WO2002035190A1 - Procede permettant de mesurer un niveau de liquide dans des reservoirs d'huile de grande dimension en faisant intervenir des ondes ultrasonores - Google Patents

Procede permettant de mesurer un niveau de liquide dans des reservoirs d'huile de grande dimension en faisant intervenir des ondes ultrasonores Download PDF

Info

Publication number
WO2002035190A1
WO2002035190A1 PCT/CN2000/000745 CN0000745W WO0235190A1 WO 2002035190 A1 WO2002035190 A1 WO 2002035190A1 CN 0000745 W CN0000745 W CN 0000745W WO 0235190 A1 WO0235190 A1 WO 0235190A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
ultrasonic
transmitter
wave
energy
Prior art date
Application number
PCT/CN2000/000745
Other languages
English (en)
Chinese (zh)
Inventor
Zhi Lu
Sining Lu
Original Assignee
Zhi Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhi Lu filed Critical Zhi Lu
Priority to AU2001223436A priority Critical patent/AU2001223436A1/en
Publication of WO2002035190A1 publication Critical patent/WO2002035190A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Definitions

  • the present invention relates to a system for measuring distance using the reflection of ultrasonic waves, and particularly to a method for ultrasonically measuring the liquid level of a large oil tank. Background technique
  • Utilizing ultrasonic ranging or measuring the level are both a carrier wave, a square-modulated pulse wave, and a modulated pulse wave with a square envelope composed of the carrier wave and the square-modulated pulse wave.
  • the transmitter transmits an ultrasonic pulse signal to the measured target.
  • the reflected wave is reflected back from the measured target and received by the receiver.
  • the level is displayed, and the ultrasonic wave travels from the transmitter to the measured U mark once.
  • the required cycle time determines the distance of the target. In order to accurately measure the distance, it is required that the resolution of the ultrasonic wave is high, and the accuracy of the cycle time measurement is high. In order to achieve long-distance measurement, the detection ability is required. At the same time, it is required to eliminate the interference of environmental noise and various false echoes in the tank.
  • the purpose of the present invention is to provide a method for ultrasonically measuring the liquid level of a large oil tank.
  • the pulse signal wave emitted by the transmitter to the liquid surface is a micro-energy ultrasonic wave.
  • the micro-energy ultrasonic wave can effectively avoid the interference of false echoes in the oil tank.
  • the use of micro-energy ultrasonics below 19 microjoules can not only meet the requirements of safety and explosion protection of oil tanks, but also greatly simplify the structure of the instrument, reduce costs, and increase the degree of intelligence and automation.
  • a method for ultrasonically measuring the liquid level of a large oil tank which comprises generating a carrier wave, a square modulation pulse wave, a modulated wave with a square envelope formed by the carrier wave and a square modulation pulse wave, and amplifying a pulse signal transmitted by the transmitter to the target.
  • the wave is reflected back from the measured object.
  • the level display is characterized by: under intrinsically safe and explosion-proof conditions, the microcomputer makes the transmitter face the liquid surface.
  • the intensity of the transmitted ultrasonic pulse signal increases from weak to strong, or decreases from strong to weak until the receiver receives the liquid level echo signal; the intensity of the ultrasonic pulse signal transmitted by the transmitter changes It is realized by the microcomputer automatically changing the excitation voltage pulse width of the transmitter, and the voltage pulse width changes with the change of the liquid level; the intensity of the ultrasonic pulse signal emitted by the transmitter is automatically changed by the microcomputer.
  • the pulse amplitude is realized, and the voltage pulse amplitude is changed with the change of the liquid level; the transmitter Transmitting an ultrasonic pulse signal whose intensity
  • the degree change is realized by the microcomputer automatically and simultaneously changing the width and amplitude of the excitation voltage pulse of the transmitter, and the width and amplitude of the voltage pulse change with the change of the liquid level.
  • Figure 1 is a schematic diagram of the oil level target search process of the method
  • Figure 2 is a schematic circuit diagram of a device for implementing the method of the present invention
  • FIG. 3 is a program operation diagram of the method of the present invention. Nie Jia way of implementing the present invention
  • P is the sound pressure value at a distance h from the sound source
  • a is the sound absorption coefficient of the shield.
  • the transmitter F transmits a micro-energy ultrasonic wave to the measured target receiver F ', and the micro-energy ultrasonic wave decays exponentially with the propagation distance in the medium, as shown in FIG. 1, where A, B, and C respectively represent ultrasonic waves of different energy.
  • a and B indicate that the ultrasonic energy is attenuated before reaching the receiver in the medium
  • C has an echo and is received by the receiver.
  • the dashed lines Pa, Pb, and Pc in the figure represent the attenuation changes of the above-mentioned ultrasonic sound intensities of different energies with the propagation distance.
  • the device includes a microcomputer minimum unit 1 including a frequency divider ⁇ , a transmission control unit 2, a transmission amplification unit 3, and a transformer.
  • the central controller IC1 sends the mode number in the program memory ROM to the frequency divider as the transmission instruction IC2, the mode number contains the setting parameters of the modulation wave that stimulates the transmitter's pulse signal from narrow to wide and then decreases from wide to narrow, and the transmission pulse frequency and operating instructions that match the transmitter, frequency division
  • the IC2 receives the instruction, its OUT1 port immediately gives a modulated negative pulse signal according to the pulse width set by the program.
  • the negative pulse signal becomes a positive pulse modulation signal after being inverted by the NAND gate 22, and is sent in two ways at the same time.
  • the carrier pulse signal is sent by the on-time controlled by the pulse width of the modulation signal. This signal is sent to pin 6 of AND gate 26 via level shifter 23 and sent to AND via NAND gate 21 and level shifter 24 via the other path. Foot 2 of door 27, when with When one of the pins 6 of 26 or 27 of the AND gate 27 is at a high potential, the corresponding AND gate is turned on. Because the carrier pulse signal changes periodically, the AND gates 26 and 27 are also periodically connected accordingly.
  • the output pins 4 and 3 output positive pulse signals respectively, and the pulse signals are sent to the corresponding input gates of the two FET amplifiers 31 or 32 in the amplifying unit 3 to excite the corresponding amplifiers,
  • the two amplifiers alternately amplify the signal according to the period of the carrier pulse signal, and cut off the operation according to the width of the modulated pulse signal.
  • the emission control unit 2 and the amplifying unit 3 combine the carrier wave and the square modulation pulse wave into a modulated envelope with a square envelope
  • the transformer T excites the transmitter F to transmit ultrasonic waves.
  • the two ends of the primary winding of the transformer T are respectively connected to the drains of two field effect tubes 31 and 32.
  • the center taps of the primary winding of the transformer T are respectively connected to one end of the resistor R and the capacitor C.
  • the other end of R is connected to DC power source + Vcc
  • the other end of capacitor C is grounded
  • one end of the secondary winding of transformer T is connected to the ground ends of transmitter and receiver F
  • the other end is connected to the transmitter
  • a signal terminal F is connected to the receiver, the electrical excitation signal from a pulse width varying between 1 ⁇ s to 512 ⁇ s, the pulse width is automatically changed by the microcomputer, and therefore the emitted energy is automatically changed.
  • the signal end is connected to the input end of the receiving amplifier 4.
  • the signal is sent to the INTO interrupt port of the central controller IC1 through the amplifier 4, the detector 5 and the comparison shaper 6, and the central controller IC1 records the interruption time, The distance is calculated according to the time required for ultrasonic round-trip, and a dynamic blind zone or gating window is given according to the measured distance. The dynamic blind zone or gating window is used to prevent false echo interference.
  • the central controller IC1 sends the signal data to the data storage RAM and performs data processing at the same time. The processed data is sent to the display H through P16 port for display.
  • Divider IC1 uses 8032 and frequency divider IC2 uses 8253.
  • IC1 is connected to ROM, RAM, and frequency divider IC2 in a conventional manner.
  • 5m ⁇ ⁇ optical aperture disposed ultrasonic transmitter - receiver from the transmitter to the tank bottom is 14.42 meters, 22.7 meters in diameter can bottom, transmitter - receiver implicitly diameter of 260, a height of 200mm, the operating frequency is 24.2 KC, the voltage pulse of the excitation transmitter is 250Vp-p. It has passed the inspection of the national explosion-proof inspection department and has passed the ia II CT6 level explosion-proof certificate, which is the highest explosion-proof certificate in the intrinsically safe type.
  • a multi-point temperature sensor composed of DS1820 protected by a nylon sleeve is used.
  • the sensor is arranged in an oil tank.
  • the ultrasonic transmitter is connected to the transmitter with a 50m 5-core cable.
  • the transmitter contains a control transmitting, receiving and data processing unit, etc.
  • the transmitter has a communication interface RS485 and is connected to the host installed in the central control room via the IKm communication cable. The transmitter and the host implement bidirectional communication.
  • the relay interface for oil pump opening and closing the host has 4-20mA analog output and communication interface with industrial computer or PC.
  • the transmitter has obtained the national explosion-proof certificate level ( ⁇ 5, which can be used for the explosion-proof type explosion-proof level certificate of zone II, and the explosion-proof certificate level of the multi-point temperature sensor is iaIIBT6.
  • the transmitter sequentially transmits ultrasonic pulse signals according to the program mode number, and the corresponding pulse widths are 1 ⁇ , 5 ⁇ , 10 ⁇ , 20 s, 30 ⁇ s ..., ⁇ ,
  • the liquid level target was searched.
  • the displayed liquid level height was 2.474m
  • the distance from the liquid level to the transmitter was 11.946m
  • the temperature was 24.5 ° C.
  • the instrument entered the formal measurement operation procedure.
  • the transmitter transmitted ultrasonic waves with a pulse width of 120 s.
  • the signal and continuous measurement, the instrument shows that the level height is 2.474, 2.475, 2.476, 2.474 ⁇ .
  • the calibration results of the device implementing this method the maximum range is 28m, the dead zone is 0.15m, and the accuracy is two thousandths of the measured distance.
  • the program operation diagram adopted by the method of the present invention is shown in Fig. 3, where P1-P5 are the search target process and P6-P12 are the process of measuring the oil tank level.
  • the software program is divided into several energy modes and numbered according to the strength of the transmitted pulse signal.
  • the microcomputer After completing the initialization of P1, the microcomputer sequentially orders the transmitter to transmit ultrasonic waves to the liquid surface and counts P2 in sequence, and the receiver sequentially Receive liquid level echo P3, determine P4 by echo signal detection output, the microcomputer calculates the liquid level distance P5 when there is detection output, and returns to P2 if there is no detection output; according to the measured distance and the corresponding transmitted signal pulse width The official measurement of P6 is started.
  • the transmitter transmits ultrasonic waves to the liquid surface and counts P7, receives the echo signal P8, and judges the detection output P9.
  • the computer calculates the distance P10 and displays Pll, and returns when the set measurement period T is reached. To P7, if there is no detection output, return to P2.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

L'invention concerne un procédé permettant de mesurer le niveau d'un liquide contenu dans des réservoirs d'huile de grande dimension faisant appel à des ondes ultrasonores. Ce procédé est caractérisé en ce qu'un micro-ordinateur envoie une instruction à un émetteur afin d'envoyer des signaux d'impulsions ultrasonores vers le niveau liquide dans des conditions essentielles de déflagration jusqu'à ce qu'un récepteur reçoive un signal d'écho, l'intensité des signaux d'impulsions ultrasonores augmente et passe d'un niveau faible à un niveau élevé ou diminue passant d'un niveau élevé à un niveau faible. En comparaison avec l'état de la technique actuelle, les ondes ultrasonores mesurant le liquide sont capables de mesurer le niveau liquide dans des réservoirs d'huile de grande dimension dont le niveau de déflagration est iaIICT6. Par ailleurs, l'invention fait preuve d'une précision atteignant 0,2 % de la distance véridique, ce qui permet d'obtenir une zone aveugle de moins de 15 centimètres et d'améliorer le degré d'automatisation tout en se prêtant à la mise en route du dispositif. Il a été démontré que le procédé de cette invention est unique en ce qu'il mesure le niveau du liquide dans des réservoirs d'huile de grande dimension. Toutefois, des dispositifs de mesure utilisant les ondes ultrasonores selon l'art antérieur ne peuvent mesurer le niveau de liquide dans les réservoirs d'huile de grande dimension.
PCT/CN2000/000745 2000-10-25 2000-12-29 Procede permettant de mesurer un niveau de liquide dans des reservoirs d'huile de grande dimension en faisant intervenir des ondes ultrasonores WO2002035190A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001223436A AU2001223436A1 (en) 2000-10-25 2000-12-29 A method for measuring liquid level in large oil tanks with ultrasonic wave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 00129888 CN1350164A (zh) 2000-10-25 2000-10-25 超声波测量大型油罐液位的方法
CN00129888.7 2000-10-25

Publications (1)

Publication Number Publication Date
WO2002035190A1 true WO2002035190A1 (fr) 2002-05-02

Family

ID=4593820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000745 WO2002035190A1 (fr) 2000-10-25 2000-12-29 Procede permettant de mesurer un niveau de liquide dans des reservoirs d'huile de grande dimension en faisant intervenir des ondes ultrasonores

Country Status (3)

Country Link
CN (1) CN1350164A (fr)
AU (1) AU2001223436A1 (fr)
WO (1) WO2002035190A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305003A1 (de) * 2003-02-07 2004-08-19 Jäger, Frank-Michael Verfahren und Vorrichtung zur Feststellung und/oder Überwachung einer Flüssigkeit
DE10325953A1 (de) * 2003-06-07 2004-12-23 Jäger, Frank-Michael Verfahren und Vorrichtung zur Messung von Niveauhöhen geschichteter Flüssigkeiten
DE102005057094A1 (de) * 2005-11-30 2007-06-06 Vega Grieshaber Kg Füllstandradar mit variabler Sendeleistung
CN102735314A (zh) * 2011-04-15 2012-10-17 科林声(北京)科技有限责任公司 一种高精度的外贴式超声液位计
CN104501909A (zh) * 2014-12-04 2015-04-08 哈尔滨工程大学 一种基于超声波的小量程液位测量装置及测量方法
CN107014467A (zh) * 2017-03-30 2017-08-04 西安科技大学 一种电力变压器储油柜液位测量装置及测量方法
CN111262952A (zh) * 2020-03-27 2020-06-09 北京环鼎科技有限责任公司 用于存储式测井的声波数据文件下载的断点续载方法
CN114755660A (zh) * 2021-12-23 2022-07-15 西南技术物理研究所 飞焦级脉冲激光能量测量装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944272B (zh) * 2012-11-19 2014-07-23 成都泛华航空仪表电器有限公司 电感式流量计测量转换器
US9488514B2 (en) * 2013-01-15 2016-11-08 Ssi Technologies, Inc. Three-mode sensor for determining temperature, level, and concentration of a fluid
CN104459705A (zh) * 2014-12-05 2015-03-25 苏州市欧博锐自动化科技有限公司 一种具有温度补偿的超声波测距***
KR101630301B1 (ko) * 2015-12-31 2016-06-14 (주) 다인레벨 자기왜곡방식의 거리측정을 이용한 테이퍼관형 면적식 유량계
CN107421602A (zh) * 2016-05-23 2017-12-01 上海亨骏自动化设备有限公司 一种液位计回波信号去噪用包络检波电路
CN107764369B (zh) * 2016-08-23 2019-11-19 北京清控人居环境研究院有限公司 超声波液位测量方法
US10107170B2 (en) * 2016-11-14 2018-10-23 GM Global Technology Operations LLC Method for validating signals generated by acoustic sensors
CN108709605B (zh) * 2018-05-22 2020-01-24 武汉海盛智创科技有限公司 基于多次回波检测的外贴式超声波液位检测***
CN112799072A (zh) * 2020-12-24 2021-05-14 北京无线电计量测试研究所 一种超声波测距传感器和测距方法
CN113566929A (zh) * 2021-09-27 2021-10-29 山东西王食品有限公司 基于lstm的油罐液面超声测量方法、***、终端及存储介质
CN116878599B (zh) * 2023-09-06 2024-01-09 青岛鼎信通讯科技有限公司 一种超声水表的流量计量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596144A (en) * 1984-09-27 1986-06-24 Canadian Corporate Management Co., Ltd. Acoustic ranging system
EP0262990A2 (fr) * 1986-10-03 1988-04-06 Milltronics Ltd. Système télémétrique acoustique
CN1129322A (zh) * 1995-02-17 1996-08-21 鲁智 伪随机超声波测距的方法及其测距仪
WO1997044641A1 (fr) * 1996-05-24 1997-11-27 Drexelbrook Engineering Company Instrument a ultrasons pour le controle de matieres
CN2349557Y (zh) * 1998-08-25 1999-11-17 王成凯 超声波液位测定仪
CN1250154A (zh) * 1999-09-30 2000-04-12 石油大学(华东) 利用半波透射原理的超声波油罐液位自动测量技术

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596144A (en) * 1984-09-27 1986-06-24 Canadian Corporate Management Co., Ltd. Acoustic ranging system
US4596144B1 (en) * 1984-09-27 1995-10-10 Federal Ind Ind Group Inc Acoustic ranging system
EP0262990A2 (fr) * 1986-10-03 1988-04-06 Milltronics Ltd. Système télémétrique acoustique
CN1129322A (zh) * 1995-02-17 1996-08-21 鲁智 伪随机超声波测距的方法及其测距仪
WO1997044641A1 (fr) * 1996-05-24 1997-11-27 Drexelbrook Engineering Company Instrument a ultrasons pour le controle de matieres
CN2349557Y (zh) * 1998-08-25 1999-11-17 王成凯 超声波液位测定仪
CN1250154A (zh) * 1999-09-30 2000-04-12 石油大学(华东) 利用半波透射原理的超声波油罐液位自动测量技术

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305003A1 (de) * 2003-02-07 2004-08-19 Jäger, Frank-Michael Verfahren und Vorrichtung zur Feststellung und/oder Überwachung einer Flüssigkeit
DE10325953A1 (de) * 2003-06-07 2004-12-23 Jäger, Frank-Michael Verfahren und Vorrichtung zur Messung von Niveauhöhen geschichteter Flüssigkeiten
DE102005057094B4 (de) * 2005-11-30 2013-02-14 Vega Grieshaber Kg Füllstandradar mit variabler Sendeleistung
US7460057B2 (en) 2005-11-30 2008-12-02 Vega Grieshaber Kg Filling level radar with variable transmitting power
US7884755B2 (en) 2005-11-30 2011-02-08 Vega Grieshaber Kg Filling level radar with variable transmitting power
DE102005057094A1 (de) * 2005-11-30 2007-06-06 Vega Grieshaber Kg Füllstandradar mit variabler Sendeleistung
CN102735314A (zh) * 2011-04-15 2012-10-17 科林声(北京)科技有限责任公司 一种高精度的外贴式超声液位计
CN104501909A (zh) * 2014-12-04 2015-04-08 哈尔滨工程大学 一种基于超声波的小量程液位测量装置及测量方法
CN104501909B (zh) * 2014-12-04 2018-05-18 哈尔滨工程大学 一种基于超声波的小量程液位测量装置及测量方法
CN107014467A (zh) * 2017-03-30 2017-08-04 西安科技大学 一种电力变压器储油柜液位测量装置及测量方法
CN107014467B (zh) * 2017-03-30 2020-01-14 西安科技大学 一种电力变压器储油柜液位测量装置及测量方法
CN111262952A (zh) * 2020-03-27 2020-06-09 北京环鼎科技有限责任公司 用于存储式测井的声波数据文件下载的断点续载方法
CN111262952B (zh) * 2020-03-27 2023-11-21 北京环鼎科技有限责任公司 用于存储式测井的声波数据文件下载的断点续载方法
CN114755660A (zh) * 2021-12-23 2022-07-15 西南技术物理研究所 飞焦级脉冲激光能量测量装置
CN114755660B (zh) * 2021-12-23 2024-05-24 西南技术物理研究所 飞焦级脉冲激光能量测量装置

Also Published As

Publication number Publication date
AU2001223436A1 (en) 2002-05-06
CN1350164A (zh) 2002-05-22

Similar Documents

Publication Publication Date Title
WO2002035190A1 (fr) Procede permettant de mesurer un niveau de liquide dans des reservoirs d'huile de grande dimension en faisant intervenir des ondes ultrasonores
US6363788B1 (en) Noninvasive detection of corrosion, mic, and foreign objects in containers, using guided ultrasonic waves
US7966882B2 (en) Self-calibrating method for measuring the density and velocity of sound from two reflections of ultrasound at a solid-liquid interface
US2874568A (en) Ultrasonic flowmeter
US6595059B2 (en) Noninvasive detection of corrosion, MIC, and foreign objects in fluid-filled pipes using leaky guided ultrasonic waves
CN105758499A (zh) 基于超声脉冲回波法的非接触式液体液位检测***及方法
MXPA04008895A (es) Aparato autocalibrador y metodo para la determinacion ultrasonica de propiedades de fluido.
CN103940907A (zh) 煤岩识别设备及其识别方法
US3380293A (en) Ultrasonic inspection apparatus
JP3169534B2 (ja) 浸水検出方法
JP2697508B2 (ja) 炉壁の超音波厚さ計測方法
CN202869605U (zh) 基于调频脉冲回波法的超声液位测量装置
GB2167185A (en) Acoustically detecting and/or identifying a liquid
JP3052532B2 (ja) 超音波透過検査装置
JPS63247608A (ja) コンクリ−トの厚さ及び内在ひび割れ位置の測定方法
EP1785701A1 (fr) Appareil et procédé pour déterminer la température d'un volume de gaz
GB1595973A (en) Flow sensor
SU1231453A1 (ru) Ультразвуковой измеритель концентрации растворов
JPH03167418A (ja) クラッド厚さ測定装置
JPS6316685B2 (fr)
SU877342A1 (ru) Устройство дл ультразвукового конрол уровн жидких сред в закрытых резервуарах
RU2195635C1 (ru) Способ измерения уровня жидких и сыпучих сред
JP2826013B2 (ja) 超音波探傷方法
RU2042153C1 (ru) Устройство определения расстояния до дна
NO136119B (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP