyusho:Kk Period signal converting method, sound converting method, and signal analyzing method
JP2000036755A (en) * 1998-05-15 2000-02-02 Sony Corp Method and device for code convesion and program supply medium thereof
JP2001083995A (en) * 1999-09-13 2001-03-30 Matsushita Electric Ind Co Ltd Sub band encoding/decoding method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235424A (en) * 1989-03-09 1990-09-18 Fujitsu Ltd Voice coding system for timewise switching type band split
JPH03254223A (en) * 1990-03-02 1991-11-13 Eastman Kodak Japan Kk Analog data transmission system
JPH0685607A (en) * 1992-08-31 1994-03-25 Alpine Electron Inc High band component restoring device
JPH06222799A (en) * 1992-10-09 1994-08-12 American Teleph & Telegr Co <Att> Coding method of sound signal as well as method and system for decoding of coded sound signal
JPH06294830A (en) * 1993-01-22 1994-10-21 Hewlett Packard Co <Hp> Method and apparatus for reinforcement of analysis of frequency region
JPH0990992A (en) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> Broad-band speech signal restoration method
JPH09258787A (en) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd Frequency band expanding circuit for narrow band voice signal
JPH1097287A (en) * 1996-07-30 1998-04-14 Atr Ningen Joho Tsushin Kenkyusho:Kk Period signal converting method, sound converting method, and signal analyzing method
JP2000036755A (en) * 1998-05-15 2000-02-02 Sony Corp Method and device for code convesion and program supply medium thereof
JP2001083995A (en) * 1999-09-13 2001-03-30 Matsushita Electric Ind Co Ltd Sub band encoding/decoding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318034B2 (en) 2002-06-07 2008-01-08 Kabushiki Kaisha Kenwood Speech signal interpolation device, speech signal interpolation method, and program
US7676361B2 (en) 2002-06-07 2010-03-09 Kabushiki Kaisha Kenwood Apparatus, method and program for voice signal interpolation
US7577259B2 (en) 2003-05-20 2009-08-18 Panasonic Corporation Method and apparatus for extending band of audio signal using higher harmonic wave generator

Also Published As

Publication number Publication date
AU2001266341A1 (en) 2002-05-06
TW512307B (en) 2002-12-01

Similar Documents

Publication Publication Date Title
RU2720495C1 (en) Harmonic transformation based on a block of sub-ranges amplified by cross products
US6836739B2 (en) Frequency interpolating device and frequency interpolating method
JP3887531B2 (en) Signal interpolation device, signal interpolation method and recording medium
JP4286510B2 (en) Acoustic signal processing apparatus and method
JPS5824060B2 (en) Audio band multiplex transmission method
RU2010139018A (en) DEVICE AND METHOD FOR CONVERTING AUDIO SIGNAL TO PARAMETRIC REPRESENTATION, DEVICE AND METHOD FOR MODIFYING PARAMETRIC REPRESENTATION, DEVICE AND METHOD FOR SYNTHESIS OF PARAMETRIC PROPOSAL
JP3538122B2 (en) Frequency interpolation device, frequency interpolation method, and recording medium
JP4254479B2 (en) Audio band expansion playback device
US7400651B2 (en) Device and method for interpolating frequency components of signal
JP3576941B2 (en) Frequency thinning device, frequency thinning method and recording medium
JP3881836B2 (en) Frequency interpolation device, frequency interpolation method, and recording medium
JP3713200B2 (en) Signal interpolation device, signal interpolation method and recording medium
RU2256293C2 (en) Improving initial coding using duplicating band
JP3576942B2 (en) Frequency interpolation system, frequency interpolation device, frequency interpolation method, and recording medium
KR100632726B1 (en) Stereophonic signal processing apparatus
JP2004053940A (en) Audio decoding device and method
WO2002035517A1 (en) Apparatus and method for interpolating signal
JP2689739B2 (en) Secret device
JP2002175099A (en) Method and device for noise suppression
JP5224586B2 (en) Audio signal interpolation device
WO2007064023A1 (en) Interpolation device, audio reproduction device, interpolation method, and interpolation program
JP6506424B2 (en) Acoustic device, missing band estimation device, signal processing method, and frequency band estimation device
JPH08307365A (en) Digital fm modulator
JP2019113866A (en) Acoustic device, missing band estimation device, signal processing method, and frequency band estimation device
JPH08163056A (en) Audio signal band compression transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase